圆周角定理及圆的内接四边形-练习题 含答案
中考复习讲义 第2章对称图形 2.4 圆周角定理与圆内接图形(含参考答案)
圆周角定理与圆内接图形圆心角和圆周角1. 圆心角:顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1︒的圆心角,我们也称这样的弧为1︒的弧.圆心角的度数和它所对的弧的度数相等.2. 圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角.3. 圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等. 推论2:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径. 推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.4. 圆心角、弧、弦、弦心距之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.5. 推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等.6. 圆的基本性质有:⑴ 直径所对的圆周角是直角. ⑵ 同弧所对的圆周角相等.⑶ 经过圆心及一弦中点的直线垂直平分该弦. 7. 不在同一直线上的三个点确定一个圆 8. 圆的内接四边形对角互补,外角等于内对角模块一 圆周角定理【例1】 若O e 的一条弧所对的圆周60︒,则这条弧所对的圆心角是( )A .30︒B .60︒ C.120︒D.以上答案都不对【答案】C【例2】 如图,BC 是圆O 的弦,圆周角50ABC ∠=︒,则OCA ∠的度数是_______BCAO【答案】40︒【例3】 如图,O e 正方形ABCD 的外接圆,点P 在O e 上,则APB ∠等于( )自检自查必考点中考必做题OP DCBAA .30︒B .45︒C .55︒D .60︒ 【答案】45︒【例4】 如图,点C 在O e 上,将圆心角AOB ∠绕点O 按逆时针方向旋转到''A OB ∠,旋转角为α,(0α︒<<180︒).若30AOB ∠=︒,'40BCA ∠=︒,则α∠=_______OA'BA【答案】110︒【例5】 如图,AB 是O e 的直径,CD 是O e 的弦。
圆周角定理及圆的内接四边形-练习题 含答案解析
解: , , , ,
在 中, , , ,
在 中, , , .
【解析】 由AB为直径, ,易得 ,然后由垂径定理证得, ,继而证得结论; 由 , ,可求得OE的长,继而求得DE,AE的长,则可求得 ,然后由圆周角定理,证得 ,则可求得答案.
此题考查了圆周角定理、垂径定理以及勾股定理 此题难度适中,注意掌握数形结合思想的应用.
【解答】
解: 是 的直径, , , , .
故答案为 .
9. 如图,已知圆周角 ,则圆心角 ______.
【答案】
【解析】解: , .
故答案为 .
根据圆周角定理即可得出结论.
本题考查了圆周角定理 在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.
10. 如图,在圆内接四边形ABCD中,O为圆心, ,则 的度数为______.
解得: , , ,
故选:C.
设 的度数 , 的度数 ,由题意可得 ,求出 即可解决问题.
该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用.
4. 如图,已知AC是 的直径,点B在圆周上 不与A、C重合 ,点D在AC的延长线上,连接BD交 于点E,若 ,则
A. B. C. D.
【答案】D
又AD平分 ,所以,即劣弧AE是劣弧DE的2倍, 正确. , , , ,故 错误. , ,
又 ,
故 错误.
故答案为: .
先利用等腰三角形的性质求出 、 的度数,即可求 的度数,再运用弧、弦、圆心角的关系即可求出 、 .
本题利用了: 等腰三角形的性质; 圆周角定理; 三角形内角和定理.
7. 如图,AB为 直径,点C、D在 上,已知 , ,则 ______度
圆的内接四边形全面版
O1
O2
E
B
2) 延长DF, 能否证明∠E=∠2=∠3?A
C
2
O1
E
B
D
1
F
M
D
O2 3F
D
A
E
1
O1
O2
C
B
F
巩固练习:
1、如图,四边形ABCD为⊙O
的内接四边形,已知∠BOD=
100°,求∠BAD及∠BCD的度
数。
A
O
B
D
C
求证:圆内接平行四边形是矩形。
已知:如图,四边形ABCD是 圆的内接四边形并且ABCD是
再再见见!!
只要我们坚持了,就没有克服不了的困难。或许,为了将来,为了自己的发展,我们会把一件事情想得非常透彻,对自己越来越严,要求越来越高,对任何机会都不曾错过,其 目的也只不过是不让自己随时陷入逆境与失去那种面对困难不曾屈服的精神。但有时,“千里之行,始于足下。”我们更需要用时间持久的用心去做一件事情,让自己其中那小 小的浅浅的进步,来击破打破突破自己那本以为可以高枕无忧十分舒适的区域,强迫逼迫自己一刻不停的马不停蹄的一直向前走,向前看,向前进。所有的未来,都是靠脚步去 丈量。没有走,怎么知道,不可能;没有去努力,又怎么知道不能实现?幸福都是奋斗出来的。那不如,生活中、工作中,就让这“幸福都是奋斗出来的”完完全全彻彻底底的 渗入我们的心灵,着心、心平气和的去体验、去察觉这一种灵魂深处的安详,侧耳聆听这仅属于我们自己生命最原始最动人的节奏。但,这种聆听,它绝不是仅限于、执着于 “我”,而是观察一种生命状态能够扩展和超脱到什么程度,也就是那“幸福都是奋斗出来的”深处又会是如何?生命不止,奋斗不息!又或者,对于很多优秀的人来说,我们 奋斗了一辈子,拼搏了一辈子,也只是人家的起点。可是,这微不足道的进步,对于我们来说,却是幸福的,也是知足的,因为我们清清楚楚的知道自己需要的是什么,隐隐约 约的感觉到自己的人生正把握在自己手中,并且这一切还是通过我们自己勤勤恳恳努力,去积极争取的!“宝剑锋从磨砺出,梅花香自苦寒来。”当我们坦然接受这人生的终局, 或许,这无所皈依的心灵就有了归宿,这生命中觅寻处那真正的幸福、真正的清香也就从此真正的灿烂了我们的人生。一生有多少属于我们的时光?陌上的花,落了又开了,开 了又落了。无数个岁月就这样在悄无声息的时光里静静的流逝。童年的玩伴,曾经的天真,只能在梦里回味,每回梦醒时分,总是多了很多伤感。不知不觉中,走过了青春年少, 走过了人世间风风雨雨。爱过了,恨过了,哭过了,笑过了,才渐渐明白,酸甜苦辣咸才是人生的真味!生老病死是自然规律。所以,面对生活中经历的一切顺境和逆境都学会 了坦然承受,面对突然而至的灾难多了一份从容和冷静。这世上没有什么不能承受的,只要你有足够的坚强!这世上没有什么不能放下的,只要你有足够的胸襟! 一生有多少 属于我们的时光?当你为今天的落日而感伤流泪的时候,你也将错过了明日的旭日东升;当你为过去的遗憾郁郁寡欢,患得患失的时候,你也将忽略了沿途美丽的风景,淡漠了 对未来美好生活的憧憬。没有十全十美的生活,没有一帆风顺的旅途。波平浪静的人生太乏味,抑郁忧伤的人生少欢乐,风雨过后的彩虹最绚丽,历经磨砺的生命才丰盈而深刻。 见过了各样的人生:有的轻浮,有的踏实;有的喧哗,有的落寞;有的激扬,有的低回。肉体凡胎的我们之所以苦恼或喜悦,大都是缘于生活里的际遇沉浮,走不出个人心里的 藩篱。也许我们能挺得过物质生活的匮乏,却不能抵挡住内心的种种纠结。其实幸福和欢乐大多时候是对人对事对生活的一种态度,一花一世界,一树一菩提,就是一粒小小的 沙子,也有自己精彩的乾坤。如果想到我们终有一天会灰飞烟灭,一切象风一样无影亦无踪,还去争个什么?还去抱怨什么?还要烦恼什么?未曾生我谁是我?生我之时我是谁? 长大成人方是我,合眼朦胧又是谁?一生真的没有多少时光,何必要和生活过不去,和自己过不去呢。你在与不在,太阳每天都会照常升起;你愁与不愁,生活都将要继续。时
圆周角定理的推论及圆内接四边形
1、圆周角定理的推论(1)同圆或等圆中,相 等的圆周角所对弧相等.(2)半圆或直径所对 的圆周角是直角;90°的圆周角所对的弦是直 径。 2、圆内接四边形的有关概念: 如果一个多边 形的所有顶点都在同一个圆上,这个多边形叫 做圆内接多边形,这个圆叫做这个多边形的外 接圆. 3、圆内接四边形的性质:圆内接四边形的对 角互补.
1.圆周角 顶点在 圆上 ,并且两边都与圆 相交 的角. 2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆 周角相等, 都等于这条弧所对的圆心角的 一半
小练习
图1
图2
图3
1、如图1,点A、B、C、D在⊙O上,若∠BAC=40°,则∠BOC= ____ ,理由是____; 2、如图2,点A、B、C、D在⊙O上,若∠C=60°, 则∠D=____,∠AOB=_ ___. 3、如图3,等边△ABC的顶点都在⊙O上,点D是⊙O上一点,则∠BDC=____.
∴∠BCD=180°-∠A=111°, ∴∠DCE=180°-∠BCD=69°.故选A.
3.已知如图,在圆内接四边形ABCD中, ∠B=30°,则∠D=__1_5_0_°.
解析:∵圆内接四边形ABCD中,∠B=30°, ∴∠D=180°-30°=150°.故填150°.
4.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,
已知:四边形ABCD内接于⊙O. 求证:∠A+∠C=180°,∠B+∠D=180°.
证明:如图所示,连接OB,OD. ∵∠A所对的弧 BCD
为,
∠C所对的弧为 BAD ,
又∵ BCD 和 BAD 所对的圆心角的和是周角,
∴∠A+∠C= 3600 =180°.
2
同理∠B+∠D=180°.
圆周角的专项练习30题(有答案)ok
圆周角定理专项练习30题(有答案)1.如图AB是⊙O的直径,C是⊙O上的一点,若AC=8cm,AB=10cm,OD⊥BC于点D,求BD的长.2.如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°.(1)求∠B的大小;(2)已知AD=6,求圆心O到BD的距离.3.已知AB是⊙O的直径,半径OC⊥AB,D为上任意一点,E为弦BD上一点,且BE=AD,求证:△CDE为等腰直角三角形.4.如图,AB是圆O的直径,AD=DC,∠CAB=30°,AC=2.求AD的长.5.如图,AB,CD是⊙O的两条弦,它们相交于点P,连接AD,BD.已知AD=BD=4,PC=6,求CD的长.6.如图,已知点C、D在以O为圆心,AB为直径的半圆上,且OC⊥BD于点M,CF⊥AB于点F交BD于点E,BD=8,CM=2.(1)求⊙O的半径;(2)求证:CE=BE.7.如图,A是以EF为直径的半圆上的一点,作AG⊥EF交EF于G,又B为AG上一点,EB的延长线交半圆于K,求证:(1)△AEB∽△KEA;(2)AE2=EB•EK.8.如图,BC是⊙O的直径,P为⊙O上一点,点A是的中点,AD⊥BC,垂足为D,PB分别与AD、AC相交于点E、F.(1)若∠BAD=36°,求∠ACB,∠ABP;(2)如果AE=3,求BE.9.如图,△ABC内接于⊙O,AB=AC,弦AD交BC于点E,AE=4,ED=5,(1)求证:AD平分∠BDC;(2)求AC的长;(3)若∠BCD的平分线CI与AD相交于点I,求证:AI=AC.10.如图,AB是⊙O的直径,点C在⊙O上,AB=6,AC=5,求tanA的值.11.如图,AB是⊙O的直径,弦CD与AB相交于点E,∠ACD=60°,∠CEB=100°.求∠ADC的度数.12.已知如图,在⊙O中,弦BC平行于半径OA,AC交BO于M,∠C=25°.求∠AMB的度数.13.如图,⊙O是△ABC的外接圆,∠A=45°,BD是直径,且BD=2,连接CD,求BC的长.14.已知:如图,AD平分∠BAC,DE∥AC,且AB=5cm,求DE的长.15.已知如图,在△ABC中,∠BAC=90°,AB=AC=,D是BC中点,作半径是的圆经过点A和D且交AB于F,交AC于E.求∠ADF的正弦值.16.如图,在△ABC中,AB是⊙O的直径,⊙O与AC交于点D,AB=,∠B=60°,∠C=75°,求∠BOD的度数.17.如图:在⊙O中,AB是直径,∠ACB的平分线交⊙O于点D,AD=5cm.求:BD与⊙O半径的长.18.如图,AB是⊙O的直径,P是弦AC延长线上的一点,且AC=PC,直线PB交⊙O于点D,若∠BDC=30°,求∠P的度数.19.如图,△ABC中,∠B=45°,∠C=60°,AB=cm,以AB为直径的⊙O交BC于点D,求CD的长?20.如图,已知AD是△ABC的高,AE是△ABC的外接圆的直径.(1)求证:AC•AB=AD•AE;(2)若AB=6,AC=5,AD=3,求⊙O的面积.21.如图,⊙0为四边形ABCD的外接圆,AC为⊙0的直径,CD∥AB,点E、F分别在BC和AD上,且EF经过圆心0.求证:OE=OF.22.如图,等腰三角形ABC中,以腰AB为直径的⊙O交底边BC于点D,交AC于点E,连接DE.(1)求证:BD=DE;(2)若⊙O的半径为3,BC=4,求CE的长.23.如图,已知⊙0的半径为5,AB是⊙0的直径,点C、D都在⊙0上,若∠D=30°,求AC的长.24.如下图,已知△ABC内接于⊙O,若∠C=45°,AB=4,求⊙O的面积.25.如图,⊙O的直径AB为4cm,弦AC为3cm,∠ACB的平分线交⊙O于D,求:①BC的长;②AD与BD的长.26.如图,⊙O为四边形ABCD的外接圆,圆心O在AD上,OC∥AB.(1)求证:AC平分∠DAB;(2)若AC=8,AC:CD=2:1,试求⊙O的半径.27.如图,点A、B、C、D在圆上,AB=8,BC=6,AC=10,CD=4,求AD的长.28.如图,AB是⊙O的直径,弦CD与AB相交于点E,∠ACD=50°,∠ADC=45°,求∠CDB及∠CEB的度数.29.如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.(1)若∠AOD=54°,求∠DEB的度数;(2)若DC=2,AB=8,求⊙O的直径.30.如图,已知△ABC内接于⊙O,AE平分∠BAC,且AD⊥BC于点D,连接OA.求证:∠OAE=∠EAD.参考答案:1.∵AB是⊙O的直径,∴∠ACB=90°;∵OD⊥BC,∴OD∥AC,又∵AO=OB,∴OD是△ABC的中位线,即BD=BC;Rt△ABC中,AB=10cm,AC=8cm;由勾股定理,得:BC==6cm;故BD=BC=3cm2.(1)∵∠APD=∠C+∠CAB,∴∠C=65°﹣40°=25°,∴∠B=∠C=25°;(2)作OE⊥BD于E,则DE=BE,又∵AO=BO,∴,圆心O到BD的距离为3.3.连接AC、BC,由圆周角定理得∠CBE=∠CAD,∵CO⊥AB,∴点C是弧ABC的中点,∴AC=BC,又∵BE=AD∴△ACD≌△BCE,∴CD=CE.∠ADC=∠BEC,∵AB是直径,∴∠ADB=90°,∵∠BEC=∠DCE+∠CDB,∠ADC=∠ADB+∠CDB,∴∠DCE=∠ADB=90°,即△DCE是等腰直角三角形.4.连接OD;∵D 是的中点,∴OD垂直平分AC;∴∠AOD=90°﹣∠CAB=60°;又∵OA=OD,∴△OAD是等边三角形;∴OA=AD;Rt△ABC中,∠CAB=30°,AC=2;∴AB==4,OA=2;即:AD=OA=2.故AD的长为2.5.连接AC,∵AD=BD,∴=.∵∠C=∠BAD,又∵∠ADP=∠CDA,∴△ADP∽△CDA.∴=,即AD2=CD•DP.∵AD=4,PC=6,设CD=x,则42=x(x﹣6),解得:x1=8,x2=﹣2(不合题意,舍去)∴CD=8.6.1)解:∵OC为⊙O的半径,OC⊥BD,∴;∵DB=8,∴MB=4(1分)设⊙O的半径为r,∵CM=2,∴OM=r﹣2,在Rt△OMB中,根据勾股定理得(r﹣2)2+42=r2,解得r=5;(2)证明:方法一:连接AC、CB,∵AB是直径,∴∠ACB=90°.∴∠ACF+∠FCB=90°.又∵CF⊥AB,∴∠CAF+∠ACF=90°∴∠FCB=∠CAF∵OC为⊙O的半径,OC⊥BD,∴C 是的中点,∴∠CAF=∠CBD.∴∠FCB=∠DBC.∴CE=BE;方法二:如图,连接BC,补全⊙O,延长CF交⊙O于点G;又∵CF⊥AB,AB为直径,∴=.∴OC为⊙O的半径,OC⊥BD.∴C 是的中点,∴=.∴=.∴∠FCB=∠DBC.∴CE=BE.7.(1)连接AK、AF,∴∠K=∠F=90°﹣∠AEF=90°﹣∠AEG.∠EAG=90°﹣∠AEG.∴∠K=∠EAG∠KEA=∠AEB.∴△AEB∽△KEA.(2)由①得△AEB∽△KEA,∴.∴AE2=EB•EK.8.(1)因为BC是⊙O的直径所以∠CAB=90°所以∠ABD+∠ACB=90°因为AD⊥BC所以∠ABD+∠BAD=90°所以∠ACB=∠BAD=36°因为A 是的中点,则所以∠ABP=∠ACB=36°.(2)因为∠ABP=∠ACB,∠BAD=∠ACB所以∠ABP=∠BAD因为AE=3所以BE=3.9.(1)∵AB=AC,∴;∴AD平分∠BDC;解:(2)∵∠ACB=∠ADB,∠CDA=∠ADB,∴∠CDA=∠ACB;∵∠CAE=∠DAC,∴△ACE∽△ADC;∴,即;∴AC=6;证明:(3)∠AIC=∠ADC+∠DCI,∠ACI=∠BCI+∠ACB;∴∠AIC=∠ACI;∴AI=AC.10.∵AB是⊙O的直径,∴∠ACB=90°.在Rt△ABC中,∠ACB=90°,AB=6,AC=5,∴BC===.∴tanA==.11.连接BC.∵AB是⊙O的直径,∴∠ACB=90°,∵∠ACD=60°,∴∠BCE=30°,∵∠CEB=100°,∴∠B=50°,∴∠ADC=∠B=50°.12.∵BC∥OA,∠C=25°,∴∠A=∠C=25°,在⊙O中,∵∠O=2∠C,∴∠O=50°,又∵∠AMB=∠A+∠O,∴∠AMB=75°13.在⊙O中,∵∠A=45°,∠D=45°,∵BD为⊙O的直径,∴∠BCD=90°,∴△BCD是等腰直角三角形,∴BC=BD•sin45°,∵BD=2,∴14.连接AE,BD,∵AD平分∠BAC,∴∠BAD=∠CAD,∵DE∥AC,∴∠ADE=∠CAD,∴∠ADE=∠BAD,∴AE=BD,∴AB=DE,∵AB=5cm,∴DE=5cm15.连接EF,ED(1分)在△ABC中∵AB=AC,∠BAC=90°,BD=CD,∴AD=,∠DAF=∠DCE=45°,∠ADC=90°,∴∠ADE+∠EDC=90°,在⊙O中,∵∠BAC=90°,∴EF是⊙O的直径,(3分)∴∠FDE=90°,∴∠FDA+∠ADE=90°,∴∠EDC=∠FDA,∴△EDC≌△FDA,∴AF=CE,(4分)设AF=x,则CE=x,AE=AC﹣CE=﹣x,∵⊙O 的半径是,∴EF=,在Rt△AEF 中,,解得,∠ADF=∠AEF,(5分)∴当x=1时,sin∠ADF=sin∠AEF==,当x=时,sin∠ADF=sin∠AEF==,∴∠ADF 的正弦值为或.16.在△ABC中,∵∠B=60°,∠C=75°,∴∠A=45°.∵AB是⊙O的直径,⊙O与AC交于点D,∴∠DOB=2∠A=90°.故答案为:90°17.∵∠ACB的平分线交⊙O于点D,∴∠ACD=∠BCD,∴AD=BD,∵AB是直径,∴∠ADB=90°,∵AD=5cm,∴BD=5cm;在Rt△ABD中,2AD2=AB2,∴AB=5cm,∴圆的半径为cm.18.连接BC,∵AB是直径,∴BC⊥AC,(2分)∵AC=CP,∴AB=BP,(3分)∴∠P=∠A,(4分)∵∠A=∠D=30°,(5分)∴∠P=30°.19.连接AD.(1分)∵AB是⊙O的直径.∴∠ADB=90°.(3分)在Rt△ADB中,AD=AB•sinB=2sin45°=2×=2(6分)在Rt△ADC中,CD=,即CD 的长为m.20.(1)证明:连接BE,∵AD是△ABC的高,AE是△ABC的外接圆的直径,∴∠ADC=∠ABE=90°,∵∠C=∠E,∴△ADC∽△ABE.∴AC:AE=AD:AB,∴AC•AB=AD•AE;(2)解:∵AB=6,AC=5,AD=3,∴AE===10,∴OA=5,∴⊙O的面积为:π×52=25π21.∵AC为⊙0的直径,∴∠B=∠D=90°,∵CD∥AB,∴∠B+∠BCD=180°,∴∠BCD=90°,∴∠BCD+∠D=90°,∴AD∥BC,∴∠FAO=∠ECO,在△AOF和△COE中,,∴△AFO≌△CEO(ASA),∴OE=OF22.(1)证明:连接AD,∵AB为圆O的直径,∴AD⊥BC,∵AB=AC,∴D为BC的中点,即BD=CD,∵∠DEC为圆内接四边形ABDE的外角,∴∠DEC=∠B,∵AB=AC,∴∠B=∠C,∴∠DEC=∠C,∴DE=DC,∴BD=DE;(2)解:∵∠DEC=∠B,∠C=∠C,∴△DEC∽△ABC,∴=,即=,则EC=.23.连接BC.∵AB是⊙0的直径,∴∠ACB=90°,在直角△ABC中,∠A=∠D=30°,AB=2×5=10.∴AC=AB•cosA=10×=5.24.连接OA,OB;则OA=OB,∠AOB=2∠C;(2分)∵∠C=45°,∴∠AOB=90°,∴OA2+OB2=AB2;(4分)又∵AB=4,∴2OA2=42,OA2=8;(6分)∴S⊙O=π•OA2=8π.25.①∵AB为直径,∴∠ACB=90°,∵AB=4,AC=3,∴BC===;②∵AB为直径,∴∠ADB=90°,∵CD平分∠ACB,∴∠ACD=∠BCD=45°,∵∠ABD=∠ACD,∠BCD=∠BAD,∴∠DAB=∠DBA=45°,∴AD=DB,∵AD2+BD2=AB2,∴AD=DB=2,26.(1)证明:∵OC∥AB,∴∠OCA=∠CAB,∵OA=OC,∴∠OAC=∠OCA,∴∠OAC=∠CAB,即AC平分∠DAB;(2)解∵AD是⊙O的直径,∴∠ACD=90°,∵AC=8,AC:CD=2:1,∴CD=4,在Rt△ACD中,AD==4,∴OA=AD=2,∴⊙O的半径为2.27.△ABC中,AB=8,BC=6,AC=10,∴AC2=AB2+BC2,∴∠B=90°,∴AC为直径,∴∠D=90°,Rt△ADC中,AD====2.∴AD的长为2.28.连接BC,则∠ACB=90°(圆周角定理),∵∠CBA=∠ADC=45°,∴∠CAB=90°﹣∠CBA=45°(直角三角形的两个锐角互余);∴∠CEB=∠CAB+∠ACD=45°+50°=95°(外角定理).∠CDB=∠CAB=45°.综上可得:∠CDB=45°,∠CEB=95°29.(1)∵OD⊥AB∴弧AD=弧BD∴∠DEB=∠AOD=×54°=27°…3分(2)∵OD⊥AB∴AC=AB=×8=4设⊙O的半径为R,则OC=R﹣2在Rt△AOC中,由勾股定理得:42+(R﹣2)2=R2解得:R=5∴⊙O的直径为1030.连接OE,∵AE平分∠BAC,∴∠BAE=∠CAE,∴=,∴OE⊥BC,∵AD⊥BC,∴OE∥AD,∴∠OEA=∠EAD,∵OA=OE,∴∠OEA=∠OAE,∴∠OAE=∠EAD.11。
中考数学复习之圆周角与圆内接四边形的性质,考点过关与基础练习题
33.圆周角与圆内接四边形➢知识过关1.圆心角:(1)顶点在________的角叫做圆心角.(2)弧、弦、圆心角的关系:在同圆或等圆中,两个圆心角、两条______、两条弦中有一组量相等,它们所对应的其余各组量也相等.2.圆周角(1)圆周角:顶点在圆上,并且两边都是弦的角叫做圆周角.(2)圆周角定理:在同圆或等圆中,同弧所对的圆周角相等,都等于这条弧所对的_____角的一半.(3)推论:半圆(或直径)所对的圆周角是_____;90°的圆周角所对的弦是_________推论:在同圆或等圆中,如果两个圆周角相等,则它们所对的_______一定相等.3.圆内接四边形(1)一个多边形所有的顶点都在圆上,这个多边形叫做圆内接多边形,这个圆叫做多边形的外接圆;(2)圆内接四边形的对角__________,外角等于___________.➢考点分类考点1圆周角定理及其推论的应用例1如图,四边形ABCD是平行四边形,且AB=AC,过A,B,C三点的⊙O与DC的延长线交于点E,连接AE交BC于F.(1)求证:AD是⊙O的切线;(2)求证:△DAC∽△DEA.1.如图,在⊙O 中,弧AB 所对的圆周角∠ACB =50°,若P 为弧AB 上一点,∠AOP =53°,则∠POB 的度数为( )A .25°B .47°C .53°D .37°2.如图,在半径为3的⊙O 中,点A 是劣弧BC 的中点,点D 是优弧BC 上一点,且∠D =30°,则BC 的长度是( )A .3B .3√32C .3√3D .2√33.如图,在半径为5的⊙O 中,AB 是直径,AC 是弦,D 是AC ̂的中点,AC 与BD 交于点E .若BE DE =12,则AC 的长为( )A .4√2B .4√3C .4√5D .4√64.如图,四边形ABCD 内接于⊙O ,AB 为直径,AD =CD ,过D 作DE ⊥AB 于点E ,交AC 于点F ,连结AC .DF =5,BC AB =35.当点P 为下面半圆弧的中点时,连接CP 交BD 于H ,则AH 的长为( )A .4√10B .8√2C .5√5D .125.如图,已知BC 是⊙O 的直径,半径OA ⊥BC ,点D 在劣弧AC 上(不与点A ,点C 重合),BD 与OA 交于点E ,设∠AED =α,∠AOD =β,则以下关系式成立的是( )A.2α+β=180°B.2α﹣β=90°C.3α+β=180°D.3α﹣β=90°6.如图,AB为⊙O的直径,且AB=26,点C为⊙O上半圆的一点,CE⊥AB于点E,∠OCE的角平分线交⊙O于点D,弦AC=10,那么△ACD的面积是()A.80B.85C.90D.957.如图,点A、B、C在⊙O上,∠AOC=120°,则∠ABC的度数是()A.100°B.80°C.110°D.120°8.如图,AB为⊙O的直径,C,D为⊙O上两点,∠CDB=30°,BC=5,则AB的长度为.9.如图,AB是⊙O的弦,C是优弧AB上一点,连接AC、BC,若⊙O的半径为4,∠ACB =60°,则△ABC面积的最大值为.10.如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=3,以点C为圆心,CB 为半径的圆交AB于点D,则BD的长为.11.如图,AB是⊙O的直径,点C、D是⊙O上的点.且OD∥BC,AC分别与BD、OD相交于点E,F.若⊙O的半径为5,∠DOA=80°,点P是线段AB上任意一点,则PC+PD 的最小值是.12.如图,在⊙O中,AB为定弦,C,D为圆上动点,记弦AB所对的圆心角度数是α,弦CD所对的圆心角度数是β.若α+β=180°,则:①∠A+∠C=90°;②若β=2α,则CD=√3AB;③若B为弧AD的中点,则OA⊥CD;④AB2+CD2=4OC2.上述选项中正确的是.(填写所有正确选项的序号)13.如图,以AB为直径的半圆O经过点C,点D在直径AB上.若BC=BD,CD=OA,则∠A的度数是.14.已知⊙O的两条弦为AB、AC,连接半径OA、OB、OC,若AC=√2AB=√2OA,则∠BOC的度数为.15.如图,AB 为⊙O 的直径,D 是弦AC 延长线上一点,AC =CD ,DB 的延长线交⊙O 于点E ,连接CE .(1)求证∠A =∠D ;(2)若AÊ的度数为108°,求∠E 的度数.16.如图,AB 是半圆O 的直径,AC 是弦,在AB 上截取AD =AC ,OE ⊥CD 于E ,连接BC .(1)求证:∠DOE =∠BCD .(2)若∠A =30°,AB =6,求CE 的长.17.如图,圆O 中延长弦AB ,CD 交于点E ,连接AC ,AD ,BC ,BD .(1)若∠ADB =60°,∠BAD =10°,求∠ACD 的度数;(2)若∠ADB =α°,∠BAD =β°,∠EBC =γ°,判断α,β,γ满足什么数量关系时,AD =CD ?请说明理由.➢ 课后作业1.已知,如图,点A ,B ,C 三点都在⊙O 上,∠B =12∠A ,∠A =45°,若△ABC 的面积为2,则⊙O 的半径为( )A .±2B .2C .1+√334D .√33−142.如图,AB是⊙O的直径,点C,点D是半圆上两点,连结AC,BD相交于点P,连结AD,OC.已知OC⊥BD于点E,AB=2.下列结论:①∠CAD+∠OBC=90°;②若点P为AC的中点,则CE=2OE.③若AC=BD,则CE=OE;④BC2+BD2=4;其中正确的是()A.①②③B.②③④C.①③④D.①②④̂,取BD̂上一点F使得DF=DC,3.如图,以正方形ABCD的点A为圆心,AB为半径作BD̂上一点(不与点D,F重合),则∠DEF的值为()点E是BDA.120°B.135°C.145°D.150°4.如图,在⊙O中,AB为直径,点C为圆上一点,将劣弧AC沿弦AC翻折交AB于点D,连结CD.若点D与圆心O不重合,∠BAC=24°,则∠DCA的度数为()A.40°B.41°C.42°D.43°5.如图,AB为⊙O的直径,点C、D在圆上,CE⊥AB于点E,若∠D=48°,则∠1=()A.42°B.45°C.48°D.52°6.如图,B 、C 是圆A 上的两点,AB 的垂直平分线与圆A 交于E 、F 两点,与线段AC 交于点D ,若∠DBC =30°,AB =2,则弧BC =( )A .19πB .29πC .13πD .49π 7.如图,在四边形ACBD 中,AB =BD =BC ,AD ∥BC ,若CD =4,AC =2,则AB 的长为 .8.如图,AB 是⊙O 的直径,点C 是AB̂的中点,点D 是直径AB 所在直线下方一点,连接CD ,且满足∠ADB =60°,BD =2,AD =3√3,则△ABD 的面积为 ;CD 的长为 .9.如图,已知半圆O 的直径AB =9,C 是半圆上一点,沿AC 折叠半圆得到AĈ,交直径AB 于点D ,若D 在半径OA 上,且为直径的三等分点,则AC 的长是 .10.如图,点A在y轴正半轴上,点B是第一象限内的一点,以AB为直径的圆交x轴于D,C两点.(1)OA与OD满足什么条件时,AC=BC,写出满足的条件,并证明AC=BC;(2)在(1)的条件下,若OA=1,BD=3√2,求CD长.11.如图1,四边形ABCD内接于⊙O,BD为直径,AD̂上点E,满足AÊ=CD̂,连结BE并延长交CD的延长线于点F,BE与AD交于点G,连结CE,EF=DG.(1)求证:CE=BG;(2)如图2,连结CG,AD=2.若sin∠ADB=√217,求△FGD的周长.➢冲击A+4.已知:在四边形ABCD中,∠A+∠C=180°,DB平分∠ADC;(1)求证:AB=BC;(2)如图2,若∠ADB=60°,试判断∠ABC的形状,并说明理由;(3)如图3,在(2)的条件下,在AB上取一点E,BC上取一点F,连接CE、AF交于点M,连接EF,若∠CMF=60°,AD=EF=7,CD=8(CF>BF),求AE的长.。
