过渡金属氧化物催化剂及其催化作用

合集下载

过渡金属有机化合物的合成与催化应用

过渡金属有机化合物的合成与催化应用

过渡金属有机化合物的合成与催化应用过渡金属有机化合物是一类具有重要催化性质的有机化合物,它们在有机合成和催化反应中起着至关重要的作用。

本文将介绍过渡金属有机化合物的合成方法以及其在催化应用中的重要性。

一、过渡金属有机化合物的合成方法过渡金属有机化合物的合成方法多种多样,其中最常见的方法包括金属的直接还原、金属的配位反应以及金属的插入反应等。

1. 金属的直接还原金属的直接还原是合成过渡金属有机化合物的一种常用方法。

这种方法通常通过将金属盐与还原剂反应来获得金属有机化合物。

例如,将钯盐与氢气反应可以得到钯有机化合物。

2. 金属的配位反应金属的配位反应是合成过渡金属有机化合物的另一种常用方法。

这种方法通常通过将金属盐与有机配体反应来获得金属有机化合物。

例如,将铂盐与二苯基膦反应可以得到铂有机化合物。

3. 金属的插入反应金属的插入反应是合成过渡金属有机化合物的另一种常用方法。

这种方法通常通过将金属与有机物反应来获得金属有机化合物。

例如,将铁与乙烯反应可以得到铁有机化合物。

二、过渡金属有机化合物的催化应用过渡金属有机化合物在催化反应中起着重要的作用,它们可以作为催化剂参与到各种有机反应中,提高反应的速率和选择性。

1. 氢化反应过渡金属有机化合物在氢化反应中起着重要的催化作用。

它们可以作为催化剂催化有机物的氢化反应,将不饱和化合物转化为饱和化合物。

例如,铂有机化合物可以催化烯烃的氢化反应,将烯烃转化为烷烃。

2. 氧化反应过渡金属有机化合物在氧化反应中也起着重要的催化作用。

它们可以作为催化剂催化有机物的氧化反应,将有机物转化为氧化产物。

例如,钼有机化合物可以催化醇的氧化反应,将醇转化为醛或酮。

3. 羰基化反应过渡金属有机化合物在羰基化反应中也起着重要的催化作用。

它们可以作为催化剂催化有机物的羰基化反应,将有机物转化为羰基化合物。

例如,钯有机化合物可以催化烯烃的羰基化反应,将烯烃转化为酮。

综上所述,过渡金属有机化合物的合成与催化应用是有机合成和催化领域中的重要研究方向。

有机合成中的催化氧化与还原反应

有机合成中的催化氧化与还原反应

有机合成中的催化氧化与还原反应有机合成是一门研究有机化合物的合成方法和反应过程的学科,其中催化氧化与还原反应在有机合成中起着重要的作用。

催化氧化反应利用催化剂促进对有机物的氧气添加,而催化还原反应则是利用催化剂促进对有机物的氧气脱除。

本文将探讨催化氧化与还原反应在有机合成中的应用及其机制。

一、催化氧化反应催化氧化反应是指通过添加催化剂,使有机物与氧气发生反应,形成氧化产物。

这些催化剂能够降低反应的活化能,从而促进反应的进行。

催化氧化反应在有机合成中有着广泛的应用,可以用于合成醛、酮、酸等官能团。

下面将介绍几种常见的催化氧化反应。

1. 化学氧化剂催化的氧化反应化学氧化剂催化的氧化反应是最常见的催化氧化反应之一。

例如酒精的氧化反应可以使用氧气和铜催化剂,生成相应的醛或酸。

此类反应往往需要高温和高压条件下进行,催化剂可以促使反应在较温和的条件下进行,提高反应的效率。

2. 过渡金属氧化物催化的氧化反应过渡金属氧化物催化的氧化反应是一种常用的催化氧化反应。

许多过渡金属氧化物,如氧化亚铜、氧化钴等,具有良好的催化活性。

例如,氧化亚铜可以催化醇的氧化反应,生成相应的醛或酮。

这些催化剂通过与反应物中的氧气发生反应,实现有机物的氧化。

二、催化还原反应催化还原反应是指通过添加催化剂,使有机物与氧气发生反应,脱除氧原子,形成还原产物。

这些催化剂能够降低反应的活化能,从而促进反应的进行。

催化还原反应在有机合成中同样应用广泛,可以用于合成醇、醚等官能团。

下面将介绍几种常见的催化还原反应。

1. 氢气催化的还原反应氢气催化的还原反应是最常见的催化还原反应之一。

氢气是一种强还原剂,可以与有机物发生反应,将氧原子脱除,生成相应的还原产物。

例如,醛可以在氢气催化剂的存在下还原为相应的醇。

这种催化剂通常是以贵金属如钯、铂为基础的。

2. 过渡金属催化的还原反应过渡金属催化的还原反应是一种常用的催化还原反应。

过渡金属催化剂可以促进有机物的还原反应,并实现对特定官能团的还原。

过渡金属氧化物催化剂及其催化作用

过渡金属氧化物催化剂及其催化作用
超声合成法
利用超声波的空化作用产生的局部高温高压 环境,促进反应物之间的化学反应,从而合 成催化剂。这种方法可以得到粒径小、分布 均匀的催化剂,且反应条件温和。
制备条件对性能影响
温度
制备过程中的温度会影响催化剂的晶型、粒径和比表面积等性质。一般来说,较高的温度 有利于形成结晶度好、粒径较大的催化剂,而较低的温度则有利于形成无定形或微晶结构 、粒径较小的催化剂。
