物理化学第三章

合集下载

《物理化学》第三章 热力学第二定律PPT课件

《物理化学》第三章 热力学第二定律PPT课件

例一:理想气体自由膨胀
原过程:Q=0,W=0,U=0, H=0
p2,V2
体系从T1,p1,V1 T2, 气体
真空
复原过程:
复原体系,恒温可逆压缩
WR
RT1
ln
V2 ,m V1,m
环境对体系做功
保持U=0,体系给环境放热,而且 QR=-WR
表明当体系复原时,在环境中有W的功变为Q的热,因 此环境能否复原,即理想气体自由膨胀能否成为可逆 过程,取决于热能否全部转化为功,而不引起任何其 他变化。
它们的逆过程都不能自动进行。当借助外力,系统 恢复原状后,会给环境留下不可磨灭的影响。
•化学反应 Zn+H2SO4等?
如图是一个典型的自发过程
小球
小球能量的变化:
热能
重力势能转变为动能,动能转化为热能,热传递给地面和小球。
最后,小球失去势能, 静止地停留在地面。此过程是不可逆转的。 或逆转的几率几乎为零。
能量转化守恒定律(热力学第一定律)的提出,根本上宣布 第一类永动机是不能造出的,它只说明了能量的守恒与转化及 在转化过程中各种能量之间的相互关系, 但不违背热力学第一 定律的过程是否就能发生呢?(同学们可以举很多实例)
热力学第一定律(热化学)告诉我们,在一定温度 下,化学反应H2和O2变成H2O的过程的能量变化可用U(或H) 来表示。
热力学第二定律(the second law of thermodynamics)将解答:
化学变化及自然界发生的一切过程进行 的方向及其限度
第二定律是决定自然界发展方向的根本 规律
学习思路
基本路线与讨论热力学第一定律相似, 先从人们在大量实验中的经验得出热力学第 二定律,建立几个热力学函数S、G、A,再 用其改变量判断过程的方向与限度。

大学物理化学 第三章 多组分系统热力学习指导及习题解答

大学物理化学 第三章 多组分系统热力学习指导及习题解答
证明: RT d ln f =Vmdp
RT Vm p A Bp
积分区间为 0 到 p,
RT
p
d ln
f=
(p RT
A Bp)dp
0
0p
RT p d ln( f )= (p A Bp)dp Ap 1 Bp2
0
p0
2
因为
lim ln( f ) 0 p0 p
则有
RT ln( f )=Ap 1 Bp2
为两相中物质的量浓度,K 为分配系数。
萃取量
W萃取
=W
1
KV1 KV2 V2
n
二、 疑难解析
1. 证明在很稀的稀溶液中,物质的量分数 xB 、质量摩尔浓度 mB 、物质的量浓度 cB 、质量分数 wB
之间的关系: xB
mBM A
MA
cB
MA MB
wB 。
证明:
xB
nA
nB nB
nB nA
)pdT
-S
l A,m
dT
RT xA
dxA
-S(mg A)dT
-
RT xA
dxA =
S(mg A)-S
l A,m
dT
Δvap Hm (A) T
dT
-
xA 1
dxA = xA
Tb Tb*
Δvap Hm (A) R
dT T2
若温度变化不大, ΔvapHm 可视为常数
- ln
xA =
Δvap Hm (A) R
真实溶液中溶剂的化学势 μA μ*A(T, p) RT ln γx xA =μ*A(T, p) RT ln aA,x
真实溶液中溶质 B μB μB* (T, p) RT ln γx xB =μ*A(T, p) RT ln aB,x

物理化学第三章(简)

物理化学第三章(简)

(10)
有简并度时定域体系的微态数
S 定位=kN ln ∑ g i e
i
− ε i / kT
U + T
− ε i / kT
A定位= − NkT ln ∑ g i e
i
有简并度时离域体系的微态数
同样采用最概然分布的概念, 同样采用最概然分布的概念,用Stiring公 公 式和Lagrange乘因子法求条件极值,得到微态 乘因子法求条件极值, 式和 乘因子法求条件极值 数为极大值时的分布方式 N i* 离域子)为: (离域子)
)N
N!
U + T
A非定位= − kT ln
(∑ g i e −ε i / kT ) N
i
N!
Boltzmann公式的其它形式
能级上粒子数进行比较, 将 i 能级和 j 能级上粒子数进行比较,用最概然分布公式相 比,消去相同项,得: 消去相同项,
− ε i / kT
N gi e = − ε j / kT N g je
简并度增加,将使粒子在同一能级上的微态数增加。 简并度增加,将使粒子在同一能级上的微态数增加。
有简并度时定域体系的微态数
个粒子的某定位体系的一种分布为: 设有 N 个粒子的某定位体系的一种分布为:
能级 各能级简并度 一种分配方式
ε1 , ε 2 , ⋅ ⋅⋅, ε i
g1 , g 2 , ⋅ ⋅⋅, gi N1 , N 2 , ⋅ ⋅⋅, N i
等概率假定
对于U, 确定的某一宏观体系, 对于 V 和 N 确定的某一宏观体系,任何一个可能出 现的微观状态, 有相同的数学概率, 现的微观状态 , 都 有相同的数学概率 , 所以这假定又称为 等概率原理。 等概率原理。 等概率原理是统计力学中最基本的假设之一 , 它与求 等概率原理 是统计力学中最基本的假设之一, 是统计力学中最基本的假设之一 平均值一样,是平衡态统计力学理论的主要依据。 平均值一样,是平衡态统计力学理论的主要依据。 例如,某宏观体系的总微态数为 Ω ,则每一种微观状态 P 例如, 出现的数学概率都相等, 出现的数学概率都相等,即:

