成考大纲:高起专数学
成人高考高起点《数学》考试大纲(文史类)
年成人高考高起点《数学》考试大纲文史财经类1代数1.1集合和简易逻辑1 .了解集台的意义及其表示方法,了解空集、全集、子集、交集并集、补集的概念及其表示方法,了解符号?,=,∈,?的含义,并能运用这些符号表示集合与集合、元素与集合的关系2.了解充分条件、必要条件、充分必要条件的概念1.2函数1.了解函数概念,会求一些常见函数的定义域2.了解函数的单调性和奇偶性的概念,会判断一些常见函数的单调性和奇偶性3.理解一次性函数、反比例函数的概念,掌握它们的图象和性质,会求它们的解析式。
4.理解二次函数的概念,掌握它的图象和性质以及函数y=ax+bx+c(a≠0)与y=ax2 (a#0)的图象间的关系,会求二次函数的解析式及最大值或最小值,能运用二次函数的知识解决有关问题5.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质。
6.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质1.3不等式和不等式组l.了解不等式的性质,会解一元-次不等式、一元一次不等式组和可化为一元一次不等式组的不等式,舍解一元二次不等式。
会表示不等式或不等式组的解集2.会解形如|ax+b|≥c和|ax+b|≤c的绝对值不等式1.4数列1.了解数列及其通项、前n项和的概念2.理解等差数列、等差中项的概念,会运用等差数列的通项公式前n项和公式解决有划题3.理解等比数列、等比中项的概念,会运用等比数列的通项公式、前n项和公式解决有关问题1.5导数1.理解导数的概念及其几何意义2.掌握面数y=c(c为常数).y=x2“(n∈N+)的导数公式,会求多项式函数的导数3.了解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值4.会求有关曲线的切线方程,会用导数求简单实际问题的最大值与最小值2三角2.1三角函数及其有关概念1.了解任意角的概念,理解象限角和终边相同的角的概念2.了解弧度的概念,会进行弧度与角度的换算3.理解任意角三角函数的概念,了解三角函数在各象限的符号和特殊角的三角函数值2.2三角函数式的变换l.掌握同角三角函数间的基本关系式、诱导公式,会运用它们进行计算、化简和证明。
2025年成人高考成考(高起专)数学(文科)试卷及答案指导
2025年成人高考成考数学(文科)(高起专)复习试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、设f(x) = (x - 2)^2 - 3,求函数f(x)的对称轴方程。
A. x = 2B. y = 2C. x = 3D. y = 12、已知函数(f(x)=x2−3x+2),则该函数的最小值为:A. -1/4B. 1/4C. -5/4D. 5/43、在下列各数中,不是有理数的是()A、-2.5B、0.3333…(无限循环小数)C、√4D、π4、若集合A={x | -2 ≤ x < 3},集合B={x | x > 1},则A∩B等于()。
A、{-2, -1, 0, 1}B、{x | 1 < x < 3}C、{x | -2 ≤ x < 1}D、{x | x > -2}5、若函数(f(x)=x 2−4x−2)在(x=2)处有定义,则(f(2))的值为:A. 2B. 4C. 无定义D. 16、已知函数(f(x)=x2−3x+2),若(f(a)=0),则(a)的值为?A. 1B. 2C. 1 或 2D. 无解7、下列函数中,定义域为全体实数的函数是()A.(f(x)=√x2−4)B.(g(x)=1x2−1)C.(ℎ(x)=ln(x+2))D.(k(x)=√xx)8、若集合 A = {x | x^2 - 3x + 2 = 0},集合 B = {x | 2x - 4 = 0},则 A ∩B = ( )A. {1}B. {2}C. {1, 2}D. ∅9、已知圆的方程为(x2+y2=16),点(A)的坐标为((4,0)),点(B)的坐标为((0,4))。
则直线(AB)的方程是:A.(x+y=8)B.(x−y=8)C.(x+y=0)D.(x−y=0)10、已知函数(f(x)=x2−4x+3),则该函数图像与(x)轴的交点坐标为:A. (1,0), (3,0)B. (-1,0), (3,0)C. (1,0), (-3,0)D. (-1,0), (-3,0)11、若函数f(x)=x3−3x+2在x=1处的切线斜率为:A. 0B. 3C. -3D. 612、如果函数f(x)=2x2−3x+1,则f′(x)为()。
2023成人高考高等数学(二)考试大纲
2023成人高考高等数学(二)考试大纲一、考试性质成人高等学校招生全国统一考试是我国成人高等学校选拔合格新生的重要途径。
高等数学(二)是成人高考理工类、经管类各专业的一门重要基础课,也是成人高考入学考试的必考科目之一。
二、考试目标1. 测试考生应具备的基本数学基础知识和基本能力。
2. 测试考生对数学基本概念、基本原理和常用数学方法的理解和掌握程度。
3. 测试考生运用所学数学知识分析问题、解决问题的能力。
4. 测试考生应具备的数学思维能力和创新意识。
