传感器的参数静态特性技术指标
第三章 传感器的静态特性和动态特性讲解
例1:一阶传感器的频率响应,系统输入量(压力) F 为F(t)= b0 x(t ),输出 量为位移y( t ),不考虑运动。
解:①列出微分方程
a1
dy dt
a0
y
b0
x
②作拉普-拉斯变换
Y (S )(a1S a0 ) b0 X (S )
③令H(S )中的S =jω,即σ= 0
H ( j ) Y (S ) b0 X (S ) ja1 a0
ΔLj=(b+kxj)-yj
均方差函数为: 取其极小值,有:
4)总精度 系统的总精度由其量程范围内的基本误差与满度值Y(FS)之
比的百分数表示。基本误差由系统误差与随机误差两部分组成, 迟滞与线性度所表示的误差为系统误差,重复性所表示的误差 为随机误差。
总精度一般可用方和根来表示,有时也可用代数和表示。
统示值范围上、下限之差的模。当输入量在量程范围以内 时,系统正常工作并保证预定的性能。
对于4-20mA标准信号,零位值 yo=so=4mA,上限值 yfs=20mA,量 程 y(FS)=16mA。
3)灵敏度 S 输出增量与输入增量的比值。即
① 纯线性传感器灵敏度为常数:S=a1。
② 非线性传感器灵敏度S与x有关。
4)分辨率
在规定的测量范围内,传感器所能检测出输入量 的最小变化值。有时用相对与输入的满量程的相对 值表示。即
2、静态特性的性能指标
1) 迟滞现象(回差EH )
回差EH 反映了传感器的输 入量在正向行程和反向行程全 量程多次测试时,所得到的特 性曲线的不重合程度。
2) 重复性 Ex (不重复性) 重复性 Ex 反映了传感器在输入量按同一方向(增或减)全
传感器的静态特性汇总
影响量指传感器由外界环境或工作条件变化引起输出值变化的量。
它是由温度、湿度、气压、振动、电源电压及电源频率等一些外
加环境影响所引起的。说明影响量时,必须将影响因素与输出值
偏差同时表示。例如,某传感器由于电源变化10%而引起其输出
值变化0.02mA,则应写成0.02mA/(U±10%U)。
10
7.重复性(Repeatability)
一、传感器的静态特性与主要性能指标
1.测量范围和量程
定义: 传感器所能测量到的最小被测量(输入)xmin与 最大被测量(输入)xmax之间的范围称为传感器 的测量范围(measuring range),表示为(xmin, xmax) 。 传感器测量范围的上限值与下限值的代数和xmax - xmin称为量程(span)。例如一温度传感器的 测量范围是-30~+120℃,那么该传感器的量程为 150 ℃。
在采用直线拟合线性化时,输出输入的校正曲线与其拟 合曲线之间的最大偏差,就称为非线性误差或线性度
通常用相对误差γL表示: γL=±(ΔLmax/yFS)×100%
ΔLmax一最大非线性误差; yFS—量程输出。 非线性偏差的大小是以一定的拟合直线为基准直线而得 出来的。拟合直线不同,非线性误差也不同。所以,选 择拟合直线的主要出发点,应是获得最小的非线性误差。 另外,还应考虑使用是否方便,计算是否简便。
①测量传感器输出值在一段时间中的变化,以稳定度表示;
②传感器外部环境和工作条件变化引起输出值的不稳定,用影响 量表示。
在长时间工作的情况下输出量发生的变化,有时称为长时间工作 稳定性或零点漂移。
稳定度指在规定时间内,测量条件不变的情况下,由传感器中随
机性变动,周期性变动,漂移等引起输出值的变化。用精密度和 观测时间长短表示。如,某传感器输出电压值每小时变化1.3mV, 则其稳定度可表示为1.3mV/h。
传感器的基本特性
传感器的基本特性传感器的基本特件是指传感器的输出与输入之间的关系。
由1—传感器洲量的参数一般有两种形式:一种是不随时间的变化而变化(或变化极其缓慢)的稳态信号,另“种是随N 间的变化而变化的动态信号。
因此传感器的基本特性分为静态特性和动态特性。
件感器的静态特性与指标如下:传感器的静态特件是指化感器输入信号处T低定状态时,其输出与输入之间呈现的关系。
表不力式中,y—一传感器输出量if一传感器输人员AL)——传感器的零位输出;A J——传感器的灵敏座,A:,A√”,A n为非线件项系数。
衡量静态待件的主要指标有精确度、稳定件、灵敏度、线性度、迟滞和可靠性等。
(1)精确皮精确度足反映测旦系统小系统误差和随机误差的综合评走指标。
与精确度有关的指挪有精密度、准确皮利精确度。
①精密度。
说刚测量系统指示值的分散租皮。
精密度反映j’随机误差的大小,精密度高则随机误差小。