《物理化学》第三章(化学平衡)知识点汇总

《物理化学》第三章(化学平衡)知识点汇总
《物理化学》重要 知识点
第三章:化学平衡
第三章 化学平衡
化学反应的平衡条件
aA dD
dG SdT Vdp B dnB
B
gG hH
等温等压条件下:
AdnA DdnD GdnG HdnH
dG BdnB
B
35
根据反应进度的定义:
d
$
化学反应的等温方程式
40
平衡常数表示法
一、理想气体反应标准平衡常数
K$
pG pH p$ p$ eq eq p A pD p$ p$ eq eq
a d
g
h
K $ (1)
pNH3 $ p
g h nG nH a d nA nD


项减小,温度不变时, K
$
为一常数,则
项增大,平衡向右移动。
谢谢观看!!!


p Kn K p nB B
Kn
与温度、压力及配料比有关
45
复相化学反应 在有气体、液体及固体参与的多相体系中,如果凝聚相 (固相及液相)处于纯态而不形成固溶体或溶液,则在常 压下,压力对凝聚相的容量性质的影响可以忽略不计,凝 p p CaCO (s) CaO(s) CO ( g ) K p p 聚相都认为处于标准态。因此,在计算平衡常数时只考虑 气相成分。
$
$ ln K $ r H m 0, 0 T $ d ln K $ 0 r H m 0, dT
$ ln K $ r H m T RT 2 p
K $ 随温度的升高而增加 K
$
随温度的升高而降低

物理化学第三章课后答案完整版

物理化学第三章课后答案完整版

物理化学第三章课后答案完整版第三章热⼒学第⼆定律3.1 卡诺热机在的⾼温热源和的低温热源间⼯作。

求(1)热机效率;(2)当向环境作功时,系统从⾼温热源吸收的热及向低温热源放出的热。

解:卡诺热机的效率为根据定义3.2 卡诺热机在的⾼温热源和的低温热源间⼯作,求:(1)热机效率;(2)当从⾼温热源吸热时,系统对环境作的功及向低温热源放出的热解:(1) 由卡诺循环的热机效率得出(2)3.3 卡诺热机在的⾼温热源和的低温热源间⼯作,求(1)热机效率;(2)当向低温热源放热时,系统从⾼温热源吸热及对环境所作的功。

解:(1)(2)3.4 试说明:在⾼温热源和低温热源间⼯作的不可逆热机与卡诺机联合操作时,若令卡诺热机得到的功r W 等于不可逆热机作出的功-W 。

假设不可逆热机的热机效率⼤于卡诺热机效率,其结果必然是有热量从低温热源流向⾼温热源,⽽违反势热⼒学第⼆定律的克劳修斯说法。

证:(反证法)设 r ir ηη>不可逆热机从⾼温热源吸热,向低温热源放热,对环境作功则逆向卡诺热机从环境得功从低温热源吸热向⾼温热源放热则若使逆向卡诺热机向⾼温热源放出的热不可逆热机从⾼温热源吸收的热相等,即总的结果是:得⾃单⼀低温热源的热,变成了环境作功,违背了热⼒学第⼆定律的开尔⽂说法,同样也就违背了克劳修斯说法。

3.5 ⾼温热源温度,低温热源温度,今有120KJ的热直接从⾼温热源传给低温热源,求此过程。

解:将热源看作⽆限⼤,因此,传热过程对热源来说是可逆过程3.6 不同的热机中作于的⾼温热源及的低温热源之间。

求下列三种情况下,当热机从⾼温热源吸热时,两热源的总熵变。

(1)可逆热机效率。

(2)不可逆热机效率。

(3)不可逆热机效率。

解:设热机向低温热源放热,根据热机效率的定义因此,上⾯三种过程的总熵变分别为。

3.7 已知⽔的⽐定压热容。

今有1 kg,10℃的⽔经下列三种不同过程加热成100 ℃的⽔,求过程的。

(1)系统与100℃的热源接触。

物理化学第三章

物理化学第三章

rC p,m BC p,m (B)
例习题33 42
§3.6 亥姆霍兹函数和吉布斯函数
1. 亥姆霍兹函数
根据克劳修斯不等式
dS - δQ / T 0
不可逆 可逆
dS δQ / T
不可逆 可逆
43
TdS δQ
不可逆 可逆
代入第一定律的公式 δQ = dU -δW
得: TdS – dU -δW
解:过冷液体的凝固过程是不可逆过程,需 要设计一个可逆过程来计算熵变。
33
设计过程
1mol H2O(l) 263.15K
P
△S1 △H1
1mol H2O(l) 273.15K
P
△S △H
1mol H2O(s) 263.15K
P
△H3 △S3
△S2
1mol H2O(s)
△H2
273.15K P
34
△H = △H1 +△H2 +△H3 △S = △S1 +△S2 +△S3
不可逆, 自发
△S隔=△S体+△S环 ≥ 0 可逆, 平衡
26
△S隔离 = △S体系+△S环境 只有用△S隔离进行判断过程方向性和可 逆性才是正确的。
27
§3.4 熵变的计算
1. 环境的熵变
计算环境的熵变,常常假设环境是 一个很大的热储器,体系与环境间的热 交换不足以使环境温度发生变化,因而 可看作是可逆的。
△S环境= Q环/T环= —Q体/T环
28
2. 理想气体单纯pVT变化过程
2
△S = (Qr / T)
1
代入δQr△=Sd=U∫d-δUW/Tr +=∫(dpU/T+)dpVdV

