《统计学》 第七章 相关分析与回归分析(补充例题)
《统计学》-第7章-习题答案
第七章思考与练习参考答案1.答:函数关系是两变量之间的确定性关系,即当一个变量取一定数值时,另一个变量有确定值与之相对应;而相关关系表示的是两变量之间的一种不确定性关系,具体表示为当一个变量取一定数值时,与之相对应的另一变量的数值虽然不确定,但它仍按某种规律在一定的范围内变化。
2.答:相关和回归都是研究现象及变量之间相互关系的方法。
相关分析研究变量之间相关的方向和相关的程度,但不能确定变量间相互关系的具体形式,也无法从一个变量的变化来推测另一个变量的变化情况;回归分析则可以找到研究变量之间相互关系的具体形式,并可变量之间的数量联系进行测定,确定一个回归方程,并根据这个回归方程从已知量推测未知量。
3.答:单相关系数是度量两个变量之间线性相关程度的指标,其计算公式为:总体相关系数,样本相关系数。
复相关系数是多元线性回归分析中度量因变量与其它多个自变量之间的线性相关程度的指标,它是方程的判定系数2R 的正的平方根。
偏相关系数是多元线性回归分析中度量在其它变量不变的情况下两个变量之间真实相关程度的指标,它反映了在消除其他变量影响的条件下两个变量之间的线性相关程度。
4.答:回归模型假定总体上因变量Y 与自变量X 之间存在着近似的线性函数关系,可表示为t t t u X Y ++=10ββ,这就是总体回归函数,其中u t 是随机误差项,可以反映未考虑的其他各种因素对Y 的影响。
根据样本数据拟合的方程,就是样本回归函数,以一元线性回归模型的样本回归函数为例可表示为:tt X Y 10ˆˆˆββ+=。
总体回归函数事实上是未知的,需要利用样本的信息对其进行估计,样本回归函数是对总体回归函数的近似反映。
两者的区别主要包括:第一,总体回归直线是未知的,它只有一条;而样本回归直线则是根据样本数据拟合的,每抽取一组样本,便可以拟合一条样本回归直线。
第二,总体回归函数中的0β和1β是未知的参数,表现为常数;而样本回归直线中的0ˆβ和1ˆβ是随机变量,其具体数值随所抽取的样本观测值不同而变动。
统计学:相关回归分析习题与答案
一、单选题1、下列哪种关系属于相关关系而非函数关系?()A.销售总额与销售量B.价格与销售量C.工资总额与人均工资D.圆的面积与半径正确答案:B解析: B、函数关系是指现象之间存在的确定性的数量依存关系。
2、若两个变量之间的线性相关系数为0.9,则()。
A.回归系数为0.81B.判定系数为0.81C.回归估计标准误为0.81D.判定系数为0.95正确答案:B3、下列指标一定非负的是()。
A.回归系数bB.相关系数rC.回归估计标准误S yxD.回归常数a正确答案:C4、在回归直线方程中y c=a+bx,b 是直线的斜率,表明()。
A.当x 增加一个单位时,y 增加a的数量B.当y 增加一个单位时,x 的平均增加量C.当y 增加一个单位时,x 增加b的数量D.当x 增加一个单位时,y 的平均增加量正确答案:D5、相关系数r与回归系数b的关系是()。
A. b=r×S x/S yB. b=r×S y/S xC. r=b×S y/S xD. 以上都不对正确答案:B6、当所有的观察值y都落在直线y c=a+bx上时,x与y之间的相关系数是()。
A. r=1B.r=-1C. |r|=1D.r=0正确答案:C解析:当r=1或r=-1时,表示变量之间为完全相关7、相关系数r=0表示()。
A.不存在相关关系B.两变量独立C.不存在线性相关关系D.存在平衡关系正确答案:C8、对相关系数的显著性检验,通常采用的是()。
A.Z检验B.F检验C.χ2检验D.T检验正确答案:D9、线性回归的检验中,检验整个方程显著性的是()。
A.F检验B.DW检验C.t检验D.R检验正确答案:A10、下列现象的相关密切程度高的是A.商品销售额与商业利润率之间的相关系数是0.62B.商品销售额与流通费用率之间的相关系数为-0.76C.某商店职工人数与商品销售额之间的相关系数为0.79D.流通费用率与商业利润率之间的相关系数是-0.89正确答案:D二、多选题1、下列属于负相关的现象是()。
第七章回归与相关分析练习及答案
第七章回归与相关分析一、填空题1.现象之间的相关关系按相关的程度分为、和;按相关的形式分为和;按影响因素的多少分为和。
2.两个相关现象之间,当一个现象的数量由小变大,另一个现象的数量,这种相关称为正相关;当一个现象的数量由小变大,另一个现象的数量,这种相关称为负相关。
3.相关系数的取值X围是。
4.完全相关即是关系,其相关系数为。
5.相关系数,用于反映条件下,两变量相关关系的密切程度和方向的统计指标。
6.直线相关系数等于零,说明两变量之间;直线相关系数等1,说明两变量之间;直线相关系数等于—1,说明两变量之间。
7.对现象之间变量的研究,统计是从两个方面进行的,一方面是研究变量之间关系的,这种研究称为相关关系;另一方面是研究关于自变量和因变量之间的变动关系,用数学方程式表达,称为。
8.回归方程y=a+bx中的参数a是,b是。
在统计中估计待定参数的常用方法是。
9. 分析要确定哪个是自变量哪个是因变量,在这点上它与不同。
10.求两个变量之间非线性关系的回归线比较复杂,在许多情况下,非线性回归问题可以通过化成来解决。
11.用来说明回归方程代表性大小的统计分析指标是。
12.判断一条回归直线与样本观测值拟合程度好坏的指标是。
二、单项选择题1.下面的函数关系是( )A销售人员测验成绩与销售额大小的关系 B圆周的长度决定于它的半径C家庭的收入和消费的关系 D数学成绩与统计学成绩的关系2.相关系数r的取值X围( )A -∞<r<+∞B -1≤r≤+1C -1<r<+1D 0≤r≤+13.年劳动生产率z(干元)和工人工资y=10+70x,这意味着年劳动生产率每提高1千元时,工人工资平均( )A增加70元 B减少70元 C增加80元 D减少80元4.若要证明两变量之间线性相关程度是高的,则计算出的相关系数应接近于( )A+1 B 0 C 0.5 D [1]5.回归系数和相关系数的符号是一致的,其符号均可用来判断现象( ) A线性相关还是非线性相关 B正相关还是负相关C完全相关还是不完全相关 D单相关还是复相关6.某校经济管理类的学生学习统计学的时间(x)与考试成绩(y)之间建=a+b x。
统计学第七章 相关与回归分析
(四)按变量之间的相关程度分为完全相关、不完全相 关和不相关。
二、相关关系的测定
(一)定性分析,相关表,相关图 判断现象间有无相关关系是一个定性认 识问题,单纯依靠数学方法是无法解决的。 因此,进行相关分析必须以定性分析为前 提,这就要求研究人员首先必须根据有关 经济理论,专业知识,实际经验和分析研 究能力等。对被研究现象在性质上作出定 性判断。 相关表是将相关变量的观察资料,按照 其对应关系和一定顺序排列而成的表格。