化性能。
多功能复合型催化剂开发前景
光催化与电催化结合
开发具有光催化和电催化双重功能的复合型催化剂,提高能源转 化效率。
催化剂载体优化
研究高效、稳定的催化剂载体,提高催化剂的分散度和活性组分利 用率。
多相催化与均相催化融合
探索多相催化和均相催化的融合策略,实现高效、高选择性的催化 反应。
环境友好型催化剂需求及挑战
感谢您的观看
催化剂分类
根据催化剂与反应物的相互作用方式,可分为均相催化剂和多相催化剂。均相 催化剂与反应物处于同一物相中,而多相催化剂则与反应物处于不同物相。
催化剂在化学反应中作用
降低活化能
01
催化剂通过提供新的反应路径,使反应物分子更容易达到活化
状态,从而降低反应的活化能。
加速反应速率
02
由于活化能的降低,反应物分子更容易发生有效碰撞,从而加
粒径和形貌
催化剂的粒径和形貌影响其比表面积、孔结构和 活性位点分布,进而对催化性能产生重要影响。
表面性质和电子性质分析
表面吸附性能
过渡金属氧化物催化剂表面具有丰富的吸附位点,可吸附反应物分 子并活化,从而促进催化反应的进行。
氧化还原性能
过渡金属元素具有多变的价态,使得催化剂具有良好的氧化还原性 能。这种性能在催化氧化还原反应中起到关键作用。

第4章3过渡金属氧化物催化剂及其催化作用

第4章3过渡金属氧化物催化剂及其催化作用

第4章3过渡金属氧化物催化剂及其催化作用过渡金属氧(硫)化物催化剂是一类广泛应用于化学反应中的催化剂。

它们由过渡金属和氧(硫)等原子组成,具有独特的结构和催化性能。

在本文中,我们将重点介绍过渡金属氧(硫)化物催化剂的种类、结构和催化作用,以及其在化学合成和能源转化等领域的应用。

过渡金属氧(硫)化物催化剂主要有负载型和非负载型两种形式。

负载型催化剂是将过渡金属氧(硫)化物负载在二氧化硅、活性炭等载体上,以增加其表面积和催化活性。

非负载型催化剂则是纯粹由过渡金属氧(硫)化物构成的颗粒或薄膜,具有较高的比表面积和催化活性。

这两种形式的催化剂在不同的反应中具有不同的催化机理和催化性能。

过渡金属氧(硫)化物催化剂的结构是其催化性能的关键因素。

大多数过渡金属氧(硫)化物催化剂具有复杂的晶体结构,如层状结构、中空球状结构等。

这些结构可以提供丰富的活性位点,并且具有调节反应中间体吸附和反应通道的能力。

此外,过渡金属氧(硫)化物催化剂还可以通过改变晶体结构或添加协同剂来调节其催化性能,提高催化活性和选择性。

过渡金属氧(硫)化物催化剂在化学反应中具有广泛的应用。

例如,通过调节过渡金属氧(硫)化物催化剂的结构和成分,可以实现氧化反应、氢化反应、催化裂解等各种化学转化。

特别是在有机合成中,过渡金属氧(硫)化物催化剂可以催化氧化还原反应、催化偶联反应、催化环化反应等,为合成高附加值化合物提供了重要的技术手段。

另外,过渡金属氧(硫)化物催化剂还可以催化电化学反应、光化学反应等非常规化学反应,为能源转化和环境保护等领域提供了新的解决方案。

总之,过渡金属氧(硫)化物催化剂是一类重要的催化剂,在化学合成和能源转化等领域具有广泛的应用。

通过调节其结构和成分,可以实现多种化学反应的高效催化。

随着新材料合成和催化机理的深入研究,过渡金属氧(硫)化物催化剂的催化性能有望进一步提高,为社会经济的可持续发展作出更大的贡献。

第节金属氧化物催化剂及其催化作用

第节金属氧化物催化剂及其催化作用
Zn2+ O2- Zn1+ O2- Zn2+ O2O2- Zn2+ e Zn2+ O2- Zn2+ Zn2+ O2- Zn1+ e Zn2+ O2O2- Zn2+ O2- Zn2+ O2- Zn2+
第四节 金属氧化物催化剂及其催化作用
C、高价离子同晶取代
第四节 金属氧化物催化剂及其催化作用
D、掺入电负性小的原子
Cr2O3-K2O-CeO2(水 泥载体)
Cr2O3
第四节 金属氧化物催化剂及其催化作用
过渡金属氧化物催化剂的工业应用(3)
反应 类型
催化主反应式
临 RSH + H2 RH+H2S


+ 4H2

S C4H10 + H2S
临 氢
RSH + H2
脱 RSR' + 2H2
RH+H2S RH+R'H+H2S
第四节 金属氧化物催化剂及其催化作用
B、负离子缺位氧化物
第四节 金属氧化物催化剂及其催化作用
❖例2:当氧化锌晶体存在着负离子O2-缺位,为保持氧化锌 电中性,附近的Zn2+变成Zn1+ ,且在缺位上形成束缚电子e。 束缚电子e也有自己的能级,即施主能级,电子可跃迁到导 带成为导电电子,形成n型半导体。
❖ 在导带(空带)和满带之间没有能级, 不能填充电子,这个区间叫禁带,其能 量宽度表示为Eg
第四节 金属氧化物催化剂及其催化作用
E≤3ev
导体(金属)、半导体(金属氧化物)和 绝缘体的最大差别是三者禁带宽度不同——
按照电子性质分类的固体的能带模型示意图