大学物理化学第三章化学势

大学物理化学第三章化学势

物质的量分数,又称为摩尔分数,无量纲。
2. 质量摩尔浓度mB
mB def
nB mA
溶质B的物质的量与溶剂的质量之比称为溶质B的质
量摩尔浓度,单位是 mol kg-1 。
上一内容 下一内容 回主目录
返回
2021/2/14
溶液组成的表示法
3. 物质的量浓度cB
cB def
nB V
溶质B的物质的量与溶液体积V的比值称为溶质B的物质的量
化学平衡的条件是:除系统中各组分的温度和压力相等外,还 要求产物的化学势之和等于反应物的化学势之和。
总结:在等T,p W ' 0 的条件下,传质过程朝化学势降低的方向 进行,平衡时化学势相等—化学势判据(所有判据的统一)
上一内容 下一内容 回主目录
返回
2021/2/14
五、化学势与温度和压力的关系:
上一内容 下一内容 回主目录
返回
2021/2/14
三、化学势的物理意义
定温定压下, dG SdT Vdp BdnB BdnB
若不做非体积功:
BdnB < 0 自发过程
BdnB 0 平衡
物质的化学势是决定物质传递方向和限度的强度
因素,这就是化学势的物理意义。(等T , p,W ' 0)
dU TdS pdV
U ( nB
)S ,V ,nC
dnB
令:H f (S, p, nB , nC ...)
dH TdS Vdp
H ( nB )S , p,nC dnB
令:A=f(T,V,nB , nC ...)
dA SdT pdV
A ( nB )T ,V ,nC dnB
上一内容 下一内容 回主目录

物理化学第三章化学平衡

物理化学第三章化学平衡



恒压下两边对T求导得
rG m / T T



R

d ln K dT


rH T
2

m

d ln K dT


rH m RT
2
――等压方程微分式

3-5 化学反应等压方程―K 与温度的关系
二、积分式 设ΔrHm 不随温度变化,前式积分得:

ln K T

为比较金属与氧的亲和力,不是用氧化物的ΔfGm 而

是用金属与1mol氧气作用生成氧化物时的ΔGm :

2x y
M (s) O 2 ( g )

2 y
M xO
y
常见氧化物的 G m T 参见下图。
Gm T

3-8
0 -100 -200 -300 -400

图及其应
Fe3O4 Co K Zn Cr Na Mn V C CO Al Ni

3-2 复相化学平衡
(1)ΔrGm (298)==178-298×160.5×10-3=130.2(kJ/mol)

p(CO2)/p = K = exp(-

130 . 2 1000 8 . 314 298
)=1.5x10-23
p(CO2)= 1.5×10-18(Pa)
(2) ΔrGm (1110)=178-1110×160.5×10-3=0
3-7 平衡组成的计算
二、已知平衡组成计算平衡常数
例题:在721℃、101325Pa时,以H2 还原氧化钴(CoO) ,测得平衡气相中H2的体积分数为0.025;若以CO还原 ,测得平衡气相中CO的体积分数0.0192。求此温度下 反应 CO(g)+H2O(g)=CO2(g)+H2(g) 的平衡常数。 分析:乍一看所求反应与题给条件无关,但将两个还 原反应写出来,可以找到他们之间的关系。

物理化学 第三章 热力学第二定律

物理化学 第三章  热力学第二定律
Siso S(体系) S(环境) 0
“>” 号为不可逆过程 “=” 号为可逆过程
克劳修斯不等式引进的不等号,在热力学上可以作 为变化方向与限度的判据。
dS Q T
dSiso 0
“>” 号为不可逆过程 “=” 号为可逆过程
“>” 号为自发过程 “=” 号为处于平衡状态
因为隔离体系中一旦发生一个不可逆过程,则一定 是自发过程,不可逆过程的方向就是自发过程的方 向。可逆过程则是处于平衡态的过程。
二、规定熵和标准熵
1. 规定熵 : 在第三定律基础上相对于SB* (0K,完美晶体)= 0 , 求得纯物质B要某一状态的熵.
S(T ) S(0K ) T,Qr
0K T
Sm (B,T )
T Qr
0K T
2. 标准熵: 在标准状态下温度T 的规定熵又叫 标准熵Sm ⊖(B,相态,T) 。
则:
i

Q1 Q2 Q1
1
Q2 Q1
r
T1 T2 T1
1 T2 T1
根据卡诺定理:
i
r
不可逆 可逆

Q1 Q2 0 不可逆
T1 T2
可逆
对于微小循环,有 Q1 Q2 0 不可逆
T1 T2
可逆
推广为与多个热源接触的任意循环过程得:
Q 0
T
不可逆 可逆
自发过程的逆过程都不能自动进行。当借助 外力,体系恢复原状后,会给环境留下不可磨灭 的影响。自发过程是不可逆过程。
自发过程逆过程进行必须环境对系统作功。
例:
1. 传热过程:低温 传冷热冻方机向高温 2. 气体扩散过程: 低压 传压质缩方机向高压 3. 溶质传质过程: 低浓度 浓差传电质池方通向电高浓度 4. 化学反应: Cu ZnSO4 原反电应池方电向解 Zn CuSO4