②准确度。
说叫测量系统的输山值偏离真值的程度。
避确度炬系统误差大小的标志.脏确度高则系统误差小。
②精确度。
是准确度与ATMEL代理商精密度两者的总和,常用仪表的基本误差表不。
精确度而表示精密度和难确度都而。
Iql—4个的肘市例子有助十对牌确皮、精密度和精确度3个概念的理解。
图(a)表不准确度;苟而精密度低;图(b)大示精密度尚而淮确度低;阎(c)表不准确度和精密度部高。
即它的桔确陵尚。
(2)稳定性传感器的稳定性常用稳定度和影响系数表尔。
①稳定度。
是指在规定I:作条件范围和规定时间内,传感器性能保持不变的能力。
传感器在工作时,内部随机变动的因素很多,例如发生周期性变动、漂移或机械部分的摩擦等都会引起输出值的变化。
稳定度般用甫复件的数值羽I观测时间的长短表示。
例如,某传感器输出电压值每小时变化1.5rnv。
可4成稳定度为1.5n、v儿。
(9影响系数。
是指出于外界环境变化引起传感器输小值变化的足。
一般传感器都有给定的标准工作条件,如环境温度20℃、相对湿度60%、大气压力10].咒kPa、电源电压22()V等。
传感器动态和静态主要技术指标
传感器动态和静态主要技术指标技术指标是表征一个产品性能优劣的客观依据。
看懂技术指标,有助于正确选型和使用该产品。
传感器的技术指标分为静态指标和动态指标两类。
静态指标主要考核被测静止不变条件下传感器的性能,具体包括分辨力、重复性、灵敏度、线性度、回程误差、阈值、蠕变、稳定性等。
动态指标主要考察被测量在快速变化条件下传感器的性能,主要包括频率响应和阶跃响应等。
由于传感器的技术指标众多,各种资料文献叙述角度不同,使得不同人有不同的理解,甚至产生误解和歧义。
为此,以下针对传感器的几个主要技术指标进行解读:1、分辨力与分辨率:定义:分辨力(ResoluTIon)是指传感器能够检测出的被测量的最小变化量。
分辨率(ResoluTIon)是指分辨力与满量程值之比。
解读1:分辨力是传感器的最基本的指标,它表征了传感器对被测量的分辨能力。
传感器的其他技术指标都是以分辨力作为最小单位来描述的。
对于具有数显功能的传感器以及仪器仪表,分辨力决定了测量结果显示的最小位数。
例如:电子数显卡尺的分辨力是0.01mm,其示指误差为±0.02mm。
解读2:分辨力是一个具有单位的绝对数值。
例如,某温度传感器的分辨力为0.1℃,某加速度传感器的分辨力是0.1g等。
解读3:分辨率是与分辨力相关而且极为相似的概念,都表征了传感器对被测量的分辨能力。
二者主要区别在于:分辨率是以百分数的形式表示传感器的分辨能力,它是相对数,没有量纲。
例如上述温度传感器的分辨力为0.1℃,满量程为500℃,则其分辨率为0.1/500=0.02%。
2、重复性:定义:传感器的重复性(Repeatability)是指在同一条件下、对同一被测量、沿着同一方向进行多次重复测量时,测量结果之间的差异程度。
也称重复误差、再现误差等。
解读1:传感器的重复性必须是在相同的条件下得到的多次测量结果之间的差异程度。
如果测量条件发生变化,测量结果之间的可比性消失,不能作为考核重复性的依据。
传感器技术知识点
1-1衡量传感器静态特性的主要指标。
说明含义。
1、线性度——表征传感器输出-输入校准曲线与所选定的拟合直线之间的吻合(或偏离)程度的指标。
2、回差(滞后)—反应传感器在正(输入量增大)反(输入量减小)行程过程中输出-输入曲线的不重合程度。
3、重复性——衡量传感器在同一工作条件下,输入量按同一方向作全量程连续多次变动时,所得特性曲线间一致程度。
各条特性曲线越靠近,重复性越好。
4、灵敏度——传感器输出量增量与被测输入量增量之比。
5、分辨力——传感器在规定测量范围内所能检测出的被测输入量的最小变化量。
6、阀值——使传感器输出端产生可测变化量的最小被测输入量值,即零位附近的分辨力。
7、稳定性——即传感器在相当长时间内仍保持其性能的能力。
8、漂移——在一定时间间隔内,传感器输出量存在着与被测输入量无关的、不需要的变化。
9、静态误差(精度)——传感器在满量程内任一点输出值相对理论值的可能偏离(逼近)程度。
1-2计算传感器线性度的方法,差别。
1、理论直线法:以传感器的理论特性线作为拟合直线,与实际测试值无关。
2、端点直线法:以传感器校准曲线两端点间的连线作为拟合直线。
3、“最佳直线”法:以“最佳直线”作为拟合直线,该直线能保证传感器正反行程校准曲线对它的正负偏差相等并且最小。
这种方法的拟合精度最高。