初中数学专题训练--圆--圆的内接四边形
例 圆内接四边形ABCD 中,∠A 、∠B 、∠C 的度数的比是3﹕2﹕7,求四边形各内角度数. 解:设∠A 、∠B 、∠C 的度数分别为3x 、2x 、7x .∵ABCD 是圆内接四边形.∴∠A +∠C=180°即3x+7x=180°,∴x=18°,∴∠A=3x=54°,∠B=2x=36°,∠C=7x=126°, 又∵∠B+∠D=180°,∴∠D=180°一36°=144°.说明:①巩固性质;②方程思想的应用.例 (2001厦门市,教材P101中17题)如图,已知AD 是△ABC 的外角∠EAC 的平分线,AD 与三角形ABC 的外接圆相交于D .求证:DB=DC .分析:要证DB=DC ,只要证∠BCD=∠CBD ,充分利用条件和圆周角的定理以及圆内接四边形的性质,即可解决.证明:∵AD 平分∠EAC ,∴∠EAD =∠DAC , ∵∠EAD 为圆内接四边形ABCD 的外角,∴∠BCD=∠EAD ,又∠CBD=∠DAC ,∴∠BCD=∠CBD ,∴DB=DC .说明:角相等的灵活转换,利用圆内接四边形的性质作桥梁.例 如图,△ABC 是等边三角形,D 是上任一点,求证:DB+DC=DA .分析:要证明一条线段等于两条线段的和,往往可以“截长”和“补短”法,本题两种方法都可以证明.证明: 延长DB 至点E ,使BE=DC ,连AE . 在△AEB 和△ADC 中,BE=DC .△ABC 是等边三角形.∴AB=AC .∵ 四边形ABDC 是⊙O 的内接四边形, ∴∠ABE=∠ACD .∴△AEB ≌△ADC . ∴∠AEB=∠ADC=∠ABC . ∵∠ADE=∠ACB ,又 ∵∠ABC=∠ACB =60°, ∴∠AEB=∠ADE=60°.∴△AED 是等边三角形,∴AD=DE=DB+BE . ∵BE=DC ,∴DB+DC=DA .说明:本例利用“截长”和“补短”法证明.培养学生“角相等的灵活转换”能力.在圆中,圆心角、圆周角、圆内接四边形的性质构成了角度相当转换的一个体系,应重视.典型例题四例 如图,ABCD 是⊙O 的内接四边形,CD AH ⊥,如果︒=∠30HAD ,那么=∠B ( )A .90°B .120°C .135°D .150°解:,90,30︒=∠︒=∠AHD HADE︒=∠∴60D ,由圆内接四边形的对角和是180°,得︒=∠120B ,故选B. 说明:“圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角.”这个定理很重要,要正确运用.典型例题五例 如图,已知:⊙1O 与⊙2O 相交于点A 、B ,P 是⊙1O 上任意一点,P A 、PB 的延长线交⊙2O 于点C 、D ,⊙1O 的直径PE 的延长线交CD 于点M .求证:CD PM ⊥.分析:要证CD PM ⊥,即证︒=∠+∠90D DPM ,连结公共弦AB 及EB ,即得证.证明:连结AB 、EB ,在⊙中,PEB PAB ∠=∠.∵ABCD 为⊙2O 的内接四边形..,D PEB D PAB ∠=∠∠=∠∴∵PE 为⊙1O 的直径..90︒=∠PBE.90.90.90︒=∠∴︒=∠+∠︒=∠+∠∴DMP D DPM PEB DPM即CD PM ⊥.说明:连接AB 就构造出圆内接四边形性质定理的基本图形.典型例题六例 如图,AD 是ABC ∆外角EAC ∠的平分线,AD 与ABC ∆外接⊙O 交于点D ,N 为BC 延长线上一点,且DN CD CN ,=交⊙O 于点M .求证:(1)DC DB =;(2).2DN CM DC ⋅=分析:(1)由于DB 与DC 是同一三角形的两边,要证二者相等就应先证明它们的对角相等,这可由圆周角定理与圆内接四边形的基本性质得到:(2)欲证乘积式.2DN CM DC ⋅=,只须证比例式DC CM DN DC =,也即CNCMDN DC =,这只须要证明DCM ∆∽DNC ∆即可.证明 (1)连结DC.∵AD 平分EAC ∠,∴.DBC DAC EAD ∠=∠=∠ 又ABCD 内接于⊙O , ∴.DCB EAD ∠=∠ 故.DCB DBC ∠=∠ .DC DB =∴(2).,180180NDC CDM DCN DCB DBC DMC ∠=∠∠=∠-︒=∠-︒=∠ ∴DMC ∆∽DCN ∆,故DNCMCN CM DN DC ==. ∴.2DN CM DC ⋅=说明:本题重在考查圆周角与圆内接四边形的基本性质和利用相似三角形证明比例线段的基本思维方法.本题曾是1996年南昌市中考试题.典型例题七例 如图,已知四边形ABCD 是圆内接四边形,EB 是⊙O 的直径,且AD EB ⊥,AD 与BC 的延长线相交于.F 求证:DCBCFD AB =. 证明 连结AC .∵ EB AD ⊥.∴.∴ DAB ACB ∠=∠.∵ 四边形ABCD 是圆内接四边形,∴ .,ABC FDC DAB FCD ∠=∠∠=∠∴ FCD ACB ∠=∠. ∴ ABC ∆∽FDC ∆.∴DCBCFD AB =. 说明:本题考查圆内接四边形性质的应用,解题关键是辅助线构造ABC ∆,再证ABC ∆∽FDC ∆.易错点是不易想到证ACB FCD ∠=∠而使解题陷入困境或出现错误.典型例题八例 如图,已知四边形ABCD 内接于半圆O ,AB 是直径,DC AD =,分别延长BA ,CD 交于点E ,EC BF ⊥,交EC 的延长线于F ,若12,==BC AO EA ,求CF 的长.解 连结OD ,BD .∵DC AD =,的度数AOD ∠=.∴.//BC OD∴EBEOBC OD =. .24,16.8.3212,12,==∴=∴=∴===EB AB OD OD BC BO AO EAABCD 内接于⊙O ,∴.EBC EDA ∠=∠又 E ∠公用,∴EDA ∆∽EBC ∆. ∴EBEDEC EA BC AD ==. 设y ED x DC AD ===,,则有yx y x +==82412. ∴24=x . ∴24=AD .AB 为⊙O 的直径,∴.90︒=∠=∠F ADB 又.FCB DAB ∠=∠ ∴Rt ADB ∆∽Rt .CFB ∆∴.BCABCF AD =即.121624=CF ∴.23=CF 说明 本题主要考查圆内接四边形的性质,解题关键是作出辅助线.典型例题九例 (海南省,2000) 如图,AB 是⊙O 的直径,弦(非直径)AB CD ⊥,P 是⊙O 上不同于D C ,的任一点.(1)当点P 在劣弧CD 上运动时,APC ∠与APD ∠的关系如何?请证明你的结论;(2)当点P 在优弧CD 上运动时,APC ∠与APD ∠的关系如何?请证明你的结论(不要讨论P 点与A 点重合的情形)分析:利用在同圆中,圆心角、弧、弦、弦心距之间的关系定理来解决.解 ∵弦AB CD ⊥,AB 是直径,∴∴(1).APD APC ∠=∠(2).180︒=∠+∠APD APC(如图中虚线所示).选择题1.在圆的内接四边形ABCD 中,A ∠和它的对角C ∠的度数的比为1:2,那么A ∠为( )A .30°B .60°C .90° C .120°2.四边形ABCD 内接于圆,A ∠、B ∠、C ∠、D ∠的度数依次可以是( )A .1:2:3:4B .6:7:8:9C .4:1:3:2D .14:3:1:12 3.四边形ABCD 内接于圆,A ∠、B ∠、C ∠、D ∠的度数比依次可以是() A .4:3:2:1 B .1:3:2:4 C .2:1:3:4 D .2:3:1:44.如图,四边形ABCD 内接于⊙O ,︒=∠110BOD ,那么BCD ∠的度数为()A .︒125B .︒110C .︒55D .︒705. 如图,⊙1O 与⊙2O 交于A 、B 两点,且⊙2O 过⊙1O 的圆心1O ,若︒=∠40M ,则N ∠等于()A .︒40B .︒80C .︒100D .︒70 6. 圆内接平行四边形一定是( )(A )矩形 (B )正方形 (C )菱形 (D )梯形 7.已知AB 、CD 是⊙O 的两条直径,则四边形ADBC 一定是( )A .矩形B .菱形C .正方形D .等腰梯形8、四边形ABCD 内接于圆,则∠A 、∠B 、∠C 、∠D 的度数比可以是 ( ) (A )1﹕2﹕3﹕4 (B )7﹕5﹕10﹕8 (C )13﹕1﹕5﹕17 (D )1﹕3﹕2﹕49、若ABCD 为圆内接四边形,AE ⊥CD 于E ,∠ABC=130°,则∠DAE 为( ) (A )50° (B )40° (C )30° (D )20° 10、如图,圆内接四边形ABCD 的一组对边AD 、BC 的延长线相交于P ,对角线AC 和BD 相交于点Q ,则图中共有相似的三角形 ( )(A )4对 (B )3对 (C )2对 (D )1对11.如图,在ABC ∆,AD 是高,ABC ∆的外接圆直径AE 交BC 边于点G ,有下列四个结论:(1)CD BD AD ⋅=2;(2)AE EG BE ⋅=2;(3)AC AB AD AE ⋅=⋅;(4)CG BG EG AG ⋅=⋅.其中正确的结论的个数是( )A .1个B .2个C .3个D .4个 12.已知:如图,劣弧,那么D B ∠+∠的度数是( )A .320°B .160°C .150°D .200° 13.钝角三角形的外心在( )A .三角形内B .三角形外C .三角形的边上D .上述三种情况都有可能 14.圆内接平行四边形的对角线( )A .互相垂直B .互相垂直平分C .相等D .相等且平分每组对角 15.如图,已知四边形ABCD 是⊙O 的内接四边形,且3,7,5====BE AC CD AB ,下列命题错误的是( )A .DCE ABE ∆≅∆B .︒=∠45BDAC .5.24=ABCD S 四边形 D .图中全等的三角形共有2对答案:1.B 2.D 3.C 4. A 5. D 6、A ;7.A 8、C ; 9、B ; 10、A. 11.B 12.B 13.B 14.D 15.D.填空题1. 已知ABCD 是圆内接四边形,若∠A 与∠C 的度数之比是1﹕2,则∠A 的度数是 度.2. 若A ,B ,C ,D 四点共圆,且∠ACD 为36°,则所对的圆心角的度数是 度.3. 圆内接四边形相邻三个内角的比是2﹕1﹕7,则这个四边形的最大角的度数为 度.4. 圆上四点A 、B 、C 、D ,分圆周为四段弧,且=4:3:2:1,则圆内接四边形ABCD 的最大角是_________5. 圆内接四边形ABCD 中,若EBC ∠是ABC ∠相邻的一个外角,且︒=∠105EBC ,︒=∠93C ,则_____=∠D ,______=∠A ,若3:2:1::=∠∠∠C B A ,则_____=∠D ,______=∠A6. 四边形ABCD 内接于圆,A ∠、C ∠的度数之比是4:5,B ∠比D ∠大︒30,则______=∠A ,______=∠D7. 圆内接梯形是________梯形,圆内接平行四边形是_________8.圆内接四边形ABCD 中,如果4:3:2::=∠∠∠C B A ,那么______=∠D 度. 9.在圆内接四边形ABCD 中,5:3:4::=∠∠∠C B A ,则______=∠D .10.如图,在圆内接四边形ABCD 中,α=︒=∠=AC BAD AD AB ,30,,则四边形ABCD 的面积为________.11.如图,把正三角形ABC 的外接圆对折,使点A 落在的中点A ',若5=BC ,则折痕在ABC ∆内的部分DE 长为_______.答案:1. 60°;2. 72°;3.160°;4. ︒1265. ︒105,︒87,︒90,︒45;6. ︒100,︒757. 等腰,矩形.8.90 9.120° 10.243a 11.310.判断题1. 顶点在圆上的角叫做圆周角;()2. 相等的圆周角所对的弧相等;()3. 直角所对的弦是直径;()4. 在圆中,同一弦上的两个圆周角相等或互补;()5. 弓形含的圆周角为︒120,则弓形弧也为︒120;()6. 四边形的对角互补.() 答案:1. ×2. ×3. ×4. √5. ×6. ×.解答题1、如图,已知:ABCD 为圆内接四边形,(1)若DB ∥CE ,求证:AD ﹕BC=CD ﹕BE ;(2)若AD ﹕BC=CD ﹕BE ,求证:DB ∥CE .2、已知:⊙O 中,直径AB 垂直弦CD 于H ,E 是CD 延长线上一点,AE 交⊙O 于F .求证:∠AFC=∠DFE . 3.如图,已知四边形ABCD 内接于圆,DC 、AB 的延长线相交于E ,且D B A C B E ∠=∠,求证:BD EC BE AD ⋅=⋅4.如图,点A 、D 在⊙O 上,以点A 为圆心的⊙A 交⊙O 于B 、C 两点,AD 交⊙A 于点E ,交BC 于点F ,求证:AD AF AE ⋅=25.已知圆内接四边形,ABCD 中,4:5:2::=∠∠∠C B A ,求最小的角。
高中选修4.4 圆周角定理与圆内接四边形的性质与判定定理(含答案)
圆周角定理与圆内接四边形的性质与判定定理【学习目标】:1.圆周角定理;2.圆内接四边形的性质定理与判定定理。
【学习过程】:1.圆周角定理(1)圆周角定理: 圆上一条弧所对的圆周角等于它所对的圆心角的___ ___。
(2)圆心角定理: 圆心角的度数等于_________________。
推论1.同弧或等弧所对的圆周角___ __;同圆或等圆中,相等的圆周角所对的弧也___ ___。
推论2.半圆(或直径)所对的圆周角是__ __;90°的圆周角所对的弦是_____ _。
2.圆内接四边形的性质与判定定理(1)性质定理1.圆的内接四边形的对角__ ____.定理2.圆内接四边形的外角等于它的内角的__ ____.(2)判定判定定理:如果一个四边形的对角互补,那么这个四边形的四个顶点___ ___.推论:如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点__ ___.【学习评价】:1.下列说法中:(1)直径相等的两个圆是等圆;(2)长度相同的两条弧是等弧;(3)圆中最长的弦是通过圆心的弦;(4)一条弦把圆分成两条弧,这两条弧不可能是等弧,正确的个数有( )A.1个 B .2个 C.3个 D.4个2.(2011·天津)如图,四边形ABCD 是圆O 的内接四边形,延长AB 和DC 相交于点P .若PB=1,PD =3,则BC AD 的值为________.3.(2011·广州调研)如图,四边形ABCD 内接于⊙O ,BC 是直径,MN 与⊙O 相切,切点为A ,∠MAB =35°,则∠D =________.4.(2011·深圳调研)如图,AB 是⊙O 的直径,D 是⊙O 上一点,E 为BD 的中点,⊙O 的弦AD 与BE 的延长线相交于点C ,若AB =18,BC =12,则AD =________.5.(2011·广州模拟)如图,过点D 作圆的切线切于B 点,作割线交圆于A ,C 两点,其中BD =3,AD =4,AB =2,则BC =________.6.如图所示,已知⊙O 的两条弦AB 、CD 相交于AB 的中点E ,且AB =4,DE =CE +3,则CD 的长为________.7.(2011·广东实验中学质检)如图,半径为2的⊙O 中,∠AOB =90°,D 为OB 的中点,AD的延长线交⊙O 于点E ,则线段DE 的长为________.8. (2011·广东)如图,AB 、CD 是半径为a 的圆O 的两条弦,它们相交于AB 的中点P ,PD=2a 3,∠OAP =30°,则CP =________.9.如图所示,PA 为⊙O 的切线,A 为切点,PBC 是过点O 的割线,PA =10,PB =5,∠BAC 的平分线与BC 和⊙O 分别交于点D 和E ,求AD ·AE 的值.10. 如图,⊙O 与⊙O ′外切于P ,两圆公切线AC ,分别切⊙O 、⊙O ′于A 、C 两点,AB 是⊙O 的直径,BE 是⊙O ′的切线,E 为切点,连AP 、PC 、BC .求证:AP ·BC =BE ·AC .答案:1.B2.13.解析 ∵ABCD 为圆内接四边形,∴∠PBC =∠ADP ,又∠P =∠P ,∴△BCP ∽△DAP ,∴BC AD =PB PD =13. 3. 125°.解析 连接BD ,由题意知,∠ADB =∠MAB =35°,∠BDC =90°,故∠D =∠ADB +∠BDC =125°.4.14.解析 如图,连接AE ,∵AB 是⊙O 的直径,∴AE ⊥BE ,又E 是 BD 的中点,∴∠BAE =∠EAC ,从而E 是BC 的中点,∴BE =EC =6,AB =AC =18,由CD ·CA =CE ·CB ,得(18-AD )×18=6×12,故AD =14.5. 32 .解析 ∵∠A =∠DBC ,∠D =∠D ,∴△ABD ∽△BCD ,AD BD =AB BC ,解得BC =32. 6. 5.解析 由相交弦定理知,EA ·EB =EC ·ED .(*)又∵E 为AB 中点,AB =4,DE =CE +3, ∴(*)式可化为22=EC (CE +3)=CE 2+3CE ,∴CE =-4(舍去)或CE =1.∴CD =DE +CE =2CE +3=2+3=5. 7. 355.解析 延长DO 交圆O 于另一点F ,易知OD =1,则AD =AO 2+OD 2= 5.由相交弦定理得,AD ·DE =BD ·DF ,即5·DE =1×3,DE =355. 8. 98a.解析 依题AP =PB =32a ,由PD ·CP =AP ·PB ,得CP =AP 2PD =98a . 9.解:如图所示,连接CE ,∵PA 是⊙O 的切线,PBC 是⊙O 的割线,∴PA 2=PB ·PC .又PA =10,PB =5,∴PC =20,BC =15.∵PA 切⊙O 于A ,∴∠PAB =∠ACP .又∠P 为公共角,∴△PAB ∽△PCA .∴AB CA =PA PC =1020=12.∵BC 为⊙O 的直径,∴∠CAB =90°.∴AC 2+AB 2=BC 2=225.∴AC =65,AB =3 5.又∠ABC =∠E ,∠CAE =∠EAB ,∴△ACE ∽△ADB ,∴AB AE =AD AC .∴AD ·AE =AB ·AC =35×65=90.10.证明 由题意可知∠APC =90°,连BP ,则∠APB =90°,∴B 、P 、C 在同一直线上,即P 点在BC 上,由于AB ⊥AC ,易证Rt △APB ∽Rt △CAB .∴AB CB =PB AB ,即AB 2=BP ·BC ,又由切割线定理,得BE 2=BP ·BC ,∴AB =BE ,又Rt △APB ∽Rt △CAB ,∴AB CB =AP CA ,即AP ·BC =AB ·AC ,∴AP ·BC =BE ·AC.。
圆内接四边形的性质精选题36道
圆内接四边形的性质精选题36道一.选择题(共12小题)1.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A.45°B.50°C.60°D.75°2.如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.45°B.50°C.55°D.60°3.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°4.如图,四边形ABCD内接于⊙O,连接BD.若,∠BDC=50°,则∠ADC的度数是()A.125°B.130°C.135°D.140°5.如图,点A、B、C、D在⊙O上,,∠CAD=30°,∠ACD=50°,则∠ADB=()A.30°B.50°C.70°D.80°6.如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD=5,CE=,则AE=()A.3B.3C.4D.27.如图,四边形ABCD内接于⊙O,已知∠ADC=140°,则∠AOC的大小是()A.80°B.100°C.60°D.40°8.如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A.80°B.120°C.100°D.90°9.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A.88°B.92°C.106°D.136°10.如图,四边形ABCD内接于⊙O,若∠A=40°,则∠C=()A.110°B.120°C.135°D.140°11.如图,点A、B、C、D在⊙O上,∠AOC=140°,点B是的中点,则∠D的度数是()A.70°B.55°C.35.5°D.35°12.如图,四边形ABCD内接于圆O,AD∥BC,∠DAB=48°,则∠AOC的度数是()A.48°B.96°C.114°D.132°二.填空题(共14小题)13.如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB =.14.如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E=°.15.如图,点A、B、C、D、E在⊙O上,且的度数为50°,则∠E+∠C=°.16.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为弧BD的中点,若∠DAB =40°,则∠ABC=.17.如图,四边形ABCD内接于⊙O,E为CD延长线上一点.若∠B=110°,则∠ADE的度数为.18.如图,四边形ABCD中,AB=AC=AD,若∠CAD=76°,则∠CBD=度.19.如图,四边形ABCD内接于圆O,四边形ABCO是平行四边形,则∠ADC=.20.如图,圆内接四边形ABCD中,∠BCD=90°,AB=AD,点E在CD的延长线上,且DE=BC,连接AE,若AE=4,则四边形ABCD的面积为.21.如图,四边形ABCD是⊙O的内接四边形,∠BOD=100°,则∠BCD=°.22.如图,已知四边形ABCD是圆O的内接四边形,∠BOD=80°,则∠BCD=.23.如图,在⊙O内接四边形ABCD中,若∠ABC=100°,则∠ADC=°.24.如图,四边形ABCD内接于⊙O,∠A=110°,则∠BOD=°.25.如图,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为.26.如图,四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F,∠A=50°,则∠E+∠F=.三.解答题(共10小题)27.如图,四边形ABCD内接于⊙O,∠1=∠2,延长BC到点E,使得CE=AB,连接ED.(1)求证:BD=ED;(2)若AB=4,BC=6,∠ABC=60°,求tan∠DCB的值.28.如图,已知四边形ABCD内接于圆O,连接BD,∠BAD=105°,∠DBC=75°.(1)求证:BD=CD;(2)若圆O的半径为3,求的长.29.如图,四边形ABCD是⊙O的内接四边形,点F是CD延长线上的一点,且AD平分∠BDF,AE⊥CD于点E.(1)求证:AB=AC.(2)若BD=11,DE=2,求CD的长.30.已知:如图,四边形ABCD内接于圆,延长AD、BC相交于点E,点F是BD的延长线上的点,且DE平分∠CDF.(1)求证:AB=AC;(2)若AC=5cm,AD=3cm,求DE的长.31.如图,四边形ABCD是⊙O的内接四边形,对角线AC是⊙O的直径,AB=2,∠ADB =45°.求⊙O半径的长.32.如图,四边形ABCD内接于⊙O,BD为直径,AC平分∠BCD.(1)若BC=5cm,CD=12cm,求AB的长;(2)求证:BC+CD=AC.33.如图,四边形ABCD内接于⊙O,OC=2,AC=2(1)求点O到AC的距离;(2)求∠ADC的度数.34.已知四边形ABCD是⊙O的内接四边形,∠DAB=120°,BC=CD,AD=4,AC=7,求AB的长度.35.如图,四边形ABCD内接于⊙O,对角线AC是⊙O的直径,过点C作AC的垂线交AD 的延长线于点E,连接BD交AC于点P.(1)求∠EDC的度数;(2)若AC=2DE,求tan∠ABD的值;(3)若∠DPC=45°,PD2+PB2=8,求AC的长.36.已知四边形ABCD内接于⊙O,∠DAB=90°.(1)如图1,连接BD,若⊙O的半径为6,AD=AB,求AB的长;(2)如图2,连接AC,若AD=5,AB=3,对角线AC平分∠DAB,求AC的长.圆内接四边形的性质精选题36道参考答案与试题解析一.选择题(共12小题)1.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A.45°B.50°C.60°D.75°【分析】设∠ADC的度数=α,∠ABC的度数=β,由题意可得,求出β即可解决问题.【解答】解:设∠ADC的度数=α,∠ABC的度数=β;∵四边形ABCO是平行四边形,∴∠ABC=∠AOC;∵∠ADC=β,∠ADC=α;而α+β=180°,∴,解得:β=120°,α=60°,∠ADC=60°,故选:C.【点评】该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用.2.如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.45°B.50°C.55°D.60°【分析】先根据圆内接四边形的性质求出∠ADC的度数,再由圆周角定理得出∠DCE的度数,根据三角形外角的性质即可得出结论.【解答】解:∵四边形ABCD内接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵=,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.故选:B.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.3.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°【分析】先根据补角的性质求出∠ABC的度数,再由圆内接四边形的性质求出∠ADC的度数,由等腰三角形的性质求得∠DAC的度数.【解答】解:∵∠CBE=50°,∴∠ABC=180°﹣∠CBE=180°﹣50°=130°,∵四边形ABCD为⊙O的内接四边形,∴∠D=180°﹣∠ABC=180°﹣130°=50°,∵DA=DC,∴∠DAC==65°,故选:C.【点评】本题考查的是圆内接四边形的性质及等腰三角形的性质,解题的关键是灵活应用所学知识解决问题.4.如图,四边形ABCD内接于⊙O,连接BD.若,∠BDC=50°,则∠ADC的度数是()A.125°B.130°C.135°D.140°【分析】连接OA,OB,OC,根据圆周角定理得出∠BOC=100°,再根据得到∠AOC,从而得到∠ABC,最后利用圆内接四边形的性质得到结果.【解答】解:连接OA,OB,OC,∵∠BDC=50°,∴∠BOC=2∠BDC=100°,∵,∴∠BOC=∠AOC=100°,∴∠ABC=∠AOC=50°,∴∠ADC=180°﹣∠ABC=130°.故选:B.【点评】本题考查了圆周角定理,弧、弦、圆心角的关系,圆内接四边形的性质,关键在于画出半径,构造圆心角.5.如图,点A、B、C、D在⊙O上,,∠CAD=30°,∠ACD=50°,则∠ADB=()A.30°B.50°C.70°D.80°【分析】直接利用圆周角定理以及结合三角形内角和定理得出∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC,进而得出答案.【解答】解:∵,∠CAD=30°,∴∠CAD=∠CAB=30°,∴∠DBC=∠DAC=30°,∵∠ACD=50°,∴∠ABD=50°,∴∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC=180°﹣50°﹣30°﹣30°=70°.故选:C.【点评】此题主要考查了圆周角定理以及三角形内角和定理,正确得出∠ABD度数是解题关键.6.如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD=5,CE=,则AE=()A.3B.3C.4D.2【分析】连接AC,如图,根据圆内接四边形的性质和圆周角定理得到∠1=∠CDA,∠2=∠3,从而得到∠3=∠CDA,所以AC=AD=5,然后利用勾股定理计算AE的长.