物理化学:第三章 多组分系统

物理化学:第三章 多组分系统

dU TdS - pdV BdnB
B
B
U nB
S ,V ,nj B
二、广义化学势和热力学基本公式
同样的方法,按H=f(S,p,n1,n2……),F=f(T,V,n1,n2……) 及H、F的定义进行处理,可得化学势的另一些表示式:
B
U nB
S ,V ,nj B
H nB
S , p ,nj B
二广义化学势和热力学基本公式对于组成可变的系统四个热力学基本公式为???bbbddddnvpstu??bbbddddnpvsth????bbbddddnvptsf???bbbddddnpvtsg三温度压力对化学势的影响bbbbb????????????????????????????????????????????????????????????????????????????????????????????????????jiijinptntntnptntpgnngppvpgt????????????????????代入上式得压力对化学势的影响
(与等温、等压下某均相体系任一容量性质的全微分比较)
得 dX = n1dX1,m n2dX2,m … nidXi,m=0
吉布斯—杜亥姆公式
nBdXB,m =0
B
当一个组分的偏摩尔量增加时,另一个组分的偏摩尔量必将
减少,其变化是以此消彼长的方式进行。偏摩尔量之间是具
有一定联系的。某一偏摩尔量的变化可从其它偏摩尔量的变化
B
三、温度、压力对化学势的影响
B
p
T ,ni
p
G nB
T
,
p
,n
j
B
T
,ni
nB
G p
T ,ni T , p ,nj B

(物理化学)第三章 化学反应热力学总结

(物理化学)第三章  化学反应热力学总结

第三章 化学反应热力学总结本章主要是运用热力学的基本概念、原理和方法研究化学反应的能量变化,引入反应焓与温度的关系式——Kirchhoff 公式,建立热力学第三定律以求算化学反应的熵变,引入化学热力学重要关系式——Gibbs-Helmholtz 方程。

一、 基本概念1、化学反应进度 ()/B B d dn ξξν= B B n /∆ξ=∆ν 或 B B n /ξ=∆ν2、盖斯定律3、标准生成热4、标准燃烧热5、热力学第三定律6、规定熵与标准熵 二、化学反应焓变的计算公式1、恒压反应焓与恒容反应焓的关系 p,m V,m BBQ Q (g)RT =+ν∑或 p ,m V ,mB BH U(g )RT ∆=∆+ν∑ 简写为: m m B BH U (g)RT ∆=∆+ν∑ 2、用f B H ∆$计算r m H ∆$: r m H ∆$(298K)=Bf B BH (298K)ν∆∑$3、由标准燃烧焓c m H ∆!的数据计算任一化学反应的标准反应焓r m H ∆!()r m H 298K ∆=$()B C m,B BH 298K -ν∆∑$4、计算任意温度下的r m H ∆!——基尔霍夫公式(1)微分式 r m B p,m p,m Bp H (T)C (B)C T ⎡⎤∂∆=ν=∆⎢⎥∂⎣⎦∑$(2)已知()r m H 298K ∆$求任意温度下的r m H ∆!当(),p m C B 表示式为形式: ()2,p m C B a bT cT =++ 时()()T2r mr m298K HTK H 298K (a bT cT )dT ∆=∆+∆+∆+∆⎰$$,积分得:()()()()2233r m r m b c H TK H 298K a T 298T 298(T 298)23∆∆∆=∆+∆-+-+-$$若令:230r m b c H H (298k)a 29829829823∆∆∆=∆-∆⨯-⨯-⨯$则: 23r m 0b C H (TK)H aT T T 23∆∆∆=∆+∆++$三、化学反应熵变的计算1、知道某一物质B 在298K 时的标准熵值,求该物质在任一温度时的标准熵值的公式()()(),,,298298TKm Bm Bp m K dT STK S K C B T=+⎰$$ 2、已知(),298m B S K $计算标准反应熵变r m S ∆$(298K)r m B m,B S (298k)S (298K)∆=ν∑$$3、任意温度 TK 时的标准反应熵变值r m S ∆$(TK )的计算r m S ∆$(TK )=r mS ∆$ (298K)+TKp,m 298KC dT T∆⎰式中,p m C ∆ 为产物与反应物的热容差, ,p m C ∆=(),Bp m BC B ν∑四、任意温度下化学反应吉布斯自由能的计算1、微分式 m m 2PG ()H T T T ⎡⎤∆∂⎢⎥∆=-⎢⎥∂⎢⎥⎢⎥⎣⎦$$2、不定积分式 'mm 2G H dT I T T∆∆=-+⎰$$ ('I 为积分常数) (1)、m H ∆$为常数时m mG H I T T∆∆=+$$或 m G ∆$=m H ∆$ +IT (2)、m H ∆$表示为温度的函数,且符合Kirchhoff 定律的形式:23m 0b c H (TK)H aT T T 23∆∆∆=∆+∆++$ 式中0H ∆为积分常数 20mH G 11a ln T bT cT I T T 26∆∆=-∆-∆-∆+$ 即 23m 011G (TK)H aT ln T bT cT IT 26∆=∆-∆-∆-∆+$。

物化第三章

物化第三章

恒温恒压 H2O(s), 1 kg
S = ?
263.15 K 100 kPa
可逆相变 0℃、100kPa下的凝固或熔化过程; 可逆判断 不可逆相变过程; 过程设计
H2O(l), 1 kg 263.15 K 100 kPa S1 H2O(l), 1 kg 273.15 K 100 kPa
T2 1 T 1 源自 Q2 > 1 Q 1

