九年级数学上册《概率初步》经典练习题

合集下载

九年级数学上册《概率初步》测试题及答案

九年级数学上册《概率初步》测试题及答案

第二十五章 概率初步全章测试附参考答案一、选择题1.足球比赛前,裁判通常要掷一枚硬币来决定比赛双方的场地与首先发球者,其主要原因是( ).A .让比赛更富有情趣B .让比赛更具有神秘色彩C .体现比赛的公平性D .让比赛更有挑战性2.小张掷一枚硬币,结果是一连9次掷出正面向上,那么他第10次掷硬币时,出现正面向上的概率是( ). A .0 B .1 C .0.5 D .不能确定 3.关于频率与概率的关系,下列说法正确的是( ). A .频率等于概率B .当试验次数很多时,频率会稳定在概率附近C .当试验次数很多时,概率会稳定在频率附近D .试验得到的频率与概率不可能相等 4.下列说法正确的是( ). A .一颗质地均匀的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001次一定抛掷出5点B .某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C .天气预报说明天下雨的概率是50%.所以明天将有一半时间在下雨D .抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等 5.下列说法正确的是( ).A .抛掷一枚硬币5次,5次都出现正面,所以投掷一枚硬币出现正面的概率为1B .“从我们班上查找一名未完成作业的学生的概率为0”表示我们班上所有的学生都完成了作业C .一个口袋里装有99个白球和一个红球,从中任取一个球,得到红球的概率为1%,所以从袋中取至少100次后必定可以取到红球(每次取后放回,并搅匀)D .抛一枚硬币,出现正面向上的概率为50%,所以投掷硬币两次,那么一次出现正面,一次出现反面6.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是( ).A .21 B .31 C .61 D .81 7.在今年的中考中,市区学生体育测试分成了三类,耐力类、速度类和力量类.其中必测项目为耐力类,抽测项目为:速度类有50m 、100m 、50m × 2往返跑三项,力量类有原地掷实心球、立定跳远、引体向上(男)或仰卧起坐(女)三项.市中考领导小组要从速度类和力量类中各随机抽取一项进行测试,请问同时抽中50m × 2往返跑、引体向上(男)或仰卧起坐(女)两项的概率是( ). A .31 B .32 C .61 D .918.元旦游园晚会上,有一个闯关活动:将20个大小、重量完全一样的乒乓球放入一个袋中,其中8个白色的,5个黄色的,5个绿色的,2个红色的.如果任意摸出一个乒乓球是红色,就可以过关,那么一次过关的概率为( ).A .32 B .41 C .51 D .101 9.下面4个说法中,正确的个数为( ). (1)“从袋中取出一只红球的概率是99%”,这句话的意思是肯定会取出一只红球,因为概率已经很大(2)袋中有红、黄、白三种颜色的小球,这些小球除颜色外没有其他差别,因为小张对取出一只红球没有把握,所以小张说:“从袋中取出一只红球的概率是50%” (3)小李说,这次考试我得90分以上的概率是200% (4)“从盒中取出一只红球的概率是0”,这句话是说取出一只红球的可能性很小 A .3 B .2 C .1 D .0 10.下列说法正确的是( ).A .可能性很小的事件在一次试验中一定不会发生B .可能性很小的事件在一次试验中一定发生C .可能性很小的事件在一次试验中有可能发生D .不可能事件在一次试验中也可能发生 二、填空题11.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个.搅匀后,从中同时摸出2个小球,请你写出这个实验中的一个可能事件:_______ __________.12.掷一枚均匀的骰子,2点向上的概率是______,7点向上的概率是______. 13.设盒子中有8个小球,其中红球3个,黄球4个,蓝球1个,若从中随机地取出1个球,记事件A 为“取出的是红球”,事件B 为“取出的是黄球”,事件C 为“取出的是蓝球”,则P (A )=______,P (B )=______,P (C )=______.14.有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1,2,3,4,5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回地从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是______.15.下面图形:四边形,三角形,正方形,梯形,平行四边形,圆,从中任取一个图形既是轴对称图形又是中心对称图形的概率为______.16.从下面的6张牌中,一次任意抽取两张,则其点数和是奇数的概率为______.17.在一个袋子中装有除颜色外其他均相同的2个红球和3个白球,从中任意摸出一个球,则摸到红球的概率是______.18.在一个不透明的盒子中装有2个白球,n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为32,则n =______. 三、解答题19.某出版社对其发行的杂志的质量进行了5次“读者调查问卷”,结果如下:(2)读者对该杂志满意的概率约是多少?(3)从中你能说明频率与概率的关系吗?20.四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.(1)求随机抽取一张卡片,恰好得到数字2的概率;(2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为这个游戏公平吗?请用列表法或画树形图法说明理由.21.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:(2)假如摸一次,你到白球的概率P(白球)=______;(3)试估算盒子里黑、白两种颜色的球各有多少只?答案与提示第二十五章 概率初步全章测试1.C . 2.C . 3.B . 4.D . 5.B . 6.C . 7.D . 8.D . 9.D . 10.C .11.略. 12..0,6113.P (A )=0.375,P (B )=0.5,P (C )=0.125.14.0.4. 15..31 16.⋅15817.0.4. 18.1.19(3)概率是通过大量重复试验中频率的稳定性得到的一个0~1的常数. 20.解:(1)⋅==2142)2(抽到P或画树状图: 第一次抽第二次抽从表(或树状图)中可以看出所有可能结果共有16种,符合条件的有10种, ∵P (两位数不超过32)=851610=. ∴游戏不公平.21.(1)0.6; (2)0.6; (3)16只黑球,24只白球.。

九年级数学上册《概率初步》练习题及答案

九年级数学上册《概率初步》练习题及答案

九年级数学上册《概率初步》练习题及答案学校:___________姓名:___________班级:_____________一、单选题1.在一个不透明的布袋内,有红球5个,黄球4个,白球1个,蓝球3个,它们除颜色外,大小、质地都相同.若随机从袋中摸取一个球,则摸中哪种球的概率最大()A.红球B.黄球C.白球D.蓝球2.一个不透明的箱子里装有m个球,其中红球有5个,这些球除颜色外都相同.每次将球搅拌均匀后,任意摸出一个球记下颜色后再放回.大量重复试验后发现,摸到红球的频率稳定在0.25,那么可以估算出m 的值为()A.25B.20C.15D.103.如图,小红在一张长为6m,宽为5m的长方形纸上画了一个老虎图案,他想知道该图案的面积大小,于是想了这样一个办法,朝长方形的纸上扔小球,并记录小球落在老虎图案上的次数(球扔在界线上或长方形纸外不计试验结果),他将若干次有效试验的结果整理成统计表,由此他估计此图案的面积大约为()A.29.6m D.211.1m B.210.5m C.29m4.班长邀请A,B,C,D四位同学参加圆桌会议.如图,班长坐在⑤号座位,四位同学随机坐在⑤⑤⑤⑤四个座位,则A,B两位同学座位相邻的概率是()A.14B.13C.12D.235.在一次数学活动课上,某数学老师将1~10共十个整数依次写在十张不透明的卡片上(每张卡片上只写一个数字,每一个数字只写在一张卡片上,而且把写有数字的那一面朝下).他先像洗扑克牌一样打乱这些卡片的顺序,然后把甲,乙,丙,丁,戊五位同学叫到讲台上,随机地发给每位同学两张卡片,并要求他们把自己手里拿的两张卡片上的数字之和写在黑板上,写出的结果依次是:甲:11;乙:4;丙:16;丁:7;戊:17.根据以上信息,下列判断正确的是()A.戊同学手里拿的两张卡片上的数字是8和9B.丙同学手里拿的两张卡片上的数字是9和7C.丁同学手里拿的两张卡片上的数字是3和4D.甲同学手里拿的两张卡片上的数字是2和9.6.平行四边形ABCD的对角线AC、BD相交于O,给出的四个条件⑤AB=BC;⑤∠ABC=90°;⑤OA=OB;⑤AC⑤BD,从所给的四个条件中任选两个,能判定平行四边形ABCD是正方形的概率是()A.13B.12C.16D.237.x=-1不是下列哪一个不等式的解()A.2x+1≤-3B.2x-1≥-3C.-2x+1≥3D.-2x-1≤3 8.下列说法正确的是()A.一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是3 5B.某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖C.射击运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是12D.小李与小陈做猜拳游戏,规定每人每次出一只手,且至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,则小李获胜的可能性较大二、填空题9.一个分数的分子比分母少6,如果分子分母都加1,则这个分数的值等于14,则这个分数为________.10.如图,在平面直角坐标系中,四边形ABCD的顶点在双曲线y=2x和y=kx上,对角线AC,BD均过点O,AD⑤y轴,若S四边形ABCD=12,则k=_____.11.如图,甲、乙、丙3人站在56网格中的三个格子中,小王随机站在剩下的空格中,与图中3人均不在同一行的概率是________.12.小强、小亮、小文三位同学玩投硬币游戏.三人同时各投出一枚均匀硬币,若出现三个正面向上或三个反面向上,则小强赢;若出现两个正面向上和一个反面向上,则小亮赢;若出现一个正面向上和两个反面向上,则小文赢.有下列说法:⑤小强赢的概率最小;⑤小文和小亮赢的概率相等;⑤小文赢的概率是38;⑤这是一个公平的游戏.其中,正确的是__________(填序号).13.在“抛硬币”游戏中,抛5次出现1次正面;抛50次出现31次正面;抛6000次出现2980次正面;抛9999次出现5006次正面.试问:()1四次抛硬币,出现正面的频率各是________、________、______、_______.()2用一句话概括出游戏中的规律________.14.对某名牌衬衫抽检的结果如下表:如果销售1 000件该名牌衬衫,那么至少要多准备________件合格品,以便供顾客更换.三、解答题15.佳佳和琪琪两位同学玩抽数字游戏,5张卡片上分别写有2,4,6,8,x 这5个数字,其中两张卡片上的数字是相同的.从中随机抽出一张,已知()265P =抽到数字的卡片.(1)求这5张卡片上的数字的众数.(2)若佳佳已抽走一张数字2的卡片,琪琪准备从剩余4张卡片中抽出一张.⑤所剩的4张卡片上数字的中位数与原来5张卡片上数字的中位数是否相同?并简要说明理由.⑤琪琪先随机抽出一张卡片后放回,之后又随机抽出1张,用列表法(或树状图)求琪琪两次都抽到数字6的概率.16.孔子曾说:“知之者不如好之者,好之者不如乐之者.”兴趣是最好的老师,阅读、书法、绘画、手工、烹饪、运动、音乐……各种兴趣爱好是打并创新之门的金钥匙.某校为了解学生兴趣爱好情况,组织了问卷调查活动,从全校2200名学生中随机抽取了200人进行调查,其中一项调查内容是学生每周自主发展兴趣爱好的时长.对这项调查结果使用画“正”字的方法进行初步统计,得到下表: 学生每周自主发展兴趣爱好时长分布统计表根据以上信息,解答下列问题:(1)补全频数直方图;(2)这200名学生每周自主发展兴趣爱好时长的中位数落在第__________组;(3)若将上述调查结果绘制成扇形统计图,则第二组的学生人数占调查总人数的百分比为__________,对应的扇形圆心角的度数为__________︒;(4)学校倡议学生每周自主发展兴趣爱好时长应不少于2h,请你估计,该校学生中有多少人需要增加自主发展兴趣爱好时间?17.为了调动同学们学习数学的积极性,班内组织开展了“数学小先生”讲题比赛,老师将四道备讲题的题号1,2,3,4,分别写在完全相同的4张卡片的正面,将卡片背面朝上洗匀.(1)随机抽取一张卡片,卡片上的数字是“4”的概率是________;(2)小明随机抽取两张卡片,用画树状图或列表的方法求两张卡片上的数字是“2”和“3”的概率.18.寒冬战疫,西安常安,感谢每一位为这座城拼命的人!一个不透明的口袋里装有分别标有汉字“西”、“安”、“常”、“安”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一球,球上的汉字刚好是“安”的概率为多少?(2)甲从中任取一球,不放回,再从中任取一球,请用画树状图或列表法,求出甲取出的两个球上的汉字恰能组成“西安”的概率。

九年级数学上册第二十五章概率初步专项训练题(带答案)

九年级数学上册第二十五章概率初步专项训练题(带答案)

