高斯光束的基本性质及特征参数r

合集下载

高斯光束的基本性质及特征参数r讲解

高斯光束的基本性质及特征参数r讲解

1/ e
2
2 ( z ) lim z 0 z
高斯光束的发散度由束腰半径ω 0决定。
综上所述,基模高斯光束在其传播轴线附近, 可以看作是一种非均匀的球面波,其等相位面是曲 率中心不断变化的球面,振幅和强度在模截面内保 持高斯分布。
photomultiplier
photodiode

z
2
z 0 1 f
f2 R( z ) z z
高斯光束的共焦参数
2 0 f Z0
与传播轴线相 交于Z点的高斯光束 等相位面的曲率半 径
高斯光束的基本特征: (1)基模高斯光束在横截面内的光电场振幅分 布按照高斯函数的规律从中心(即传播轴线)向外 平滑地下降,如图1-6所示。由中心振幅值下降到 1/e点所对应的宽度,定义为光斑半径。
Avalanche photodiode
R(z)随Z变化规律为:
2 2 f f R z z 1 2 z z z
结论: a)当Z=0时,R(z)→∞,表明束腰所在处的等 相位面为平面。 b) 当Z→±∞时,│R(z)│≈z→∞表明离束腰无 限远处的等相位面亦为平面,且曲率中心就在束腰 处; c)当z=±f时,│R(z)│=2f,达到极小值 。
决定了基模高斯光束的空间相移特性。 其 中 , kz 描 述 了 高 斯 光 束 的 几 何 相 移 ; arctan(z/f)描述了高斯光束在空间行进距离z处, 相对于几何相移的附加相移;因子kr2/(2R(z))则表 示与横向坐标 r 有关的相移,它表明高斯光束的等 相位面是以R(z)为半径的球面。
高斯光束的基本性质及特征参数
基模高斯光束
高斯光束在自由空间的传播规律

第8章高斯光束

第8章高斯光束

F2
w
2 0
1
f F1
2
F2 f
1
f F1
2
F2 F1
1
F1 f
2
F2 F1
② l>>F1
w0
(l
F F)2
f
2
w0
l l(l F) f 2 F (l F)2 f 2
例1 某高斯光束波长为=3.14m,腰斑半径为 w0=1mm,求腰右方距离腰50cm处的(1)q参数 (2)光斑半径w与等相位面曲率半径R
解 (1)
w0
f
z=0.5m
f
w
2 0
3.14 106 3.14 106
1m
q=0.5+i(m)
(2)
w(z) w0
1 z2 f2
w0
1 0.52 12
2 2
RR
F
2
结论 只有 F 1 R(l) ,才有聚焦作用
2
3、高斯光束的聚焦方法
(1) 使用小焦距透镜(F<f)
(2)将透镜置于腰处(l=0)或距腰足够远处(l>>f)
例1 波长为3.14m的高斯光束,腰半径1mm,使用焦
距F=0.1m的透镜对它进行聚焦,分别将腰置于透镜
处、距离透镜2m处,求聚焦后的腰半径及其位置.

q=2+i
q Fq 2 i (2 i)( 1 i) 2 i 2i 1 3 i
F q 1 2 i (1 i)( 1 i)
11
2
1.5 0.5i
l =1.5m f =0.5m
§3 高斯光束的聚焦与准直 一、透镜对高斯光束的变换公式
(已知l、f、F,求l 、f )

10第二章-5 高斯光束的基本性质及特征参数

10第二章-5 高斯光束的基本性质及特征参数
§2.9 高斯光束的基本性质及特征参数 • 一、沿z轴方向传播的基模高斯光束的表示
c r2 r2 z 00 ( x, y, z ) exp[ 2 ] exp{ i[k ( z ) arctg ]} ( z) ( z) 2R f
其中,c为常数,r2=x2+y2,k=2/,
0
§2.11 高斯光束的聚焦和准直
一、高斯光束的聚焦
•目的:单透镜对高斯光束的聚焦,使0<0 F一定时, 0随l变化的情况
l<F,
0随l的减小而减小;当l=0时, 0达到最小值,
1
2 0 1 F 2
0 k 0

