第1章膜分离技术
生化技术-名词解释
名词解释:第一章提取与分离技术提取;分离;盐溶;盐_第二章离心分离离心分离相对离心力第三章过滤与膜分离思考题什么叫膜分离技术?第四章萃取分离思考题萃取、双水相萃取、超临界萃取、分配系数、反胶束第五章层析分离技术思考题层析分离技术、吸附层析、分配层析、离子交换层析、凝胶层析、亲和层_____________气相层析、分子筛效应、Rf、薄层层析、分配系数、配基、手臂、母体第六章电泳技术思考题电泳、电泳分离技术、泳动度、电 _ 区带电泳、相对迁移率、不连续凝胶电泳第九章生物检测技术LD50、效价、过敏反应、变异原、热原、致敏原、溶血试验、局部刺激性试验提取:提取是指在一定的条件下,用适当的溶剂(溶液)处理原料,使欲分离物质充分溶解到溶剂(溶液)中的过程,也称为抽提。
沉淀分离:是通过改变某些条件或添加某种物质,是某溶质在溶液中的溶解度降低,从溶液中沉淀析出,而与其他溶质分离的技术过程。
在较低盐浓度下,随着盐浓度的升高,蛋白质溶解度增大的现象称为盐溶。
盐浓度较高时,随着盐浓度升高,蛋白质溶解度降低,从而有沉淀析出的现象,称为盐析。
离心分离技术是借助于离心机旋转所产生的离心力,根据物质颗粒大小、密度、沉降系数和浮力等的不同,而使物质分离的技术过程。
相对离心力是指颗粒所受到的离心力与地心引力之比值。
膜分离技术是借助一定孔径的高分子薄膜,将不同大小、不同性状和不同特性的物质颗粒或分子分离的技术萃取分离是利用物质在两相中的溶解度不同而使其分离的技术。
双水相萃取是利用组分在两个互不相溶的水相中的溶解度不同而达到分离的萃取技术。
超临界萃取又称为超临界流体萃取,是利用欲分离物质与杂质在超临界流体中的溶解度不同而达到分离的一种萃取技术。
分配系数:在温度和压力恒定的条件下,溶质按照一定的比例分配在两相中,到达平衡时,溶质在两相中的浓度比值为一个常数,即:k=Ct/Cb.反胶束,又称为反胶团,是表面活性剂分散于连续有机相中形成的纳米尺度的一种聚集体。
生物制药工艺学名词解释
生物制药工艺学名词解释:第一章:1. 药品:一定剂型和规格的药物并赋予一定的形式(如包装),而且经过有关部门的批准,有明确的作用用途。
药物:能影响机体生理、生化和病理过程,用以预防、诊断、治疗疾病和计划生育的化学物质。
2. 生物药物Biopharmaceuticals:以生物体、生物组织或其成份为原料综合应用生物学、物理化学与现代药学的原理与方法加工制成的药物。
3. 生物活性Biological activity,Bioactivity:对活组织如疫苗有影响的特性。
4. 酶工程enzyme engineering:酶学与工程学互相渗透结合,发展形成的生物技术,它是从应用目的出发,研究酶和应用酶的特异催化功能,并通过工程化过程将相应原料转化成所需产物的技术。
5. 固定化酶immobilized enzyme:是指借助于物理和化学的方法把酶束缚在一定空间内并具有催化活性的酶制剂。
6. 组合生物合成combinatorial biosynthesis(组合生物学combinatorial biology):应用基因重组技术重新组合微生物药物的基因簇,产生一些非天然的化合物。
7. 药物基因组学:一门研究个人的基因遗传如何影响身体对药物反应的科学。
8. 凝聚作用coagulation:指在电解质作用下,胶粒粒子的扩散双电子层排斥电位降低,破坏了胶体系统的分散状态,使胶体粒子发生聚集的过程。
9. 萃取extraction:将物质从基质中分离出来的过程。
一般指有机溶剂将物质从水相转移到有机相的过程。
10. 反萃取stripping/back extraction:将萃取液与反萃取剂相接触,使某种被萃入有机相的溶质转入水相的过程。
11. 萃取因素/萃取比:萃取溶质进入萃取相的总量与该溶质在萃余相中总量之比。
12. 分离因素separation factor:在同一萃取体系内两种溶质在同样条件下分配系数的比值。
13. 双相萃取技术two-aqueous phase extraction:利用不同的高分子溶液相互混合可产两相或多相系统,静置平衡后,分成互不相溶的两个水相,利用物质在互不相溶的两水相间分配系数的差异来进行萃取的方法。
生物分离工程复习题(第1-9填空简答)
《生物分离工程》复习题一(第1~3章)二、填空题1、Cohn方程logS=β-KsI中,Ks越大,β值越小,盐析效果越好。
2、固液分离的主要方法有离心和过滤。
3、对发酵液进行预处理方法主要有加热法、调节PH值、凝聚和絮凝、使用惰性助助滤剂、加入反应剂。
4、根据过滤机理的不同,过滤操作可分为澄清过滤和滤饼过滤两种类型5、盐析的操作方法有加入固体盐、加入饱和溶液法、透析平衡法。
6、核酸的沉淀方法主要有有机溶剂沉淀法、等电点沉淀发、钙盐沉淀法、溶剂沉淀法。
7、蛋白质胶体溶液的稳定性主要靠蛋白质分子间静电排斥作用、蛋白质周围的水化层等因素稳定。
8、为使过滤进行的顺利通常要加入惰性助滤剂。
9、典型的工业过滤设备有半框压滤机和真空转鼓过滤机。
10、常用的蛋白质沉析方法有盐析、等电点和有机溶剂。
二、填空1、常用离心设备可分为离心沉降和离心过滤两大类;2、在一个转子中,将粒子沉降下来的效率可以用 K系数来描述。
3、超离心法是根据物质的沉降系数、质量和形状不同,应用强大的离心力,将混合物中各组分分离、浓缩、提纯的方法。
4、密度梯度离心中,制备密度梯度的常用方法有手工法、梯度混合仪法、离心形成法。
5、阳离子交换树脂按照活性基团分类,可分为强酸型、弱酸型和中等强度;其典型的活性基团分别有磺酸基团、羧基和磷酸基。
7、蛋白质分离常用的层析方法有凝胶层析、多糖基离子交换、亲和层析和疏水层析。