九年级数学上册第二十五章概率初步专项训练题单选题1、王师傅对某批零件的质量进行了随机抽查,并将抽查结果绘制成如下表格,请你根据表格估计,若从该批零件中任取一个,为合格零件的概率为( )答案:A分析:用“实验频率”的稳定值估计“概率”,从而得到合格零件的概率;解:∵随着实验次数的增多,合格零件的频率逐渐靠近常数0.9,∴从该批零件中任取一个,为合格零件的概率为0.9.故选:A .小提示:本题考查利用频率估计概率,掌握“大量反复试验下频率稳定值即概率”是解本题的关键.2、,甲,乙两辆汽车即将经过该丁字路口,它们各自可能向左转或向右转,且两种情况的可能性相等,则它们经过丁字路口时,都向右转的概率为( )A .14B .13C .12D .23 答案:A分析:通过画树状图法或列表法找出所有等可能的结果数,再找出符合题意(都向右转)的结果数,利用概率公式计算即可.:由题意,画树状图如下:可知共有4种等可能的结果,符合条件的只有1种,故两辆汽车都向右转的概率为14, 故选:A .小提示:本题考查简单概率的计算,熟练掌握概率公式,能够通过列表或画树状图法找出所有等可能的结果数是解题的关键.3、如图,点D 在△ABC 的边AC 上,连接BD ,点P 的位置如图所示,在图中随机选择一个三角形,则点P 在选择的三角形内部的概率是( )A .12B .13C .23D .1 答案:C分析:先找到图中一共有3个三角形,再找到符合要求的三角形有2个,即可求出概率.解:∵图干图形中,三角形有△ABD 、△ABC 、△BCD ,则点P 在△ABD 、△ABC 内部∴P (点P 在选择的三角形内部的概率)=23故选:C .小提示:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.4、关于频率和概率的关系,下列说法正确的是( )A.当实验次数很大时,概率稳定在频率附近B.实验得到的频率与概率不可能相等C.当实验次数很大时,频率稳定在概率附近D.频率等于概率答案:C分析:大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果.解:A、概率是定值,故本选项错误,不符合题意;B、可以相同,如“抛硬币实验”,可得到正面向上的频率为0.5,与概率相同,故本选项错误,不符合题意;C、当实验次数很大时,概率稳定在频率附近,正确,故本选项符合题意;D、频率只能估计概率,故本选项错误,不符合题意;故选:C.小提示:此题考查利用频率估计概率,大量反复试验下频率稳定值即概率.5、小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:)A.20B.300C.500D.800答案:C分析:随着实验次数的增加,正面向上的频率逐渐稳定到某个常数附近,据此求解即可.观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近,所以抛掷硬币的次数为1000,则“正面朝上”的频数最接近1000×0.5=500次,故选C.小提示:本题考查利用频率估计概率的知识,解题的关键是了解在大量重复试验中,可以用频率估计概率.6、如图,在5×6的长方形网格飞镖游戏板中,每块小正方形除颜色外都相同,小正方形的顶点称为格点,扇形OAB的圆心及弧的两端均为格点.假设飞镖击中每一块小正方形是等可能的(击中扇形的边界或没有击中游戏板,则重投1次),任意投掷飞镖1次,飞镖击中扇形OAB(阴影部分)的概率是()A .π12B .π24C .√10π60D .√5π60 答案:A分析:根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.解:由图可知,总面积为:5×6=30,OB =√32+12=√10,∴阴影部分面积为:90·π×10360=5π2,∴飞镖击中扇形OAB (阴影部分)的概率是5π230=π12,故选:A .小提示:本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件;然后计算阴影区域的面积在总面积中占的比例,这个比例即事件发生的概率.7、小明在一次用频率估计概率的实验中,统计了某一结果出现的频率,并绘制了如图所示的统计图,则符合这一结果的实验可能是( )A .掷一枚质地均匀的硬币,正面朝上的概率B.从一副去掉大小王的扑克牌中任意抽取一张,抽到黑桃的概率C.从一个装有2个白球和1个红球的不透明袋子中任意摸出一球(小球除颜色外,完全相同),摸到红球的概率D.任意买一张电影票,座位号是2的倍数的概率答案:C分析:根据统计图可知,实验结果频率在33%左右,因此事件的概率也为33%,符合此概率的即为正确答案.=50%,故A选项错误,不符合题意;A、掷一枚硬币,正面朝上的概率为12B、从一副去掉大小王的扑克牌中任意抽取一张,抽到黑桃的概率为1=25%,故B选项错误,不符合题意;4≈33%,故C选项正C、从一个装有2个白球和1个红球的不透明袋子中任意摸出一球,摸到红球的概率为13确,符合题意;D、任意买一张电影票,座位号是2的倍数的概率在是50%,故D选项错误,不符合题意;故选C.小提示:本题考查了利用频率估计概率的知识,分别求得每个选项的概率是解题的关键.8、有一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A.6B.16C.18D.24答案:B分析:先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数.解:∵摸到红色球、黑色球的频率稳定在15%和45%,∴摸到白球的频率为1-15%-45%=40%,故口袋中白色球的个数可能是40×40%=16个.故选B.小提示:本题考查了利用频率求频数的知识,具体数目应等于总数乘部分所占总体的比值.9、抛掷一枚质地均匀的硬币,“反面朝上”的概率为0.5,那么抛掷一枚质地均匀的硬币100次,下列理解正确的是()A.可能有50次反面朝上B.每两次必有1次反面朝上C.必有50次反面朝上D.不可能有100次反面朝上答案:A分析:概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现,据此逐项判断即可.解:抛掷一枚质地均匀的硬币,“反面朝上”的概率为0.5,那么抛掷一枚质地均匀的硬币100次,可能有50次反面朝上,故选:A.小提示:本题主要考查了概率的意义和应用,要熟练掌握,解答此题的关键是要明确:概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.10、如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),他将若干次有效实验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为()A.6m2B.7m2C.8m2D.9m2答案:B分析:本题分两部分求解,首先假设不规则图案面积为x,根据几何概率知识求解不规则图案占长方形的面积大小;继而根据折线图用频率估计概率,综合以上列方程求解.假设不规则图案面积为x,由已知得:长方形面积为20,根据几何概率公式小球落在不规则图案的概率为:x,20当事件A实验次数足够多,即样本足够大时,其频率可作为事件A发生的概率估计值,故由折线图可知,小球落在不规则图案的概率大约为0.35,=0.35,解得x=7.综上有:x20故选:B.小提示:本题考查几何概率以及用频率估计概率,并在此基础上进行了题目创新,解题关键在于清晰理解题意,能从复杂的题目背景当中找到考点化繁为简,创新题目对基础知识要求极高.填空题11、一个不透明的袋子装有除颜色外其余均相同的2个红球和m个黄球,随机从袋中摸出个球记录下颜色,再放回袋中摇匀大量重复试验后,发现摸出红球的频率稳定在0.2附近,则m的值为_________.答案:8分析:首先根据题意可取确定摸出红球的概率为0.2,然后根据概率公式建立方程求解即可.解:∵大量重复试验后,发现摸出红球的频率稳定在0.2附近,∴摸出红球的概率为0.2,=0.2,由题意,22+m解得:m=8,经检验,m=8是原方程的解,且符合题意,所以答案是:8.小提示:本题考查由频率估计概率,以及已知概率求数量;大量重复试验后,某种情况出现的频率稳定在某个值附近时,这个值即为该事件发生的概率,掌握概率公式是解题关键.12、从3、5、6、9四个数中随机取一个数,不放回,再随机取一个数,把第一个数作为十位数字,第二个数作为个位数字,组成一个两位数,则这个两位数是奇数的概率是______.答案:34分析:从4个数中取两个数组成两位数,把所有情况全部列出来,找出其中的奇数,用奇数的个数除以两位数的总个数就是这个两位数是奇数的概率.从3、5、6、9这四个数中取两个数组成两位数有下列情况:35、36、39、53、56、59、63、65、69、93、95、96,共12种结果,其中奇数有9种结果,∴P(这个两位数是奇数)= 912=34所以答案是:34小提示:本题考查了概率的计算,事件A发生的概率=事件A发生的所有可能结果数所有事件发生的可能结果数,掌握概率的计算方法是解题的关键.13、如图,正六边形内接于⊙O,小明向圆内投掷飞镖一次,则飞镖落在阴影部分的概率是__.答案:16分析:根据图形分析可得求图中阴影部分面积实为求扇形部分面积,而扇形面积是圆面积的16,可得结论.如图所示:连接OA,∵正六边形内接于⊙O,∴△OAB,△OBC都是等边三角形,∴∠AOB=∠OBC=60°,∴OC∥AB,∴S△ABC=S△OBC,∴S阴=S扇形OBC,则飞镖落在阴影部分的概率是16;故答案为16.小提示:此题主要考查了正多边形和圆、几何概率以及扇形面积求法,得出阴影部分面积=S扇形OBC是解题关键.14、一个木盒里装有除颜色不同以外其他完全相同的2枚黑色围棋子和3枚白色围棋子.现从木盒中随机取出1枚棋子,记下颜色后放回篮中搅拌均匀.再从木盒里取出一枚棋子,则前后两次取到都是白棋的概率是__________.答案:925分析:画树状图,共有25种等可能的结果,其中前后两次取到都是白棋的结果有9种,再由概率公式求解即可.解:画树状图如下:共有25种等可能的结果,其中前后两次取到都是白棋的结果有9种,∴前后两次取到都是白棋的概率是925所以答案是:925.小提示:本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.15、投掷一枚正方体骰子,朝上的一面是合数的可能性大小是_____.答案:13分析:正方体骰子共6个数,其中4和6为合数,所以投掷一枚正方体骰子,朝上的一面是合数的可能性大小是26=1 3.解:正方体骰子共6个数,合数为4,6共2个,所以投掷一枚正方体骰子,朝上的一面是合数的可能性大小是26=1 3,所以答案是:13.小提示:本题考查判断事件发生的可能性大小,利用概率来求解是解题的关键.解答题16、“共和国勋章”获得者钟南山院士说:按照疫苗保护率达到70%计算,中国的新冠疫苗覆盖率需要达到近80%,才有可能形成群体免疫.本着自愿的原则,18至60周岁符合身体条件的中国公民均可免费接种新冠疫苗.居民甲、乙准备接种疫苗,其居住地及工作单位附近有两个大型医院和两个社区卫生服务中心均可免费接种疫苗,提供疫苗种类如下表:用A、B、C、D表示选取结果)(1)居民甲接种的是新冠病毒灭活疫苗的概率为;(2)请用列表或画树状图的方法求居民甲、乙接种的是相同种类疫苗的概率.答案:(1)12(2)居民甲、乙接种的是相同种类疫苗的概率为12分析:(1)利用概率公式直接计算即可;(2)先画出树状图求解所有的等可能的结果数,再得到符合条件的结果数,从而利用概率公式进行计算即可.(1)解:由概率的定义可得:居民甲接种的是新冠病毒灭活疫苗的概率是24=1 2.所以答案是:12.(2)画树状图如图:由上表可知:一共有16种等可能的结果,居民甲、乙接种的是相同种类疫苗的结果有8种, ∴居民甲、乙接种的是相同种类疫苗的概率为816=12 .小提示:本题考查的是随机事件的概率,利用列表法或画树状图求解概率,掌握列表的方法与画树状图的方法是解题的关键.17、某组织就2022年春节联欢晚会节目的喜爱程度,在万达广场进行了问卷调查,将问卷调查结果分为“非常喜欢”“比较喜欢”“感觉一般”“不太喜欢”四个等级,分别记作A ,B ,C ,D ,根据调查结果绘制出如图的“扇形统计图”和“条形统计图”,请结合图中所给信息解答下列问题:(1)这次被调查对象共有 人,被调查者“不太喜欢”有 人; (2)补全扇形统计图和条形统计图;(3)在“非常喜欢”调查结果里有5人为80后,分别为3男2女,在这5人中,该民间组织打算随机抽取2人进行采访,请你用列表法或列举法求出所选2人均为男生的概率. 答案:(1)50;5 (2)见解析 (3)310分析:(1)利用公式“该部分的人数÷部分所占的百分比=总人数”求解即可.(2)先算出B 所占的百分比,然后再算出C 的百分比及C 对应的人数即可作图.(3)利用列表法求出5人中3男2女,选2人接受采访均为男生的所有可能的情况,然后根据概率的计算方法求解即可.(1)∵15÷30%=50(人),∴50×10%=5(人)即:这次被调查对象共有 50人,被调查者“不太喜欢”有 5人;所以答案是:50;5(2)∵B占总数的百分比为20÷50×100%=40%,∴C占总数的百分比为:1﹣10%﹣30%﹣40%=20%,∴C的人数为:50×20%=10(人),所求扇形统计图和条形统计图如下图所示:(3)用列表法表示选2人接受采访的所有可能如下:故:P(所选2人均为男生)=20=10小提示:本题考查了列表法与树状图、条形统计图、扇形统计图等问题,解题的关键是要掌握整体与部分之间的数量关系及条形统计图与扇形统计图的作法.18、某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖规则如下:1 .抽奖方案有以下两种:方案A,从装有1个红球、2个白球(仅颜色不同)的甲袋中随机摸出1个球,若是红球,则获得奖金15元,否则,没有奖金,兑奖后将摸出的球放回甲袋中;方案B,从装有2个红、1个白球(仅颜色不同)的乙袋中随机摸出1个球,若是红球则获得奖金10元,否则,没有奖金,兑奖后将摸出的球放回乙袋中.2 .抽奖条件是:顾客购买商品的金额每满100元,可根据方案A抽奖一次:每满足150元,可根据方案B抽奖一次(例如某顾客购买商品的金额为310元,则该顾客采用的抽奖方式可以有以下三种,根据方案A抽奖三次或方案B抽奖两次或方案A,B各抽奖一次).已知某顾客在该商场购买商品的金额为250元.(1)若该顾客只选择根据方案A进行抽奖,求其所获奖金为15元的概率;(2)以顾客所获得的奖金的平均值为依据,应采用哪种方式抽奖更合算?并说明理由.;答案:(1)49(2)选择方案A、方案B各抽1次的方案,更为合算.理由见解析分析:(1)利用列表法表示获得奖金15元所有可能出现结果情况,进而求出相应的概率即可;(2)由种抽奖方案,即:2次都选择方案A,1次方案A1次方案B,1次方案B,分别求出各种情况下获得奖金的平均值即可.(1)解:由于某顾客在该商场购买商品的金额为250元,只选择方案进行抽奖,因此可以抽2次,由抽奖规则可知,两次抽出的结果为一红一白的可获得奖金15元,从1个红球,2个白球中有放回抽2次,所有可能出现的结果情况如下:共有9种等可能出现的结果,其中一红一白,即可获奖金15元的有4种,所以该顾客只选择根据方案A 进行抽奖,获奖金为15元的概率为49;(2)解:①由(1)可得,只选择方案A ,抽奖2次,获得15元的概率为49,获得30元(2次都是红球)的概率为19,两次都不获奖的概率为49,所以只选择方案A 获得奖金的平均值为:15×49+30×19=10(元),②只选择方案B ,则只能摸奖1次,摸到红球的概率为23,因此获得奖金的平均值为:10×23≈6.7(元), ③选择方案A 1次,方案B 1次,所获奖金的平均值为:15×13+10×23≈11.7(元), 因此选择方案A 、方案B 各抽1次的方案,更为合算.小提示:本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确解答的前提.。