三、考试内容与要求(一)函数、极限与连续1. 理解函数的概念,掌握函数的表示方法和函数的单调性、奇偶性、周期性和对称性。
2. 理解分段函数的概念,会求分段函数的函数值。
3. 理解函数的极限,掌握函数极限的运算方法和性质。
4. 理解函数连续性的概念,会判断函数的连续性和间断点类型。
5. 了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)。
(二)一元函数微分学1. 理解导数的概念及几何意义,会求平面曲线的切线方程,理解导数的物理意义及几何意义。
2. 掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。
3. 了解微分的概念,会求函数的微分,了解微分在近似计算中的应用。
4. 理解罗尔定理、拉格朗日中值定理及它们的简单应用。
5. 掌握用导数判断函数的单调性及求函数的极值和最值的方法。
6. 了解曲率和曲率半径的概念,会求曲线的曲率和曲率半径。
(三)一元函数积分学1. 理解原函数和不定积分的概念,掌握不定积分的基本公式和积分方法。
2. 了解定积分的概念和几何意义,会求定积分,了解定积分的性质和基本公式。
3. 掌握不定积分和定积分的换元积分法和分部积分法。
4. 了解无穷区间上的反常积分,会求反常积分的值。
5. 掌握一元函数积分学的几何应用和物理应用。
(四)向量代数与空间解析几何1. 理解向量的概念,掌握向量的加法、数乘和向量的模运算,理解向量的数量积、向量积和向量混合积的概念,并能正确计算向量的数量积、向量积和向量混合积。
全国各类成人高等学校招生复习考试大纲专升本高等数学
全国各类成人高等学校招生复习考试大纲专升本高等数学The latest revision on November 22, 2020附录三全国各类成人高等学校专升本招生复习考试大纲高等数学(一)本大纲适用于工学、理学(生物科学类、地理科学类、环境科学类、心理学类等四个一级学科除外)专业的考生。
总要求考生应按本大纲的要求,了解或理解“高等数学”中极限和连续、一元函数微分学、一元函数积分学、空间解析几何、多元函数微积分学、无穷级数、常微分方程的基本概念与基本理论;学会、掌握或熟练掌握上述各部分的基本方法.应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力、空间想像能力;能运用基本概念、基本理论和基本方法正确地推理证明,准确地计算;能综合运用所学知识分析并解决简单的实际问题。
本大纲对内容的要求由低到高,对概念和理论分为“了解”和“理解”两个层次;对方法和运算分为“会”、“掌握”和“熟练掌握”三个层次。
复习考试内容一、极限和连续(一)极限1.知识范围(1)数列极限的概念与性质数列极限的定义唯一性有界性四则运算法则夹逼定理单调有界数列极限存在定理(2)函数极限的概念与性质函数在一点处极限的定义左、右极限及其与极限的关系 x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限唯一性四则运算法则夹逼定理(3)无穷小量与无穷大量无穷小量与无穷大量的定义无穷小量与无穷大量的关系无穷小量的性质无穷小量的比较(4)两个重要极限,2.要求(1) 理解极限的概念(对极限定义中“”、“”、“”等形式的描述不作要求)。
会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件.(2)了解极限的有关性质,掌握极限的四则运算法则.(3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与尤穷大量的关系.会进行无穷小量阶的比较(高阶、低阶、同阶和等价).会运用等价无穷小量代换求极限.(4)熟练掌握用两个重要极限求极限的方法.(二)连续1.知识范围(1)函数连续的概念函数在一点处连续的定义左连续和右连续函数在一点连续的充分必要条件函数的间断点(2)函数在一点处连续的性质连续函数的四则运算复合函数的连续性反函数的连续性(3)闭区间上连续函数的性质有界性定理最大值与最小值定理介值定理(包括零点定理)(4)初等函数的连续性2.要求(1)理解函数在一点处连续与间断的概念,理解函数在——点处连续与极限存在的关系,掌握函数(含分段函数)在一点处的连续性的方法.(2)会求函数的间断点.(3)掌握在闭区间上连续函数的性质,会用介值定理推证一些简单命题.(4)理解初等函数在其定义区间上的连续性,会利用连续性求极限.二、一元函数微分学(一)导数与微分1.知识范围(1)导数慨念导数的定义左导数与右导数函数在一点处可导的充分必要条件导数的几何意义与物理意义可导与连续的关系(2)求导法则与导数的基本公式导数的四则运算反函数的导数导数的基本公式(3)求导方法复合函数的求导法隐函数的求导法对数求导法由参数方程确定的函数的求导法求分段函数的导数(4)高阶导数高阶导数的定义高阶导数的计算(5)微分微分的定义微分与导数的关系微分法则一阶微分形式不变性2.要求(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,掌握用定义求函数在一点处的导数的方法(2)会求曲线上一点处的切线方程与法线方程.