1 f 1 F
§2.10 高斯光束q参数的变换规律
• 普通球面波的传播规律 • 高斯光束q参数的变换规律
• 用q参数分析高斯光束的传输问题
一、普通球面波的传播规律
• 研究对象:沿z轴方向传播的普通球面波,曲率中心为O(z=0)。 • 在自由空间的传播规律R2=R1+(z2-z1)=R1+L • 傍轴球面波通过焦距为F的薄透镜时,其波前曲率半径满足 (应用牛顿公式) 1 1 1 R2 R1 F AR B
f ,0
2 0
f

0为基模高斯光束的腰斑 半径,f 称为高斯光束的共 焦参数
R(z):与传播轴线相交于z点的高斯光束等相位 面的曲率半径
z 2 ( z) 0 1 ( ) f
f 2 z f f R R( z ) z[1 ( ) ] f ( ) z z f z z
1 1 1 3.14 10 i 2 i 2i 3 2 q R 0.5 3.14 (10 ) 1 2i 2i q 0.4 0.2i(m) 2 i 4 1 5

10第二章 5高斯光束的基本性质及特征参数

10第二章 5高斯光束的基本性质及特征参数

例1 某高斯光束波长为?=3.14? m,腰斑半径为
w0=1mm, 求腰右方距离腰50cm处的 斑半径w 与等相位面曲率半径R

f
?
??
2 0
?
?
3.14 3.14
? 10 ?6 ? 10 ?6
?
1m
? (z) ? ? 0
1?
z2 f2
?
w0
1?
0.52 12
? 1.12mm
R(z) ? z ? f 2 ? 0.5 ? 12 ? 2.5m
?
i[
k
(
z
?
r2 )? 2R( z)
arctg
z ]} f
重新整理 r
?
00 ( x,
y,
z)
?
?
c ( z)
exp{
? ik
r2 2
[
1 R( z)
?
i
??
?
2
(
z)
]}
exp[
?
i
(
kz
?
arctg
z )] f
引入一个新的参数 q(z), 定义为
1 q(z)
?
1 R( z)
?
i
??
?
2
(
z)
? 参数q将? (z)和R(z)统一在一个表达式中,知
R ? R(z) ? z[1? ( f )2 ] ? f ( z ? f ) ? z ? f 2
z
fz
z
R(z):与传播轴线相交于z点的高斯光束等相位
面的曲率半径
? (z) ? ?0
1? ( z)2 f
? (z):与传播轴线相交于z点的高斯光束等相位

第4章 高斯光束

第4章 高斯光束

等相位面为球面; 曲率中心和曲率半径随传播过程而改变; 振幅和强度在横截面内为高斯分布。
幅度非均匀的变曲率中心的球面波。
4.1.3 高斯光束的特征参数
(z) 0
z 2
1
f
R(z)
z
1
f z
2
0
f
f
2 0
(共焦参量)
1. 腰斑 0(或共焦参量 f )与腰位置 z
(z)
0,z
A处:qA q0 l
B处:1 qB 1 qA 1 F C处:qC qB lC
)
0
可将基模高斯光束看作具有复数波面曲率半径的球面波光束
11
i
q(z) R(z) 2(z)
光腰处:
1
1
R(z)
Re
q(
z)
1
2 (z)
Im
1
q(
z
)
11
1
i
q0 q(0) R(0) 2 (0)
q0
i
2 0
if
§4.2 高斯光束的传输与变换规律
1. 普通球面波的传输与变换规律
x2
y2 )]
R
2R
3. 高斯光束 激光束既不是均匀的平面光波,也不是均匀的球面光波,
而是一种比较特殊的高斯球面波。
E( x,
y, z)
A0 exp[
(z)
(x2
2
(z
y2 )
)
]
e
xp
ik[
x2 y2 2R(z)
z]
i
(z)
振幅因子
相位因子
0 ——基模高斯光束的腰斑半径(束腰)
( z ) ——高斯光束在z处的光斑半径