8、离子交换分离操作中,常用的梯度洗脱方法有 PH梯度和离子强度梯度。
10、多糖基离子交换剂包括葡集团离子交换剂和离子交换纤维素两大类。
11、离子交换树脂由载体、活性基团和可交换离子组成。
12、DEAE Sepharose是阴离子交换树脂,其活性基团是二乙基氨基乙基。
13、CM Sepharose是阳离子交换树脂,其活性基团是羧甲基。
14、离子交换操作一般分为动态和静态两种。
15、利用薄层定量测定时,一般控制待测组分的Rf在 0.2-0.5 之间。
现代生化技术复习题
现代⽣化技术复习题. 第⼀章提取与分离技术⼀、名词解释1、机械破碎法2、物理破碎法3、温度差破碎法4、压⼒差破碎法5、超声波破碎法6、渗透压变化法7、化学破碎法8、酶促(学)破碎法9、⾃溶法10、抽提11、盐溶12、盐析13、沉淀分离法14、分段盐析15、K S分段盐析16、β分段盐析17、等电点沉淀法18、有机溶剂沉淀法19、复合沉淀法20、⾦属盐沉淀法21、选择性变性沉淀法⼆、填空题1、细胞破碎的⽅法有、和。
2、机械破碎法按照使⽤机械的不同可分为、和。
3、常⽤的物理破碎法有、和等。
4、常⽤的压⼒差破碎法有、和等。
5、化学破碎法采⽤的表⾯活性剂有和两种。
其中之⼀按其带电荷性质⼜可分为和两种。
6、根据抽提时所采⽤的溶剂或溶液的不同。
抽提的⽅法主要有、、和等7、常⽤的沉淀分析法有、、、、和等。
8、常⽤的⾦属盐沉淀法有和。
9、蛋⽩质盐析时,带⼊⼤量盐离⼦杂质,可采⽤、和⽅法脱盐。
10、要分离和提纯核酸过程中,常⽤来沉淀DNA和RNA。
11、常⽤的使蛋⽩质沉淀的⽅法有、、、和等。
12、三、是⾮题(对的打√、错的打×)1、渗透压变化法可⽤于⾰兰⽒阳性菌的破碎。
()2、有机溶剂破碎细胞主要是使细胞膜磷脂结构破坏,从⽽使细胞膜的透过性增强。
()3、⽤化学法破碎细胞提取酶时,经常⽤离⼦型表⾯活性剂。
()4、⽤化学法破碎细胞提取酶时,⽤⾮离⼦型表⾯活性剂最好。
()5、对于具有细胞壁结构的细胞采⽤酶法破碎时,应根据细胞壁结构选择不同的酶。
()6、酸性物质易溶于酸性溶剂中,碱性物质易溶于碱性溶液中。
()7、在等电点时两性电解质溶解度最⼩。
()8、抽提两性电解质时应避开其等电点。
()四、选择题1、利⽤突然降压法破碎⾰兰⽒阴性⼤肠杆菌应选择期的细胞破碎效果最佳。
A 调整期B 对数⽣长期C 平衡期D衰退期2、提取膜结合酶采⽤法破碎细胞最佳。
A ⾼压冲击法B 突然降压法C 渗透压变化法3、超声波破碎法最适合于破碎。
新型分离技术
应物存在于混合物中,则可利用化学反应将其从混合物中分离出来或直接把它去
掉。不是所有的化学反应都可以用于分离为目的的过程,分离过程常用的化学反
应:可逆反应、不可逆反应、分解反应。
1.3 新型分离技术的进展
新型分离技术在近 20 年发展迅速,新型分离技术大致可分为三类:
第一类:对传统分离过程或方法加以变革后的分离技术,如基于萃取的超临界流
原料:即被分离物,可以是单相或者 多相,但至少含有两个组分;
原料
分离装置
产物:即分离产品,通常为两股,也
产物
可为多股;
分离装置:是分离过程得以实现的必要物质装备,可以是某个特定装置,也可指
从原料到产品之间的整个流程。
按分离过程原理,可以分为机械分离、传质分离和反应分离三大类。
1.2.2 机械分离
利用机械力简单地将两相混合物相互分离的过程称为机械分离过程,分离对
基于萃取技术的液膜分离技术,传质比表面积大,且可利用化学反应和载体 促进传质,具有非常高的选择性和传质速率。
色谱萃取技术基于传统的吸附平衡机理,是利用组分在固定相和流动相内的 分配平衡差异进行分离的。吸附色谱的分离原理与吸附分离相似,而分配色谱则 与精馏相似。色谱之所以比吸收及精馏有高得多的分离效率是由于流动相和固定 相之间不断的接触平衡所造成的。装填好的色谱柱可从几百到上千的平衡级,特 别适用于精馏等过程难以分离的体系。
(1)传统分离与膜分离集成技术:膜分离技术与常规的反应或者分离方法 相耦合,组成集成技术。如膜分离分别与蒸馏、吸收、萃取等结合。
①精馏-渗透汽化集成技术:近 10 年来,采用亲水性渗透汽化与常规精馏过 程集成可将醇/水混合物中的水脱除,得到无水醇。
②渗透汽化-萃取集成技术:从有机物水溶液中萃取有机物或污水中除去有机 物,常用亲水和亲有机物渗透汽化膜与萃取结合过程。
坎普尔 超滤膜技术手册
坎普尔超滤膜技术手册第一章:引言超滤膜技术是一种先进的膜分离技术,广泛应用于水处理、食品、制药、化工等领域。
坎普尔公司作为超滤膜技术的领先企业,自主研发了一系列高效、可靠的超滤膜产品,为客户提供优质的膜分离解决方案。
本手册旨在介绍坎普尔超滤膜技术的原理、应用及操作维护等内容,帮助客户更好地了解和使用坎普尔超滤膜产品。
第二章:超滤膜技术原理1. 超滤膜原理超滤膜是一种由特殊聚合物材料构成的微孔膜,其微孔直径通常在0.01-0.1微米之间。
通过超滤膜,可以有效去除水中的微生物、胶体、有机物质等,实现水的过滤和分离。
超滤膜技术的核心原理是利用膜的微孔大小对不同颗粒的物质进行筛选和分离。
2. 超滤膜的分离机理超滤膜的分离过程主要包括拦截作用和渗透作用。
拦截作用是指超滤膜对大分子物质的截留作用,而渗透作用则是指膜对溶质的渗透通量作用。
这两种作用相互配合,可以实现对水中各种杂质的有效去除。
第三章:坎普尔超滤膜产品系列坎普尔公司生产的超滤膜产品主要包括中空纤维膜、螺旋卷绕膜和平板式膜等多种类型,适用于不同的场景和要求。
这些产品具有优异的过滤性能、稳定的分离效果和长久的使用寿命,已在多个领域得到广泛应用。
第四章:超滤膜技术在水处理中的应用1. 饮用水处理坎普尔超滤膜产品可用于饮用水处理,去除水中的微生物、重金属、胶体颗粒等有害物质,提供清洁、健康的饮用水。