(3)熟练掌握导数的基本公式、四则运算法则及复合函数的求导方法,会求反函数的导数(4)掌握隐函数求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数.(5)理解高阶导数的概念,会求简单函数的n阶导数.(6)理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分.(二)微分中值定理及导数的应用1.知识范围(1)微分中值定理罗尔(Rolle)定理拉格朗日(Lagrange)中值定理(2)洛必达(L'Hospital)法则(3)函数增减性的判定法(4)函数的极值与极值点最大值与最小值(5)曲线的凹凸性、拐点(6)曲线的水平渐近线与铅直渐近线2.要求(1)理解罗尔定理、拉格朗日中值定理及它们的几何意义.会用拉格朗日中值定理证明简单的不等式.(2)熟练掌握用洛必达法则求,型未定式的极限的方法.(3)掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的单调性证明简单的不等式.(4)理解函数极值的概念.掌握求函数的驻点、极值点、极值、最大值与最小值的方法,会解简单的应用问题.(5)会判断曲线的凹凸性,会求曲线的拐点.(6)会求曲线的水平渐近线与铅直渐近线.三、一元函数积分学(一)不定积分1.知识范围(1)不定积分原函数与不定积分的定义原函数存在定理不定积分的性质(2)基本积分公式(3)换元积分法第一换元法(凑微分法) 第二换元法(4)分部积分法(5)一些简单有理函数的积分2.要求(1)理解原函数与不定积分的概念及其关系,掌握不定积分的性质,了解原函数存在定理(2)熟练掌握不定积分的基本公式.(3)熟练掌握不定积分第一换元法,掌握第二换元法(限于三角代换与简单的根式代换).(4)熟练掌握不定积分的分部积分法.(5)会求简单有理函数的不定积分.(二)定积分1.知识范围(1)定积分的概念定积分的定义及其几何意义可积条件(2)定积分的性质(3)定积分的计算变上限积分牛顿—莱布尼茨(Newton-Leibniz)公式换元积分法分部积分法(4)无穷区间的广义积分(5)定积分的应用平面图形的面积旋转体的体积2.要求(1)理解定积分的概念及其几何意义,了解函数可积的条件.(2)掌握定积分的基本性质.(3)理解变上限的积分是变上限的函数,掌握对变上限积分求导数的方法.(4)熟练掌握牛顿一莱布尼茨公式.(5)掌握定积分的换元积分法与分部积分法.(6)理解无穷区间的广义积分的概念,掌握其计算方法.(7)掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体的体积四、空间解析几何(一)平面与直线1.知识范围(1)常见的平面方程点法式方程一般式方程(2)两平面的位置关系(平行、垂直)(3)空间直线方程标准式方程(又称对称式方程或点向式方程) 一般式方程(4)两直线的位置关系(平行、垂直)(5)直线与平面的位置关系(平行、垂直和直线在平面上)2.要求(1)会求平面的点法式方程、一般式方程.会判定两平面的垂直、平行(2)了解直线的一般式方程,会求直线的标准式方程.会判定两直线平行、垂直.(3)会判定直线与平面间的关系(垂直、平行、直线在平面上).(二)简单的二次曲面1.知识范围球面母线平行于坐标轴的柱面旋转抛物面圆锥面椭球面2.要求了解球面、母线平行于坐标轴的柱面、旋转抛物面、圆锥面和椭球面的方程及其图形.五、多元函数微积分学(一)多元函数微分学1.知识范围(1)多元函数多元函数的定义二元函数的几何意义二元函数极限与连续的概念(2)偏导数与全微分偏导数全微分二阶偏导数(3)复合函数的偏导数(4)隐函数的偏导数(5)二元函数的五条件极值与条件极值2.要求(1)了解多元函数的概念、二元函数的几何意义.会求二元函数的表达式及定义域.了解二元函数的极限与连续概念(对计算不作要求).(2)理解偏导数概念,了解偏导数的几何意义,了解全微分概念,了解全微分存在的必要条件与充分条件.(3)掌握二元函数的一、二阶偏导数计算方法.(4)掌握复合函数一阶偏导数的求法.(5)会求二元函数的全微分.(6)掌握由方程F(x,y,z)=0所确定的隐函数z=z(x,y)的一阶偏导数的计算方法.(7)会求二元函数的五条件极值.会用拉格朗日乘数法求二元函数的条件极值.(二)二重积分1.知识范围(1)二重积分的概念二重积分的定义二重积分的几何意义(2)二重积分的性质(3)二重积分的计算(4)二重积分的应用2.要求(1)理解二重积分的概念及其性质.(2)掌握二重积分在直角坐标系及极坐标系下的计算方法.(3)会用二重积分解决简单的应用问题(限于空间封闭曲面所围成的有界区域的体积、平面薄板的质量).六、无穷级数(一)数项级数1.知识范围(1)数项级数数项级数的概念级数的收敛与发散级数的基本性质级数收敛的必要条件(2)正项级数收敛性的判别法比较判别法比值判别法(3)任意项级数交错级数绝对收敛条件收敛莱布尼茨判别法2.要求(1)理解级数收敛、发散的概念.掌握级数收敛的必要条件,了解级数的基本性质.(2)会用正项级数的比值判别法与比较判别法.(3)掌握几何级数、调和级数与P级数的收敛性.(4)了解级数绝对收敛与条件收敛的概念,会使用莱布尼茨判别法.