过渡金属氧化物的用途

过渡金属氧化物的用途

过渡金属氧化物的用途全文共四篇示例,供读者参考第一篇示例:过渡金属氧化物是一种重要的功能材料,在许多领域都有着广泛的应用。

它们具有优越的物理化学性质,可用于电化学、光催化、气敏和传感器等领域。

本文将探讨过渡金属氧化物的用途,包括其在各种领域的应用和未来发展方向。

1. 电化学应用过渡金属氧化物在电化学领域中具有重要的应用。

它们可以作为电极材料用于锂离子电池、超级电容器和燃料电池等设备中。

过渡金属氧化物具有高的电导率和稳定性,可以提高电池的充放电性能,延长电池的使用寿命。

过渡金属氧化物还可用于储能设备和电解水制氢等领域,在能源转换和储存方面具有巨大的潜力。

过渡金属氧化物在光催化领域中也有着重要的应用。

它们可以吸收可见光和紫外光,将光能转化为化学能,促进光催化反应的进行。

过渡金属氧化物可用于光解水制氢、光催化还原CO2等环境保护和能源利用领域。

通过调控材料的结构和组成,可以实现高效的光催化性能,为清洁能源和环境治理提供新的解决方案。

3. 气敏和传感器应用过渡金属氧化物是一种优秀的气敏材料,可用于气体传感器和化学传感器等应用。

它们在检测有害气体、监测环境污染和医学诊断等方面有着重要的作用。

过渡金属氧化物的电阻率随气体浓度的变化而变化,可以通过测量电阻率的变化实现对目标气体的高灵敏度检测。

过渡金属氧化物传感器具有响应速度快、灵敏度高和稳定性好等优点,已经广泛应用于工业生产和科学研究领域。

在过渡金属氧化物的应用过程中,需要不断提高材料的性能和稳定性,拓展新的应用领域,促进相关技术的发展和创新。

未来,随着能源和环境问题的日益突出,过渡金属氧化物的研究和应用将成为科学研究和工程技术的重要方向,为实现可持续发展和清洁生产做出贡献。

第二篇示例:过渡金属氧化物是一类具有重要应用价值的化学物质,广泛应用于各个领域。

过渡金属指的是元素周期表中处于d区的金属元素,包括铁、镍、钴、铬等。

而过渡金属氧化物则是过渡金属原子与氧原子结合而成的化合物,具有丰富的化学性质和广泛的应用领域。

各种催化剂及其催化作用

各种催化剂及其催化作用

各种催化剂及其催化作用催化剂是在化学反应中加速反应速率但本身并不参与反应的物质。

通过提供一个能量有效的反应途径,催化剂可以降低活化能,从而促进反应的进行。

催化剂在各个行业都有广泛的应用,包括化学、能源、环境和医药等领域。

下面是一些常见催化剂及其催化作用的例子。

1.酶催化剂:酶是生物催化剂的代表。

酶在生物体内促进化学反应的进行,如消化食物、合成物质等。

酶催化剂具有高效、高选择性、低能量消耗等优点。

2.转金属催化剂:金属催化剂广泛应用于有机合成反应中。

例如,钯催化剂常用于氢化反应、交叉缩合反应等。

金属催化剂可以提供有效的活化位点,加速反应的进行。

3.齐特尔催化剂:齐特尔催化剂常用于聚合反应中。

例如,钛齐特尔催化剂被广泛用于聚合丙烯、乙烯等。

4.五氧化二钒催化剂:五氧化二钒催化剂可用于氮氧化物的催化还原。

五氧化二钒可将氮氧化物(如NOx)还原为氮气和水。

5.铂催化剂:铂催化剂常用于汽车尾气处理中。

它可以将一氧化碳(CO)和氮氧化物(NO)转化为无害的二氧化碳和氮气。

6.锂催化剂:锂催化剂可用于有机合成中的各种反应,如还原、氧化等。

锂催化剂在有机合成中具有高效、高选择性和环境友好的特点。

7.过渡金属催化剂:过渡金属催化剂广泛应用于有机合成和不对称合成中。

它们可以催化诸多反应,如氧化反应、还原反应、偶联反应等。

8.碱催化剂:碱催化剂可用于酯化、烷基化等反应。

对于许多有机反应,碱催化可大大提高反应速率。

9.氧化剂催化剂:氧化剂催化剂可用于氧化反应,如醇的氧化、烃的氧化等。

例如,二氧化锰常用作氧化剂。

10.鲍耳催化剂:鲍耳催化剂可用于烯烃的水化反应。

鲍耳催化剂可以将烯烃转化为醇。

除了以上提到的催化剂,还有很多其他种类的催化剂被广泛应用于各个领域。

催化剂的运用不仅可以提高化学反应的速率和产率,还可以使反应更加环保和节能。

催化剂的发展和应用在加速科学和工业的进步中起到了至关重要的作用。

催化剂的种类和应用

催化剂的种类和应用

催化剂的种类和应用催化剂是一种能够加速化学反应速率和降低反应所需能量的物质,其本身在反应中并不参与,也不发生化学变化。

催化剂广泛应用于化工、环保、能源、医学等领域,其种类也非常丰富,本文将介绍其中的几种主要催化剂及其应用。

1.金属催化剂金属催化剂是一种常见的催化剂类型,其活性中心是由金属离子组成的。

金属催化剂可分为贵金属催化剂和非贵金属催化剂两类。

贵金属催化剂如铂、钯、铑等,因其在催化反应中具有高的活性和选择性,被广泛应用于重要有机化学反应中。

例如,铂和钯常常被用于加氢反应和脱氢反应,其催化剂特点是可提供较高的反应活性和较高的产物选择性。

而铑催化剂则广泛应用于氢氧化反应、退火反应等领域。

非贵金属催化剂如铁、铜、镍等催化剂价格较为便宜,但其反应活性相对较低。

与贵金属催化剂的应用领域不同,非贵金属催化剂多应用于生产大量低价值商品的反应中。

例如,镍催化剂可用于合成合成乙醇,铁催化剂用于制备氨等。

此外,钒、钛等元素也可形成催化剂,其应用领域也越来越广泛。

2.生物催化剂生物催化剂也称为酶催化剂,是一种天然的催化剂,在各种生物体内存在。