高斯光束

高斯光束

ω(z)为z 点处的光斑半径,它是距离z 的函数,即
槡 ( ) ω(z)=ω0
1+
λz πω20

(45)
·83·
ω0 是z=0处的ω(z)值,即高斯光束的“束腰”半径。
式(44)中 R(z)是在z 点处波阵面的曲率半径,它也是z 的函数,即
[ ( )] R(z)=z 1+
πω20 λz

φ(z)是与z 有关的位相因子,且
当z 趋向无穷大时(z→∞),高斯光束的发散角 即 为 双 曲 线 两 条 渐 近 线 之 间 的 夹 角,将 其
定义为高斯激光束的远场发散角,通常用θ0 来表示,即
θ0=lzi→m∞2ωz(z)=π2ωλ0
(411)
如图45所示。
图44 高斯光束等相位面的分布示意图
图45 高斯光束的发散角
理论计算表明,基模高斯光束的发散角具有毫弧度的数量级,因此其方向性相当好。由于
高阶模的发散角是随模阶次而增大,所以多模振荡时,光束的方向性要比单基模振荡差。
4 瑞利长度 若在z=zR 处,高斯光束光斑面积为束腰处最小光斑面积的两倍,则从束腰处算起的这个 长度zR 称为瑞利长度,如图46所示。
在瑞利长度zR 位置处,其光斑半径ω(zR)为腰斑半径ω0 的槡2倍,即
1 q(z)
因此,q参数也可以用来表征高斯光束。
将式(44)改写为如下形式
(415)
{ [ ( )] } E(x,y,z)=ωA(z0)exp -ik z+x22+y2 R1(z)-kω22i(z) +iφ(z)
将式(414)代入上式得
{ [ ] } E(x,y,z)=ωA(z0)exp -ik z+x2q2+(zy)2 +iφ(z)

2.6 高斯光束基本性质及特征参数

2.6 高斯光束基本性质及特征参数

z i kztg 1 f
1 1 i q z R z 2 z
1/q(z) —高斯光束的复曲率半径
知道q(z)可以求R (z)和
z
1 Im 特例: 2 z q z

几何相移
与横向坐标 相关的相移
附加相移 (在旁轴情 况下可以忽 略)
3、等相面特点
(1)等相面为球面, 曲率半径为
0 2 f2 R R z z z 1 z z

(2)z=0时束腰位置,R(z)→。等相面为平面。 (3)z << f 时,R(z)≈ f 2/z→。等相面近似为平面。 (4)z >> f 时,R(z)→ z。光束可近似为一个有 z=0点发出的半径为z的球面波。 (5)z → 时,R(z)→ z。等相面为平面。 注:高斯光束等相面的曲率中心并不是一个固定点,它要 随着光束的传播而移动。
可用ABCD公式验证普通球面波在自由空间和薄透镜中的 传输规律。 自由空间为例
r2 Ar B1 1
2 Cr1 D1
近轴光 , r2 R2 2 r R11 1 —ABCD公式
AR1 B R2 2 CR1 D r2
二、高斯光束q参数的变换规律——ABCD公式 1、高斯光束与普通球面波参数与传输规律的对应
2
2 0 2 0 l F l F i lc F 2 2 2 2 F l 2 0 F l 2 0 1 2 2 2 qC 2 2 0 2 0 l F l F lc F 2 2 2 0 0 2 F l 2 F l 2 2 2

第4章高斯光束

第4章高斯光束

2、普通球面波经过薄透镜的变换规律
R1 O
R2 O’ F

l

l`
1 1 1 R2 R1 F
0 1 1/ F 1
3、普通球面波的ABCD定律
若一条入射光线 r1 ,1 ,经过一个光学系统后 ,变成 A B 出射光线 r2 , 2 ,则可用矩阵 C D 描述光学系统对光线 的变换作用 r2 A B r1 C D 1 2
x2 y2 x2 y 2 A0 Emn x, y, z exp 2 exp ik z i z wz w ( z) 2 Rz
A0 x2 y2 E mn x, y, z exp ik z wz 2
2
2
2、等相位面分布
2 2 0 f R z z z 1 z z 2
总结:
高斯光束既不是平面波,也不是一般的球面波,在其传输 轴线附近可以看作是一种非均匀球面波。它在共焦中心处是强 度为高斯分布的平面波,在其他地方则是强度为高斯分布的球
2d z 2 0 lim z dz 0
f 0
2、任一z坐标处的光斑半径及等相位面曲率半径
2 z 0 z 1 R z
2