(二)幂级数1.知识范围(1)幂级数的概念收敛半径收敛区间(2)幂级数的基本性质(3)将简单的初等函数展开为幂级数2.要求(1)了解幂级数的概念.(2)了解幂级数在其收敛区间内的基本性质(和、差、逐项求导与逐项积分).(3)掌握求幂级数的收敛半径、收敛区间(不要求讨论端点)的方法.(4)会运用头的麦克劳林(Maclaurin)公式,将一些简单的初等函数展开为或-的幂级数.七、常微分方程(一)一阶微分方程1.知识范围(1)微分方程的概念微分方程的定义阶解通解初始条件特解(2)可分离变量的方程(3)一阶线性方程2.要求(1)理解微分方程的定义,理解微分方程的阶、解、通解、初始条件和特解.(2)掌握可分离变量方程的解法.(3)掌握一阶线性方程的解法.(二)二阶线性微分方程1.知识范围(1)二阶线性微分方程解的结构(2)二阶常系数齐次线性微分方程(3)二阶常系数非齐次线性微分方程2.要求(1)了解二阶线性微分方程解的结构.(2)掌握二阶常系数齐次线性微分方程的解法.(3)掌握二阶常系数非齐次线性微分方程的解法[自由项限定为,其中为的次多项式,为实常数].考试形式及试卷结构试卷总分:150分考试时间:150分钟考试方式:闭卷,笔试试卷内容比例:极限和连续约13%一元函数微分学约25%一元函数积分学约25%多元函数微积分(含空间解析几何) 约20%无穷级数约7%常微分方程约10%试卷题型比例:选择题约27%填空题约27%解答题约46%试题难易比例:容易题约30%中等难度题约50%。
成考数学(文科)成人高考(高起专)试题及解答参考(2025年)
2025年成人高考成考数学(文科)(高起专)复习试题(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、若函数f(x)=x2−4x+5在x=2处取得极值,则该极值为:()A.−1B.0C.1D.32、若函数f(x) = x^3 - 3x^2 + 4x在区间[1,2]上连续,且f’(x) = 3x^2 - 6x + 4,则f(x)在区间[1,2]上的极值点为:A. 1B. 1.5C. 2D. 无极值点3、在下列各数中,既是质数又是合数的是()A、4B、6C、9D、154、在下列各数中,最小的负整数是()A、-1.5B、-3C、-2D、-2.35、若函数(f(x)=x2−4x+3)的图像与(x)轴交于点(A)和(B),则(AB)的长度是:A. 2B. 3C. 4D. 56、在下列各数中,绝对值最小的是:A、-2B、0C、2D、-37、下列函数中,在其定义域内连续的函数是())A.(f(x)=xxB.(g(x)=√x2)C.(ℎ(x)=|x|))D.(k(x)=1x8、在下列各数中,既是整数又是无理数的是()A、√4B、πC、0.25D、-1/29、下列各数中,有理数是:A、√2B、πC、−3√5D、3210、已知函数(f(x)=2x3−3x2+4),求函数的极值点。
A.(x=−1)B.(x=1)C.(x=0)D.(x=2)11、若函数f(x)=lnx的图像上一点A(x0,lnx0),那么该点的切线斜率为:A.1B.1x0C.1x0−1D.1x0+112、在下列各数中,哪个数是无限循环小数?A、0.333…B、0.444…C、0.666…D、0.777…二、填空题(本大题有3小题,每小题7分,共21分)1、若函数(f(x)=√2x+3−x)的定义域为(A),则(A)的取值范围是______ 。
2、若函数(f(x)=2x3−3x2+2)在(x=1)处的切线斜率为 4,则(f′(1))的值为______ 。
成人高考数学科目考试大纲
成人高考数学科目考试大纲关键信息项:1、考试科目:数学2、考试形式:闭卷、笔试3、考试时间:具体时长4、考试内容:代数、三角、平面解析几何、立体几何、概率与统计初步11 代数111 集合和简易逻辑理解集合、子集、交集、并集、补集的概念。
了解空集和全集的意义。
了解属于、包含、相等关系的意义。
掌握有关的术语和符号,并会用它们正确表示一些简单的集合。
理解充分条件、必要条件、充分必要条件的概念。
112 函数理解函数的概念。
会求函数的定义域、值域和解析式。
理解函数的单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法。
理解反函数的概念,会求一些简单函数的反函数。
理解分数指数幂的概念,掌握有理指数幂的运算性质。
掌握指数函数的概念、图像和性质。
理解对数的概念,掌握对数的运算性质。
掌握对数函数的概念、图像和性质。
113 不等式和不等式组理解不等式的性质,会解一元一次不等式、一元一次不等式组和可化为一元一次不等式组的不等式。
会解一元二次不等式。
了解区间的概念,会在数轴上表示不等式或不等式组的解集。
114 数列理解数列的概念,了解数列通项公式的意义。
了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。
理解等差数列的概念,掌握等差数列的通项公式与前 n 项和公式,并能解决简单的实际问题。
理解等比数列的概念,掌握等比数列的通项公式与前 n 项和公式,并能解决简单的实际问题。
