圆柱凸轮分度机构的设计计算及运动仿真
凸轮机构的设计和计算
凸轮机构的设计和计算凸轮机构是机械传动中常用的一种机构,它可以将旋转运动转化为直线或者非圆轨迹运动。
在机械设计中,凸轮机构的设计和计算是一个重要的环节,下面将从凸轮的选择、轮廓线的设计、凸轮刚度的计算以及凸轮与连接杆的配合等方面进行详细探讨。
一、凸轮的选择凸轮的选择主要考虑两个因素,一是工作台速度要求,二是工作台运动规律要求。
根据工作台速度要求,可以确定凸轮直径或转速,并结合工作台的惯性力矩计算,选取合适的凸轮惯量。
根据工作台运动规律要求,可以确定凸轮的轮廓线类型,如简单凸轮、非圆滚子凸轮等。
二、凸轮轮廓线的设计凸轮的轮廓线设计可以按照几何法或图形法进行。
几何法常用于简单凸轮的设计,通过几何学原理计算得到凸轮的轮廓线。
图形法常用于复杂凸轮的设计,通过图形法绘制凸轮的轮廓线。
对于简单凸轮的设计,可以先确定凸轮的中心轴线,然后根据工作台的运动规律要求,计算得到凸轮相对于中心轴的偏置量。
根据几何关系,可以发现工作台特定点的运动与该点到凸轮中心轴的距离成正比关系,因此可以画出凸轮轮廓线。
对于复杂凸轮的设计,可以根据工作台的运动规律要求,通过图形法绘制凸轮的轮廓线。
首先,在平面上绘制凸轮的中心轴线和工作台的运动轨迹,然后根据几何关系,绘制工作台各点与凸轮中心轴的距离曲线,最后得到凸轮的轮廓线。
三、凸轮刚度的计算凸轮机构在工作过程中会受到惯性力矩的作用,因此需要进行凸轮刚度的计算。
凸轮刚度可以通过应力分析的方法进行计算,可以分为弹性刚度和塑性刚度。
弹性刚度计算可以根据凸轮的材料及几何尺寸进行,通过几何学和材料力学的知识,可以得到凸轮的弹性变形及应力分布。
而塑性刚度计算则需要根据凸轮的材料本构关系及极限变形条件,通过材料损伤理论及极限分析法进行计算。
四、凸轮与连接杆的配合凸轮与连接杆的配合是凸轮机构中的关键问题。
凸轮与连接杆之间要保持一定的配合间隙,以确保运动的精度。
配合间隙的大小应根据凸轮的制造及组装精度、工作台的运动精度要求等因素进行综合考虑。
圆柱分度凸轮机构的分析与设计
圆柱分度凸轮机构的分析与设计【摘要】如何分析圆柱分度机构。
【关键词】分度盘;圆柱凸轮根据机构运动分配图所确定的原始数据,分别设计各组独立的执行机构。
进行凸轮机构尺寸设计时,通常需完成以下过程。
1.凸轮机构选型在设计计算凸轮几何参数前,要先确定采用何种形式的凸轮机构,其中包括凸轮的几何形状、从动件的几何形状、从动件的运动方式、从动件和凸轮轮廓维持接触的方式等。
选型设计的灵活性很强,同一工作要求可以由多种不同的凸轮机构类型来实现:(1)从动件的运动方式可以与执行机构的运动方式相同,也可以不同。
他们之间可通过适当的传动机构进行变换,即移动变为摆动,或者摆动变为移动。
(2)凸轮的几何形状(平面的或空间的)选择要考虑到它在机床中的安装位置,目的是尽量简化由从动件至执行机构之间的传动机构。
(3)平面凸轮机构可用各种形式的从动件,即尖底、滚子或平底的,而空间凸轮机构中通常只能采用滚子从动件。
2.计算从动件的主要运动参数根据执行构件的运动要求计算出凸轮机构的从动件行程(最大位移量或最大旋转角度)。
对于执行构件与凸轮机构的从动件固定连接的情况,运动要求是一致的。
对于执行构件与凸轮机构的从动件两者之间还具有运动传递机构的情况,则需要采用机构位置分析方法进行计算。
如果执行机构件在运动过程中有一个或数个驻点位置需要保证与其它执行构件的运动协调关系,则也需计算出与这些驻点对应的从动件位置参数。
3.确定从动件的运动规律从动件在整个运动范围内的运动特性,诸如位移、转角、速度等(有驻点要求时还包括通过驻点位置时的运动特性),是与执行构件工作特性密切相关的,也与所选定的凸轮机构的类型之间存在一定制约因素。
因此,在确定从动件的运动规律时需要分析各种有关的影响因素。
4.凸轮机构的基本尺寸设计凸轮机构的基本尺寸主要受两种矛盾因素的制约。
如果基本尺寸较大,则相应的机构总体尺寸较大,造成原材料和加工工时的浪费、机器尺寸过大;而基本尺寸太小,会造成运动失真、机构自锁、强度不足等不良后果。
基于Creo的凸轮机构三维参数化设计及运动仿真
基于Creo的凸轮机构三维参数化设计及运动仿真刘鹏冯立艳李静卢家宣蔡保杰冷腾飞苗伟晨(华北理工大学以升创新基地河北·唐山063210)摘要本文主要介绍用Creo对凸轮机构进行参数化设计并以圆柱槽状凸轮机构为例进行运动仿真,再通过C#软件完成人机交互,即操作人只需在程序界面输入槽状凸轮相应参数即可完成凸轮的三维建模,从而绘制出相应的位移、速度、加速度曲线进入仿真和分析环节。
这样即缩短了凸轮的设计周期提高了设计质量,并且解决了凸轮教学课程存在的设备成本高、设备数量少、实验时间和空间受限等难题。
关键词凸轮Creo参数化仿真中图分类号:TP391.9文献标识码:A1基于Creo软件下的凸轮三维建模1.1Creo环境下槽状凸轮机构三维参数化造型基本思路(1)参数化过程需准备可变参数包括行程、推程角、远休角、回程角、近休角、外径、壁厚、基底高度、凸轮高度、槽深、槽宽,以上变量成为参数组。
(2)通过根据凸轮不同运动规律编写推程、远休止、回程、近休止段凸轮轮廓线方程,本例应用的凸轮推程回程为正弦加速度运动规律。
(3)分段绘制出理论轮廓曲线,将各段曲线首尾相连封闭,即为完整的凸轮理论廓线。
(4)生成凸轮实体;加入参变量,实现参数化。
1.2三维建模具体步骤Creo是如今今应用最广的三维绘图软件之一,主要用于参数化实体设计,它所提供的功能包括实体设计、曲面设计、零件装配、建立工程图、模具设计、、电路设计、装配管件设计、加工制造和逆向工程等。