2. 工业废水处理在工业生产过程中产生的废水经过坎普尔超滤膜处理后,可实现回用,减少对环境的污染,同时节约水资源。
第五章:超滤膜技术的操作与维护1. 膜组件的安装在安装坎普尔超滤膜时,应仔细遵循操作手册的指导,确保膜组件正确安装,防止损坏和漏水。
2. 日常维护定期对超滤膜进行清洗、消毒和维护,保持其良好的过滤性能和稳定的分离效果。
第六章:结语坎普尔超滤膜技术手册旨在向用户介绍超滤膜技术的原理、应用和操作维护等内容,帮助用户更好地了解和使用坎普尔超滤膜产品。
希望本手册能够为用户在实际应用中提供帮助,实现高效、可靠的膜分离处理,为各行业的发展贡献力量。
环保设备与技术服务作业指导书
环保设备与技术服务作业指导书第1章环保设备与技术概述 (3)1.1 环保设备分类与原理 (3)1.1.1 大气污染治理设备 (4)1.1.2 水污染治理设备 (4)1.1.3 固体废物处理设备 (4)1.1.4 噪声与振动治理设备 (4)1.1.5 监测与检测设备 (4)1.2 环保技术服务内容与要求 (4)1.2.1 技术咨询 (4)1.2.2 技术研发与改进 (4)1.2.3 工程设计 (4)1.2.4 设备安装与调试 (5)1.2.5 运营管理 (5)1.2.6 培训与指导 (5)1.2.7 后续服务 (5)第2章环境监测设备与技术 (5)2.1 大气污染物监测设备 (5)2.1.1 颗粒物监测设备 (5)2.1.2 气态污染物监测设备 (5)2.1.3 在线监测系统 (5)2.2 水质监测设备 (5)2.2.1 水质参数监测设备 (6)2.2.2 水质自动监测站 (6)2.2.3 应急监测设备 (6)2.3 土壤污染监测设备 (6)2.3.1 土壤采样设备 (6)2.3.2 土壤污染物检测设备 (6)2.3.3 现场快速检测设备 (6)第3章空气净化设备与技术 (6)3.1 袋式除尘器 (6)3.1.1 设备概述 (6)3.1.2 技术特点 (7)3.1.3 应用领域 (7)3.2 电除尘器 (7)3.2.1 设备概述 (7)3.2.2 技术特点 (7)3.2.3 应用领域 (7)3.3 湿式除尘器 (7)3.3.1 设备概述 (7)3.3.2 技术特点 (7)3.3.3 应用领域 (7)第4章水处理设备与技术 (8)4.1 沉淀池与澄清池 (8)4.1.1 沉淀池 (8)4.1.2 澄清池 (8)4.2 活性污泥法与生物膜法 (8)4.2.1 活性污泥法 (8)4.2.2 生物膜法 (8)4.3 膜分离技术 (9)第5章固废处理与资源化设备 (9)5.1 压缩与破碎设备 (9)5.1.1 设备概述 (9)5.1.2 常用设备 (9)5.1.3 设备选型与操作要点 (9)5.2 焚烧与热解设备 (9)5.2.1 设备概述 (9)5.2.2 常用设备 (10)5.2.3 设备选型与操作要点 (10)5.3 固废资源化利用设备 (10)5.3.1 设备概述 (10)5.3.2 常用设备 (10)5.3.3 设备选型与操作要点 (10)第6章噪声与振动控制设备与技术 (10)6.1 吸声材料与结构 (10)6.1.1 吸声材料 (10)6.1.2 吸声结构 (11)6.2 隔声与消声设备 (11)6.2.1 隔声设备 (11)6.2.2 消声设备 (11)6.3 振动控制技术 (11)6.3.1 隔振技术 (11)6.3.2 减振技术 (12)6.3.3 振动监测与评估 (12)第7章环保设备选型与配置 (12)7.1 设备选型原则与方法 (12)7.1.1 选型原则 (12)7.1.2 选型方法 (12)7.2 设备配置与优化 (13)7.2.1 设备配置 (13)7.2.2 设备优化 (13)7.3 设备功能评估 (13)7.3.1 评估指标 (13)7.3.2 评估方法 (13)第8章环保设备安装与调试 (14)8.1 设备安装流程与要求 (14)8.1.1 安装前期准备 (14)8.1.2 设备基础施工 (14)8.1.3 设备安装 (14)8.1.4 管线连接 (14)8.2 设备调试与试运行 (14)8.2.1 调试准备 (14)8.2.2 设备调试 (15)8.2.3 设备试运行 (15)8.3 设备验收与交付 (15)8.3.1 验收准备 (15)8.3.2 设备验收 (15)8.3.3 设备交付 (15)第9章环保技术服务与运营管理 (15)9.1 技术服务内容与方式 (15)9.1.1 技术服务内容 (15)9.1.2 技术服务方式 (15)9.2 运营管理策略与实施 (16)9.2.1 运营管理策略 (16)9.2.2 运营管理实施 (16)9.3 设备维护与检修 (16)9.3.1 设备维护 (16)9.3.2 设备检修 (16)第10章环保法规与标准 (16)10.1 我国环保法律法规体系 (16)10.1.1 概述 (17)10.1.2 法律层面 (17)10.1.3 行政法规层面 (17)10.1.4 部门规章层面 (17)10.1.5 地方性法规和规范性文件 (17)10.2 环保设备相关标准与规范 (17)10.2.1 国家标准 (17)10.2.2 行业标准 (17)10.2.3 地方标准 (17)10.2.4 企业标准 (17)10.3 环保政策对环保设备的影响与启示 (17)10.3.1 政策对环保设备的影响 (17)10.3.2 政策对环保设备的启示 (17)第1章环保设备与技术概述1.1 环保设备分类与原理环保设备是指用于防治环境污染、改善生态环境、保护自然资源的一系列设备。
聚氯乙烯(PVC)聚苯砜(PPSU)共混膜的研制及其改性研究