【解答】解:连接AC,如图,∵BA平分∠DBE,∴∠1=∠2,∵∠1=∠CDA,∠2=∠3,∴∠3=∠CDA,∴AC=AD=5,∵AE⊥CB,∴∠AEC=90°,∴AE===2.故选:D.【点评】本题考查了圆内接四边形的性质:圆内接四边形的对角互补.圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).也考查了勾股定理.7.如图,四边形ABCD内接于⊙O,已知∠ADC=140°,则∠AOC的大小是()A.80°B.100°C.60°D.40°【分析】根据圆内接四边形的性质求得∠ABC=40°,利用圆周角定理,得∠AOC=2∠B=80°.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠ABC+∠ADC=180°,∴∠ABC=180°﹣140°=40°.∴∠AOC=2∠ABC=80°.故选:A.【点评】此题主要考查了圆周角定理以及圆内接四边形的性质,得出∠B的度数是解题关键.8.如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A.80°B.120°C.100°D.90°【分析】根据圆内接四边形的性质求出∠A,再根据圆周角定理解答.【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠A=180°﹣∠BCD=60°,由圆周角定理得,∠BOD=2∠A=120°,故选:B.【点评】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.9.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A.88°B.92°C.106°D.136°【分析】首先根据∠BOD=88°,应用圆周角定理,求出∠BAD的度数多少;然后根据圆内接四边形的性质,可得∠BAD+∠BCD=180°,据此求出∠BCD的度数是多少即可.【解答】解:∵∠BOD=88°,∴∠BAD=88°÷2=44°,∵∠BAD+∠BCD=180°,∴∠BCD=180°﹣44°=136°,即∠BCD的度数是136°.故选:D.【点评】(1)此题主要考查了圆内接四边形的性质和应用,要熟练掌握,解答此题的关键是要明确:①圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).(2)此题还考查了圆周角定理的应用,要熟练掌握,解答此题的关键是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.如图,四边形ABCD内接于⊙O,若∠A=40°,则∠C=()A.110°B.120°C.135°D.140°【分析】直接利用圆内接四边形的对角互补计算∠C的度数.【解答】解:∵四边形ABCD内接于⊙O,∴∠C+∠A=180°,∴∠C=180°﹣40°=140°.故选:D.【点评】本题考查了圆内接四边形的性质:圆内接四边形的对角互补.圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).11.如图,点A、B、C、D在⊙O上,∠AOC=140°,点B是的中点,则∠D的度数是()A.70°B.55°C.35.5°D.35°【分析】根据圆心角、弧、弦的关系定理得到∠AOB=∠AOC,再根据圆周角定理解答.【解答】解:连接OB,如图所示,∵点B是的中点,∴∠AOB=∠AOC=70°,由圆周角定理得,∠D=∠AOB=35°,故选:D.【点评】本题考查的是圆心角、弧、弦的关系定理、圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.12.如图,四边形ABCD内接于圆O,AD∥BC,∠DAB=48°,则∠AOC的度数是()A.48°B.96°C.114°D.132°【分析】根据平行线的性质求出∠B,根据圆内接四边形的性质求出∠D,根据圆周角定理解答.【解答】解:∵AD∥BC,∴∠B=180°﹣∠DAB=132°,∵四边形ABCD内接于圆O,∴∠D=180°﹣∠B=48°,由圆周角定理得,∠AOC=2∠D=96°,故选:B.【点评】本题考查的是圆内接四边形的性质、圆周角定理、平行线的性质,掌握圆内接四边形的对角互补是解题的关键.二.填空题(共14小题)13.如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB =70°.【分析】直接利用圆周角定理以及结合三角形内角和定理得出∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC,进而得出答案.【解答】解:∵=,∠CAD=30°,∴∠CAD=∠CAB=30°,∴∠DBC=∠DAC=30°,∵∠ACD=50°,∴∠ABD=50°,∴∠ADB=∠ACB=180°﹣∠CAB﹣∠ABC=180°﹣50°﹣30°﹣30°=70°.故答案为:70°.【点评】此题主要考查了圆周角定理以及三角形内角和定理,正确得出∠ABD度数是解题关键.14.如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E=215°.【分析】连接CE,根据圆内接四边形对角互补可得∠B+∠AEC=180°,再根据同弧所对的圆周角相等可得∠CED=∠CAD,然后求解即可.【解答】解:如图,连接CE,∵五边形ABCDE是圆内接五边形,∴四边形ABCE是圆内接四边形,∴∠B+∠AEC=180°,∵∠CED=∠CAD=35°,∴∠B+∠E=180°+35°=215°.故答案为:215.【点评】本题考查了圆内接四边形的性质,同弧所对的圆周角相等的性质,熟记性质并作辅助线构造出圆内接四边形是解题的关键.15.如图,点A、B、C、D、E在⊙O上,且的度数为50°,则∠E+∠C=155°.【分析】连接EA,根据圆周角定理求出∠BEA,根据圆内接四边形的性质得到∠DEA+∠C=180°,结合图形计算即可.【解答】解:连接EA,∵为50°,∴∠BEA=25°,∵四边形DCAE为⊙O的内接四边形,∴∠DEA+∠C=180°,∴∠DEB+∠C=180°﹣25°=155°,故答案为:155.【点评】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.16.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为弧BD的中点,若∠DAB =40°,则∠ABC=70°.【分析】连接AC,根据圆周角定理得到∠CAB=∠DAB=20°,∠ACB=90°,计算即可.【解答】解:连接AC,∵点C为弧BD的中点,∴∠CAB=∠DAB=20°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ABC=70°,故答案为:70°.【点评】本题考查的是圆周角定理的应用、圆内接四边形的性质,掌握半圆(或直径)所对的圆周角是直角是解题的关键.17.如图,四边形ABCD内接于⊙O,E为CD延长线上一点.若∠B=110°,则∠ADE的度数为110°.【分析】根据圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角)可得答案.【解答】解:∵∠B=110°,∴∠ADE=110°.故答案为:110°.【点评】此题主要考查了圆内接四边形的性质,关键是熟练掌握圆内接四边形的性质定理.18.如图,四边形ABCD中,AB=AC=AD,若∠CAD=76°,则∠CBD=38度.【分析】由已知我们可以将点B,C,D可以看成是以点A为圆心,AB为半径的圆上的三个点,从而根据同弧所对的圆周角等于圆心角的一半求得即可.【解答】解:∵AB=AC=AD,∴点B,C,D可以看成是以点A为圆心,AB为半径的圆上的三个点,∴∠CBD是弧CD对的圆周角,∠CAD是弧CD对的圆心角;∵∠CAD=76°,∴∠CBD=∠CAD=×76°=38°.【点评】本题利用了同弧对的圆周角是圆心角的一半的性质求解.19.如图,四边形ABCD内接于圆O,四边形ABCO是平行四边形,则∠ADC=60°.【分析】设∠ADC的度数=α,∠ABC的度数=β,由题意可得,求出β即可解决问题.【解答】解:设∠ADC的度数=α,∠ABC的度数=β;∵四边形ABCO是平行四边形,∴∠ABC=∠AOC;∵∠ADC=β,∠AOC=α;而α+β=180°,∴,解得:β=120°,α=60°,∠ADC=60°,故答案为:60°.【点评】该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用.20.如图,圆内接四边形ABCD中,∠BCD=90°,AB=AD,点E在CD的延长线上,且DE=BC,连接AE,若AE=4,则四边形ABCD的面积为8.【分析】如图,连接AC,BD.由△ABC≌△ADE(SAS),推出∠BAC=∠DAE,AC=AE =4,S△ABC=S△ADE,推出S四边形ABCD=S△ACE,由此即可解决问题;【解答】解:如图,连接AC,BD.∵∠BCD=90°,∴BD是⊙O的直径,∴∠BAD=90°,∵∠ADE+∠ADC=180°,∠ABC+∠ADC=180°,∴∠ABC=∠ADE,∵AB=AD,BC=DE,∴△ABC≌△ADE(SAS),∴∠BAC=∠DAE,AC=AE=4,S△ABC=S△ADE,∴∠CAE=∠BAD=90°,∴S四边形ABCD=S△ACE=×4×4=8.故答案为8.【点评】本题考查圆内接四边形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会用转化的思想思考问题,属于中考常考题型.21.如图,四边形ABCD是⊙O的内接四边形,∠BOD=100°,则∠BCD=130°.【分析】先根据圆周角定理求出∠A的度数,再由圆内接四边形的性质即可得出结论.【解答】解:∵∠BOD=100°,∴∠A=50°.∵四边形ABCD是圆内接四边形,∴∠BCD=180°﹣50°=130°.故答案为:130.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形对角互补是解答此题的关键.22.如图,已知四边形ABCD是圆O的内接四边形,∠BOD=80°,则∠BCD=140°.【分析】根据已知条件利用圆周角定理求出∠BAD的度数,再根据圆内接四边形对角互补即可求出∠BCD的度数.【解答】解:∵∠BAD为所对的圆周角且∠BOD=80°,∴∠BAD===40°,又∵四边形ABCD是圆O的内接四边形,∴∠BAD+∠BCD=180°,∴∠BCD=180°﹣∠BAD=180°﹣40°=140°,故答案为:140°.【点评】本题考查圆周角定理以及圆内接四边形的性质,熟练掌握圆周角定理与圆内接四边形对角互补的性质是解题的关键.23.如图,在⊙O内接四边形ABCD中,若∠ABC=100°,则∠ADC=80°.【分析】直接根据圆内接四边形的性质求解即可.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠ABC+∠ADC=180°,∴∠ADC=180°﹣100°=80°.故答案为:80.【点评】本题考查了圆内接四边形的性质:圆内接四边形的对角互补.24.如图,四边形ABCD内接于⊙O,∠A=110°,则∠BOD=140°.【分析】先根据圆内接四边形的性质求出∠C的度数,再由圆周角定理即可得出结论.【解答】解:∵四边形ABCD内接于⊙O,∠A=110°,∴∠C=180°﹣∠A=180°﹣110°=70°,∴∠BOD=2∠C=140°.故答案为:140.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.25.如图,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为.【分析】连接BD,作OE⊥AD,连接OD,先由圆内接四边形的性质求出∠BAD的度数,再由AD=AB可得出△ABD是等边三角形,则DE=AD,∠ODE=∠ADB=30°,根据锐角三角函数的定义即可得出结论.【解答】解:连接BD,作OE⊥AD,连接OD,∵⊙O为四边形ABCD的外接圆,∠BCD=120°,∴∠BAD=60°.∵AD=AB=2,∴△ABD是等边三角形.∴DE=AD=1,∠ODE=∠ADB=30°,∴OD==.故答案为【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形对角互补是解答此题的关键.26.如图,四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F,∠A=50°,则∠E+∠F=80°.【分析】根据圆内接四边形的性质得到∠ADC+∠ABC=180°,∠ECD=∠A=50°,∠BCF=∠A=50°,根据三角形内角和定理计算即可.【解答】解:∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°,∠ECD=∠A=50°,∠BCF=∠A=50°,∴∠EDC+∠FBC=180°,∴∠E+∠F=360°﹣180°﹣50°﹣50°=80°,故答案为:80°.【点评】本题考查的是圆内接四边形的性质、三角形内角和定理,掌握圆内接四边形的对角互、圆内接四边形的任意一个外角等于它的内对角是解题的关键.三.解答题(共10小题)27.如图,四边形ABCD内接于⊙O,∠1=∠2,延长BC到点E,使得CE=AB,连接ED.(1)求证:BD=ED;(2)若AB=4,BC=6,∠ABC=60°,求tan∠DCB的值.【分析】(1)根据圆内接四边形的性质得到∠A=∠DCE,证明△ABD≌△DCE,根据全等三角形的性质证明结论;(2)过点D作DM⊥BE于M,根据等腰三角形的性质求出BM,进而求出CM,根据正切的定义求出DM,根据正切的定义计算,得到答案.【解答】(1)证明:∵四边形ABCD内接于⊙O,∴∠A=∠DCE,∵∠1=∠2,∴=,∴AD=DC,在△ABD和△DCE中,,∴△ABD≌△CED(SAS),∴BD=ED;(2)解:过点D作DM⊥BE于M,∵AB=4,BC=6,CE=AB,∴BE=BC+EC=10,∵BD=ED,DM⊥BE,∴BM=ME=BE=5,∴CM=BC﹣BM=1,∵∠ABC=60°,∠1=∠2,∴∠2=30°,∴DM=BM•tan∠2=5×=,∴tan∠DCB==.【点评】本题考查的是圆内接四边形的性质、解直角三角形、全等三角形的判定和性质,掌握圆内接四边形的对角互补、锐角三角函数的定义是解题的关键.28.如图,已知四边形ABCD内接于圆O,连接BD,∠BAD=105°,∠DBC=75°.(1)求证:BD=CD;(2)若圆O的半径为3,求的长.【分析】(1)直接利用圆周角定理得出∠DCB的度数,再利用∠DCB=∠DBC求出答案;(2)首先求出的度数,再利用弧长公式直接求出答案.【解答】(1)证明:∵四边形ABCD内接于圆O,∴∠DCB+∠BAD=180°,∵∠BAD=105°,∴∠DCB=180°﹣105°=75°,∵∠DBC=75°,∴∠DCB=∠DBC=75°,∴BD=CD;(2)解:∵∠DCB=∠DBC=75°,∴∠BDC=30°,由圆周角定理,得,的度数为:60°,故===π,答:的长为π.【点评】此题主要考查了弧长公式应用以及圆周角定理等知识,根据题意得出∠DCB的度数是解题关键.29.如图,四边形ABCD是⊙O的内接四边形,点F是CD延长线上的一点,且AD平分∠BDF,AE⊥CD于点E.(1)求证:AB=AC.(2)若BD=11,DE=2,求CD的长.【分析】(1)根据角平分线的定义、圆内接四边形的性质解答;(2)过点A作AG⊥BD,分别证明Rt△AED≌Rt△AGD和Rt△AEC≌Rt△AGB,根据全等三角形的性质计算.【解答】(1)证明:∵AD平分∠BDF,∴∠ADF=∠ADB,∵∠ABC+∠ADC=180°,∠ADC+∠ADF=180°,∴∠ADF=∠ABC,∵∠ACB=∠ADB,∴∠ABC=∠ACB,∴AB=AC;(2)解:过点A作AG⊥BD,垂足为点G.∵AD平分∠BDF,AE⊥CF,AG⊥BD,∴AG=AE,∠AGB=∠AEC=90°,在Rt△AED和Rt△AGD中,,∴Rt△AED≌Rt△AGD,∴GD=ED=2,在Rt△AEC和Rt△AGB中,,∴Rt△AEC≌Rt△AGB(HL),∴BG=CE,∵BD=11,∴BG=BD﹣GD=11﹣2=9,∴CE=BG=9,∴CD=CE﹣DE=9﹣2=7.【点评】本题考查的是圆内接四边形的性质、全等三角形的判定和性质,掌握圆内接四边形的任意一个外角等于它的内对角是解题的关键.30.已知:如图,四边形ABCD内接于圆,延长AD、BC相交于点E,点F是BD的延长线上的点,且DE平分∠CDF.(1)求证:AB=AC;(2)若AC=5cm,AD=3cm,求DE的长.【分析】(1)由圆内接四边形的性质,可求得∠ABC=∠2;由于∠1=∠2=∠3=∠4,故∠ABC=∠4,由此得证.(2)证△ABD∽△AEB,通过相似三角形的对应成比例线段,求出AE及DE的值.【解答】(1)证明:∵∠ABC=∠2,∠2=∠1=∠3,∠4=∠3,∴∠ABC=∠4,∴AB=AC;(2)解:∵∠3=∠4=∠ABC,∠DAB=∠BAE,∴△ABD∽△AEB,∴,∵AB=AC=5cm,AD=3cm,∴AE==,∴DE==(cm).【点评】本题综合考查了角平分线,相似三角形,圆内接四边形的性质,是中学阶段的常规题目.31.如图,四边形ABCD是⊙O的内接四边形,对角线AC是⊙O的直径,AB=2,∠ADB =45°.求⊙O半径的长.【分析】根据圆周角定理得∠ABC=90°,然后在Rt△ABC利用勾股定理计算即可.【解答】解:∵AC是⊙O的直径,∴∠ABC=90°,∵∠ADB=45°,∴∠ACB=∠ADB=45°,∵AB=2,∴BC=AB=2,∴AC=,∴⊙O半径的长为.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.32.如图,四边形ABCD内接于⊙O,BD为直径,AC平分∠BCD.(1)若BC=5cm,CD=12cm,求AB的长;(2)求证:BC+CD=AC.【分析】(1)先利用圆周角定理得∠BAD=∠BCD=90°,则根据勾股定理可计算出BD =13cm,再证明△ABD为等腰直角三角形,然后根据等腰直角三角形的性质得到AB的长;(2)把△ABC绕点A逆时针旋转90°得到△ADE,如图,根据旋转的性质得到∠CAE =∠BAD=90°,CA=CE,∠ABC=∠ADE,再证明E点在CD的延长线上,于是可判断△ACE为等腰直角三角形,所以CE=AC,从而得到结论.【解答】(1)解:∵BD为直径,∴∠BAD=∠BCD=90°,在Rt△BCD中,BD===13(cm),∵AC平分∠BCD,∴∠ACB=∠ACD,∴AB=AD,∴△ABD为等腰直角三角形,∴AB=BD=cm;(2)证明:把△ABC绕点A逆时针旋转90°得到△ADE,如图,则∠CAE=∠BAD=90°,CA=CE,BC=DE,∠ABC=∠ADE,∵∠ABC+∠ADC=180°,∴∠ADE+∠ADC=180°,∴E点在CD的延长线上,∴△ACE为等腰直角三角形,∴CE=AC,而CE=CD+DE=CD+CB,∴BC+CD=AC.【点评】本题考查了圆内接四边形的性质:圆内接四边形的对角互补.也考查了圆周角定理和旋转的性质.33.如图,四边形ABCD内接于⊙O,OC=2,AC=2(1)求点O到AC的距离;(2)求∠ADC的度数.【分析】(1)连接OA,作OH⊥AC于H,根据勾股定理的逆定理得到∠AOC=90°,根据等腰直角三角形的性质解答;(2)根据圆周角定理求出∠B,根据圆内接四边形的性质计算,得到答案.【解答】解:(1)连接OA,作OH⊥AC于H,OA2+OC2=8,AC2=8,∴OA2+OC2=AC2,∴△AOC为等腰直角三角形,∴OH=AC=,即点O到AC的距离为;(2)由圆周角定理得,∠B=∠AOC=45°,∵四边形ABCD内接于⊙O,∴∠ADC=180°﹣45°=135°.【点评】本题考查度数圆内接四边形的性质、圆周角定理、勾股定理的逆定理,掌握圆内接四边形对角互补是解题的关键.34.已知四边形ABCD是⊙O的内接四边形,∠DAB=120°,BC=CD,AD=4,AC=7,求AB的长度.【分析】根据圆周角定理得出∠DAC=∠CAB,进而利用勾股定理得出AF的值以及三角函数解答即可.【解答】解:作DE⊥AC,BF⊥AC,∵BC=CD,∴,∴∠CAB=∠DAC,∵∠DAB=120°,∴∠DAC=∠CAB=60°,∵DE⊥AC,∴∠DEA=∠DEC=90°,∴sin60°=,cos60°=,∴DE=2,AE=2,∵AC=7,∴CE=5,∴DC=,∴BC=,∵BF⊥AC,∴∠BF A=∠BFC=90°,∴tan60°=,BF2+CF2=BC2,∴BF=AF,∴,∴AF=2或AF=,∵cos60°=,∴AB=2AF,当AF=2时,AB=2AF=4,∴AB=AD,∵DC=BC,AC=AC,∴△ADC≌△ABC(SSS),∴∠ADC=∠ABC,∵ABCD是圆内接四边形,∴∠ADC+∠ABC=180°,∴∠ADC=∠ABC=90°,但AC2=49,,AC2≠AD2+DC2,∴AB=4(不合题意,舍去),当AF=时,AB=2AF=3,∴AB=3.【点评】此题考查圆内接四边形的性质,关键是根据圆周角定理和勾股定理以及三角函数解答.35.如图,四边形ABCD内接于⊙O,对角线AC是⊙O的直径,过点C作AC的垂线交AD 的延长线于点E,连接BD交AC于点P.(1)求∠EDC的度数;(2)若AC=2DE,求tan∠ABD的值;(3)若∠DPC=45°,PD2+PB2=8,求AC的长.【分析】(1)由圆周角定理得出∠ADC=90°,结合平角的定义可求解;(2)利用相似三角形的性质结合勾股定理表示出AD,DC的长,再利用圆周角定理得出tan∠ABD的值;(3)过点O作OG⊥BD于点G,由垂径定理可得BG=DG,利用PD2+PB2=8,可求半径为2,即可求解.【解答】解:(1)∵AC是⊙O的直径,∴∠ADC=90°,∵∠ADC+∠EDC=180°,∴∠EDC=90°;(2)∵∠CAE+∠E=90°,∠CAE+∠ACD=90°,∴∠E=∠ACD,又∠ACE=∠ADC=90°,∴△ACE∽△ADC,∴,即AC2=AD•AE.设DE=x,则AC=x,即(x)2=AD(AD+x).整理,得AD2+AD•x﹣20x2=0.解得AD=4x或AD=﹣5x(舍去).∴DC==2x.∴tan∠ABD=tan∠ACD==2;(3)如图,过点O作OG⊥BD于点G,由垂径定理,得BG=DG,设BG=DG=m,则PD=m+PG,PB=m﹣PG,∵PD2+PB2=8,∴(m+PG)2+(m﹣PG)2=8,整理,得2m2+2PG2=8,即m2+PG2=4.∵∠DPC=45°,∴OG=PG.∴OD2=DG2+OG2=m2+PG2=4,∴⊙O的半径为2.∴AC=4.【点评】本题是圆的综合题,考查了圆周角定理,圆内接四边形的性质,相似三角形的判定与性质,勾股定理等知识,根据题意表示出AD,DC的长是解题关键.36.已知四边形ABCD内接于⊙O,∠DAB=90°.(1)如图1,连接BD,若⊙O的半径为6,AD=AB,求AB的长;(2)如图2,连接AC,若AD=5,AB=3,对角线AC平分∠DAB,求AC的长.【分析】(1)如图1,先利用圆周角定理得到BD为直径,即BD=12,再证明△ABD为等腰直角三角形,然后根据等腰直角三角形求出AB;(2)如图2,作BH⊥AC于H,先利用圆周角定理得到BD为直径,利用勾股定理计算出BD=,再证明△CDB为等腰直角三角形得到BC=BD=,接着在Rt△ABH中计算出AH=BH=,然后在Rt△BCH中计算出CH=,从而得到AC 的长.【解答】解:(1)∵∠DAB=90°∴BD是直径,∴BD=12,∴2AB2=144,∴AB=;(2)如图2,连接BD,∵∠DAB=90°,AD=5,AB=3,∴BD=,∵AC平分∠DAB,∴∠DAC=∠CAB,∴=,∴DC=CB,∵四边形ABCD内接于⊙O,∵∠DAB=90°,∴∠DCB=90°,∴BC=,作BH⊥AC,∵∠CAB=45°,∴AH=BH=,CH=,∴AC=.【点评】本题考查了圆内接四边形的性质:圆内接四边形的对角互补.也考查了圆周角定理和等腰直角三角形的判定与性质.。
九年级数学圆周角定理(基础)(含答案)
圆周角定理(基础)一、单选题(共11道,每道8分)1.如图,点A,B,C都在⊙O上,若∠ACB=48°,则∠AOB的度数为( )A.96°B.48°C.42°D.24°答案:A解题思路:圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半∵∠ACB与∠AOB对着同一条弧AB,∠ACB=48°∴∠AOB=2∠ACB=96°试题难度:三颗星知识点:略2.如图,A,B,C,D是⊙O上的点,则图中与∠A相等的角是( )A.∠BB.∠CC.∠DEBD.∠D答案:D解题思路:同弧或等弧所对的圆周角相等∵∠A与∠D都是弧BC所对的圆周角∴∠D=∠A试题难度:三颗星知识点:略3.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC.若∠A=60°,∠ADC=85°,则∠C的度数是( )A.25°B.27.5°C.30°D.35°答案:D解题思路:∵∠A=60°,∠ADC=85°∴∠B=∠ADC-∠A=25°∵∠B与∠AOC对着同一条弧AC∴∠AOC=2∠B=50°∴∠C=∠ADC-∠AOC=35°试题难度:三颗星知识点:略4.如图,AB是⊙O的直径,C,D为圆上两点,若∠AOC=130°,则∠D等于( )A.20°B.25°C.35°D.50°答案:B解题思路:∵AB是⊙O的直径,∠AOC=130°∴∠BOC=180°-∠AOC=50°∵∠D与∠BOC对着同一条弧BC∴∠D=∠BOC=25°试题难度:三颗星知识点:略5.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A,B的度数分别为88°,30°,则∠ACB的大小为( )A.15°B.28°C.29°D.34°答案:C解题思路:如图,点A,B的度数分别为88°,30°∴∠AOB=88°-30°=58°∵∠ACB与∠AOB对着同一条弧AB∴∠ACB=∠AOB=29°试题难度:三颗星知识点:略6.如图,已知圆心角∠AOB=110°,则圆周角∠ACB=( )A.55°B.110°C.120°D.125°答案:D解题思路:如图,设点E是优弧AB上的一点,连接EA,EB∵∠E与∠AOB对着同一条弧AB,∠AOB=110°∴∠E=∠AOB=55°又∠ACB+∠E=180°∴∠ACB=180°-55°=125°试题难度:三颗星知识点:略7.如图,在⊙O中,AD是直径,∠ABC=40°,则∠CAD等于( )A.40°B.50°C.60°D.70°答案:B解题思路:∵∠ADC与∠ABC对着同一条弧AC,∠ABC=40°∴∠ADC=∠ABC=40°∵AD是⊙O的直径∴∠DCA=90°∴∠CAD=90°-∠ADC=50°试题难度:三颗星知识点:略8.如图,AB是⊙O的弦,OC⊥AB交⊙O于点C,点D是⊙O上一点,∠ADC=30°,则∠BOC 的度数为( )A.30°B.40°C.50°D.60°答案:D解题思路:∵∠AOC与∠ADC对着同一条弧AC,∠ADC=30°∴∠AOC=2∠ADC=60°∵AB是⊙O的弦,OC⊥AB交⊙O于点C∴弧AC=弧BC∴∠BOC=∠AOC=60°试题难度:三颗星知识点:略9.如图,四边形ABCD内接于⊙O,若∠A=40°,则∠C=( )A.110°B.120°C.135°D.140°答案:D解题思路:∵四边形ABCD内接于⊙O∴∠A+∠C=180°又∠A=40°∴∠C=180°-40°=140°试题难度:三颗星知识点:略10.如图,圆内接四边形ABCD中,边BA的延长线上有一点E,且∠EAD=50°,则∠C的度数为( )A.50°B.40°C.130°D.140°答案:A解题思路:∵点E在BA的延长线上,∠EAD=50°∴∠BAD=180°-∠EAD=130°∵四边形ABCD内接于圆∴∠C+∠BAD=180°∴∠C=180°-∠BAD=50°试题难度:三颗星知识点:略11.如图,四边形ABCD是半圆的内接四边形,AB是直径,弧CB=弧CD.若∠C=110°,则∠ABC 的度数等于( )A.55°B.60°C.65°D.70°答案:A解题思路:如图,连接AC∵四边形ABCD是半圆的内接四边形,∠C=110°∴∠DAB=180°-∠C=70°又弧CB=弧CD∴∠BAC=∠DAC=∠DAB=35°∵AB是直径∴∠ACB=90°∴∠ABC=90°-∠BAC=55°试题难度:三颗星知识点:略。
(完整)初中数学专题训练--圆--圆的内接四边形