1 2
Rz z Rz 1 2 z
2

1
可以用任一z处的ω(z)和R (z)表征高斯光束。
3、高斯光束的q参数
1 1 i qz Rz z 2
q(z)将ω(z)和R (z)联系起来。

Chap4高斯光束

Chap4高斯光束
⎛ λz ⎞ ⎛z⎞ ⎜ ⎟ 1+ ⎜ = ω 1 + 0 ⎜f⎟ ⎜ πω 2 ⎟ ⎟ ⎝ ⎠ ⎝ 0⎠ Lλ = 2π fλ
2 2
—任意位置光斑尺寸 —基模光腰半径 —等相面曲率半径
L πω f = = 0 = zR 2 λ
2
ω0 =
π
f2 R = R(z ) = z + z
共焦参数 瑞利长度
实际应用中常称2zR为高斯光束的准直距离 对一般稳定腔,需作下列转换:
4.1 高斯光束的基本性质和特征参数
(2)横向场分布及光斑花样
⎛ 2 ⎞ ⎛ 2 ⎞ − ω 2 (z ) ⎟H n ⎜ ⎟e Hm⎜ x y ⎜ ω (z ) ⎟ ⎜ ω (z ) ⎟ ⎝ ⎠ ⎝ ⎠
r2
—厄米—高斯函数
花样:沿x方向有m条节线,沿y方向有n条节线。 (3)相移特征
r2 z φ r , z = kz + k − m + n + 1 arctg 2R f
L( R1 − L)( R2 − L)( R1 + R2 − L) g1 g 2 (1 − g1 g 2 ) L2 f = = 2 ( R1 + R2 − 2 L) (g1 + g 2 − 2 g1 g 2 )2
2
4.1 高斯光束的基本性质和特征参数
4.1.2 基模高斯光束的基本性质
1、振幅分布及光斑半径
及 R ( z ) 表征
2
⎡ ⎛ f ⎞2 ⎤ R = R( z ) = z ⎢1 + ⎜ ⎟ ⎥ z ⎠ ⎦ ⎣ ⎝
⎡ ⎛ π ω (z ) ⎞ ω0 = ω ( z )⎢1 + ⎜ ⎜ λ R(z ) ⎟ ⎟ ⎢ ⎠ ⎣ ⎝

高斯光束的基本性质及特征参数r

高斯光束的基本性质及特征参数r
0
综上所述,基模高斯光束在其传播轴线附近, 能够看作是一种非均匀旳球面波,其等相位面是曲 率中心不断变化旳球面,振幅和强度在模截面内保 持高斯分布。
photomultiplier
photodiode
Avalanche photodiode
高斯光束旳基本性质及特征参数
基模高斯光束 高斯光束在自由空间旳传播规律
高斯光束旳参数特征
4、高斯光束
由激光器产生旳激光束既不是上面讨论旳均匀平 面光波,也不是均匀球面光波,而是一种振幅和等 相位面在变化旳高斯球面光波,即高斯光束。
以基模TEM00高斯光束为例,体现式为:
E0
ωγ2 2zeik
z
γ2
2 z z2
02 f 2 1
如图1-7所示。
在Z=0处,ω(z)=ω0到达极小值,称为束 腰半径。
(2)基模高斯光束场旳相位因子
00 r, z
k z
2R
2
z
arctan
z f
决定了基模高斯光束旳空间相移特征。
其中,kz描述了高斯光束旳几何相移; arctan(z/f)描述了高斯光束在空间行进距离z处, 相对于几何相移旳附加相移;因子kr2/(2R(z))则表 达与横向坐标r有关旳相移,它表白高斯光束旳等 相位面是以R(z)为半径旳球面。
R(z)随Z变化规律为:
Rz
z 1
f2 z2
z
f2 z
结论:
a)当Z=0时,R(z)→∞,表白束腰所在处旳等 相位面为平面。
b) 当Z→±∞时,│R(z)│≈z→∞表白离束腰无 限远处旳等相位面亦为平面,且曲率中心就在束腰 处;
c)当z=±f时,│R(z)│=2f,到达极小值 。