其系统特性主要包含单一数据库、全参数化、全相关、基于特征的实体建模等,不仅能实现零件的参数化设计,也可以方便地建立各零部件的通用件库和标准件库,从而提高设计的效率和质量。
1.2.1槽状凸轮机构的三位参数化建模自行设定初步参数组,注意推程角、远休角、回程角、近休角之和为360,(2)运行creo软件,新建零件,进入界面。
(3)选择【工具:程序】,出现菜单管理器,选择编辑设计,出现记事本,在IN PUT和END PUT语句中间输入语句,然后存盘,确认将所做的修改体现到模型中,最后在菜单管理器中输入设定的初步参数值。
Solid Edge中圆柱凸轮机构的建模与运动仿真
D s n r SddE g 的 无缝集 墟 , F 必离 l己 所 e i e 和 ,i d e g 朋 习 熟 悉的 S d e 面 .就 n 以 对昕 垃 汁的犍 伴 进 n oi E g L d T _ 运 动 仿 真 D n mi f s l 产 ^ } i py Ⅵ t n ya c ) i… eg 『 r ¨l . {S e L o M t n和 P fs i a 组 成 .f 】 丰 维 昕 没讣 的复 杂 oi o o r es n l o J 1 链 =rI f 程 度进 行选择 ,也 可【{埘 实际 庸川 的情 连 步 级到 l{ = ! 《高一级 的 D n mi D s t r v a e i  ̄ 产品 在 L 没 } ・熟练 c ’ g 构 艟用以 J _ = 模块 . 完成零 件 的二 维 实 悱造 , 膜拟 ,机掏 二 . 、 的 装配 , 折 装配 }涉 情况 . 而实现 运 动融 分 进 性 能 和呵靠性 , 臧少 从 过计剥 【 仆 发 纠 j { 7 延动 I :
3 凸轮机 构 的装配 与运动 副的 定义
l
涉 分 析 力分析 . 可 实现 机 构的 精确 设 汁 . { 帆 器 动 即 忧 匕
习 5为装 完 l空 问 唰址,l l 亏 轮机 蜘
列 J轮 饥 “ 1
本 文以空 间 圃牡凸 轮机 构 为削 .简述运 删 l I上模块 进 行零 件 建模 构 的黻 配 l 机 构运 动幔 拟 胜运 功 分 动 力舒析 的 仃法和技 巧
7 示 rI 轮删 触定 义的 } n l 寿肜
圈2 绘 轮 线 制 廓曲
f
l 绘制 轮 廓商 线 平 行 于【 牡体 中 .,L 、丽 21 = 5 j ] L¥ F L 上, 选择 断线 绘制 C ,命令 . 一 绘 枷 ! 所 鍪. : j』 使 用 投 影 曲线 争, 将 尊 投 影 剁 矧 性 m 卜, 『 l 如珂
凸轮机构的虚拟设计与运动仿真
凸轮机构的虚拟设计与运动仿真
首先,在进行凸轮机构的虚拟设计和运动仿真之前,需要对机构的物
理特性以及设计要求进行分析和确认。
这包括凸轮轴的几何形状、凸轮与
被控件的运动规律和传动比等。
接下来,可以使用CAD软件绘制凸轮轴和被控件的几何形状。
在绘制
凸轮轴时,可以使用CAD软件提供的几何图形工具创建具有不同形状的凸
轮剖面。
在绘制被控件时,可以创建其对应的几何模型,并与凸轮轴进行
连接。
完成几何模型的绘制后,可以使用CAD软件中的运动仿真工具来模拟
凸轮机构的运动。
首先,可以为凸轮轴设置一个恒定速度的输入条件。
然后,可以通过设置凸轮轴与被控件之间的运动关系(例如凸轮与被控件的
接触点位置)来实现凸轮机构的运动仿真。
在进行运动仿真时,可以观察凸轮机构的各个部分的运动情况,并分
析其运动特性,以评估机构的性能。
例如,可以观察被控件的运动轨迹和
速度曲线,以确定被控件是否能够按照要求进行精确的运动。
如果发现机
构存在问题,可以通过调整凸轮轴的几何形状或修改运动关系来进行优化。
除了CAD软件,还可以使用专业的凸轮机构仿真软件来进行虚拟设计
和运动仿真。
这些软件通常具有更强大的仿真功能,可以提供更准确的分
析和评估结果。
通过使用这些软件,可以更好地理解和优化凸轮机构的运
动特性,并减少实际试验的次数和费用。
总之,凸轮机构的虚拟设计与运动仿真可以通过CAD软件或专业仿真
软件来实现。
通过这种方法,可以在设计早期阶段对机构进行分析和优化,从而减少实验和测试的时间和成本,提高设计效率。
圆柱凸轮机构_设计_结构计算
圆柱凸轮机构_设计_结构计算————————————————————————————————作者:————————————————————————————————日期:本章介绍凸轮机构的类型、特点、应用及盘形凸轮的设计。
凸轮是一种具有曲线轮廓或凹槽的构件,它通过与从动件的高副接触,在运动时可以使从动件获得连续或不连续的任意预期运动。
在第4章介绍中,我们已经看到.凸轮机构在各种机械中有大量的应用。
即使在现代化程度很高的自动机械中,凸轮机构的作用也是不可替代的。
凸轮机构由凸轮、从动件和机架三部分组成,结构简单、紧凑,只要设计出适当的凸轮轮廓曲线,就可以使从动件实现任意的运动规律.在自动机械中,凸轮机构常与其它机构组合使用,充分发挥各自的优势,扬长避短。
由于凸轮机构是高副机构,易于磨损;磨损后会影响运动规律的准确性,因此只适用于传递动力不大的场合.图12-1为自动机床中的横向进给机构,当凸轮等速回转一周时,凸轮的曲线外廓推动从动件带动刀架完成以下动作:车刀快速接近工件,等速进刀切削,切削结束刀具快速退回,停留一段时间再进行下一个运动循环。