酶是一种高效催化剂,其作用对象包括葡萄糖、酒精、淀粉、蛋白质等。

生物催化剂的作用机理为化学键的加成或切断,它能催化特定的化学反应而不改变化学反应的平衡状态。

生物催化剂具有选择性、效率高、反应温和等特点,应用领域较广。

例如,生物催化剂能够实现废水处理、生产细胞色素、生产单宁等。

3.离子液体催化剂离子液体催化剂也称为绿色催化剂,主要原理是通过溶解和分散杂质,增加反应物之间的接触率,从而提高化学反应的速率和产物选择性。

离子液体催化剂具有无毒性、高反应活性、超低挥发性等特点,是一种可持续的催化剂。

离子液体的种类很多,其中一种典型的离子液体是N-乙基吡啶锗氟磺酰酸盐([EPy]FSA)催化剂,它在有机合成反应中表现出优异的催化性能。

此外,离子液体催化剂还应用于生产农药、染料、光催化材料、生物燃料等领域。

过渡金属氧(硫 )化物催化剂及其催化作用

过渡金属氧(硫 )化物催化剂及其催化作用

5.4 过渡金属氧化物催化剂的氧化-还原机理
金属氧化物催化剂氧化还原机理 (选择性氧化(部分氧化))
晶体配位场理论
八面体场
△为分离能
对于不同的配位体场下d能级分裂
成对能与分离能关系
晶体场稳定化能(CFSE)
吸附NiO表面配位数发生变化
A)正方锥→正八面体,B)正四面体→ 正方锥→ 正八 面体,C)平面三角→正方锥→正八面体
LOGO
第5章 过渡金属氧(硫 ) 化物催化剂及其催化作用
过渡金属氧化物、硫化物(半导体)催化剂
过渡金属氧化物、硫化物多属半导体类型, 本章用半导体能带理论来说明这类催化剂 的催化特性。将半导体的导电率、电子逸 出功与催化活性相关联,解释这类催化剂 的催化作用。
5.1 过渡金属氧化物催化剂的应用及其特点
本征半导体中,EF在满带 和导带之间;
N型半导体中,EF在施主能 级和导带之间;
P型半导体中,EF在受主能 级和满带之间。
电子逸出功由
电子逸出功:将一个具有平均位能的电子从固体 内部拉到固体外部所需的最低能量。
1、半导体费米能级与逸出功的关系
φ
φ
EF
φ
EF
施主
受主
EF
本征
n
p
2、杂质对半导体催化剂的影响
由于过渡金属氧化物催化剂具有半导体性质,因 此又称为半导体催化剂。
1、半导体催化剂类型:
过渡金属氧化物:ZnO,NiO,WO3,Cr2O3, MnO2,MoO3.V2O5,Fe3O4,CuO等;
过渡金属复合氧化物:V2O5—MoO3,MoO3- Bi2O3等;
某些硫化物 如MoS2,CoS2等
(2) 低价正离子同晶取代

7过渡金属氧化物催化剂及其催化作用

7过渡金属氧化物催化剂及其催化作用

第七章
7.1.1 过渡金属氧化物的表面与体相组成
CoO-Cr2O3固溶体XPS分析
结合能 序号 1 2 3 4 5 6 体相Cr2O3 摩尔分数/% 0.33 0.90 0.90 66.6 66.6 100.0 样品* Co Cr 2p3/2 固体相A 固体相A 固体相B 固体相A 固体相B Cr2O3 781.2 781.0 781.1 781.1 781.2 O 2p3/2 576.9 576.9 577.0 576.3 576.3 576.6 1s 530.4 530.4 530.5 530.2 530.4 530.6 9.9 14.0 12.3 65.2 66.7 100.0 表面Cr2O3 摩尔分数/%
第七章
第七章 过渡金属氧化物催化剂及 其催化作用
[教学难点] 1. 氧化物表面上的氧物种和氧的活化作用。 2. 氧物种在催化氧化中的作用。
[主要内容] 1. 过渡金属氧化物催化剂的表面化学和催化作用 基础。 2. 选择性氧化过程,丙烯氧化制丙烯醛和丙烯酸, 正丁烷氧化制顺丁烯二酸酐。 3. 乙苯脱氢和氧化脱氢。 4. 加氢处理过程。
第七章
7.1.2 表面几何形态的影响
表明了当l – 丁烯脉冲进样到Cu2Mo3O10和Cu6Mo4O15 催化剂上产物的选择性。 Cu2Mo3O10对异构化有活性, 而Cu6Mo4O15主要是氧插入到有机分子中形成丁烯醛, 并且完全没有异构化作用
第七章
7.1.2 表面几何形态的影响
1- 丁烯在催化剂 Cu2Mo3O10 ( Ⅰ )和 Cu6Mo4O15 ( Ⅱ ) 上的反应机理
第七章
7.1.5 氧化物表面上的氧物种和氧的活化作用
在催化剂表面上氧的吸附形式主要有: 电中性的氧分子物种(O2)ad 带负电荷的氧离子物种(O2-、O-、O2-) 这几种吸附态的氧物种可以通过电导、功 函、ESR谱等方法测定出来

第三章 催化剂与催化作用_金属氧化物催化剂

第三章 催化剂与催化作用_金属氧化物催化剂
第三章 催化剂及其催化作用
4. 金属氧化物硫化物及其催化作用
概述

金属氧化物催化剂组成:常为复合氧化物(Complex oxides),
即多组分氧化物。 VO5-MoO3,Bi2O3-MoO3,TiO2-V2O5-P2O5,V2O5MoO3-Al2O3,MoO3-Bi2O3-Fe2O3-CoO-K2O-P2O5-SiO2 (即7组分的代号为C14的第三代生产丙烯腈催化剂)。
复合氧化物催化剂的结构
(2)钙钛矿结构 这是一类化合物,其晶格结构类似于矿物CaTiO3,是可用 通式ABO3表示的氧化物。A是一个大的阳离子,B是一个 小的阳离子。在高温下钙钛矿型结构的单位晶胞为正立方 体,A位于晶胞的中心,B位于正立方体顶点。此中A的配 位数为12,B的配位数为6.