聚氯乙烯(PVC)/聚苯砜(PPSU)共混膜的研制及其改性研究摘要膜分离技术是一种新型、高效的分离技术,因其分离效率高、无二次污染、能耗低等优点而备受关注,但由于在实际工程运行中膜易被污染、膜清洗更换、能耗高带来的成本问题导致膜分离技术并没有被大规模用于污水处理中。
聚氯乙烯(PVC)作为第二大合成材料,具有廉价易得、化学稳定性好、机械性能好等优点,因此在新型膜材料的开发领域中引起了人们的关注。
但是研究表明PVC疏水性较强,因此容易导致膜污染,而且只有当PVC质量百分含量较高时,PVC 膜才会有较高的强度,但此时PVC膜的水通量会急剧下降,甚至为零;另外,PVC还存在成膜性能差的缺点。
因此PVC作为膜材料,需要进行改性。
聚苯砜(PPSU)作为一种新颖的膜材料,比其他聚合物具有更好的韧性、耐冲击性、水解稳定性、更稳定的化学性能和较好的机械性能,但价格较昂贵。
因此将PVC和PPSU共混有望开发出通量较大,机械性能较强、价格低廉的新型膜材料。
本文通过溶液共混法制备了PVC/PPSU共混膜。
首先采用剪切粘度法和傅里叶变换红外光谱(FTIR)测试法研究PVC/PPSU共混体系的相容性;然后通过研究不同共混比下共混膜的断面和表面微观结构及共混膜的性能(水通量、抗伸强度、亲水性和耐污染性),确定了最佳共混比。
在此基础上,探讨了不同聚合物含量对PVC/PPSU共混膜膜性能的影响。
同时考虑到PVC和PPSU都属于疏水性材料,因此通过分别添加不同的亲水性聚合物(PAN、PVB)、无机小分子SiO2及其改性物质PVP-g-SiO2对PVC/PPSU共混膜亲水性进行了改性研究。
通过研究得到如下结论:1. PVC/PPSU共混溶液剪切粘度的测试结果及红外光谱(FTIR)分析结果表明PVC/PPSU共混体系为部分相容体系。
2.通过考察共混比、聚合物浓度对PVC/PPSU共混膜的微观结构和共混膜综合性能的影响,结果表明,当共混比为5/5,聚合物含量为20%时,PVC/PPSU共混膜性能较佳。
制药工艺中的纯化技术应用
制药工艺中的纯化技术应用第一章:引言制药行业是医药行业的一个重要分支,其目标在于生产符合严格标准的药品。
为了保证药品质量,制药工艺需要经过多个工序,其中纯化技术是制药工艺中的一个重要环节。
本文将介绍制药工艺中纯化技术的应用。
第二章:制药工艺中的纯化技术纯化技术是指通过物理、化学、生物等多种手段将药品中的杂质分离,从而提高药品的纯度、效价和稳定性。
纯化技术在制药工艺中有着广泛的应用,其中比较常见的有以下几种:1.溶剂萃取技术溶剂萃取技术是制药工艺中常用的纯化技术之一。
其原理是利用溶剂的疏水性来分离出不同极性的化合物。
此技术在提取天然药物中的有效成分方面应用最为广泛。
2.色谱技术色谱技术是制药工艺中最常用的分离技术之一。
它通过对药品中分子级别的分离,来达到提高纯度的目的。
常用的色谱技术包括气相色谱、高效液相色谱、离子交换色谱等。
3.膜分离技术膜分离技术是制药工艺中的一种新型分离技术,其包括微滤、超滤、逆渗透等不同类型。
此技术在制药中广泛应用于药物分离、杂质去除、浓缩等方面。
4.离子交换技术离子交换技术在制药工艺中的应用主要是通过离子交换树脂将带电离子的药品分离开来。
此技术广泛应用于药品的制备和纯化过程。
第三章:制药工艺中纯化技术的应用案例1.利用色谱技术提高药品纯度对于一些需要高纯度的药品,色谱技术可以用来提高它们的纯度。
比如,利用高效液相色谱技术对阿司匹林中的不纯物进行分离,可以得到高品质的阿司匹林原料。
2.利用离子交换技术分离药品一些药品中存在带电离子,需要通过离子交换技术将其分离开来。
比如,对于一些含有铁离子的药品,通过离子交换技术可以分离出无铁离子的药品。
3.利用膜分离技术浓缩药品对于一些需要浓缩的药品,可以使用膜分离技术来实现。
比如,利用超滤膜可以将含有蛋白质的药物浓缩到所需浓度。
第四章:结论纯化是制药工艺中的一个重要环节,其主要目的在于提高药品的质量和稳定性。
制药工艺中常用到的纯化技术包括溶剂萃取技术、色谱技术、膜分离技术和离子交换技术等。
重庆大学生物分离工程_第一章 缓冲溶液和膜技术
缺点:不易加工,造价高。
复合材料
种类:如将含水金属氧化物(氧化锆)等胶体微粒或聚丙烯 酸等沉淀在陶瓷管的多空介质表面形成膜,其中沉淀层起 筛分作用。
优点:此膜的通透性大,通过改变pH值容易形成和除去沉 淀层,清洗容易。
缺点:稳定性差。
膜的制造
不对称膜通常用相转变法(phase inversion method)制造,其一般步骤如下:
包括孔径,孔径分布,空隙度。 完整性试验 用于试验膜和组件是否完整或渗漏。
膜两侧溶液间的传递方程
浓差极化模型(concen-tration
polarization) 适应范围:反渗透、超滤和微滤。 定义:在膜分离操作中,所有溶质 均被透过液传送到膜表面,不能完 全透过膜的溶质受到膜的截留作用, 在膜表面附近浓度升高,见图。这 种在膜表面附近浓度高于主体浓度 的现象谓之浓度极化或浓差极化)。
缓冲溶液的种类
非双性离子和无机离子缓冲液 双性离子缓冲液
标准缓冲溶液—它是由规定浓度的某些逐级离解常数相差较小的 单一两性物质或不同型体的两性物质所组成。校正pH计用的标准 缓冲溶液,如酒石酸氢钾、邻苯二甲酸氢钾、 KH2PO4—Na2HPO4, 硼砂的溶液也具有缓冲作用。
缓冲溶液配制
膜分离法与物质大小的关系。
透析和反渗透
透析是以膜两侧的浓度差为传质推动力,从溶液中分 离出小分子物质的过程。在生物分离中主要用于蛋 白质的脱盐。
反渗透是在透析膜浓度高的一侧施加大于渗透压的压 力,利用膜的筛分性质,使浓度较高的溶液进一步 浓缩。用于海水淡化,药物浓缩,纯水制造。
微滤和超滤
微滤和超滤都是利用膜的筛分性质,以压差 为传质推动力,主要用于截留固体微粒和高分子 溶质。
纺织染整行业环保染整技术方案
