第7章 刚体的简单运动

合集下载

理论力学习题册答案

理论力学习题册答案

理论力学习题册答案班级姓名学号第一章静力学公理与受力分析(1)一.是非题1、加减平衡力系公理不但适用于刚体,还适用于变形体。

()2、作用于刚体上三个力的作用线汇交于一点,该刚体必处于平衡状态。

()3、刚体是真实物体的一种抽象化的力学模型,在自然界中并不存在。

()4、凡是受两个力作用的刚体都是二力构件。

()5、力是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果。

()二.选择题1、在下述公理、法则、原理中,只适于刚体的有()①二力平衡公理②力的平行四边形法则③加减平衡力系公理④力的可传性原理⑤作用与反作用公理三.画出下列图中指定物体受力图。

未画重力的物体不计自重,所有接触处均为光滑接触。

多杆件的整体受力图可在原图上画。

(a)球A(b)杆AB- 1 -(c)杆AB、CD、整体(d)杆AB、CD、整体(e)杆AC、CB、整体(f)杆AC、CD、整体四.画出下列图中指定物体受力图。

未画重力的物体不计自重,所有接触处均为光滑接触。

多杆件的整体受力图可在原图上画。

(a)球A、球B、整体(b)杆BC、杆AC、整体- 2 -班级姓名学号第一章静力学公理与受力分析(2)一.画出下列图中指定物体受力图。

未画重力的物体不计自重,所有接触处均为光滑接触。

多杆件的整体受力图可在原图上画。

(a)杆AB、BC、整体(c)杆AB、CD、整体CAFAxDBFAyFBWEW(b)杆ABOriginal Figure、BC、轮E、整体FBD of the entire frame(d)杆BC带铰、杆AC、整体- 3 -(e)杆CE、AH、整体(g)杆AB带轮及较A、整体(f)杆AD、杆DB、整体(h)杆AB、AC、AD、整体- 4 -班级姓名学号第二章平面汇交和力偶系一.是非题1、因为构成力偶的两个力满足F= - F’,所以力偶的合力等于零。

()2、用解析法求平面汇交力系的合力时,若选用不同的直角坐标系,则所求得的合力不同。

()3、力偶矩就是力偶。

大学物理刚体部分知识点总结

大学物理刚体部分知识点总结

一、刚体的简单运动知识点总结1.刚体运动的最简单形式为平行移动和绕定轴转动。

2.刚体平行移动。

·刚体内任一直线段在运动过程中,始终与它的最初位置平行,此种运动称为刚体平行移动,或平移。

·刚体作平移时,刚体内各点的轨迹形状完全相同,各点的轨迹可能是直线,也可能是曲线。

·刚体作平移时,在同一瞬时刚体内各点的速度和加速度大小、方向都相同。

3.刚体绕定轴转动。

•刚体运动时,其中有两点保持不动,此运动称为刚体绕定轴转动,或转动。

•刚体的转动方程φ=f(t)表示刚体的位置随时间的变化规律。

•角速度ω表示刚体转动快慢程度和转向,是代数量,。

角速度也可以用矢量表示,。

•角加速度表示角速度对时间的变化率,是代数量,,当α与ω同号时,刚体作匀加速转动;当α与ω异号时,刚体作匀减速转动。

角加速度也可以用矢量表示,。

•绕定轴转动刚体上点的速度、加速度与角速度、角加速度的关系:。

速度、加速度的代数值为。

•传动比。

二.转动定律转动惯量转动定律力矩相同,若转动惯量不同,产生的角加速度不同与牛顿定律比较:转动惯量刚体绕给定轴的转动惯量J 等于刚体中每个质元的质量与该质元到转轴距离的平方的乘积之总和。

定义式质量不连续分布质量连续分布物理意义转动惯量是描述刚体在转动中的惯性大小的物理量。

它与刚体的形状、质量分布以及转轴的位置有关。

计算转动惯量的三个要素:(1)总质量; (2)质量分布; (3)转轴的位置 (1) J 与刚体的总质量有关 几种典型的匀质刚体的转动惯量平行轴定理和转动惯量的可加性 1) 平行轴定理设刚体相对于通过质心轴线的转动惯量为Ic ,相对于与之平行的另一轴的转动惯量为I ,则可以证明I 与Ic 之间有下列关系 2c I I md =+ 2)转动惯量的可加性对同一转轴而言,物体各部分转动惯量之和 等于整个物体的转动惯量。

三 角动量 角动量守恒定律2c I I md=+1.质点的角动量(Angular Momentum )——描述转动特征的物理量 1)概念一质量为m 的质点,以速度v运动,相对于坐标原点O 的位置矢量为r ,定义质点对坐标原点O 的角动量为该质点的位置矢量与动量的矢量积,即v m r P r L⨯=⨯= 角动量是矢量,大小为 L=rmv sin α式中α为质点动量与质点位置矢量的夹角。