Se
y
2
a y b xy n2
(7- 12)
这个公式可以直接利用前面计算回归系 数和相关系数的现成资料。以表7-1的资 料计算如下:
Se y 2 a y b xy n2 56615-30.3 731-28.36 1213 10 2 65.02 8 2.85 (万件)
2
或
y- y R= 1- 2 y y
ˆ 式中,y 为y的多元线性趋势值或回归估计值。
若变量间呈曲线(非直线)相关,则应
计算相关指数来测定变量间相关的密切程度。
ˆ y y y y
2 2
Ryx
( 7-7)
R
ˆ y y
由表7-4资料计算相关系数如下:
r
n xy x y n x x
2 2
n y y
2 2
2
10 1213-15.1 731
2
10 26.25-15.1 10 56615-731 1091.9 1091.9 38.49 31789 6.2 178.3 1091.9 0.988 1105.5
统计学课后习题答案第七章相关分析与回归分析报告
统计学课后习题答案第七章相关分析与回归分析报告第七章相关分析与回归分析一、单项选择题1.相关分析是研究变量之间的A.数量关系B.变动关系C.因果关系D.相互关系的密切程度2.在相关分析中要求相关的两个变量A.都是随机变量B.自变量是随机变量C.都不是随机变量D.因变量是随机变量3.下列现象之间的关系哪一个属于相关关系?A.播种量与粮食收获量之间关系B.圆半径与圆周长之间关系C.圆半径与圆面积之间关系D.单位产品成本与总成本之间关系4.正相关的特点是A.两个变量之间的变化方向相反B.两个变量一增一减C.两个变量之间的变化方向一致D.两个变量一减一增5.相关关系的主要特点是两个变量之间A.存在着确定的依存关系B.存在着不完全确定的关系C.存在着严重的依存关系D.存在着严格的对应关系6.当自变量变化时, 因变量也相应地随之等量变化,则两个变量之间存在着A.直线相关关系B.负相关关系C.曲线相关关系D.正相关关系7.当变量X值增加时,变量Y值都随之下降,则变量X和Y之间存在着A.正相关关系B.直线相关关系C.负相关关系D.曲线相关关系8.当变量X值增加时,变量Y值都随之增加,则变量X和Y之间存在着A.直线相关关系B.负相关关系C.曲线相关关系D.正相关关系9.判定现象之间相关关系密切程度的最主要方法是A.对现象进行定性分析B.计算相关系数C.编制相关表D.绘制相关图10.相关分析对资料的要求是A.自变量不是随机的,因变量是随机的B.两个变量均不是随机的C.自变量是随机的,因变量不是随机的D.两个变量均为随机的11.相关系数A.既适用于直线相关,又适用于曲线相关B.只适用于直线相关C.既不适用于直线相关,又不适用于曲线相关D.只适用于曲线相关12.两个变量之间的相关关系称为A.单相关B.复相关C.不相关D.负相关13.相关系数的取值围是A.-1≤r≤1B.-1≤r≤0C.0≤r≤1D. r=014.两变量之间相关程度越强,则相关系数A.愈趋近于1B.愈趋近于0C.愈大于1D.愈小于115.两变量之间相关程度越弱,则相关系数A.愈趋近于1B.愈趋近于0C.愈大于1D.愈小于116.相关系数越接近于-1,表明两变量间A.没有相关关系B.有曲线相关关系C.负相关关系越强D.负相关关系越弱17.当相关系数r=0时,A.现象之间完全无关B.相关程度较小B.现象之间完全相关 D.无直线相关关系18.假设产品产量与产品单位成本之间的相关系数为-0.89,则说明这两个变量之间存在A.高度相关B.中度相关C.低度相关D.显著相关19.从变量之间相关的方向看可分为A.正相关与负相关B.直线相关和曲线相关C.单相关与复相关D.完全相关和无相关20.从变量之间相关的表现形式看可分为A.正相关与负相关B.直线相关和曲线相关C.单相关与复相关D.完全相关和无相关21.物价上涨,销售量下降,则物价与销售量之间属于A.无相关B.负相关C.正相关D.无法判断22.配合回归直线最合理的方法是A.随手画线法B.半数平均法C.最小平方法D.指数平滑法23.在回归直线方程y=a+bx中b表示A.当x增加一个单位时,y增加a的数量B.当y增加一个单位时,x增加b的数量C.当x增加一个单位时,y的平均增加量D.当y增加一个单位时, x的平均增加量24.计算估计标准误差的依据是A.因变量的数列B.因变量的总变差C.因变量的回归变差D.因变量的剩余变差25.估计标准误差是反映A.平均数代表性的指标B.相关关系程度的指标C.回归直线的代表性指标D.序时平均数代表性指标26.在回归分析中,要求对应的两个变量A.都是随机变量B.不是对等关系C.是对等关系D.都不是随机变量27.年劳动生产率(千元)和工人工资(元)之间存在回归方程y=10+70x,这意味着年劳动生产率每提高一千元时,工人工资平均A.增加70元B.减少70元C.增加80元D.减少80元28.设某种产品产量为1000件时,其生产成本为30000元,其中固定成本6000元,则总生产成本对产量的一元线性回归方程为:A.y=6+0.24xB.y=6000+24xC.y=24000+6xD.y=24+6000x29.用来反映因变量估计值代表性高低的指标称作A.相关系数B.回归参数C.剩余变差D.估计标准误差二、多项选择题1.下列现象之间属于相关关系的有A.家庭收入与消费支出之间的关系B.农作物收获量与施肥量之间的关系C.圆的面积与圆的半径之间的关系D.身高与体重之间的关系E.年龄与血压之间的关系2.直线相关分析的特点是A.相关系数有正负号B.两个变量是对等关系C.只有一个相关系数D.因变量是随机变量E.两个变量均是随机变量3.从变量之间相互关系的表现形式看,相关关系可分为A.正相关B.负相关C.直线相关D.曲线相关E.单相关和复相关4.如果变量x与y之间没有线性相关关系,则A.相关系数r=0B.相关系数r=1C.估计标准误差等于0D.估计标准误差等于1E.回归系数b=05.设单位产品成本(元)对产量(件)的一元线性回归方程为y=85-5.6x,则A.单位成本与产量之间存在着负相关B.单位成本与产量之间存在着正相关C.产量每增加1千件,单位成本平均增加5.6元D.产量为1千件时,单位成本为79.4元E.产量每增加1千件,单位成本平均减少5.6元6.根据变量之间相关关系的密切程度划分,可分为A.不相关B.完全相关C.不完全相关D.线性相关E.非线性相关7.判断现象之间有无相关关系的方法有A.对现象作定性分析B.编制相关表C.绘制相关图D.计算相关系数E.计算估计标准误差8.