纺织染整行业环保染整技术方案第一章环保染整技术概述 (2)1.1 环保染整技术的定义 (2)1.2 环保染整技术的重要性 (2)第二章环保染料的选择与应用 (3)2.1 环保染料的分类 (3)2.2 环保染料的功能特点 (3)2.3 环保染料的应用方法 (3)第三章染色工艺优化 (4)3.1 染色前处理 (4)3.1.1 清洗 (4)3.1.2 精练 (4)3.1.3 碱缩 (4)3.2 染色工艺流程 (4)3.2.1 染料溶解 (4)3.2.2 染料上染 (4)3.2.3 固色 (5)3.2.4 洗涤 (5)3.3 染色后处理 (5)3.3.1 水洗 (5)3.3.2 中和 (5)3.3.3 烘干 (5)3.3.4 定型 (5)第四章染色废水处理 (5)4.1 染色废水处理方法 (5)4.2 染色废水处理设备 (6)4.3 染色废水处理工艺 (6)第五章染色过程中的节能减排 (7)5.1 能源消耗优化 (7)5.2 废水回用技术 (7)5.3 废气处理与回收 (7)第六章绿色印花技术 (8)6.1 绿色印花材料 (8)6.1.1 引言 (8)6.1.2 环保型染料 (8)6.1.3 环保型助剂 (8)6.1.4 印花基材 (8)6.2 绿色印花工艺 (8)6.2.1 引言 (8)6.2.2 数字印花 (8)6.2.3 冷转移印花 (9)6.2.4 植物印花 (9)6.2.5 生物酶印花 (9)6.3 印花废水处理 (9)6.3.1 引言 (9)6.3.2 物理处理法 (9)6.3.3 化学处理法 (9)6.3.4 生物处理法 (9)6.3.5 膜分离技术 (9)第七章纺织品染整过程的环境监测 (9)7.1 环境监测指标 (9)7.2 环境监测方法 (10)7.3 环境监测设备 (10)第八章环保染整技术的推广与应用 (10)8.1 政策支持与鼓励 (11)8.2 企业技术创新 (11)8.3 行业合作与交流 (11)第九章环保染整技术的经济效益分析 (11)9.1 投资成本分析 (11)9.2 运营成本分析 (12)9.3 经济效益评价 (12)第十章环保染整技术的发展趋势与展望 (12)10.1 国际环保染整技术发展动态 (12)10.2 我国环保染整技术发展趋势 (13)10.3 环保染整技术的未来展望 (13)第一章环保染整技术概述1.1 环保染整技术的定义环保染整技术是指在纺织染整过程中,采用环保型染料、助剂及工艺,降低能耗、减少污染物排放,以实现对环境、人体健康和资源可持续利用的一种技术。
第1章管式膜概述
第1章管式膜概述管式膜基本概念膜分离技术是近三十年发展起来的一门高新技术,从结构上分有平板膜、管式膜、卷式膜和中空纤维膜4种,管式膜与中空纤维膜从外型上看都为圆柱体或类圆柱体,中空纤维膜直径一般小于3mm。
管式膜通常在内径4-25mm,长度-6m 的玻璃纤维合成纸、无纺布、塑料、陶瓷或不锈钢等支撑体流延而成。
若干根单根膜管整装成一束膜管放在塑料或不锈钢筒体内用适宜的方法定位紧固,构成管式膜组件。
图1 管式膜及管式膜组件1.2管式膜种类(1)按膜材料分类按膜材料分类,管式膜可分为有机管式膜和无机管式膜两大类,具体如下:有机管式膜:PVDF、PES、PP、PAN、PS、……无机管式膜:Al2O3、ZrO2、TiO2、SiO2、分子筛、不锈钢、……(2)按过滤精度分类按过滤精度分类,管式膜主要有管式微滤膜、管式超滤膜、管式纳滤膜、管式反渗透膜1.3管式膜特点(1)膜的使用寿命长,独特的膜支撑体结构防止膜破裂;(2)过滤精度高,管式膜不仅能去除看似浓浊的悬浮固体、纤维等,同时能去除细菌和一些大分子物质,如果胶、淀粉、蛋白质等;(3)料液的流动状态好,压力损失较小,适合处理含有较大颗粒和悬浮物的液体;(4)抗污堵能力强,独特的开放式通道设计;(5)机械强度大。
1.4管式膜优缺点目前平板膜由于其装配复杂能耗高等因素,在水处理领域已逐步被淘汰,卷式膜、中空纤维膜主要用于海水淡化、苦咸水淡化、纯水、超纯水制备。
在实际应用中它们对料液的预处理要求是非常高的,否则将造成容易堵塞、通量急剧下降,严重的会造成不可逆的修复,导致报废。
对于高固含量、高浓度的料液处理,卷式膜、中空纤维膜可以说不是那么轻而易举。
管式膜优势就在于对料液的预处理要求比较简单,只需经粗格栅、细格栅去除对膜有直接损害的硬粒物质即可进机组,由于预处理简单从而节约了投入成本及运行费用。
管式膜用于MBR,其污泥浓度可为20-30g/L,原水浊度≤3000NTU,而中空纤维膜用于MBR,其污泥浓度一般为3-15g/L,要求进水浊度≤20NTU。
膜技术手册(上、下册)(第二版)
膜技术手册(上、下册)(第二版)加入书架登录•膜技术手册(上册)(第二版)•书名页•内容简介•《膜技术手册》(第二版)编委会•本版编写人员名单•第一版编写人员名单•前言•第1章导言•1.1 膜和膜分离过程的特征•1.2 膜和膜过程的发展历史•1.3 膜•1.4 膜分离过程•1.5 应用总览•1.6 现状与展望•参考文献•第2章有机高分子膜•2.1 高分子分离膜材料•2.2 有机高分子分离膜的制备•2.3 有机高分子分离膜的表征•符号表•参考文献•第3章无机膜•3.1 引言•3.2 无机膜的结构与性能表征•3.3 无机膜的制备•3.4 无机膜组件及成套化装置•3.5 无机膜在分离和净化中的应用•3.6 无机膜反应器•符号表•参考文献•第4章有机-无机复合膜•4.1 有机-无机复合膜简介•4.2 有机-无机复合膜材料•4.3 有机-无机复合膜的制备•4.4 有机-无机复合膜界面结构调控与传质机理•4.5 有机-无机复合膜的应用•4.6 展望•符号表•参考文献•第5章膜分离中的传递过程•5.1 引言•5.2 膜内传递过程•5.3 膜外传递过程•5.4 