第7章刚体的简单运动

第7章刚体的简单运动
2 =0.2 × (-2)=-0.4 m/s aM= r
B
vM
M
aM
r A
aMn

O
aMn = r = 0.2×12= 0.2 m/s2
2
vA
B
vM
M
aM
r
vA = vM = 0.2m/s aA = aM = - 0.4m/s
2
aMn
O
aA
A
vA
作业: 7- 1,4 ,6 ,7
d d 2 2 dt dt
0 t 0 t 匀变速运动: 2 2 2 1 2 0 0 0 t t 2
二.解题步骤及注意问题
1.解题步骤:
①弄清题意,明确已知条件和所求的问题。 ②选好坐标系:直角坐标法,自然法。 ③根据已知条件进行微分,或积分运算。 对常见的特殊运动, ④用初始条件定积分常数。 可直接应用公式计算。 2.注意问题: ①几何关系和运动方向。 ②求轨迹方程时要消去参数“t”。 ③坐标系(参考系)的选择。
第七章
刚体的简单运动
刚体运动的分类:
1、平行移动;
2、定轴转动;
3、平面运动;
4、定点运动;
5、一般运动。
§7-1刚体的平行移动(平动)
1 定义 刚体内任一直线在运动过程中始终平行于
初始位置,称为平动。

2
速度和加速度
rA rB BA
d rA d rB d BA dt dt dt
三.例题 [例1]列车在R=300m的曲线上匀变速行驶。轨道上曲线部分长
l=200m,当列车开始走上曲线时的速度v0=30km/h,而将要离开
曲线轨道时的速度是v1=48km/h。 求列车走上曲线与将要离开曲线时的加速度?

刚体的简单运动

刚体的简单运动
5
运动学
例 题 7- 1
第七章 刚体的简单运动
O1 l A O
(+)
O2 l M B
荡木用两条等长的钢索 平行吊起,如图所示。钢索 长为长 l ,度单位为 m 。当荡 木摆动时钢索的摆动规律 π t,其中 t 为 为 ϕ = ϕ 0 sin 4 时间,单位为s;转角φ0的单 位 为 rad , 试 求 当 t=0 和 t=2 s 时,荡木的中点M的速度和加 速度。
这里ϕ 0和ω 0是t = 0 时转角和角速度。
13
运动学
第七章 刚体的简单运动
§7-3 转动刚体内各点的速度和加速度
当刚体作定轴转动时,刚体内每一点都作圆 周运动,圆心在转轴上,圆心所在平面与转 轴垂直,半径R等于该点到轴线的距离。 用自然法, 点在 Δ t时间内,走过的弧长为 Δs=Δϕ R 速度
d 2 rB d2 d 2 rA aB = = 2 ( rA + rAB ) = = aA 2 2 dt dt dt
4
运动学
第七章 刚体的简单运动
由于点A和点B是刚体上的任意两点,因此可以 得出如下结论 平移刚体在任一瞬时速度,加速度都一样, 加速度都一样 各点的运动轨迹 形状相同。 即:平移刚体的运动可以简化为一个点的运动。
π s = ϕ 0 l sin t 4
ds π π = lϕ 0 cos t dt 4 4
将上式对时间求导,得A点的速度
v=
7
运动学
例 题 7- 1
O1 O2
第七章 刚体的简单运动
再求一次导,得A点的切向加速度
φ l
A O
(+)
l M B
π dv π2 at = =− lϕ 0 sin t dt 16 4

运动学(刚体简单运动)

运动学(刚体简单运动)
刚体的简单运动刚体的定轴转动三定轴转动刚体上点的加速度刚体定轴转动时各点均作圆周运动由自然法知转动刚体内一点的切向加速度大小等于刚体的角加速度与该点到轴线的垂直距离的乘积方向沿圆周的切线方向指向由角加速度决定
刚体的简单运动
§1 刚体的平行移动 §2 刚体的定轴转动 结论与讨论
习题
刚体的平行移动
刚体的简单运动
一、刚体平动的定义
在刚体上任取一条直线,若在运动过程中这 条直线始终与其初始的空间位置平行,则该 运动称为刚体的平行移动,简称平动。
刚体的平行移动
刚体的简单运动
二、刚体平动的运动分析
rA rB rBA rA rB rBA v A vB a A aB
刚体平移可归结为刚体内任一点(通常是质心)的运动。
2 O1 950 99.48rad/s 60
O
2
Z1 20 O1 99.48 39.79rad/s Z2 50
vC O2 AO2 0.25 39.79 9.95m/s
刚体的定轴转动
刚体的简单运动
例三 曲柄滑杆机构中,滑杆上有一圆弧滑道,其半径R=100mm, 圆心O1在导杆BC上.曲柄OA=100mm,以等角速度 4 rad 绕 s O轴转动.求导杆BC的运动规律以及当曲柄与水平线间的交角为 30时,导杆BC的速度和加速度。
刚体的简单运动
例六 图示一减速箱,由四个齿轮组成,其齿数分别为Z1=10, Z2=60 , Z3=12 , Z4=70 。(1)求减速箱的总传动比i13(2) 如果n1=3000rpm,求n3 。
n1 n1 n2 Z 2 Z 3 i13 i12 i23 34.8 n3 n2 n3 Z1 Z 2