九年级数学上册第25章《概率初步》综合复习练习题(含答案)

九年级数学上册第25章《概率初步》综合复习练习题(含答案)

九年级数学上册第25章《概率初步》综合复习练习题(含答案)一、单选题1.不透明的袋子中装有10个黑球和若干个白球,这些球除颜色外无其他差别.从袋子中随机摸出一球记下其颜色,再把它放回袋子中摇匀,重复上述过程,共试验400次,其中有300次摸到白球,由此估计袋子中的白球大约有()A.6个B.10个C.15个D.30个2.从甲、乙、丙三名同学中随机抽取两名同学去参加义务劳动,则甲与乙恰好被选中的概率是()A.16B.14C.13D.123.某人在做抛掷硬币试验中,抛掷n次,正面朝上有m次,若正面朝上的频率是Pmn =,则下列说法正确的是()A.P一定等于0.5 B.多投一次,P更接近0.5C.P一定不等于0.5 D.投掷次数逐渐增加,P稳定在0.5附近4.分别向如图所示的四个区域投掷一个小球,小球落在阴影部分的概率最小的是()A.B.C.D.5.如图所示的是由8个全等的小正方形组成的图案,假设可以随意在图中取一点,那么这个点取在阴影部分的概率是()A.38B.12C.58D.16.甲、乙两人玩“石头,剪刀,布”的游戏,约定只玩一局,描述错误的是()A.甲,乙获胜的概率均低于0.5 B.甲,乙获胜的概率相同C.甲,乙获胜的概率均高于0.5 D.游戏公平7.如图,在56⨯的长方形网格飞镖游戏板中,每块小正方形除颜色外都相同,小正方形的顶点称为格点,扇形OAB的圆心及弧的两端均为格点.假设飞镖击中每一块小正方形是等可能的(击中扇形的边界或没有击中游戏板,则重投1次),任意投掷飞镖1次,飞镖击中扇形OAB (阴影部分)的概率是( )A .12π B .24πC .1060πD .560π 8.如图是用七巧板拼成的正方形桌面,一个小球在桌面上自由地滚动,它最终停在黑色区域的概率是( )A .14B .18C .316D .239.不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别,从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是( )A .14B .13C .12D .3410.小明在一次用频率估计概率的实验中,统计了某一结果出现的频率,并绘制了如图所示的统计图,则符合这一结果的实验可能是( )A .掷一枚质地均匀的硬币,正面朝上的概率B .从一副去掉大小王的扑克牌中任意抽取一张,抽到黑桃的概率C.从一个装有2个白球和1个红球的不透明袋子中任意摸出一球(小球除颜色外,完全相同),摸到红球的概率D.任意买一张电影票,座位号是2的倍数的概率11.某人在做掷硬币试验时,抛掷m次,正面朝上有n次,则即正面朝上的频率是P=nm,下列说法中正确的是()A.P一定等于12B.抛掷次数逐渐增加,P稳定在12附近C.多抛掷一次,P更接近12D.硬币正面朝上的概率是n m12.如图是一个游戏转盘.自由转动转盘,当转盘停止转动后,指针落在数字1,2,3,4所示区域内可能性最大的是()A.1号B.2号C.3号D.4号二、填空题1321-,π,0,3这五个数中随机抽取一个数,恰好是无理数的概率是__.14.乐乐把8个红球,9个白球,a个黑球装在一个不透明布袋中,这些球每个球除颜色外都相同,从中任取一球,取得红球的概率是0.4,则a的值是______.15.不透明的袋子中有两个小球,上面分别写着数字“1”、“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是______.16.学校食堂晚餐有四荤三素,荤菜有红烧肉、酸菜鱼、姜爆鸭和辣子鸡,素菜有干煸四季豆、青椒土豆丝和香干炒蒜苔,小南让食堂阿姨任打一道荤菜一道素菜,则刚好选到她爱吃的红烧肉和青椒土豆丝的概率为__.17.在一个不透明的口袋中,装有若干个红球和6个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是0.3,摸到红球的频率是_____,则估计盒子中大约有红球_____个.三、解决问题18.如图是小丽设计可自由的均匀转盘,将其等分为12个扇形,每个扇形有1个有理数,转得下列各数的概率是多少?(1)转得非负数的概率是多少?(2)转得整数的概率是多少?(3)若小丽和妈妈做游戏,转得负整数小丽获胜;若转得的数绝对值大于等于8妈妈获胜,这个游戏公平吗?请说明理由.19.某校计划在下个月第三周的星期一至星期四开展社团活动.(1)若甲同学随机选择其中的一天参加活动,则甲同学选择在星期三的概率为______;(2)若乙同学随机选择其中的两天参加活动,请用画树状图(或列表)的方法求其中一天是星期二的概率.20.某校开展以“奋斗百年路•启航新征程”为主题的活动来庆祝建党百年.活动分为两个阶段:第一阶段是宣讲红色故事,有以党建党史、文化传承、人物传记为素材的3个宣讲项目(分别用A、B、C表示);第二阶段是主题文艺创作,有文学创作、美术创作、舞蹈创作、音乐创作4个项目(分别用D、E、F、G表示).要求参加人员在每个阶段各随机抽取一个项目完成.若小明参加该活动,请用画树状图或列表的方法列出小明参加项目的所有可能的结果,并求小明恰好抽中项目C和E的概率.21.琳琳有4盒外包装完全相同的糖果,其中有2盒巧克力味的,1盒牛奶味的,1盒水果味的,她准备和好朋友分享糖果.(1)若琳琳随机打开1盒糖果,恰巧是牛奶味的概率是______;(2)若琳琳从这4盒中随机挑选两盒打开,请用列表或画树状图法打开的两盒都是巧克力味的概率.22.建国中学有7位学生的生日是10月1日,其中男生分别记为1A,2A,3A,4A,女生分别记为1B,2B,3B.学校准备召开国庆联欢会,计划从这7位学生中抽取学生参与联欢会的访谈活动.(1)若任意抽取1位学生,且抽取的学生为女生的概率是;(2)若先从男生中任意抽取1位,再从女生中任意抽取1位,求抽得的2位学生中至少有1位是1A或1B的概率.(请用“画树状图”或“列表”等方法写出分析过程)23.下面是某学校生物兴趣小组在相同的实验条件下,对某植物种子发芽率进行研究时所得到的数据:试验的种子数n 500 1000 1500 2000 3000 4000 发芽的粒数m 4719461425 1898 28533812 发芽频率mn0.942 0.946x0.949y0.953(1)求表中x ,y 的值;(2)任取一粒这种植物种子,估计它能发芽的概率约是多少?(精确到0.01)(3)若该学校劳动基地需要这种植物幼苗7600棵,试估算需要准备多少粒种子进行发芽培育.24.概率与统计在我们日常生活中应用非常广泛,请同学们直接填出下列事件中所要求的结果:(1)我们平时娱乐的一副标准扑克去掉大小王后剩下的四种花色(红桃、方块、梅花、黑桃)共有52张,如果从中任抽一张得到红桃的概率为______;(2)盒子里有红黑两种颜色的5个相同的球,如果随机抽取1个球记下颜色,然后放回,再重复这个试验,通过大量重复试验后发现,抽到红球的频率稳定在0.8左右,则盒中红球有______个;(3)形如222a ab b ±+的式子称为完全平方式.若有一多项式为29a ka ++,其中k 的值可以从4张分别写有-3,-6,6,9的卡片中随机抽取,那么正好让这个多项式为完全平方式的概率为______;(4)如图是由全等的小正方形组成的图案,假设可以随意在图中取点,那么这个点取在阴影部分的概率是______.25.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共60个.小亮做摸球实验,他将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:(1)请估计:当n的值越来越大时,摸到白球的频率将会接近______;(精确到0.1)(2)假如你摸球一次,摸到白球的概率P(摸到白球)=______,摸到黑球的概率P(摸到黑球)=______;(3)请估算盒子里黑、白两种颜色的球各有多少个?26.小董利用均匀的骰子和同桌做游戏,规则如下:①两人同时做游戏,各自投掷一枚骰子,也可以连续投掷几次骰子;②当掷出的点数和不超过10,如果决定停止投掷,那么你的得分就是掷出的点数和;当掷出的点数和超过10,必须停止投掷,并且你的得分为0;③比较两人的得分,谁的得分多谁就获胜.在一次游戏中,同桌连续投掷两次,掷出的点数分别是2、6,同桌决定不再投掷;小董也是连续投掷两次,但是掷出的点数分别了3、4,小董决定再投掷一次.请问:(1)最终小董的得分为0分的概率多大?并说明原因.(2)小董获胜的概率多大?并说明原因.(3)做这个游戏时应该注意什么才能使游戏公平?参考答案1.D2.C3.D4.A5.A6.C7.A8.C9.A10.C11.B12.C13.2,π是无理数,P(恰好是无理数)25 =.故答案为:25.14.解:依题意有:889a++=0.4,解得a=3,经检验,a=3是原方程的解.故答案为:3.15.解:列表如下:12 123 234由表可知,共有4种等可能结果,其中两次记录的数字之和为3的有2种结果,所以两次记录的数字之和为3的概率为21 42 =.故答案为:12.16.红烧肉、酸菜鱼、姜爆鸭、辣子鸡分别用A、B、C、D表示,干煸四季豆、青椒土豆丝、香干炒蒜苔用a、b、c表示,根据题意画树状图如下:共有12种等可能的情况数,其中她选到红烧肉和青椒土豆丝的有1种,则刚好选到她爱吃的红烧肉和青椒土豆丝的概率为12.故答案为:112.17.解:摸到黄球的频率是0.3,摸到红球的频率是0.7,设有红球x个,根据题意得:60.36x=+,解得:x=14,经检验,x=14是原方程的解.故答案是:0.7,14.18.(1)解:由题意可知,转盘中有12个数,其中非负数为:0,15,8,11,6,5,23,这7个,所以转得非负数的概率为712.(2)解∶由题意可知,转盘中有12个数,其中整数为:﹣1,0,15,﹣17,8,11,6,﹣10,5,这9个,所以转得整数的概率为93 124=.(3)解:由题意可知,转盘中有12个数,其中负整数为:﹣1,﹣17,﹣10,这3个,转得负整数的概率为31124=,故小丽获胜的概率为:14;这12个数中转得的数绝对值大于等于8为:15,﹣17,8,11,﹣10,这5个,转得绝对值大于等于8的数的概率为512,故妈妈获胜的概率为:512;因为15 412≠,故这个游戏不公平.19.(1)总的可选日期为4个,则甲随机选择其中某一天的概率为1÷4=14,故答案为:14;(2)用A、B、C、D分别表示星期一、星期二、星期三、星期四,根据题意列表如下:总的可能情况数为12种,含星期二(B)的情况有6种,则乙同学选的两天中含星期二的概率为:6÷12=12,即所求概率为12.20.解:列表如下:D E F GA AD AE AF AGB BD BE BF BGC CD CE CF CG由表可以看出,共有12种等可能结果,其中小明恰好抽中项目C和E的结果只有1种,∴小明恰好抽中项目C和E的概率为112.21.(1)()1 =1?4=4P牛奶味;故答案为:14;(2)用Q1 、Q2表示巧克力味的,N表示牛奶味的,S表示水果味的,列表如下:共12种等可能结果,其中两盒都是巧克力味的结果有2种,随机挑选两盒都是巧克力味的概率为:()21 == 126P两盒巧克力味.22.(1)解:任意抽取1位学生,且抽取的学生为女生的概率是37,故答案为:37.(2)解:列出表格如下:一共有12种情况,其中至少有1位是1A或1B的有6种,∴抽得的2位学生中至少有1位是1A 或1B 的概率为61122=. 23.(1)解:14250.9501500x ==;28530.9513000y ==; (2)解:概率是大量重复试验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率;∴这种种子在此条件下发芽的概率约为0.95.(3)解:若该学校劳动基地需要这种植物幼苗7600棵, 需要准备760080000.95=(粒)种子进行发芽培育. 24.(1)解:∵一幅扑克牌中有13张红桃,去掉大小王后剩下52张, ∴P (抽中红桃)=131524=. 故答案为:14.(2)解:∵抽到红球的频率稳定在0.8左右, ∴抽到红球的概率为0.8, ∴红球个数为:5×0.8=4(个). 故答案为:4. (3)解:∵当k =±6时,29a ka ++是完全平方式, ∴P (完全平方式)=24=12.故答案为:12. (4)解:∵图中有9个小正方形,阴影部分有5个,∴随意在图中取点,这个点取在阴影部分的概率P (阴影)=59.故答案为:59.25.(1)解:当n 的值越来越大时,摸到白球的频率将会接近0.6, 故答案为:0.6;(2)根据频率估计概率可得,摸到白球的概率P (摸到白球)=0.6, 摸到黑球的概率P (摸到黑球)=1-0.6=0.4,故答案为:0.6,0.4;(3)60×0.4=24,60-24=36.∴黑球有24只,白球有36只.26.(1)解:1()由题意可知:小董投掷骰子的点数为4、5、6时,得分为0,∴小董得零分的概率为:P(小董得分为零31 62 ==).(2)解:根据题意得:小董再次投掷骰子,点数为2或3时得分为9或10,小董获胜,∴小董获胜的概率为:P(小董获胜21 63 ==).(3)根据游戏规则,前一个人投掷的骰子点数总和大小会影响后一个人是否再次投掷第二次骰子,∴在游戏过程中应注意轮流投掷骰子,先小董或同桌投掷第一次,如需投掷第二次,再同桌或小董投掷第二次,这样即可保证游戏公平.。