第三章--高斯光束及其特性讲解学习

第三章--高斯光束及其特性讲解学习

1
11
R2(z) R1(z) f
R 2(z)C A R R 1 1 ( (z z) ) D B , C AD B 1 1 /f
0 1
反映了近轴球面波曲率半径的传输与光学系统矩阵元之间的关系
§3.1 基模高斯光束
球面波的传播规律可以统一写成
R2
AR1 CR1
B D
结论:具有固定曲率中心的普通傍轴球面波可以由其曲率半径R 来描述,传播规律由变换矩阵确定。
§3.1 基模高斯光束
高斯光束在其传输轴线附近 可近似看作是一种非均匀球面波 曲率中心随着传输过程而不断改变 振幅和强度在横截面内始终保持高斯分布特性 等相位面始终保持为球面 强度集中在轴线及其附近
§3.1 基模高斯光束
3)基模高斯光束的特征参数: ➢ 用参数0(或f)及束腰位置表征高斯光束
§3.1 基模高斯光束
11
q(z) R(z)i2(z)
q:复曲率半径
参数q将(z)和R(z)统一在一个表达式中,知道了高斯光束在
某位置处的q参数值,可由下式求出该位置处(z)和R(z)的数值
R 1 (z)R e[q (1 z)],2 1 (z) Im [q (1 z)]
用q0=q(0)表示z=0处的参数值,得出
§3.1 基模高斯光束
3)基模高斯光束的特征参数: ➢ 用q参数表征高斯光束
u 0 0 ( x ,y ,z ) c 0 0( 0 z ) e x p [ x 2 2 ( z y ) 2 ] e x p { i [ k ( z x 2 2 R ( z y ) 2 ) a r c t g z f] }
u 0 0 ( x ,y ,z ) c 0 0( 0 z ) e x p { i k x 2 2 y 2 [ R 1 ( z ) i 2 ( z ) ] } e x p [ i ( k z a r c t g z f ) ]

高斯光束

高斯光束
物理与光电信息科技学院

《激光原理与技术》
Lasers Principles and Technologies
主讲教师:陈 建 新 、朱莉莉、陈荣
福建师范大学物理与光电信息科技学院
(第三章)
物理与光电信息科技学院

《激光原理与技术》
第三章 高斯光束
赫姆霍兹方程在缓慢振幅近似下的一个特解,对应着具有 圆对称光学谐振腔的振荡模式。
(第三章)
物理与光电信息科技学院

《激光原理与技术》
在垂直于光束的任意一个横截面上,振幅的分布为:
2 r l l 2r 2 r 2 cosl Apl r , , z [ ] L p [ 2 ] exp 2 sin l w( z ) w z w z
(第三章)
物理与光电信息科技学院

《激光原理与技术》
高斯光束的基本性质
波动方程的基模解 在标量近似下稳态传播的电磁场满足的赫姆霍茨方程:
u0 k u0 0
2
在z的缓变振幅近似下(忽略 解出上式微分方程的一个特解:
2 z 2
),利用“试探法”
此特解叫做基模高斯光束
光斑半径随z的变化规律为:wz w 0 当
z z 1 w 1 0 z w 2 0 0
2 2
z z0 时 wz0 2w0
从最小光斑面 积增大到它的 二倍的范围是 瑞利范围, 从最小光斑处 算起的这个长 度叫瑞利长度
(第三章)
物理与光电信息科技学院

《激光原理与技术》
w0 r2 z r2 u0 x , y , z { exp i kz arctan( 2 ) exp[i ] w 2 z exp w z 2 R ( z ) w 0