刚体的简单运动习题及答案

刚体的简单运动习题及答案

刚体的简单运动习题及答案刚体的简单运动习题及答案刚体是物理学中的一个基本概念,它指的是在运动过程中形状和大小不发生改变的物体。

在学习刚体的运动时,我们可以通过一些简单的习题来加深对刚体运动的理解。

下面,我将为大家提供一些常见的刚体运动习题及答案。

习题一:平抛运动小明站在一个高处,手中拿着一个小球,以一定的初速度将球水平抛出。

假设空气阻力可以忽略不计,请问球的运动轨迹是什么形状?答案:球的运动轨迹是一个抛物线。

在平抛运动中,刚体在水平方向上做匀速直线运动,在竖直方向上受到重力的作用,所以球的轨迹是一个抛物线。

习题二:滚动运动一个圆柱体沿着水平面滚动,它的质心速度和边缘速度哪个更大?答案:质心速度和边缘速度相等。

在滚动运动中,刚体的质心沿着运动方向做匀速直线运动,而刚体的边缘点则具有线速度和角速度的叠加效果。

由于圆柱体的每个点都有相同的角速度,所以质心速度和边缘速度相等。

习题三:转动惯量一个均匀的圆盘和一个均匀的长方体,它们的质量和半径(或边长)相同,哪个的转动惯量更大?答案:圆盘的转动惯量更大。

转动惯量是刚体旋转时惯性的量度,它与刚体的质量分布有关。

由于圆盘的质量分布更加均匀,所以它的转动惯量更大。

习题四:平衡条件一个悬挂在绳子上的物体处于平衡状态,绳子与竖直方向的夹角是多少?答案:绳子与竖直方向的夹角等于物体所受的重力与绳子张力的夹角。

在平衡状态下,物体所受的重力与绳子张力必须保持平衡,即两者的合力为零。

因此,绳子与竖直方向的夹角取决于物体所受的重力与绳子张力的大小关系。

习题五:平移运动和转动运动一个刚体在平面上做平移运动时,它的转动惯量是多少?答案:在平移运动时,刚体的转动惯量为零。

平移运动是指刚体的质心沿直线运动,此时刚体没有绕任何轴心旋转,所以转动惯量为零。

通过以上习题的解答,我们可以更好地理解刚体的运动特性。

刚体的运动涉及到平抛运动、滚动运动、转动惯量和平衡条件等方面的知识,通过解答这些习题,我们可以加深对刚体运动的理解,提高解题能力。

刚体的简单运动—转动刚体内各点的速度和加速度(理论力学)

刚体的简单运动—转动刚体内各点的速度和加速度(理论力学)
二、角加速度 与an ,at的关系
设角加速度如图所示
A MO
O
切向加速度 at dv d (R) R d R (+)
dt dt
dt
R
an
v
at
即:转动刚体内任一点的切向加速度(又称转动加 速度)的大小,等于刚体的角加速度与该点到轴线
M
B
垂直距离的乘积。
它的方向由角加速度的符号决定,当是正值时,它沿圆周的切线,
[例]半径R=0.2m的圆轮绕定轴O的转动方程 t 2 4t ,单位为弧度。 求t=1s时,轮缘上任一点M的速度和加速度。如在此轮缘上绕一柔软而不
可伸长的绳子并在绳端悬一物体A,求当t=1s时,物体A的速度和加速度。 解:圆轮在任一瞬时的角速度和角加速度为
d 2t 4
dt
d2 2
• ①滑轮3s内的转数; • ②重物B在3s内的行程;
• ③重物B在t=3s时的速度;
• ④滑轮边上C点在初瞬时的加速度;
• ⑤滑轮边上C点在t=3s时的加速度。
解:① 因为绳子不可以伸长,所以有
C aA 1m/s2
aCt 1 2 rad/s2
R 0.5
( )常数
vC
vA
1.5m /s, 0 vC
4.5m /s2
a (at )2 (an )2 12 4.52 4.61 m/s2
C
C
C
tan aCt 1 0.222, 12.5
aCn 4.5
⑤ t=3s 时,
at a
1m/s2,a n
R 2
2
0.5 9
40.5m/s2
a 12 40.52 40.51m/s2,tan 1 0.0247, 1.41 C