12 三角121 三角函数及其有关概念了解任意角的概念,理解象限角和终边相同的角的概念。
了解弧度的概念,会进行弧度与角度的换算。
理解任意角三角函数(正弦、余弦、正切)的定义,掌握同角三角函数的基本关系式,掌握正弦、余弦的诱导公式,了解周期函数与最小正周期的意义。
122 三角函数式的变换掌握两角和与差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式。
能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明。
123 三角函数的图像和性质掌握正弦函数、余弦函数的图像和性质,会用“五点法”画正弦函数、余弦函数的简图。
2023成人高考高数一考试大纲
2023成人高考高数一考试大纲一、考试性质成人高等教育高起本、高起专统一考试(以下简称成人高考)是评价我国成人高等学校高中起点本科生和专科起点本科生教育教学质量的一项重要手段,是成人高等教育高起本、高起专统一招生录取的依据。
二、考试科目与内容成人高考高起本、高起专考试按文科、理科分别设置统考科目。
语文、数学(文/理)、外语(英语/日语/俄语)是公共科目。
外语科目分英语、日语、俄语三个语种,由考生根据报考学校招生专业要求选择一种。
其中,数学分文科类、理科类两种,外语(英语/日语/俄语)分英、日、俄三种,由考生根据报考学校招生专业要求选择一种,高起本统一考试科目(各科满分成绩均为150分,命题依据和参考教材详见附件2):1. 文科类(含外语类):语文、数学(文科)、外语、历史地理综合课(简称史地)。
2. 理科类(含体育类):语文、数学(理科)、外语、物理化学综合课(简称理化)。
三、考试形式与时限考试形式:闭卷,笔试。
试卷满分均为150分。
(注:除高起本层次专业课加试外,其他加试科目不分文理科,一律为闭卷,不携带计算器。
)时限:语文为150分钟,数学和外语均为120分钟。
四、试卷结构与内容比例1. 语文:语文知识与运用、阅读理解与分析、现代文作文。
其中,语文知识与运用约占40%,阅读理解与分析约占30%,现代文作文约占30%。
2. 数学(文科):数学基础知识和运用、代数和三角知识及运用、几何知识及运用。
其中,数学基础知识和运用约占40%,代数和三角知识及运用约占30%,几何知识及运用约占30%。
3. 数学(理科):数学基础知识和运用、代数和三角知识及运用、几何知识及运用。
其中,数学基础知识和运用约占40%,代数和三角知识及运用约占30%,几何知识及运用约占30%。
4. 外语(英语):语音与语法知识、阅读理解与翻译、写作。
其中,语音与语法知识约占30%,阅读理解与翻译约占40%,写作约占30%。
5. 历史地理综合课(简称史地):历史知识与运用、地理知识与运用。
2024年成人高考成考(高起专)数学(文科)试题及答案指导
2024年成人高考成考数学(文科)(高起专)模拟试题(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、已知函数f(x)=2x2−3x+1,则该函数的导数f′(x)为:A.4x−3B.2x−3C.4x+1D.2x+12、在下列各数中,绝对值最小的是()A、-3/2B、-1/2C、3/2D、1/23、若一个正方形的边长增加其原长的25%,则新正方形的面积比原来增加了多少百分比?A、50%B、56.25%C、75%D、100%4、在下列各数中,不是有理数的是:A、-5.25B、√16C、πD、0.35、已知直线(l)的方程为(2x−3y+6=0),则直线(l)的斜率是多少?)A、(23)B、(32)C、(−23)D、(−326、下列函数中,定义域为全体实数的是()A、f(x) = √(x+1)B、f(x) = √(x^2 - 4)C、f(x) = 1 / (x-2)D、f(x) = 1 / (x^2 + 1)7、设函数f(x)=2x2−3x+1,则该函数的最小值为()。
A.−18B.18C.−1D.1),则下列说法正确的是:8、若函数(f(x)=3x2−2x+1)的图像的对称轴为(x=13A.(f (0)=f (1))B.(f (0)=f (−13))C.(f (13)=f (−13))D.(f (0)+f (1)=2f (13))9、若直线(l )的方向向量为((3,−4)),则直线(l )的斜率为:A.(34)B.(−34)C.(43)D.(−43)10、在下列各数中,有理数是( )A.√2B.πC.13D.ln211、一个等差数列的前三项分别是2、5、8,那么该数列的公差是多少?A 、3B 、4C 、5D 、612、已知函数f (x )=2x−1x 2−2x+1,下列说法正确的是:A. 函数的定义域为(−∞,1)∪(1,+∞)B. 函数的值域为(−∞,0)∪(0,+∞)C. 函数的增减性在x=1处发生改变D. 函数的图像关于直线x=1对称二、填空题(本大题有3小题,每小题7分,共21分)1、若函数f(x)=12x2−3x+4在x=1处取得极值,则该极值为_______ 。
2023年成人高考高起专(文理科)数学考试大纲