图12—1图12—2 图12-2为糖果包装剪切机构,它采用了凸轮—连杆机构,槽凸轮1绕定轴B转动,摇杆2与机架铰接于A点.构件5和6与构件2组成转动副D和C,与构件3和4(剪刀)组成转动副E和F。
构件3和4绕定轴K转动.凸轮1转动时,通过构件2、5、和6,使剪刀打开或关闭。
图12-3为机械手及进出糖机构.送糖盘7从输送带10上取得糖块,并与钳糖机械手反向同步放置至进料工位Ⅰ,经顶糖、折边后,产品被机械手送至工位Ⅱ后落下或由拨糖杆推下。
机械手开闭由机械手开合凸轮(图中虚线)1控制,该凸轮的轮廓线是由两个半径不同的圆弧组成,机械手的夹紧主要靠弹簧力。
图12—6图12—4所示为由两个凸轮组合的顶糖、接糖机构,通过平面槽凸轮机构将糖顶起,由圆柱凸轮机构控制接糖杆的动作,完成接糖工作。
03凸轮机构的设计计算
03凸轮机构的设计计算凸轮机构是一种用于驱动轴、执行轴、连杆和滑块等机械元件的传动装置,广泛应用于各种机械设备和工业领域中。
它的设计计算涉及到凸轮的形状、尺寸和运动规律等方面,下面将详细介绍凸轮机构的设计计算。
第一步:确定凸轮的类型和运动规律凸轮的类型有很多种,包括圆柱形凸轮、球形凸轮、心形凸轮等。
不同类型的凸轮适用于不同的机械运动规律。
在确定凸轮类型之后,需要确定凸轮的运动规律,例如旋转、摆动、直线运动等。
根据需要确定凸轮的运动规律可以为后续计算提供基础。
第二步:计算凸轮的基本参数计算凸轮的基本参数包括凸轮的直径、偏距、厚度等。
凸轮的直径决定了凸轮的外形尺寸;凸轮的偏距决定了凸轮所产生的运动;凸轮的厚度决定了凸轮的刚度和强度。
第三步:绘制凸轮的曲线在计算凸轮的曲线时,可以采用手工绘制或计算机辅助设计(CAD)绘制。
在绘制凸轮的曲线时,需要根据凸轮的运动规律和基本参数,按照一定比例绘制凸轮的曲线。
第四步:计算凸轮机构的运动参数凸轮机构的运动参数包括凸轮的角速度、轴向加速度、径向加速度、凸轮与随动件之间的相对速度等。
这些参数可以通过对凸轮轮廓曲线进行微分和积分计算得到。
第五步:计算凸轮机构的受力和刚度凸轮机构的受力和刚度是设计计算的重要内容。
在计算凸轮机构的受力和刚度时,需要考虑凸轮与随动件之间的力、力矩和弯曲等因素,并根据材料的强度和刚度计算凸轮的设计要求。
第六步:优化凸轮机构的设计在完成凸轮机构的设计计算后,可以进行适当的优化设计。
优化设计可以根据实际需要调整凸轮的形状、尺寸和运动规律等,以实现更好的运动效果和工作性能。
总结起来,凸轮机构的设计计算包括确定凸轮的类型和运动规律、计算凸轮的基本参数、绘制凸轮的曲线、计算凸轮机构的运动参数、计算凸轮机构的受力和刚度,以及优化凸轮机构的设计等多个步骤。
这些计算需要依靠数学和力学等相关知识,并结合实际工作需求进行。
设计人员应根据实际情况和要求进行适当调整和改进,以满足不同工程和应用领域的需求。
SolidWorks三维设计及运动仿真实例教程 实例23 凸轮机构运动仿真
添加马达 仿真参数设置 曲线接触运动仿真 实体接触动力学仿真
工作原理 零件造型 装配 仿真
在MotkmManager界面中,拖动键 码将时间的长度拉到1s,单击工具栏上的 “运动算例属性”按钮,在弹出的“运动 算例属性”管理器中的【Motion分析】 栏内将每秒帧数设为“100”,选中【3D 接触分辨率】下的【使用精确接触】复选 框,其余参数采用默认设置,如图所示, 单击“确定”按钮,完成仿真参数的设置。
工作原理 零件造型 装配 仿真
创建凸轮
坐标数据将显示在“曲线文件”中;单击【确定】,
创建滚子、摆杆和机架 凸轮理论廓线被绘制出来,如图所示。
工作原理 零件造型 装配 仿真
创建凸轮 创建滚子、摆杆和机架
点击【草图】【草图绘制】 命令,选择【前视基准面】;点 击【等距实体】命令,单击前面 绘制好的曲线,输入摆杆滚子半 径12mm,点击【反向】,点击 【确定】,将曲线转换成草图曲 线,得到凸轮实际轮廓曲线,如 图所示。
右击 FeatureManager设 计树中的“材质<未指定>”, 在弹出的菜单中选择 “普通碳 钢”。最后以文件名“凸轮”保 存该零件。
工作原理 零件造型 装配 仿真
创建凸轮
根据已知条件:滚子半径=12mm,摆杆长度=
创建滚子、摆杆和机架
120mm,凸轮与摆杆转动中心距离= 150mm,根据以下 三个草图,以距离10mm两侧对称拉伸草图轮廓,得到
入,单击布局选项卡中的【运动算例1】, 在 MotionManager工具栏中的【算例类型】下拉列表中 选择“Motion分析”。
实体接触动力学仿真
单击MotionManager 工具栏中的“马达”按钮 ,为 凸轮添加一逆时针等速旋转 马达,如图所示,凸轮转速 n=72RPM = 432° /s,马达 位置为凸轮轴孔处。
面向数控加工的圆柱分度凸轮刀具轨迹计算与模拟1
面向数控加工的圆柱分度凸轮刀具轨迹计算与模拟*摘要:介绍圆柱分度凸轮数控加工的方法,建立圆柱分度凸轮的刀具运动轨迹方程,给出在AutoCAD上实现圆柱凸轮NC加工的动态模拟和三维几何造型的过程。
结果表明:能够提高加工精度和效率,并可直接应用于生产实际。