结构要求:
复合氧化物催化剂的结构
任何稳定的化合物,必须满足化学价态的平衡。当晶格中
发生高价离子取代低价离子时,就要结合高价离子和因取 代而需要的晶格阳离子空位以满足这种要求。例如Fe3O4的 Fe离子,若按γ-Fe2O3中的电价平衡,晶体中有8/3的Fe3+, 1/3的阳离子空穴。阳离子一般小于阴离子。可以书写成

组分中至少有一种是过渡金属氧化物。组分与组分之间可
能相互作用,作用的情况常因条件而异。复合氧化物系常 是多相共存,如Bi2O3-MoO3,就有α、β和γ相。有活性相 概念。它们的结构十分复杂,有固溶体,有杂多酸,有混 晶等。
概述

金属催化剂作用和功能

有的组分是主催化剂,有的为助催化剂或者载体。主催
金属硫化物催化剂及其催化剂作用

硫化物催化剂的活性相,一般是其氧化物母体先经高温
熔烧,形成所需要的结构后,再在还原气氛下硫化。硫

《工业催化原理》第五单元 金属氧化物催化剂及其催化作用(13)5

《工业催化原理》第五单元 金属氧化物催化剂及其催化作用(13)5

M2O3
MO2
MO3 层状 M2O 结构 MO M2O3 M2O5 MO3 链状结构 分子结构
第一节
金属氧化物的组成和结构特性
(3)复合金属氧化物
复合金属氧化物通常是指由两种不同金属元素A和B和氧元素形成的金属氧化物,根据金属元素 和氧元素的化学计量比不同,可以分为如下几种: (一) ABO2型复合金属氧化物 如表(ABO2型复合金属氧化物的结构)所示 金属原子的配位 4配位(四面体配位) 结构 闪锌矿型超结构 红锌矿(wurtzite)型超结构 β-BeO 6配位(六面体配位) 岩盐型超结构: 正方晶系 LiFeO2, LiEuO2 菱面体晶系 LiNiO2, NaInO2 LiVO2, NaFeO2, LiInO2, LiScO2, 例子 LiBO2(高压变态) LiGaO2 γ-LiAlO2
第一节
金属氧化物的组成和结构特性
(2)单一金属氧化物
这是由一种金属元素和氧元素形成的金属氧化物,其结构特性如表(金属氧化物的晶体结构)所 示,表中所列的各项都是对催化有较大影响的结构因素。1)平面4配位;2)三角锥3配位;3)正方锥4配位
结构类 组成式 型 立体结 M2O 构 MO M 4 2 6 4 4 41))) 41)) 6 7 7,6 6 6 4 8 6 4 6 32) 43) 3 5 6 配位数 O 8 4 6 4 4 1) 4 ) 4 4 4 4 4 4 2 4 3 3 2 6 4 2 1,2,3 1,2,3 晶体结构 反萤石型 Cu2O型 岩盐型 纤锌矿型 β-BeO型 NbO型 PdO型 刚玉型 A-M2O3型 B-M2O3型 C-M2O3型 复杂M2O3型 B 2 O3 型 萤石型 金红石型 硅石型 ReO3型 反碘化镉型 PbO (红色)型 As2O3型 例子 Li2O, Na2O, K2O, Rb2O Cu2O, Ag2O MgO, CaO, SrO, BaO, TiO, VO, MnO 等 BeO, ZnO BeO (高温型) NbO PdO, PtO, CuO, (AgO) Al2O3,Ti2O,V2O3,Fe2O3,Cr2O3,Rh2O3等 4f,5f氧化物 Mn2O3, Sc2O3, Y2O3, In2O3, Tl2O3 B2O3 (α, β, γ 相) B 2 O3 ZrO2, HfO2, CeO2, ThO2, UO2 TiO2, VO2, CrO2, MoO2, WO2, MnO2等 TiO2, GeO2 ReO3, WO3 Cs2O PbO (红色), SnO As2O3 V2O5 MoO3 HgO, SeO2, CrO3, Sb2O5 RuO4, OsO4, Tc2O7, Sb4O6