2023年成人高考高起专(文/理科)数学考试大纲总要求:数学科考试旨在测试中学数学基础知识、基本技能、基本方法,考查数学思维能力,包括;空间想象、直觉猜想、归纳抽象、符号表示、运算求解、演绎证明、体系构建等,以及运用所学数学知识和方法分析问题和解决问题的能力。
考试分为理工农医和文史财经两类.理工农医类复习考试范围包括代数、三角、平面解析几何、立体几何和概率与统计初步五部分.文史财经类复习考试范围包括代数、三角、平面解析几何和概率与统计初步四部分。
考试中可以使用计算器。
考试内容的知识要求和能力要求作如下说明:l.知识要求本大纲对所列知识提出了三个层次的不同要求,三个层次由低到高顺序排列,且高一级层次要求包含低一级层次要求,三个层次分别为:了解;要求考生对所列知识的含义有初步的认识,识记有关内容,并能进行直接运用。
理解、掌握、会:要求考生对所列知识的含义有较深的认识,能够解释、举例或变形、推断,并能运用知识解决有关问题。
灵活运用:要求考生对所列知识能够综合运用,并能解决较为复杂的数学问题。
2.能力要求逻辑思维能力:会对问题进行观察、比较、分析、综合、抽象与概括;会用演绎、归纳和类比进行摧理;能准确、清晰、有条理地进行表述。
运算能力:理解算理,会根据法则、公式、概念进行数、式、方程的正确运算和变形;能分析条件,寻求与设计合理、简捷的运算途径;能裉据要求对数据进行估计,能运用计算器进行数值计算。
空间想象能力:能根据条件画出正确图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合、变形。
分析问题和解决问题的能力:能阅读理解对问题进行陈述的材料;能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中的数学问题,并能用数学语言正确地加以表述。
一、复习考试内容理工农医类(理科)第一部分代数(一)集合和简易逻辑1.了解集合的意义及其表示方法.了解空集、全集、子集、交集、并集、补集的概念及其表示方法,了解符号(见图)的含义,并能运用这些符号表示集合与集合、元素与集合的关系。
成人高考专升本高等数学考试大纲
成人高考专升本高等数学考试大纲总要求考生应按本大纲的要求,了解或理解“高等数学”中极限和连续、一元函数微分学、一元函数积分学、多元函数微积分学的基本概念与基本理论,学会、掌握或熟练掌握上述各部分的基本方法应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力,能运用基本概念、基本理论和基奉方法正确地推理证明,准确地计算;能综合运用所学知识分析并解决简单的实际问题。
本大纲对内容的要求由低到高,对概念和理论分为“了解”和“理解”两个层次;对方法和运算分为“会”、“掌握”和“熟练掌握”三个层次.复习考试内容一、极限1.知识范围(1)数列极限的概念与性质数列极限的定义唯一性,有界性,四则运算法则,夹逼定理,单调有界数列,极限存在定理(2)函数极限的概念与性质函数在一点处极限的定义左、右极限及其与极限的关系x趋于无穷(x一∞,x→+∞,x →—∞)时函数的极限,唯一性,法则,夹逼定理(3)无穷小量与无穷大量无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量的性质,无穷小量的比较(4)两个重要极限2.要求(1)理解极限的概念,会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件(2)了解极限的有关性质,掌握极限的四则运算法则(3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系会进行无穷小量的比较(高阶、低阶、同阶和等价)会运用等价无穷小量代换求极限(4)熟练掌握用两个重要极限求极限的方法二、连续1知识范围(1)函数连续的概念函数在一点处连续的定义,左连续与右连续,函数在一点处连续的充分必要条件,函数的间断点(2)函敖在一点处连续的性质连续函数的四则运算,复台函数的连续性,反函数的连续性(3)闭区间上连续函数的性质有界性定理,最大值与最小值定理,介值定理(包括零点定理)(4)初等函数的连续性2.要求(1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握函数(含分段函数)在一点处的连续性的判断方法(2)会求函数的间断点(3)掌握在闭区间上连续函数的性质,会用介值定理推证一些简单命题(4)理解初等函数在其定义区间上的连续性,会利用连续性求极限,一元函数微分学三、导数与微分1知识范围(1)导数概念导数的定义,左导数与右导数,函数在一点处可导的充分必要条件,导数的几何意义与物理意义,可导与连续的关系(2)求导法则与导数的基本公式导数的四则运算反函数的导数导数的基本公式(3)求导方法复合函数的求导法,隐函数的求导法,对数求导法,由参数方程确定的函数的求导法,求分段函数的导数(4)高阶导数高阶导数的定义高阶导数的计算(5)微分微分的定义,微分与导数的关系,微分法则,一阶微分形式不变性2.