4、最小二乘法:按最小二乘原理求取拟合直线,该直线能保证传感器校准数据的残差平方和最小。
1-3什么是传感器的静态特性和动态特性?为什么要分静和动?(1)静态特性:表示传感器在被测输入量各个值处于稳定状态时的输出-输入关系。
动态特性:反映传感器对于随时间变化的输入量的响应特性。
(2)由于传感器可能用来检测静态量(即输入量是不随时间变化的常量)、准静态量或动态量(即输入量是随时间变化的变量),于是对应于输入信号的性质,所以传感器的特性分为静态特性和动态特性。
1—4传感器有哪些组成部分?在检测过程中各起什么作用?答:传感器通常由敏感元件、传感元件及测量转换电路三部分组成。
传感器基本特性
8.漂移 漂移是指在外界干扰时,在一定的时间间隔内, 传感器输出量与输入量无关的变化程度。
二、传感器的动态特性
动态特性指传感器对随时间变化的输入量的响应特性, 当输入量随时间较快地变化时,这一关系称为动态特性。
被测量随时间变化的形式可能是各种各样的,只要 输入量是时间的函数,则其输出量也将是时间的函数。 通常研究动态特性是根据标准输入特性来考虑传感器 的响应特性。
传感器的基本特性
传感器特性主要是指输出与输入之间的关 系特性。是与传感器的内部结构参数有关的外 部特性。
一、传感器的静态特性 当输入量为常量,或变化极慢时,这一关系 称为静态特性。
一、静态特性技术指标
1.传感器的静态数学模型
传感器的输出输入关系或多或少地存在非线性。在不 考虑迟滞、不稳定性等因素的情况下,其静态特性可 用下列多项式代数方程表示: y=a0+a1x+a2x2+a3x3+…+anxn 式中:y—输出量; x—输入量; a0—零点输出; a1—理论灵敏度; a2、a3、 … 、 an—非线性项系数。 各项系数不同,决定了特性曲线的不同形式。 静态特性曲线可实际测试获得。在获得特性曲线之 后,可以说问题已经得到解决。但是为了标定和数据 处理的方便,希望得到线性关系。这时可采用各种方 法,其中也包括硬件或软件补偿,进行线性化处理。
•最小二乘法确定拟合直线,选定合适的直线方 程系数,使静态标定曲线与拟合直线偏差的平方 和为最小。拟合精度高,计算繁琐。
拟合直线方法
• 过零旋转拟合、端点连线拟合、端点连线平移拟合。拟 合精度低。 • 平均法,将测量得到的n个检测点分成数目相等的两组, 求出两个点系中心,通过两个点系中心的直线,就是要 求的拟合直线。斜率、截距可求得。拟合精度较高,计 算较简便。 n/2 n/2
传感器静态指标
传感器静态特性的性能指标2008-11-07 来源:Internet 浏览:853[推荐朋友] [打印本稿] [字体:大小]在检测控制系统和科学实验中,需要对各种参数进行检测和控制,而要达到比较优良的控制性能,则必须要求传感器能够感测被测量的变化并且不失真地将其转换为相应的电量,这种要求主要取决于传感器的基本特性。
传感器的基本特性主要分为静态特性和动态特性,下面介绍反映传感器静态特性的性能指标。
静态特性是指检测系统的输入为不随时间变化的恒定信号时,系统的输出与输入之间的关系。
主要包括线性度、灵敏度、迟滞、重复性、漂移等。
(1) 线性度指传感器输出量与输入量之间的实际关系曲线偏离拟合直线的程度。
(2) 灵敏度灵敏度是传感器静态特性的一个重要指标。
其定义为输出量的增量Δy 与引起该增量的相应输入量增量Δx 之比。
它表示单位输入量的变化所引起传感器输出量的变化,显然,灵敏度S 值越大,表示传感器越灵敏.(3) 迟滞传感器在输入量由小到大(正行程)及输入量由大到小(反行程)变化期间其输入输出特性曲线不重合的现象称为迟滞。
也就是说,对于同一大小的输入信号,传感器的正反行程输出信号大小不相等,这个差值称为迟滞差值。
(4) 重复性重复性是指传感器在输入量按同一方向作全量程连续多次变化时,所得特性曲线不一致的程度。
(5) 漂移传感器的漂移是指在输入量不变的情况下,传感器输出量随着时间变化,此现象称为漂移。
产生漂移的原因有两个方面:一是传感器自身结构参数;二是周围环境(如温度、湿度等)。
最常见的漂移是温度漂移,即周围环境温度变化而引起输出量的变化,温度漂移主要表现为温度零点漂移和温度灵敏度漂移。
温度漂移通常用传感器工作环境温度偏离标准环境温度(一般为20℃)时的输出值的变化量与温度变化量之比(6) 测量范围(measuring range)传感器所能测量到的最小输入量与最大输入量之间的范围称为传感器的测量范围。