人教版九年级数学上册第二十五章 概率初步练习(含答案)

人教版九年级数学上册第二十五章 概率初步练习(含答案)

第二十五章 概率初步一、单选题1.下列事件中,属于必然事件的是( )A .购买一张彩票,中奖B .三角形的两边之和大于第三边C .经过有交通信号灯的路口,遇到红灯D .对角线相等的四边形是矩形 2.下列事件中,属于随机事件的是( ).A .三角形一边上的中线和这条边上的高重合B .用长度分别是1cm ,3cm ,4cm 的细木条首尾顺次相连可组成一个三角形C .若两个图形关于某条直线对称,则这两个图形全等D .任意一个三角形的内角和等于180°3.已知袋中有若干个球,其中只有2个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸到红球的概率是14,则袋中球的总个数是( ) A .2 B .4C .6D .8 4.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷两次骰子,掷得面朝上的点数之和是5的概率是( )A .16B .19C .118D .2155.经过某十字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为( )A .13B .23C .19D .126.从1、2、3、4四个数中随机选取两个不同的数,分别记为a 、c ,则关于x 的一元二次方程240ax x c ++=有实数解的概率为( )A.14B.13C.12D.237.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是( )A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率8.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )A.6个B.15个C.13个D.12个9.学完《概率初步》这一章后,老师让同学结合实例说一说自己的认识,请你判断以下四位同学说法正确的是()A.小智说,做3次掷图钉试验,发现2次钉尖朝上,因此钉尖朝上的概率是2 3B.小慧说,某彩票的中奖概率是5%,那么如果买100张彩票一定会有5张中奖C.小通说,射击运动员射击一次只有两种结果:中靶与不中靶,所以它们发生的概率都是12D.小达做了20次抛掷均匀硬币的试验,其中有5次正面朝上,15次正面朝下,他认为再做一次,正面朝上的概率是二分之一10.如图,正方形ABCD中,点E是以AB为直径的半圆与对角线AC的交点.现随机向正方形ABCD内投掷一枚小针,则针尖落在阴影区域的概率为()A.18B.14C.13D.12二、填空题11.从一副扑克牌中任意抽一张扑克牌,是红桃2,此事件是____________事件.(填“必然”“随机”或“不可能”)12.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是.13.如图是小明在抛掷图钉的试验中得到的图钉针尖朝上的折线统计图,请你估计抛掷图钉针尖朝上的概率是_____.14.现有五张质地大小完全相同的卡片,上面分别标有数字1、2、3、4、5,把分别标有数字3、4的两张卡片放入不透明的盒子A中,把分别标有数字1、2、5的三张卡片放入不透明的盆子B中.现随机从A和B两个盒子中各取出一张卡片,把从A盒中取出的卡片上标的数字记作a,从B盒中取出的卡片上标的数字记b,且a-b=k,则y关于x的正比例函数y=kx的图象经过一、三象限的概率是____________.三、解答题15.在一个不透明的口袋中装着大小、外形等一模一样的5个红球、3个蓝球和2个白球,它们已经在口袋中被搅匀了.请判断以下事情是不确定事件、不可能事件,还是必然事件.()1从口袋中任意取出一个球,是一个白球;()2从口袋中一次任取5个球,全是蓝球;()3从口袋中一次任意取出9个球,恰好红蓝白三种颜色的球都齐了.16.如图,现有一个均匀的转盘被平均分成六等份,分別标有2、3、4、5、6、7这六个数字,转动转盘,当转盘停止时,指针指向的数字即为转出的数字(当指针恰好指在分界线上时重转).(1)转动转盘,求转出的数字大于3的概率;(2)随机转动转盘,转盘停止后记下转出的数字,并与数字3和4分别作为三条线段的长度,求这三条线段能构成三角形的概率.17.某商场举办抽奖活动规则如下:在不透明的袋子中有2个黑球和2个红球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到黑球,则获得1份奖品;若摸到红球,则没有奖品.(1)如果小芳只有一次摸球机会,那么小芳获得奖品的概率为.(2)如果小芳有两次摸球机会(摸出后不放回),请用表格法或树状图法求小芳获得2份奖品的概率.18.共享经济已经进入人们的生活.小沈收集了自已感兴趣的4个共享经济领域的图标,共享出行、共享服务、共享物品、共享知识,制成编号为A、B、C、D的四张卡片(除字母和内容外,其余完全相同).现将这四张卡片背面朝上,洗匀放好.(1)小沈从中随机抽取一张卡片是“共享服务”的概率是;(2)小沈从中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请你用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率.(这四张卡片分别用它们的编号A、B、C、D表示)答案1.B 2.A 3.D4.B 5.C 6.C 7.B 8.D 9.D 10.B 11.随机12.4 513.0.614.2 315.()1不确定事件;()2不可能事件;()3必然事件16.(1)23;(2)5617.(1)12;(2)1618.(1)14;(2)16。

九年级上册数学概率初步练习卷附答案学生版

九年级上册数学概率初步练习卷附答案学生版

九年级上册数学概率初步练习卷附答案一、单选题(共13题;共26分)1.下列说法正确的是( ).A. 投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次B. 天气预报“明天降水概率10%,是指明天有10%的时间会下雨”C. 一种福利彩票中奖率是千分之一,则买这种彩票1000张,一定会中奖D. 连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上 2.下列说法正确的是( ).A. “明天降雨的概率是60%”表示明天有60%的时间都在降雨B. “抛一枚硬币反面朝上的概率为 12 ”表示每抛2次就有1次反面朝上C. “抛一枚均匀的正方体骰子, 朝上的点数是5的概率为 16 ”表示随着抛掷次数的增加,“抛出朝上的点数是5”这一事件发生的频率稳定在 16 左右D. “彩票中奖的概率为1%”表示买100张彩票肯定会中奖 3.下列事件中,不确定事件是( )A. 在标准大气压下,水加热到 100°C 时沸腾B. 一名运动员跳高的最好成绩是20.1米C. 小明购买1张彩票,结果中奖了D. 在一个装有红球和黄球的袋中,摸出蓝球 4.下列事件中,是不确定事件的是( ) A. 地球围绕太阳公转 B. 太阳每天从西方落下C. 标准状况下,水在 −10°C 时不结冰D. 一人买一张火车票,座位刚好靠窗口5.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为( )A. 16 B. 13 C. 12 D. 23 6.下列说法错误的是( )A. 同时抛两枚普通正方体骰子,点数都是4的概率为 13 B. 不可能事件发生机会为0C. 买一张彩票会中奖是可能事件D. 一件事发生机会为1.0%,这件事就有可能发生 7.桌上倒扣着背面相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取一张,则( )A. 能够事先确定抽取的扑克牌的花色B. 抽到黑桃的可能性更大C. 抽到黑桃和抽到红桃的可能性一样大D. 抽到红桃的可能性更大 8.从 √2 ,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是( )A. 15 B. 25 C. 35 D. 459.一个布袋里装有 4 个只有颜色不同的球,其中 3 个红球, 1 个白球.从布袋里摸出 1 个球,记下颜色后放回,搅匀,再摸出 1 个球,则两次摸到的球都是红球的概率是( )A. 116 B. 12 C. 38 D. 91610.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是( )A. 16B. 14C. 13D. 712 11.同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为( ) A. 14 B. 13 C. 12 D. 3412.小明和小华玩“石头、剪子、布”的游戏,若随机出手一次,则小华获胜的概率是( ) A. 23 B. 12 C. 13 D. 2913.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是( ) A. 16 B. 13 C. 12 D. 23二、填空题(共5题;共5分)14.一个不透明的袋子中装有5个小球,其中2个红球,3个绿球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球,则摸出的小球是红球的概率是________.15.某校八年级(1)班男生有24人,女生有26人,从中任选一人是男生的事件是________事件. 16.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是________.17.中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是________.18.如图,是两个可以自由转动的均匀圆盘A和B,A、B分别被均匀的分成三等份和四等份.同时自由转动圆盘A和B,圆盘停止后,指针分别指向的两个数字的积为偶数的概率是________.三、解答题(共7题;共43分)19.如图是一大一小的两个可以自由转动的转盘,甲盘被平均分成6等份,乙盘被平均分成4等份,每个转盘均被涂上红、黄、蓝三种颜色.转动转盘,当转盘停止后,指针指向的颜色即为转出的颜色.小明与小颖参与游戏:小明转动甲盘,小颖转动乙盘.(1)小明转出的颜色为红色的概率为________;(2)小明转出的颜色为黄色的概率为________;(3)小颖转出的颜色为黄色的概率为________;(4)两人均转动转盘,如果转出的颜色为红,则胜出.你认为该游戏公平吗?为什么?20.甲、乙两人用如图的两个分格均匀的转盘A、B做游戏,游戏规则如下:分别转动两个转盘,转盘停止后,指针分别指向一个数字(若指针停止在等份线上,那么重转一次,直到指针指向某一数字为止).用所指的两个数字相乘,如果积是奇数,则甲获胜;如果积是偶数,则乙获胜.请你解决下列问题:(1)用列表格或画树状图的方法表示游戏所有可能出现的结果.(2)求甲、乙两人获胜的概率.21.如图,两个转盘中指针落在每个数字上的机会相等,现同时转动A、B两个转盘,停止后,指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.你认为这个游戏公平吗?请你利用列举法说明理由.22.用如图所示的A,B两个转盘进行“配紫色”游戏(红色和蓝色在一起配成了紫色).小亮和小刚同时转动两个转盘,若配成紫色,小亮获胜,否则小刚获胜.这个游戏对双方公平吗?画树状图或列表说明理由.23.2017•通辽)小兰和小颖用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形,转动两个转盘各一次,若两次指针所指数字之和小于4,则小兰胜,否则小颖胜(指针指在分界线时重转),这个游戏对双方公平吗?请用树状图或列表法说明理由.24.小明、小军两同学做游戏,游戏规则是:一个不透明的文具袋中,装有型号完全相同的3支红笔和2支黑笔,两人先后从袋中取出一支笔(不放回),若两人所取笔的颜色相同,则小明胜,否则,小军胜. (1)请用树形图或列表法列出摸笔游戏所有可能的结果;(2)请计算小明获胜的概率,并指出本游戏规则是否公平,若不公平,你认为对谁有利.25.为举办毕业联欢会,小颖设计了一个游戏:游戏者分别转动如图的两个可以自由转动的转盘各一次,当两个转盘的指针所指字母相同时,他就可以获得一次指定一位到会者为大家表演节目的机会.(1)利用树状图或列表的方法(只选其中一种)表示出游戏可能出现的所有结果;(2)若小亮参加一次游戏,则他能获得这种指定机会的概率是多少?四、综合题(共5题;共50分)26.有两个可以自由转动的均匀转盘,都被分成了3等份,并在每份内均标有数字,如图所示.规则如下:分别转动转盘,两个转盘停止后,将两个指针所指份内的数字相乘,(若指针停止在等分线上,那么重转一次,直到指针指向某份为止).(1)用列表或画树状图法分别求出数字之积为3的倍数和数字之积为5的倍数的概率;(2)小明和小亮想用这两个转盘做游戏,他们规定:数字之积为3的倍数时,小明得2分;数字之积为5的倍数时,小亮得3分.这个游戏对双方公平吗?若认为公平请说明理由;若认为不公平,试修改得分规定,使游戏对双方公平.27.在一个不透明的袋子中有一个黑球a和两个白球b,c(除颜色外其他均相同).用树状图(或列表法)解答下列问题:(1)小丽第一次从袋子中摸出一个球不放回,第二次又从袋子中摸出一个球.则小丽两次都摸到白球的概率是多少?(2)小强第一次从袋子中摸出一个球,摸到黑球不放回,摸到白球放回;第二次又从袋子中摸出一个球,则小强两次都摸到白球的概率是多少?28.用4张相同的小纸条做成甲、乙、丙、丁4支签,放在一个盒子中,搅匀后先从盒子中任意抽出1支签(不放回),再从剩余的3支签中任意抽出1支签.(1)用树状图或列表等方法列出所有可能出现的结果。

九年级数学上册《概率初步》经典练习题

九年级数学上册《概率初步》经典练习题

概率初步练习题关于必然事件1、有下列事件:①367人中必有2人的生日相同;②抛掷一只均匀的骰子两次,朝上一面的点数之和一定大于等于2;③在标准大气压下,温度低于0℃时冰融化;④如果a、b为实数,那么a+b=b+a.其中是必然事件的有()A.1个 B.2个 C.3个 D.4个2、纸箱里装有2个篮球、8个白球,从中任意摸出3个球时,至少有一个是3、一个不透明的口袋中有10个白球和12个黑球,“任意摸出n个球,其中至少有一个白球”是必然事件,n等于()A、10 B、11 C、12 D、134、下列事件中,属于不可能事件的是()A.某个数的绝对值小于0 B.某个数的相反数等于它本身C.某两个数的和小于0 D.某两个负数的积大于0 关于可能事件1、下列事件:(1)明天是晴天;(2)小明的弟弟比他小:(3)巴西与土耳其进行足球比赛,巴西队会赢;(4)太阳绕着地球转。