高斯光束基本性质及特征参数

高斯光束基本性质及特征参数

上海大学电子信息科学与技术
TEM11
TEM12
TEM22
TEM34
• 相位分布-与方形镜共焦腔相同,等相位面为镜面
• 单程相移
mn kLm 2n 12 kL mn
上海大学电子信息科学与技术
• 谐振频率
mnq
c 2L
q
1 2
m
2n
1
圆形镜共焦腔模在频率上是高度简并的
同一横模的相邻纵模的频率间隔
z0 0 Rz0 共焦腔中心,波面为垂直腔轴的平面
z0 Rz0 无穷远处,等相位面为平面
z0 z0 R(z0) 相等,共焦腔光束的波面在中心两侧对称分布
z0 f L 2 Rz0 2 f L 波面与共焦腔镜面重合
上海大学电子信息科学与技术
可证明:共焦腔反射镜面是共焦腔中曲率半径最大的等相位面。
z z
圆形镜
将式(2-8-4)中的f ,z1 ,z2 代入上式,并由谐振条件
2r, z 2mn0, z2 mn0, z1 q 2
mnq
c
2L
q
1
m
n
1 arccos
g1
g
2
方形镜
mnq
c
2L
q
1
m
2n 1arccos
g1
g
2
圆形镜
衍射损耗
上海大学电子信息科学与技术
共焦腔菲涅耳数
N
• 只有精确解才能正确描述共焦腔模的损耗特性。每一横 模的损耗由腔的菲涅耳数决定,不同横模的损耗各不相 同。
• 共焦腔的特点:衍射损耗低; 模简并;基模光斑尺寸 沿腔轴以双曲线规律变化; 等相位面近似为球面,在反射 镜处,等相位面与镜面重合。

10第二章-5高斯光束的基本性质及特征参数

10第二章-5高斯光束的基本性质及特征参数
2R(z)
z f
]}
重新整理r
00 (x, y, z)
c exp{ik
(z)
r2 2
[
1 R(z
)
i
2(
z
)
]}
exp[
i(k
z
arctg
z )] f
引入一个新的参数q(z), 定义为
1 q(z)
1 R(z)
i
2 (z)
• 参数q将(z)和R(z)统一在一个表达式中,知
道了高斯光束在某位置处的q参数值,可由下
对称共焦腔/一般稳定球面腔
二、高斯光束在自由空间的传输规律
振幅因子光斑半径(z)
基模高斯光束在横截面内的场振幅分布按高斯
函数所描述的规律从中心向外平滑地降落。由 振幅降落到中心值的1/e处的点所定义的光斑半
径为(z);光斑半径随坐标z按双曲线规律扩展
远场发散角0(定义在基模高斯光束强度的
1/e2点的远场发散角)

f
02
3.14 106 3.14 106
1m
(z) 0
1
z2 f2
w0
1
0.52 12
1.12mm
R(z) z f 2 0.5 12 2.5m
z
0.5
例2 高斯光束在某处的光斑半径为w=1mm, 等相位
面曲率半径为R=0.5m, 求此高斯光束(1)该处的q参
数 (2)腰斑半径w0及腰位置(光波长为=3.14m)
(
2 0
)
2

0
0
l l
F
1 2
l 1
2 0
l
2
0、
1 R(l) 2

激光物理第1.3章 高斯光束

激光物理第1.3章  高斯光束
q1 Aq B 1
1 2
1 2
i
2 y2
e
Cq1 D Aq1 B
q1 Aq B e 1
1 2
2 y2 i q 2
(1.4.8)
Aq1 B q2 Cq1 D
推广到二维坐标的情况,得到:
(1.4.9)
(1.3.8)和(1.3.11)
k qz Qz
E0 e
r 2 i P z q z
(1.3.26)

得到两个方程:
d 1 qz 2 0 q 2 z dz 1
1 dPz i 0 q z dz
2 01 2 01
2
2
C
因为C点取在像方光腰 处,此时应有
1 Re 0 qC
由此即可解得
l2 f ( f l1 ) f
2 2 2 01 2
( f l1 )
2 f 201