(7) 量程(span)传感器测量范围的上限值与下限值的代数差,称为量程。
1-2.传感器的技术指标
灵敏阈是指传感器能够区分出的最小读数变化量。
对模拟式仪表,当输入量连续变化时,输出量只做阶梯变化,则分辨力就是输出量的每个阶梯所代表的输入量的大小。对于数字式仪表,灵敏度阈就是分辨力,即仪表指示数字值的最后一位数字所代表的值。
从物理含义看,灵敏度是广义的增益,而灵敏度阈则是死区或不灵敏度。
教学、学习
准备
教师:教材、教案
学生:学材、练习册
成都市技师学院理论课教案副页
教学环节
教学术指标
一、测量误差与仪表等级
在实际测量过程中,由于测量仪器的精度限制,测量原理和方法不完善,或者测量者感官能力有限,测量结果会产生误差。误差就是测量值与真实值之间的差值。
误差分类:绝对误差Δ
L—真值
另注:测量值的测量误差的绝对值与相应测量值的比值。为量纲为一的量,通常用分子为1的分数表示,常用于描述线量的精度。在描述线量(长度或仅与长度有关的物理量,如长度、面积、体积等)的精度时,既要考虑线量的误差的大小,还应顾及线量本身的大小。
3.仪表灵敏度
灵敏度是仪表对被测参数变化的灵敏程度,常以在被测参数改变时,经过足够时间仪表指示值达到稳定状态后,仪表输出变化量△Y与引起此变化的输入变化量△U之比表示,即灵敏度=△Y/△U
成都市技师学院
理论课教案首页
课程名称
《传感器及应用》
课题名称
传感器的技术指标
课时
2
授课日期
任课教师
王文川
目标群体
教学环境
教室
学习目标
一、了解传感器的判别标准
二、了解传感器各项指标含义
三、掌握传感器的误差计算与一般选用
学习重点
传感器的误差计算与一般选用
列举传感器静态参数
列举传感器静态参数传感器静态参数是指传感器在静止状态下的特性参数。
这些参数对于传感器的性能评估和应用至关重要。
本文将列举几种常见的传感器静态参数,并对其进行详细介绍。
一、灵敏度灵敏度是传感器对被测量物理量变化的响应程度。
通常用输入信号与输出信号之间的比值表示。
对于压力传感器而言,灵敏度是指单位压力变化引起的输出电压或电流变化。
灵敏度越高,表示传感器对被测量物理量的响应更加敏感。
二、线性度线性度是指传感器输出与输入之间的线性关系程度。
即输入信号与输出信号之间的关系是否符合一条直线。
传感器的线性度越高,表示其输出与输入之间的关系越符合线性关系,测量结果越准确。
三、分辨率分辨率是指传感器能够检测到的最小变化量。
通常用最小可测量的物理量变化表示。
分辨率越高,表示传感器可以检测到更小的物理量变化,测量结果的精度越高。
四、重复性重复性是指传感器在相同条件下多次测量所得结果的一致性。
即传感器在重复测量时的输出值是否相同。
重复性越高,表示传感器的测量结果更加可靠。
五、稳定性稳定性是指传感器在长时间使用过程中输出信号的稳定性。
即传感器的输出是否随时间变化而发生漂移。
稳定性越高,表示传感器的长期稳定性更好,测量结果更加可靠。
六、温度特性温度特性是指传感器在不同温度下的输出信号是否发生变化。
传感器的温度特性越好,表示其输出信号与温度之间的关系越稳定,对温度的影响越小。
七、工作范围工作范围是指传感器能够正常工作的最大和最小输入物理量范围。
传感器的工作范围应与实际应用需求相匹配,过大或过小的工作范围都会影响传感器的测量精度和可靠性。
八、响应时间响应时间是指传感器从接收到输入信号到输出信号达到稳定状态所需的时间。
响应时间越短,表示传感器的响应速度越快,适用于需要实时测量的应用场景。
九、耐受能力耐受能力是指传感器能够承受的最大物理量或环境条件。
传感器的耐受能力越高,表示其在极端条件下的可靠性更高。
传感器的静态参数包括灵敏度、线性度、分辨率、重复性、稳定性、温度特性、工作范围、响应时间和耐受能力等。
传感器静态特性的指标及公式
传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。
传感器在稳态信号(x(t)=常数)作用下,其输出—输入关系称为传感器的静态特性,y=f(x)。
因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。
传感器静态特性指标:线性度,灵敏度,分辨率(力),迟滞,重复性,精度,量程等。
(1)线性度:指传感器输出量与输入量之间的实际关系曲线偏离拟合直线的程度。
定义为在全量程范围内实际特性曲线与拟合直线之间的最大偏差值与满量程输出值之比。