属于不确定事件的有:2、下列事件中,属于随机事件的是()A. 掷一枚普通正六面体骰子,所得点数不超过6B.买一张彩票中奖C. 太阳从西边落下D.口袋中装有10个红球,从中摸出一个是白球3、下列事件:①打开电视机,它正在播广告;②从只装有红球的口袋中,任意摸出一个球,恰好是白球;③两次抛掷正方体骰子,掷得的数字之和小于13;④抛掷硬币1000次,第1000次正面向上其中是可能事件的为()A.①③ B.①④ C.②③ D.②④4、下列事件中,属于不确定事件的有()①太阳从西边升起;②任意摸一张体育彩票会中奖;③掷一枚硬币,有国徽的一面朝下;④小明长大后成为一名宇航员.A.①②③ B.①③④C.②③④ D.①②④5、在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球有3个、白球1个.搅匀后,从中同时摸出2个小球,•请你写出这个实验中的一个可能事件:_________.6、篮球投篮时,正好命中,这是事件。

在正常情况下,水由底处自然流向高处,这是事件。

九年级数学上概率初步测试题(含答案)(完整资料).doc

九年级数学上概率初步测试题(含答案)(完整资料).doc

【最新整理,下载后即可编辑】九年级数学上 概率初步测试题(说明:全卷考试时间100分钟,满分120分)一、选择题(每小题3分,共30分)1. 下列事件中是必然事件的是( ) A .小菊上学一定乘坐公共汽车B .某种彩票中奖率为1%,买10000张该种票一定会中奖C .一年中,大、小月份数刚好一样多D .将豆油滴入水中,豆油会浮在水面上2.从A 地到C 地,可供选择的方案是走水路、走陆路、走空中.从A 地到B 地有2条水路、2.条陆路,从B 地到C 地有3条陆路可供选择,走空中从A 地不经B 地直接到C 地.则从A 地到C 地可供选择的方案有( )A .20种 B.8种 C. 5种 D.13种3.一只小狗在如图1的方砖上走来走去,最终停在阴影方砖上的概率是( ) A .154 B.31 C.51 D.152 4.下列事件发生的概率为0的是( )A .随意掷一枚均匀的硬币两次,至少有一次反面朝上;B .今年冬天黑龙江会下雪;C .随意掷两个均匀的骰子,朝上面的点数之和为1;D .一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域。

5.某商店举办有奖储蓄活动,购货满100元者发对奖券一张,在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个。

若某人购物满100元,那么他中一等奖的概率是 ( )图1A.1001 B.10001 C.100001D.100001116、有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上(如图2),从中任意一张是数字3的概率是( ) A.61 B.31 C.21D.32 7.在李咏主持的“幸运52”栏目中,曾有一种竞猜游戏,游戏规则是:在20个商标牌中,有5个商标牌的背面注明了一定的奖金,其余商标牌的背面是一张“哭脸”,若翻到“哭脸”就不获奖,参与这个游戏的观众有三次翻牌的机会,且翻过的牌不能再翻.有一位观众已翻牌两次,一次获奖,一次不获奖,那么这位观众第三次翻牌获奖的概率是( )A .15B .29C .14D .5188.如图3,一飞镖游戏板,其中每个小正方形的大小相等,则随意投掷一个飞镖,击中黑色区域的概率是 ( ) A.21 B. 83 C. 41 D. 319.如图4,一小鸟受伤后,落在阴影部分的概率为( ) A .21 B .31 C .41D .110.连掷两次骰子,它们的点数都是4的概率是( )A.61B.41C.161 D.361 二、填空题(每小题3分,共30分)11. (08福建福州)在一个袋子中装有除颜色外其它均相同的2个红球和3个白球,从中任意摸出一个球,则摸到红球的概率是____________12.小明、小刚、小亮三人正在做游戏,现在要从他们三人中选出一人去帮王奶奶干活,则小明被选中的概率为______,小明未被选中的概率为______13.在一次抽奖活动中,中奖概率是0.12,则不中奖的概率图2图4是 .14.从一副扑克牌(除去大、小王)中任抽一张,则抽到红心的概率为 ;抽到黑桃的概率为 ;抽到红心3的概率为 15.任意翻一下2007年日历,翻出1月6日的概率为 ;翻出4月31日的概率为 。

九年级数学上册第二十五章概率初步经典大题例题(带答案)

九年级数学上册第二十五章概率初步经典大题例题(带答案)

九年级数学上册第二十五章概率初步经典大题例题单选题1、某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( )A .19B .16C .13D .23 答案:C分析:将三个小区分别记为A 、B 、C ,列举出所有情况即可,看所求的情况占总情况的多少即可. 详解:将三个小区分别记为A 、B 、C ,列表如下:3种,所以两个组恰好抽到同一个小区的概率为39=13.故选C .点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.2、某市有6名教师志愿到四川地震灾区的甲、乙、丙三个镇去支教,每人只能去一个镇,则恰好其中一镇去4名,另两镇各去1名的概率为( )A .2081B .1081C .5243D .10243答案:B分析:因为对于这六个人来说,会被随机分派到3个镇中的任何一个,所以一共有36种情况,而有4个人的镇可能是3个镇中的任何一个,剩下两个镇各派一个人的派法是3×C 64,根据概率公式求解.解:6名教师志愿随机派到3个镇中的任何一个共有36种情况,有4个人的镇可能是3个镇中的任何一个,另两镇各去1名的结果数为3×6×5,所以恰好其中一镇去4名,另两镇各去1名的概率=3×6×536=1081, 故选:B . 【小提示】选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.3、同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是( )A .14B .13C .12D .23答案:C分析:根据题意可画出树状图,然后进行求解概率即可排除选项.解:由题意得:∴一枚硬币正面向上、一枚硬币反面向上的概率是P =24=12; 故选C .小提示:本题主要考查概率,熟练掌握利用树状图求解概率是解题的关键.4、现有4盒同一品牌的牛奶,其中2盒已过期,随机抽取2盒,至少有一盒过期的概率是( )A .12B .23C .34D .56答案:D分析:列举出所有的情况,再得到至少有一盒过期的情况数,利用概率公式计算即可.解:∵有4盒同一品牌的牛奶,其中2盒已过期,设未过期的两盒为A ,B ,过期的两盒为C ,D ,随机抽取2盒,则结果可能为(A ,B ),(A ,C ),(A ,D ),(B ,C ),(B ,D ),(C ,D ),共6种情况,其中至少有一盒过期的有5种,∴至少有一盒过期的概率是56,故选D .小提示:此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n .5、不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别,从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是( )A .14B .13C .12D .34 答案:A分析:首先根据题意画出树状图,由树状图求得所有等可能的结果与第一次摸到红球,第二次摸到绿球的情况,然后利用概率公式求解即可求得答案.解:画树状图得:∵共有4种等可能的结果,第一次摸到红球,第二次摸到绿球有1种情况,∴第一次摸到红球,第二次摸到绿球的概率为14,故选:A .小提示:本题考查了画树状法或列表法求概率,列出所有等可能的结果是解决本题的关键.6、如图是用七巧板拼成的正方形桌面,一个小球在桌面上自由地滚动,它最终停在黑色区域的概率是( )A .14B .18C .316D .23答案:C分析:先求出黑色区域的面积是正方形桌面的分率,再根据概率公式即可得出答案.解:观察图形可知,黑色区域的面积是正方形桌面的316, ∴最终停在黑色区域的概率是316, 故选:C .小提示:本题考查几何概率,熟练掌握几何概率的计算方法是解题的关键.7、将一枚飞镖任意投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为( )A .12B .13C .25D .35 答案:A分析:随机事件A 的概率P (A )=事件A 发生时涉及的图形面积÷一次试验涉及的图形面积,因为这是几何概率.解:设正六边形边长为a ,过A 作AD ⊥BC 于D ,过B 作BE ⊥CE 于E ,如图所示:∵正六边形的内角为180°−360°6=120°,∴在RtΔACD 中,∠ADC =90°,∠CAD =60°,AC =a ,则AD =12a,CD =√32a , ∴BC =2CD =√3a ,∴在RtΔBCE 中,∠BEC =90°,∠BCE =60°,BC =√3a ,则CE =√32a,BE =32a , 则灰色部分面积为3S ΔABC =3×12BC ⋅AD =3×12×√3a ×12a =34√3a 2,白色区域面积为2S ΔBCE =2×12CE ⋅BE =√32a ×32a =3√34a 2,所以正六边形面积为两部分面积之和为32√3a 2, 飞镖落在白色区域的概率P =34√3a 232√3a 2=12, 故选:A .小提示:本题考查了几何概率,熟练掌握几何概率模型及简单概率公式是解决问题的关键.8、若气象部门预报明天下雨的概率是70%,下列说法正确的是( )A .明天下雨的可能性比较大B .明天下雨的可能性比较小C .明天一定会下雨D .明天一定不会下雨答案:A分析:根据“概率”的意义进行判断即可.解:A .明天下雨的概率是70%,即明天下雨的可能性是70%,也就是说明天下雨的可能性比较大,因此选项A 符合题意;B .明天下雨的可能性是70%,也就是说明天下雨的可能性比较大,因此选项B 不符合题意;C . 明天下雨的可能性是70%,并不代表明天一定会下雨,因此选项C 不符合题意;D . 明天下雨的可能性比较大,与明天一定不会下雨是矛盾的,因此选项D 不符合题意; 故选:A . 小提示:本题考查了概率与可能性的关系,正确理解概率的意义是解题的关键.9、五张不透明的卡片,正面分别写有实数−1,√2,115,√9,5.06006000600006……(相邻两个6之间0的个数依次加1).这五张卡片除正面的数不同外其余都相同,将它们背面朝上混合均匀后任取一张卡片,取到的卡片正面的数是无理数的概率是( )A .15B .25C .35D .45 答案:B分析:通过有理数和无理数的概念判断,然后利用概率计算公式计算即可.有理数有:−1,115,√9;无理数有:√2,5.06006000600006……;则取到的卡片正面的数是无理数的概率是2,5故选:B.小提示:本题主要考查了有理数、无理数的概念和简单概率计算,先判断后计算概率即可.10、某校有35名同学参加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛. 其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的().A.众数B.中位数C.平均数D.方差答案:B分析:由于比赛取前18名参加决赛,共有35名选手参加,根据中位数的意义分析即可.详解:35个不同的成绩按从小到大排序后,中位数及中位数之后的共有18个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选B.点睛:本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数填空题11、如图,在边长为1的小正方形组成的3×3网格中,A,B两点均在格点上,若在格点上任意放置点C,恰的概率为_________.好使得△ABC的面积为12答案:3##0.3758分析:按照题意分别找出点C所在的位置,根据概率公式求出概率即可.的三角形,解:可以找到6个恰好能使△ABC的面积为12,则概率为:6÷16=38所以答案是:3.8小提示:此题主要考查了概率公式,解决此题的关键是正确找出恰好能使△ABC的面积为1的点.12、从分别标有A、B、C的3根纸签中随机抽取一根,然后放回,再随机抽取一根,两次抽签的所有可能结果的树形图如下:那么抽出的两根签中,一根标有A,一根标有C的概率是__________.答案:29分析:依据树状图分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.解:由树状图得:两次抽签的所有可能结果一共有9种情况,一根标有A,一根标有C的有A,C与C,A两种情况,∴一根标有A,一根标有C的概率是29.所以答案是:29.小提示:本题考查的是用画树状图法求概率.画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.13、一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,先向盒中放入5个黑球,摇匀后从中随机摸出1个球记下颜色,再把它放回盒中,不断重复,共摸球500次,其中25次摸到黑球,则估计盒中有__________个白球.答案:95分析:可根据“黑球数量÷黑白球总数=黑球所占比例”来列等量关系式,其中“黑白球总数=黑球个数+白球个数”,“黑球所占比例=随机摸到的黑球次数÷总共摸球的次数”.解:设盒子里有白球x个,根据题意得:5 x+5=25500,解得:x=95,答:估计盒中大约有白球95个;所以答案是:95.小提示:本题主要考查利用频率估计概率,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.14、如图,四边形ABCD 的对角线AC ⊥BD ,E ,F ,G ,H 分别是AD ,AB ,BC ,CD 的中点,若在四边形ABCD 内任取一点,则这一点落在图中阴影部分的概率为_____________.答案:12##0.5 分析:先由三角形的中位线定理推知四边形EFGH 是平行四边形,然后由AC ⊥BD 可以证得平行四边形EFGH 是矩形.解:如图,∵E 、F 、G 、H 分别是线段AD ,AB ,BC ,CD 的中点,∴EH 、FG 分别是△ACD 、△ABC 的中位线,EF 、HG 分别是△ABD 、△BCD 的中位线,根据三角形的中位线的性质知,EF ∥BD ,GH ∥BD 且EF =12BD ,GH =12BD , ∴四边形EFGH 是平行四边形,又∵AC ⊥BD ,∴EF ⊥FG∴四边形EFGH 是矩形,∴四边形EFGH 的面积=EF •FG =14AC •BD , ∵四边形ABCD 的面积=12AC •BD , ∴这一点落在图中阴影部分的概率为:14AC·BD 12AC·BD =12, 所以答案是:12. 小提示:本题主要考查了几何概率,中点四边形,解题时,利用三角形中位线定理判定四边形EFGH 是平行四边形是解题的关键.15、汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为__________.答案:1213分析:设勾为2k,则股为3k,弦为√13k,由此求出大正方形面积和阴影区域面积,由此能求出针尖落在阴影区域的概率.详解:设勾为2k,则股为3k,弦为√13k,∴大正方形面积S=√13k×√13k=13k2,中间小正方形的面积S′=(3−2)k•(3−2)k=k2,故阴影部分的面积为:13 k2-k2=12 k2∴针尖落在阴影区域的概率为:12k213k2=1213.故答案为1213.点睛:此题主要考查了几何概率问题,用到的知识点为:概率=相应的面积与总面积之比.解答题16、下列事件中,哪些是必然事件?哪些是不可能事件?哪些是随机事件?(1)太阳从西边落山;(2)某人的体温是100 ℃;(3)a2+b2=0;(4)某个等腰三角形中任意两个角都不相等;(5)经过有信号灯的十字路口,遇见红灯.答案:(1) “太阳从西边落山”是必然事件;(2) “某人的体温是100 ℃”是不可能事件;(3) “a2+b2=0”是随机事件;(4) “某个等腰三角形中任意两个角都不相等”是不可能事件;(5) “经过有信号灯的十字路口,遇见红灯”是随机事件.分析:根据必然事件、不可能事件、随机事件的概念进行判断即可.解:(1)根据生活常识,可知太阳一定从西边落山,所以“太阳从西边落山”是必然事件.(2)因为正常人体的体温都在37 ℃左右,所以“某人的体温是100 ℃”是不可能事件.(3)当a=b=0时,a2+b2=0,当a,b中至少有一个不等于0时,a2+b2为正数,所以“a2+b2=0”是随机事件.(4)根据等腰三角形的性质,等腰三角形中至少有两个角相等,所以“某个等腰三角形中任意两个角都不相等”是不可能事件.(5)经过有信号灯的十字路口,可能遇见红灯,也可能不遇见红灯,所以“经过有信号灯的十字路口,遇见红灯”是随机事件.小提示:本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.17、从甲、乙、丙、丁4名学生中选2名学生参加一次乒乓球单打比赛,求下列事件发生的概率.(1)甲一定参加比赛,再从其余3名学生中任意选取1名,恰好选中丙的概率是;(2)任意选取2名学生参加比赛,求一定有乙的概率.(用树状图或列表的方法求解).答案:(1)13(2)12分析:(1)利用例举法例举所有的等可能的情况数,再利用概率公式进行计算即可;(2)先列表得到所有的等可能的情况数以及符合条件的情况数,再利用概率公式进行计算即可.(1)解:由甲一定参加比赛,再从其余3名学生中任意选取1名,共有甲、乙,甲、丙,甲、丁三种等可能,符合条件的情况数有1种,∴甲一定参加比赛,再从其余3名学生中任意选取1名,恰好选中丙的概率是1.3(2)列表如下:所以一定有乙的概率为:612=1 2 .小提示:本题考查的是利用例举法,列表的方法求解简单随机事件的概率,概率公式的应用,掌握“例举法与列表法求解概率”是解本题的关键.18、如图为计算机“扫雷”游戏的画面,在9×9个小方格的雷区中,随机地埋藏着10颗地雷,每个小方格最多能埋藏1颗地雷.(1)小明如果踩在9×9个小方格的任意一个小方格,则踩中地雷的概率是______;(2)如图,小明游戏时先踩中一个小方格,显示数字3,它表示与这个小方格相邻的8个小方格(图中黑框所围区域,设为A区域)中埋藏着3颗地雷.①若小明第二步选择踩在A区域内的小方格,则踩中地面的概率是______;②小明和小亮约定:若第二步选择踩在A区域内的小方格,不踩雷则小明胜;若选择踩在A区域外的小方格,不踩雷则小亮胜,请用所学的概率的知识,通过计算来说明这个约定对谁有利.答案:(1)1081(2)①38;②这个约定对小亮有利,理由见解析.分析:(1)直接利用概率公式计算;(2)①直接利用概率公式计算;②根据概率公式,分别计算出小明胜的概率和小亮胜的概率,然后比较两概率的大小即可得到这个约定对谁有利.(1)解:小明如果踩在9×9个小方格的任意一个小方格,则踩中地雷的概率为1081;所以答案是:1081;(2)①小明第二步选择踩在A区域内的小方格,则踩中地雷的概率=38;所以答案是:38;②小明胜的概率=8−38=58,小亮胜的概率=81−9−781−9=6572,∵58=4572<6572,∴小亮胜的机会大,即这个约定对小亮有利.小提示:考查了概率的计算公式,用到的知识点为:概率=所求情况数与总情况数之比.。