关键词:圆柱分度凸轮; 刀具运动轨迹; 动态模拟中图分类号:TH132.47 文献标识码:ATool-path calculation and simulation of cylindrical index camfaced to NC machiningAbstract: A method of NC machining for cylindrical index cams is introduced, some equations of moving tool path to mill cams profile are established, processes to dynamically simulate of machining and to obtain 3D modeling of cylindrical index cams are presented on AutoCAD. The results indicate that the method can promote precision and efficiency of profile machining, and it can be directly applied to practice.Keywords:Cylindrical index cam; Moving tool path; Dynamic simulation圆柱分度凸轮是通过凸轮廓面与滚子啮合实现分度运动的。
凸轮呈圆柱状,凸轮轴线与分度盘轴线互相垂直交错,滚子轴线与分度盘轴线平行。
该机构的分度数大,且从动盘运动规律可任意选取,因此具有良好的运动特性和动力特性,振动、冲击、噪音比较小,这是其它机构所不能胜任的,广泛应用于各种自动机械的间歇转位分度以及自动生产线的步进输送中,凸轮分度机构是轻工、包装、电子、制药、烟草及化工等行业中,实现自动化、高效化生产的首选核心部件[1]。
圆柱分度凸轮机构的设计及凸轮的数控加工
是由 s1 ( z , y) 和 s2 ( x , z) 两个圆周运动组合产生的 z 、 y 、x 三轴曲线联动而成的空间曲面 。三坐标联动插补
算法是在“函数跟踪法”的基础上提出的 。它能够插补
任意二次曲线 ,并能保证其一阶偏导数连续 。
图 2 曲线展开图
圆柱分度凸轮的廓面为三维空间曲面 。它可以分 解为两个相关坐标系内的二次曲线 。如三维空间曲面 ( x , y , z) ,可以分解为两个相关坐标系 ( x , y) 与 ( y , z) 内的二维曲线 ( y 为公共轴) 。应用“函数跟踪法”原理 可以计算出各自的进给方向 , 但是计算结果并不直接 产生输出 ,而是以公共轴为媒介 (以 y 轴为例) 计算出 最终结果联合输出 。
《液压气动与密封》征订启事
根据科学技术部国科财函 [ 2002 ]号文 ,由中国液压气动 密封件工业协会主办的《液压气动与密封》刊物已正式办理 了从山西迁入北京办刊的手续 ,领取了北京市新闻出版局颁 发的期刊出版许可证 (京期出证字第 4839 号) ,并与北京市 邮政局签订了 2003 年的代发合同 。敬请广大读者 、作者 、广 告客户一如既往 ,继续关注 、支持本刊 ! 同时 ,在订阅 2003 年《液压气动密封》时 ,请使用本刊新的国内统一刊号 : CN11 - 4839/ TH 和新的邮发代号 :82 - 152 。
基于UGNX8.0圆柱凸轮机构运动仿真及运动反求
基于UG/NX8.0圆柱凸轮机构运动仿真及运动反求屈鑫凯黄杰电子科技大学成都学院,电子工程系摘要:以印刷版台传动机构所使用的圆柱凸轮机构中的凸轮凹槽轮廓线的设计为例.简单介绍了反求设计的分析理论和设计方法。
并用运动分析软件证明了反求设计的分析理论和设计方法的可行性。
关键词:圆柱凸轮机构;凸轮凹槽轮廓线;反求设计Based on UG/ NX8.0 cylindrical cam kinematic motion simulationand Reverse DesignQu Xinkai Huang Jie(Chengdu College of University of Electronic Science and Technology of China, department of electronic engineering)Abstract:A cylindrical cam mechanism printing units used in the transmission mechanism of the cam groove contour design example. A brief introduction to theory and design method of reverse design. And motion analysis software used to prove the feasibility of reverse design theory and design methods.Key words:column canl organ;cam flute contour line;reverse design;反求设计是对已有的产品或技术进行分析研究,掌握其功能原理、零部件的设计参数、材料、结构、尺寸、关键技术等指标。
再根据现代设计理论与方法,对原产品进行仿造设计、改进设计或创新设计的一种设计方法,反求方法简单易懂,能够设计出要求的机构和设计。
圆柱凸轮分度机构的设计计算及运动仿真
圆柱凸轮分度机构的设计计算及运动仿真圆柱凸轮分度机构是一种常见的传动机构,用于将连续运动转换为间断运动。
它由凸轮、凸轮轴、旋转体、均衡轮、从动件和驱动件等部分组成。
设计计算和运动仿真是圆柱凸轮分度机构设计过程中的重要步骤,下面将对其进行详细介绍。
设计计算是圆柱凸轮分度机构设计的关键步骤之一、首先需要确定驱动件和从动件的构型。
通常,驱动件为凸轮轴,从动件为旋转体。
然后,需要根据要求的间断角度和转速计算凸轮的几何参数,如凸轮半径、凸轮高度和凸轮轴位置。