计算机模拟在膜分离传递过程中的应用•符号表•参考文献•第6章膜过程的极化现象和膜污染•6.1 概述[1]•6.2 浓差极化•6.3 温差极化•6.4 膜污染•符号表•参考文献•第7章膜器件•7.1 膜器件分类•7.2 板框式•7.3 圆管式•7.4 螺旋卷式•7.5 中空纤维式•7.6 电渗析器•7.7 实验室用膜设备•7.8 膜器件设计中应考虑的主要因素•7.9 膜器件的特性比较与发展趋势•7.10 膜器件的规格性能和应用•符号表•参考文献•第8章反渗透、正渗透和纳滤•8.1 概述•8.2 分离机理•8.3 膜及其制备•8.4 膜结构与性能表征•8.5 膜组器件技术[8,43]•8.6 工艺过程设计•8.7 系统与运行•8.8 典型应用案例•8.9 过程经济性•8.10 展望•符号表•参考文献•第9章超滤和微滤•9.1 超滤概述•9.2 超滤膜•9.3 超滤膜组件与超滤工艺•9.4 超滤工程设计•9.5 超滤装置的操作参数•9.6 超滤系统的运行管理•9.7 超滤技术的应用•9.8 微滤•9.9 微孔膜过滤的分离机理•9.10 微孔滤膜的制备•9.11 微孔滤膜的结构和理化性能测定•9.12 微孔膜过滤器•9.13 微孔膜过滤技术的应用•符号表•参考文献•膜技术手册(下册)(第二版)•书名页•内容简介•第10章渗析•10.1 概述•10.2 渗析膜•10.3 渗析原理和过程•10.4 渗析膜组件设计•10.5 渗析的应用•符号表•参考文献•第11章离子交换膜过程•11.1 概述•11.2 基础理论•11.3 离子交换膜制备•11.4 离子交换膜装置及工艺设计•11.5 离子交换膜应用•11.6 离子交换膜过程发展动向•符号表•参考文献•第12章气体膜分离过程•12.1 引言•12.2 气体分离膜材料及分离原理•12.3 气体分离膜制造方法•12.4 相转化成膜机理•12.5 气体分离膜结构及性能表征•12.6 膜分离器•12.7 分离器的模型化及过程设计•12.8 应用•符号表•参考文献•第13章气固分离膜•13.1 概述•13.2 气固分离膜材料与制备方法•13.3 气固分离原理•13.4 气固分离膜的性能评价•13.5 气固分离膜装备•13.6 典型应用案例•符号表•参考文献•第14章渗透汽化•14.1 概述•14.2 基本理论•14.3 渗透汽化膜•14.4 渗透汽化膜器•14.5 过程设计•14.6 应用•14.7 回顾与展望•符号表•参考文献•第15章液膜•15.1 引言•15.2 概述•15.3 乳化液膜•15.4 支撑液膜•15.5 Pickering液膜•15.6 液膜应用•15.7 液膜新进展•符号表•参考文献•第16章膜反应器•16.1 概述•16.2 面向生物反应过程的膜生物反应器•16.3 面向催化反应过程的多孔膜反应器•16.4 面向气相催化反应过程的致密膜反应器•符号表•参考文献•第17章膜接触器•17.1 膜接触器概述•17.2 膜萃取•17.3 膜吸收•17.4 膜蒸馏•17.5 膜脱气•17.6 膜乳化•17.7 膜结晶•符号表•参考文献•第18章控制释放与微胶囊膜和智能膜•18.1 控制释放概述•18.2 微胶囊膜•18.3 智能膜•参考文献•第19章典型集成膜过程•19.1 基于多膜集成的制浆造纸尾水回用技术•19.2 基于膜集成技术的抗生素生产新工艺•19.3 双膜法氯碱生产新工艺•19.4 基于膜技术的中药现代化•19.5 基于反应-膜分离耦合技术的化工工艺•19.6 结束语•参考文献•缩略语表•索引是否关闭自动购买?关闭后需要看完本书未购买的章节手动确认购买。
膜分离技术基础概论
《膜分离技术》教案第一章:膜分离技术概述1、膜科学与基础科学的关系膜科学与基础科学的关系如下图所示。
2、膜的定义及特性所谓的膜,是指在一种流体相内或是在两种流体相之间有一层薄的凝聚相,它把流体相分隔为互不相通的两部分,并能使这两部分之间产生传质作用。
膜的特性:不管膜多薄, 它必须有两个界面。
这两个界面分别与两侧的流体相接触。
膜传质有选择性,它可以使流体相中的一种或几种物质透过,而不允许其它物质透过。
3、膜的分离过程原理膜分离过程原理:以选择性透膜为分离介质,通过在膜两边施加一个推动力(如浓度差、压力差或电位差等)时,使原料侧组分选择性地透过膜,以达到分离提纯的目的。
通常膜原料侧称为膜上游,透过侧称为膜下游。
4、分离膜的种类5、膜分离技术发展简史高分子膜的分离功能很早就已发现。
1748年,耐克特(A. Nelkt )发现水能自动地扩散到装有酒精的猪膀胱内,开创了膜渗透的研究。
1861年,施密特(A. Schmidt )首先提出了超过滤的概念。
他提出,用比滤纸孔径更小的棉胶膜或赛璐酚膜过滤时,若在溶液侧施加压力,使膜的两侧产生压力差,即可分离溶液中的细菌、蛋白质、胶体等微小粒子,其精度比滤纸高得多。
这种过滤可称为超过滤。
按现代观点看,这种过滤应称为微孔过滤。
然而,真正意义上的分离膜出现在20世纪60年代。
1961年,米切利斯(A. S. Michealis )等人用各种比例的酸性和碱性的高分子电介质混合物以水—丙酮—溴化钠为溶剂,制成了可截留不同分子量的膜,这种膜是真正的超过滤膜。
美国Amicon 公司首先将这种膜商品化。
50年代初,为从海水或苦咸水中获取淡水,开始了反渗透膜的研究。
1967年,DuPont 公司研制成功了以尼龙—66为主要组分的中空纤维反渗透膜组件。
同一时期,丹麦DDS 公司研制成功平板式反渗透膜组件。
反渗透膜开分离膜高分子膜液体膜生物膜带电膜非带电膜阳离子膜阴离子膜过滤膜精密过滤膜 超滤膜 反渗透膜纳米滤膜始工业化。
坎普尔 超滤膜技术手册
坎普尔超滤膜技术手册第一章:引言超滤膜技术是一种常用的膜分离技术,可以有效地去除水中的杂质和溶质,广泛应用于水处理、废水处理、食品加工等领域。