当现象之间完全相关的,相关系数为A.0B.-1C.1D.0.5E.-0.59.相关系数r =0说明两个变量之间是A.可能完全不相关B.可能是曲线相关C.肯定不线性相关D.肯定不曲线相关E.高度曲线相关10.下列现象属于正相关的有A.家庭收入愈多,其消费支出也愈多B.流通费用率随商品销售额的增加而减少C.产量随生产用固定资产价值减少而减少D.生产单位产品耗用工时,随劳动生产率的提高而减少E.工人劳动生产率越高,则创造的产值就越多11.直线回归分析的特点有A.存在两个回归方程B.回归系数有正负值C.两个变量不对等关系D.自变量是给定的,因变量是随机的E.利用一个回归方程,两个变量可以相互计算12.直线回归方程中的两个变量A.都是随机变量B.都是给定的变量C.必须确定哪个是自变量,哪个是因变量D.一个是随机变量,另一个是给定变量E.一个是自变量,另一个是因变量13.从现象间相互关系的方向划分,相关关系可以分为A.直线相关B.曲线相关C.正相关D.负相关E.单相关14.估计标准误差是A.说明平均数代表性的指标B.说明回归直线代表性指标C.因变量估计值可靠程度指标D.指标值愈小,表明估计值愈可靠E.指标值愈大,表明估计值愈可靠15.下列公式哪些是计算相关系数的公式16.用最小平方法配合的回归直线,必须满足以下条件A.∑(y-y c )=最小值B.∑(y-y c )=0C.∑(y-y c )2=最小值D.∑(y-y c )2=0E.∑(y-y c )2=最大值17.方程y c =a+bx222222)()(.)()())((...))((.y y n x x n y x xy n r E y y x x y y x x r D L L L r C L L L r B n y y x x r A xx xy xy yy xx xy yx ∑-∑?∑-∑∑?∑-∑=-∑?-∑--∑===--∑=σσA.这是一个直线回归方程B.这是一个以X为自变量的回归方程C.其中a是估计的初始值D.其中b是回归系数E.y c是估计值18.直线回归方程y c=a+bx中的回归系数bA.能表明两变量间的变动程度B.不能表明两变量间的变动程度C.能说明两变量间的变动方向D.其数值大小不受计量单位的影响E. 其数值大小受计量单位的影响19.相关系数与回归系数存在以下关系A.回归系数大于零则相关系数大于零B.回归系数小于零则相关系数小于零C.回归系数等于零则相关系数等于零D.回归系数大于零则相关系数小于零E.回归系数小于零则相关系数大于零20.配合直线回归方程的目的是为了A.确定两个变量之间的变动关系B.用因变量推算自变量C.用自变量推算因变量D.两个变量相互推算E.确定两个变量之间的相关程度21.若两个变量x和y之间的相关系数r=1,则A.观察值和理论值的离差不存在B.y的所有理论值同它的平均值一致C.x和y是函数关系D.x与y不相关E.x与y是完全正相关22.直线相关分析与直线回归分析的区别在于A.相关分析中两个变量都是随机的;而回归分析中自变量是给定的数值,因变量是随机的B.回归分析中两个变量都是随机的;而相关分析中自变量是给定的数值,因变量是随机的C.相关系数有正负号;而回归系数只能取正值D.相关分析中的两个变量是对等关系;而回归分析中的两个变量不是对等关系E.相关分析中根据两个变量只能计算出一个相关系数;而回归分析中根据两个变量只能计算出一个回归系数三、填空题1.研究现象之间相关关系称作相关分析。
【精品】统计学题目第七章相关与回归分析
1、填空题现象之间的相关关系按相关的程度分有________相关、________相关和_______相关;按相关的方向分有________相关和________相关;按相关的形式分有________相关和________相关;按影响因素的多少分有________相关和________相关。
2、对现象之间变量关系的研究中,对于变量之间相互关系密切程度的研究,称为_______;研究变量之间关系的方程式,根据给定的变量数值以推断另一变量的可能值,则称为_______。
3、完全相关即是________关系,其相关系数为________。
4、在相关分析中,要求两个变量都是_______;在回归分析中,要求自变量是_______,因变量是_______。
5、person相关系数是在________相关条件下用来说明两个变量相关________的统计分析指标。
6、相关系数的变动范围介于_______与_______之间,其绝对值愈接近于_______,两个变量之间线性相关程度愈高;愈接近于_______,两个变量之间线性相关程度愈低.当_______时表示两变量正相关;_______时表示两变量负相关.7、 当变量x 值增加,变量y 值也增加,这是________相关关系;当变量x值减少,变量y 值也减少,这是________相关关系。
8、 在判断现象之间的相关关系紧密程度时,主要用_______进行一般性判断,用_______进行数量上的说明。
9、 在回归分析中,两变量不是对等的关系,其中因变量是_______变量,自变量是_______量。
10、 已知13600))((=----∑y y x x ,14400)(2=--∑x x ,14900)(2=-∑-y y ,那么,x 和y 的相关系数r 是_______。
11、 用来说明回归方程代表性大小的统计分析指标是________指标。
12、 已知1502=xy σ,18=xσ,11=y σ,那么变量x 和y 的相关系数r 是_______.13、 回归方程bx a y c +=中的参数b 是________,估计特定参数常用的方法是_________.14、 若商品销售额和零售价格的相关系数为-0。
7统计学相关分析与回归分析
n n yi nb0 b1 xi i 1 i 1 n n n x y b x b x2 i i 0 i 1 i i 1 i 1 i 1
n n n n xi yi xi yi i 1 i 1 i 1 b 1 n n 2 2 n xi ( xi ) i 1 i 1 30 b0 y b1 x
回归分析:应用相关关系进行预测。
相关关系的识别
散点图 相关系数
10
相关系数
相关系数是对变量之间关系密切程度的度量。 对两个变量之间线性相关程度的度量称为简 单相关系数。 若相关系数是根据总体的全部数据计算的, 称为总体相关系数,记为ρ
若是根据样本数据计算的,则称为样本相关
系数,记为 r
8
相关分析的主要内容
确定现象之间有无相关关系,以及相关关系 的表现形态; 确定相关关系的密切程度(相关系数); 确定相关关系的数字模型,并进行参数估计 和假设检验;