要求(l)理解导数的概念及其几何意义,了解可导性与连续性的关系,掌握用定义求函数在一点处的导散的方法(2)会求曲线上一点址的切线方程与法线方程(3)熟练掌握导数的基本公式、四则运算法则及复合函数的求导方法,会求反函数的导数(4)掌握隐函数求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数(5)理解高阶导数的概念,会求简单函数的n阶导数(6)理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分(二)微分中值定理及导致的应用1.知识范围(l)微分中值定理罗尔(Rolle)定理拉格朗日(Lagrange)中值定理(2)洛必迭(I,’Hospital)法则(3)函数单调性的判定法(4)函数的极值与极值点、最大值与最小值(5)曲线的凹凸性、拐点(6)曲线的水平渐近线与铅直渐近线2.要求(l)理解罗尔定理、拉格朗日中值定理及它们的几何意义会用拉格朗日中值定理证明简单的不等式(2)熟练掌握用洛必达法则求未定式的极限的方法(3)掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的单调性证明简单的不等式(4)理解函数扳值的概念掌握求函数的驻点、极值点、极值、最大值与最小值的方法,会解简单的应用问题(5)会判断曲线的凹凸性,会求曲线的拐点(6)会求曲线的水平渐近线与铅直渐近线2、一元函数积分学(一)不定积分1.知识范围(1)不定积分原函数与不定积分的定义原函数存在定理不定积分的性质(2)基本积分公式(3)换元积分法第一第换元法(凑微分法)第二换元法(4)分部积分法(5) -些简单有理函数的积分2.要求(1)理解原函数与不定积分的概念及其关系,掌握不定积分的性质,了解原函数存在定理(2)熟练掌握不定积分的基本公式(3)熟练掌握不定积分第-换元法,掌握第二换元法(限于三角代换与简单的根式代换)(4)熟练掌握不定积分的分部积分法(5)会求简单有理函数的不定积分(二)定积分1.知识范围(1)定积分的概念定积分的定义及其几何意义可积条件(2)定积分的性质(3)定积分的计算变上限积分牛顿莱布尼茨(Newton-Leibniz)公式换元积分法分部积分法(4)无穷区间的反常积分(5)定积分的应用平面图形的面积旋转体的体积2.要求(1)理解定积分的概念及其几何意义,了解函数可积的条件(2)掌握定积分的基本性质.(3)理解变上限积分是变上限的函数,掌握对变上限积分求导数的方法(4)熟练掌握牛顿一莱布尼茨公式(5)掌握定积分的换元积分法与分部积分法(6)理解无穷区间的反常积分的概念,掌握其计算方法(7)掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体的体积四、多元函数微积分学(一)多元函数微分学1、知识范围围(1)多元函数多元函数的定义-二元函数的几何意义二元函数极限与连续的概念(2)偏导数与全微分偏导数全微分二阶偏导数(3)复合函数的偏导数(4)隐函数的偏导数(5)二元函数的无条件椴值与条件擞值2.要求(l)了解多元函数的概念、二元函数的几何意义会求二元函数的表达式及定义域丁解二元函数的极限与连续概念(对计算不作要求)。
成人高考数学考试大纲
成人高考数学考试大纲成人高考作为许多成年人提升学历的重要途径,数学科目是其中的重要组成部分。
了解成人高考数学考试大纲对于考生的备考至关重要。
一、考试性质成人高考数学考试是为了检测考生对数学基础知识的掌握程度、基本技能的运用能力以及数学思维的发展水平。
考试旨在为成人高等教育选拔具有一定数学素养和潜力的考生。
二、考试内容(一)代数1、集合和简易逻辑理解集合的概念,掌握集合的表示方法,会求集合的交集、并集和补集。
了解命题的概念,掌握四种命题及其关系,理解充分条件、必要条件和充要条件。
2、函数理解函数的概念,掌握函数的表示法,会求函数的定义域和值域。
掌握函数的单调性、奇偶性和周期性。
掌握一次函数、二次函数、指数函数、对数函数的图像和性质。
3、不等式和不等式组理解不等式的性质,会解一元一次不等式、一元二次不等式和简单的绝对值不等式。
会解简单的不等式组。
4、数列理解数列的概念,掌握等差数列和等比数列的通项公式、前 n 项和公式。
(二)三角1、三角函数及其有关概念理解任意角的概念,掌握弧度制与角度制的换算。
理解任意角三角函数的定义,掌握同角三角函数的基本关系式和诱导公式。
2、三角函数的图像和性质掌握正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数和余弦函数的简图。
3、两角和与差的三角函数掌握两角和与差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式。
4、解三角形掌握正弦定理、余弦定理,会解斜三角形。
(三)平面解析几何1、平面向量理解平面向量的概念,掌握平面向量的加、减、数乘运算和向量的数量积。
掌握平面向量的坐标运算。
2、直线掌握直线的斜率和倾斜角的概念,会求直线的方程。
掌握两条直线平行与垂直的条件,会求点到直线的距离。
3、圆掌握圆的标准方程和一般方程,会求圆的圆心和半径。
掌握直线与圆的位置关系。
(四)概率与统计初步1、排列、组合理解排列、组合的概念,掌握排列数和组合数的计算公式。
2、概率理解随机事件、必然事件和不可能事件的概念,掌握概率的基本性质和简单的概率计算。
(整理)全国各类成人高等学校招生复习考试大纲专升本高等数学1.