理论力学第7章(点的合成运动)

理论力学第7章(点的合成运动)
(已知绝对运动和牵连运动求解相对运动的问题除外)
点的速度合成定理是瞬时矢量式,共包括大小‚方向
六个元素,已知任意四个元素,就能求出其他两个。 二、应用举例
[例] 桥式吊车 已知:小
车水平运行,速度为v平, 物块A相对小车垂直上升 的速度为v。求物块A的 运行速度。
解:选取动点: 物块A 动系: 小车 静系: 地面 相对运动: 直线; 相对速度vr =v 方向 牵连运动: 平动; 牵连速度ve=v平 方向 绝对运动: 曲线; 绝对速度va 的大小, 方向待求。
由速度合成定理 va= vr+ ve , 作出速度平行四边形 如图示。
v a v e tg 30 0 2 3 e 3 v AB 2 3 e ( ) 3
动点:AB杆上的A点 动系:偏心轮
绝对运动:直线 相对运动:圆周(曲线) 牵连运动:定轴转动
铰接四边形O1A=O2B=100mm, O1O2=AB,杆 O1A以等角速度 ω =2rad/s绕轴O1转动。 AB杆上有一套筒C,此套筒与杆CD相铰接 ,机构的各部件都在同一铅垂平面内。

[例3] 圆盘凸轮机构 已知:OC=e , R 3e , (匀角速度) 图示瞬时, OCCA 且 O、A、B三点共线。 求:从动杆AB的速度。
解:动点取直杆上A点,动系固结于圆盘, 静系固结于基座。 绝对速度 va = ? 待求,方向//AB 相对速度 vr = ? 未知,方向CA 牵连速度 ve =OA=2e , 方向 OA
y
O C
x
x
合成运动:相对某一参考体的运动可由相对于其它参考 体的几个运动组合而成,称这种运动为合成运动
动点:要研究的点
两个参考系: 一般把固定在地球上的坐标系称为静参考系; 用 Oxyz表示; 固定在相对地球运动的参考体上的坐标系称为动参考系; 用 Oxyz 表示。

刚体运动的描述

刚体运动的描述

刚体运动的描述一、刚体的平动(最简单)1、定义:在运动中,刚体上任意一条直线在各个时刻的位置都保持平行。

2、特点:①刚体上任意两点的连线在平动中是平行且相等的!②刚体上任意质元的位置矢量不同,相差一恒矢量,但各质元的位移、速度和加速度却相同。

因此,常用“刚体的质心”来研究刚体的平动:3、平动的自由度:3个二、刚体的定轴转动(较简单)1、定义:若刚体运动时,所有质元都在与某一直线垂直的诸平面上作圆周运动且圆心在该直线上,则称刚体绕固定轴转动,该直线称作转轴。

2、特点:①刚体中始终保持不动的直线就是转轴。

②刚体上轴以外的质元绕轴转动,转动平面与轴垂直且为圆周,圆心在轴上。

③和转轴相平行的线上各质元的运动情况完全一样。

3、定轴转动刚体的自由度:1个(刚体的角坐标θ)如图示:建立o-xyz系,z轴与转轴重合,o点任意选取,截取刚体一个剖面o-xy平面,此位置只要确定,刚体的位置就确定了,除o点外,再选一个A点,此图形的位置可由矢量来确定,而矢量的大小是不变的,方向只需由矢量与x轴的夹角θ来确定,此θ角称为:绕定轴转动刚体的角坐标。

θ角的正负规定:定轴转动刚体转动的方向和z轴成右手螺旋时,θ角为正,否则θ角为负。

4、定轴转动刚体运动的描述:①运动学方程:即:角坐标随时间的变化规律。

②描述刚体整体运动的物理量——角量,包括:角位移,角速度,角加速度。

角位移:定轴转动刚体在时间内角坐标的增量。

任意质元的角位移是相同的——是一整体运动的量。

面对z轴观察:逆时针转动,;反之,。

角速度ω:在这一过程中,即:瞬时角速度等于角坐标对时间的导数。

面对z轴观察逆时针转动时:;反之,。

角加速度β:∴即:瞬时角加速度等于角速度对时间的导数。

加速转动,β与ω同号;反之,。

③线量:描述定轴转动刚体上任一质元运动的物理量:线位移,线速度,线加速度。

如图示:A质元的线速度不同于B质元的线速度,以刚体上质元A为例:线位移:线速度:线加速度:即:由定轴转动刚体角量和线量关系可知:1、角速度矢量定义:方向规定:右手螺旋法则:四指的方向和转动方向一致,大母指的指向就是的方向,沿转轴,如图示:必须满足平行四边形法则:因此:刚体上任意质元的线速度:表示质元相对于转动任意点的位矢,组成右手螺旋。