本手册旨在介绍坎普尔超滤膜技术的基本原理、应用范围、操作要点等内容,帮助用户正确使用超滤膜技术。
第二章:基本原理超滤膜技术是通过对物质的分子大小进行筛选分离的一种膜分离技术。
其基本原理是利用超滤膜的微孔对溶质和杂质进行筛选,达到分离的目的。
超滤膜的分离效果与溶质的分子大小有关,一般能够去除分子量大于1000道尔顿的溶质,如细菌、颗粒物、有机物等。
第三章:产品特点1.高分离效率:坎普尔超滤膜具有较高的分离效率,能够有效去除水中的杂质和溶质。
2.高通量:坎普尔超滤膜的通量较高,能够提高处理效率,降低处理成本。
3.耐腐蚀性强:坎普尔超滤膜采用耐腐蚀材料制成,能够适应不同水质和工艺要求。
4.使用寿命长:坎普尔超滤膜采用优质材料,具有较长的使用寿命,能够降低更换频率和维护成本。
第四章:应用领域1.水处理:坎普尔超滤膜可用于饮用水处理、工业用水处理等领域,能够去除水中的悬浮颗粒、有机物、微生物等。
2.废水处理:坎普尔超滤膜可用于废水处理,能够去除废水中的悬浮颗粒、有机物、重金属等。
3.食品加工:坎普尔超滤膜可用于食品加工过程中的浓缩、分离、脱色等工艺,能够提高产品质量和提高工艺效率。
第五章:操作要点1.膜组装:正确组装膜元件是使用超滤膜技术的关键,需要注意膜的安装方向、连接方式等。
2.运行参数:根据具体的应用要求,合理设置超滤膜的运行参数,包括进料压力、流速、温度等。
3.清洗维护:定期进行膜的清洗维护,防止膜受到污染和结垢,影响膜的分离效果和使用寿命。
第六章:技术支持坎普尔公司为用户提供超滤膜技术的技术支持,包括膜元件的选型、工艺设计、设备调试等方面的服务。
结论本手册简要介绍了坎普尔超滤膜技术的基本原理、应用领域、操作要点等内容,希望能够帮助用户正确使用超滤膜技术并取得良好的效果。
膜分离技术在工业过程中的应用
膜分离技术在工业过程中的应用第一章引言膜分离技术是一种基于膜的物理过滤和分离技术。
它可以将混合物中的不同成分通过渗透、扩散、截留等方式,分别在两侧对称地排布的膜上实现分离。
膜分离技术主要应用于化学工业、生物技术、环境保护、食品加工等领域。
本文探讨了膜分离技术在工业过程中的应用。
第二章膜分离技术的分类膜分离技术按其分离机理分为五类:微过滤、超过滤、气体分离、纳滤和反渗透。
微过滤的孔径大小在0.1至10微米之间,用于去除无机颗粒、悬浮物、细菌和大分子物质。
超过滤的孔径大小在0.001至0.1微米之间,用于去除蛋白质、病毒和大分子有机物。
气体分离是利用物理和化学吸附、扩散或化学反应等原理,将气体分离。
纳滤的孔径大小在0.001至0.01微米之间,用于分离色素、糖类、蛋白质和药物。
反渗透技术则是将水转化为纯净水或去除水中的溶解氧、矿物质和化学物质。
第三章膜分离技术的应用膜分离技术在工业过程中的应用主要体现在以下几个方面:1. 水处理膜分离技术是解决水处理领域难题的重要技术之一。
反渗透技术通过膜分离将含有病菌、重金属、硝酸盐、有机物等污染物的水处理成清洁的水。
纳滤技术则可用于处理工业废水和废液中的有机物和无机盐。
此外,膜生物反应器技术可实现废水的生物降解。
2. 食品加工超过滤、纳滤和反渗透技术在食品工业中应用广泛。
超过滤可用于分离乳清、蛋白质和酶。
纳滤则可分离糖类、色素和香精。
反渗透技术可将质量较差的果汁、水加工成高质量的果汁和矿泉水。
3. 化学工业反渗透技术用于离子交换树脂和电解制氯。
超过滤技术可用于制备洗涤剂、肥料、日用化学品、土壤调剂剂等。
气体分离技术则可用于空气分离、液化气体分离和汽油裂解气分离等领域。
4. 生物技术膜分离技术是分离、提纯生物大分子和细胞的重要手段。
微过滤技术可用于消除细胞碎片、减少溶菌酶、去除杂质等。
超过滤技术可用于分离和提纯重要蛋白质、配体、酶等。
纳滤技术则可用于分离小分子化合物、生物活性物质等。
膜分离技术
2024/7/5
膜分离技术
3
1、膜分离技术发展概述
1784年 阿贝.诺伦特首次揭示膜分离现象 1960年洛布和索里拉金 醋酸纤纸素膜 1964年 美国通用原子公司 螺旋式反渗透组件 1965年 美国加利福尼亚大学 管式反渗透装置 1967年 美国杜邦公司首次研制了以尼龙为材料 的中空纤维组件, 1970年又研制了以芳香聚酰 胺为膜材料的中空纤维组件 1968年 美籍华人黎念之研究出乳化液膜 70年代 Cussler研制了含流动载体的液膜
第1章 膜分离技术
(Membrane Separation Processes)
本章主要内容:
膜分离技术概述
扩散渗析(diffusion dialysis)
反渗透( reverse osmosis)
电渗析(electro-dialysis)
2024/7/5
膜分离技术
2
1.1 膜分离概述
1、膜分离发展概述 2、膜分离的概念 3、膜分离法的分类 4、膜分离技术的特点 5.膜分离法的应用
99%
多孔层, 孔径 (1000-4000) ×10-10m
这种膜有不对称结构: 表面结构致密, 孔隙很小, 通称为表皮 层或致密层、活化层; 下层结构较疏松, 孔隙较大, 通称为多 孔层或支撑层。
2024/7/5
膜分离技术
29
膜的照片
在相对湿度为100%时, 膜的含水量高达60%, 其中表皮层只含10%-20%, 且主要是以氢 键形式结合结合水。
2024/7/5
膜分离技术
17
2. 扩散渗析法原理
渗析液A+ B-
H2O
H2O A+
B- B- B-
(1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)根据它们物理性质的不同
主要是质量、体积大小和几何形态差异, 用过筛的办法将其分离。微滤膜分离过程 就是根据这一原理将水溶液中孔径大于 50nm的固体杂质去掉的。