过渡金属配合物催化剂及其相关催化过程ppt课件

过渡金属配合物催化剂及其相关催化过程ppt课件

一、过渡金属配合物种的化学键
四类配体:
4)配体同时提供一个充满的成键轨道和一个空的反键 轨道,与金属的相应轨道作用。配体的成键轨道与金 属的空轨道作用,形成/ 键;配体空的反键轨道与 金属的充满轨道作用,形成键。如CO、烯烃、磷化
氢等。
一、过渡金属配合物种的化学键
一、过渡金属配合物种的化学键
插入反应:一个原子或分子插入两个初始键合的金
属-配体间。
烯烃向金属-烷基间的插入反应假定机理:
三、相关催化过程
烯烃加氢
能够活化氢的的金属配合物: RuCl63-;Co(CN)53-;RhCl(PPh3)3(即Wilkinson配合物, 对均相催化加氢非常有效)
三、相关催化过程
烯烃加氢
这类催化剂在加氢反应中 的作用为:
二、有机金属配合物的反应与催化反应
氧化加成:配体加成至金属原子并使价态升高的反
应(如H2对配合物的加成)。
氧化加成要求金属周围有两个空配位点,并且金属具 有差值为2 的两种氧化态,比如金属Rh。H2、HI和 CH3I等可以发生氧化加成反应。
二、有机金属配合物的反应与催化反应
插入反应:一个原子或分子插入两个初始键合的金
三、相关催化过程
乙烯氧化制乙醛——Wacker过程
4)在反应体系中直接加入乙醇,有乙醇转化为醛的速率要 比乙烯直接氧化得到醛的速率慢得多,这说明乙烯氧化为乙 醛不是以乙醇作为中间产物; 5)用重水所作的实验表明,所得乙醛分子中不含有D,说明 乙醛中的四个H全部来自乙烯内部; 6)动力学研究表明,插入反应是速控步,根据这一速控步 骤的机理可以导出总反应速率方程
C2H4 PdCl2 H2O CH3CHO Pd 2HCl
2)Pd(0)被氧化为Pd(II),Cu2+还原为Cu+:

oer催化剂的材料

oer催化剂的材料

oer催化剂的材料OER(Oxygen Evolution Reaction)催化剂是一类能够促进氧气发生析出反应的材料,广泛应用于能源转换和储存领域。

本文将介绍几种常见的OER催化剂材料及其特点。

一、金属氧化物催化剂金属氧化物催化剂是OER领域中最常见的一类材料。

其中,铁氧化物(Fe2O3)具有良好的OER催化活性和稳定性。

研究表明,Fe2O3可以通过调控晶体结构、表面氧化态和晶格缺陷等来提高其催化活性。

此外,钴氧化物(Co3O4)和锰氧化物(MnOx)等金属氧化物也被广泛应用于OER催化剂的研究中。

二、过渡金属催化剂过渡金属催化剂具有良好的OER催化活性和电化学稳定性。

其中,钴基催化剂是目前应用最广泛的一类过渡金属催化剂。

钴基催化剂具有较低的催化活化能和较高的电子传导性能,能够有效促进OER 反应的进行。

此外,铁基催化剂、镍基催化剂和锰基催化剂等也具有一定的催化活性,正在得到广泛研究和应用。

三、双金属催化剂双金属催化剂是一种将两种不同金属组合而成的材料。

研究表明,双金属催化剂相比于单金属催化剂具有更高的催化活性和稳定性。

例如,钴铁双金属催化剂能够实现低电位下高效的OER反应,具有重要的应用潜力。

此外,镍铁、镍钴、铁锰等双金属催化剂也被广泛研究和开发。

四、碳基催化剂碳基催化剂是一类以碳材料为基底的催化剂。

研究表明,碳基催化剂具有良好的催化活性和电化学稳定性,并且能够实现可控的催化活化能。

其中,碳纳米管、石墨烯和碳纤维等碳材料被广泛研究和应用于OER催化剂领域。

此外,功能化的碳材料也被设计和合成用于提高催化活性和稳定性。

五、有机物催化剂有机物催化剂是一类以有机物分子为基础的催化剂。

相比于传统的无机催化剂,有机物催化剂具有较高的催化活性和选择性。

研究表明,有机物催化剂能够通过调控分子结构和功能基团等来实现高效的OER催化效果。

例如,有机物催化剂可以通过调整分子结构中的共轭体系和电子云密度等来提高催化活性。

第5章过渡金属氧硫化物催化剂及其催化作用ppt课件

第5章过渡金属氧硫化物催化剂及其催化作用ppt课件
n型半导体生成条件
1)非化学计量比化合物中含有过量的金属原子可生成n型半导体。 2)氧缺位 3)高价离子取代晶格中的正离子 4)引入电负性小的原子。
P型半导体生成条件
1)非化学计量比氧化物中出现正离子缺位。 2)用低价正电离子取代晶格中正离子。 3)向晶格掺入电负性大的间隙原子。
5.2. 金属氧化物中的缺陷和半导体性质
-Bi2O3的晶体结构
5.1. 过渡金属氧(硫)化物催化物的应用及氧化物类型
3. MO2型: 三种结构主要取决于阳离子M4+同氧离子O2-的半径比 r(M4+)/r(O2-)
萤石型:r(M4+)/r(O2-) 较大 例子:ZrO2、HFO2、CeO2、ThO2、VO2。
金红石型: r(M4+)/r(O2-) 其次 例子:TiO2、VO2、CrO2、MoO2、WO2、MnO2等。
5.2. 金属氧化物中的缺陷和半导体性质
本征半导体 n-型半导体 p-型半导体
各种固体的能带结构
绝缘体
5.2. 金属氧化物中的缺陷和半导体性质
金属的满带与导带相联在一起(金属的Eg为零),导带中有自由电子,在电 场作用下自由电子可以移动,产生电流。
绝缘体满带和导带间的宽度(禁带宽度)较宽,通常在5~10eV之间,满带 中的价电子难以激发到导带中去,它不存在自由电子和空穴,因此不能导电。
5.2. 金属氧化物中的缺陷和半导体性质
2. 杂质对半导体催化剂的影响 1、n型半导体 A)加入施主型杂质,EF↗Φ↘导电率↗。如:ZnO中加入高价阳离 子Al3+ B)加入受主杂质, EF ↘ Φ ↗导电率↘。如: ZnO加入低价阳 离子Li+ 2、p型半导体 A)加入施主型杂质EF↗Φ↘,空穴减少,导电率↘。如:向NiO 中加入高价离子La3+ B)加入受主型杂质EF ↘ Φ ↗导电率↗。如: NiO加入低价阳 离子Li+