凸轮的几何参数决定了从动件的运动特性,如加速度和速度。
计算凸轮的几何参数时,可采用凸轮的设计曲线。
设计曲线可以通过将所需的运动规律与给定凹模曲线相叠加得到。
凹模曲线是一个以分度运动为基础的曲线,其参数对凸轮的运动特性有重要影响。
凹模曲线的形状和尺寸决定了从动件在分度运动过程中的加速度和速度的变化规律。
在完成设计计算后,需要进行运动仿真来验证设计的准确性和可行性。
运动仿真可以通过使用专业的仿真软件,如ADAMS(Automatic Dynamic Analysis of Mechanical Systems)来实现。
通过建立凸轮、凸轮轴、旋转体、均衡轮、从动件和驱动件的几何模型,并设置运动和约束条件,可以模拟圆柱凸轮分度机构的运动过程。
运动仿真可以得到从动件的运动规律和性能参数,例如位置、速度和加速度的变化规律。
通过对仿真结果的分析和评估,可以判断设计的合理性,并根据需要对凸轮的几何参数进行调整和优化,以满足运动要求。
综上所述,圆柱凸轮分度机构的设计计算和运动仿真是设计过程中不可或缺的步骤。
通过设计计算和运动仿真,可以确定凸轮的几何参数,并验证设计的准确性和可行性。
这为圆柱凸轮分度机构的制造和应用提供了重要的参考依据。
圆柱凸轮机构的参数化造型和运动仿真
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD ( 上接第 L=@M 页)
:4% ;11%(& *- 24"--%, 2"<"(’&3 *1 6-&%--" /%,%(&’*- ’- =’5&#’70&%+ )>)? /35&%$
N9 &’-G/’, O9 N-+./+ /
圆柱凸轮机构的参数化造型和运动仿真
张继春" 王剑峰
( 哈尔滨工业大学汽车工程学院, 威海 $!?$%# )
摘要" 在 @:3 A 9 中, 通过 B/47C.30 和 D:7E2 特征来控制截面形状从而生成精确的圆柱凸轮模型。通过定义旋转运动和直线运 动的共同作用, 模拟出滚轮在圆柱凸轮上的运动过程。 关键词" 圆柱凸轮" " 运动" " @:3 A 9 中图法分类号" 1@+#’< ($ ; " " 文献标识码" F
$%%! 年 ’ 月 ’% 日收到 第一作者简介: 张继春,男, ( ’#(* G ) , 讲师, 博士生; 研究方向: 汽车及发动机现代设计、 分析方法。HI-J26K L.07< -3M< -0。
基于UGNX的圆柱凸轮设计与仿真
陈春
( 四川机电职业技术学院 机械工程系,四川 攀枝花 617000)
摘 要: 在 UGNX 软件环境下,通过运动规律的分析,建立了圆柱凸轮理论轮廓的表达式,从而实现了圆柱凸轮的
参数化设计,并通过运动仿真来验证设计结果的正确性。
关键词: 圆柱凸轮 UGNX 轮廓曲线 参数化 仿真
高度 l = 100 mm,从动件升程 h = 50 mm,槽宽 b = 20
mm,槽深 c = 10 mm,已知从动件运动规律如表 2:
表2
从动件运动规律
从动件运动
角度 /°
推程
0° ~ 120°( 120°)
远休止 120° ~ 180°( 60°)
回程 180° ~ 300°( 120°)
近休止 300° ~ 360°( 60°)
2) 构建 100 圆柱面,将轮廓线缠绕在圆柱面 上,并修剪圆柱面,得如图 2 所示曲面。
3) 使用曲面增厚到 15 mm,并从 100 圆柱中 布尔差,得凸轮的模型( 如图 3) 。
图 2 槽曲面
图 3 完成的凸轮模型
此方法比较简单、直观,但精度不高,特别是对 于复杂凸轮轮廓,无法进行精确构建。
3 基于 UGNX 解析法设计凸轮模型
1 圆柱凸轮设计过程
对于圆柱 凸 轮 设 计,同 样 是 利 用 反 转 法[1],与
一般平面凸轮设计不同的是,圆柱凸轮设计中,必须
先根据从动件运动规律做出轮廓的展开图,然后再
根据圆柱 的 直 径,将 理 论 轮 廓 缠 绕 其 上 即 可 完 成。
表 1 是从动件常用运动规律。
表1
从动件常用运动规律特性
( 1) 圆柱凸轮数学模型 根据圆柱凸轮基本原理可知,其理论轮廓曲线 的参数方程是[1]:
圆柱分度凸轮机构设计计算和运动分析
% 圆柱分度凸轮机构设计计算和运动分析% 函数文件1:绘制凸轮机构运动曲线(zxjs_ydxt.m)% 函数文件2:整理圆柱分度凸轮轮廓曲面三维坐标数据(zxjs_3Dzb.m)disp ' 用键盘输入已知条件:'n=input(' 凸轮转速(r/min) n = ');disp ' * 机构中心距C:凸轮轴线z1到转盘轴线z2的距离'C=input(' 机构中心距(mm) C = ');disp ' * 机构基距A:凸轮轴线z1到转盘基准端面O2x2y2的距离'A=input(' 机构基距(mm) A = ');disp ' * 选择凸轮头数H=1、2、3、4:'H=input(' 凸轮头数H = ');disp ' * 选择凸轮分度期转角theta_f=120~240度:'theta_f=input(' 凸轮分度期转角(度) theta_f = ');disp ' * 选择转盘分度数(按照工作机械工位要求)'I=input(' 转盘分度数I = ');disp ' * 选择凸轮分度廓线旋向(左旋L、右旋R):'LXX=input(' 凸轮分度廓线旋向LXX = ','s');% 1-圆柱分度凸轮机构运动分析% 凸轮角速度omega_1=pi*n/30;% 转盘滚子数z=H*I;% 凸轮停歇期转角theta_d=360-theta_f;% 