回归预测,并分析估计标准误差。
9
相关与回归
相关与回归紧密联系。 相关分析:
发现变量之间是否存在相关性,
以及相关的强度和相关的方向。
1
n
1
n
10
10
ˆ b0 b1 x 117 9.74 x y
39
7 相关分析与回归分析
相关分析
回归分析
一元线性回归分析
1
相关分析的概念
社会经济现象中,一些现象与另一些现象之间往 往存在着依存关系,当我们用变量来反映这些现 象的的特征时,便表现为变量之间的依存关系。
《统计学》 第七章 相关分析与回归分析(补充例题)
第七章 相关分析与回归分析(3)当固定资产改变200万元时,总产值平均改变多少?(4)当固定资产为1300万元时,总产值为多少?(1)协方差——用以说明两指标之间的相关方向。
22))((n y x xy n ny y x x xy∑∑∑∑-=--=σ035.12640010098016525765915610>=⨯-⨯=计算得到的协方差为正数,说明固定资产和总产值之间存在正相关关系。
(2)相关系数用以说明两指标之间的相关方向和相关的密切程度。
∑∑∑∑∑∑∑---=])(][)([2222y y n x x n yx xy n r95.0)98011086657710()6525566853910(9801652576591561022=-⨯⨯-⨯⨯-⨯=计算得到的相关系数为0.95,表示两指标为高度正相关。
(3)222652556685391098016525765915610)(-⨯⨯-⨯=--=∑∑∑∑∑x x n y x xy n b 90.0141097651264003542575625566853906395152576591560==--=85.3921065259.0109801=⨯-=-=x b y a 回归直线方程为: x y 9.085.392ˆ+= (4)当固定资产改变200万元时,总产值平均改变多少?x y ∆=∆9.0,1802009.0|200=⨯=∆=∆x y 万元当固定资产改变200万元时,总产值平均增加180万元。
(5)当固定资产为1300万元时,总产值为多少?85.156213009.085.392|1300=⨯+==x y 万元当固定资产为1300万元时,总产值为1562.85万元。
例2、试根据下列资产总值和平均每昼夜原料加工量资料计算相关系数。
解:【分析】本题中“企业数”应看成资产总值和平均每昼夜原料加工量两变量的次数,在计算相关系数的过程,要进行“加权”。
统计学 第 七 章 相关与回归分析
(一)回归分析与相关分析的关系
回归分析与相关分析是研究现象 之间相互关系的两种基本方法。
区别:
1、相关分析研究两个变量之间相关的 方向和相关的密切程度。但是相关分析不 能指出两变量相互关系的具体形式,也无 法从一个变量的变化来推测另一个变量的 变化关系。
2、按研究变量多少分为单相关和 复相关
单相关即一元相关,亦称简单相 关,是指一个因变量与一个自变量 之间的依存关系。复相关又称多元 相关,是指一个因变量与两个或两 个以上自变量之间的复杂依存关系。
3、按相关形式分为线性相关和非 线性相关
从相关图上观察:观察的样本点的 分布近似表现为直线形式,即观察点近 似地分布于一直线的两边,则称此种相 关为直线相关或线性相关。如果这些样 本点近似地表现为一条曲线,则称这种 相关为曲线相关或非线性相关(curved relationship).
不确定性的统计关系 —相关关系
Y= f(X)+ε (ε为随机变量)
在这种关系中,变量之间的关系值 是随机的,当一个(或几个)变量的值 确定以后,另一变量的值虽然与它(们) 有关,但却不能完全确定。然而,它们
之间又遵循一定的统计规律。
相关关系的例子
▪ 商品的消费量(y)与居民收入(x)
之间的关系
▪ 商品销售额(y)与广告费支出(x)
▲相关系数只反映变量间的线性相关程度,不 能说明非线性相关关系。
▲相关系数不能确定变量的因果关系,也不能 说明相关关系具体接近于哪条直线。
例题1: 经验表明:商场利润额与 其销售额之间存在相关关系。下表为 某市12家百货公司的销售额与利润额 统计表,试计算其相关系数。
《统计学原理》第七章习题河南电大贾天骐
《统计学原理》第七章习题河南电大贾天骐一.判断题部分题目1:负相关指的是因素标志与结果标志的数量变动方向是下降的。
()答案:×题目2:相关系数为+1时,说明两变量完全相关;相关系数为-1时,说明两个变量不相关。
()答案:√题目3:只有当相关系数接近+1时,才能说明两变量之间存在高度相关关系。
()答案:×题目4:若变量x的值增加时,变量y的值也增加,说明x与y之间存在正相关关系;若变量x的值减少时,y变量的值也减少,说明x与y之间存在负相关关系。
()答案:×题目5:回归系数和相关系数都可以用来判断现象之间相关的密切程度。
()答案:×题目6:根据建立的直线回归方程,不能判断出两个变量之间相关的密切程度。
()答案:√题目7:回归系数既可以用来判断两个变量相关的方向,也可以用来说明两个变量相关的密切程度。
()答案:×题目8:在任何相关条件下,都可以用相关系数说明变量之间相关的密切程度。
()答案:×题目9:产品产量随生产用固定资产价值的减少而减少,说明两个变量之间存在正相关关系。
()答案:√题目10:计算相关系数的两个变量,要求一个是随机变量,另一个是可控制的量。
()答案:×题目11:完全相关即是函数关系,其相关系数为±1。
()答案:√题目12:估计标准误是说明回归方程代表性大小的统计分析指标,指标数值越大,说明回归方程的代表性越高。
()答案×二.单项选择题部分题目1:当自变量的数值确定后,因变量的数值也随之完全确定,这种关系属于()。
A.相关关系B.函数关系C.回归关系D.随机关系答案:B题目2:现象之间的相互关系可以归纳为两种类型,即()。
A.相关关系和函数关系B.相关关系和因果关系C.相关关系和随机关系D.函数关系和因果关系答案:A题目3:在相关分析中,要求相关的两变量()。
A.都是随机的B.都不是随机变量C.因变量是随机变量D.自变量是随机变量答案:A题目4:测定变量之间相关密切程度的指标是()。
统计学 第七章 相关与回归分析
数 值 说 明
完全负相关
无线性相关
完全正相关
-1.0
-0.5
0
+0.5
正相关程度增加
+1.0
r
负相关程度增加
通常:当相关系数的绝对值: 通常:当相关系数的绝对值: 小于0.3 小于0.3时,表示不相关或微弱相关 0.3时 介于0.3 0.5, 介于0.3至0.5,表示低度相关 0.3至 介于0.5 0.8,表示显著(中度) 介于0.5至0.8,表示显著(中度)相 0.5至 关 大于0.8Lxx Lyy