齐齐哈尔市九年级数学上册第二十五章《概率初步》经典练习题(含答案)

齐齐哈尔市九年级数学上册第二十五章《概率初步》经典练习题(含答案)

一、选择题1.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时得到的两个球的颜色中有“一红一黄”的概率是()A.16B.29C.13D.232.如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,那么它最终停留在黑色区域的概率是()A.14B.34C.12D.383.一位批发商从某服装制造公司购进60包型号为L的衬衫,由于包装工人疏忽,在包裹中混进了型号为M的衬衫,每包混入的M号衬衫数及相应的包数如表所示.一位零售商从60包中任意选取一包,则包中混入M号衬衫数不超过3的概率是()A.120B.115C.920D.4274.有A,B两只不透明口袋,每只品袋里装有两只相同的球,A袋中的两只球上分别写了“细”、“致”的字样,B袋中的两只球上分别写了“信”、“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是()A.13B.14C.23D.345.在一个不透明的袋子中,装有红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.若小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在0.15.和0.45,则该袋子中的白色球可能有()A.6个B.16个C.18个D.24个6.如图,小明随意向水平放置的大正方形内部区域抛一个小豆子,则小豆子落在小正方形内部及边界(阴影)区域的概率为()A.34B.13C.12D.147.假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.若3枚鸟卵全部成功孵化,则3只雏鸟中恰有2只雄鸟的概率是()A.23B.58C.38D.168.在一个不透明的口袋中装有5个黑棋子和若干个白棋子,它们除颜色外完全相同,小明与他的朋友经过多次摸棋子试验后,发现摸到白色棋子的频率稳定在80%附近,则口袋中白色棋子的个数可能是()A.25个B.24个C.20个D.16个9.在一个不透明的箱子中有3张红卡和若干张绿卡,它们除了颜色外其他完全相同,通过多次抽卡试验后发现,抽到绿卡的概率稳定在75%附近,则箱中卡的总张数可能是()A.1张B.4张C.9张D.12张10.如图所示,小明、小刚利用两个转盘进行游戏,规则为小明将两个转盘各转一次,如配成紫色(红与蓝),小明胜,否则小刚胜,此规则()A.公平B.对小明有利C.对小刚有利D.公平性不可预测11.袋中装有3个绿球和4个红球,它们除颜色外,其余均相同。

(完整版)九年级数学上概率初步测试题(含答案)

(完整版)九年级数学上概率初步测试题(含答案)

九年级数学上 概率初步测试题(说明:全卷考试时间100分钟,满分120分)一、选择题(每小题3分,共30分) 1. 下列事件中是必然事件的是( ) A .小菊上学一定乘坐公共汽车B .某种彩票中奖率为1%,买10000张该种票一定会中奖 C .一年中,大、小月份数刚好一样多D .将豆油滴入水中,豆油会浮在水面上2.从A 地到C 地,可供选择的方案是走水路、走陆路、走空中。

从A 地到B 地有2条水路、2。

条陆路,从B 地到C 地有3条陆路可供选择,走空中从A 地不经B 地直接到C 地.则从A 地到C 地可供选择的方案有( ) A .20种 B 。

8种 C. 5种 D.13种 3.一只小狗在如图1的方砖上走来走去,最终停在阴 影方砖上的概率是( )A .154 B.31 C 。

51 D 。

152 4.下列事件发生的概率为0的是( )A .随意掷一枚均匀的硬币两次,至少有一次反面朝上;B .今年冬天黑龙江会下雪;C .随意掷两个均匀的骰子,朝上面的点数之和为1;D .一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域.5。

某商店举办有奖储蓄活动,购货满100元者发对奖券一张,在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个。

若某人购物满100元,那么他中一等奖的概率是 ( )A 。

1001 B. 10001 C. 100001 D. 100001116、有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上(如图2),从中任意一张是数字3的概率是( ) A.61 B.31 C.21 D.32 7.在李咏主持的“幸运52”栏目中,曾有一种竞猜游戏,游戏规则是:在20个商标牌中,有5个商标牌的背面注明了一定的奖金,其余商标牌的背面是一张“哭脸”,若翻到“哭脸"就不获奖,参与这个游戏的观众有三次翻牌的机会,且翻过的牌不能再翻.有一位观众已翻牌两次,一次获奖,一次不获奖,那么这位观众第三次翻牌获奖的概率是( )A .15B .29C .14D .5188。