理想输出—输入线性特性传感器(系统)优点:·简化传感器理论分析和设计计算;·方便传感器的标定和数据处理;·显示仪表刻度均匀,易于制作、安装、调试,提高测量精度;·避免非线性补偿环节。
实际传感器输出—输入特性一般为非线性,即y=a0+a1 x+a2 x2+a3 x3+…+an xn;式中,a0----零位输出,零点漂移(零漂);a1----传感器线性灵敏度,常用K表示;a2、a3、L、an-----待定系数。
线性度(非线性误差)(Linearity)(1)理想线性:y=a1x,灵敏度Sn=y/x=a1=常数(K)(2)具有偶次项非线性:y=a1x+a2x2+a4x4+L(3)具有奇次项非线性:y=a1x+a3x3+a5x5+L(4)普遍情况:y=a1x+a2x2+a3x3+a4x4+L(2)灵敏度:灵敏度是传感器静态特性的一个重要指标。
其定义为输出量的增量与引起该增量的相应输入量增量之比。
用S表示灵敏度。
灵敏度是指传感器在稳态下的输出变化与输入变化的比值,用Sn表示,如下图所示,具有输出/输入量纲。
艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。
简述五种传感器静态特征的主要指标
简述五种传感器静态特征的主要指标
静态特性的主要技术指标有:线性度、量测范围和量程、迟滞和重复性、灵敏度、分辨力和阈值、稳定性、漂移和静态误差。
线性度是描述传感器静态特性的一个重要指标,以被测输入量处于稳定状态为前提。
在规定条件下,传感器校准曲线与拟合直线间的最大偏差(ΔYmax)与满量程输出(Y)的百分比,称为线性度(线性度又称为“非线性误差”),该值越小,表明线性特性越好。
灵敏度(Sensitivity)是指某方法对单位浓度或单位量待测物质变化所致的响应量变化程度,它可以用仪器的响应量或其他指示量与对应的待测物质的浓度或量之比来描述。
分辨力是指引起相应示值产生可觉察到变化的被测量的最小变化。
放大负片时,表示成为大致同标的清晰度和颗粒性的术语。
测量范围指计量器具所能够测量的最小尺寸与最大尺寸之间的范围。
测量范围的小值和值分别称为测量下限和测量上限,仪表的量程用来表示其测量范围的大小,是其测量上限值与下限值的代数差,即量程等于测量上限值减测量下限值,给出仪表的测量范围便知限及量程,反之只给出仪表的量程,却无法确定其限及测量范围。
静态误差是指当测量器件的测量值(或输入值)不随时间变化时,测量结果(或输出值)会有缓慢的漂移,这种误差称为静态输入误差,或称静态误差。
传感器的基本特性与指标
100%
式中,H
为输出值在正反行程中的最大差值。
max
三.重复性误差(最大引用随机不确定度)
现象:多次重复测试时,在同是正行程或同是反行程中,对应同 一输入的输出量不同。
重复性:传感器或系统在同一工作条件下,输入量按同方向作全 量程连续多次变动时,所得特性曲线之间的一致程度。
如果用曲线中最大重复差值定义重复性误差,则因标定的循环次 数不同使其最大偏差值不同。因此不可靠。
1.静态模型
静态时(输入量对时间t的各阶导数为零),可分析非线性系统,即有:
y a0 a1x an xn
x ——输入量; y ——输出量; a0 ——传感器的零位误差; a1 ——传感器的灵敏度,常用K或S表示。 a2,a3,…,an——待定常数(非线性项的系数)。
(a) y a1x
i 1
n
n
n
n
xi2 yi xi xi yi
b i1 i1
i1 i1
n
n
xi2
n
2 xi
i 1
i1
(7) (8)
此外,拟合直线的斜率k和截距b也可由以下两式求得:
n
xi x yi y
k i1
n
实际中,传感器在特定的、具体的环境中使用,其 结构、元器件、电路系统以及各种环境因素均可能影响 传感器的整体性能。
2. 传感器误差
通过传感器得到的测量值与被测量的真值之差。
传感器的误差来源: 1)介入误差 源于敏感元件的介入对被测系统的 环境造成影响。 2)应用误差 源于使用者对具体传感器原理的认 识不足或设计缺陷。 3)特性参数误差 源于传感器本身的特性参数; 生产传感器和用户考虑最多的误差。 4)动态误差 源于被测参数变化时传感器反应滞后 5)环境误差 各种环境参数变化均可能带来误差
传感器简答
1、什么是传感器的静态特性?它有哪些性能指标? 如何用公式表征这些性能指标?2、什么是传感器的动态特性? 其分析方法有哪几种?3、什么是传感器的静特性?主要指标有哪些?有何实际意义?4、什么是传感器的基本特性?传感器的基本特性主要包括哪两大类?解释其定义并分别列出描述这两大特性的主要指标。