T2 Q 2 > T1 Q1
Q1 Q2 > T1 T2
δ Q2 δ Q1 0 (2)无限小循环: T2 T1
<0 不可逆循环 =0 可逆循环
(3)任意循环:
δQ T 0
3.3 熵、熵增原理
Siso S sys Samb 0

> 0 ir =0 r
※iso——隔离系统 ※sys——封闭系统 ※amb——环境
三、应用
封闭 1.应用:判断隔离系统过程的可逆性; 2.说明:一般认为环境内部无不可逆变化; →→封闭系统+环境=隔离系统
※隔离系统可逆→→封闭系统可逆;
※隔离系统不可逆→→封闭系统不可逆。
→→ΔSiso>0即封闭系统过程不可逆;
ΔSiso=0即封闭系统过程可逆;
熵增原理例题
0。 1.一隔离系统可逆变化中,ΔSsys> 0,ΔSamb < 0。 0,ΔU = 2.实际气体经历不可逆循环,ΔSsys =
0。 0,ΔU < 3.实际气体绝热可逆膨胀,ΔSsys = 0。 0, ΔSamb > 4.理想气体经不可逆循环,ΔSsys = 0。 0, ΔSamb > 5.过冷水结成同温度的冰,ΔSsys <

S
2
Qr
T
1

物理化学第三章热力学第二定律

物理化学第三章热力学第二定律

由下式计算在263.15K下的实际途径的凝固热:
H (T 2) H (T 1)T T 1 2 CpdT
26.13K 5
H(26.13K 5)H(27.13K 5)
(3.7 67.5 3)dT
27.13K 5
60 2(30.7 67.5 3)2 ( 6.13 527.13)5 J
56J4Q 3(系 ) 40
Second kind of perpetual motion machine
3
第三页,共49页
2. 两种表述是等效的。
证明
热量转化成功的最高效率是多少? 此即卡诺循环和卡诺定理。
第四页,共49页
卡诺循环
4
§3.2 卡 诺 循 环 Carnot cycle
1.热机: 就是通过工质(如气缸中的气体)从高温 热源吸热做功,然后向低温热源放热复原 ,如此循环操作,不断将热转化为功的机 器。
27
第二十七页,共49页
2.凝聚态物质变温过程熵变的计算
H 2O (l) H 2O (l)
101.325kPa 50℃
200kPa 100℃
QnCP,mdT,
dSQnCP,mdT TT
S T2nCp,mdT(液体或固体)变温
T1
T
TS0
(液体或 恒固 )温体
28
第二十八页,共49页
(4)理想气体的混合过程
凝聚态物质变温过程熵变的计算295传热过程例74理想气体的混合过程例6303相变熵的计算1可逆相变过程在无限趋近相平衡的条件下进行的相变化为可逆相变化平衡温度和平衡压力演示图片1312不可逆相变过程不可逆相变化
物理化学第三章热 力学第二定律
1
第一页,共49页

物理化学 第三章 相平衡

物理化学 第三章 相平衡

p实际 > p理想 →正偏差 , p实际 < p理想 →负偏差
p
l
pB*
p
l
pB* g+ l
pA*
g
A
pA*
g
B A
xB→
xB→
B
一般正偏差系
一般负偏差系
pA* < p < pB*, yB > xB
( 实验结果 )
正偏差很大 负偏差很大
Tb - xB图
Tbmin
p - x B图 p max
液 气
p - x B图 p min
不定积分,可得
lnp/p0 = -△Hm/RT + C 率-△Hm/R求相变热△Hm 。
可用实验数据绘制lnp/p0~1/T曲线,由斜

(实验一)
实验:水的汽化热的测定 H m 1 ln p I ln p ~1/T关系图 R T
直线的斜率
10.8 10.6 10.4
H m 5.5819 R H m 5.5819 8.314 46.41 kJ mol1
求水的汽化热有什么用? 联系克-克方程讨论一下。
y = -5.5819x + 26.561 2 R = 0.9959
lnp
10.2 10 9.8 9.6 9.4 9.2 2.8 2.85 2.9 2.95 3 3.05 3.1 3.15
0.66 p 40.67 103 1 1 ② ln ( ) p 8.314 373 T2
T2 361.5K 88.5 ℃
T1 = 373K p1 = pθ ΔHm=40.67 kJmol-1
2.32 p 40.67 103 1 1 ③ ln ( ) p 8.314 373 T2

物理化学 第3章 化学反应热力学

物理化学 第3章 化学反应热力学

B
• 物理意义:描述反应进行的程度。 量纲:mol
t1时刻:1 B nB (t1 ) nB (0) t 2时刻: 2 B nB (t 2 ) nB (0) ( 2 - 1 ) B nB (t 2 ) nB (t1 ) nB B 或: dnB B d

aA bB lL mM
O O O O O r Sm (T ) lS L (T ) mS M (T ) aS A (T ) bSB (T )
O O r Sm (T ) B SB (T ) f (T ) B
r Sm o (T ) 并非实际化学反应的熵变。 • (3)、
N 2 3H 2 2NH3 r H m (1)
2N 2 6H 2 4NH3
r H m (2)
r H m (2) 2 r H m (1)
r H m o ): 2、标准摩尔反应焓变(

(1)、定义:在等温、等压并且不做非体积功的 条件下,由处于标准态的反应物生成处于标准 态的产物,当系统进行了1mol反应时,系统的 焓变。 (2)、仅是温度的函数:
O O - a f H m ( A, , 298.15K ) b f H m ( B, , 298.15K )
O O r H m (T ) B f H m ( B) B