07 刚体的简单运动Hxj

07 刚体的简单运动Hxj

角位移
Δ d lim * lim Δt 0 Δt 0 Δt dt
说明: 角速度单位是rad/s,工程单位n rpm(r/min或转/分) 换算关系为:
2n n 0.105n rad/s 60 30
3、 角加速度 设当t 时刻为 , t +△t 时刻为+△ (1) 平均角加速度
R

0.4m/s
a
M t t 1
R
t 1
d 2 R 2 dt
t 1
d 2 t 2 4t R dt 2


t 1
v
0.4m / s 2
a
M n t 1
R
2 t 1
0.2 2 0.8m / s
2
2
A
aA
全加速度大小及方向
a a 2 a 2 0.4 2 0.82 0.894m/s2 t n t 1 t 1 2 t 1 arctan 2 arctan t 1 4
§7-1 刚体的平行移动
一、概念 刚体运动时,如果在刚体内任取一直线段,在运动过程中 该直线段始终与其最初位置平行,这种运动称为平行移动 (translation),简称平移或平动。
河南理工大学力学系
理论力学
第七章 刚体的简单运动
二、刚体平行移动的性质 设刚体作平行移动,如图。在刚 体内任取两点A和B,设其矢径分别为 rA和rB,则两条矢端曲线就是两点的轨 迹。由图中几何关系可知
1、 转动方程 Ⅰ和Ⅱ夹角 ---转角(位 置角),单位为弧度(rad)
• 定轴转动方程 对着z轴正向看
t
7 2
• 的正、负规定 逆为正 顺为负

第七章 刚体的简单运动

第七章 刚体的简单运动

答案: ① (b) ; ② (a)
§7-4 轮系的传动比
1、齿轮传动
① 啮合条件
Rω1 = vA = vB = R2ω2 1
② 传动比
ω1 R2 z2 i12 = ± = ± = ± ω2 R z1 1
2、带轮传动
rω1 = vA = v′ = v′ = vB = r2ω2 1 A B
ω1 r2 i12 = = ω2 r 1
M点切向加速度 M点法向加速度
r r r at = α × r
r r r r r r an = ω×v = ω×(ω× r )
减速箱的齿轮Ⅰ、Ⅱ、Ⅲ和Ⅳ的 转轴在同一水平线上。各齿轮的齿数分别 为z1 = 36、z2= 112、z3 = 32 和 z4 = 128。 主动轮Ⅰ的转速n1 = 1450 r/min,求从动 轮Ⅳ的转速 n4 。 Ⅱ
例7-1 图示机构O1A = O2B = a,O1O2 = AB =
2R,半圆轮半径为R 。试问图示瞬时,轮上M点 的速度为 ① ;M点的轨迹曲率半径为 ② 。 M ① (a) Rω (b) a ω R A B (c) a ω sin 60° O ω
60 °
O1
O2

(a) a
(b) R
(c) a+R
( )
r r r dvB dvA r aB = = = aA dt dt
刚体平移→点的运动 →
§7-2 刚体绕定轴的转动
1、定义
刚体上(或其扩展部分)两点保持不动,则这种运动称 为刚体绕定ቤተ መጻሕፍቲ ባይዱ转动,简称刚体的转动。 转轴 :两点连线 转角: 单位:弧度(rad)
2、运动方程
= f (t )
3、角速度和角加速度

理论力学第三版课后答案郝桐生

理论力学第三版课后答案郝桐生

理论力学第三版课后答案郝桐生【篇一:理论力学a72】txt>课程编号: 070000140英文名称: theoretical mechanics适用专业:力学、机械类专业等学分数: 4.5 学时数: 72学时执笔者:王钦亭审核人:批准人:编写日期: 2013年6月一、课程性质与目的理论力学是工科高等院校机械、土建等专业本科生的一门重要的技术基础课。

它是各门力学课的基础,并在工程技术领域有着广泛的应用。

本课程的任务是使学生掌握物体机械运动的一般规律和研究方法,为学习有关的后续课程打好力学基础;使学生初步学会应用理论力学的理论和方法,分析、解决一些简单的工程实际问题;培养学生的逻辑思维能力和基本工程素质,同时培养学生的创新精神和辩证唯物主义世界观。

二、课程教学的主要内容及学时分配本课程主要讲述物体机械运动的一般规律,包括静力学、运动学和动力学三个主要部分。

本课程的难点是某些较为复杂的动力学系统问题。

重点是力学分析方法的训练和基本工程素质的培养。

静力学(24学时)第一章静力学公理及物体的受力分析(4学时)知识要点:静力学公理及推论;常见约束及约束反力的表示方法,物体受力分析与受力图的画法。

目标要求:理解5个静力学公理及2个推论,并注意它们各自的应用条件;掌握常见约束的性质和约束反力,能够对简单物体进行受力分析,掌握受力图的画法。

采用课堂教学,4学时。

第二章平面汇交力系与平面力偶系(4学时)目标要求:掌握求解平面汇交力系(包括力系合成和平衡问题的求解)的几何法;能熟练计算力的投影、力对点之矩;能够正确地理解合力矩定理和平面力偶等效定理;能够熟练应用平面汇交力系的解析法或平面力偶系的平衡方程求解简单的工程实际问题。