(要求每种特性至少列出2种常用指标)1、 答:传感器的静态特性是它在稳态信号作用下的输入-输出关系。
静态特性所描述的传感器的输入、输出关系式中不含有时间变量。
传感器的静态特性的性能指标主要有: ① 线性度:非线性误差maxL FSL 100%Y γ∆=±⨯ ② 灵敏度:yn xd S=d③ 迟滞:max HFSH 100%Y γ∆=⨯ ④ 重复性:maxRFSR 100%Y γ∆=±⨯⑤ 漂移:传感器在输入量不变的情况下,输出量随时间变化的现象。
2、答:传感器的动态特性是指传感器对动态激励(输入)的响应(输出)特性,即其输出对随时间变化的输入量的响应特性。
传感器的动态特性可以从时域和频域两个方面分别采用瞬态响应法和频率响应法来分析。
知识点:传感器的动态特性 3、答:传感器的静态特性是当其输入量为常数或变化极慢时,传感器的输入输出特性,其主要指标有线性度、迟滞、重复性、分辨力、稳定性、温度稳定性、各种抗干扰稳定性等。
传感器的静特性由静特性曲线反映出来,静特性曲线由实际测绘中获得。
通常人们根据传感器的静特性来选择合适的传感器。
知识点:传感器的静态特性 4、答:传感器的基本特性是指传感器的输入-输出关系特性。
传感器的基本特性主要包括静态特性和动态特性。
其中,静态特性是指传感器在稳态信号作用下的输入-输出关系,描述指标有:线性度(非线性误差)、灵敏度、迟滞、重复性和漂移;动态特性是指传感器对动态激励(输入)的响应(输出)特性,即其输出对随时间变化的输入量的响应特性,主要描述指标有:时间常数、延迟时间、上升时间、峰值时间、响应时间、超调量、幅频特性和相频特性。
传感器的静态模型、静态特性、动态模型及例题
传感器在输出量由大到小(正行程)及输入量由大到小(反行程)变化期间,其
输出-输入特性曲线不重合的现象称为迟滞。
δH
=
±
Δ������max yF⋅s
×
100%
4、 重复性
重复性误差用测量值正反行程标准偏差σ最大值的 2 或者 3 倍与满量程输出值
yF⋅s的百分比表示。 2������~3������
δR = ± yF⋅s × 100% 5、 精度
精度是指测量结果的可靠程度,误差越小,精度越高。传感器的精度是量程内最
大基本误差与满量程的百分比。
δ
=
±
Δmax yF⋅s
×
100%=δL
+
δH
+
δR
6、 分辨力
分辨力是表示传感器能够检测输入量最小变化的能力,是可观察输出变化的最小
输入量变化值。
7、 漂移
线性度是指传感器输出量与输入量之间的实际关系曲线偏离直线的程度,用δL表
示。
δL
=
±
Δymax yF⋅s
×
100%
ymax为实际关系曲线与拟合直线的最大偏差,yF⋅s为满量程输出。
2、 灵敏度
灵敏度是传感器在稳态下输出量的增量Δy与输出量的增量Δx的比值,这里用k表
示,其表达式为。 Δy
k = Δx 3、 迟滞
漂移主要包括零点漂移和灵敏度漂移。其中又包括时间漂移和温度漂移。
8、 测量范围与量程
传感器所能测量到的最小输入量(被测量)xmin与最大输入量(被测量)xmax之 间的范围,称为传感器的测量范围。传感器测量范围的上限值与下限之差称为传
感器的量程。
2.2 什么是传感器的动态模型?分别写出微分方程、传递函数和频率
传感器的静态模型、静态特性、动态模型及例题
y——输出量;
x——输入量;
������0——零位输出; ������1——传感器的线性灵敏度,常用 K 或 S 表示; ������2,������3,…, ������������——传感器的非线性项的待定常数。
传感器的静态特性有哪些技术指标?含义分别是什么?用哪些公式 表示?
传感器的静态特性是指当被测量处于稳定状态(x(t)=常量)时,传感器输出量与
输入量之间的相互关系。也常把输入量作为横坐标,把输出量作为纵坐标,画曲
线描述传感器的静态特性。衡量传感器静态特性的技术指标主要有线性度、灵敏
度、迟滞、重复性、精度、分辨力、漂移、测量范围和量程等。
1、 线性度
理想:y = a1x 实际遇到的传感器大多为非线性的,需要用线性度来说明传感器的非线性程度。
+
������0������(������)
=
������������
������������������(������) ������������������
+
������������−1
������������−1������(������) ������������������−1
+
⋯
+
������1
合格?