例 圆内接四边形ABCD 中,∠A 、∠B 、∠C 的度数的比是3﹕2﹕7,求四边形各内角度数. 解:设∠A 、∠B 、∠C 的度数分别为3x 、2x 、7x .∵ABCD 是圆内接四边形.∴∠A +∠C=180°即3x+7x=180°,∴x=18°,∴∠A=3x=54°,∠B=2x=36°,∠C=7x=126°, 又∵∠B+∠D=180°,∴∠D=180°一36°=144°.说明:①巩固性质;②方程思想的应用.例 (2001厦门市,教材P101中17题)如图,已知AD 是△ABC 的外角∠EAC 的平分线,AD 与三角形ABC 的外接圆相交于D .求证:DB=DC .分析:要证DB=DC ,只要证∠BCD=∠CBD ,充分利用条件和圆周角的定理以及圆内接四边形的性质,即可解决.证明:∵AD 平分∠EAC ,∴∠EAD =∠DAC , ∵∠EAD 为圆内接四边形ABCD 的外角,∴∠BCD=∠EAD ,又∠CBD=∠DAC ,∴∠BCD=∠CBD ,∴DB=DC .说明:角相等的灵活转换,利用圆内接四边形的性质作桥梁.例 如图,△ABC 是等边三角形,D 是上任一点,求证:DB+DC=DA .分析:要证明一条线段等于两条线段的和,往往可以“截长”和“补短”法,本题两种方法都可以证明.证明: 延长DB 至点E ,使BE=DC ,连AE . 在△AEB 和△ADC 中,BE=DC .△ABC 是等边三角形.∴AB=AC .∵ 四边形ABDC 是⊙O 的内接四边形, ∴∠ABE=∠ACD .∴△AEB ≌△ADC . ∴∠AEB=∠ADC=∠ABC . ∵∠ADE=∠ACB ,又 ∵∠ABC=∠ACB =60°, ∴∠AEB=∠ADE=60°.∴△AED 是等边三角形,∴AD=DE=DB+BE . ∵BE=DC ,∴DB+DC=DA .说明:本例利用“截长”和“补短”法证明.培养学生“角相等的灵活转换”能力.在圆中,圆心角、圆周角、圆内接四边形的性质构成了角度相当转换的一个体系,应重视.典型例题四例 如图,ABCD 是⊙O 的内接四边形,CD AH ⊥,如果︒=∠30HAD ,那么=∠B ( )A .90°B .120°C .135°D .150°解:,90,30︒=∠︒=∠AHD HADABCD EAB C DEO︒=∠∴60D ,由圆内接四边形的对角和是180°,得︒=∠120B ,故选B. 说明:“圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角.”这个定理很重要,要正确运用.典型例题五例 如图,已知:⊙1O 与⊙2O 相交于点A 、B ,P 是⊙1O 上任意一点,P A 、PB 的延长线交⊙2O 于点C 、D ,⊙1O 的直径PE 的延长线交CD 于点M .求证:CD PM ⊥.分析:要证CD PM ⊥,即证︒=∠+∠90D DPM ,连结公共弦AB 及EB ,即得证.证明:连结AB 、EB ,在⊙中,PEB PAB ∠=∠.∵ABCD 为⊙2O 的内接四边形..,D PEB D PAB ∠=∠∠=∠∴∵PE 为⊙1O 的直径..90︒=∠PBE.90.90.90︒=∠∴︒=∠+∠︒=∠+∠∴DMP D DPM PEB DPM即CD PM ⊥.说明:连接AB 就构造出圆内接四边形性质定理的基本图形.典型例题六例 如图,AD 是ABC ∆外角EAC ∠的平分线,AD 与ABC ∆外接⊙O 交于点D ,N 为BC 延长线上一点,且DN CD CN ,=交⊙O 于点M .求证:(1)DC DB =;(2).2DN CM DC ⋅=分析:(1)由于DB 与DC 是同一三角形的两边,要证二者相等就应先证明它们的对角相等,这可由圆周角定理与圆内接四边形的基本性质得到:(2)欲证乘积式.2DN CM DC ⋅=,只须证比例式DC CM DN DC =,也即CNCMDN DC =,这只须要证明DCM ∆∽DNC ∆即可. 证明 (1)连结DC.∵AD 平分EAC ∠,∴.DBC DAC EAD ∠=∠=∠ 又ABCD 内接于⊙O , ∴.DCB EAD ∠=∠ 故.DCB DBC ∠=∠ .DC DB =∴(2).,180180NDC CDM DCN DCB DBC DMC ∠=∠∠=∠-︒=∠-︒=∠Θ ∴DMC ∆∽DCN ∆,故DNCMCN CM DN DC ==. ∴.2DN CM DC ⋅=说明:本题重在考查圆周角与圆内接四边形的基本性质和利用相似三角形证明比例线段的基本思维方法.本题曾是1996年南昌市中考试题.典型例题七例 如图,已知四边形ABCD 是圆内接四边形,EB 是⊙O 的直径,且AD EB ⊥,AD 与BC 的延长线相交于.F 求证:DCBCFD AB =. 证明 连结AC .∵ EB AD ⊥. ∴.∴ DAB ACB ∠=∠.∵ 四边形ABCD 是圆内接四边形,∴ .,ABC FDC DAB FCD ∠=∠∠=∠∴ FCD ACB ∠=∠. ∴ ABC ∆∽FDC ∆.∴DCBCFD AB =. 说明:本题考查圆内接四边形性质的应用,解题关键是辅助线构造ABC ∆,再证ABC ∆∽FDC ∆.易错点是不易想到证ACB FCD ∠=∠而使解题陷入困境或出现错误.典型例题八例 如图,已知四边形ABCD 内接于半圆O ,AB 是直径,DC AD =,分别延长BA ,CD 交于点E ,EC BF ⊥,交EC 的延长线于F ,若12,==BC AO EA ,求CF 的长.解 连结OD ,BD .∵DC AD =,的度数AOD ∠=.∴.//BC OD∴EBEOBC OD =. .24,16.8.3212,12,==∴=∴=∴===EB AB OD OD BCBOAO EA ΘABCD Θ内接于⊙O ,∴.EBC EDA ∠=∠又 E ∠公用,∴EDA ∆∽EBC ∆. ∴EBEDEC EA BC AD ==. 设y ED x DC AD ===,,则有yx y x +==82412. ∴24=x . ∴24=AD .AB Θ为⊙O 的直径,∴.90︒=∠=∠F ADB 又.FCB DAB ∠=∠ ∴Rt ADB ∆∽Rt .CFB ∆∴.BCABCF AD =即.121624=CF ∴.23=CF 说明 本题主要考查圆内接四边形的性质,解题关键是作出辅助线.典型例题九例 (海南省,2000) 如图,AB 是⊙O 的直径,弦(非直径)AB CD ⊥,P 是⊙O 上不同于D C ,的任一点.(1)当点P 在劣弧CD 上运动时,APC ∠与APD ∠的关系如何?请证明你的结论;(2)当点P 在优弧CD 上运动时,APC ∠与APD ∠的关系如何?请证明你的结论(不要讨论P 点与A 点重合的情形)分析:利用在同圆中,圆心角、弧、弦、弦心距之间的关系定理来解决.解 ∵弦AB CD ⊥,AB 是直径,∴∴(1).APD APC ∠=∠(2).180︒=∠+∠APD APC(如图中虚线所示).选择题1.在圆的内接四边形ABCD 中,A ∠和它的对角C ∠的度数的比为1:2,那么A ∠为( )A.30°B.60°C.90°C.120°2.四边形ABCD内接于圆,A∠、B∠、C∠、D∠的度数依次可以是()A.1:2:3:4 B.6:7:8:9 C.4:1:3:2 D.14:3:1:123.四边形ABCD内接于圆,A∠、B∠、C∠、D∠的度数比依次可以是()A.4:3:2:1B.1:3:2:4C.2:1:3:4D.2:3:1:44.如图,四边形ABCD内接于⊙O,︒=∠110BOD,那么BCD∠的度数为()A.︒125B.︒110C.︒55D.︒705. 如图,⊙1O与⊙2O交于A、B两点,且⊙2O过⊙1O的圆心1O,若︒=∠40M,则N∠等于()A.︒40B.︒80C.︒100D.︒706. 圆内接平行四边形一定是()(A)矩形(B)正方形(C)菱形(D)梯形7.已知AB、CD是⊙O的两条直径,则四边形ADBC一定是()A.矩形B.菱形C.正方形D.等腰梯形8、四边形ABCD内接于圆,则∠A、∠B、∠C、∠D的度数比可以是( )(A)1﹕2﹕3﹕4 (B)7﹕5﹕10﹕8(C)13﹕1﹕5﹕17 (D)1﹕3﹕2﹕49、若ABCD为圆内接四边形,AE⊥CD于E,∠ABC=130°,则∠DAE为()(A)50°(B)40°(C)30°(D)20°10、如图,圆内接四边形ABCD的一组对边AD、BC的延长线相交于P,对角线AC和BD相交于点Q,则图中共有相似的三角形( )(A)4对(B)3对(C)2对(D)1对11.如图,在ABC∆,AD是高,ABC∆的外接圆直径AE交BC边于点G,有下列四个结论:(1)CDBDAD⋅=2;(2)AEEGBE⋅=2;(3)ACABADAE⋅=⋅;(4)CGBGEGAG⋅=⋅.其中正确的结论的个数是()A.1个B.2个C.3个D.4个12.已知:如图,劣弧,那么DB∠+∠的度数是()ACDPQA .320°B .160°C .150°D .200° 13.钝角三角形的外心在( )A .三角形内B .三角形外C .三角形的边上D .上述三种情况都有可能 14.圆内接平行四边形的对角线( )A .互相垂直B .互相垂直平分C .相等D .相等且平分每组对角 15.如图,已知四边形ABCD 是⊙O 的内接四边形,且3,7,5====BE AC CD AB ,下列命题错误的是( )A .DCE ABE ∆≅∆B .︒=∠45BDAC .5.24=ABCD S 四边形 D .图中全等的三角形共有2对答案:1.B 2.D 3.C 4. A 5. D 6、A ;7.A 8、C ; 9、B ; 10、A. 11.B 12.B 13.B 14.D 15.D.填空题1. 已知ABCD 是圆内接四边形,若∠A 与∠C 的度数之比是1﹕2,则∠A 的度数是 度.2. 若A ,B ,C ,D 四点共圆,且∠ACD 为36°,则所对的圆心角的度数是 度.3. 圆内接四边形相邻三个内角的比是2﹕1﹕7,则这个四边形的最大角的度数为 度.4. 圆上四点A 、B 、C 、D ,分圆周为四段弧,且=4:3:2:1,则圆内接四边形ABCD 的最大角是_________5. 圆内接四边形ABCD 中,若EBC ∠是ABC ∠相邻的一个外角,且︒=∠105EBC ,︒=∠93C ,则______=∠D ,______=∠A ,若3:2:1::=∠∠∠C B A ,则______=∠D ,______=∠A6. 四边形ABCD 内接于圆,A ∠、C ∠的度数之比是4:5,B ∠比D ∠大︒30,则______=∠A ,______=∠D7. 圆内接梯形是________梯形,圆内接平行四边形是_________8.圆内接四边形ABCD 中,如果4:3:2::=∠∠∠C B A ,那么______=∠D 度. 9.在圆内接四边形ABCD 中,5:3:4::=∠∠∠C B A ,则______=∠D .10.如图,在圆内接四边形ABCD 中,α=︒=∠=ACBADADAB,30,,则四边形ABCD的面积为________.11.如图,把正三角形ABC的外接圆对折,使点A落在的中点A',若5=BC,则折痕在ABC∆内的部分DE长为_______.答案:1. 60°;2. 72°;3.160°;4. ︒126 5. ︒105,︒87,︒90,︒45;6. ︒100,︒757. 等腰,矩形.8.90 9.120°10.243a11.310.判断题1. 顶点在圆上的角叫做圆周角;()2. 相等的圆周角所对的弧相等;()3. 直角所对的弦是直径;()4. 在圆中,同一弦上的两个圆周角相等或互补;()5. 弓形含的圆周角为︒120,则弓形弧也为︒120;()6. 四边形的对角互补.()答案:1. ×2. ×3. ×4. √5. ×6. ×.解答题1、如图,已知:ABCD为圆内接四边形,(1)若DB∥CE,求证:AD﹕BC=CD﹕BE;(2)若AD﹕BC=CD﹕BE,求证:DB∥CE .2、已知:⊙O中,直径AB垂直弦CD于H,E是CD延长线上一点,AE交⊙O于F.求证:∠AFC=∠DFE.3.如图,已知四边形ABCD内接于圆,DC、AB的延长线相交于E,且DBACBE∠=∠,求证:BDECBEAD⋅=⋅BCDO4.如图,点A 、D 在⊙O 上,以点A 为圆心的⊙A 交⊙O 于B 、C 两点,AD 交⊙A 于点E ,交BC 于点F ,求证:AD AF AE ⋅=25.已知圆内接四边形,ABCD 中,4:5:2::=∠∠∠C B A ,求最小的角。
部编数学九年级上册专题24.5圆内接四边形【六大题型】(人教版)(解析版)含答案
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!专题24.5 圆内接四边形【六大题型】【人教版】【题型1 利用圆内接四边形的性质求角度】 (1)【题型2 利用圆内接四边形的性质求线段长度】 (5)【题型3 利用圆内接四边形的性质求面积】 (9)【题型4 利用圆内接四边形判的性质断结论的正误】 (13)【题型5 利用圆内接四边形的性质进行证明】 (16)【题型6 利用圆内接四边形的性质探究角或线段间的关系】 (20)【题型1 利用圆内接四边形的性质求角度】【例1】(2022•自贡)如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,∠ABD =20°,则∠BCD 的度数是( )A .90°B .100°C .110°D .120°【分析】方法一:根据圆周角定理可以得到∠AOD 的度数,再根据三角形内角和可以求得∠OAD 的度数,然后根据圆内接四边形对角互补,即可得到∠BCD 的度数.方法二:根据AB 是⊙O 的直径,可以得到∠ADB =90°,再根据∠ABD =20°和三角形内角和,可以得到∠A的度数,然后根据圆内接四边形对角互补,即可得到∠BCD的度数.【解答】解:方法一:连接OD,如图所示,∵∠ABD=20°,∴∠AOD=40°,∵OA=OD,∴∠OAD=∠ODA,∵∠OAD+∠ODA+∠AOD=180°,∴∠OAD=∠ODA=70°,∵四边形ABCD是圆内接四边形,∴∠OAD+∠BCD=180°,∴∠BCD=110°,故选:C.方法二:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=20°,∴∠A=70°,∵四边形ABCD是圆内接四边形,∴∠A+∠BCD=180°,∴∠BCD=110°,故选:C.【变式1-1】(2022•云州区一模)如图,四边形ABCD内接于⊙O,连接OB,OD.当四边形OBCD是菱形时,则∠OBA+∠ODA的度数是( )A.65°B.60°C.55°D.50°【分析】连接OA,根据等腰三角形的性质求出∠OBA=∠BAO,∠ODA=∠DAO,求出∠OBA+∠ODA =∠BAD,根据菱形的性质得出∠BCD=∠BOD,根据圆周角定理得出∠BOD=2∠BAD,求出∠BCD=2∠BAD,根号圆内接四边形的性质得出∠BAD+∠BCD=180°,求出∠BAD,再求出答案即可.【解答】解:连接OA,∵OA=OB,OA=OD,∴∠OBA=∠BAO,∠ODA=∠DAO,∴∠OBA+∠ODA=∠BAO+∠DAO=∠BAD,∵四边形OBCD是菱形,∴∠BCD=∠BOD,由圆周角定理得:∠BOD=2∠BAD,∴∠BCD=2∠BAD,∵四边形ABCD是⊙O的内接四边形,∴∠BAD+∠BCD=180°,∴3∠BAD=180°,∴∠BAD=60°,∴∠OBA+∠ODA=∠BAD=60°,故选:B.【变式1-2】(2022•蜀山区校级三模)如图,四边形ABCD是⊙O的内接四边形,BE是⊙O的直径,连接AE.若∠BCD=2∠BAD,若连接OD,则∠DOE的度数是 60° .【分析】根据圆内接四边形的性质得出∠BCD+∠BAD=180°,根据∠BCD=2∠BAD求出∠BAD=60°,根据圆周角定理求出∠BAE=90°,求出∠DAE的度数,再根据圆周角定理得出∠DOE=2∠DAE 即可.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠BCD+∠BAD=180°,∵∠BCD=2∠BAD,∴∠BAD=60°,∵BE是⊙O的直径,∴∠BAE=90°,∴∠DAE=∠BAE﹣∠BAD=90°﹣60°=30°,∴∠DOE=2∠DAE=60°,故答案为:60°.【变式1-3】(2022秋•包河区期末)如图,四边形ABCD内接于⊙O,∠1+∠2=64°,∠3+∠4= 64 °.【分析】利用圆内接四边形的性质,得出∠DAC+∠DCB=180°,∠B+∠D=180°,推出∠1+∠2+∠3+∠4+2∠5=180°,再利用圆周角定理和三角形的内角和定理求出∠3+∠4的度数.【解答】解:如图,∵四边形ABCD内接于⊙O,∴∠DAB+∠DCB=180°,∠B+∠D=180°,又∵△AOC为等腰三角形,∴∠5=∠OCA,∴∠1+∠2+∠3+∠4+2∠5=180°,∵∠1+∠2=64°,∴∠3+∠4=180°﹣64°﹣2∠5=116°﹣2∠5,∵∠1+∠2+∠B=180°,∠B+∠D=180°,∴∠D=∠1+∠2=64°,∴∠O=2∠D=128,在等腰三角形AOC中,2∠5=180°﹣∠O=180°﹣128°=52°,∴∠3+∠4=116°﹣52°=64°,故答案为64.【题型2 利用圆内接四边形的性质求线段长度】【例2】(2022•碑林区校级四模)如图所示,四边形ABCD是圆O的内接四边形,∠A=45°,BC=4,CD=BD的长为( )A.B.C D.【分析】如图,过点D作DE⊥BC交BC的延长线于E.解直角三角形求出CE,ED,再利用勾股定理求出BD即可.【解答】解:如图,过点D作DE⊥BC交BC的延长线于E.∵∠A+∠BCD=180°,∠A=45°,∴∠BCD=135°,∴∠DCE=45°,∵∠E=90°,CD=∴CE=ED=2,BE=CE+BC=6,在Rt△BED中,∵∠E=90°,BE=6,DE=2,∴BD=故选:D.【变式2-1】(2022•延边州二模)如图,四边形ABCD内接于⊙O,过B点作BH⊥AD于点H,若∠BCD=135°,AB=4,则BH的长度为( )A B.C.D.不能确定【分析】首先根据圆内接四边形的性质求得∠A的度数,然后根据斜边长求得等腰直角三角形的直角边长即可.【解答】解:∵四边形ABCD内接于⊙O,∠BCD=135°,∴∠A=180°﹣145°=45°,∵BH⊥AD,AB=4,∴BH=故选:B.【变式2-2】(2022•宁津县模拟)如图,在平面直角坐标系xOy中,点A在x轴负半轴上,点B在y轴正半轴上,⊙D经过A,B,O,C四点,∠ACO=120°,AB=4,则圆心点D的坐标是( )A.1)B.1)C.(−1D.(−2,【分析】先利用圆内接四边形的性质得到∠ABO=60°,再根据圆周角定理得到AB为⊙D的直径,则D点为AB的中点,接着利用含30度的直角三角形三边的关系得到OB=2,OA=A(0),B(0,2),然后利用线段的中点坐标公式得到D点坐标.【解答】解:∵四边形ABOC为圆的内接四边形,∴∠ABO+∠ACO=180°,∴∠ABO=180°﹣120°=60°,∵∠AOB=90°,∴AB为⊙D的直径,∴D点为AB的中点,在Rt△ABO中,∠ABO=60°,∴OB=12AB=2,∴OA=∴A(0),B(0,2),∴D点坐标为(1).故选:B.【变式2-3】(2022秋•汉川市期中)已知M是弧CAB的中点,MP垂直于弦AB于P,若弦AC的长度为x,线段AP的长度是x+1,那么线段PB的长度是 2x+1 .(用含有x的代数式表示)【分析】延长MP交圆于点D,连接DC并延长交BA的延长线于E点,连接BD,由M是弧CAB的中点,可得∠BDM=∠CDM,又因为MP垂直于弦AB于P,可得∠BPD=∠EPD=90°,然后由ASA定理可证△DPE≌△DPB,然后由全等三角形的对应角相等,对应边相等可得:∠B=∠E,PB=EP,然后由圆内接四边形的性质可得:∠ECA=∠B,进而可得:∠E=∠ECA,然后根据等角对等边可得AE=AC,进而可得PB=PE=EA+AP=AC+AP,然后将AC=x,AP=x+1,代入即可得到PB的长.【解答】解:延长MP交圆于点D,连接DC并延长交BA的延长线于E点,连接BD,∵M是弧CAB的中点,∴∠BDM=∠CDM,∵MP垂直于弦AB于P,∴∠BPD=∠EPD=90°,在△DPE和△DPB中,∵∠BPD=∠EPD PD=PD∠BDP=∠EDP,∴△DPE≌△DPB(ASA),∴∠B=∠E,PB=EP,∵四边形ABDC是圆内接四边形,∴∠ECA=∠B,∴∠E=∠ECA,∴AE=AC,∴PB=PE=EA+AP=AC+AP,∵AC=x,AP=x+1,∴PB=2x+1.故答案为:2x+1.【题型3 利用圆内接四边形的性质求面积】【例3】(2022•贺州模拟)如图,四边形ABCD内接于⊙O,∠ABC:∠ADC=2:1,AB=2,点C为BD 的中点,延长AB、DC交于点E,且∠E=60°,则⊙O的面积是( )A.πB.2πC.3πD.4π【分析】连接AC,根据圆内接四边形的性质得到∠ABC=120°,∠ADC=60°,进而得出△ADE为等边三角形,证明AB=BE,进而求出圆的半径,根据圆的面积公式计算,得到答案.【解答】解:连接AC,∵四边形ABCD内接于⊙O,∴∠ABC+∠ADC=180°,∵∠ABC:∠ADC=2:1,∴∠ABC=120°,∠ADC=60°,∵∠E=60°,∴△ADE为等边三角形,△BCE为等边三角形,∴AD=AE,BC=BE,BC∥AD,∵点C为BD的中点,∴∠DAC=∠BAC,∴AC⊥DE,∴AD为⊙O的直径,∵BC∥AD,∴∠DAC=∠ACB,∴∠CAB=∠ACB,∴AB=BC,∴AB=BE,∴⊙O的半径为2,∴⊙O的面积=4π,故选:D.【变式3-1】(2022秋•青山区期中)如图,四边形ABCD为⊙O的内接四边形,∠AOD+∠BOC=180°.若AD=2,BC=6,则△BOC的面积为( )A.3B.6C.9D.12【分析】延长BO交⊙O于E,连接CE,可得∠COE+∠BOC=180°,∠BCE=90°,由∠AOD+∠BOC =180°,∠AOD=∠COE,推出AD=CE=2,根据三角形的面积公式可求得△BEC的面积为6,由OB=OE,可得△BOC的面积=12△BEC的面积.【解答】解:延长BO交⊙O于E,连接CE,则∠COE+∠BOC=180°,∠BCE=90°,即CE⊥BC,∵∠AOD+∠BOC=180°,∴∠AOD=∠COE,∴AD=CE,∴AD=CE=2,∵BC =6,∴△BEC 的面积为12BC •CE =12×6×2=6,∵OB =OE ,∴△BOC 的面积=12△BEC 的面积=12×6=3,故选:A .【变式3-2】(2022•鹿城区模拟)如图,圆内接四边形ABCD 中,∠BCD =90°,AB =AD ,点E 在CD 的延长线上,且DE =BC ,连接AE ,若AE =4,则四边形ABCD 的面积为 8 .【分析】如图,连接AC ,BD .由△ABC ≌△ADE (SAS ),推出∠BAC =∠DAE ,AC =AE =4,S △ABC =S △ADE ,推出S 四边形ABCD =S △ACE ,由此即可解决问题;【解答】解:如图,连接AC ,BD .∵∠BCD =90°,∴BD 是⊙O 的直径,∴∠BAD =90°,∵∠ADE +∠ADC =180°,∠ABC +∠ADC =180°,∴∠ABC =∠ADE ,∵AB =AD ,BC =DE ,∴△ABC ≌△ADE (SAS ),∴∠BAC =∠DAE ,AC =AE =4,S △ABC =S △ADE ,∴∠CAE =∠BAD =90°,∴S 四边形ABCD =S △ACE =12×4×4=8.故答案为8.【变式3-3】(2022•碑林区校级一模)如图,已知AC =AC 为弦的⊙O 上有B 、D 两点,且∠BAC =∠DAC ,则四边形ABCD 的面积最大值为 4 .【分析】如图,将△ACB 绕点C 顺时针旋转得到△TCD .S 四边形ABCD =S △ACT ,因为AC =CT =以当AC ⊥CT 时,S △ACT 的面积最大.【解答】解:如图,将△ACB 绕点C 顺时针旋转得到△TCD .∵∠B +∠ADC =180°,∠B =∠CDT ,∴∠ADC +∠CDT =180°,∴S 四边形ABCD =S △ACT ,∵AC =CT =∴当AC ⊥CT 时,S △ACT 的面积最大,最大值=12××=4.故答案为:4.【题型4 利用圆内接四边形判的性质断结论的正误】【例4】(2022•银川模拟)如图,圆内接四边形ABCD 的对角线AC ,BD 把它的4个内分角成8个角,用下列关于角的等量关系不一定成立的是( )A .∠1=∠4B .∠1+∠2+∠3+∠5=180°C .∠4=∠7D .∠ADC =∠2+∠5【分析】根据圆周角定理,三角形内角和定理进行判断即可.【解答】解:∵∠1,∠4所对的弧都是弧CD ,∴∠1=∠4,∵∠2,∠7所对的弧都是弧BC ,∴∠2=∠7,∵∠5,∠8所对的弧都是弧AB .∴∠5=∠8,∵∠1+∠2+∠3+∠8=180°,∠ADC =∠8+∠7,∴∠1+∠2+∠3+∠5=180°,∠ADC =∠2+∠5,故A ,B ,D 都正确,∵BC 和DC 不一定相等,∴BC 与DC 不一定相等,∴∠4与∠7不一定相等,故C 错误,故选:C .【变式4-1】(2022秋•西湖区校级期中)若四边形ABCD为圆内接四边形,则下列哪个选项可能成立( )A.∠A:∠B:∠C:∠D=1:2:3:4B.∠A:∠B:∠C:∠D=2:3:1:4C.∠A:∠B:∠C:∠D=3:1:2:4D.∠A:∠B:∠C:∠D=4:3:2:1【分析】利用圆内接四边形的对角互补判断即可.【解答】解:∵四边形ABCD内接于⊙O,∴∠A+∠C=180°=∠B+∠D,故选:C.【变式4-2】(2022•南皮县模拟)如图,已知四边形ABEC内接于⊙O,点D在AC的延长线上,CE平分∠BCD交⊙O于点E,则下列结论中一定正确的是( )A.AB=AE B.AB=BE C.AE=BE D.AB=AC【分析】只要证明∠ECB=∠BAE,∠ECD=∠ABE,再根据角平分线定义即可解决问题.【解答】解:连接EC.∵EC平分∠BCD,∴∠ECB=∠ECD,∵∠ECB=∠BAE,∠ECD=∠ABE,∴∠BAE=∠ABE,∴EA=EB.故选:C.【变式4-3】(2022•碑林区校级模拟)如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°,CP 交AB于点E.(1)判断△ABC的形状,证明你的结论;(2)①若P是AB的中点,求证:PC=PA+PB;②若点P在AB上移动,判断PC=PA+PB是否成立,证明你的结论【分析】(1)根据圆周角定理得到∠ABC=∠CPB=60°,∠BAC=∠CPB=60°,根据等边三角形的判定定理证明;(2)在PC上截取PH=PA,得到△APH为等边三角形,证明△APB≌△AHC,根据全等三角形的性质,结合图形证明即可.【解答】(1)解:△ABC是等边三角形,理由如下:由圆周角定理得,∠ABC=∠CPB=60°,∠BAC=∠CPB=60°,∴△ABC是等边三角形;(2)①∵P是AB的中点,∴PB=PA,∴PA=PB,∵CA=CB,∴PC垂直平分线段AB,∴PC是直径,∴∠PAC=∠PBC=90°,∵∠PCA=∠PCB=30°,∴PC=2PA=2PB,∴PA+PB=PC.②PC=PA+PB成立;证明:在PC上截取PH=PA,∵∠APC=60°,∴△APH为等边三角形,∴AP=AH,∠AHP=60°,在△APB和△AHC中,∠APE=∠ACH∠APB=∠AHC=120°,AP=AH∴△APB≌△AHC(AAS)∴PB=HC,∴PC=PH+HC=PA+PB.【题型5 利用圆内接四边形的性质进行证明】【例5】(2022•思明区校级一模)已知四边形ABCD内接于⊙O,∠D=90°,P为CD上一动点(不与点C,D重合).(1)若∠BPC=30°,BC=3,求⊙O的半径;(2)若∠A=90°,AD=AB,求证:PB﹣PD=.【分析】(1)连接AC,得到AC是⊙O的直径,解直角三角形即可得到结论;(2)根据圆内接四边形的性质得到四边形ABCD为矩形.推出矩形ABCD为正方形,根据全等三角形的性质得到PC=CE,得到△CPE为等腰直角三角形,即可得到结论.【解答】解:(1)连接AC,∵∠D=90°,∴AC是⊙O的直径,∵∠BAC=∠P=30°,∴AC=2BC=6,所以圆O的半径为3;(2)∵∠A=90°,∴∠C=90°,∵AC为圆O直径,∴∠D=∠B=90°,∴四边形ABCD为矩形.∵AD=AB,∴AB=AD,∴矩形ABCD为正方形,在BP上截取BE=DP,∴△BCE≌△DPC,∴PC=CE,∴△CPE为等腰直角三角形,∴PE=,∴PB=PD.【变式5-1】(2022秋•陵城区期末)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.如图1,∠E是△ABC中∠A的遥望角,如图2,四边形ABCD内接于⊙O,AD=BD,四边形ABCD的外角平分线DF交⊙O于点F,连接BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.【分析】延长BC到点T,根据圆内接四边形的性质得到∠FDC+∠FBC=180°,得到∠ABF=∠FBC,根据圆周角定理得到∠ACD=∠BFD,进而得到∠ACD=∠DCT,根据遥望角的定义证明结论.【解答】证明:如图2,延长BC到点T,∵四边形FBCD内接于⊙O,∴∠FDC+∠FBC=180°,∵∠FDE+∠FDC=180°,∴∠FDE=∠FBC,∵DF平分∠ADE,∴∠ADF=∠FDE,∵∠ADF=∠ABF,∴∠ABF=∠FBC,∴BE是∠ABC的平分线,∵AD=BD,∴∠ACD=∠BFD,∵∠BFD+∠BCD=180°,∠DCT+∠BCD=180°,∴∠DCT=∠BFD,∴∠ACD=∠DCT,∴CE是△ABC的外角平分线,∴∠BEC是△ABC中∠BAC的遥望角.【变式5-2】(2022•龙岩模拟)如图,四边形ABCD内接于⊙O,AC平分∠BAD,延长DC交AB的延长线于点E.(1)若∠ADC=86°,求∠CBE的度数;(2)若AC=EC,求证:AD=BE.