采用课堂教学,4学时。

第三章平面任意力系(8学时)知识要点:用解析方法研究平面任意力系的合成与平衡;讨论平面任意力系的合成结果与平衡条件;应用平面任意力系的平衡方程求解简单的工程实际问题。

哈尔滨工业大学 第七版 理论力学 第7章 课后习题答案

哈尔滨工业大学 第七版 理论力学 第7章 课后习题答案


设轮缘上任 1 点 M 的全加速度为 a,切向加速度 a t = rα ,法向加速度 a n = ω r ,如图
2
7-11b 所示。
tan θ =

α=
dω , θ = 60° 代入上式,得 dt
at α = 2 an ω
dω tan 60° = dt2
ω
分离变量后,两边积分:
∫ω

ω
0

ω
2
=∫
⎤ ⎡ ⎥ ⎢ sin ω t 0 θ = tan −1 ⎢ ⎥ ⎢ h − cos ω 0 t ⎥ ⎥ ⎢ ⎦ ⎣r

50 π ⋅ 600 100π r ω1 = rad/s ⋅ = 100 − 5t 30 10 − 0.5t d dω 5 000 π d ⎛ 1 000π ⎞ α2 = 2 = ⎜ ⎟= dt dt ⎝ 100 − 5t ⎠ (100 − 5π )2
故得
h1 =
h4 = 2 mm 6
图 7-7
7-8 如图 7-8 所示,纸盘由厚度为 a 的纸条卷成,令纸盘的中心不动,而以等速 v 拉纸条。求 纸盘的角加速度(以半径 r 的函数表示) 。 解 纸盘作定轴转动,当纸盘转过 2π rad 时半径减小 a。设纸盘转过 dθ 角时半径增加 dr ,则
dθ =
y
B
t aB
α j
O
vA x
ω
(a) 图 7-12
aC
(b)
i 45° A n
C
t aC

由图 7-12b 得出
84
理论力学(第七版)课后题答案 哈工大.高等教育出版社
v A = 0.2 j m/s , v A = ω × Ri , ω × 0.1i = 0.200 j , ω = 2k ,

刚体运动的动力学方程解析

刚体运动的动力学方程解析

二、刚体定轴转动的动力学方程
三、刚体定轴转动动力学方程的应用
四、动静法
质点系的达朗伯原理
五、点的复合运动
• 点的速度合成
六、刚体的复杂运动
基点法
速度投影法
速度瞬心法
J
=J=1对2 对M1mRmM:2
:m
Rm2 g
T m2a a
g T1
T ma
R
m
a
amgR
a R
2
解方程得:
a
m m M
g
2
R
例2 一个飞轮的质量为69kg ,半径为0.25m,正在以每分1000转 的转速转动。现在要制动飞轮,要求在5.0秒内使它均匀减速而 最后停下来。摩擦系数为0.46。求闸瓦对轮子的压力N为多大? (J = mR2 )
J

A
J

C
m
L 2
2
1 12
mL2
1 4
mL2
1 mL2 3
推广: 若有任一轴与过质心的轴 平行且相距d ,刚体对其转动惯 量为: J J C m d 2 , 称为平行轴 定理。
dc
第三节 刚体简单运动动力学方程的应用
主要研究刚体定轴转动动力学方程的应用
一、已知刚体的转动规律,求作用于刚体上的外力 例12-4
二、已知作用于刚体上的力矩,求转动规律 例12-5 例12-6
第四节 动静法

一、质点的达朗伯原理
二、质点系的达朗伯原理
平面任意力系的平衡条件: (1)力系中各力在X 轴和Y轴上投影的代数和为零; (2)力系中各力对平面内任一点的力矩的代数和为零
动静法的应用:刚体的平动和绕定轴转动 1、刚体的平动