r=
n ∑ xy − ∑ x ⋅ ∑ y n ∑ x 2 − (∑ x ) 2 ⋅ n ∑ y 2 − (∑ y ) 2
r=
∑ ( x − x )( y − y) ∑ ( x − x )2 ∑ ( y − y)
2
( x − x )( y − y) = ∑ xy − 1 ∑ x ∑ y ∑ n
第二节
定性分析
相关分析的方法
是依据研究者的理论知识和实践经 验,对客观现象之间是否存在相关 关系,以及何种关系作出判断。 关系,以及何种关系作出判断。 在定性分析的基础上,通过编制相 在定性分析的基础上, 关表、绘制相关图、计算相关系数 等方法, 等方法,来判断现象之间相关的方 向、形态及密切程度。 形态及密切程度。
xy
( y − y) 2 ∑
σ xσ y
3.相关系数的其他公式 相关系数的其他公式
• (1)积差法公式: )积差法公式: • • (2)积差法简化式: )积差法简化式: r= • • (3)简捷公式: )简捷公式: •
∑ ( x − x)( y − y) r=
nσ xσ y
∑ ( x − x )( y − y ) ∑ (x − x) ⋅ ∑ ( y − y)
《统计学原理与应用》课件第07章 相关与回归分析
74.4 172.0 248.0 418.0 575.0 805.2 972.0 1,280.0
104,214
4,544.6
统计学基础
第七章 相关与回归分析
根据计算结果可知:Βιβλιοθήκη x 36.4y 880
n8
x2 207.54
y2 104,214
xy 4,544.6
Fundamentals of Statistics
n x2 ( x)2 n y2 ( y)2
公式7—3
公式7—3是实际工作中使用较多的计算公式
Fundamentals of Statistics
统计学基础
第七章 相关与回归分析
(四)相关系数的运用
(1)相关系数有正负号,分别表示正相关和负相关。
(2)相关系数的取值范围在绝对值的0 之1 间。其值大小 反映两变量之间相关的密切程度。
统计学基础
第七章 相关与回归分析
二、相关关系的种类
3.相关关系按照相关的方向分为正相关和负相 关 正相关:是指一个变量的数量变动和另一个变 量的数量变动方向一致.
负相关:当一个变量的数量变动与另一个变量 的数量变动方向相反时,称为负相关.
Fundamentals of Statistics
统计学基础
统计学基础
第七章 相关与回归分析
二、相关关系的测定 (一)相关系数的含义:
相关系数是在直线相关的条件下,用来说明两个 变量之间相关关系密切程度的统计分析指标。
Fundamentals of Statistics
统计学基础
第七章 相关与回归分析
(二)相关系数的作用
1.说明直线相关条件下,两变量的相关关系的密切程 度的高低. (见教材第159页说明)
《统计学》 第七章 相关与回归分析
第七章相关与回归分析(一)填空题1、相关关系按其相关的程度不同,可分为、和。
2、相关系数的正负表示相关关系的方向,r为正值,两变量是;r为负数,两变量是。
3、r=0,说明两个变量之间;r=+1,说明两个变量之间;r=-1说明两个变量之间。
4、一元线性回归方程中的参数a代表,数学上称为;b代表,数学上称为。
5、分析要根据研究的目的确定哪一个为自变量,哪一个为因变量,在这一点与分析时不同。
6、相关关系按方向不同,可分为和。
7、完全线性相关的相关系数r值等于。
8、计算回归方程要注意资料中因变量是的,自变量是的。
9、回归方程只能用于由推算。
(二)单项选择题(在每小题备选答案中,选出一个正确答案)1、相关分析研究的是( )A. 变量之间关系的密切程度B. 变量之间的因果关系C. 变量之间严格的相互依存关系D. 变量之间的线性关系2、相关关系是()A、现象间客观存在的依存关系B、现象间的一种非确定性的数量关系C、现象间的一种确定性的数量关系D、现象间存在的函数关系3、下列情形中称为正相关的是( )A. 随着一个变量的增加,另一个变量也增加B. 随着一个变量的减少,另一个变量增加C. 随着一个变量的增加,另一个变量减少D. 两个变量无关4、当自变量x的值增加,因变量y的值也随之增加,两变量之间存在着()A、曲线相关B、正相关C、负相关D、无相关5、相关系数r的取值范围是( )A. B. C. D.6、当自变量x的值增加,因变量y的值也随之减少,两变量之间存在着()A、曲线相关B、正相关C、负相关D、无相关7、相关系数等于零表明两变量( )A. 是严格的函数关系B. 不存在相关关系C. 不存在线性相关关系D. 存在曲线相关关系8、相关系数r的取值范围是()A、从0到1B、从-1到0C、从-1到1D、无范围限制9、相关分析对资料的要求是( )A. 两变量均为随机的B. 两变量均不是随机的C. 自变量是随机的,因变量不是随机的D. 自变量不是随机的,因变量是随机的10、相关分析与回归分析相比,对变量的性质要求是不同的,回归分析中要求()A、自变量是给定的,因变量是随机的B、两个变量都是随机的C、两个变量都是非随机的D、因变量是给定的,自变量是随机的11、回归方程中的回归系数b说明自变量变动一个单位时,因变量( )A. 变动b个单位B. 平均变动b个单位C. 变动a+b个单位D. 变动a个单位12、一般来说,当居民收入减少时,居民储蓄存款也会相应减少,二者之间的关系是()A、负相关B、正相关C、零相关 D曲线相关13、回归系数与相关系数的符号是一致的,其符号均可判断现象( )A. 线性相关还是非线性相关B. 正相关还是负相关C. 完全相关还是不完全相关D. 简单相关还是复相关14、配合回归方程比较合理的方法是()A、移动平均法B、半数平均法C、散点法D、最小平方法15、在相关分析中不能把两个变量区分为确定性的自变量和随机性的因变量,在回归分析中( )A. 也不能区分自变量和因变量B. 必须区分自变量和因变量C. 能区分,但不重要D. 可以区分,也可以不区分16、价格愈低,商品需求量愈大,这两者之间的关系是()A、复相关B、不相关C、正相关D、负相关17、按最小平方法估计回归方程中参数的实质是使( )A. B.C. D.18、判断现象之间相关关系密切程度的方法是()A、作定性分析B、制作相关图C、计算相关系数D、计算回归系数19、在线性相关条件下,自变量的标准差为2,因变量的标准差为5,而相关系数为0.8,其回归系数为( )A. 8B. 12.5C. 0.32D. 2.020、已知某产品产量与生产成本有直线关系,在这条直线上,当产量为1000件时,其生产成本为50000元,其中不随产量变化的成本为12000元,则成本总额对产量的回归方程是()A、Y=12000+38XB、Y=50000+12000XC、Y=38000+12XD、Y=12000+50000X21、已知,则相关系数为( )A.