解:
δ
=
Δmax yF⋅s
×
100%
=
1.4������������ 110������������
×
100%
≈
1.27%
因为一级允许的最大误差为 1% 所以不合格。
δR = ± yF⋅s × 100% 5、 精度
精度是指测量结果的可靠程度,误差越小,精度越高。传感器的精度是量程内最
传感器问答题
传感器问答题1-1 何为传感器静态特性,静态特性技术指标有哪些传感器在被测量的各个值处于稳定状态时,输出量和输入量之间的关系称为传感器的静态特性;其主要指标有线性度、灵敏度、精确度、最小检测量和分辨力、迟滞、重复性、零点漂移、温漂。
-2 何为传感器动态特性,动态特性技术指标有哪些动态特性是指传感器对随时间变化的输入量的响应特性;(2)描述动态特性的指标:对一阶传感器:时间常数对二阶传感器:固有频率、阻尼比。
1-3 传感器的等级精度是如何确定的传感器的精度等级是允许的最大绝对误差相对于其测量范围的百分数,即A=ΔA/YFS*100%1-4 传感器的线性度是怎样确定的,拟合刻度直线有几种方法传感器标定曲线与拟合直线的最大偏差与满量程输出值的百分比叫传感器的线性度;(2)拟合直线的常用求法有:端基法和最小二乘法。
1-5 一阶传感器怎样确定输入信号频率范围由一阶传感器频率传递函数w(jw)=K/(1+jωτ),确定输出信号失真、测量结果在所要求精度的工作段,即由B/A=K/(1+(ωτ)2)1/2,从而确定ω,进而求出f=ω/(2π).1-6 什么是传感器的差动测量方法,有何特点若某传感器的位移特性曲线方程为y1=a0+a1x+a2x2+a3x3+…….让另一传感器感受相反方向的位移,其特性曲线方程为y2=a0-a1x+a2x2-a3x3+……,则Δy=y1-y2=2(a1x+a3x3+a5x5……),这种方法称为差动测量法。
其特点输出信号中没有偶次项,从而使线性范围增大,减小了非线性误差,灵敏度也提高了一倍,也消除了零点误差。
第二章2-1 什么是金属材料的应变效应,什么是半导体材料的压阻效应1)金属材料在受到外力作用时,产生机械变形,导致其阻值发生变化的现象叫金属材料的应变效应。
(2)半导体材料在受到应力作用后,其电阻率发生明显变化,这种现象称为压阻效应。
2-2 比较金属丝应变片与半导体应变片相同点和不同点相同点:它们都是在外界力作用下产生机械变形,从而导致材料的电阻发生变化所;不同点:金属材料的应变效应以机械形变为主,材料的电阻率相对变化为辅;而半导体材料则正好相反,其应变效应以机械形变导致的电阻率的相对变化为主,而机械形变为辅。
传感器静态特性的指标及公式
传感器静态特性的指标及公式1. 灵敏度(Sensitivity)灵敏度是指传感器输出量对输入量变化的响应程度,也可以理解为传感器输出信号的变化量与输入量变化的比值,通常用一定范围内最大输出变化与输入量变化的比值表示。
灵敏度的计算公式如下:S=∆Y/∆X其中,S为灵敏度,∆Y为输出量的变化值,∆X为输入量的变化值。
2. 线性度(Linearity)线性度是指传感器输出量与输入量之间的线性关系程度,即输出量的变化是否与输入量的变化成正比。
线性度可以通过传感器的线性度误差来描述,通常用百分比或者绝对值来表示。
线性度的计算公式如下:L=,(Y实测-Y理论)/Y理论,×100%其中,L为线性度,Y实测为实际测量输出量,Y理论为理论预期输出量。
3. 零偏误差(Zero Offset Error)零偏误差是指在无输入量时,传感器的输出量和零点之间的差值。
零偏误差可以通过传感器的测量输出量和零输入量的差值来计算,常表达为绝对值或者百分比。
零偏误差的计算公式如下:E=,Y测-Y零,×100%其中,E为零偏误差,Y测为实际测量输出量,Y零为零输入量。
4. 分辨力(Resolution)分辨力是指传感器能够分辨最小输入量变化的能力,通常是输出量变化的最小有效值。
分辨力可以通过量程与分辨率的比值来计算,分辨率可以是数字量的最小变化值,也可以是模拟量的最小变化量。
分辨力的计算公式如下:R=量程/分辨率其中,R为分辨力,量程为传感器的工作范围,分辨率为传感器输出量的最小变化值。
5. 稳定性(Stability)稳定性是指传感器输出量在一定环境条件下长时间内保持不变的能力,通常用输出量的标准差来衡量。
稳定性可以通过传感器长时间测量得到的输出量数据的标准差来计算,也可以通过计算测量输出量序列的方差来估计。
稳定性的计算公式如下:S=√[Σ(Yi-Ȳ)²/(N-1)]其中,S为稳定性,Yi为第i个测量输出量,Ȳ为所有测量输出量的平均值,N为测量次数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.线性度(Linearity)
传感器的输出输入关系或多或少地存在非线性。
在不考虑迟滞、蠕变、不稳定性等因素的情况下,其静态特性可用下列多项式代数方程表示:
式中:y—输出量;x—输入量;a0—零点输出;
a1—理论灵敏度;a2、a3、… 、a n—非线性项系数。
各项系数不同,决定了特性曲线的具体形式。
静态特性曲线可实际测试获得。
在获得特性曲线之后,可以说问题已经得到解决。