第7章 刚体的简单运动

第7章  刚体的简单运动

第七章 刚体的简单运动在工程实际中,最常见的刚体运动有两种基本运动形式:平动和转动。

一些较为复杂的刚体运动,如车轮在直线轨道上的滚动等,都可以归结为这两种基本运动的组合。

因此,平动和转动是分析一般刚体运动的基础。

§7-1 刚体的平行移动平动是刚体最简单的一种运动。

例如,车刀的刀架,摆式输送机的料槽,以及沿直线轨道行驶的列车的车厢等,都是平动的实例。

这些刚体的运动具有一个共同的特点:运动时,刚体上任一直线始终与原来位置保持平行。

刚体的这种运动称为平行移动,简称为平动。

刚体作平动时,刚体上的点可以是直线运动(刀架),也可以是曲线运动(送料槽)。

现在就一般情形,研究刚体内各点的运动轨迹,速度和加速度。

刚体作平动在刚体上任取一线段AB 。

该刚体的运动可由AB 在空间的位置确定。

为研究刚体内各点的运动,可以O 为参考点,向A 、B 两点分别引矢径r A 和r B ,则点A 和B 的运动方程分别为r A =r A (t), r B =r B (t)AB B A r r r += (*)由于刚体作平动,在运动中矢量AB 的大小和方向都不改变,所以AB 为一常矢量。