3、由标准摩尔燃烧焓计算:
• 定义:1mol物质在反应温度T、标准状态下完全燃
烧时的标准摩尔反应焓变。称为标准摩尔燃烧热 O 或标准摩尔燃烧焓,用符号 c Hm (B) 表示。
O f H m ( B) 符号:
单位:J· -1 或 kJ· -1 mol mol

物理化学-第三章化学平衡

物理化学-第三章化学平衡
c、当氨的组成等于0.482时氨的生 成与分解速度相同达到了动态 平衡
H2 N2
d GT ,P 0
0.482
ζ
NH3
本章学习的目的是: a、掌握热力学第二定律在化学反应中的应用。 b、了解各种因素对化学平衡的影响。 c、选择合适的反应条件,了解实际生产潜力。 本章学习的任务是: a、平衡常数、平衡转化率的计算 b、能够根据平衡常数和平衡转化率的公式,解释温度、压 力、惰性组分等因素对化学平衡的影响。
定时,标准平衡常数KӨ数值一定。
4. 理想气体化学反应等温式是一个桥梁公式。
ΔrGm = RTln
Qp KӨ
状态函数的变化 化学反应平衡常数
二. 平衡常数的表示法
1. 理想气体反应的标准平衡常数
( ) ( ) pC c pӨ eq
pD d pӨ eq
( ) ( ) KӨ =
pA a pӨ eq
pB b pӨ eq
pCc pDd pAa pBb =
令 KC =
CCc CDd CAa CBb
CCc CDd
[(c+d)–(a+b)]
CAa CBb •(RT)
=
则Kp = KC•(RT)Δν
CCc CDd CAa CBb
Δν
•(RT)
KC有量纲,量纲与Δν有关。 Kp是温度的函数,所以KC只与温度有关系。
(4) 用物质的量表示的平衡常数Kn
根据摩尔分数的定义,有Xi =
ni n总
( ) 由 Kp =
XCc XDd XAa XBb
Δν
•p =
nCc nDd nAa nBb

p n总
Δν
令 Kn =
nCc nAa

物理化学第三章化学平衡

物理化学第三章化学平衡
θ Δr Gm T T θ r m 2
• 代入Δr G =-RTlnKθ θ • 得: lnK
θ m
θ Δ H - r m T2 p
ΔH T p RT
θ θ • 若 Δr Hm 与温度无关,或温度变化范围较小, 可视为常数。 Δr Hm
反应自发向右进行,趋向 平衡 反应自发向左进行,趋向 平衡
=0 反应达到平衡
化学平衡的实质,从动力来看,是正、 逆反应的速率相等:从热力学来看, 是产物的化学势总和等于发育物化学 势的总合。
ΔG
G T, p r m ξ
vBuB 0
B
严格讲,反应物与产物处于统一 体系的反应都是可逆的,不能进 行到底。
• 二、反应的方向和平衡的条件
• 设某不做非膨胀功的封闭系统有一化学反应, • aA + dD = gG + hH • 在等温等压下,若上述反应向右进行了无限小量的反应,此时体 系的吉氏函数为: • dG(T,p) uBdnB

B

dG(T , p ) uBvBdξ ( vBuB )dξd
vB
• 这时Kθ、Kc、Kx 均只是与温度有关。
第三节 平衡常数的计算
• (一)平衡常数的测定和平衡转化率的计算
• 1.平衡常数的测定
• ① 如果外界条件不变,体系中各物质的浓度不随时间改变,表明体系达到平衡。
• ②从反应物开始正向进行方向或者从产物开始逆向进行反应,若测得的平衡常数相同
• 表明体系已达到平衡。 • ③改变参加反应各物质的初浓度,若多得平衡常数相同,表明体系已达到平衡。 A
• 对第二式不定积分,有:

物理化学-第三章热力学第二定律

物理化学-第三章热力学第二定律
2020/10/7
Carnot定理推论的意义:
把理想气体进行Carnot循环所得结论,推广到其他 工作物质。
引入不等号的意义
I R
就是这个不等号,推广到其他物理和化 学过程,解决了热力学判断变化方向和限 度的问题。
2020/10/7
例:设某蒸气机的高温热源用的是过热蒸
汽,T1=800 K,低温热源是空气,T2=
由式(iii),(iv)有
V2 V3 V1 V4
Q1
Q2
nR(T1
T2 )ln
V2 V1
(v)
W Q1 Q2 T1 T2
Q1
Q1
T1

可逆热机 效率:
η
W Q1
Q1 Q2 Q1
T1 T2 T1
结论:1)理想气体卡诺热机的效率η只与两个热源
的温度(T1,T2)有关,温差愈大,η愈大。
300 K,则该热机的最高效率是?
解: T1 T2 0.625
T1
2020/10/7
冷冻系数P91
2020/10/7
Qc Tc
W Th Tc
冷冻系数表示每施一个单位的功 于制冷机从低温热源中所吸收热 的单位数。(卡诺热机倒开)
3.4 熵的概念
从Carnot循环得到的重要关系式
W 1 TC
3. 结论:自然界中发生的一切实际过程都有一定的 方向和限度。不可能自发按原过程逆向进行,即自
然界中一切实际发生的过程都是不可逆的。
4、热力学第二定律的经典表述
克劳休斯说法:不可能把热由低温物体转移到高 温 物体,而不产生其它影响。
开尔文说法: 不可能从单一热源吸热使之完全变
为功,而不产生其它影响。
2020/10/7