【单元练】九年级数学上册第二十五章《概率初步》经典题

【单元练】九年级数学上册第二十五章《概率初步》经典题

一、选择题1.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有( ) A .15个 B .25个C .35个D .45个C解析:C 【分析】利用频率估计概率得到摸到黄球的概率为0.3,根据概率公式计算即可. 【详解】∵小红通过多次摸球试验后发现,估计摸到黄球的概率为0.3, ∴黄球的个数为50×0.3=15, 则白球可能有50-15=35个. 故选:C . 【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.2.在一个不透明的口袋中,装有3个相同的球,它们分别写有数字1,2,3,从中随机摸出一个球,若摸出的球上的数字为2的概率记为1P ,摸出的球上的数字小于4的记为2P ,摸出的球上的数字为5的概率记为3P ,则1P ,2P ,3P 的大小关系是( )A .123P P P <<B .321P P P <<C .213P P P <<D .312P P P <<D解析:D 【分析】由1、2、3这3个小球中,数字为2的只有1个、数字小于4的有3个、数字为5的个数为0,利用概率公式分别计算,再比较大小可得. 【详解】解:∵在1、2、3这3个小球中,数字为2的只有1个、数字小于4的有3个、数字为5的个数为0,∴P 1=13、P 2=1、P 3=0, 则P 3<P 1<P 2, 故选:D . 【点睛】本题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比. 3.某班四个小组进行辩论比赛,赛前三位同学预测比赛结果如下: 甲说:“第二组得第一,第四组得第三”; 乙说:“第一组得第四,第三组得第二”;丙说:“第三组得第三,第四组得第一”; 赛后得知,三人各猜对一半,则冠军是( ) A .第一组 B .第二组C .第三组D .第四组B解析:B 【解析】试题分析:因为三人都猜对了一半,假设甲说的前半句正确,来看看后面的说法有没有矛盾,有矛盾就是错误的没矛盾就是正确的.假设甲说的“第二组得第一”是正确的,那么丙说的“第四组得第一”是错误的, “第三组得第三”就是正确的,那么乙说的“第三组得第二”是错误的, “第一组得第四”是正确的,这样三人都猜对了一半,且没矛盾. 故猜测是正确的. 故选B . 考点:推理与论证点评:此类问题是初中数学的难点,解题关键往往假设一个正确或错误,来推看看有没有矛盾.4.下列事件中,必然事件是( ) A .抛掷1个均匀的骰子,出现6点向上 B .两直线被第三条直线所截,同位角相等 C .366人中至少有2人的生日相同 D .实数的绝对值是非负数D解析:D 【分析】根据概率、平行线的性质、负数的性质逐项进行判断即可得答案. 【详解】解:A 、抛掷1个均匀的骰子,出现6点向上的概率为16,故A 错误; B 、两条平行线被第三条直线所截,同位角相等,故B 错误;C 、366人中平年至少有2人的生日相同,闰年可能每个人的生日都不相同,故C 错误;D 、实数的绝对值是非负数,故D 正确, 故选D . 【点睛】本题考查了必然事件、不可能事件、随机事件的概念.理解概念是解决这类基础题的主要方法.5.现有三张正面分别标有数字1-,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m ,n ,则点()P m n ,在第二象限的概率为( ) A .12B .13C .23D .29D 解析:D 【分析】画树状图展示所有9种等可能的结果数,利用第二象限内点的坐标特征确定点(,)P m n 在第二象限的结果数,然后根据概率公式求解. 【详解】 解:画树状图为:共有9种等可能的结果数,其中点(,)P m n 在第二象限的结果数为2, 所以点(,)P m n 在第二象限的概率29. 故选:D . 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了点的坐标.6.某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:①互相关心;②互相提醒;③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池.小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是( ) A .12B .13C .23D .16C 解析:C 【解析】解:∵共有6张纸条,其中正确的有①互相关心;②互相提醒;③不要相互嬉水;⑥选择有人看护的游泳池,共4张,∴抽到内容描述正确的纸条的概率是46=23;故选C . 7.下列事件中,是必然事件的是( ) A .购买一张彩票,中奖 B .打开电视,正在播放广告C .抛掷一枚质地均匀且6个面上分别标上数字1~6的骰子,朝上一面的数字小于7D .一个不透明的袋子中只装有2个黑球,搅匀后从中随机摸出一个球,结果是红球C 解析:C 【分析】根据事件发生的可能性大小判断相应事件的类型即可. 【详解】解:A 、是随机事件,故A 错误;B 、是随机事件,故B 错误;C 、是必然事件,故C 正确;D 、是不可能事件,故D 错误; 故选:C . 【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件. 8.“明天的降水概率为90%”的含义解释正确的是( ) A .明天90%的地区会下雨 B .90%的人认为明天会下雨C .明天90%的时间会下雨D .在100次类似于明天的天气条件下,大约有90次会下雨D 解析:D 【分析】根据概率表示某事情发生的可能性的大小,依次分析选项可得答案. 【详解】解:根据概率表示某事情发生的可能性的大小,分析可得,在100次类似于明天的天气条件下,大约有90次会下雨,正确; 故选:D . 【点睛】随机事件是指在一定条件下,可能发生也可能不发生的事件.概率表示随机事件发生的可能性的大小.9.现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为y 来确定点P (,x y ),那么他们各掷一次所确定的点P 落在已知抛物线24y x x =-+上的概率为( ) A .118B .112C .19D .16B 解析:B 【分析】因为掷骰子的概率一样,每次都有六种可能性,因此小莉和小明掷骰子各六次,P 的取值有36种.可将x 、y 值一一代入找出满足抛物线的x 、y ,用满足条件的个数除以总的个数即可得出概率. 【详解】 解:列表法:∴点P的坐标共有36种可能,其中能落在抛物线24y x x=-+上的点共有:(1,3)、(2,4)、(3,3),这3种可能,∴其概率为:313612=.故选:B.【点睛】本题考查了利用列表法与树状图法求概率的方法:先列表展示所有等可能的结果数n,再找出某事件发生的结果数m,然后根据概率的定义计算出这个事件的概率=mn.也考查了二次函数图象上点的坐标特征.10.掷一枚普通的正六面体骰子,出现的点数中,以下结果机会最大的是()A.点数为3的倍数B.点数为奇数C.点数不小于3D.点数不大于3C解析:C【分析】总共有六种情况,分别计算出所求情况的个数,比较即可得出可能性最大的.【详解】解:掷一枚普通的正六面体骰子共6种情况,A.掷一枚骰子,点数为3的倍数有2种,概率1 3 ;B.点数为奇数有3种,概率1 2 ;C.点数不小于3有四种,概率2 3 ;D.点数不大于3有3种,概率12,故可能性最大的是点数不小于3,选C.【点睛】可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.二、填空题11.一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同,摇匀后从中随机摸出一个球,若摸到白球的概率为57,则盒子中原有的白球的个数为_________个.25【分析】设盒子中原有的白球的个数为个利用简单事件的概率计算公式可得一个关于x的方程再解方程即可得【详解】设盒子中原有的白球的个数为个由题意得:解得经检验是所列分式方程的解则盒子中原有的白球的个数解析:25【分析】设盒子中原有的白球的个数为x个,利用简单事件的概率计算公式可得一个关于x的方程,再解方程即可得.【详解】设盒子中原有的白球的个数为x个,由题意得:5 107xx=+,解得25x=,经检验,25x=是所列分式方程的解,则盒子中原有的白球的个数为25个,故答案为:25.【点睛】本题考查了简单事件的概率计算、分式方程的应用,熟练掌握简单事件的概率计算方法是解题关键.12.在一个不透明的盒子里装有4个标有1,2,3,4的小球,它们形状、大小完全相同.小明从盒子里随机取出一个小球,记下球上的数字,作为点P的横坐标x,放回然后再随机取出一个小球,记下球上的数字,作为点P的纵坐标y.则点P在以原点为圆心,5为半径的圆上的概率为_____.【分析】用列表法列举出所有可能出现的情况注意每一种情况出现的可能性是均等的而点P在以原点为圆心5为半径的圆上的结果有2个即(34)(43)由概率公式即可得出答案【详解】(1)由列表法列举所有可能出现解析:1 8【分析】用列表法列举出所有可能出现的情况,注意每一种情况出现的可能性是均等的,而点P在以原点为圆心,5为半径的圆上的结果有2个,即(3,4),(4,3),由概率公式即可得出答案.【详解】(1)由列表法列举所有可能出现的情况:∵点P 在以原点为圆心,5为半径的圆上的结果有2个,即(3,4),(4,3), ∴点P 在以原点为圆心,5为半径的圆上的概率为21168故答案为18. 【点睛】本题考查了列表法或树状图法求等可能事件发生的概率,利用这种方法注意每一种情况出现的可能性是均等的.13.小明走进迷宫,迷宫中的每一个门都相同,第一道关口有四个门,只有第三个门有开关,第二道关口有两个门,只有第一个门有开关,他一次就能走出迷宫的概率是________.【分析】根据题意列举出所有情况让小明一次就能走出迷宫的情况数除以总情况数即为所求的概率【详解】设第一道关口的四个门分别为第二道关口的两个门分别为列表得:由表格得共有8种等可能的结果而一次能走出迷宫的解析:18【分析】根据题意,列举出所有情况,让小明一次就能走出迷宫的情况数除以总情况数即为所求的概率. 【详解】设第一道关口的四个门分别为1234,,,A A A A ,第二道关口的两个门分别为12,B B ,列表得:由表格得,共有8种等可能的结果,而一次能走出迷宫的只有1种,所以P(一次就能走出迷宫)=18, 故答案为:18. 【点睛】本题考查了概率公式的应用,解题的关键是理解题意.用到的知识点为:概率=所求情况数与总情况数之比.14.某口袋中有红色、黄色小球共40个,这些球除颜色外都相同.小明通过多次摸球试验后,发现摸到红球的频率为30%,则口袋中黄球的个数约为_____.28【分析】在同样条件下大量反复试验时随机事件发生的频率逐渐稳定在概率附近所以用黄球的频率乘以总球数求解【详解】解:根据题意得:40×(1﹣30)=28(个)答:口袋中黄球的个数约为28个故答案为:解析:28【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,所以用黄球的频率乘以总球数求解.【详解】解:根据题意得:40×(1﹣30%)=28(个)答:口袋中黄球的个数约为28个.故答案为:28.【点晴】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.15.一个盒子中装有标号为1、2、3、4、5的五个小球,这些球除了标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于6的概率为______.【分析】首先根据题意画出树状图然后由树状图求得所有等可能的结果与两次摸出的小球的标号之和大于6的情况再利用概率公式即可求得答案【详解】解:画树状图如图所示:∵共有20种等可能的结果两次摸出的小球的标解析:2 5【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球的标号之和大于6的情况,再利用概率公式即可求得答案.【详解】解:画树状图如图所示:∵共有20种等可能的结果,两次摸出的小球的标号之和大于6的有8种结果,∴两次摸出的小球的标号之和大于6的概率为:82205;故答案为:25.【点睛】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比. 16.在一个不透明的盒子里装有6个形状大小完全相同的乒乓球,上面分别标有-1,-2,0,0.5,1,2,六个数字,现将它们摇匀后从中任取一个乒乓球,将该乒乓球上的数字记为m ,则使关于x 的一元二次方程mx 2+4x+4=0有实数根,且使关于x 的分式方程112m x -=-有正数解的概率为______.【分析】根据一元二次方程有实数根以及分式方程有正数解求出m 的取值范围再根据概率公式即可解答【详解】解:∵关于x 的一元二次方程mx2+4x+4=0有实数根∴解得:且又∵关于x 的分式方程有正数解∴且解得解析:16【分析】根据一元二次方程有实数根以及分式方程有正数解,求出m 的取值范围,再根据概率公式即可解答. 【详解】解:∵关于x 的一元二次方程mx 2+4x+4=0有实数根, ∴16160m ∆=-≥,解得:1m 且0m ≠, 又∵关于x 的分式方程112m x -=-有正数解, ∴10x m =+>,且12x m =+≠, 解得:1m >-且1m ≠, ∴m 的取值范围为:11m -<< ∴符合条件的m 只有0.5, ∴符合条件的概率为16, 故答案为:16. 【点睛】本题考查了概念的计算以及一元二次方程根的判别式的应用,分式方程的解,解题的关键是根据题意求出m 的取值范围.17.已知a 为正整数,且二次函数()273y x a x =+-+的对称轴在y 轴右侧,则a 使关于y 的分式方程4211ay yy y--=--有正整数解的概率为_______.【分析】利用二次函数对称轴公式求得从而确定a 所有的正整数解然后解关于y 的方程得然后确定符合题意的a 的值然后根据概率公式求解【详解】解:由题意可知:解得因为为正整数∴a 可以取123456共6种等可能结解析:1 3【分析】利用二次函数对称轴公式求得72a-->,从而确定a所有的正整数解,然后解关于y的方程,得21ya=-,然后确定符合题意的a的值,然后根据概率公式求解.【详解】解:由题意可知:72a-->,解得7a<因为a为正整数,∴a可以取1,2,3,4,5,6共6种等可能结果解4211ay yy y--=--化为:42(1)ay y y---=-解得:21 ya=-当a=2或3时,y有正整数解,符合题意共2种∴a使关于y的分式方程4211ay yy y--=--有正整数解的概率为21=63故答案为:13.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了根的判别式和分式方程的解.18.为了解某校九年级学生每周的零花钱情况,随机抽取了该校100名九年级学生,他们每周的零花钱x(元)统计如下:根据以上结果,随机抽查该校一名九年级学生,估计他每周的零花钱不低于80元的概率是_________.【分析】先计算出样本中零花钱不低于80元的频率然后根据利用频率估计概率求解【详解】解:每周的零花钱不低于80元的概率是:故答案为:【点睛】本题考查了利用频率估计概率:大量重复实验时事件发生的频率在某解析:17 100【分析】先计算出样本中零花钱不低于80元的频率,然后根据利用频率估计概率求解.【详解】解:每周的零花钱不低于80元的概率是:17176374017100=+++,故答案为:17100. 【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.19.一个口袋中放有除颜色外,形状大小都相同的黑白两种球,黑球6个,白球10个.现在往袋中放入m 个白球和4个黑球,使得摸到白球的概率为35,则m =__.5【分析】根据概率公式列出方程即可求出答案【详解】解:由题意得解得m =5经检验m =5是原分式方程的根故答案为5【点睛】本题主要考查了概率公式根据概率公式列出方程是解题的关键解析:5 【分析】根据概率公式列出方程,即可求出答案. 【详解】 解:由题意得,10m 3610m 45+=+++解得m =5,经检验m =5是原分式方程的根, 故答案为5. 【点睛】本题主要考查了概率公式,根据概率公式列出方程是解题的关键.20.完全相同的4个小球,上面分别标有数字1、-1、2、-2,将其放入一个不透明的盒子中摇匀,再从中随机摸球两次(第一次摸出球后放回摇匀).把第一次、第二次摸到的球上标有的数字分别记作m ,n ,以m ,n 分别作为一个点的横坐标与纵坐标,定义点(),m n 在反比例函数ky x=上为事件k Q (44,k k -≤≤为整数),当k Q 的概率最大时,则k 的所有可能的值为__________.±2【分析】首先根据题意列出表格然后根据表格求得k 取不同值时的概率比较大小即可确定k 的所有可能的值【详解】列表得:(1−2)(−1−2)(2−2)(−2−2)(12)(−12)(22)解析:±2. 【分析】首先根据题意列出表格,然后根据表格求得k 取不同值时的概率,比较大小即可确定k 的所有可能的值. 【详解】 列表得:∵若点(m ,n )在反比例函数ky x=上, 则k =mn , ∵P (k =−4)=21168=,P (k =−1)=21168=,P (k =−2)=41164=,P (k =1)=21168=,P (k =2)=41164=,P (k =4)=21168=,∴当Q k 的概率最大时,k =±2. 故答案为:±2. 【点睛】此题考查了列表法或树状图法求概率与反比例函数的性质.此题难度适中,解题时注意列表法与树状图法可以不重不漏的列出所有等可能的情况,然后根据概率公式求得概率.三、解答题21.在一个不透明的盒子里装着除颜色外完全相同的黑、白两种小球共40个,小明做摸球试验,他将盒子里面的球搅匀后从中随机摸出一个球记下颜色后,再把它放回盒子中,不断重复上述过程,下表是试验中的组统计数据:(1)若从盒子里随机摸出一球,则摸到白球的概率约为____________;(精确到0.1) (2)估算盒子里约有白球__________个;(3)若向盒子里再放入x 个除颜色以外其它完全相同的球,这x 个球中白球只有1个.然后每次将球搅拌均匀后,任意摸出一个球记下颜色后再放回,通过大量重复摸球试验后发现,摸到白球的频率稳定在50%,请你推测x 可能是多少? 解析:(1)0.6;(2)24;(3)10 【分析】(1)大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率,据此可得;(2)用总球数乘以摸到白球的概率即可得出答案;(3)根据概率公式和摸到白球的个数,即可求出x的值.【详解】(1)若从盒子里随机摸出一球,则摸到白球的概率约为0.6,故答案为:0.6;(2)估算盒子里约有白球40×0.6=24(个),故答案为:24;(3)根据题意知,24+1=0.5(40+x),解得x=10,答:推测x可能是10.【点睛】本题主要考查利用频率估计概率,解题的关键是掌握大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.22.为贯彻落实全市城乡“清爽行动”暨生活垃圾分类攻坚大会精神,积极创建垃圾分类示范单位,我校举行了一次“垃圾分类”模拟活动. 我们将常见的生活垃圾分为四类:可回收垃圾、厨余垃圾、有害垃圾、其他垃圾,且应分别投放于4种不同颜色的对应垃圾桶中. 若在这次模拟活动中,某位同学将两种不同类型的垃圾先后随意投放于2种不同颜色的垃圾桶.(1)请用列表或画树状图表示所有可能的结果数;(2)求这位同学将两种不同类型的垃圾都正确投放的概率.解析:(1)答案见解析;(2)1 12.【分析】(1)根据题意画出树状图得出所有情况数即可;(2)根据(1)中的数据,求出概率即可.【详解】解:(1)根据题意,画树状图得:由列表可知,一共有12种结果.(2)跟据(1)中的数据可知,正确的投放,只有一种,所以这位同学将两种不同类型的垃圾都正确投放的概率为112.【点睛】考查用列树状图的方法解决概率问题,熟悉相关性质是解决本题的关键.23.有一个可以自由旋转的圆盘,被分成面积相等的3个扇形区,分别标有数字1,2,3,另有一个不透明的口袋中装有2个完全相同的小球,分别标有数字1,2(如图所示),小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一个人转动圆盘,另一人从口袋中摸出一个小球,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去.(1)用画树状图或列表的方法求出小颖参加比赛的概率;(2)你认为该游戏公平吗?请说明理由.解析:(1)12;(2)公平,理由见解析【分析】(1)首先根据题意画出树状图,由树状图求得所有等可能的结果与两指针所指数字之和和小于4的情况,则可求得小颖参加比赛的概率;(2)根据小颖获胜与小亮获胜的概率,比较概率是否相等,即可判定游戏是否公平.【详解】解:(1)画树状图得:∵共有6种等可能的结果,所指数字之和小于4的有3种情况,∴P(和小于4)=36=12,∴小颖参加比赛的概率为:12;(2)公平,∵P(小颖)=12,P(小亮)=12.∴P(小颖)=P(小亮),∴游戏公平.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.24.第七次全国人口普查于2020年11月1日开展,某学校积极响应所在社区的号召,选派部分教师参与普查,其中数学组有4位教师志愿报名,分别记为甲、乙、丙、丁.(1)若该校从数学组教师志愿者中抽调1位教师作为普查员,求教师甲被选中的概率.(2)若该校从数学组教师志愿者中抽调2位教师作为普查员,请用列表或画树状图的方法,求出教师甲和乙被选中的概率.解析:(1)教师甲被选中的概率为14;(2)列表见解析,1.6【分析】(1)根据题意得共有4种等可能结果,其中甲被选中的可能结果有1种,然后利用概率公式即可求解.(2)利用列表列举出所有可能的结果,然后利用概率公式即可求解.【详解】解:(1)教师甲被选中的概率为14.(2)结果有2种,分别为(甲,乙),(乙,甲),所以甲,乙被选中的概率为212,即16.【点睛】本题考查的是用列表法或画树形图法求随机事件的概率,读懂题意并掌握概率公式是解决问题的关键.25.小豪设计一款小游戏,将分别标有数字2,3,4,6的四张质地,大小完全一样的卡片背面朝上放在桌面上.(1)随机抽取一张,求抽到奇数的概率;(2)随机抽取一张的数字记做点A的横坐标(不放回),再抽取一张的数字记做点A的纵坐标,用树状图或表格表示出所有的可能,并求出点A在反比例函数12yx=的图象上的概率.解析:(1)抽到奇数的概率为14;(2)点A在反比例函数12yx=的图象上的概率为13.【分析】(1)由概率公式即可得出结果;(2)画树状图展示所有12种等可能的结果数,找出点A在反比例函数12yx=的图象上的结果数,然后根据概率公式求解.【详解】(1)∵四张完全相同的不透明卡片,其正面分别写有数字2,3,4,6,奇数只有3这1张,∴随机抽取一张,求抽到奇数的概率为:14;(2)画树状图为:共有12种等可能的结果数,其中点A在反比例函数12yx=的图象上的结果数为4,所以点A在反比例函数12yx=的图象上的概率:41123=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.26.我市为了解九年级学生身体素质测试情况,随机抽取了本市九年级部分学生的身体素质测试成绩为样本,按A(优秀)、B(良好)、C(合格)、D(不合格)四个等级进行统计,并将统计结果绘制成如下统计图表,如图,请你结合图表所给信息解答下列问题:等级A(优秀)B(良好)C(合格)D(不合格)人数200400280(2)扇形统计图中“A”部分所对应的圆心角的度数是;(3)若我市九年级共有50000名学生参加了身体素质测试,试估计测试成绩合格以上(含合格)的人数为人;(4)若甲校体育教师中有3名男教师和2名女教师,乙校体育教师中有2名男教师和2。