不能计算B.C.D.22、相关图又称()A、散布表B、折线图C、散点图D、曲线图23、工人的出勤率与产品合格率之间的相关系数如果等于0.85,可以断定两者是()A、显著相关B、高度相关C、正相关D、负相关24、相关分析与回归分析的一个重要区别是()A、前者研究变量之间的关系程度,后者研究变量间的变动关系,并用方程式表示B、前者研究变量之间的变动关系,后者研究变量间的密切程度C、两者都研究变量间的变动关系D、两者都不研究变量间的变动关系25、当所有观测值都落在回归直线上,则这两个变量之间的相关系数为()A、1B、-1C、+1或-1D、大于-1,小于+126、一元线性回归方程y=a+bx中,b表示()A、自变量x每增加一个单位,因变量y增加的数量B、自变量x每增加一个单位,因变量y平均增加或减少的数量C、自变量x每减少一个单位,因变量y减少的数量D、自变量x每减少一个单位,因变量y增加的数量(三)多项选择题(在每小题备选答案中,至少有两个答案是正确的)1、直线回归方程中,两个变量x和y ( )A. 前一个是自变量,后一个是因变量B. 两个变量都是随机变量C. 两个都是给定的量D. 前一个是给定的量,后一个是随机变量E. 前一个随机变量,后一个是给定的量2、相关分析()A、分析对象是相关关系B、分析方法是配合回归方程C、分析方法主要是绘制相关图和计算相关系数D、分析目的是确定自变量和因变量E、分析目的是判断现象之间相关的密切程度,并配合相应的回归方程以便进行推算和预测3、相关分析的特点有 ( )A. 两个变量是对等的关系B. 它只反映自变量和因变量的关系C. 可以计算出两个相关系数D. 相关系数的符号都是正的E. 相关的两个变量必须都是随机的4、下列现象中存在相关关系的有()A、职工家庭收入不断增长,消费支出也相应增长B、产量大幅度增加,单位成本相应下降C、税率一定,纳税额随销售收入增加而增加D、商品价格一定,销售额随销量增加而增加E、农作物收获率随着耕作深度的加深而提高5、相关关系与函数关系的区别在于( )A. 相关关系是变量间存在相互存在依存关系,而且函数关系是因果关系B. 相关关系的变量间是确定不变的,而函数关系值是变化的C. 相关关系是模糊的,函数关系是确定的D. 两种关系没有区别6、商品流通费用率与商品销售额之间的关系是()A、相关关系B、函数关系C、正相关D、负相关E、单相关7、为了揭示变量x与y之间的相互关系,可运用( )A. 相关表B. 回归方程C.相关系数D. 散点图8、相关系数()A、是测定两个变量间有无相关关系的指标B、是在线性相关条件下测定两个变量间相关关系密切程度的指标C、也能表明变量之间相关的方向D、其数值大小决定有无必要配合回归方程E、与回归系数密切相关9、可以借助回归系数来确定( )A. 两变量之间的数量因果关系B. 两变量之间的相关方向C. 两变量之间的相关的密切程度D. 揭示它与相关系数的数量关系,即10、直线回归方程()A、建立前提条件是现象之间具有较密切的直线相关关系B、关键在于确定方程中的参数a和bC、表明两个相关变量间的数量变动关系D、可用来根据自变量值推算因变量值,并可进行回归预测E、回归系数b=0时,相关系数r=011、可用来判断现象相关方向的指标有( )A. 相关系数B. 回归系数C. 回归参数aD. 协方差E. 估计标准误差12、某种产品的单位成本y(元)与工人劳动生产率x(件/人)之间的回归直线方程Y=50-0.5X,则()A、0.5为回归系数B、50为回归直线的起点值C、表明工人劳动生产率每增加1件/人,单位成本平均提高0.5元D、表明工人劳动生产率每增加1件/人,单位成本平均下降0.5元E、表明工人劳动生产率每减少1件/人,单位成本平均提高50元13、对于回归系数,下列说法中正确的有( )A. b是回归直线的斜率B. b的绝对值介于0-1之间C. b接近于零表明自变量对因变量影响不大D. b与相关系数具有以下关系:E. b满足方程组14、相关关系的特点是()A、现象之间确实存在数量上的依存关系B、现象之间不确定存在数量上的依存关系C、现象之间的数量依存关系值是不确定的D、现象之间的数量依存关系值是确定的E、现象之间不存在数量上的依存关系15、回归方程可用于( )A. 根据自变量预测因变量B. 给定因变量推算自变量C. 给定自变量推算因变量D. 推算时间数列中缺失的数据E. 用于控制因变量16、建立一元线性回归方程是为了()A、说明变量之间的数量变动关系B、通过给定自变量数值来估计因变量的可能值C、确定两个变量间的相关程度D、用两个变量相互推算E、用给定的因变量数值推算自变量的可能值17、在直线回归方程中,两个变量x和y()A、一个是自变量,一个是因变量B、一个是给定的变量,一个是随机变量C、两个都是随机变量D、两个都是给定的变量E、两个是相关的变量18、在直线回归方程中()A、在两个变量中须确定自变量和因变量B、回归系数只能取正值C、回归系数和相关系数的符号是一致的D、要求两个变量都是随机的E、要求因变量是随机的,而自变量是给定的19、现象间的相关关系按相关形式分为()A、正相关B、负相关C、直线相关D、曲线相关E、不相关20、配合一元线性回归方程须具备下列前提条件()A、现象间确实存在数量上的相互依存关系B、现象间的关系是直线关系,这种直线关系可用散点图来表示C、具备一组自变量与因变量的对应资料,且能明确哪个是自变量,哪个是因变量D、两个变量之间不是对等关系E、自变量是随机的,因变量是给定的值21、由直线回归方程y=a+bx所推算出来的y值()A、是一组估计值B、是一组平均值C、是一个等差级数D、可能等于实际值E、与实际值的离差平方和等于0(四)是非题1、判断现象之间是否存在相关关系必须计算相关系数。
(第七章 相关分析
统计学
STATISTICS
直线回归分析 第三节 直线回归分析
8 - 25
STAT
回归: 回归:退回 regression
平均身高
1877年 弗朗西斯 高尔顿爵士 年 弗朗西斯高尔顿爵士 学研究 回归线
遗传
STAT
回归分析(regression):通过一个 通过一个 回归分析 或几个变量的变化去解释另一变量的 变化。包括找出自变量与因变量、 变化。包括找出自变量与因变量、设 定数学模型、检验模型、 定数学模型、检验模型、估计预测等 环节。 SxS y
总体相关系数
样本相关系数
相关系数的常用算法: 相关系数的常用算法:
r=
n∑ xy ∑ x∑ y n∑ x (∑ x )
2 2
n ∑ y (∑ y )