(1.4.16)
1 1 i 2 q( z ) ( z ) ( z )
z = 0 ,ρ(0)→∞,
(0) 0
1 1 1 i q0 q( 0 ) ( 0 ) 2 ( 0 )
02 q0 i iz0

可将高斯光束表示为
0 E ( x , y , z ) E0 e z
z0 2 ( z ) z 1 z 2 0 2 z0 ,k
(1.3.19)


均匀介质中高斯光束的传 播特性

沿z轴方向传播的基模(m=n=0)高斯光束

高斯光束的基本性质及特征参数课件

高斯光束的基本性质及特征参数课件
变换方法
通过使用各种光学元件,如反射镜、 棱镜等,可以对高斯光束进行各种形 式的变换,如旋转、平移、缩放等。
高斯光束的操控与调制
操控技术
利用光学元件对高斯光束进行操控,如改变光束方向、实现光束分裂等。
调制方法
通过在光束中加入外部信号,可以对高斯光束进行调制,实现信息传输和信号 处理等功能。
05
CHAPTER
高斯光束的聚焦
通过透镜可以将高斯光束聚焦到一点 ,聚焦点处的光强最大过程中,其传播方向呈发散状。
光强分布
高斯光束的光强呈高斯型分布,中心光强最大,向外逐渐减小。
衍射极限
高斯光束的衍射极限由波长和束腰宽度决定,短波长、小束腰宽度 的高斯光束具有更好的聚焦性能。
高斯光束的模拟与仿真
高斯光束的数值模拟方法
有限差分法
通过离散化高斯光束的波动方程,使用差分公式 求解离散点上的场值。
有限元法
将高斯光束的波动方程转化为变分问题,利用分 片多项式逼近解。
谱方法
将高斯光束的波动方程转化为频域或谱域的方程 ,通过傅里叶变换求解。
高斯光束的物理仿真实验
光学实验平台
搭建光学实验装置,通过实际的光路系统模拟高斯光束的传播。
光学成像
1 2 3
高分辨率成像
高斯光束在光学成像领域可用于实现高分辨率、 高清晰度的成像,从而提高图像的细节表现力和 清晰度。
荧光显微镜
高斯光束作为激发光,能够均匀地激发样品中的 荧光物质,提高荧光显微镜的成像质量和稳定性 。
光学共聚焦显微镜
利用高斯光束的聚焦和扫描特性,可以实现光学 共聚焦显微镜的高精度、高灵敏度成像。
激光加工
高效加工
01
高斯光束具有较高的亮度和能量集中度,能够实现高效、高精

2-5高斯光束

2-5高斯光束

q参数
例1 某高斯光束波长为=3.14m,腰斑半径为 w0=1mm,求腰右方距离腰50cm处的(1)q参数 (2)光斑半径w与等相位面曲率半径R 2 w 0 3.14 10 6 解 (1) w f f 1m
0

z=0.5m
3.14 10 6 q=0.5+i(m)
(2)
1 R 0 R FR R 1 R F R R 1 1 F F

Ru
1 1 1 u v F 1 1 1 R v R R F
R FR FR
R
R
o u
F
v
o
z
1 1 1 FR R R F FR
二、高斯光束q参数的变换规律—ABCD公式
2 m ( z ) (2m 1) 2 ( z ) 2 n ( z ) (2n 1) 2 ( z )
在x方向和y方向 的远场发散角
m lim
2 m ( z ) 2 2m 1 2m 1 0 z z 0
2 n ( z ) 2 n lim 2n 1 2n 1 0 z z 0 由于高阶模的发散角是随着模的阶次的增大而增大,所以 多模振荡时,光束的方向性要比单基模振荡差。
2 lim
2 ( z ) z z
( z) 0
z 2 1 ( 2 ) 0
2 2
2 2 L 0
高阶模的发散角随阶次的增大而增大,方向性变差!
2 2 2 2 L q f(w0)
O
q f(w0) Z
O
l F l
研究对象
普通球面波
高斯球面波
特点
曲率中心固定的 曲率中心变化的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