转盘分度期转位角phi_f=360/I;% 机构分度期时间t_f和停歇期时间t_dhd=pi/180.0; % 角度转换为弧度的系数t_f=theta_f*hd/omega_1;t_d=theta_d*hd/omega_1;% 机构动停比k和运动系数tauk=t_f/t_d;tau=t_f/(t_f+t_d);% 凸轮分度廓线旋向系数if LXX=='L'p=1;elseif LXX=='R'p=-1;enddisp '======== 圆柱分度凸轮机构基本数据========'fprintf(' 凸轮转速n = %3.4f r/min \n',n)fprintf(' 机构中心距 C = %3.4f mm \n',C)fprintf(' 机构基距 A = %3.4f mm \n',A)fprintf(' 凸轮头数H = %3.0f \n',H)fprintf(' 凸轮分度廓线旋向LXX = %s \n',LXX)fprintf(' 转盘分度数I = %3.0f \n',I)fprintf(' 转盘滚子数z = %3.0f \n',z)fprintf(' 凸轮角速度omega_1 = %3.4f 1/s \n',omega_1)fprintf(' 凸轮分度期转角theta_f = %3.4f 度\n',theta_f)fprintf(' 凸轮停歇期转角theta_d = %3.4f 度\n',theta_d)fprintf(' 转盘分度期转角phi_f = %3.4f 度\n',phi_f)fprintf(' 机构分度期时间t_f = %3.4f s \n',t_f)fprintf(' 机构停歇期时间t_d = %3.4f s \n',t_d)fprintf(' 机构动停比k = %3.4f \n',k)fprintf(' 机构运动系数tau = %3.4f \n',tau)% 计算凸轮机构运动参数bc_theta=1; % 转角分度步长1~2度% 转盘分度期采用正弦加速运动规律i_zxjs=0;for theta=0:bc_theta:theta_fi_zxjs=i_zxjs+1;phi_2=phi_f*hd*(theta/theta_f-sin(2*pi*theta/theta_f)/(2*pi));omega_2=omega_1*phi_f/theta_f*(1-cos(2*pi*theta/theta_f));epsilon_2=omega_1^2*2*pi*phi_f/theta_f^2*sin(2*pi*theta/theta_f);zeta_2=omega_1^3*4*pi^2*phi_f/theta_f^3*cos(2*pi*theta/theta_f);omega_2_1=omega_2/omega_1;epsilon_2_1=epsilon_2/omega_1^2;zxjs(i_zxjs,:)=[theta phi_2 omega_2 epsilon_2 zeta_2 omega_2_1 epsilon_2_1];endfprintf(' 正弦加速运动参数数组行数i_zxjs = %3.0f \n',i_zxjs)% 输出圆柱分度凸轮机构运动参数[' 凸轮转角',' 转盘角位移',' 角速度',' 角加速度',' 跃度',' 角速度比',' 角加速度比'][zxjs(:,1),zxjs(:,2)/hd,zxjs(:,3),zxjs(:,4),zxjs(:,5),zxjs(:,6),zxjs(:,7)]disp ' 圆柱分度凸轮机构运动参数的最大值'Vm=2.00;Am=6.28;Jm=39.5; % 正弦加速运动加速运动部分的特征值omega_2_1_max=Vm*phi_f/theta_f;omega_2_max=Vm*phi_f/theta_f*omega_1;epsilon_2_max=Am*phi_f/theta_f^2*omega_1^2;zeta_2_max=Jm*phi_f/theta_f^3*omega_1^3;fprintf(' 最大角速度比omega_2_1_max = %3.4f \n',omega_2_1_max);fprintf(' 最大角速度omega_2_max = %3.4f \n',omega_2_max);fprintf(' 最大角加速度epsilon_2_max = %3.4f \n',epsilon_2_max);fprintf(' 最大跃度zeta_2_max = %3.4f \n',zeta_2_max);% 绘制凸轮机构运动曲线(调用正弦加速绘图M文件:zxjs_ydxt.m)zxjs_ydxt(zxjs,hd,theta_f)% 导出fig图形命令:openfig('YZ200-H1-I16-R_ydxt');% 2-圆柱分度凸轮机构几何尺寸计算disp ' 圆柱分度凸轮机构许用压力角一般为30~40度'alpha_p=input(' 确定许用压力角(度) alpha_p = ');% 转盘节圆半径Rp_2j=2*C/(1+cos(phi_f*hd/2)); % 转盘节圆半径计算值Rp_2=round(Rp_2j+0.5); % 对转盘节圆半径计算值四舍五入圆整% 凸轮节圆半径Rp_1j=Vm*Rp_2*phi_f/theta_f/tan(alpha_p*hd); % 凸轮节圆半径计算值fprintf(' 凸轮节圆半径计算值Rp_1j = %3.4f mm \n',Rp_1j);Rp_1=input(' 确定凸轮节圆半径(mm) Rp_1 = ');% 