2
2
相关系数取值在 -1 与 1 之间。 相关系数取值在 之间。 相关系数是一种对称测量。 相关系数是一种对称测量。 相关系数是一种对称测量 相关系数无量纲,可以进行比较。 相关系数无量纲,可以进行比较。 相关系数无量纲
STAT
二、一元线性回归模型 最小二乘法
STAT
求 a、b 的公式: 、 的公式:
∑ y = na + b∑ x ∑ xy = a∑ x + b∑ x n∑ xy ∑ x ∑ y b= n∑ x (∑ x)
2 2
2
a = y bx
学 身高 体重 生 x y
x2
y2
xy
估计值
残差
47.291 49.448 51.606 53.764 55.921 58.079 60.236 62.394 64.552 66.709
判定系数(Coefficient of determination): 判定系数 估计的回归方程拟合优度的度量, 估计的回归方程拟合优度的度量,表明 Y 的变异性能被估计的回归方程解释的 部分所占比例。 部分所占比例。
生物统计学:第七章 直线回归与相关分析
特别要指出的是:利用直线回归方程进行预 测或控制时,一般只适用于原来研究的范围,不 能随意把范围扩大,因为在研究的范围内两变量 是直线关系,这并不能保证在这研究范围之外仍 然是直线关系。若需要扩大预测和控制范围,则 要有充分的理论依据或进一步的实验依据。利用 直线回归方程进行预测或控制,一般只能内插, 不要轻易外延。
(三)、相关系数的显著性检验
统计学家已根据相关系数r显著性t检验法计算出了 临界r值并列出了表格。 所以可以直接采用查表法对相 关系数r进行显著性检验。
先根据自由度 n-2 查临界 r 值 ( 附表8 ), 得 r0.05(n2) ,r0.01(n2)。若|r|< r0.05(n2),P>0.05,则相 关系数r不显著,在r的右上方标记“ns”;若 r0.05(n2) ≤|r|< r0.01(n2) ,0.01<P≤0.05,则相关系数 r 显 著,在r的右上方标记“*”;若|r|≥ r0.01(n2) ,P ≤ 0.01, 则相关系数 r 极显著,在 r 的右上方标记 “**”。
第七章 直线回归与相关分析
在试验研究中常常要研究两个变量间的关系。 如:人的身高与体重、作物种植密度与产量、食品价格与需
求量的关系等。 两个关系 依存关系:依变量Y随自变量X变化而变化。
—— 回归分析 互依关系:依变量Y与自变量X间的彼此关系.
—— 相关分析
一 直线回归
(一)、直线回归方程的建立 对于两个相关变量x和y,如果通过试验或调查 获得它们的n对观测值: (x1,y1),(x2,y2),……,(xn,yn) 为了直观地看出x和y间的变化趋势,可将每一 对观测值在平面直角坐标系描点,作出散点图。
y)2 y)2
SPxy 2 SSxSS y
SPxy SS x
统计学导论 科学出版社 第七章 相关与回归分析
•
对于 n 组实际观察数据(yi ; xi1,,xi2 , , xip ),(i=1,2,…,n),多元线性回归模型可 表示为
{
y1 = 0 1 x11 2 x12 px1p 1 y2= 0 1 x21 2 x22 px2p 2 …… yn= 0 1 xn1 2 xn2 pxnp n
x 1766.293
y 1379.13
(x x)
2
4670769.25
( y y ) 2741904.99 ( x x )( y y) 3447388.39
2
要求:(1)计算相关系数r; (2)配合简单线性回归方程
(3)估计人均生活费收入为2000元时的商品支出额
表明Y的期望值是X的线性函数
反映了除 X和 Y之间的线性关系之外的随机因素对Y的 影响 是不能由X和Y之间的线性关系所解释的变异性
• 总体回归直线(回归方程) :E (Yt ) 1 2 X t
• 方程的图示是一条直线,因此也称为直 线回归方程 • 1是回归直线在 y 轴上的截距,是当 x=0 时 y 的期望值 • 2是直线的斜率,称为回归系数,表示 当 x 每变动一个单位时,y 的平均变动 值
样本回归函数
(概念要点)
样本回归线
ˆ ˆ ˆ Yt 1 2 X t
样本回归函数
ˆ ˆ Yt 1 2 X t et
最小二乘法
1. 使因变量的观察值与估计值之间的离差平方和 达到最小来求得回归系数。即
垐 ) ( y y ) 2 e2 最小 Q( 1 , 2 i ˆ i
年份
1981 1982 1983 1984 1985 1986 1987
曾五一《统计学导论》(第2版)配套题库【章节题库】第七章 相关与回归分析 【圣才出品】
4 / 40
圣才电子书 十万种考研考证电子书、题库视频学习平台
8.若两个变量存在负线性相关关系,则建立的一元线性回归方程的判定系数 R2 的取
值范围是( )。 A.[0,1] B.[-1,0] C.[-1,1] D.小于 0 的任意数 【答案】A
【解析】判定系数 R2 SSR(回归平方和) ,SST(总平方和)=SSA(回归平方和)+SSE
2
xi
,相关系数
n xi yi xi yi
r
,
n xi2 xi 2 n yi2 yi 2
x n xi2
xi 2 , y n yi2
2
yi 故 A 项正确。
2.在一元简单回归模型 Y 0 1X 中,参数 1 的含义是( )。[中山大学 2013
研]
A.当 X =0 时, Y 的期望值;
均变动值。
3.下面的各问题中,哪个不是相关分析要解决的问题?( ) A.判断变量之间是否存在关系 B.判断一个变量数值的变化对另一个变量的影响 C.描述变量之间的关系强度 D.判断样本所反映的变量之间的关系能否代表总体变量之间的关系 【答案】B 【解析】相关分析就是对两个变量之间线性关系的描述与度量,它主要解决的问题包括: ①变量之间是否存在关系;②如果存在关系,它们之间是什么样的关系;③变量之间的关系 强度如何;④样本所反映的变量之间的关系能否代表总体变量之间的关系。
4.根据下面的散点图 7-1,可以判断两个变量之间存在( )。
2 / 40
圣才电子书 十万种考研考证电子书、题库视频学习平台
图 7-1
A.正线性相关关系 B.负线性相关关系 C.非线性关系 D.函数关系 【答案】A 【解析】在线性相关中,若两个变量的变动方向相同,一个变量的数值增加,另一个变 量的数值也随之增加,或一个变量的数值减少,另一个变量的数值也随之减少,则称为正线 性相关关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 相关分析与回归分析
(3)当固定资产改变200万元时,总产值平均改变多少?(4)当固定资产为1300万元时,总产值为多少?