【分析】(1)根据圆内接四边形的性质计算即可;(2)证明△ADC≌△EBC即可.【解答】(1)解:∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°,又∵∠ADC=86°,∴∠ABC=94°,∴∠CBE=180°﹣94°=86°;(2)证明:∵AC=EC,∴∠E=∠CAE,∵AC平分∠BAD,∴∠DAC=∠CAB,∴∠DAC=∠E,∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°,又∵∠CBE+∠ABC=180°,∴∠ADC=∠CBE,在△ADC和△EBC中,∠ADC=∠EBC∠DAC=∠E,AC=EC∴△ADC≌△EBC,∴AD=BE.【变式5-3】(2022•天津)如图,⊙O和⊙O′都经过A、B两点,过B作直线交⊙O于C,交⊙O′于D,G 为圆外一点,GC交⊙O于E,GD交⊙O′于F.求证:∠EAF+∠G=180°.【分析】连接AB,根据圆内接四边形的性质可知∠GEA=∠ABC,∠GFA=∠ABD,再由∠ABC+∠ABD=180°,可得出∠GEA+∠GFA=180°,由四边形AEGF的内角和为360°即可得出结论.【解答】证明:连接AB∵四边形ABCE与四边形ABDE均为圆内接四边形,∴∠GEA=∠ABC,∠GFA=∠ABD,∵∠ABC+∠ABD=180°,∴∠GEA+∠GFA=180°.∵四边形AEGF的内角和为360°,∴∠EAF+∠G=180°.【题型6 利用圆内接四边形的性质探究角或线段间的关系】【例6】(2022春•涟水县校级期末)如图1,已知△ABC,AB=AC,以边AB为直径的⊙O交BC于点D,交AC于点E,连接DE.(1)求证:DE=DC.(2)如图2,连接OE,将∠EDC绕点D逆时针旋转,使∠EDC的两边分别交OE的延长线于点F,AC 的延长线于点G.试探究线段DF、DG的数量关系.【分析】(1)利用圆内接四边形的性质得到∠DEC=∠B,然后利用等角对等边得到结论.(2)利用旋转的性质及圆内接四边形的性质证得△EDF≌△CDG后即可得到结论.【解答】(1)证明:∵四边形ABDE内接于⊙O,∴∠B+∠AED=180°∵∠DEC+∠AED=180°∴∠DEC=∠B∵AB=AC∴∠C=∠B∴∠DEC=∠C∴DE=DC.(2)证明:∵四边形ABDE内接于⊙O,∴∠A+∠BDE=180°∵∠EDC+∠BDE=180°∴∠A=∠EDC,∵OA=OE∴∠A=∠OEA,∵∠OEA=∠CEF∴∠A=∠CEF∴∠EDC=∠CEF,∵∠EDC+∠DEC+∠DCE=180°∴∠CEF+∠DEC+∠DCE=180°即∠DEF+∠DCE=180°,又∵∠DCG+∠DCE=180°∴∠DEF=∠DCG,∵∠EDC旋转得到∠FDG∴∠EDC=∠FDG∴∠EDC﹣∠FDC=∠FDG﹣∠FDC即∠EDF=∠CDG,∵DE=DC∴△EDF≌△CDG(ASA),∴DF=DG.【变式6-1】(2022•赤峰)如图,四边形ABCD为⊙O的内接四边形,AB=AC.(1)若∠BAC=40°,求∠ADC的度数;(2)若BD⊥AC交AC于点E,请判断∠BAC和∠DAC之间的数量关系,并证明.【分析】(1)由等腰三角形的性质及三角形的内角和定理可得∠ACB=∠ABC=70°,再根据圆内接四边形的性质可求解;(2)由可得直角三角形的性质∠ABE=90°﹣∠BAC,∠ACB=90°﹣∠CBE,结合圆周角定理可求解.【解答】解:(1)∵AB=AC,∴∠ACB=∠ABC,∵∠ACB+∠ABC+∠BAC=180°,∠BAC=40°,∴∠ACB=∠ABC=70°,∵∠ADC+∠ABC=180°,∴∠ADC=110°;(2)∠BAC=2∠DAC.证明:∵BD⊥AC,∴∠AEB=∠CEB=90°,∴∠BAC+∠ABE=90°,∠ACB+∠CBE=90°,∴∠ABE=90°﹣∠BAC,∠ACB=90°﹣∠CBE,∵∠ABC=∠ACB,∠ABE+∠CBE=∠ABC,∴90°﹣∠BAC+∠CBE=90°﹣∠CBE,∴∠BAC=2∠CBE,∴∠BAC=2∠DAC.【变式6-2】(2022秋•香洲区校级期中)画∠A,在∠A的两边分别取点B,点C,在∠A的内部取一点P,连接PB,PC.探索BPC与∠A,∠B,∠C之间的数量关系,并证明你的结论.【分析】先过点A、B、C作⊙O,分类讨论:当点P在⊙O上,根据圆内接四边形的性质得∠BPC+∠A =∠B+∠C=180°;当点P在⊙O内,即P点落在P1的位置,根据三角形外角性质易得∠BPC=∠A+∠B+∠C;当点P在⊙O内,即P点落在P2的位置,则根据四边形的内角和得到∠BPC+∠A+∠B+∠C=360°.【解答】解:过点A、B、C作⊙O,如图,当点P在⊙O上,则∠BPC+∠A=∠B+∠C=180°;当点P在⊙O内,即P点落在P1的位置,则∠BPC=∠A+∠B+∠C;当点P在⊙O内,即P点落在P2的位置,则∠BPC+∠A+∠B+∠C=360°.【变式6-3】(2022•阜宁县二模)我们学过圆内接四边形,学会了它的性质;圆内接四边形对角互补.下面我们进一步研究.(1)在图(1)中.∠ECD是圆内接四边形ABCD的一个外角.请你探究∠DCE与∠A的关系.并说明理由.(2)请你应用上述结论解答下题:如图(2)已知ABCD是圆内接四边形,F、E分别为BD,AD延长线上的点.如果DE平分∠FDC.求证:AB=AC.【分析】(1)根据圆内接四边形的对角互补和邻补角的定义证明结论;(2)根据圆内接四边形的性质和圆周角定理证明∠ABC=∠ACB,根据等角对等边得到答案.【解答】解:(1)∠DCE=∠A,∵∠A+∠DCB=180°,∠DCE+∠DCB=180°,∴∠DCE=∠A;(2)∵已知ABCD是圆内接四边形,∴∠ABC=∠2,∠ADB=∠ACB,∠ADB=∠1,∠ACB=∠1,∵DE平分∠FDC,∴∠1=∠2,∴∠ABC=∠ACB,∴AB=AC.。
初中数学专题训练--圆--圆的内接四边形
初中数学专题训练--圆--圆的内接四边形-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN例 圆内接四边形ABCD 中,∠A 、∠B 、∠C 的度数的比是3﹕2﹕7,求四边形各内角度数.解:设∠A 、∠B 、∠C 的度数分别为3x 、2x 、7x .∵ABCD 是圆内接四边形.∴∠A +∠C=180°即3x+7x=180°,∴x=18°,∴∠A=3x=54°,∠B=2x=36°,∠C=7x=126°, 又∵∠B+∠D=180°,∴∠D=180°一36°=144°.说明:①巩固性质;②方程思想的应用.例 (2001厦门市,教材P101中17题)如图,已知AD 是△ABC 的外角∠EAC 的平分线,AD 与三角形ABC 的外接圆相交于D .求证:DB=DC .分析:要证DB=DC ,只要证∠BCD=∠CBD ,充分利用条件和圆周角的定理以及圆内接四边形的性质,即可解决.证明:∵AD 平分∠EAC ,∴∠EAD =∠DAC , ∵∠EAD 为圆内接四边形ABCD 的外角,∴∠BCD=∠EAD ,又∠CBD=∠DAC ,∴∠BCD=∠CBD ,∴DB=DC .说明:角相等的灵活转换,利用圆内接四边形的性质作桥梁. 例 如图,△ABC 是等边三角形,D 是上任一点,求证:DB+DC=DA .分析:要证明一条线段等于两条线段的和,往往可以“截长”和“补短”法,本题两种方法都可以证明.证明: 延长DB 至点E ,使BE=DC ,连AE . 在△AEB 和△ADC 中,BE=DC . △ABC 是等边三角形.∴AB=AC . ∵ 四边形ABDC 是⊙O 的内接四边形, ∴∠ABE=∠ACD . ∴△AEB ≌△ADC . ∴∠AEB=∠ADC=∠ABC .ABCD BCD EO∵∠ADE=∠ACB,又∵∠ABC=∠ACB=60°,∴∠AEB=∠ADE=60°.∴△AED是等边三角形,∴AD=DE=DB+BE.∵BE=DC,∴DB+DC=DA.说明:本例利用“截长”和“补短”法证明.培养学生“角相等的灵活转换”能力.在圆中,圆心角、圆周角、圆内接四边形的性质构成了角度相当转换的一个体系,应重视.典型例题四例如图,ABCD是⊙O的内接四边形,CDAH⊥,如果︒HAD,那么=∠30=∠B()A.90° B.120° C.135° D.150°解:,=∠AHD︒HAD,∠9030︒=D,∠∴60=︒由圆内接四边形的对角和是180°,得︒B,故选B.∠120=说明:“圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角.”这个定理很重要,要正确运用.典型例题五例 如图,已知:⊙1O 与⊙2O 相交于点A 、B ,P 是⊙1O 上任意一点,PA 、PB 的延长线交⊙2O 于点C 、D ,⊙1O 的直径PE 的延长线交CD 于点M .求证:CD PM ⊥.分析:要证CD PM ⊥,即证︒=∠+∠90D DPM ,连结公共弦AB 及EB ,即得证.证明:连结AB 、EB ,在⊙中,PEB PAB ∠=∠. ∵ABCD 为⊙2O 的内接四边形..,D PEB D PAB ∠=∠∠=∠∴∵PE 为⊙1O 的直径..90︒=∠PBE.90.90.90︒=∠∴︒=∠+∠︒=∠+∠∴DMP D DPM PEB DPM即CD PM ⊥.说明:连接AB 就构造出圆内接四边形性质定理的基本图形.典型例题六例 如图,AD 是ABC ∆外角EAC ∠的平分线,AD 与ABC ∆外接⊙O 交于点D ,N 为BC 延长线上一点,且DN CD CN ,=交⊙O 于点M .求证:(1)DC DB =;(2).2DN CM DC ⋅=分析:(1)由于DB 与DC 是同一三角形的两边,要证二者相等就应先证明它们的对角相等,这可由圆周角定理与圆内接四边形的基本性质得到:(2)欲证乘积式.2DN CM DC ⋅=,只须证比例式DC CM DN DC =,也即CNCMDN DC =,这只须要证明DCM ∆∽DNC ∆即可.证明 (1)连结DC. ∵AD 平分EAC ∠, ∴.DBC DAC EAD ∠=∠=∠ 又ABCD 内接于⊙O , ∴.DCB EAD ∠=∠ 故.DCB DBC ∠=∠.DC DB =∴(2).,180180NDC CDM DCN DCB DBC DMC ∠=∠∠=∠-︒=∠-︒=∠ ∴DMC ∆∽DCN ∆,故DNCM CN CM DN DC ==. ∴.2DN CM DC ⋅=说明:本题重在考查圆周角与圆内接四边形的基本性质和利用相似三角形证明比例线段的基本思维方法.本题曾是1996年南昌市中考试题.典型例题七例 如图,已知四边形ABCD 是圆内接四边形,EB 是⊙O 的直径,且AD EB ⊥,AD 与BC 的延长线相交于.F 求证:DCBCFD AB =. 证明 连结AC .∵ EB AD ⊥. ∴.∴ DAB ACB ∠=∠.∵ 四边形ABCD 是圆内接四边形,∴ .,ABC FDC DAB FCD ∠=∠∠=∠∴ FCD ACB ∠=∠.∴ ABC ∆∽FDC ∆.∴DCBCFD AB =. 说明:本题考查圆内接四边形性质的应用,解题关键是辅助线构造ABC ∆,再证ABC ∆∽FDC ∆.易错点是不易想到证ACB FCD ∠=∠而使解题陷入困境或出现错误.典型例题八例 如图,已知四边形ABCD 内接于半圆O ,AB 是直径,DC AD =,分别延长BA ,CD 交于点E ,EC BF ⊥,交EC 的延长线于F ,若12,==BC AO EA ,求CF 的长.解 连结OD ,BD .∵DC AD =,的度数AOD ∠=.∴.//BC OD ∴EBEOBC OD =. .24,16.8.3212,12,==∴=∴=∴===EB AB OD OD BC BO AO EAABCD 内接于⊙O ,∴.EBC EDA ∠=∠ 又 E ∠公用,∴EDA ∆∽EBC ∆. ∴EBEDEC EA BC AD ==. 设y ED x DC AD ===,,则有yx y x +==82412. ∴24=x . ∴24=AD .AB 为⊙O 的直径,∴.90︒=∠=∠F ADB又.FCB DAB ∠=∠ ∴Rt ADB ∆∽Rt .CFB ∆ ∴.BCABCF AD =即.121624=CF ∴.23=CF 说明 本题主要考查圆内接四边形的性质,解题关键是作出辅助线.典型例题九例 (海南省,2000) 如图,AB 是⊙O 的直径,弦(非直径)AB CD ⊥,P 是⊙O 上不同于D C ,的任一点.(1)当点P 在劣弧CD 上运动时,APC ∠与APD ∠的关系如何?请证明你的结论;(2)当点P 在优弧CD 上运动时,APC ∠与APD ∠的关系如何?请证明你的结论(不要讨论P 点与A 点重合的情形)分析:利用在同圆中,圆心角、弧、弦、弦心距之间的关系定理来解决. 解 ∵弦AB CD ⊥,AB 是直径,∴∴(1).APD APC ∠=∠ (2).180︒=∠+∠APD APC(如图中虚线所示).选择题1.在圆的内接四边形ABCD 中,A ∠和它的对角C ∠的度数的比为1:2,那么A ∠为( )A .30°B .60°C .90° C .120°2.四边形ABCD 内接于圆,A ∠、B ∠、C ∠、D ∠的度数依次可以是( )A .1:2:3:4B .6:7:8:9C .4:1:3:2D .14:3:1:12 3.四边形ABCD 内接于圆,A ∠、B ∠、C ∠、D ∠的度数比依次可以是() A .4:3:2:1 B .1:3:2:4 C .2:1:3:4 D .2:3:1:44.如图,四边形ABCD 内接于⊙O ,︒=∠110BOD ,那么BCD ∠的度数为()A .︒125B .︒110C .︒55D .︒705. 如图,⊙1O 与⊙2O 交于A 、B 两点,且⊙2O 过⊙1O 的圆心1O ,若︒=∠40M ,则N ∠等于()A .︒40B .︒80C .︒100D .︒706. 圆内接平行四边形一定是( )(A )矩形 (B )正方形 (C )菱形 (D )梯形 7.已知AB 、CD 是⊙O 的两条直径,则四边形ADBC 一定是( )A .矩形B .菱形C .正方形D .等腰梯形8、四边形ABCD 内接于圆,则∠A 、∠B 、∠C 、∠D 的度数比可以是 ( ) (A )1﹕2﹕3﹕4 (B )7﹕5﹕10﹕8 (C )13﹕1﹕5﹕17 (D )1﹕3﹕2﹕49、若ABCD 为圆内接四边形,AE ⊥CD 于E ,∠ABC=130°,则∠DAE 为( )(A )50° (B )40° (C )30° (D )20°10、如图,圆内接四边形ABCD 的一组对边AD 、BC 的延长线相交于P ,对角线AC 和BD 相交于点Q ,则图中共有相似的三角形 ( ) (A )4对 (B )3对 (C )2对 (D )1对11.如图,在ABC ∆,AD 是高,ABC ∆的外接圆直径AE 交BC 边于点G ,有下列四个结论:(1)CD BD AD ⋅=2;(2)AE EG BE ⋅=2;(3)AC AB AD AE ⋅=⋅;(4)CG BG EG AG ⋅=⋅.其中正确的结论的个数是( )A .1个B .2个C .3个D .4个 12.已知:如图,劣弧,那么D B ∠+∠的度数是( )A .320°B .160°C .150°D .200° 13.钝角三角形的外心在( )A .三角形内B .三角形外C .三角形的边上D .上述三种情况都有可能 14.圆内接平行四边形的对角线( )A .互相垂直B .互相垂直平分AB CD PQC .相等D .相等且平分每组对角15.如图,已知四边形ABCD 是⊙O 的内接四边形,且3,7,5====BE AC CD AB ,下列命题错误的是( )A .DCE ABE ∆≅∆B .︒=∠45BDAC .5.24=ABCD S 四边形 D .图中全等的三角形共有2对 答案:1.B 2.D 3.C 4. A 5. D 6、A ;7.A 8、C ; 9、B ; 10、A. 11.B 12.B 13.B 14.D 15.D.填空题1. 已知ABCD 是圆内接四边形,若∠A 与∠C 的度数之比是1﹕2,则∠A 的度数是 度.2. 若A ,B ,C ,D 四点共圆,且∠ACD 为36°,则所对的圆心角的度数是度.3. 圆内接四边形相邻三个内角的比是2﹕1﹕7,则这个四边形的最大角的度数为 度.4. 圆上四点A 、B 、C 、D ,分圆周为四段弧,且=4:3:2:1,则圆内接四边形ABCD 的最大角是_________5. 圆内接四边形ABCD 中,若EBC ∠是ABC ∠相邻的一个外角,且︒=∠105EBC ,︒=∠93C ,则______=∠D ,______=∠A ,若3:2:1::=∠∠∠C B A ,则______=∠D ,______=∠A6. 四边形ABCD 内接于圆,A ∠、C ∠的度数之比是4:5,B ∠比D ∠大︒30,则______=∠A ,______=∠D7. 圆内接梯形是________梯形,圆内接平行四边形是_________8.圆内接四边形ABCD 中,如果4:3:2::=∠∠∠C B A ,那么______=∠D 度.9.在圆内接四边形ABCD 中,5:3:4::=∠∠∠C B A ,则______=∠D .10.如图,在圆内接四边形ABCD 中,α=︒=∠=AC BAD AD AB ,30,,则四边形ABCD 的面积为________.11.如图,把正三角形ABC 的外接圆对折,使点A 落在的中点A ',若5=BC ,则折痕在ABC ∆内的部分DE 长为_______.答案:1. 60°;2. 72°;3.160°;4. ︒1265. ︒105,︒87,︒90,︒45;6. ︒100,︒757. 等腰,矩形.8.90 9.120° 10.243a 11.310.判断题1. 顶点在圆上的角叫做圆周角;()2. 相等的圆周角所对的弧相等;()3. 直角所对的弦是直径;()4. 在圆中,同一弦上的两个圆周角相等或互补;()5. 弓形含的圆周角为︒120,则弓形弧也为︒120;()6. 四边形的对角互补.()答案:1. ×2. ×3. ×4. √5. ×6. ×.解答题1、如图,已知:ABCD 为圆内接四边形,(1)若DB ∥CE ,求证:AD ﹕BC=CD ﹕BE ;(2)若AD ﹕BC=CD ﹕BE ,求证:DB ∥CE .2、已知:⊙O 中,直径AB 垂直弦CD 于H ,E 是CD 延长线上一点,AE 交⊙O 于F .求证:∠AFC=∠DFE .3.如图,已知四边形ABCD 内接于圆,DC 、AB 的延长线相交于E ,且DBA CBE ∠=∠,求证:BD EC BE AD ⋅=⋅4.如图,点A 、D 在⊙O 上,以点A 为圆心的⊙A 交⊙O 于B 、C 两点,AD 交⊙A 于点E ,交BC 于点F ,求证:AD AF AE ⋅=2BC D O5.已知圆内接四边形,ABCD 中,4:5:2::=∠∠∠C B A ,求最小的角。
圆周角及圆内接四边形
[学习目标]1. 圆周角的概念顶点在圆上,并且两边都和圆相交的角叫做圆周角。
圆周角必须具备两个特征:(1)顶点在圆上;(2)角的两边都和圆相交,二者缺一不可。
2. 圆周角定理一条弧所对的圆周角等于它所对圆心角的一半。
定理的证明要分类,因为一条弧所对的圆心角唯一,而它所对的圆周角却有无数个,这无数个圆周角与圆心位置有三种:(1)圆心在圆周角的一边上;(2)圆心在圆周角的内部;(3)圆心在圆周角外部。
3. 圆内角角的顶点在圆内的角叫圆内角。
圆内角的度数等于它所对弧与它对顶角所对弧的度数之和的一半。
如下图圆内角∠3的度数为∠1+∠2,∠1的度数是的一半,∠2的度数是的一半。
4. 圆外角角的顶点在圆外,并且两边都和圆相交的角,叫圆外角。
圆外角的度数等于它所截两条弧度数之差的一半。
如下图,圆外角∠3的度数为∠2-∠1,∠2的度数是的一半,∠1的度数是的一半。
5. 四边形的外角,四边形的对角四边形一边延长线与相邻一边组成的角叫四边形的外角。
四边形中不相邻的两个角互称为对角。
所有顶点都在同一个圆上的多边形叫圆内接多边形,这个圆叫这个多边形的外接圆。
6. 圆内接四边形的性质定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
【典型例题】例1. 如图,四边形ABCD内接于⊙O,∠BOD=110°,则∠BCD=_________。
解:∵∠BOD=110°,∴∠BAD=55°又∠BAD+∠BCD=180°∴∠BCD=180°-55°=125°例2. 已知:如图,∠APC=∠BPC=60°,则∠BAC=__________。
解:∵∠APC=∠BPC=60°∴∠APB=120°,BC=AC∵四边形APBC内接于⊙O∴∠ACB=60°∴△ABC是等边三角形∴∠BCA=60°,故填60°点拨:本题较综合,考察:①相等的圆周角所对弦相等,②圆内接四边形对角互补,③一个角是60°的等腰三角形是等边三角形。
圆周角圆的外接四边形5种题型知识点+例题+练习非常好分类全面
§ 2.4圆周角一、新课体验知识点1识别圆周角★顶点在圆上,并且两边都和圆相交的角叫做圆周角.注:(1)顶点在圆上;(2)角的两边都与圆相交,两者缺一不可.例1指出图中的圆周角、圆心角以及弧CD所对的圆周角.知识点2圆周角定理(难点)★圆周角定理:圆周角的度数等于它所对圆周心角度数的一半,同弧或等弧所对的圆周角.注:(1)前提是“同弧或等弧”;例2如图,已知点A,B,C,D,E为均在匚;0上,且AC为::;0的直径,则NCAD+N EBD+NACE=.B知识点3圆周角与直径的关系★直径所对的圆周角是90°, 90°的圆周角所对的弦是直径.例3如图,AB是O的直径,NCAB=70°,求NABC的度数.例4在ABC中,AB=AC,以AB为直径的圆交BC于点D,交AC于点E.求证:弧BD二弧 DE.知识点4圆内接四边形及其性质(重点)★一个四边形的4个顶点都在同一个圆上,这个四边形叫做圆的内接四边形,这个圆叫做圆的外接圆.★性质定理:圆内接四边形的对角互补.例5如图,如图1,圆O与圆O都经过A、B两点,经过点A的直线CD与圆O1交于点C,与圆电交于点D经过点B的直线EF与圆O1交于点E,与圆©O交于点F.求证:BE〃DF二、经典题型题型1利用圆周角定理解决线段的有关问题例1如图所示,BC为O的直径,AD BC于点D,点P是弧AC上一动点,连接PB,分别交人0,人(3于点£、F.(1)当弧PA二弧AB时,试比较BD与AE的大小,并说明理由.(2)当点P在什么位置时,AF=EF?并说明理由.例2.如图,AD为4ABC外接圆的直径,AD^BC,垂足为点F,N ABC的平分线交AD于点E,连接BD, CD.(1)求证:BD=CD;(2)请判断B, E, C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.题型2圆周角定理在生产生活中的应用例2用直角钢尺检查某一工件是否恰好是半圆环形,根据下图所表示的情形,四个工件哪一个肯定是半圆环形?()题型3与圆周角定理有关的猜想型问题例3如图,已知OA,OB,OC都是O的半径,NAOB=2NBOC,那么NACB与NBAC有怎样的关系?说明理由. c题型4添加辅助圆证明角相等例4如图,点D为Rt ABC的斜边的中点,EF,BC互相垂直平分与点D,且EF=BC. 求证:NBAE=NEAC=NCAF题型5圆内接四边形的性质与圆周角定理的综合应用例5已知如图,NEAD是圆内接四边形ABCD的一个外角,并且人口平分/£人。
圆周角、圆内接四边形【十大题型】—2023-2024学年九年级数学下册举一反三系列(沪科版)(解析)
圆周角、圆内接四边形【十大题型】【题型1 圆周角的运用】 ................................................................................................................................... 2 【题型2 圆内接四边形的运用】........................................................................................................................ 6 【题型3 利用圆的有关性质求值】 ................................................................................................................... 11 【题型4 利用圆的有关性质进行证明】 ...........................................................................................................16 【题型5 翻折中的圆的有关性质的运用】 .......................................................................................................24 【题型6 利用圆的有关性质求最值】 ...............................................................................................................29 【题型7 利用圆的有关性质求取值范围】 .......................................................................................................34 【题型8 利用圆的有关性质探究角或线段间的关系】 ....................................................................................38 【题型9 利用圆的有关性质判断多结论问题】 ................................................................................................46 【题型10 构造圆利用圆周角解决三角形或四边形中的问题】 . (52)【知识点1 圆周角定理及其推论】O 的直径AB 所对的圆周角O 的直径【题型1 圆周角的运用】【例1】(2023春·山东泰安·九年级东平县实验中学校考期末)如图,⊙O的直径是AB,∠BPQ=45°,圆的半径是4,则弦BQ的长是().A.4√3B.4√2C.2√3D.2√2【答案】B【分析】如图:连接AQ,由圆周角定理可得∠BAQ=∠BPQ=45°、∠AQB=90°,然后再说明AQ=QB,最后根据勾股定理即可解答.【详解】解:如图:连接AQ,∵∠BPQ=45°,∴∠BAQ=∠BPQ=45°,∵⊙O的直径是AB,圆的半径是4,∴∠AQB=90°,AB=8∴∠ABQ=90°−∠QAB=45°,∴∠ABQ=∠QAB=45°,∴AQ=QB,∵AB=√AQ2+BQ2=√2BQ2,∴8=√2BQ2,解得:BQ=4√2.故选B.【点睛】本题主要考查了圆周角定理、等腰三角形的判定与性质、勾股定理等知识点,灵活运用勾股定理成【变式1-1】(2023春·广西玉林·九年级统考期末)如图,在△ABC中,AB为⊙O的直径,已知AB=4,CD=1,∠B=55°,∠C=65°,则BC=.【答案】√13【分析】连接BD,先由三角形内角和定理求出∠A的度数,再根据直径所对圆周角为直角,进而求出∠ABD= 30°,即有AD=1AB=2,灵活运用勾股定理即可作答.2【详解】解:连接BD,如图,∵在△ABC中,∠B=55°,∠C=65°,∴∠A=60°,∵AB为⊙O的直径,∴∠ADB=∠CDB=90°,∴在△ABD中,∠ABD=30°,∵AB=4,AB=2,∴AD=12∴在Rt△ABD中,BC=√CD2+BD2=√13,故答案为:√13.【点睛】此题主要考查了圆周角定理,勾股定理,含30°角直角三角形的性质等知识,熟练掌握圆周角定理【变式1-2】(2023春·江西九江·九年级校考期中)如图,△ABC内接于☉O,AC=BC,连接OB,若∠C=52°,则∠OBC的度数为.【答案】26°/26度【分析】延长BO交⊙O于点E,连接CE,根据直径所对的圆周角是直角可得∠ECB=90°,从而可得∠ECA= 48°,进而利用同弧所对的圆周角相等可得∠ECA=∠EBA=48°,然后利用等腰三角形的性质和三角形内角和定理可得∠A=∠ABC=64°,从而利用三角形内角和定理进行计算,即可解答.【详解】解:延长BO交⊙O于点E,连接CE,如图,∵BE是⊙O的直径,∴∠ECB=90°,∵∠ACB=52°,∴∠ECA=∠ECB−∠ACB=38°,∴∠EBA=∠ECA=38°,∵AC=BC,(180°−∠ACB)=64°,∴∠A=∠ABC=12∴∠OBC=∠ABC−∠ABE=64°−38°=26°,故答案为:26°.【点睛】本题考查了三角形的外接圆与外心,圆周角定理,根据题目的已知条件并结合图形添加适当的辅助【变式1-3】(2023春·湖北省直辖县级单位·九年级统考期末)如图,AB为半圆的直径,AB=10,点O到弦AC的距离为4,点P从出发沿BA方向向点A以每秒1个单位长度的速度运动,连接CP,当△APC为等腰三角形时,点P运动的时间是()A.145或4B.145或5C.4或5D.145,4或5【答案】D【分析】过点O作OD⊥AC于点D,根据垂径定理,以及勾股定理求得AC的长,然后分三种情形讨论,分别求得PB的长,即可求解.