双氧水分解的常见催化剂

双氧水分解的常见催化剂

双氧水分解的常见催化剂
双氧水(H2O2)是一种常用的氧化剂,可用于消毒、漂白、污染治理等许多领域。

但是,它在常温常压下不太稳定,容易分解成水和氧气,因此需要添加催化剂来加速分解反应。

以下将介绍几种常见的催化剂及其作用机理。

第一类:金属离子催化剂
金属离子,尤其是铁、钴、铜等过渡金属离子,可以促进双氧水的分解反应。

这种催化剂的机理是:金属离子与双氧水反应生成金属-双氧水配合物,通过给予双氧水电荷,促进其分解反应。

其中,铁离子特别常用,因为它易于获取、安全稳定。

第二类:酶催化剂
另一类常见的双氧水分解催化剂是酶,例如过氧化氢酶(catalase)。

这类催化剂的机理是:酶分解双氧水成氧气和水并回收酶分子。

一旦有酶在周围,单个酶分子便可以催化大量反应,从而显着加速双氧水分解。

这类催化剂通常非常灵敏,需要小心处理。

第三类:过渡金属氧化物催化剂
除了离子和酶催化剂,过渡金属氧化物也是双氧水分解反应的常见催化剂。

钼酸铵(NH4MoO4)和钒酸铵(NH4VO3)是两种常见的过渡金属氧化物催化剂,它们通过氧化还原反应、阴离子交换反应、吸附反应等多种方式促进双氧水分解。

这些催化剂可以在低浓度下加速双氧水反应,因而非常经济实用。

总之,双氧水分解的催化剂有多种,其机理各异,但都可以显著加速反应速度并改善反应过程。

如何选择催化剂,取决于双氧水分解反应的具体条件和所需的反应速度。

无论使用哪种催化剂,操作者都需小心谨慎,以避免发生意外。

由氧化铜催化的反应,时间段

由氧化铜催化的反应,时间段

由氧化铜催化的反应,时间段1.引言1.1 概述在现代化学领域中,催化反应一直是一个重要的研究领域。

催化反应通过使用催化剂来提高反应速率和选择性,从而在工业生产和实验室研究中发挥关键作用。

氧化铜催化反应是其中一种常见且有效的催化反应。

氧化铜具有良好的催化性能和广泛的应用领域。

它可以用作氧化剂、还原剂和催化剂,促进各种化学反应的进行。

由于其丰富的表面活性位点和可调控的物理化学性质,氧化铜催化反应在有机合成、能源转换、环境保护等领域都发挥着重要作用。

在有机合成领域中,氧化铜催化反应常用于合成有机化合物,如醇、酮、酸和醛等。

通过选择合适的底物和反应条件,氧化铜催化反应可以实现选择性和区域选择性合成,从而提供了一种高效、环境友好和经济可行的合成方法。

在能源转换领域,氧化铜催化反应被广泛应用于氧还原反应、蓄能材料的制备等领域。

通过研究氧化铜催化反应的机理和调控方法,可以提高能源转化效率和材料性能。

此外,氧化铜催化反应在环境保护领域也具有重要意义。

它可以用于污水处理、废气净化和有害物质降解等环境修复领域。

通过使用氧化铜催化剂,在反应过程中可以实现废物的高效转化和资源利用,从而减少对环境的污染。

综上所述,氧化铜催化反应作为一种重要的催化技术,不仅在有机合成、能源转换和环境保护等领域具有广泛应用,而且其重要性还在不断增强。

进一步研究氧化铜催化反应的机理和调控方法,探索更多潜在的应用领域,将为化学领域的发展带来新的机遇和挑战。

1.2 文章结构本文将分为引言、正文和结论三个部分来讨论由氧化铜催化的反应的相关内容。

引言部分会对整篇文章进行概述,介绍氧化铜催化反应的基本原理和应用领域,并明确文章的目的。

正文部分将详细探讨氧化铜催化反应的基本原理,包括氧化铜作为催化剂的特点及其催化机制。

同时,会介绍氧化铜催化反应在不同领域中的应用情况,如有机合成、能源转换等,以及其在环境保护和可持续发展中的作用。

结论部分将总结氧化铜催化反应的重要性,并提出潜在的研究方向和展望。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章
第七章 过渡金属氧化物催化剂及
其催化作用
[教学难点] 1. 氧化物表面上的氧物种和氧的活化作用。 2. 氧物种在催化氧化中的作用。
[主要内容]
1. 过渡金属氧化物催化剂的表面化学和催化作用 基础。
2. 选择性氧化过程,丙烯氧化制丙烯醛和丙烯酸, 正丁烷氧化制顺丁烯二酸酐。
3. 乙苯脱氢和氧化脱氢。
在制备负载型氧化物催化剂时,选用何种氧化物、 温度条件和制备工艺等,都将对催化剂产品的性能 有很大的影响,可以有下列几种情况:
第七章
7.1.3 分散作用的影响
不论制备工艺是沉淀或浸渍,在热处理时分散在载体 上的氧化物可能部分溶解在载体晶格中,并聚集在载 体的表面层上。进一步热处理可能发生以下几种情况
✓ 表明内层的富集程度逐渐减 弱,大约在距表面10左右单分 子层以下的体相中,这些富集 现象才消失,这与金属的富集 有些不同,金属富集现象一般 只在距表面3-4个单分子层出 现,比氧化物的富集要浅得多
第七章
7.1.2 表面几何形态的影响
关于表面几何结构与催化行为的关系,在 早期的多位理论中就已经涉及到
1.向载体的晶格内部扩散,而在表面层固溶体中某 组分富集,这将使载体的性能有所改变