物理化学复习 第三章

物理化学复习 第三章
1. 恒温过程 T系统=T环
山东科技大学
dA T W ; 或 AT W
可逆过程: dA T WR; 或 AT WR
★ 恒温过程中系统 A 的减小值等于可逆过程中系统所做的功。 ★ 恒温可逆过程中系统做最大功—最大功原理。 ★ A 可以看作系统做功的能力—功函。
第三章 热力学第二定律
山东科技大学
如两相达到相平衡时,在相同T、P时,则相同组份在两相 中化学势必然相等,如一相中化学势大于另一相,则从高 的向低的转移直到相等。 3)理想气体混合物的化学势: 对于1mol纯理想气体组份,在T下从标准态压力p0恒温变 压至p时,其化学势μ0(Pg,T,p0)变至μ*(Pg,T,p)则二者 之间关系为: μ*(Pg,T,p) =μ0 (Pg,T,p0)+RTln(p/p0). 上述简写: μ* =μ0+RTln(p/p0).
X i dni
第三章 热力学第二定律
偏摩尔量的物理意义 (1) 偏摩尔量是一个变化率。

山东科技大学
向 T,p,n j≠i 恒定的多组分系统中加入 dni (mol )的i 物质,广延性质X增加dX, 偏摩尔量为 dX / dni 。 (2) 偏摩尔量是一个增量。 向 T,p,n j≠i 恒定的无限大多组分系统 中加入 1 mol 的i 物质,广延性质X增加ΔX, 偏摩尔量为 Δ X 。 (3) 偏摩尔量是一个实际的摩尔贡献量。 偏摩尔量是1 mol 的i 物质对T,p,n j≠i 恒定的多组分系统的广延 性质X的实际贡献量。
2.液体或固体恒压变温过程
S nCp,m ln(T2 / T1 )
第三章 热力学第二定律
4.环境熵变与隔离体系熵变:
山东科技大学
因环境是一个无限大的热源,与体系换热不会对其压力 和温度有影响,因此与体系换热引起的环境熵变为: △S环境=Q环/T=-Q体系/T; △S隔离 =△S环境+ △S体系;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

返回2018/Biblioteka 0/151.环境熵变的计算
环境恒温:
dSamb
Qamb Tamb
Samb
Qamb Qsys Tamb Tamb
环境非恒温:
Samb
2
Qr
T
1

Tamb
Tamb
Tamb Qamb mc dT m cln m cln(1 ) T Tamb m cT amb
V 2 V3 相除得 V1 V4
所以
V2 V4 Q1 Q2 nRT1 ln nRT2 ln V1 V3 V2 nR(T1 T2 )ln V1
上一内容
下一内容
回主目录
返回
2018/10/15
§3.1 卡诺循环(Carnot cycle)
整个循环:
U 0
W W1 W2
上一内容
下一内容
回主目录
返回
2018/10/15
5.克劳修斯不等式
设有一个循环, 1 2 为不可逆过程,2 1 为可逆过程,整个循环为不可逆循环。 1 则有
1 Q Qir r 1 T 2 T 0 2 Q 2 Q 2 Q r ir r 1 T 1 T 1 T S 2
返回
2018/10/15
3.熵
上一内容
下一内容
回主目录
返回
2018/10/15
3.熵
任意可逆循环热温商的加和等于零,即:
Qr )0 ( T