【详解】解:如图所示,过点O作OD⊥AC于点D,∴AD=DC,在Rt△ADO中,AO=5,OD=4,∴AD=√AO2−DO2=3,∴AC=2AD=6,①当CP=CA时,如图,过点C作CE⊥AB于点E,连接BC,∵AB是直径,∴∠ACB=90°,∵D是AC的中点,O是AB的中点,∴BC=2OD=8∴CE =AC×BC AB=6×810=245,在Rt △ACE 中,AE =√AC 2−CE 2=185,∵AE =PE , ∴BP =AB −2AE =145,∴t =145(s),②当PA =PC 时,则点P 在AC 的垂直平分线上,所以点P 与点O 重合,PB =5,此时t =5(s); ③当AP =AC =6时,PB =AB −AP =4,此时t =4(s), 综上所述,t =145或4或5,故选:D .【点睛】本题考查了圆周角定理的推论,勾股定理,垂径定理、等腰三角形的判定,综合运用以上知识是解题的关键.【知识点2 圆内接四边形】 【题型2 圆内接四边形的运用】【例2】(2023春·浙江衢州·九年级校联考期中)如图,在△ABC 中,AB =AC .⊙O 是△ABC 的外接圆,D 为弧AC 的中点,E 为BA 延长线上一点.(1)求证:∠B =2∠ACD ;(2)若∠ACD =35°,求∠DAE 的度数.四边形O 的内接四边形︒(2)∠DAE =105°【分析】(1)证明AC⌢=2AD ⌢,可得∠B =2∠ACD ; (2)先求解∠B =70°,可得∠BCD =70°+35°=105°,再利用圆的内接四边形的性质可得答案. 【详解】(1)解:∵D 为弧AC 的中点, ∴AD⌢=CD ⌢,AC ⌢=2AD ⌢, ∴∠B =2∠ACD ;(2)∵∠ACD =35°,∠B =2∠ACD , ∴∠B =2×35°=70°, ∵AB =AC ,∴∠B =∠ACB =70°, ∴∠BCD =70°+35°=105°, ∵四边形ABCD 为⊙O 的内接四边形, ∴∠BAD =180°−∠BCD =75°, ∴∠EAD =180°−75°=105°.【点睛】本题考查的是圆周角定理的应用,圆的内接四边形的性质,等腰三角形的性质,熟记圆周角定理与圆的内接四边形的性质并灵活应用是解本题的关键.【变式2-1】(2023春·陕西西安·ABCD 是⊙O 的内接四边形,BE 是⊙O 的直径,连接AE ,若∠BCD =2∠BAD ,若连接OD ,则∠DOE 的度数是( )A .30°B .35°C .45°D .60°【答案】D【分析】根据内接四边形的性质,得到∠BCD +∠BAD =180°,进而得到∠BAD =60°,再根据圆周角定理得到∠BOD =120°,即可求出∠DOE 的度数.∵∠BCD=2∠BAD,∴∠BAD=60°,∴∠BOD=120°,∴∠DOE=180°−∠BOD=60°,故选D.【点睛】本题考查了圆内接四边形的性质,圆周角定理,熟练掌握内接四边形的对角互补,以及一条弧所对的圆周角等于它所对的圆心角的一半是解题关键.【变式2-2】(2023春·浙江·九年级期中)如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E、F,若∠E=α,∠F=β,且α≠β,则∠A=(用含有a、β的代数式表示)..【答案】180°−α−β2【分析】连接EF,如图,根据圆内接四边形的性质得∠ECD=∠A,再根据三角形外角性质得∠ECD=∠1+∠2,则∠A=∠1+∠2∠A+∠AEB+∠AFD+∠1+∠2=180°,即2∠A+α+β= 180°,再解方程即可.【详解】解:连接EF,如图,∵四边形ABCD为圆的内接四边形,∴∠ECD=∠A,∵∠ECD=∠1+∠2,∴∠A=∠1+∠2,∴∠A=180°−α−β.2.故答案为:180°−α−β2【点睛】本题考查了圆内接四边形的性质:圆内接四边形的对角互补;圆内接四边形的性质是沟通角相等关系的重要依据,在应用此性质时,要注意与圆周角定理结合起来.在应用时要注意是对角,而不是邻角互补.【变式2-3】(2023春·辽宁大连·九年级统考期末)如图,以△ABC的边AB为直径作⊙O交AC于D且OD∥BC,⊙O交BC于点E.(1)求证:CD=DE;(2)若AB=12,AD=4,求CE的长度.【答案】(1)证明见解析(2)83【分析】(1)由四边形ABED内接于⊙O,得出∠DEC=∠A,根据已知OD∥BC,得出∠C=∠ADO,又OA=OD,得出∠A=∠ADO,等量代换得出∠C=∠DEC,根据等角对等边,即可得证;(2)根据AB为直径,得出∠AEB=90°,根据已知以及(1)的结论,得出AC=2AD=8,AB=BC=12,设CE=x,则BE=12−x,在Rt△ACE,Rt△ABE中,根据AE相等,根据勾股定理列出方程,解方程即可求解.【详解】(1)证明:∵四边形ABED内接于⊙O,∴∠DEB+∠A=180°,又∠DEB+∠DEC=180°∴∠DEC=∠A,∴∠C=∠ADO,∵OA=OD,∴∠A=∠ADO,∴∠C=∠DEC,∴CD=DE;(2)解:如图所示,连接AE,∵AB为直径,∴∠AEB=90°,∴∠CAE+∠C=90°,∠AED+∠DEC=90°,由(1)CD=DE,∠C=∠DEC,∴∠CAE=∠AED,∴AD=DE,∴AD=DC,∴AC=2AD=8,由(1)可得∠BAC=∠ADO,∠C=∠ADO,则∠C=∠BAC,∴AB=BC=12,设CE=x,则BE=12−x,∵AC2−CE2=AB2−BE2,,∴82−x2=122−(12−x)2,解得:x=83∴CE=8.3【点睛】本题考查了圆内接四边形对角互补,直径所对的圆周角是直角,勾股定理,等腰三角形的性质与判【题型3 利用圆的有关性质求值】【例3】(2023春·四川德阳·九年级四川省德阳中学校校考期中)如图,在△ABC中,∠ACB=90°,过B,C两点的⊙O交AC于点D,交AB于点E,连接EO并延长交⊙O于点F.连接BF,CF,若∠EDC=135°,AE=2,BE=4,则CF的值为().A.√10B.2√2C.2√3D.3【答案】A【分析】由四边形BCDE内接于⊙O知∠EFC=∠ABC=45°,据此得AC=BC,由EF是⊙O的直径知∠EBF=∠ECF=∠ACB=90°及∠BCF=∠ACE,再根据四边形BECF是⊙O的内接四边形知∠AEC=∠BFC,从而证△ACE≌△BCF得AE=BF,根据Rt△ECF是等腰直角三角形知EF2=20,继而可得答案.【详解】∵四边形BCDE内接于⊙O,且∠EDC=135°,∴∠EFC=∠ABC=180°−∠EDC=45°,∵∠ACB=90°,∴△ABC是等腰三角形,∴AC=BC,又∵EF是⊙O的直径,∴∠EBF=∠ECF=∠ACB=90°,∴∠BCF=∠ACE,∵四边形BECF是⊙O的内接四边形,∴∠AEC=∠BFC,∴△ACE≅△BFC(ASA),∴AE=BF,Rt△BEF中,EF2=BF2+BE2=BE2+AE2=42+22=20,Rt△ECF中,∠EFC=45°,∴CE=CF,∴CE2+CF2=2CF2=EF2=20,∴CF2=10,∴CF=√10,故选:A.【点睛】本题主要考查圆周角定理,解题的关键是掌握圆内接四边形的性质、圆周角定理、全等三角形的判定与性质及勾股定理.【变式3-1】(2023春·湖南长沙·九年级统考期末)如图,⊙O中,OA⊥BC,∠B=50°,则∠D的度数为()A.20°B.50°C.40°D.25°【答案】A【分析】连接OC【详解】连接OC,∵OA⊥BC,∠B=50°,∴∠AOB=90°−50°=40°,∠AOB=∠AOC=40°,∴∠D=1∠AOC=20°,2故选A.【点睛】本题考查了圆周角定理,垂径定理,熟练掌握定理是解题的关键.【变式3-2】(2023春·山东滨州·九年级统考期中)如图,⊙O为△ABC的外接圆,AD⊥BC,垂足为点D,直径AE平分∠BAD,交BC于点F,连接BE.(1)求证:BE=BF;(2)若AB=10,BF=5,求EF:AF的值.【答案】(1)见解析(2)2:3【分析】(1)根据圆心角定理得到∠ABE=90°,根据等角的余角相等证明结论;(2)过点B作BH⊥EA,根据勾股定理求出AE,根据三角形面积公式求出BH,根据勾股定理计算即可.【详解】(1)∵直径AE平分∠BAD,∴∠BAE=∠DAE,∠ABE=90°∴∠BAE+∠AEB=90°,∵AD⊥BC,∴∠DAE+∠AFD=90°,∴∠AEB=∠AFD∵∠AFD=∠BFE,∴∠BFE=∠BEF,∴BE=BF.(2)过点B作BH⊥EA,在RtΔEBA中,根据勾股定理得EA=√BE2+BA2=5√5∵BE⋅BA2=EA⋅BH2∴BH=2√5在RtΔBHE中,根据勾股定理得EH=√BE2−BH2=√5∵BE=BF,BH⊥EA∴EF=2√5∴AF=3√5∴EF:AF=2:3.【点睛】本题考查的是三角形的外接圆和勾股定理,掌握圆周角定理,等腰三角形的知识是解题的关键.【变式3-3】(2023春·广东汕头·九年级汕头市龙湖实验中学校考期中)如图1,四边形ADBC内接于⊙O,E 为BD延长线上一点,AD平分∠EDC.(1)求证:AB=AC;(2)若△ABC为等边三角形,则∠EDA=度;(直接写答案)(3)如图2,若CD为直径,过A点作AE⊥BD于E,且DB=AE=2,求⊙O的半径.【答案】(1)见解析(2)60(3)√5【分析】(1)根据角平分线的定义∠EDA=∠ADC,再根据圆内接四边形的任一外角等于它的内对角以及圆周角定理证得∠ABC=∠ACB,进而利用等腰三角形的判定可得结论;(2)根据等边三角形的性质和圆内接四边形的任一外角等于它的内对角得到∠EDA =∠ACB 即可求解;(3)先根据等弦对等弧和垂径定理的推论得到AH ⊥BC ,BH =CH ,再证明四边形AEBH 是矩形,得到BH =AE ,进而求得BC =4,在Rt △DBC 中利用勾股定理求得CD =2√5可求解.【详解】(1)证明:∵AD 平分∠EDC ,∴∠EDA =∠ADC ,∵四边形ADBC 是圆⊙O 内接四边形,∴∠EDA =∠ACB ,又∠ADC =∠ABC ,∴∠ABC =∠ACB ,∴AB =AC ;(2)解:∵△ABC 为等边三角形,∴∠ACB =60°,又∵四边形ADBC 是圆⊙O 内接四边形,∴∠EDA =∠ACB =60°,故答案为:60;(3)解:在图2中,连接AO 延长交BC 于H ,交⊙O 于K ,∵AB =AC ,∴AB ⌢=AC ⌢,则BK ⌢=CK ⌢,∴AH ⊥BC ,BH =CH ,∵CD 为直径,∴∠DBC =90°,又AE ⊥BD ,∴∠AEB =∠EBC =∠AHB =90°,∴四边形AEBH 是矩形,∴BH=AE,∵DB=AE=2,∴BH=2,则BC=2BH=4,在Rt△DBC中,CD=√BD2+BC2=√22+42=2√5,∴⊙O的半径为√5.【点睛】本题考查圆周角定理、垂径定理的推论、圆内接四边形的性质、等弦对等弧、等边三角形的性质、矩形的判定与性质、等腰三角形的判定、角平分线的定义、勾股定理等知识,涉及知识点较多,综合性强,熟练掌握相关的知识的联系与运用是解答的关键.【题型4 利用圆的有关性质进行证明】【例4】(2023春·广东广州·九年级广东广雅中学校考期末)如图,CD是△ABC的外角∠ECB的角平分线,与△ABC的外接圆⊙O交于点D,∠ECB=120°.⌢所对圆心角的度数;(1)求AB(2)连DB,DA,求证:DA=DB;(3)探究线段CD,CA,CB之间的数量关系,并证明你的结论.【答案】(1)120°(2)见解析(3)CB=CD+CA,证明见解析【分析】(1)先由邻补角的定义可得∠ACB=60°,再由同弧所对的圆周角相等可推出∠ADB=∠ACB=60°,最后利用圆周角定理即可求解;(2)根据角平分线的定义可得∠DCB=1∠ECB=60°,根据同弧所对的圆周角相等可得∠DCB=∠DAB=260°,得出△ADB是等边三角形,即可得证;(3)延长CD 至F ,使DF =CA ,连接BF ,证明△CAB ≌△FDB (SAS ),继而得出△CBF 是等边三角形,即可得出结论.【详解】(1)解:如图,连接OA,OB ,∵∠ECB =120°,∴∠ACB =180°−120°=60°,∵AB⌢=AB ⌢, ∴∠ADB =∠ACB =60°,∴AB⌢所对圆心角∠AOB =2∠ADB =120°; (2)证明:∵CD 是△ABC 的外角∠ECB 的角平分线,∠ECB =120°,∴∠DCB =12∠ECB =60°, ∵DB⌢=DB ⌢, ∴∠DCB =∠DAB =60°,又∠ADB =60°,∴△ABD 是等边三角形,∴DA =DB ;(3)CB =CD +CA ,证明:如图,延长CD 至F ,使DF =CA ,连接BF ,∵四边形ABDC是圆内四边形,∴∠CDB+∠CAB=180°,∵∠CDB+∠FDB=180°,∴∠FDB=∠CAB,由(2)知△ABD是等边三角形,∴AB=BD,∴△CAB≌△FDB(SAS),∴∠ACB=∠F=60°,CB=BF,∴△CBF是等边三角形,∴CF=BC=CD+DF=CD+AC,即CB=CD+CA.【点睛】本题考查了圆周角定理,内接四边形的性质,全等三角形的判定和性质,等边三角形的判定和性质,熟练掌握圆的相关知识是解题的关键.【变式4-1】(2023春·浙江金华·九年级校考期中)如图,已知圆O的直径AB垂直于弦CD于点E,连接CO并延长交AD于点F,且CF⊥AD.证明:E是OB的中点.【答案】证明见解析【分析】先利用垂径定理证得AC=AD=CD,进而证得△ACD是等边三角形,则∠FCD=30°,根据含30度角的直角三角形的性质得到OE=1OC即可证得结论.2【详解】证明:连接AC,如图,∵直径AB 垂直于弦CD 于点E ,∴AC⌢=AD ⌢, ∴AC =AD ,∵过圆心O 的CF ⊥AD ,∴AC⌢=CD ⌢ ∴AC =CD ,∴AC =AD =CD .则△ACD 是等边三角形,又CF ⊥AD ,∴∠FCD =12∠ACD =30°, ∴在Rt △COE 中,OE =12OC ,∴OE =12OB , ∴点E 为OB 的中点.【点睛】本题考查垂径定理、等弧所对的弦相等、等边三角形的判定与性质、含30度角的直角三角形的性质等知识,熟练掌握垂径定理和等边三角形的判定与性质是解答的关键.【变式4-2】(2023春·山西长治·九年级统考期末)阅读材料,解答问题:关于圆的引理10余种,下面是《阿基米德全集》的《引理集》中记载的一个命题:如图1,AB 是⊙O 的弦,点C 在⊙O 上,CD ⊥AB 于点D ,在弦AB 上取点E ,使DE =AD ,点F 是BĈ上的一点,且CF̂=CA ̂,连接BF ,则BF =BE . 小颖对这个问题很感兴趣,经过思考,写出了下面的证明过程:证明:如图2,连接CA ,CE ,CF ,BC ,∵CD ⊥AB 于点D ,DE =AD ,∴CA =CE .∴∠CAE =∠CEA .∵ CF̂=CA ̂, ∴CF =CA (依据1),∠CBF =∠CBA .∵四边形ABFC 内接于⊙O ,∴∠CAB +∠CFB =180°.(依据2)……(1)上述证明过程中的依据1为 ,依据2为 ;(2)将上述证明过程补充完整.【答案】(1)在同圆中相等的弧所对的弦相等,圆内接四边形的对角互补(2)见解析【分析】(1)利用等腰三角形的判定和圆内接四边形的性质解答即可;(2)在原题的基础上利用全等三角形的判定与性质解答即可得出结论.【详解】(1)解:上述证明过程中的依据1为:在同圆中相等的弧所对的弦相等,依据2为:圆内接四边形的对角互补.(2)解:证明:如图2,连接CA ,CE ,CF ,BC ,∵CD ⊥AB 于点D ,DE =AD ,∴CA =CE .∴∠CAB =∠CEA .∵ CF̂=CA ̂, ∴CF =CA ,∴∠CBF=∠CBA.∵四边形ABFC内接于⊙O,∴∠CAB+∠CFB=180°,∵∠CEA+∠CEB=180°,∴∠CFB=∠CEB,在ΔCFB和ΔCEB中,{∠CFB=∠CEB∠CBF=∠CBABC=BC,∴ΔCFB≅ΔCEB(AAS),∴BF=BE.【点睛】本题考查了圆内接四边形的性质、圆心角、弦、弧之间的关系定理、三角形全等的判定和性质以及线段垂直平分线的判定和性质,等腰三角形的性质,解题的关键是熟练掌握相关的判定和性质.【变式4-3】(2023春·江苏泰州·九年级校考期末)已知⊙O为△ACD的外接圆,AD=CD.(1)如图1,延长AD至点B,使BD=AD,连接CB.①求证:△ABC为直角三角形;②若⊙O的半径为4,AD=5,求BC的值;(2)如图2,若∠ADC=90°,E为⊙O上的一点,且点D,E位于AC两侧,作△ADE关于AD对称的图形△ADQ,连接QC,试猜想QA,QC,QD三者之间的数量关系并给予证明.【答案】(1)①见解析;②254(2)QC2=2QD2+QA2,证明见解析【分析】(1)①根据已知条件结合等边等角,三角形内角和定理可得∠ACB=90°,即可证明△ABC为直角三角形;;②连接OA,OD,利用垂径定理得到OD⊥AC且AH=CH,设DH=x,则OH=4−x,利用勾股定理列出方程求得DH的值,再利用三角形的中位线定理得到BC=2DH;(2)延长QA 交⊙O 于点F ,连接DF,FC ,由已知可得∠DAC =∠DCA =45°;利用同弧所对的圆周角相等,得到∠DFA =∠E =∠DCA =45°,∠DFC =∠DAC =45°,由于△ADQ 与△ADE 关于AD 对称,于是∠DQA =∠E =45°,则得△DQF 为等腰直角三角形,△QFC 为直角三角形;利用勾股定理可得:QC 2=QF 2+CF 2,QF 2=2DQ 2;利用△QDA≌△FDC 得到QA =FC ,等量代换可得结论.【详解】(1)①证明:∵AD =CD,BD =AD ,∴DB =DC .∴∠DAC =∠DCA,∠DCB =∠DBC∵∠BAC +∠ACB +∠B =180°∴ ∠DAC +∠DCA +∠DCB +∠DBC =180°∴∠DCA +∠DCB =90°即∠ACB =90°∴△ABC 为直角三角形;②解:连接OA,OD ,如图,∵AD =CD ,∴AD⌢=CD ⌢, ∴OD ⊥AC 且AH =CH ,∵⊙O 的半径为4,∴OA =OD =4.设DH =x ,则OH =4−x ,∵AH 2=OA 2−OH 2,AH 2=AD 2−DH 2,∴52−x 2=42−(4−x )2.解得:x =258. ∴DH =258.由①知:BC ⊥AC ,∵OD⊥AC,∴OD∥BC.∵AH=CH,∴BC=2DH=254.(2)解:QC2=2QD2+QA2,证明如下:延长QA交⊙O于点F,连接DF,FC,如图,∵∠ADC=90°,AD=CD,∴∠DAC=∠DCA=45°.∴∠DFA=∠E=∠DCA=45°,∠DFC=∠DAC=45°.∴∠QFC=∠AFD+∠DFC=90°.∴QC2=QF2+CF2.∵△ADQ与△ADE关于AD对称,∴∠DQA=∠E=45°,∴∠DQA=∠DFA=45°,∴DQ=DF.∴∠QDF=180°−∠DQA−∠QFD=90°.∴DQ2+DF2=QF2.即QF2=2DQ2.∵∠QDF=∠ADC=90°,∴∠QDA=∠CDF.在△QDA和△FDC中,{∠QAD=∠DCF∠DQA=∠DFC=45°DA=DC,∴△QDA≌△FDC.∴QA=FC.∴QC2=2QD2+QA2.【点睛】本题是一道圆的综合题,主要考查了圆的有关性质,垂径定理,勾股定理,圆周角定理及其推论,等腰直角三角形的判定与性质,三角形全等的判定与性质,直角三角形的判定与性质,轴对称的性质,方程的解法.根据图形的特点恰当的添加辅助线是解题的关键.【题型5 翻折中的圆的有关性质的运用】【例5】(2023春·江苏无锡·九年级统考期中)如图,将⊙O 上的BC⌢沿弦BC 翻折交半径OA 于点D ,再将BD ⌢沿BD 翻折交BC 于点E ,连接DE . 若AD =2OD ,则DE AB 的值为( )A .√36B .√63C .√33D .√66 【答案】D【分析】如图,连接AC ,CD ,OC ,过点C 作CH ⊥AB 于H .设OA =3a ,则AB =6a .首先证明AC =CD =DE ,求出AC (用a 表示),即可解决问题.【详解】解:如图,连接AC ,CD ,OC ,过点C 作CH ⊥AB 于H .设OA =3a ,则AB =6a .∵在同圆或等圆中,∠ABC 所对的弧有AC⌢,CD ⌢,DE ⌢, ∴AC =CD =DE ,∵CH ⊥AD ,∴AH =DH ,∵AD =2OD ,∴AH =DH =OD =a ,在Rt△OCH中,CH=√OC2−OH2=√(3a)2−(2a)2=√5a,在Rt△ACH中,AC=√AH2+CH2=√a2+(√5a)2=√6a,∴DE AB =ACAB=√6a6a=√66.故选:D.【点睛】本题考查圆周角定理,翻折变换,解直角三角形等知识,解题的关键是理解题意,学会利用参数解决问题.【变式5-1】(2023春·湖北恩施·九年级期末)如图,AB为⊙O的一条弦,C为⊙O上一点,OC∥AB.将劣弧AB沿弦AB翻折,交翻折后的弧AB交AC于点D.若D为翻折后弧AB的中点,则∠ABC=()A.110°B.112.5°C.115°D.117.5°【答案】B【分析】如图,取AB⌢中点M,连接OM,连接DB、OB、OA、AM,由题意知OM⊥AB,且O、D、M在一条直线上,AD=AM=BD,OA==OC,知∠MOC=90°,根据圆周角定理,等边对等角,三角形内角和定理等可求∠MAC,∠BAC,∠BOC,∠OAC,∠OBA,∠OBC的值,进而求解∠ABC的值.【详解】解:如图,取AB⌢中点M,连接OM,连接DB、OB、OA、AM由题意知OM⊥AB,且O、D、M在一条直线上,AD=AM=BD,OA=OB=OC∴∠MOC=90°∴∠MAC=12∠MOC=45°∵AD=AM=BD,OM⊥AB∴∠MAB=∠DAB=1∠MAD=22.5°2∴∠BOC=2∠BAC=45°∵OC∥AB∴∠OAC=∠OCA=∠DAB∴∠OAB=∠OBA=∠OAC+∠DAB=45°=67.5°∴∠OBC=∠OCB=180°−∠BOC2∴∠ABC=∠OBA+∠OBC=112.5°故选B.【点睛】本题考查了垂径定理,圆周角,等边对等角,三角形内角和定理,折叠性质等知识.解题的关键在于对知识的灵活运用.【变式5-2】(2023春·浙江宁波·九年级校考期中)如图,在⊙O中,AB为直径,C为圆上一点,将劣弧AC沿弦AC翻折,交AB于点D,连接CD,若点D与圆心O不重合,∠BAC=25°,则∠DCA=.【答案】40°【分析】连接BC,根据直径所对的圆周角是直角求出∠ACB,根据直角三角形两锐角互余求出∠B,再根据翻⌢所对的圆周角,进一步计算即可得解.折的性质得到ABC【详解】解:如图,连接BC,∵AB 是直径,∴∠ACB =90°,∴∠BAC +∠B =90°,∵∠BAC =25°,∴∠B =90°−∠BAC =90°−25°=65°,根据翻折的性质弧AC 所对的圆周角为∠B ,ABC⌢所对的圆周角为∠ADC , ∴∠ADC +∠B =180°,∵∠ADC +∠CDB =180°,∴∠B =∠CDB =65°,∴∠DCA =∠CDB −∠BAC =65°−25°=40°.故答案为:40°.【点睛】本题考查了圆周角定理以及折叠问题的知识,根据同弦所对的两个圆周角互补求解是解题的关键,此题难度不大.【变式5-3】(2023春·浙江金华·九年级浙江省义乌市稠江中学校考期中)在⊙O 中,AB 为直径,点C 为圆上一点,将劣弧沿弦AC 翻折交AB 于点D ,连接CD .(1)如图1,若点D 与圆心O 重合,AC =√3,求⊙O 的半径r ;(2)如图2,若点D 与圆心O 不重合,∠BAC =20∘,请求出∠DCA 的度数.(3)如图2,如果AD =6,DB =2,求AC 的长.【答案】(1)1(2)∠DCA =50∘(3)2√14【分析】(1)设点D 关于弦AC 的对称点为F ,连接DF ,交AC 于点E ,则DE =EF,DF ⊥AC,AE =EC ,根据勾股定理,得r 2−(r 2)2=(√32)2计算即可.(2)设点D 关于弦AC 的对称点为F ,连接AF ,CB ,得CB =CF =CD ,因为AB 为直径,所以∠ACB =90∘,∠B =∠CDB =70∘,利用∠DCA =∠CDB −∠BAC 计算.(3)连接OC ,CB ,过点C 作CG ⊥AB 于点G ,确定BG =DG =12DB =1,AB =AD +DB =6+2=8,从而得到所以r ,计算CG ,AG ,AC =√AG 2+CG 2.【详解】(1)设点D 关于弦AC 的对称点为F ,连接DF ,交AC 于点E ,则DE =EF,DF ⊥AC,AE =EC ,因为AC =√3,所以AE =EC =√32, 设DE =EF =r 2,则AD =DF =r ,根据勾股定理,得r 2−(r 2)2=(√32)2,解得r =1,故圆的半径r 为1.(2)设点D 关于弦AC 的对称点为F ,连接AF ,CB ,根据题意,得∠BAC =∠FAC =20∘,CD =CF ,所以CB =CF =CD ,所以∠B =∠CDB ;因为AB 为直径,所以∠ACB =90∘,∠B =∠CDB =70∘,所以∠DCA =∠CDB −∠BAC =70∘−20∘=50∘.(3)如图,连接OC,CB,过点C作CG⊥AB于点G,根据(2)得到CB=CD,所以BG=DG,因为AD=6,DB=2,DB=1,AB=AD+DB=6+2=8,所以BG=DG=12所以r=OC=1AB=4,2所以OD=AD−OB=6−4=2,OG=OD+DGB=1+2=3,所以CG=√OC2−DG2=√42−32=√7,AG=AD+DG=6+1=7,所以AC=√AG2+CG2=√72+(√7)2=2√14.【点睛】本题考查了圆的性质,勾股定理,垂径定理,等腰三角形三线合一性质,熟练掌握圆的性质,勾股定理是解题的关键.【题型6 利用圆的有关性质求最值】【例6】(2023春·浙江衢州·△ABC中,AB=2√3,∠ACB=75°,∠ABC=60°,D是线段BC上的一个动点,以AD为直径画⊙O,分别交AB,AC于E,F,连接EF,则∠BAC=;EF的最小值为.【答案】45°/45度3√22【分析】根据三角形内角和定理求得∠BAC,连接OE、OF,作OM⊥EF于M,作AN⊥BC于N,如图,根据圆周角定理得到∠EOF=90°,再计算出EF=√2OE,则OE最小时,EF的长度最小,此时圆的直径的长最小,利用垂线段最短得到AD的长度最小值为AN的长,接着计算出AN,从而得到OE的最小值,然后确定EF长度的最小值.【详解】解:∵△ABC中,∠ACB=75°,∠ABC=60°,∴∠BAC=180°−75°−60°=45°连接OE、OF,作OM⊥EF于M,作AN⊥BC于N,如图,∵∠EOF=2∠BAC=2×45°=90°,而OE=OF,OM⊥EF,∴∠OEM=45°,EM=FM,在Rt△OEM中,EF=√2OE,当OE最小时,EF的长度最小,此时圆的直径的长最小,即AD的长最小,∵AD的长度最小值为AN的长,AN=√32AB=√32×2√3=3∴OE的最小值为32,∴EF长度的最小值为32√2,故答案为:32√2.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理和解直角三角形,推出EF=√2OE是解题的关键.【变式6-1】(2023春·北京密云·九年级统考期末)如图,⊙O的弦AB长为2,CD是⊙O的直径,∠ADB= 30°,∠ADC=15°.①⊙O的半径长为.②P是CD上的动点,则PA+PB的最小值是.【答案】 2 2√3【分析】①连接OA,OB,易证△AOB是等边三角形,弦AB长为2,OA=OB=2,即可得到答案;②先证∠BOC=∠AOB+∠AOC=90°,延长BO交⊙O于点E,连接AE交CD于点P,连接BP,则此时PA+ PB=PA+PE=AE,即PA+PB的最小值是AE的长,再用勾股定理求出AE即可.【详解】解:①连接OA,OB,∵∠ADB=30°,∴∠AOB=60°,∵OA=OB,∴△AOB是等边三角形,∵弦AB长为2,∴OA=OB=2,即⊙O的半径长为2,故答案为:2②∵∠ADC=15°,∴∠AOC=2∠ADC=30°,∴∠BOC=∠AOB+∠AOC=90°,延长BO交⊙O于点E,连接AE交CD于点P,连接BP,则此时PA+PB=PA+PE=AE,即PA+PB的最小值是AE的长,∵∠BAO=60°,∴∠OAE=∠AEB=30°,∴∠BAE=∠BAO+∠OAE=90°,∴AE=√BE2−AB2=√42−22=2√3,即PA+PB的最小值是2√3.故答案为:2√3【点睛】此题考查了圆周角定理、勾股定理、等边三角形的判定和性质、轴对称最短路径等知识,熟练掌握相关定理并灵活应用是解题的关键.【变式6-2】(2023春·湖南湘西·九年级统考期末)如图,在正方形ABCD中,AB=4,以边CD为直径作半圆O,E是半圆O上的动点,EF⊥DA于点F,EP⊥AB于点P,设EF=x,EP=y,则√x2+y2的最小值是()A.2√3−1B.4−2√3C.2√5−1D.2√5−2【答案】D【分析】由题意,四边形AFEP为矩形,x2+y2=AE2,所以当AE最小时,即O,E,A三点共线时,x2+y2最小,利用勾股定理进行计算,即可得解.【详解】解:连接OE,AE,AO∵四边形ABCD为正方形,AB=4,CD为圆O直径,∴∠BAD=∠CDA=90°,CD=AB=AD=4,OD=2,∵EF⊥DA,EP⊥AB,∴四边形AFEP为矩形,∵OE+AE≥AO∴当O,E,A三点共线时,x2+y2最小,OE=OD=2,则:OA=√OD2+AD2=√22+42=2√5,∴AE=AO−OE=2√5−2,∴√x2+y2=AE=2√5−2,故选:D.【点睛】本题考查圆上的动点问题,正方形的性质,矩形的判定和性质.熟练掌握圆外一点与圆心和圆上一点三点共线时,圆外一点到圆上一点的距离最大或最小是解题的关键.