(1)协方差——用以说明两指标之间的相关方向。
2
2))((n y x xy n n
y y x x xy
∑∑∑∑-=
--=σ
035.126400100
9801
6525765915610>=⨯-⨯=
计算得到的协方差为正数,说明固定资产和总产值之间存在正相关关系。
(2)相关系数用以说明两指标之间的相关方向和相关的密切程度。
∑∑∑∑∑∑∑---=
]
)(][)([2222y y n x x n y
x xy n r
95.0)
98011086657710()6525566853910(9801
65257659156102
2
=-⨯⨯-⨯⨯-⨯=
计算得到的相关系数为0.95,表示两指标为高度正相关。
(3)
2
226525
5668539109801
6525765915610)(-⨯⨯-⨯=--=
∑∑∑∑∑x x n y x xy n b 90.014109765
12640035
42575625566853906395152576591560==--=
85.39210
6525
9.0109801=⨯-=
-=x b y a 回归直线方程为: x y 9.085.392ˆ+= (4)当固定资产改变200万元时,总产值平均改变多少?
x y ∆=∆9.0,1802009.0|200=⨯=∆=∆x y 万元
当固定资产改变200万元时,总产值平均增加180万元。
(5)当固定资产为1300万元时,总产值为多少?
85.156213009.085.392|1300=⨯+==x y 万元
当固定资产为1300万元时,总产值为1562.85万元。
例2、试根据下列资产总值和平均每昼夜原料加工量资料计算相关系数。
解:【分析】本题中“企业数”应看成资产总值和平均每昼夜原料加工量两变量的次数,在计算相关系数的过程,要进行“加权”。
相关系数
∑∑∑∑∑∑∑∑∑∑---=
]
)(][)([2
2
2
2
f y f y f f x f x f yf
xf xyf f r 84.0)
331.2842()216001174000042(33
2160017960422
2
=-⨯⨯-⨯⨯-⨯=
要求:(1)编制直线回归方程;(2)由此计算出学习时数与学习成绩之间的相关系数。
解:先列出计算表: 解:(1)bx a y c +=
2.54037053104027405)(2
22=-⨯⨯-⨯=--=∑∑∑∑∑x x n y x xy n b
4.205
40
2.55310=⨯-=
-=x b y a 回归直线方程为:
x y c 2.54.20+=
(2)
∑∑∑∑∑∑∑---=
]
)(][)([2222y y n x x n y
x xy n r 956.002
.8681.151300
)
310207005()403705(310402740522=⨯=
-⨯⨯-⨯⨯-⨯=
计算得到的相关系数为0.95,表示两指标为高度正相关。
956.09135.02===r r
说明学习时数x 与成绩得分y 之间有高度的相关关系。
例3、检查5位同学统计学的学习时间与成绩分数如下表:
要求:(1)编制直线回归方程;(2)计算估计标准误差;(3)对学习成绩的方差进行分解分析,指出总误差平方和中有多少比重可由回归方程来解释;(4)由此计算出学习时数与学习成绩之间的相关系数。
解:(1)bx a y c +=
2.54037053104027405)(2
22=-⨯⨯-⨯=--=∑∑∑∑∑x x n y x xy n b
4.205
40
2.55310=⨯-=
-=x b y a 回归直线方程为:
x y c 2.54.20+=
(2)53.63
2740
2.53104.202070022
=⨯-⨯-=---=
∑∑∑n xy b y a y
S yx
(3)总误差分解列表如下: 学习
时数x 学习成绩y c y
y y - 2)(y y - c y y - 2)(c y y - y y c - 2)(y y c -
4 6 7 10 13 40 60 50 70 90 41.2 51.6 56.8 72.4 88.0 -22 -2 12 8 28 484 4 144 64 784 -1.2 8.4 -6.8 -2.4 2.0 1.44 70.56 46.24 5.76 4.00 -20.8 -10.4 -5.2 10.4 26.0 432.64 108.16 27.04 108.16 676.00 40
310
—
—
1480
—
—
1352.00
635
==
y ∑∑∑-+-=-222
)()()(y y
y y y y c
c
1480=128+1352
9135.01480
1352
)
()(2
2
2
==
--=∑∑
y y y y r
c
计算总误差平方和中有91.35%可以由回归方程来解释,学习时数x 与成绩得分y 之间有高度的相关。
如果用理论分数c y 来估计实际分数y ,平均将发生6.53分的误差,这个数字与平均成绩62分对比约占10.5%。
(4)956.09135.02===r r
说明学习时数x 与成绩得分y 之间有高度的相关关系。