但是为了标定和数据处理的方便,希望得到线性关系。
这时可采用各种方法,其中也包括硬件或软件补偿,进行线性化处理。
一般来说,这些办法都比较复杂。
所以在非线性误差不太大的情况下,总是采用直线拟合的办法来线性化。
在采用直线拟合线性化时,输出输入的校正曲线与其拟合曲线之间的最大偏差,就称为非线性误差或线性度。
通常用相对误差 L表示:
ΔLmax一最大非线性误差;y FS—满量程输出。
非线性偏差的大小是以一定的拟合直线为基准直线而得出来的。
拟合直线不同,非线性误差也不同。
所以,选择拟合直线的主要出发点,应是获得最小的非线性误差。
另外,还应考虑使用是否方便,计算是否简便。
①理论拟合;②端点连线平移拟合;③端点连线拟合;④过零旋转拟合;⑤最小二乘拟合;⑥最小包容拟合
2.迟滞(Hysteresis)
传感器在正(输入量增大)反(输入量减小)行程中输出输入曲线不重合称为迟滞。
迟滞特性如图所示,它一般是由实验方法测得。
迟滞误差一般以满量程输出的百分数表示,即
式中△ Hmax —正反行程间输出的最大差值。
迟滞误差的另一名称叫回程误差。
回程误差常用绝对误差表示。
检测回程误差时,可选择几个测试点。
对应于每一输入信号,传感器正行程及反行程中输出信号差值的最大者即为回程误差。
3.重复性(Repeatability)
重复性是指传感器在输入按同一方向连续多次变动时所得特性曲线不一致的程度。
重复性误差可用正、反行程的最大偏差表示,即
△Rmax1正行程的最大重复性偏差, △Rmax2反行程的最大重复性偏差。
重复性误差也常用绝对误差表示。
检测时也可选取几个测试点,对应每一点多次从同一方向趋近,获得输出值系列y i1,y i2,y i3,…,y in ,算出最大值与最小值之差或3σ作为重复性偏差ΔRi ,在几个ΔRi 中取出最大值ΔRmax 作为重复性误差。
()%
100/max ⨯∆±=FS R R y
δ()%100/)3~2(⨯±=FS R y σδ
4.灵敏度与灵敏度误差
传感器在稳态下输出的变化量 y 与引起该变化量的输入变化量 x 之比即为其静态灵敏度,其表达式为
可见,传感器输出曲线的斜率就是其灵敏度(Sensitivity)。
对线性特性的传感器,其特性曲线的斜率处处相同,灵敏度k 是一常数,与输入量大小无关。
一般都希望灵敏度k 在整个测量范围内保持为常数。
这样,可得均匀刻度的标尺,使读数方便,也便于分析和处理测量结果。
由于某种原因,会引起灵敏度变化,产生灵敏度误差。
灵敏度误差用相对误差表示,即
y
5.分辨力与阈值
分辨力:指传感器能检出被测信号的最小变化量。
当被测量的变化小于分辨力时,传感器对输入量的变化无任何反应。
对数字仪表而言,如果没有其他附加说明,可以认为该表的最后一位所表示的数值就是它的分辨力。
有些传感器,当输入量连续变化时,输出量只作阶梯变化,则分辨力就是输出量的每个“阶梯”所代表的输入量的大小。
分辨力用绝对值表示,用与满量程的百分数表示时称为分辨率(Resolution)。
在传感器输入零点附近的分辨力称为阈值。
6.稳定性(Stability)
稳定性是指传感器在长时间工作的情况下输出量发生的变化,有时称为长时间工作稳定性或零点漂移。
测试时先将传感器输出调至零点或某一特定点,相隔4h、8h或一定的工作次数后,再读出输出值,前后两次输出值之差即为稳定性误差。
它可用相对误差表示,也可用绝对误差表示。
7.温度稳定性
温度稳定性又称为温度漂移,是指传感器在外界温度下输出量发生的变化。
测试时先将传感器置于一定温度(如20℃),将其输出调至零点或某一特定点,使温度上升或下降一定的度数(如5℃或10℃),再读出输出值,前后两次输出值之差即为温度稳定性误差。
温度稳定性误差用温度每变化若干℃的绝对误差或相对误差表示,每℃引起的传感器误差又称为温度误差系数。
8.抗干扰稳定性
指传感器对外界干扰的抵抗能力,例如抗冲击和振动的能力、抗潮湿的能力、抗电磁场干扰的能力等。
评价这些能力比较复杂,一般也不易给出数量概念,需要具体问题具体分析。
9.静态误差
静态误差是指传感器在其全量程内任一点的输出值与其理论值的偏离程度。
静态误差的求取方法如下:把全部输出数据与拟合直线上对应值的残差,看成是随机分布,求出其标准偏差,即
10、精确度
与精确度有关指标:精密度、准确度和精确度(精度)
精密度(Precision) :说明测量传感器输出值的分散性,即对某一稳定的被测量,由同一个测量者,用同一个传感器,在相当短的时间内连续重复测量多次,其测量结果的分散程度。
例如,某测温传感器的精密度为0.5℃。
精密度是随即误差大小的标志,精密度高,意味着随机误差小。
注意:精密度高不一定准确度高。
准确度(correctness):说明传感器输出值与真值的偏离程度。
如,某流量传感器的准确度为0.3m3/s,表示该传感器的输出值与真值偏离0.3m3/s。
准确度是系统误差大小的标志,准确度高意味着系统误差小。
同样,准确度高不一定精密度高。
精确度(Accuracy) :是精密度与准确度两者的总和,精确度高表示精密度和准确度都比较高。
在最简单的情况下,可取两者的代数和。
机器的常以测量误差的相对值表示。