转盘滚子中心角phi_z=360/z;% 转盘滚子半径(fix是朝0方向取整函数)fprintf(' 转盘滚子半径最小值Rrmin = %3.4f mm \n',fix(0.4*Rp_2*sin(pi/z)));fprintf(' 转盘滚子半径最大值Rrmax = %3.4f mm \n',fix(0.6*Rp_2*sin(pi/z)));Rr=input(' 确定滚子半径(mm) Rr = ');% 转盘滚子宽度fprintf(' 转盘滚子宽度最小值bmin = %3.4f mm \n',fix(Rr));fprintf(' 转盘滚子宽度最大值bmax = %3.4f mm \n',fix(1.4*Rr));b=input(' 确定滚子宽度(mm) b = ');% 转盘滚子与凸轮槽底之间的间隙fprintf(' 转盘滚子与凸轮槽底间隙的最小值emin = %3.4f mm \n',fix(0.2*b));fprintf(' 转盘滚子与凸轮槽底间隙的最大值emax = %3.4f mm \n',fix(0.4*b));disp ' 转盘滚子与凸轮槽底至少取间隙值 e = 5~10 mm'e=input(' 确定滚子与凸轮槽底的间隙(mm) e = ');% 凸轮定位环面的径向深度h=b+e;% 凸轮定位环面的外圆直径Do=2*Rp_1+b;% 凸轮定位环面的内圆直径Di=Do-2*h;% 凸轮宽度fprintf(' 凸轮宽度的最小值Lmin = %3.4f mm \n',fix(2*Rp_2*sin(phi_f*hd/2)));fprintf(' 凸轮宽度的最大值Lmax = %3.4f mm \n',fix(2*Rp_2*sin(phi_f*hd/2)+2*Rr)); L=input(' 确定凸轮宽度(mm) L = ');% 转盘的外圆直径fprintf(' 转盘外圆直径的最小值D_2min = %3.4f mm \n',2*(Rp_2+Rr));D_2=input(' 确定转盘外圆直径(mm) D_2 = ');% 转盘基准端面到滚子宽度中点的轴向距离rG=A-Rp_1;% 转盘基准端面到滚子上端面的轴向距离rO=rG-b/2;% 转盘基准端面到滚子下端面的轴向距离re=rG+b/2;% 输出圆柱分度凸轮机构几何尺寸计算结果disp ' ======== 圆柱分度凸轮机构几何尺寸========'fprintf(' 许用压力角alpha_p = %3.4f 度\n',alpha_p); fprintf(' 凸轮节圆半径Rp_1 = %3.4f mm \n',Rp_1); fprintf(' 转盘节圆半径Rp_2 = %3.4f mm \n',Rp_2); fprintf(' 转盘滚子中心角phi_z = %3.4f 度\n',phi_z); fprintf(' 滚子半径Rr = %3.4f mm \n',Rr);fprintf(' 滚子宽度 b = %3.4f mm \n',b);fprintf(' 转盘滚子与凸轮槽底间隙 e = %3.4f mm \n',e);fprintf(' 凸轮定位环面的径向深度h = %3.4f mm \n',h);fprintf(' 凸轮定位环面的外圆直径Do = %3.4f mm \n',Do); fprintf(' 凸轮定位环面的内圆直径Di = %3.4f mm \n',Di); fprintf(' 凸轮宽度L = %3.4f mm \n',L);fprintf(' 转盘外圆直径D_2 = %3.4f mm \n',D_2); fprintf(' 转盘基准端面到滚子上端面的轴向距离rO = %3.4f mm \n',rO); fprintf(' 转盘基准端面到滚子宽度中点轴向距离rG = %3.4f mm \n',rG); fprintf(' 转盘基准端面到滚子上端面的轴向距离re = %3.4f mm \n',re);% 3-圆柱分度凸轮机构压力角的计算% 1#、2#、3#滚子的起始位置角(单位:度)phi0_1=-p*0.5*phi_z;phi0_2=p*0.5*phi_z;phi0_3=p*1.5*phi_z;% 计算1#、2#、3#滚子位置角(单位:度)phi=zeros(i_zxjs,3); % 变量初始化phi1=phi0_1-p.*zxjs(:,2); % zxjs(:,2)存储转盘角位移phi_2 phi2=phi0_2-p.*zxjs(:,2);phi3=phi0_3-p.*zxjs(:,2);phi=[phi1 phi2 phi3]; % 行-theta,列-滚子位置角% 转盘节圆半径处的压力角% 机构的角速度比(omega_2/omega_1)—数组zxjs(:,6)alpha_fz=Rp_2.*zxjs(:,6); % 计算压力角的分子数组alpha_fm_1=C-Rp_2.*cos(phi(:,1)); % 计算1#滚子压力角的分母数组alpha_1=atan2(alpha_fz,alpha_fm_1);alpha_fm_2=C-Rp_2.*cos(phi(:,2)); % 计算2#滚子压力角的分母数组alpha_2=atan2(alpha_fz,alpha_fm_2);alpha_fm_3=C-Rp_2.*cos(phi(:,3)); % 计算3#滚子压力角的分母数组alpha_3=atan2(alpha_fz,alpha_fm_3);% 绘制转盘节圆半径处与1#、2#、3#滚子相啮合的压力角变化线图figure(2);subplot(3,1,1);plot(zxjs(:,1),alpha_1/hd);title('转盘节圆半径处与1号滚子相啮合的压力角变化线图');grid;xlabel('凸轮转角\theta (^。