2. 向气相中蒸发而使组分流失 3. 氧化物与载体发生因相反应形成一种表面化合物
新相,这将对催化体系的性能产生很大的影响 4.表面迁移现象对表面活性物的分散度产生很大的
影响。如果表面迁移很快,则含量低的氧化物将 会迁移至载体的整个表面,甚至可以获得一个分 散的活性表面单分子层
件500℃、10h、超高真空;
表5-l列出了CoO-Cr2O3氧化物固溶体中的表面与体
相含量组小成差于1异%。时从,表C中r2O的3数在据表可面以上看的出含,量当超样过品10中%的。Cr2O3
第七章 7.1.1 过渡金属氧化物的表面与体相组成
离表面不同距离处 的Cr含量
当采用NiO – Cr2O3固溶体 时(Cr2O3含量为0.56%), 并用SIMS分析和用氟离子 枪按单分子层逐层剥离表 面进行层组分的侧形分析 时的分析结果
Schuit等人研究了钼酸铋不同晶面的结构 对丁烯催化氧化活性的影响
结Fa构rr的ay概he念r和解C释o了sse钴e用对M加o氢S2脱不硫同(晶H面D几S何) 催化剂性能的影响
✓尽管两种催化剂具有相同的化学原料、相同 的价态,但它们表现出完全不同的催化性能
第七章
7.1.2 表面几何形态的影响
第七章
7.1.3 分散作用的影响
在氧化物物相中由于晶粒 的大小不同而引起的催 化性能的差异
V2O5/TiO2体系的还原
样品 V2O5的摩 E/KJ·m 尔分数/% ol-1
TiO2
0

V2O5- TiO2
2
108
V2O5- TiO2
5

V2O5- TiO2
8
110
- TiO2
CoO-Cr2O3固溶体XPS分析
光电子能谱
序号
1 2 3 4 5 6
体相Cr2O3 摩尔分数/%
0.33 0.90 0.90 66.6 66.6 100.0
样品*
固体相A 固体相A 固体相B 固体相A 固体相B Cr2O3
结合能
Co Cr O
2p3/2
781.2 781.0 781.1 781.1 781.2
催化原理 多媒体讲义
氧化物催化剂及其催化作用
第七章
第七章 过渡金属氧化物催化剂及其催化作用
[教学要求] • 掌握还原氧化机理,催化剂表面上的氧化物种及其
在催化氧化中的作用
• 了解丙烯选择性氧化为丙烯酸的反应机理 • 了解脱氢和氧化脱氢的反应机理 • 了解石油工业中重要的加氢处理过程的反应机理 [教学重点] • 氧化物表面上的氧物种和氧的活化作用 • 丙烯氧化制丙烯醛和丙烯酸 • 加氢处理过程的反应机理
催而并表化且Cu明剂完6M了上 全o当产 没4Ol物 有1–5主的 异丁要选 构烯是择化脉氧性作冲插。用进入样C到u到2有MCuo机32OM分1o0子对3O中异10形和构成C化u丁有6M烯活o醛4性O,1,5
第七章
7.1.2 表面几何形态的影响
1上-丁的烯反在应催机化理剂Cu2Mo3O10(Ⅰ)和Cu6Mo4O15(Ⅱ)
众所周知的石油馏分的加氢处理催化剂,虽然 是以硫化物的形式来进行催化作用,但是氧化物是 催化活性相的前身,并且氧化物相的性质决定着最 终硫化物活性相的活性和选择性等性能
第七章
7.1.1 过渡金属氧化物的表面与体相组成
➢ 与金属催化剂一样,金属氧化物催化剂的表面组 成和体相组成是完全不同的。例如在双组分氧化物 体系中,组分1在表面与体相中的浓度差Γ1可用式
2p3/2
576.9 576.9 577.0 576.3 576.3 576.6
1s
530.4 530.4 530.5 530.2 530.4 530.6
表面Cr2O3 摩尔分数/%
9.9 14.0 12.3 65.2 66.7 100.0
其中:A—预处理的条件100℃、10h ; B—预处理的条
Γ 1
α 1
RT

dγ dα1
其中γ为表面张 力,α1为组分1的 热力学活度。
✓ 如果由于组分1的浓度增加而使表面张力降低,则Γ 1增加,即固体表面的组分1将逐渐富集
✓ 如果固体中两种组分间的互溶性有限,则当组分1 的浓度超过某一限制时,固相中就会析出一个新相
第七章
7.1.1 过渡金属氧化物的表面与体相组成
15
109
V2O5- TiO2
20
107
V2O5
100
106
相对 反应 速度
— 139 66 37 23 18.5 17 1
✓ 列出了几种 V2O5 /TiO2体系 在氢气还原反应 中分散度的影响
✓ 当V2O5在TiO2的 表面上分散度提 高时,V2O5的还 原速率提高很大
第七章
7.1.3 分散作用的影响
4. 加氢处理过程。
第七章
本次课的内容
过渡金属氧化物的表面与体相组成 表面几何形态的影响 分散作用的影响 氧化物的表面动态学 氧化物表面上氧物种和氧的活化作用
掌握氧化物的表面动态学

掌握氧物种之间的转化和催化作用

了解催化剂的表面几何形态和分散作用
第七章
第七章 过渡金属氧化物催化剂及其催化作用
在工业催化剂中,过渡金属氧化物催化剂占有 重要的地位。它们构成的活性相不仅存在于氧化催 化作用中,而且还存在于很多金属催化剂中,后者 在反应条件下,表面层被活性的氧化物所覆盖
相关文档
最新文档