【变式6-3】(2023春·辽宁沈阳·九年级沈阳市第七中学校考期末)如图,已知以BC为直径的⊙O,A为弧BC 中点,P为弧AC上任意一点,AD⊥AP交BP于D,连CD.若BC=6,则CD的最小值为.【答案】3√5−3【分析】如图所示,连接AB,AC,以AB为斜边作等腰直角三角形AB O′,则∠AO′B=90°,得出点D在以点⌢上运动,因为两点之间线段最短,即为最短CD,连接B O′,因为BC=6,所O′为圆心,A O′长为半径的AB以B O′=3,由勾股定理有O′C=√BO′2+BC2=3√5,CD=O′C−O′D=3√5−3.【详解】解:如图所示,连接AB,AC,以AB为斜边作等腰直角三角形AB O′,则∠A O′B=90°,∵BC为直径的⊙O,A为弧BC中点,∴∠BPA=45°,△ABC是等腰直角三角形,∵BC=6,∴AB=3√2,∴O′B=O′A=3,又∵AD⊥AP,∴∠DAP=90°,∴∠PDA=45°,∠ADB=135°,⌢上运动,∴点D在以点O′为圆心,A O′长为半径的AB⌢为点D,此时CD为最短,连接O′C交AB∵∠O′BA=45°,∠ABC=45°,∴∠O′BC=90°,在△BCO′中,BO′=3,BC=6,O′C=√BO′2+BC2=3√5∴CD=O′C−O′D=3√5−3.故答案为:3√5−3【点睛】本题考查了圆的综合问题,求动点最值时,首先找到动点轨迹,再结合两点之间线段最短找出最小值是解题的关键.【题型7 利用圆的有关性质求取值范围】【例7】(2023春·湖北武汉·九年级校考期末)如图,△ABC的两个顶点A、B在⊙O上,⊙O的半径为2,∠BAC=90°,AB=AC,若动点B在⊙O上运动,OC=m,则m的取值范围是.【答案】2√2−2≤m≤2+2√2【分析】连接OA,作∠NAO=90°,且AN=AO=2,连接OB,ON,CN,证明△ABO≌△ACN(SAS)得到CN= OB=2,再根据勾股定理求得ON=2√2,然后根据两点之间线段最短求解即可.【详解】解:如图,连接OA,作∠NAO=90°,且AN=AO=2,连接OB,ON,CN,∵∠BAC=∠NAO=90°,∴∠BAO=∠CAN,在△ABO 和△ACN 中,{AB =AC∠BAO =∠CAN AN =AO∴△ABO ≌△ACN (SAS ),∴CN =OB =2,在Rt △AON 中,ON =√OA 2+AN 2=2√2,根据两点短得ON −CN ≤OC ≤ON +OC ,∴2√2−2≤m ≤2+2√2,故答案为:2√2−2≤m ≤2+2√2.【点睛】本题主要考查了圆的有关概念、全等三角形的判定与性质、勾股定理、两点之间线段最短、等角的余角相等,添加辅助线构造全等三角形求解是解答的关键.【变式7-1】(2023春·新疆乌鲁木齐·九年级校考期中)如图,弧BE 是半径为6的圆D 的14圆周,C 点是BE⌢上的任意一点,△ABD 是等边三角形,则四边形ABCD 的周长P 的取值范围是( )A .12<P ≤18B .18<P ≤24C .18<P ≤18+6√2D .12<P ≤12+6√2【答案】C【详解】∵△ABD 是等边三角形,∴AB +AD +CD =18,得P >18,∵BC 的最大值为当点C 与E 重合的时刻,BE =√62+62=6√2,∴P 的取值范围是18<P ≤18+6√2.故选C .【变式7-2】(2023春·福建福州·九年级校考期中)如图,⊙O 的直径为10,A 、B 、C 、D 是⊙O 上的四个动点,且AB =6,CD =8,若点E 、F 分别是弦AB 、CD 的中点,则线段EF 长度的取值范围是()A .1≤EF ≤7B .2≤EF ≤5C .1<EF <7D .1≤EF ≤6【答案】A【分析】连接OE 、OF 、OA 、OC ,由垂径定理得OE ⊥AB ,OF ⊥CD ,AE=12AB=3,CF=12CD=4,由勾股定理得OE =4,OF =3,当AB ∥CD 时,E 、O 、F 三点共线EF 取最值,其中当AB 、CD 位于O 的同侧时,线段EF 的长度最短,此时EF =OE -OF=1,,当AB 、CD 位于O 的两侧时,线段EF 的长度最长,此时EF =OE+OF=7,即可得出结论.【详解】连接OE 、OF 、OA 、OC ,如图所示:∵⊙O 的直径为10,∴OA =OC =5,∵点E 、F 分别是弦AB 、CD 的中点,AB =6,CD =8,∴OE ⊥AB ,OF ⊥CD ,AE=12AB =3,CF=12CD=4,∴OE=√OA 2-AE 2=√52-32=4,OF =√OC 2-CF 2=√52-42=3当AB ∥CD 时,E 、O 、F 三点共线,EF 取得最值:①当AB 、CD 位于O 的同侧时,线段EF 的长度最短,此时EF =OE -OF=1,②当AB 、CD 位于O 的两侧时,线段EF 的长度最长,此时EF =OE+OF=7,∴线段EF 的长度的取值范围是1≤EF ≤7,故选:A .【点睛】本题考查了垂径定理、勾股定理以及线段的最值问题,熟练掌握垂径定理和勾股定理是解题的关键.【变式7-3】(2023春·江苏南京·九年级统考期中)如图,在平面直角坐标系xOy 中,⊙O 的半径是1.过⊙O 上一点P 作等边三角形PDE ,使点D ,E 分别落在x 轴、y 轴上,则PD 的取值范围是 .【答案】√3−1≤PD ≤√3+1【分析】找到最大值与与最小值位置,分别进行解题求出取值范围的临界值即可.【详解】解:如图,过点P 作PM ⊥DE 于点M ,连接OM ,设DP =DE =a ,∵△PDE 为等边三角形,PM ⊥DE ,∴∠DPE =60°,∠DPM =30°,M 为DE 中点,∴DM =12a,OM =12a , 根据勾股定理可得PM =√DP 2−DM 2=√a 2−14a 2=√32a , ∵PM +OM ≥1,∴√32a +12a ≥1,解得:a ≥√3−1;如图,过点P 作PM ⊥DE 于点M ,连接OM ,。
初中数学圆形专题训练50题-含参考答案
初中数学圆形专题训练50题含参考答案一、单选题1.如图,四边形ABCD 内接于O ,若:5:7A C ∠∠=,则C ∠=( )A .210︒B .150︒C .105︒D .75︒2.如图,P 是∠O 外一点,P A 是∠O 的切线,A 为切点,PO 与∠O 相交于B 点,已知∠BCA =34°,C 为∠O 上一点,连接CA ,CB ,则∠P 的度数为( )A .34°B .56°C .22°D .28° 【答案】C 【分析】根据切线的性质可得:90,OAP ∠=︒ 利用圆周角定理可得:2,O ACB ∠=∠ 从而可求出结果.【详解】解:∠P A 是∠O 的切线,A 为切点,∠∠OAP =90°,又∠∠BCA =34°,∠∠O =2∠ACB =68°,∠∠P =90°﹣∠AOB =90°﹣68°=22°.故选:C.【点睛】本题考查的是切线的性质定理,圆周角定理,掌握利用圆周角定理与切线的性质定理求解角的大小是解题的关键.3.如图,AB为∠O直径,CD为弦,AB∠CD于E,连接CO,AD,∠BAD=25°,下列结论中正确的有()∠CE=OE;∠∠C=40°;∠ACD=ADC;∠AD=2OEA.∠∠B.∠∠C.∠∠∠D.∠∠∠∠【答案】B【分析】根据圆周角定理,垂径定理,圆心角、弧、弦的关系以及直角三角形边的关系进行判断即可.【详解】解:∠AB为∠O直径,CD为弦,AB∠CD于E,∠CE=DE,BC BD=,ACB ADB=,∠∠BOC=2∠A=40°,ACB BC ADB BC+=+,即ADC ADC=,故∠正确;∠∠OEC=90°,∠BOC=40°,∠∠C=50°,故∠正确;∠∠C≠∠BOC,∠CE≠OE,故∠错误;作OP∠CD,交AD于P,∠AB∠CD,∠AE<AD,∠AOP=90°,∠OA<PA,OE<PD,∠PA+PD>OA+OE∠OE<OA,∠AD>2OE,故∠错误;故选:B.【点睛】本题考查了圆周角定理,垂径定理,圆心角、弧、弦的关系,熟练掌握性质定理是解题的关键.4.下列命题正确的是()A.相等的圆心角所对的弧是等弧B.等圆周角对等弧C.任何一个三角形只有一个外接圆D.过任意三点可以确定一个圆【答案】C【分析】根据圆周角与弧的关系可判断出各选项,注意在等圆中这个条件.【详解】A、缺少条件,必须是在同圆或等圆中,相等的圆心角所对的弧才相等;故本选项错误;B、缺少条件,必须是在同圆或等圆中,相等的圆周角所对的弧才相等;故本选项错误;C、任何一个三角形只有一个外接圆,故本选项正确;D、缺少条件,过任意不共线的三点才可以确定一个圆,故本选项错误.故选:C.【点睛】本题考查命题与定理的知识,属于基础题,掌握相关的性质定理是解题的关键.5.如图,四边形ABCD为∠O的内接四边形,已知∠BOD=110°,则∠BCD的度数为()A.55°B.70°C.110°D.125°∠四边形ABCD为∠O的内接四边形,∠∠BCD=180°−∠A=125°,故选D【点睛】此题考查圆周角定理及其推论,解题关键在于掌握圆内接四边形的性质. 6.如图,点A,B,C均在圆O上,当∠BOC=120°时,∠BAC的度数是()A.65°B.60°C.55°D.50°7.如图,在O中,AB所对的圆周角∠ACB=50°,D为AB上的点.若∠AOD=35°,则∠BOD的大小为()A.35°B.50°C.55°D.65°【答案】D【分析】在同圆中,由同弧所对的圆周角等于其圆心角的一半解答.【详解】解:∠ACB=50°,AOB∴∠=⨯︒=︒250100BOD AOB AOD∴∠=∠-∠=︒-︒=︒1003565故选:D.【点睛】本题考查圆周角与圆心角的性质,是基础考点,掌握相关知识是解题关键.8.如图,四边形ABCD内接于∠O,∠DAB=140°,连接OC,点P是半径OC上一点,则∠BPD不可能为()A.40°B.60°C.80°D.90°【答案】D【分析】连接OD、OB,根据圆内接四边形的性质求出∠DCB,根据圆周角定理求出∠BOD,求出∠BPD的范围,即可解答.【详解】连接OD、OB,∠四边形ABCD内接于∠O,∠∠DCB=180°﹣∠DAB=40°,由圆周角定理得,∠BOD=2∠DCB=80°,∠40°≤∠BPD≤80°,∠∠BPD不可能为90°,故选D.【点睛】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.9.如图,已知四边形ABCD 内接于∠O,AB是∠O的直径,EC与∠O 相切于点C,∠ECB=35°,则∠D 的度数是()A.145°B.125°C.90°D.80°【答案】BOC【详解】解:连接.∠EC 与O 相切,35ECB ∠=,55OCB ∴∠=,,OB OC =55OBC OCB ∴∠=∠=,180********.D OBC ∴∠=-∠=-=故选:B.10.如图,AC 是汽车挡风玻璃前的刮雨刷.如果65AO cm =,15CO cm =,当刮雨刷AC 绕点O 旋转90时,则刮雨刷AC 扫过的面积为( )A .225cm πB .21000cm πC .225cmD .21000cm11.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是( )A.0.5B.1C.2D.412.如图,圆锥的侧面展开图是半径为3,圆心角为90°的扇形,则该圆锥的底面周长为()A.πB.πC.D.【答案】B【详解】试题分析:根据圆锥侧面展开扇形的弧长等于底面圆的周长,可以求出底面圆的半径,从而求得圆锥的底面周长.解:设底面圆的半径为r,则:2πr==π.∠r=, ∠圆锥的底面周长为, 故选B .考点:圆锥的计算.13.如图,AB 为半圆O 的直径,C 为半圆上一点,且弧AC 为半圆的,设扇形AOC ,∠COB ,弓形BmC 的面积分别为S 1,S 2,S 3,则下列结论正确的是( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 1<S 2<S 3【答案】B 【详解】试题分析:首先根据∠AOC 的面积=∠BOC 的面积,得S 2<S 1.再根据题意,知S 1占半圆面积的.所以S 3大于半圆面积的.解:根据∠AOC 的面积=∠BOC 的面积,得S 2<S 1,再根据题意,知S 1占半圆面积的,所以S 3大于半圆面积的.因此S 2<S 1<S 3.故选B .考点:扇形面积的计算.14.如图,在矩形ABCD 中,2AB =,BC =B 为圆心,BA 长为半径画弧,交CD 于点E ,连接BE ,则扇形BAE 的面积为( )A .3πB .35πC .23πD .34π 【答案】C【分析】解直角三角形求出30CBE ∠=︒,推出60ABE ∠=︒,再利用扇形的面积公式【详解】解:四边形=BA BE∴∠cos CBE∴∠=CBE∴∠ABE∴S15.下列事件中,是随机事件的是()A.∠O的半径为5,OP=3,点P在∠O外B.相似三角形的对应角相等C.任意画两个直角三角形,这两个三角形相似D.直径所对的圆周角为直角【答案】C【分析】根据随机事件的定义进行分析解答即可.【详解】解:(1)点P一定在∠O内,A是不可能事件,故错误.(2) 相似三角形的对应角一定相等,是必然事件,B错误.(3) 任意画两个直角三角形,这两个三角形不一定相似,C正确.(4) 直径所对的圆周角一定为直角,D为为为为为为为错误.综上选C.【点睛】本题考查随机事件的定义,熟悉掌握是解题关键.16.如图,AC是∠O的直径,弦BD∠AO于E,连接BC,过点O作OF∠BC于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B cm C.2.5cm D cm17.我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图1),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆形滚木的截面图.有如下四个结论:∠勒洛三角形是中心对称图形;∠在图1中,等边三角形的边长为2,则勒洛三角形的周长为2π;∠在图2中,勒洛三角形的周长与圆的周长相等;∠使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动;上述结论中,所有正确结论的序号是()A.∠∠B.∠∠C.∠∠D.∠∠∠18.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D.连接BD,BE,CE,若∠CBD=33°,则∠BEC=()A.66°B.114°C.123°D.132°【答案】C【分析】根据圆周角定理可求∠CAD=33°,再根据三角形内心的定义可求∠BAC,再根据三角形内角和定理和三角形内心的定义可求∠EBC+∠ECB,再根据三角形内角和定理可求∠BEC的度数.【详解】在∠O中,∠∠CBD=33°,∠∠CAD=33°,∠点E是△ABC的内心,∠∠BAC=66°,∠∠EBC+∠ECB=(180°﹣66°)÷2=57°,∠∠BEC=180°﹣57°=123°.故选C.【点睛】考查了三角形的内切圆与内心,圆周角定理,三角形内角和定理,关键是得到∠EBC+∠ECB的度数.19.如图,四边形ABCD为正方形,O为AC、BD的交点,∠DCE为Rt∠,∠CED=90°,OE=CE DE=5,则正方形的面积为()A.5B.6C.7D.8∠CE DE=5故选:B【点睛】本题考查了四点共圆的判定及圆周角定理,同弧或等弧所对的圆周角相等,正方形的判定及性质定理,全等三角形的判定及性质.20.如图,AB 是∠O 的直径,弦CD∠AB 于点G ,点F 是CD 上一点,且满足13CF FD ,连接AF 并延长交∠O 于点E ,连接AD 、DE ,若CF =2,AF =3.给出下列结论:∠∠ADF∠∠AED ;∠FG =2;∠tan∠E ;∠S △DEF =结论的个数是( )A .1B .2C .3D .4AFD ADE S S =ADE S =△DEF =AFD ,∠所以正确的结论是∠∠∠.二、填空题21.如图,有4个圆|A ,B ,C ,D ,且圆A 与圆B 的半径之和等于圆C 的半径,圆B 与圆C 的半径之和等于圆D 的半径,现将圆A ,B ,C 摆放如图甲,圆B ,C ,D 摆放如图乙.若图甲和图乙的阴影部分面积分别为4π和12π.则圆D 面积为__________.【答案】28π【分析】根据题意得到圆A 的半径为2,设圆B 的半径为b ,则圆C 的半径为b+2,故圆D 的半径为2b+2,根据乙图得到方程求出b 的关系,再根据圆D 的面积与b 的关系即可求解.【详解】∠图甲阴影部分面积分别为4π,即圆A 的面积为4π,∠圆A 的半径为2,设圆B 的半径为b ,则圆C 的半径为b+2,故圆D 的半径为2b+2,根据乙图可得222(22)12(2)b b b ππππ+=+++化简得226b b +=,∠圆D 的面积为2(22)b π+=4π()22b b ++4π=28π,故填:28π.【点睛】此题主要考查圆的面积求解,解题的关键是根据图形找到等量关系进行列方程求解.22.圆的有关概念:(1)圆两种定义方式:(a )在一个平面内线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,固定的端点O 叫做__.线段OA 叫做__.(b )圆是所有点到定点O 的距离__定长r 的点的集合.(2)弦:连接圆上任意两点的__叫做弦.(弦不一定是直径,直径一定是弦,直径是圆中最长的弦); (3)弧:圆上任意两点间的部分叫__(弧的度数等于这条弧所对的圆心角的度数,等于这条弧所对圆周角的两倍)(4)等弧:在同圆与等圆中,能够__的弧叫等弧.(5)等圆:能够__的两个圆叫等圆,半径__的两个圆也叫等圆.【答案】 圆心 半径 等于 线段 弧 完全重合 完全重合 相等【分析】根据圆、弦、弧、等弧、等圆的定义即可作答.【详解】(1)圆两种定义方式:(a )在一个平面内线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,固定的端点O 叫做圆心.线段OA 叫做半径.(b )圆是所有点到定点O 的距离等于定长r 的点的集合.(2)弦:连接圆上任意两点的线段叫做弦.(弦不一定是直径,直径一定是弦,直径是圆中最长的弦);(3)弧:圆上任意两点间的部分叫弧(弧的度数等于这条弧所对的圆心角的度数,等于这条弧所对圆周角的两倍)(4)等弧:在同圆与等圆中,能够完全重合的弧叫等弧.(5)等圆:能够完全重合 的两个圆叫等圆,半径相等的两个圆也叫等圆.故答案为:圆心,半径;等于;线段;弧;完全重合;完全重合;相等.【点睛】本题主要考查了圆、弦、弧的定义,牢记相关定义是解答本题的关键. 23.如图,在矩形ABCD 中,8AB =,6AD =,以顶点D 为圆心作半径为r 的圆,若要求另外三个顶点A 、B 、C 中至少有一个点在圆内,且至少有一个点不在圆内,则r 的取值范围是 _____.90,Rt ABD 中,由勾股定理得:2AD AB +A 、B 、C 中至少有一个点在圆内,且至少有一个点不在圆内,且CD BD <<10r <<,24.如图ABC 内接于O ,半径为6,2sin 3A =∠,则BC 的长为___________.【详解】解:作O的直径,∠90D=sin D CD.25.如图,PA、PB分别切∠O于A、B,并与∠O的另一条切线分别相交于D、C两点,已知PA=6,则∠PCD的周长=_______.【答案】12【详解】试题分析:切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线,平分两条切线的夹角.设DC与∠O的切点为E∠PA、PB分别是∠O的切线,且切点为A、B∠PA=PB=6同理可得DE=DA,CE=CB则∠PCD的周长=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=12.考点:切线长定理26.如图,若BC是∠O的弦,OD∠BC于D,且∠BOD=50 o,点A在∠O上(不与B、C重合),则∠BAC=________.27.若圆锥的底面积为16π cm2,母线长为12 cm,则它的侧面展开图的圆心角为__________.【答案】120°【分析】根据圆锥的母线长等于展开图扇形的半径,求出圆锥底面圆的周长,也即是展开图扇形的弧长,然后根据弧长公式可求出圆心角的度数.【详解】由题意得,圆锥的底面积为16πcm²,28.如图,在等腰直角三角形ABC 中,4AB BC ==,点M 是AB 的中点,将ABC 绕点M 旋转至A B C '''的位置,使AB A C ''⊥,其中点C 的运动路径为弧CC ',连接CM ,则图中阴影部分的面积为_______.29.如图,ABC内接于O,若OAB30∠=,则C∠=______.【详解】OA OB=30OAB=∠=,1803030120=--=,由圆周角定理得,1602C AOB∠=∠=,故答案为60.【点睛】本题考查的是三角形的外接圆与外心,等腰三角形的性质,掌握圆周角定理是解题的关键.30.如图,BC为∠O的直径,弦AD∠BC于点E,直线l切∠O于点C,延长OD交l 于点F,若AE=2,为ABC=22.5°,则CF的长度为31.用一张圆形的纸剪一个边长为4 cm的正六边形,则这个圆形纸片的半径最小应为_______cm.【答案】4【分析】要剪一张圆形纸片完全盖住这个正六边形,这个圆形纸片的边缘即为其外接圆,根据正六边形的边长与外接圆半径的关系即可求出.【详解】∠正六边形的边长是4cm,∠正六边形的半径是4cm,∠这个圆形纸片的最小半径是4cm,故答案为4cm.【点睛】此题主要考查了正多边形与圆的知识,注意正六边形的外接圆半径与边长相等,这是一个需要谨记的内容.32.如图,AB与∠O相切于点A,BO与∠O相交于点C,点D是∠O上一点,∠B=38°.则∠D的度数是_____.33.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD =12cm,则球的半径为______cm.【答案】7.5【分析】首先找到EF的中点M,作MN∠AD于点M,取MN上的球心O,连接OF,设OF=x,则OM是(12﹣x) cm,MF=6 cm,然后在直角三角形MOF中利用勾股定理求得OF的长即可.【详解】解:EF 的中点M ,作MN∠AD 于点M ,取MN 上的球心O ,连接OF ,∠四边形ABCD 是矩形,∠∠C =∠D =90°,∠四边形CDMN 是矩形,∠MN =CD =12 cm设OF =x cm ,则ON =OF ,∠OM =MN ﹣ON = (12﹣x) cm ,MF =6 cm ,在直角三角形OMF 中,OM 2+MF 2=OF 2,即:(12﹣x )2+62=x 2,解得:x =7.5,故答案为:7.5.【点睛】本题考查了垂径定理及勾股定理的知识,解题的关键是正确的作出辅助线构造直角三角形.34.已知Rt ABC 中,90ACB ∠=︒,6cm AC =,8cm BC =,以C 为圆心,4.8cm 长度为半径画圆,则直线AB 与O 的位置关系是__________.与O 的位置关系是相切.2268=+与O 的位置关系是相切.故答案为:相切.【点睛】本题考查勾股定理,直角三角形面积,圆的切判定,掌握勾股定理,直角三角形面积,圆的切判定是解题关键.35.如图,一次函数y=x轴、y轴交于A、B两点,P为一次函数=的图像上一点,以P为圆心能够画出圆与直线AB和y轴同时相切,则y x∠BPO=_________.∠∠OBP=15°又∠BOP=45°∠∠BPO=180°-45°-15°=120°相交时,点P即为圆心.(2)当∠ABO的外角平分线与y x如图,同理可求∠OBP=30°+75°=105°∠∠BPO=180°-45°-105°=30°故答案为:30°或120°【点睛】本题主要考查了切线的判定和性质,角平分线的性质及三角形的内角和的应用,正确的对点P的位置进行分类是解题的关键.36.如图,四边形ABCD内接于∠O,点E在AB的延长线上,BF∠AC,AB=BC,∠ADC=130°,则∠FBE=_______°.【答案】65【详解】连接BD,如图所示:∠∠ADB和∠ACB是弧AB所对的圆周角,∠BDC和∠BAC是弧BC所对的圆周角,∠∠ADB=∠ACB,∠BDC=∠BAC,又∠∠BDC+∠ADB=∠ADC,∠ADC=130°,∠∠BAC+∠ACB=130°,又∠AB=BC,∠∠BAC=∠ACB=65°,又∠BF∠AC,∠∠FBE=∠BAC=65°;故答案是:65.37.如图,点A在数轴上对应的数为26,以原点O为圆心,OA为半径作优弧AB,使点B在O右下方,且4tan3AOB∠=.在优弧AB上任取一点P,且能过P作直线l OB∥交数轴于点Q,设Q在数轴上对应的数为x,连接OP.(1)若优弧AB上一段AP的长为13π,则AOP∠的度数为__________,x的值为__________;(2)x的最小值为__________,此时直线l与弧AB所在圆的位置关系为__________26nπ⨯38.如图,在Rt ABC △中,903cm 4cm C AC BC ∠=︒==,,, 以BC 边所在的直线为轴,将ABC 旋转一周得到的圆锥侧面积是___;此圆锥展开的侧面扇形的圆心角为____.边所在的直线为轴,将ABC 旋转一周得到的圆锥侧面积是此圆锥展开的侧面扇形的扇形弧长是底面圆周长,此圆锥展开的侧面扇形的圆心角度数为【点睛】本题考查了勾股定理,圆锥的计算;得到几何体的组成是解决本题的突破39.如图,在平面直角坐标系xOy 中,一次函数y +4的图象与x 轴、y 轴交于A 、B 点,点C 在线段OA 上,点D 在直线AB 上,且CD =2,∠DEC 是直角三角形(∠EDC =90°),DE ,连接AE ,则AE 的最大值为_________.∠+∠=______度,阴影四边形的面积为______.【答案】 105︒##105度 1##1-+∠90ABD ,AB BD =90ABC BAC ∠+∠=︒=BAC DBE ∠=∠,(AAS BAC DBE ≌△△AC BE =,BC DE =三、解答题41.如图,在∠O 中,直径AB 与弦CD 相交于点E ,连接AC 、BD .(1)求证:AEC DEB △∽△;(2)连接AD ,若3AD =,30C ∠=︒,求∠O 的半径.【答案】(1)证明见解析(2)∠O 的半径为3Rt ADB 中,26AD ==,132AB ==的半径为【点睛】本题考查圆的基本知识,相似三角形的判定,以及含42.如图,在O 中,AB 为直径,AC 为弦.过BC 延长线上一点G ,作GD AO ⊥于点D ,交AC 于点E ,交O 于点F ,M 是GE 的中点,连接CF ,CM .(1)判断CM 与O 的位置关系,并说明理由;(2)若ECF 2A ∠∠=,CM 6=,CF 4=,求MF 的长.与O 相切;理由见解析;3343.已知:如图,线段BC 与经过点C 的直线l .求作:在直线l 上求作点D ,使150CDB ∠=︒.作法:∠分别以点B ,C 为圆心,BC 长为半径画弧,两弧交于BC 上方的点A ,连接AB ,AC ;∠以点A 为圆心,以AB 长为半径画圆交直线l 于点D (不同于点C ),连接BD .则点D 即为所求.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:∠分别以点B ,C 为圆心,BC 长为半烃画弧,两弧交于BC 上方的点A . ∠AB BC CA ==∠ABC 为等边三角形.∠60BAC ∠=︒.在A 中,在优弧BC 上任取点E ,连接BE ,CE .∠30CEB ∠=︒.(_________________________)(填推理依据)∠点B ,D ,C ,E 在A 上.∠180CDB CEB ∠+∠=︒.(_________________________)(填推理依据)即150CDB ∠=︒. 【答案】(1)见解析(2)圆周角定理;圆内接四边形对角互补【分析】(1)根据题意作出图形即可求解;(2)根据圆周角定理,以及圆内接四边形对角互补,即可求解.【详解】(1)解;如图所示,(2)证明:∠分别以点B ,C 为圆心,BC 长为半烃画弧,两弧交于BC 上方的点A . ∠AB BC CA ==∠ABC 为等边三角形.∠=60?BAC ∠.在A 中,在优弧BC 上任取点E ,连接BE ,CE .∠=30?CEB ∠(圆周角定理)∠点B ,D ,C ,E 在A 上.∠+=180CDB CEB ∠∠︒.(圆内接四边形对角互补)即150CDB ∠=︒.故答案为:圆周角定理;圆内接四边形对角互补.【点睛】本题考查了等边三角形的判定和性质,圆周角定理,圆内接四边形的性质,掌握圆周角定理是解题的关键.44.某市政府计划修建一处公共服务设施,使它到三所公寓A 、B 、C 的距离相等. (1)若三所公寓A 、B 、C 的位置如图所示,请你在图中确定这处公共服务设施(用点P 表示)的位置(尺规作图,保留作图痕迹,不写作法);(2)若∠BAC =56°,则∠BPC =【答案】(1)见解析;(2)112°【分析】(1)连接AB 、BC 、AC ,作线段AB 和AC 的垂直平分线,交点P 即为所求; (2)利用三角形外心的性质结合圆周角定理得出答案.【详解】解:(1)如图所示:P 点即为所求;(2)连接PB 、PC ,∠点P 是三角形ABC 的外心,∠∠BPC =2∠BAC =112°.【点睛】此题主要考查了应用设计与作图,掌握线段垂直平分线的性质,得出P 点是三角形ABC 的外心是解题关键.45.如图ABC 内接于O ,60B ∠=,CD 是O 的直径,点P 是CD 延长线上一点,且AP AC =.