图 1—1 各种膜的截留区段
(2)根据混合物的不同化学性质
膜分离技术概论
主要章节和学时: 32学时 第1章 导 论 第2章 膜材料和膜制备 第3章 反渗透 第4章 超滤和纳滤 第5章 微滤 第6章 气体膜分离 第7章 其它膜过程 第8章 膜分离过程强化 第9章 21世纪膜分离技术的发展
第1章 导 论
1.1 分离技术在人类生产和生活中的重要作用 1.2 分离和分离 1.3 膜分离的基本原理 1.4 膜分离技术的特点 1.5 膜分离技术的发展史 1.6 膜分离的应用及市场 1.7 发展中的膜科学
1.1 分离技术在人类生产和生 活中的重要作用
地球上的物质,绝大多数是与其他物质混 在一起的(称为混合物)。天然存在的单纯物质 少之又少。生产实践证明,将地球上的各种各 样混合物进行分离和提纯是提高生产和改善生 活水平的一种重要途径。 冶炼术的发明 放射性铀的同位素分离成功 水和空气中微量杂质除去的分离技术 深冷分离技术 蒸馏、吸附、萃取等分离技术
表1-1 主要膜分离过程的推动力
推动力
膜过程
压力差 电位差 浓度差 浓度差(分压差) 浓度差加化学反应
反渗透、超滤、微滤、气体分离 电渗析 透析、控制释放 渗透气化 液膜、膜传感器
膜,是指在一种流体相内或是在两种流体相 之间有一层薄的凝聚相,它把流体相分隔为 互不相通的两部分,并能使这两部分之间产 生传质作用。 膜的厚度在0.5mm以下,否则,就不称为膜。 膜的特性: 不管膜多薄, 它必须有两个界面。这两个界 面分别与两侧的流体相接触。 膜传质有选择性,它可以使流体相中的一种 或几种物质透过,而不允许其它物质透过。
的物理或化学性质有所差异。我们就是利用这 些差异将其分开的。性质完全相同的物质称为 元素和化合物,元素和化合物是不能被分离的。 性质愈相近,分离就愈困难,反之亦然。
例如水与油比较容易分开,水与酒精就 不易分开。这是因为水与酒精都具有较 强的极性(分子上都具有羟基),而油的分 子上只有无极性的C-C键和C-H键。
又如氮与氢较易分离,而氮与氧则较难分开, 这是因为氮的相对分子质量为28,氢的相对 分子质量为2,二者相差悬殊,而氧的相对 分子质量为32,与氮很接近的缘故。
分离技术的发展与人类的生产实践密切 相关。伴随着生产力的发展、科学技术的进
步,分离的方法也从简到繁、技术从低级到 高级、工艺从一种方法到多种联用……,不 断地改进、创新,提高质量,降低成本,以
主要是溶解和扩散
物质通过分离膜的溶解速度完全取决于被分离 物与膜材料之间化学性质的差异,扩散速度除 化学性质外还与物质的分子量有关。混合物质 透过的总速度相差愈大,则分离效率愈高,反 之,若总速度相等,则无分离效率可言。
物质通过分离膜的速度取决于以下两个步骤的 速度,首先是从膜表面接触的混合物中进入膜 内的速度(称溶解速度),其次是进入膜内后从 膜的表面扩散到膜的另一表面的速度。二者之 和为总速度。总速度愈大,透过膜所需的时间 愈短;总速度愈小,透过时间愈久。
膜的定义
自然界中存在着这样的物质体系,即在一 种流体相(fluid phase)内或两种流体相之间, 有一薄层凝聚相(condensed phase)物质把流 体相分隔成两部分。这一薄层物质就是所谓的 “薄膜”[或简称膜(membrane)]。
膜可以是固态的或液态的。被膜分隔开的 流体相物质可以是液态的或气态的。膜本身可 以是均匀的一相,也可以是由两相以上的凝聚 态物质所构成的复合体。
如果所有物质不按比例均可通过, 那就失去了分离的意义了。膜截留分 子的方式有多种,例如,
按分子孔径大小截留, 按不同渗透系数截留, 按电荷截留,
按不同的溶解度截留,等等。
物质透过分离膜的能力可以分为两类:
一种借助外界能量,物质发生由低位向高位 的流动;
另一种是以化学位差为推动力,物质发生由 高位向低位的流动。
膜必定有两个界面,并由这两个界面分别 与被其分隔于两侧的流体相物质相接触。
膜的定义
膜不是普通的塑料膜或皂泡膜,而是那 些具有一定特殊性能(例如,半透、电学、 光学、识别及反应等特性)的膜。对分离膜 来说,可将它看作是两相之间的一个半渗透 的隔层,该隔层按一定的方式截留分子。因 此,两相间的膜必须起到隔层的作用,以阻 止两相的直接接触。该隔层可以是固体、液 体,甚至是气体的,半渗透性质主要是为了 保证分离效果。
反渗透膜装置
膜器 膜分离装置
管式膜
平板膜、卷式膜支撑材料
管式膜过滤设备
小型实验室平板超滤膜装置
1.3 膜分离的基本原理
分离膜具有选择透过特性,所以它可以使混 合物质有的通过、有的留下。但是,不同的 膜分离过程,它们使物质留下、通过的原理 有的类似,有的完全不一样。
总的说来,分离膜之所以能使混在一起的物 质分开,不外乎两种手段。
满足人类对生活改善日新月异的需求。例如:
从简单的蒸馏发展到减压蒸馏、多级闪蒸、
压汽蒸馏;从简单的吸附发展到变压吸附、
气相色谱、高压液相色谱;从筛网发展到精 密过滤、膜分离等。
膜分离
膜分离是在20世纪初出现,20世纪60年代 后迅速崛起的一门分离新技术。顾名思义,膜 分离是利用一张特殊制造的、具有选择透过性 能的薄膜,在外力推动下对混合物进行分离、 提纯、浓缩的一种分离新方法。这种薄膜必须 具有使有的物质可以通过、有的物质不能通过 的特性。膜可以是固相、液相或气相。目前使 用的分离膜绝大多数是固相膜。
当代工业的三大支柱是材料、能源 和信息。这三大产业的发展都离不开新 的分离技术。人类生活水平的进一步提 高也有赖于新的分离技术。在21世纪,
分离技术必将日新月异,再创辉煌。
1.2 分离和膜分离
将自然界的混合物分开可以采取各种方法。 例如:
蒸馏 吸附方法 变压吸附方法 混合物之所以能被分离,是由于它们之间