d) 当0<z<f时,R(z)>2f,表明等相位面的曲率 中心在(-∞,-f)区间上。 e)当z>f时,z< R(z)<z+f,表明等相位面的曲率 中心在(-f,0)区间上。
(3)基模高斯光束既非平面波,又非均匀平面波, 它的发散度采用场发散角表征 发散度采用场发散角表征。 发散度采用场发散角表征 远场发散角θ1/e2定义为z→∞时,强度为中心的 z 时 点所夹角的全宽度,即 1/e2点所夹角的全宽度
高斯光束的基本性质及特征参数
基模高斯光束
Байду номын сангаас
高斯光束在自由空间的传播规律
高斯光束的参数特征
4、高斯光束 由激光器产生的激光束既不是上面讨论的均匀平 面光波,也不是均匀球面光波,而是一种振幅和等 相位面在变化的高斯球面光波,即高斯光束。 以基模TEM00高斯光束为例,表达式为:
E0 E00 ( r, t) = z, e ω( z)
z ω ( z ) = ω0 1 + f
2

r
2
2
e
w (z)
可见,光斑半径随着坐标Z按双曲线的规律扩展,即
ω2 ( z ) z2 − 2 =1 2 ω0 f
如图1-7所示。 在Z=0处,ω(z)=ω0达到极小值,称为束 束 腰半径。 腰半径
(2)基模高斯光束场的相位因子 (2)基模高斯光束场的相位因子
λ
2
z ω ( z ) = ω0 1 + f
f2 R( z ) = z + z
高斯光束的共焦参数
与传播轴线相 交于Z点的高斯光束 交于 点的高斯光束 等相位面的曲率半 径
πϖ 02 f = Z0 = λ
高斯光束的基本特征: (1)基模高斯光束在横截面内的光电场振幅分 布按照高斯函数的规律从中心(即传播轴线)向外 平滑地下降,如图1-6所示。由中心振幅值下降到 1/e点所对应的宽度,定义为光斑半径 光斑半径。 光斑半径
θ1/ e
2
2ω ( z ) λ = lim = z πω0 z →∞
高斯光束的发散度由束腰半径ω 决定。 高斯光束的发散度由束腰半径ω0决定。
综上所述,基模高斯光束在其传播轴线附近, 综上所述,基模高斯光束在其传播轴线附近, 可以看作是一种非均匀的球面波, 可以看作是一种非均匀的球面波,其等相位面是曲 率中心不断变化的球面, 率中心不断变化的球面,振幅和强度在模截面内保 持高斯分布。 持高斯分布。
2 γ z −iω − 2 −arctan •e t ikz+ 2R( z) f ω ( z)e 2 γ
式中:E0为常数,其余符号的意义为
r =x +y
2 2
2
与传播轴线相交于Z 与传播轴线相交于 点高斯光束等相位面上 的光斑半径
k=

基模高斯光束的束腰半径
photomultiplier
photodiode
Avalanche photodiode
2 γ z ϕ00 ( r , z ) = k z + − arctan 2R ( z ) f
决定了基模高斯光束的空间相移特性。 其 中 , kz 描 述 了 高 斯 光 束 的 几 何 相 移 ; arctan(z/f)描述了高斯光束在空间行进距离z处, 相对于几何相移的附加相移 附加相移;因子kr2/(2R(z))则表 附加相移 示与横向坐标 有关的相移 与横向坐标r有关的相移 与横向坐标 有关的相移,它表明高斯光束的等 高斯光束的等 相位面是以R(z)为半径的球面。 R(z)为半径的球面 相位面是以R(z)为半径的球面
R(z)随Z变化规律为:
2 2 f f R ( z ) = z 1 + 2 = z + z z
结论: a)当Z=0时,R(z)→∞,表明束腰所在处的等 相位面为平面。 b) 当Z→±∞时,│R(z)│≈z→∞表明离束腰无 限远处的等相位面亦为平面,且曲率中心就在束腰 处; c)当z=±f时,│R(z)│=2f,达到极小值 。
相关文档
最新文档