()1求证:P A 是O 的切线;()2若PD =O 的直径.)O 的直径为30,继而根据等腰三角形的性质可得出30,继而由P ,可得出30的直角三角形的性质求出PD OD =,可得出O 的直径.连接OA ,如图,B 60∠=,AOC 2B 120∠∠∴=,又OA OC =,OAC 30∠∠∴=,又AP AC =P ACP 30∠∠=,90,是O的切线.Rt OAP中,P30∠=,=+,2OA OD PD=,又OA OD=,PD OA=,PD5∴=2OA2PD∴的直径为O【点睛】本题考查了切线的判定、圆周角定理、含掌握切线的判定定理、圆周角定理及含46.如图,已知等边∠ABC,AB=2,以AB为直径的半圆与BC边交于点D,过点D 作DF∠AC,垂足为F,过点F作FG∠AB,垂足为G,连结GD.(1)求证:DF是∠O的切线;(2)求FG的长.22447.九年级学生小刚是一个喜欢看书的好学生,他在学习完第二十四章圆后,在家里突然看到爸爸的初中数学书上居然还有一个相交弦定理(圆内的两条相交弦,被交点分成的两条线段长的积相等),非常好奇,仔细阅读原来就是:PA•PB=PC•PD,小刚很想知道是如何证明的,可异证明部分污损看不清了,只看到辅助线的做法,分别连结AC、BD.聪明的你一定能帮他证出,请在图1中做出辅助线,并写出详细的证明过程.小刚又看到一道课后习题,如图2,AB是∠O弦,P是AB上一点,AB=10cm,PA=4cm,OP=5cm,求∠O的半径,愁坏了小刚,乐于助人的你肯定会帮助他,请写出详细的证明过程.【答案】(1)见解析;(2)∠O的半径R为7.【分析】(1)连结AC,BD,根据圆周角定理得到∠C=∠B,∠A=∠D,再根据三角形相似的判定定理得到△APC∠∠DPB,利用相似三角形的性质得AP:DP=CP:BP,变形有AP•BP=CP•DP;由此得到相交弦定理;(2)由AB=10,PA=4,OP=5,易得PB=10-4=6,PC=OC-OP=R-5,PD=OD+OP=R+5,根据相交弦定理得到PA•PB=PC•PD,即4×6=(R-5)×(R+5),解方程即可得到R的值.【详解】(1)圆的两条弦相交,这两条弦被交点分成的两条线段的积相等.已知,如图1,∠O的两弦AB、CD相交于E,求证:AP•BP=CP•DP.证明如下:连结AC,BD,如图1,∠∠C=∠B,∠A=∠D,∠∠APC∠∠DPB,∠AP:DP=CP:BP,∠AP•BP=CP•DP;所以两条弦相交,被交点分成的两条线段的积相等.(2)过P作直径CD,如图2,∠AB=10,PA=4,OP=5,∠PB=10﹣4=6,PC=OC﹣OP=R﹣5,PD=OD+OP=R+5,由(1)中结论得,PA•PB=PC•PD,∠4×6=(R﹣5)×(R+5),解得R=7(R=﹣7舍去).所以∠O的半径R=7.【点睛】本题考查的是圆,熟练掌握相交弦定理和相似三角形的判定与性质是解题的关键.48.如图,点C在以AB为直径的∠O上.AE与过点C的切线垂直,垂足为D,AD 交∠O于点E,过B作BF∠AE交∠O于点F,连接CF.(1)求证:∠B=2∠F;(2)已知AE=8,DE=2,过B作BF∠AE交∠O于F,连接CF,求CF的长.49.如图,已知∠O的直径AB=8,过A、B两点作∠O的切线AD、BC.(1)当AD=2,BC=8时,连接OC、OD、CD.∠求∠COD的面积.∠试判断直线CD与∠O的位置关系,并说明理由.(2)若直线CD与∠O相切于点E,设AD=x(x>0),试用含x的式子表示四边形ABCD的面积S,并探索S是否存在最小值,写出探索过程.50.在平面直角坐标系xOy 中,对于线段MN 及点P 、Q ,若60MPN ∠=︒且线段MN 关于点P 的中心对称线段M N ''恰好经过点Q ,则称点Q 是点P 的线段60MN -︒对经点.(1)设点()0,2A .∠()1Q ,()24,0Q ,312Q ⎫-⎪⎪⎝⎭,其中为某点P 的线段60OA -︒对经点的是______.∠已知()0,1B ,设∠B 的半径为r ,若∠B 上存在某点P 的线段60OA -︒对经点,求r 的取值范围.(2)若点()4,0Q 同时是相异两点1P 、2P 的线段60OD -︒对经点,直接写出线段OD 长的取值范围. 为边的等边三角形的外接圆C 上优弧上的横纵坐标的最值,根据定义以及中点坐标公的方法作出图形,作M 的切线关于P 中心对N 为圆心,矩形对角线长度为半径两圆组成的图两直线之间的部分,除公共部分以外的图形,即图中阴影部分,包括边轴上的部分,根据图形求得)作辅助线,设,M N 在OD 同时是相异两点1P 、2P 的线段33DM x =,OM 长,解一元一次不等式组求解即可.Q 为边的等边三角形的外接圆C 上优弧上的一点,()0,2A2OA ∴=C 为AOP 的外心,则过点C 分别作CG 2OC33GC =3GC ∴=33C x ∴=∴P 的横坐标最大值为Qx交M于点S作M的是C的直径)AA交M于点F1根据对称性,同理可得过N的r的最值也为M N在OD)作辅助线,设,T 为,M N 的交点,2MT NT OM ∴===11=22TH MN OD ∴==在Rt NTH 中, NH OH ON NH =+OR ON NR =+()4,0D236+∴解得433即433≤。
2022-2023学年浙教版九年级数学上册《圆内接四边形》同步练习题(含答案)
2022-2023学年浙教版九年级数学上册《3.6圆内接四边形》同步练习题(附答案)一.选择题1.如图,四边形ABCD内接于⊙O,DE是⊙O的直径,连接BD.若∠BCD=2∠BAD,则∠BDE的度数是()A.25°B.30°C.32.5°D.35°2.如图,⊙O的内接四边形ABCD中,∠D=50°,则∠B为()A.140°B.130°C.120°D.100°3.如图,四边形ABCD是⊙O的内接四边形,若∠BCD=121°,则∠BOD的度数为()A.138°B.121°C.118°D.112°4.如图,四边形ABCD为⊙O的内接四边形,连接BD,若AB=AD=CD,∠BDC=75°,则∠C的度数为()A.55°B.60°C.65°D.70°5.如图,四边形ABCD内接于⊙O,∠ADC=120°,BD平分∠ABC交AC于点E,若BA =BE,则∠ADB的大小为()A.35°B.30°C.40°D.45°6.如图,点A,B,C,D,E在⊙O上,所对的圆心角为50°,则∠C+∠E等于()A.155°B.150°C.160°D.162°7.如图,点B在上,∠AOC=100°,则∠ABC等于()A.50°B.80°C.100°D.130°8.如图,已知四边形ABCD是⊙O的内接四边形,∠B=90°,∠BCD=120°,AB=4,AD=5,则CD的长为()A.2B.C.4﹣D.3﹣9.如图,四边形ABCD为⊙O的内接四边形,若∠A=50°,则∠BCD的度数为()A.50°B.80°C.100°D.130°10.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=60°,点D为弧AC 上的动点,点M、N、P分别是AD、DC、CB的中点,则PN+MN的最大值为()A.1+B.1+2C.2+2D.2+二.填空题11.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,∠ADC=130°,连接AC,则∠BAC的度数为.12.如图,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小为.13.如图,∠DCE是⊙O内接四边形ABCD的一个外角,若∠DCE=72°,那么∠BOD的度数为.14.如图,四边形ABCD是⊙O的内接四边形,AD与BC的延长线交于点E,BA与CD的延长线交于点F,若∠DCE=75°,∠F=20°,则∠E的度数为.15.四边形ABCD是⊙O的内接四边形,∠C=2∠A,则∠C的度数为.16.如图,四边形ABCD是半径为2的⊙O的内接四边形,连接OA,OC.若∠AOC:∠ABC=4:3,则的长为.三.解答题17.如图,四边形ABCD内接于⊙O,BD为直径,AC平分∠BCD.(1)若BC=5cm,CD=12cm,求AB的长;(2)求证:BC+CD=AC.18.如图,四边形ABCD是⊙O的内接四边形,DB平分∠ADC,连接OC,OC⊥BD.(1)求证:AB=CD.(2)若∠A等于66°,求∠ADB的度数.19.如图,四边形ABDC内接于⊙O,∠BOC=120°,AD平分∠BAC交⊙O于点D,连接OB,OC,BD,CD.(1)求证:四边形OBDC是菱形;(2)若∠ABO=15°,OB=2,求弦AC长.20.如图,四边形ABCD内接于⊙O,AC是⊙O的直径,.延长AD交BC的延长线于点E.(1)证明:∠ACD=∠ECD.(2)当AB=8,CD=5时,求AD的长度.参考答案一.选择题1.解:连接BE,∵四边形ABCD内接于⊙O,∴∠BCD+∠BAD=180°,∵∠BCD=2∠BAD,∴∠BAD=60°,由圆周角定理得:∠BED=∠BAD=60°,∵DE是⊙O的直径,∴∠EBD=90°,∴∠BDE=90°﹣60°=30°,故选:B.2.解:∵四边形ABCD是⊙O的内接四边形,∴∠D+∠B=180°,∵∠D=50°,∴∠B=180°﹣50°=130°,故选:B.3.解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠BCD=180°,∴∠A=180°﹣121°=59°,∴∠BOD=2∠A=2×59°=118°,故选:C.4.解:∵AB=AD=CD,∴,∴∠ADB=∠ABD=∠DBC,设∠ADB=∠ABD=∠DBC=x,∵四边形ABCD为⊙O的内接四边形,∴∠ABC+∠ADC=180°,即3x+75°=180°,解得:x=35°,∴∠DBC=35°,在△BDC中,∠BDC=75°,∠DBC=35°,∴∠BCD=180°﹣75°﹣35°=70°.故选:D.5.解:∵四边形ABCD内接于⊙O,∴∠ABC+∠ADC=180°,∵∠ADC=120°,∴∠ABC=60°,∵BD平分∠ABC,∴∠ABD=30°,∵BA=BE,∴∠BAE=∠BEA=(180°﹣∠ABD)=×(180°﹣30°)=75°,∴∠ACB=180°﹣∠BAC﹣∠ABC=180°﹣75°﹣60°=45°,∴∠ADB=∠ACB=45°,故选:D.6.解:连接AE,∵四边形ACDE是⊙O的内接四边形,∴∠C+∠AED=180°,∵所对的圆心角为50°,∴∠AEB=×50°=25°,∴∠C+∠BED=180°﹣∠AEB=155°,故选:A.7.解:在圆O上取点D,连接AD、CD,由圆周角定理得:∠ADC=∠AOC=50°,∵四边形ABCD为圆内接四边形,∴∠ABC+∠AOC=180°,∴∠ABC=180°﹣50°=130°,故选:D.8.解:延长AB、DC,它们相交于点E,如图,∵四边形ABCD是⊙O的内接四边形,∴∠ABC+∠D=180°,∠A+∠BCD=180°,∵∠ABC=90°,∠BCD=120°,∴∠D=90°,∠A=60°,在Rt△ADE中,∵∠E=90°﹣∠A=30°,∴AE=2AD=10,DE=AD=5,∴BE=AE﹣AB=10﹣4=6,在Rt△BCE中,∵BC=BE=2,∴EC=2BC=4,∴CD=DE﹣CE=5﹣4=.故选:B.9.解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠BCD=180°,∵∠A=50°,∴∠BCD=130°,故选:D.10.解:连接OC、OA、BD,作OH⊥AC于H.∴∠AOC=2∠ABC=120°,∵OA=OC,OH⊥AC,∴∠COH=∠AOH=60°,CH=AH,∴CH=AH=,∴AC=2,∵CN=DN,DM=AM,∴MN=AC=,∵CP=PB,CN=DN,∴PN=BD,当BD是直径时,PN的值最大,最大值为2,∴PM+MN的最大值为2+.故选:D.二.填空题11.解:∵四边形ABCD内接于⊙O,∠ADC=130°,∴∠B=180°﹣∠ADC=180°﹣130°=50°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB=90°﹣∠B=90°﹣50°=40°,故答案为:40°.12.解:∵四边形ABCD为⊙O的内接四边形,∴∠BCD+∠A=180°,∵∠BCD=120°,∴∠A=180°﹣120°=60°,由圆周角定理得:∠BOD=2∠A=120°,故答案为:120°.13.解:∵∠DCE=72°,∴∠BCD=180°﹣∠DCE=108°,∵四边形ABCD内接于⊙O,∴∠A=180°﹣∠BCD=72°,由圆周角定理,得∠BOD=2∠A=144°,故答案为:144°.14.解:∵四边形ABCD是⊙O的内接四边形,∴∠EAB+∠DCB=180°,∵∠ECD+∠DCB=180°,∴∠EAB=∠ECD=75°,∵∠ECD是△FCB的外角,∴∠ABE=∠ECD﹣∠F=75°﹣20°=55°,∴∠E=180°﹣∠EAB﹣∠ABE=50°,故答案为:50°.15.解:∵四边形ABCD是⊙O的内接四边形,∴∠C+∠A=180°,∵∠C=2∠A,∴∠C=120°,故答案为:120°.16.解:由于∠AOC:∠ABC=4:3,可设∠AOC=4x,则∠ABC=3x,∴∠ADC=∠AOC=2x,∵四边形ABCD是圆内接四边形,∴∠ADC+∠ABC=180°,即2x+3x=180°,∴x=36°,∴∠AOC=4x=144°,∴则的长为=,故答案为:.三.解答题17.(1)解:∵BD为直径,∴∠BAD=∠BCD=90°,在Rt△BCD中,BD===13(cm),∵AC平分∠BCD,∴∠ACB=∠ACD,∴AB=AD,∴△ABD为等腰直角三角形,∴AB=BD=cm;(2)证明:把△ABC绕点A逆时针旋转90°得到△ADE,如图,则∠CAE=∠BAD=90°,CA=CE,BC=DE,∠ABC=∠ADE,∵∠ABC+∠ADC=180°,∴∠ADE+∠ADC=180°,∴E点在CD的延长线上,∴△ACE为等腰直角三角形,∴CE=AC,而CE=CD+DE=CD+CB,∴BC+CD=AC.18.(1)证明:∵DB平分∠ADC,∴=,∵OC⊥BD,∴=,∴=,∴AB=CD;(2)解:∵四边形ABCD是⊙O的内接四边形,∴∠BCD=180°﹣∠A=114°,∵=,∴BC=CD,∴∠BDC=×(180°﹣114°)=33°,∵DB平分∠ADC,∴∠ADB=∠BDC=33°.19.(1)证明:连接OD,∵AD平分∠BAC,∴=,∴∠BOD=∠COD=BOC=60°,∵OB=OD,OC=OD,∴△BOD和△COD是等边三角形,∴OB=BD=DC=OC,∴四边形OBDC是菱形;(2)解:连接OA,∵OB=OA,∠ABO=15°,∴∠AOB=150°,∴∠AOC=360°﹣150°﹣120°=90°,∴AC===2.20.(1)证明:∵四边形ABCD为⊙O的内接四边形,∴∠BAD+∠BCD=180°,∵∠BCD+∠ECD=180°,∴∠BAD=∠ECD,∵,∴∠BAD=∠ACD,∴∠ACD=∠ECD;(2)∵AC是⊙O的直径,∴∠B=∠ADC=90°,∵∠DEC=∠BEA,∠EDC=∠B,设DE=5x,则BE=8x,∵∠ACD=∠ECD,CD⊥AE,∴∠CAE=∠CEA,∴AD=DE=5x,∴AB==6x,即6x=8,∴x=,∴AD=5x=.。
北师大版九年级数学下册《圆周角定理的推论和圆的内接四边形》培优训练(含答案)
北师版九年级数学下册《圆周角定理的推论和圆的内接四边形》培优训练一.选择题(本大题共10小题,每小题3分,共30分)1.使用直角钢尺检查某一工件是否恰好是半圆形的凹面,成半圆形的为合格,如图所示的四种情况中合格的是()2. 如图,四边形ABCD内接于⊙O,若∠A=40°,则∠C=()A.110°B.120°C.135°D.140°3. 如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是( )A.58°B.60°C.64°D.68°4. 如图,点O为线段BC的中点,点A,C,D到点O的距离相等,若∠ABC=40°,则∠ADC的度数是()A.130°B.140°C.150°D.160°5.如图,经过原点O的⊙P与x,y轴分别交于A,B两点,点C是劣弧OB上一点,则∠ACB的度数是( )A.80°B.100°C.90°D.无法确定6.如图,四边形ABCD 为⊙O 的内接四边形,∠BCD =120°,则∠BOD 的大小是( )A .80°B .120°C .100°D .90°7.如图,⊙C 过原点,且与两坐标轴分别交于点A ,B ,点A 的坐标为(0,3),M 是第三象限内OB ︵上一点,∠BMO =120°,则⊙C 的半径长为( )A .6B .5C .3D .3 28. 如图,四边形ABCD 为⊙O 的内接四边形,∠BCD =120°,则∠BOD 的大小是( )A .80°B .120°C .100°D .90°9. 如图,已知⊙O 为四边形ABCD 的外接圆,O 为圆心,若∠BCD =120°,AB =AD =2,则⊙O 的半径长为( )A .322B .62C .32D .23310.如图,点P 是等边三角形ABC 外接圆⊙O 上的点.在下列判断中,不正确的是( )A .当弦PB 最长时,△APC 是等腰三角形B .当△APC 是等腰三角形时,PO ⊥ACC .当PO ⊥AC 时,∠ACP =30°D .当∠ACP =30°时,△BPC 是直角三角形二.填空题(共8小题,3*8=24)11. 如图,AB为⊙O的直径,点C为弧BD的中点,若∠DAB=40°,则∠ABC=____________.12.如图所示,四边形ABCD为⊙O内接四边形,若∠BOD=100°,∠BAD=___________,∠BCD =___________.13.如图,在⊙O中,弦CD垂直直径AB于点E,若∠BAD=30°,且BE=2,则CD=__________.14.如图,四边形ABCD为⊙O的内接四边形,已知∠C=∠D,则AB与CD的位置关系是____________.15. 如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC上,连接AE,若∠ABC=64°,则∠BAE的度数为________.16. 如图,四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=n°,则∠DCE=________°.17. 如图,四边形ABCD是菱形,⊙O经过点A,C,D,与BC相交于点E,连接AC,AE.若∠D=80°,则∠EAC的度数为________.18. 如图,四边形ABCD 是⊙O 的内接四边形,AD 与BC 的延长线交于点E ,BA 与CD 的延长线交于点F ,∠DCE =80°,∠F =25°,则∠E 的度数为________.三.解答题(共7小题,46分)19.(6分)如图,已知∠EAD 是圆内接四边形ABCD 的一个外角,并且BD ︵=DC ︵.20.(6分) 如图,四边形ABCD 是⊙O 的内接四边形,DP ∥AC ,交BA 的延长线于P .求证:AD·DC =PA·BC.21.(6分) 如图,四边形ABCD 内接于⊙O ,AE ⊥CB 交CB 的延长线于点E ,若BA 平分∠DBE ,AD =5,CE =13,求AE 得值.22.(6分)如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB.延长DA与⊙O 的另一个交点为E,连接AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC-AC=2,求CE的长.23.(6分)半径为5的⊙O是锐角三角形ABC的外接圆,AB=AC,连接OB,OC,延长CO交弦AB 于点D,若△OBD是直角三角形,求弦BC的长.24.(8分)如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.25.(8分) 如图,四边形APBC 是⊙O 的内接四边形,AB =AC ,点P 是AB ︵的中点,连接PA ,PB ,PC.(1)如图①,若∠BPC =60°,求证:AC =3AP ;(2)如图②,若sin ∠BPC =2425,求tan ∠PAB 的值.参考答案:1-5CDABC 6-10 BCBDC11. 70°12. 50°,130° 13. 4 314. 平行15. 52°16. n17.30°18.45°19. 解:∵四边形ABCD 是圆内接四边形,∴∠EAD =∠DCB.又∵BD ︵=DC ︵,∴∠DAC =∠DCB.∴∠EAD =∠DAC ,∴AD 平分∠EAC20. 证明:连接BD.∵DP ∥AC ,∴∠PDA =∠DAC.∵∠DAC =∠DBC ,∴∠PDA =∠DBC.∵四边形ABCD 是⊙O 的内接四边形,∴∠DAP =∠DCB.∴△PAD ∽△DCB.∴PA ∶DC =AD ∶BC ,即AD·DC =PA·BC21. 解:如图,连接AC.∵BA 平分∠DBE ,∴∠1=∠2.∵∠1=∠CDA ,∠2=∠3,∴∠3=∠CDA. ∴AC =AD =5.∵AE ⊥CB ,∴∠AEC =90°.∴AE =AC 2-CE 2=52-(13)2=2 3.22. 解:(1)∵AB 是⊙O 的直径,∴∠ACB =90°,∴AC ⊥BC.∵CD =CB ,∴AD =AB ,∴∠B =∠D(2)设BC =x ,则AC =x -2.在Rt △ABC 中,AC 2+BC 2=AB 2,∴(x -2)2+x 2=42,解得x 1=1+7,x 2=1-7(舍去).∵∠B =∠E ,∴∠D =∠E ,∴CD =CE.∵CD =CB ,∴CE =CB =1+723. 解:如图①,当∠ODB =90°,即CD ⊥AB 时,可得AD =BD ,∴AC =BC.又∵AB =AC ,∴△ABC 是等边三角形.∴∠DBO =30°.∵OB =5,∴BD =32OB =532. ∴BC =AB =2BD =5 3. 如图②,当∠DOB =90°时,可得∠BOC =90°,∴△BOC 是等腰直角三角形.∴BC =2OB =5 2.综上所述,弦BC 的长为53或5224. (1)证明:∵AB 是直径,∴∠AEB =90°,∴AE ⊥BC ,∵AB =AC ,∴BE =CE ,∵AE =EF ,∴四边形ABFC 是平行四边形,∵AC =AB ,∴四边形ABFC 是菱形(2)解:设CD =x.连接BD.∵AB 是直径,∴∠ADB =∠BDC =90°,∴AB 2-AD 2=CB 2-CD 2,∴(7+x)2-72=42-x 2,解得x =1或x =-8(舍弃),∴AC =8,BD =82-72=15,∴S 菱形ABFC =815,S 半圆=12·π·42=8π 25. 解:(1)∵BC ︵=BC ︵,∴∠BAC =∠BPC =60°,又∵AB =AC ,∴△ABC 为等边三角形,∴∠ACB =60°,∵点P 是弧AB 的中点,∴∠ACP =30°,又∠APC =∠ABC =60°,∴∠PAC =90°,在Rt △PAC 中,∠ACP =30°,∴AC =3AP(2)如图,连接AO 并延长交PC 于点E ,交BC 于点F ,过点E 作EG ⊥AC 于点G ,连接OC. ∵AB =AC ,∴AF ⊥BC ,BF =CF.∵点P 是AB ︵的中点,∴∠ACP =∠PCB ,∴EG =EF.∵∠BPC =∠FOC ,∴sin ∠FOC =sin ∠BPC =2425. 设FC =24a ,则OC =OA =25a.∴OF =7a ,AF =32a ,在Rt △AFC 中,AC 2=AF 2+FC 2,∴AC =40a ,在Rt △AGE 和Rt △AFC 中,sin ∠FAC =EG AE =FC AC, ∴EG 32a -EG =24a 40a,∴EG =12a. ∴tan ∠PAB =tan ∠PCB =EF CF =12a 24a =12。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆周角定理及圆的内接四边形
副标题
一、选择题(本大题共5小题,共15.0分)
1.如图,A,B,C是上三个点,,则下列说
法中正确的是
A.
B. 四边形OABC内接于
C.
D.
【答案】D
【解析】解:过O作于D交于E,
则,
,,
,
,
,
,
,故C错误;
,
,
,
,故A错误;
点A,B,C在上,而点O在圆心,
四边形OABC不内接于,故B错误;
,
,
,故D正确;
故选D.
过O作于D交于E,由垂径定理得到,于是得到,推出,根据三角形的三边关系得到,故C错误;根据三角形内
角和得到,
,推出,故A错误;由点A,B,
C 在上,而点O在圆心,得到四边形OABC不内接于,故B错误;根据余角的性质得到,故D正确;
本题考查了圆心角,弧,弦的关系,垂径定理,三角形的三边关系,正确的作出辅助线
是解题的关键.
2.如图,四边形ABCD内接于,AC平分,则下列
结论正确的是
A.
B.
C.
D.
【答案】B
【解析】解:A、与的大小关系不确定,与AD不一定相等,故本选项错误;
B、平分,,,故本选项正确;
C、与的大小关系不确定,与不一定相等,故本选项错误;
D、与的大小关系不确定,故本选项错误.
故选:B.
根据圆心角、弧、弦的关系对各选项进行逐一判断即可.
本题考查的是圆心角、弧、弦的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.
3.如图,四边形ABCD内接于,若四边形ABCO是平行四
边形,则的大小为
A.
B.
C.
D.
【答案】C
【解析】解:设的度数,的度数;
四边形ABCO是平行四边形,
;
,;而,
,
解得:,,,
故选:C.
设的度数,的度数,由题意可得,求出即可解决问
题.
该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用.
4.如图,已知AC是的直径,点B在圆周上不与A、
C重合,点D在AC的延长线上,连接BD交于
点E,若,则
A.
B. C. D.
【答案】D
【解析】解:连接EO .
,
,
,,
,
,
,
,
故选D .
连接EO ,只要证明即可解决问题.
本题考查圆的有关知识、三角形的外角等知识,解题的关键是添加除以辅助线,利用等腰三角形的判定方法解决问题,属于中考常考题型.
5. 如图,圆内接四边形ABCD 的边AB 过圆心O ,过点C 的切线
与边AD 所在直线垂直于点M ,若,则等于
A.
B.
C.
D.
【答案】A 【解析】解:圆内接四边形ABCD 的边AB 过圆心O ,
,,
,,
过点C 的切线与边AD 所在直线垂直于点M ,
,, ,
,
;
故选:A .
由圆内接四边形的性质求出,由圆周角定理求出
,得出,由弦切角定理得出,由三角形的
外角性质得出,即可求出的度数. 本题考查了圆内接四边形的性质、圆周角定理、三角形的外角性质、弦切角定理等知识;熟练掌握圆内接四边形的性质和圆周角定理是解决问题的关键.
二、填空题(本大题共5小题,共15.0分)
6. 如图,AB 是的直径,,BC 交于点D ,AC 交
于点E ,,给出下列五个结论:
;;;劣弧AE 是
劣弧DE 的2倍;其中正确结论的序号是______ . 【答案】
【解析】解:连接AD ,AB 是的直径,则
, ,
, ,
,AD平分,
,,,故正确,
,,故正确,
,
,
又AD平分,所以,即劣弧AE是劣弧DE的2倍,正确.
,,
,
,故错误.
,
,
又,
故错误.
故答案为:.
先利用等腰三角形的性质求出、的度数,即可求的度数,再运用弧、弦、圆心角的关系即可求出、.
本题利用了:等腰三角形的性质;圆周角定理;三角形内角和定理.
7.如图,AB为直径,点C、D在上,已知
,,则______度
【答案】40
【解析】解:,
,
又,
,
.
首先由可以得到,又由得到,由此即可求出的度数.
此题比较简单,主要考查了平行线的性质、等腰三角形的性质,综合利用它们即可解决问题.
8.如图,AB是的直径,C、D是上的两点,若
,则______.
【答案】
【解析】【分析】
本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半推论:半圆或直径所对的圆周角是直角,的圆周角所对的弦是直径根据圆周角定理的推论由AB是的直径得,再利用互余计算出
,然后再根据圆周角定理求的度数.
【解答】
解:是的直径,
,
,
,
.
故答案为.
9.如图,已知圆周角,则圆心角______.
【答案】
【解析】解:,
.
故答案为.
根据圆周角定理即可得出结论.
本题考查了圆周角定理在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.
10.如图,在圆内接四边形ABCD中,O为圆心,,
则的度数为______.
【答案】
【解析】解:,
,
、B、C、D四点共圆,
,
,
故答案为:.
根据圆周角定理求出,根据圆内接四边形性质得出,即可求出答案.
本题考查了圆内接四边形的性质,解决本题的关键是求出的度数和得出
.
三、解答题(本大题共1小题,共8.0分)
11.如图,是的外接圆,AB为直径,交
于点D,交AC于点E,连接AD,BD,CD.
求证:;
若,,求的值.
【答案】证明:为的直径,
,
,
,
,
,
;
解:,
,
,
,
在中,
,
,
,
在中,
,
,
.
【解析】由AB为直径,,易得,然后由垂径定理证得,,继而证得结论;
由,,可求得OE的长,继而求得DE,AE的长,则可求得
,然后由圆周角定理,证得,则可求得答案.
此题考查了圆周角定理、垂径定理以及勾股定理此题难度适中,注意掌握数形结合思想的应用.。