Qr ( T )0
上一内容
下一内容
回主目录
返回
2018/10/15
3.熵
用一闭合曲线代表任意可逆循环。 在曲线上任意取1,2两点,把循环分成12和 21两个可逆过程。 1 根据任意可逆循环热温商的公式:
2 任意可逆过程
返回
上一内容
下一内容
回主目录
2018/10/15
3.熵
Clausius根据可逆过程的热温商值决定于始终态而 与可逆过程无关这一事实定义了“熵”(entropy) 这个函数,用符号“S”表示,单位为: J K 1 设始态1、终态2的熵分别为S1和S2,则:
S 2 S1 S
S
T2
T1
T2 nC p ,m dT Qr T1 T T
可以证明当压力改变不大时,上式近似适用。
> = 自发 平衡
系统
环境
隔离系统
返回
2018/10/15
上式也称为熵判据。
上一内容 下一内容 回主目录
§3.4 单纯pVT变化熵变的计算
• • • •
环境熵变的计算 凝聚态物质变温过程熵变的计算 气体恒容变温、恒压变温过程熵变的计算 理想气体pVT变化过程熵变的计算
上一内容
下一内容
回主目录
dS …0
如果是一个隔离系统,环境与系统间既无热 的交换,又无功的交换,则熵增加原理可表述为: 一个隔离系统的熵永不减少。
上一内容 下一内容 回主目录
返回
2018/10/15
6.熵判据——熵增原理
对于非绝热系统,有时把与系统密切相关的环 境也包括在一起,作为隔离系统:
Siso Ssys Samb …0 dSiso dSsys dSamb …0
W Q Q1 Q2
(W ' W '')
即ABCD曲线所围面积为 热机所作的功。
上一内容
下一内容
回主目录
返回
2018/10/15
§3.1 卡诺循环(Carnot cycle)
上一内容
下一内容
回主目录
返回
2018/10/15
§3.1 卡诺循环(Carnot cycle)
返回
2018/10/15
Q2 T2 1 1 Q1 T1
上一内容
Q1 Q2 T1 T2
回主目录
下一内容
§3.2 热力学第二定律
•自发过程举例
•自发过程逆向进行必须消耗功 •自发过程的共同特征 •热力学第二定律
上一内容
下一内容
回主目录
返回
2018/10/15
1.自发过程举例
上一内容 下一内容 回主目录
不可逆循环
Q1 Q2 0 T1 T2
返回
2018/10/15
1.卡诺定理
Q1 Q2 „ 0 T1 T2 Q1 Q2 „ 0 T1 T2
< 不可逆循环 = 可逆循环
< 不可逆循环
= 可逆循环
卡诺定理的意义:(1)引入了一个不等号ir r , 原则上解决了化学反应的方向问题;( 2)解决了热 机效率的极限值问题。
回主目录
T2
上一内容
下一内容
返回
§3.1 卡诺循环(Carnot cycle)
上一内容
下一内容
回主目录
返回
2018/10/15
§3.1 卡诺循环(Carnot cycle)
上一内容
下一内容
回主目录
返回
2018/10/15
§3.1 卡诺循环(Carnot cycle)
上一内容
可逆过程,用“>”号,可逆过程用“=”号,这 时环境与系统温度相同。 这些 Clausius 不等式,也可作为热力学第二 定律的数学表达式。
上一内容 下一内容 回主目录
返回
2018/10/15
6.熵判据——熵增原理
对于绝热系统, Q 0 ,所以Clausius 不等式为
> 不可逆 = 可逆 熵增原理可表述为:在绝热条件下,系统发 生不可逆过程,其熵增加。或者说在绝热条件下, 不可能发生熵减少的过程。
返回
2018/10/15
§3.1 卡诺循环(Carnot cycle)
1mol 理想气体的卡诺循环在pV图上可以分为四步:
上一内容
下一内容
回主目录
返回
2018/10/15
§3.1 卡诺循环(Carnot cycle)
P1 ,V1 恒温可逆膨胀
U1= 0 Q1 = –W1= nRT1ln(V2 /V1)
1824 年,法国工程师 N.L.S.Carnot (1796~1832)设计 了一个循环,以理想气体为
工作物质,从高温 (T1 )热源吸
收 Q1 的热量,一部分通过理 想热机用来对外做功W,另一 部分 Q2 的热量放给低温 (T2 ) 热 源。这种循环称为卡诺循环。
上一内容 下一内容 回主目录
2 1
Qr ( ) T
对微小变化
Qr dS T
T为系统的温度
这几个熵变的计算式习惯上称为熵的定义式, 即熵的变化值可用可逆过程的热温商值来衡量。
上一内容 下一内容 回主目录
返回
2018/10/15
4.熵的物理意义
熵是物质的性质 (T,p,V,U,H,S,...) 是状态函数,广度量,熵是一个宏观的物理量。 熵是量度系统无序的函数,无序度增大的过程 是熵增大的过程。
将两式合并得 Clausius 不等式:
2
Q S … 1 T
2
上一内容
> 不可逆 = 可逆
回主目录
Q dS … T
返回
> 不可逆 = 可逆
2018/10/15
下一内容
5.克劳修斯不等式
Q S … 1 T
2
> 不可逆 = 可逆
Q dS … T
> 不可逆 = 可逆
Q 是实际过程的热效应,T是环境温度。若是不
卡诺定理:所有工作于同温热源和同温冷源之间的热 机,其效率都不能超过可逆机,即可逆机的效率最大。 ir< r
Q1 Q2 Q2 ir 1 Q1 Q1
r
Q1,r Q2,r Q1,r
T1 T2 T2 1 T1 T1
Q2 T2 所以 1 1 Q1 T1 Q2 T2 Q2 Q1 Q1 T1 T2 T1
自发变化 某种变化有自动发生的趋势,一旦发生 就无需借助外力,可以自动进行,这种变化称为自 发变化。 (1)热量从高温物体传入低温物体过程 (2)高压气体向低压气体的扩散过程 (3)溶质自高浓度向低浓度的扩散过程 (4)锌与硫酸铜溶液的化学反应
上一内容
下一内容
回主目录
返回
2018/10/15
Qr ( T )0 可分成两项的加和
b a 2

2
1
1 Q Qr ( )a ( r ) b 0 2 T T
下一内容 回主目录
上一内容
返回
2018/10/15
3.熵
移项得:
2 Q Qr r ( ) ( ) a 1 T 1 T b 2
1
b
a
说明任意可逆过程的热温 商的值决定于始终状态,而 与可逆途径无关,这个热温 商具有状态函数的性质。
§3.7 §3.8
上一内容
亥姆霍兹函数和吉布斯函数 热力学基本方程
返回
下一内容
回主目录
2018/10/15
第三章
热力学第二定律
§3.9
克拉佩龙方程
§3.10 吉布斯-亥姆霍兹方程和麦克斯韦关系式
上一内容
下一内容
回主目录
返回
2018/10/15
§3.1 卡诺循环(Carnot cycle)
上一内容 下一内容 回主目录
返回
2018/10/15
4. 热力学第二定律
克劳修斯(Clausius)的说法:“不可能把热从低 温物体传到高温物体,而不引起其它变化。”
开尔文(Kelvin)的说法:“不可能从单一热源取出 热使之完全变为功,而不发生其它的变化。” 后来 被奥斯特瓦德(Ostward)表述为:“第二类永动机是 不可能造成的”。
相关文档
最新文档