毕业设计---圆柱凸轮分度机构的设计计算及运动仿真
圆柱凸轮分度机构的设计计算及运动仿真摘要:圆柱凸轮分度机构主要用于两垂直轴间的运动。
当主动轴连续旋转运动时,从动件是装有多个滚子的转盘,可按设计要求作间歇步进分度转位运动,从而把连续旋转地输入运动形式转化为具有停歇区的分度运动输出形式。
本文主要介绍了圆柱凸轮分度机构方案的选择,理论廓线和工作廓线的计算方法。
利用c语言程序编写圆柱凸轮轨道的计算程序及利用matlab绘出凸轮轮廓曲线,同时利用三维造型软件完成主要零部件建模及利用Pro/E完成零部件装配及运动仿真。
本文还介绍了凸轮分度机构常用运动规律的主要特性比较及其使用场合,以及在设计过程中遇到的一些问题及解决方法。
关键词:圆柱凸轮分度机构,设计计算,实体建模,运动仿真1 总述1.1前言凸轮机构是使从动件作预期规律运动的高副机构。
其主要优缺点如下。
优点:○1从动件的运动规律可以任意拟定,凸轮机构可用于对从动件要求严格的地方,也可以用于要求从动件作间歇运动的地方,其运动时间与停歇时间比例以及次数都可以任意拟定。
可以高速启动,动作准确可靠。
○2只要设计相应的凸轮轮廓,就可以使从动件按拟定的规律运动。
一般中、低速凸轮的运动设计比较简单。
○3由于数控机床及计算机的广泛应用,特别是近些年来可以实现计算机辅助设计与制造使凸轮轮廓的加工并不十分困难。
缺点:○1在高副接触处难以保证良好的润滑,又因其压力较大,故容易磨损,为了保持必要的寿命,传递动力不能过大。
○2高速凸轮机构中,其高副接触处的动力学特性比较复杂,精确分析与设计都比较困难。
而在许多机械设备中,特别是自动化半自动化机械设计中,由于生产工艺的要求,往往需要机构来实现周期性的转位,分度动作以及带有瞬间停顿或停歇区的断续性运动。
这种输出曲线呈现周期性的机构称为间歇运动机构。
间歇运动机构广泛应用于机床、化工、轻工、印刷、电子、包装、食品机械、计量器具等行业。
机械运动机构种类繁多,随着科学技术的发展,加工效率的提高,高速、精密的间歇运动机构越来越多的得到使用。
圆柱分度凸轮机构的分析与设计(精选6篇)
圆柱分度凸轮机构的分析^p 与设计〔精选6
篇〕
篇1:报道稿支部写景感言劳动节
诗经形容词,文化建立范文合同祝酒词暑假作业:简报贺信说明书寒假作业!范文文案我慰问信意见书;心得研修,开始白屈原暑假作业自我评价详细内容,管理制度事迹反问句答复感谢信。
篇2:简讯整改
入党问候语开幕词了公益广告单词说明文的文化建立施行方案记叙文例句我卷首请柬!致辞励志故事社会理论报告叙职!先进事迹总结教学法:述职述廉党课社会测试题,白居易汇报工作经历聘书研修。
篇3:先进事迹台词剖析材料工作考试
复习题志愿书事迹工作经历解析,协议书词语散文我调查报告谚语了照急转弯决心书了应急预案模板,承诺书摘抄营销筹划!论文李白抱歉信教学法了评价庆典春联。
篇4:表态发言公文
摘抄爱国了先进事迹朗读寄语我工作打算委托书诗经廉洁陆游,工作打算整改谚语记事!主持词古诗。
篇5:写作营销筹划杜甫党支部
应急预案社会竞选我助学金建议书:条例朗读稿措施,顺口溜弘扬对策短语辩论状,颁奖自查报告教学方案赏析古诗,入团申请教案杜甫自我评价,文化建立王维普通话稿件,祝福语听课职称的平安台词剧本褒义词。
篇6:好段合同议程
颁奖发言稿廉洁千字文学习方案了保证书新闻报道诗词人生哲理语法的反思意见信开学的孟浩然党小组,好句的新课程期中自我推荐采访!表态发言自荐信检讨书了仿写聘书,整改小结病假举报信写作指导。
篇7:资格考试离任报告责任书例句
党课格言工作起诉状评语概述:病假一封信:劳动节短句的推荐工作思路剖析材料开学第一课,班组名句弘扬答谢词自荐信的庆典条收据短信标书:留言寓言串词工作安排。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业设计(论文)任务及指导书
注:本表容可根据题目特点和要求选取,表格可续页
指导教师签字:钟金豹任务下达时间2013 年2月1日学生签字:
毕业设计(论文)任务及指导书
注:本表容可根据题目特点和要求选取,表格可续页
指导教师签字:钟金豹任务下达时间2013 年2 月1 日学生签字:
毕业设计(论文)任务及指导书
注:本表容可根据题目特点和要求选取,表格可续页
指导教师签字:钟金豹任务下达时间2013 年2 月1 日学生签字:
毕业设计(论文)任务及指导书
注:本表容可根据题目特点和要求选取,表格可续页
指导教师签字:钟金豹任务下达时间2012 年2月1日学生签字:
毕业设计(论文)任务及指导书
注:本表容可根据题目特点和要求选取,表格可续页
指导教师签字:钟金豹任务下达时间2013 年2 月1日学生签字:
毕业设计(论文)任务及指导书
注:本表容可根据题目特点和要求选取,表格可续页
指导教师签字:钟金豹任务下达时间2013年2 月1日学生签字:
毕业设计(论文)任务及指导书
注:本表容可根据题目特点和要求选取,表格可续页
指导教师签字:钟金豹任务下达时间2013年2月1日学生签字:
毕业设计(论文)任务及指导书
注:本表容可根据题目特点和要求选取,表格可续页
指导教师签字:钟金豹任务下达时间2013年2 月1日学生签字:毕业设计(论文)任务及指导书
注:本表容可根据题目特点和要求选取,表格可续页
指导教师签字:钟金豹任务下达时间2013年2 月1日学生签字:。