这说明:点A 和B 不仅运动轨迹形状相同,而且运动规律也相同。

如上面的各例中,刀架上各点的轨迹是相互平行的直线;料槽上各点的轨迹都是半径等于AC 的圆弧。

将式(*)对时间t 取一阶和二阶导数,同时注意到常矢量AB 的导数等于零,于是有B A v v =B A a a =这说明:刚体内任意两点的速度、加速度相等。

综合以上分析,可得如下结论:(1) 刚体平动时,其上各点的轨迹形状相同;(2) 同一瞬时各点的速度彼此相等,各点的加速度也彼此相等。

因此,在研究刚体平动时,只要知道刚体上某一点的运动,就能知道所有点的运动。

所以,刚体的运动可归结为点的运动。

§7-2 刚体绕定轴的转动定轴转动是工程中常见的一种运动,如电动机的转子,机床中的胶带轮、齿轮以及飞轮等的运动,都是定轴转动的实例。

(完整版)6刚体的简单运动

(完整版)6刚体的简单运动

an
v2
1 R 2
R
R 2
方向:与速度垂直并指向轴线
4 速度与加速度分布图
1、定轴转动刚体上各点的速度和加速度的大小均与该点到转轴 的垂直距离成正比。
2、在任一瞬时,刚体上所有各点的加速度a与该点轨迹半径的 夹角θ都具有相同值而与该点位置无关。
v R
a at2 an2 R 2 4
tan at an 2
0 t
d (0 t)dt
0
0t
1 t 2
2
0
0t
1 2
t 2
计算机硬盘驱动器的马达以匀变速转动,启动后为了能
尽快达到最大工作转速,要求在3秒内转速从0增加到
3000r/min,求马达的角加速度及转过的转数。
解: 马达的初始角速度 0 0
3秒后
n
30
3000 100
30
rad
s
0 t
d
dt
——表征刚体转动的快慢和转向; 是代数量,单位为:rad/s
3)角加速度
d
dt
d 2
dt 2
——表征角速度随时间变化的快慢; 是代数量,单位:rad/s2
两种特殊情形
1)匀速转动
d 常数
dt
d dt
0 t
0 t
2)匀变速转动
d =常数
dt
d dt
0 dt
简化:刚体上任取一条直线A1A//z轴。 由于A1A作平动,取A代表直线运动。 即:刚体转动简化为与转轴垂直的平面
图形的运动;平面上各个点的运动代表了对应 的整个刚体的点的运动规律。
3、转动刚体的转动方程、角位移、角速度和角加速度
f ( t ) 转动方程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
s R (逆时针为正)
自然法
2.点的速度
s R
v ds R d R
dt dt
v 指向为刚体转动的方向或与 ω 的转动方向一致。
刚体绕定轴转动 (逆时针为正)
刚体绕定轴转动
2.点的加速度
s R (逆时针为正)
切向加速度
a
dv dt
R d
dt
R
aτ 指向沿轨迹的切线与α 的转
动方向一致。
点M的全加速度大小。
解: M点的速度为
vM
vM
vA
dx dt
10t
m/s
M点的加速度为
aMt aMt
aMn
vM2 R
aA 200t 2
d2x dt 2 m/s2
10
m/s2
aM
aMt
2
aMn
2
10
1 400t 4
m/s2
三、轮系的传动比
刚体绕定轴转动
齿轮系
带轮系
刚体绕定轴转动
同一瞬时荡木上各点的速度、加速 度相等 vM vA aM aA
点A绕圆心O1,作半径为 l 的圆弧 运动
自然法: 假设弧坐标s向右为正,
s
l
l0
sin
4
t
刚体的平行移动
运动方程:
s
l
l0
sin
4
t
任一瞬时t, v ds l0 cos t
dt 4 4
, 0 sin t 4aΒιβλιοθήκη dv dt2l0 16
解: d 1681t 2 rad/s dt 162t rad/s2 4 0 时,即 16 81t2 0 时,解得 t 9 s 此时刚体改变转向。容易算得:在此之前,ω>0,刚体 逆时针转动;在此之后,ω<0,刚体顺时针转动。
d 1681t2 rad/s dt 162t rad/s2
法向加速度
an
v2
R 2
R
R 2
an方向沿转动半径并指向转轴。
全加速度
a
a2 an2
R 2
R 2
2
R
2 4
tan a
R
a R2 2
刚体绕定轴转动
例7-3 半径为R 0.5 m的定滑轮上绕有细绳,绳端系一 重物A,如图所示。已知重物的运动方程为 x 5t2 其中t
以s计。试求定滑轮的角速度和角加速度,并求轮缘上一
rA rB BA
式中BA的长度和方向都不变,即 BA为常矢量。由此可知,在运动过 程中,A、B两点的运动轨迹形状完 全相同。
上式两边对时间 t 求导
vA vB
aA aB 说明:在任一瞬时,平移刚体上的A、B两点速度相同, 加速度相同。
刚体的平行移动
由于A、B两点是刚体上任选的两点,可知: ①刚体作平移时,其上各点的运动轨迹形状相同; ②在每一瞬时各点的速度和加速度相同。
刚体的简单运动
1. 刚体的平行移动 2. 刚体绕定轴转动
研究内容:
刚体的整体运动规律 刚体上任一点的运动规律
刚体的平行移动
火车车厢的运动
振动筛筛体的运动
刚体在运动时,其上任意直线总是平行于其初始位置, 将刚体作的这种运动称为平行移动,也可以称为平移或平 动。
刚体的平行移动
平行移动刚体的运动特点:
60 30 (3) 匀变速转动: α为常量
0 t
0
0t
1t2
2
2 02 2 0
刚体绕定轴转动
例7-2 刚体绕定轴转动,其转动方程为 16t 27t3
(其中 t 以s计,φ以rad计)。试问刚体何时改变转向?
分别求出当 t=0、t=0.1s和 t=1s时的角速度和角加速度, 且判断在各瞬时刚体做加速转动还是做减速转动。
以齿轮传动为例,进行说明。
vB vA
R11 R22 或
1 R2 2 R1
传动比i12为主动轮与从动 轮的角速度比值
i12
1 2
R2 R1
z2 z1
刚体绕定轴转动
t=0时, 0 16rad/s,0 0 此瞬时刚体做匀速转动。
t=0.1s时,1 16 81 0.12 15.19 rad/s
1 162 0.1 16.2 rad/s2
ω1与α1异号,刚体做减速转动。
t=1s时, 2 16 8112 65 rad/s
2 1621 162 rad/s2
负 2. 角速度和角加速度:
角速度: d 正负号规定与φ一
dt 致 角加速度: d d 2
dt dt2
正负号规定与φ一
刚体绕定轴转动
3. 刚体定轴转动的运动分析
(1) 加速转动: ω与α符号一致;
减速转动: ω与α符号相反;
(2) 匀速转动: α=0,ω为常量 0 t
转速n与角速度ω之间的关系: 2 n n
刚体绕定轴转动
刚体运动时,若刚体内或其扩展部分有一直线,其上各点 始终保持不动,则称此种运动为刚体绕定轴转动,简称刚体 转动。
该固定不动的直线称为转轴或简称为轴。
d d 2 dt dt2
刚体绕定轴转动
一、定轴转动刚体整体运动的描述
1. 运动方程: 转角 f t
转角φ正负号规定:逆时针为正,反之为
sin
t 4
an
v2
v2 l
2l02 16
cos2 t 4
t = 0s时,
vM
vA
l0
4
a 0
an
v2
v2 l
2l02 16
aM aA
a2
an2
2l02
16
加速度的方向铅垂向上。
t = 2s时,
vM 0
a
2l0 16
an 0
aM
a2
an2
2l0
16
加速度的方向沿轨迹切线的方向,弧坐标的负向。
刚体的平行移动可以归结为刚体上任一点(通常是质 心)的运动问题来处理,即可采用上一章所研究的点的 运动学结论。
必须要会判断刚体运动的类型。
刚体的平行移动
例7-1 荡木用两根等长的绳索平行吊起,如下图所示。
已知
,绳索长
,摆动规律为

试求:当 s和 s时,荡木中点M的速度和加速度。
解: 荡木作平行移动。
ω1与α1同号,刚体做加速转动。
刚体绕定轴转动
二、定轴转动刚体上点的速度和加速度 刚体绕定轴转动时,刚体内任一点都作圆周运动,圆心在 轴线上,圆周所在的平面与轴线垂直,圆周的半径R等于该 点到轴线的垂直距离。
1.以弧坐标表示的点的运动方程
以M0为弧坐标 s 的原点,按 φ 角的正
向规定弧坐标的正向,则运动方程为
相关文档
最新文档