(必考题)初中九年级数学上册第二十五章《概率初步》经典题

(必考题)初中九年级数学上册第二十五章《概率初步》经典题

一、选择题1.下列事件是必然事件的是( )A .打开电视机,正在播放动画片B .2022年世界杯德国队一定能夺得冠军C .某彩票中奖率是1%,买100张一定会中奖D .在一只装有5个红球的袋中摸出1球,一定是红球2.在一个不透明的口袋中,装有3个相同的球,它们分别写有数字1,2,3,从中随机摸出一个球,若摸出的球上的数字为2的概率记为1P ,摸出的球上的数字小于4的记为2P ,摸出的球上的数字为5的概率记为3P ,则1P ,2P ,3P 的大小关系是( ) A .123P P P << B .321P P P << C .213P P P << D .312P P P << 3.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时得到的两个球的颜色中有“一红一黄”的概率是( )A .16B .29C .13D .234.某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:①互相关心;②互相提醒;③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池.小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是( )A .12B .13C .23D .165.如图,正方形ABCD 内接于⊙O ,⊙O 的直径为2分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD 内的概率是( )A .2π B .2π C .12π D 2π6.如图,转盘中8个扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,估计下列4个事件发生的可能性大小,其中事件发生的可能性最大的是( )A .指针落在标有5的区域内B .指针落在标有10的区域内C .指针落在标有偶数或奇数的区域内D .指针落在标有奇数的区域内7.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( )A .13B .415C .15D .2158.在一个不透明的袋子中,装有红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.若小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在0.15.和0.45,则该袋子中的白色球可能有( )A .6个B .16个C .18个D .24个9.下列语句所描述的事件是随机事件的是( )A .经过任意两点画一条直线B .任意画一个五边形,其外角和为360°C .过平面内任意三个点画一个圆D .任意画一个平行四边形,是中心对称图形 10.现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为y 来确定点P (,x y ),那么他们各掷一次所确定的点P 落在已知抛物线24y x x =-+上的概率为( )A .118B .112C .19D .16 11.同时抛掷完全相同的,A B 两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),两个立方体朝上的数字分别为,x y ,并以此确定(,)P x y ,那么点P 落在函数29y x =-+上的概率为( )A .118B .112C .19D .1612.某校学生小明每天上学时都要经过一个十字路口,该十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为13,遇到黄灯的概率为19,那么他遇到绿灯的概率为( )A .13B .23C .49D .5913.甲袋中装有3个白球和2个红球,乙袋中装有30个白球和20个红球,这些球除颜色外都相同.把两只袋子中的球搅匀,并分别从中任意摸出一个球,从甲袋中摸出红球记为事件A ,从乙袋中摸出红球记为事件B ,则A .P (A )>P (B )B .P (A )<P (B )C .P (A )=P (B )D .无法确定 14.掷一枚普通的正六面体骰子,出现的点数中,以下结果机会最大的是( )A .点数为3的倍数B .点数为奇数C .点数不小于3D .点数不大于3 15.下列说法正确的是( )A .为了了解某中学1200名学生的视力情况,从中随机抽取了50名学生进行调查,在此次调查中,样本容量为50名学生的视力B .若一个游戏的中奖率是2%,则做50次这样的游戏一定会中奖C .了解无锡市每天的流动人口数,采用抽样调查方式D .“掷一枚硬币,正面朝上”是必然事件 二、填空题16.不透明的盒子中装有除标号外完全相同的4个小球,小球上分别标有数-4,-2,3,5.从盒子中随机抽取一个小球,数记为a ,再从剩下的球中随机抽取一个小球,数记为b ,则使得点(),a a b -在第四象限的概率为______.17.2020 年“中华魂”读书活动的主题为“科技托起强国梦”,现准备从万州二中校园电视台2名男主播和3名女主播中任选两人担任演讲比赛主持人,则选中一男一女的概率为__________.18.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是__________. 19.一个不透明的盒子中装有9个大小相同的乒乓球,其中3个是黄球,6个是白球,从该盒子中任意摸出一个球,摸到白球的概率是_________.20.一只小狗在如图所示的地板上走来走去,地板是由大小相等的小正方形铺成的.最终停在黑色方砖上的概率是_______.21.为了解某校九年级学生每周的零花钱情况,随机抽取了该校100名九年级学生,他们每周的零花钱x (元)统计如下:组别(元)40x < 4060x ≤< 6080x ≤< 80100x ≤< 人数 6 37 40 17根据以上结果,随机抽查该校一名九年级学生,估计他每周的零花钱不低于80元的概率是_________.22.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中任意摸出一个球,摸到红球的概率是310,摸到白球的概率是12,那么摸到黑球的概率是____.23.如图,这个图案是3世纪我国汉代数学家赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.已知AE=5,BE=3,若向正方形ABCD内随意投掷飞镖(每次均落在正方形ABCD内,且落在正方形ABCD内任何一点的机会均等),则恰好落在正方形EFGH内的概率为__________.24.一个不透明的袋中有四张形状大小质地完全相同的卡片,它们上面分别标有数字﹣1、2、3、4,随机抽取一张卡片不放回,再随机抽取一张卡片,则两次抽取的卡片上数字之和为奇数的概率是_____25.有黄色抹子9只,绿色袜子7只,白色袜子4只,红色袜子2只,黑色袜子1只,盲人摸袜子(摸出的袜子不放回):(1)若每次摸1只,连续摸两次,恰好凑成一双黄袜子的概率是________.(2)若要保证凑出2双不同色袜子,则至少要摸出________只袜子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率初步练习题
关于必然事件
1、有下列事件:①367人中必有2人的生日相同;②抛掷一只均匀的骰子两次,朝上一面的点数之和一定大于等于2;③在标准大气压下,温度低于0℃时冰融化;④如果a、b为实数,那么a+b=b+a.其中是必然事件的有()
A.1个 B.2个 C.3个 D.4个
2、纸箱里装有2个篮球、8个白球,从中任意摸出3个球时,至少有一个是
3、一个不透明的口袋中有10个白球和12个黑球,“任意摸出n个球,其中至少有一个白球”是必然事件,n等于()
A、10 B、11 C、12 D、13
4、下列事件中,属于不可能事件的是()A.某个数的绝对值小于0 B.某个数的相反数等于它本身
C.某两个数的和小于0 D.某两个负数的积大于0 关于可能事件
1、下列事件:(1)明天是晴天;(2)小明的弟弟比他小:(3)巴西与土耳其进行足球比赛,巴西队会赢;(4)太阳绕着地球转。

属于不确定事件的有:
2、下列事件中,属于随机事件的是()
A. 掷一枚普通正六面体骰子,所得点数不超过6
B.买一张彩票中奖
C. 太阳从西边落下
D.口袋中装有10个红球,从中摸出一个是白球
3、下列事件:
①打开电视机,它正在播广告;
②从只装有红球的口袋中,任意摸出一个球,恰好是白球;
③两次抛掷正方体骰子,掷得的数字之和小于13;
④抛掷硬币1000次,第1000次正面向上
其中是可能事件的为()
A.①③ B.①④ C.②③ D.②④
4、下列事件中,属于不确定事件的有()
①太阳从西边升起;②任意摸一张体育彩票会中奖;③掷一枚硬币,有国徽的一面朝下;
④小明长大后成为一名宇航员.
A.①②③ B.①③④
C.②③④ D.①②④
5、在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球有3个、白球1个.搅匀后,从中同时摸出2个小球,•请你写出这个实验中的一个可能事件:
_________.
6、篮球投篮时,正好命中,这是事件。

在正常情况下,水由底处自然流向高处,这是事件。

求概率难题
1、已知|a|=2,|b|=5,求|a+b|=7的概率为。

2、任意抛掷一枚质量均匀的硬币,出现两次都为正面朝上的概率为,出现两次都为相同的面的概率为 ,出现至少有一次正面朝上的概率为
3、蓝猫走进迷宫,迷宫中的每一个门都相同,第一道关口有三个门,只有第三个门有开关,第二道关口有两个门,只有第一个门有开关。

蓝猫一次就能走出迷宫的概率是。

4、有五条线段,长度分别为1,3,5,7,9,从中任意取三条,一定能构成三角形的机会是
__________.
5、有一个口袋里装有红、白、黑三种颜色的小球,它们除颜色外没有其他区别,其中有白球5个,红球3个,黑球1个,袋中的球搅匀。

(1)闭上眼睛随机地从袋中取出一个球,分别求出取出的球是白球、红球、黑球的概率?
(2)若取出的第一个球是红球,将它放到桌面上,闭上眼睛从袋中余下的球中再随机地取出1球,这时取出白球、红球、黑球的概率又分别是多少?
(3)若取出第一个球是黑球,将它放在桌面上,闭上眼睛从袋中余下的球中再随机地取出1球,这时取出白球、红球、黑球的概率又分别是多少?
6、小勇和小燕玩“掷骰子”的游戏,两个骰子同时掷,若掷出的两个点数之积为奇数,则算小勇赢,若为偶数,则算小燕赢,你认为这个游戏公平吗?若公平,请说明理由;若不公平,则请你帮他们重新设计一个方案。

7、某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:
(1)计算并完成表格;
(2)画出获得铅笔频率的折线统计图;
(3)请估计,当n很大时,成功频率将会接近多少?假如你去转动该转盘一次,你获得铅笔的成功率约是多少?。

相关文档
最新文档