附录三全国各类成人高等学校专升本招生复习考试大纲高等数学(一)本大纲适用于工学、理学(生物科学类、地理科学类、环境科学类、心理学类等四个一级学科除外)专业的考生。
总要求考生应按本大纲的要求,了解或理解“高等数学”中极限和连续、一元函数微分学、一元函数积分学、空间解析几何、多元函数微积分学、无穷级数、常微分方程的基本概念与基本理论;学会、掌握或熟练掌握上述各部分的基本方法.应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力、空间想像能力;能运用基本概念、基本理论和基本方法正确地推理证明,准确地计算;能综合运用所学知识分析并解决简单的实际问题。
本大纲对内容的要求由低到高,对概念和理论分为“了解”和“理解”两个层次;对方法和运算分为“会”、“掌握”和“熟练掌握”三个层次。
复习考试内容一、极限和连续(一)极限1.知识范围(1)数列极限的概念与性质数列极限的定义唯一性有界性四则运算法则夹逼定理单调有界数列极限存在定理(2)函数极限的概念与性质函数在一点处极限的定义左、右极限及其与极限的关系 x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限唯一性四则运算法则夹逼定理(3)无穷小量与无穷大量无穷小量与无穷大量的定义无穷小量与无穷大量的关系无穷小量的性质无穷小量的比较(4)两个重要极限,2.要求(1) 理解极限的概念(对极限定义中“”、“”、“”等形式的描述不作要求)。
会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件.(2)了解极限的有关性质,掌握极限的四则运算法则.(3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与尤穷大量的关系.会进行无穷小量阶的比较(高阶、低阶、同阶和等价).会运用等价无穷小量代换求极限.(4)熟练掌握用两个重要极限求极限的方法.(二)连续1.知识范围(1)函数连续的概念函数在一点处连续的定义左连续和右连续函数在一点连续的充分必要条件函数的间断点(2)函数在一点处连续的性质连续函数的四则运算复合函数的连续性反函数的连续性(3)闭区间上连续函数的性质有界性定理最大值与最小值定理介值定理(包括零点定理)(4)初等函数的连续性2.要求(1)理解函数在一点处连续与间断的概念,理解函数在——点处连续与极限存在的关系,掌握函数(含分段函数)在一点处的连续性的方法.(2)会求函数的间断点.(3)掌握在闭区间上连续函数的性质,会用介值定理推证一些简单命题.(4)理解初等函数在其定义区间上的连续性,会利用连续性求极限.二、一元函数微分学(一)导数与微分1.知识范围(1)导数慨念导数的定义左导数与右导数函数在一点处可导的充分必要条件导数的几何意义与物理意义可导与连续的关系(2)求导法则与导数的基本公式导数的四则运算反函数的导数导数的基本公式(3)求导方法复合函数的求导法隐函数的求导法对数求导法由参数方程确定的函数的求导法求分段函数的导数(4)高阶导数高阶导数的定义高阶导数的计算(5)微分微分的定义微分与导数的关系微分法则一阶微分形式不变性2.要求(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,掌握用定义求函数在一点处的导数的方法(2)会求曲线上一点处的切线方程与法线方程.(3)熟练掌握导数的基本公式、四则运算法则及复合函数的求导方法,会求反函数的导数(4)掌握隐函数求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数.(5)理解高阶导数的概念,会求简单函数的n阶导数.(6)理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分.(二)微分中值定理及导数的应用1.知识范围(1)微分中值定理罗尔(Rolle)定理拉格朗日(Lagrange)中值定理(2)洛必达(L'Hospital)法则(3)函数增减性的判定法(4)函数的极值与极值点最大值与最小值(5)曲线的凹凸性、拐点(6)曲线的水平渐近线与铅直渐近线2.要求(1)理解罗尔定理、拉格朗日中值定理及它们的几何意义.会用拉格朗日中值定理证明简单的不等式.(2)熟练掌握用洛必达法则求,型未定式的极限的方法.(3)掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的单调性证明简单的不等式.(4)理解函数极值的概念.掌握求函数的驻点、极值点、极值、最大值与最小值的方法,会解简单的应用问题.(5)会判断曲线的凹凸性,会求曲线的拐点.(6)会求曲线的水平渐近线与铅直渐近线.三、一元函数积分学(一)不定积分1.知识范围(1)不定积分原函数与不定积分的定义原函数存在定理不定积分的性质(2)基本积分公式(3)换元积分法第一换元法(凑微分法) 第二换元法(4)分部积分法(5)一些简单有理函数的积分2.要求(1)理解原函数与不定积分的概念及其关系,掌握不定积分的性质,了解原函数存在定理(2)熟练掌握不定积分的基本公式.(3)熟练掌握不定积分第一换元法,掌握第二换元法(限于三角代换与简单的根式代换).(4)熟练掌握不定积分的分部积分法.(5)会求简单有理函数的不定积分.(二)定积分1.知识范围(1)定积分的概念定积分的定义及其几何意义可积条件(2)定积分的性质(3)定积分的计算变上限积分牛顿—莱布尼茨(Newton-Leibniz)公式换元积分法分部积分法(4)无穷区间的广义积分(5)定积分的应用平面图形的面积旋转体的体积2.要求(1)理解定积分的概念及其几何意义,了解函数可积的条件.(2)掌握定积分的基本性质.(3)理解变上限的积分是变上限的函数,掌握对变上限积分求导数的方法.(4)熟练掌握牛顿一莱布尼茨公式.(5)掌握定积分的换元积分法与分部积分法.(6)理解无穷区间的广义积分的概念,掌握其计算方法.(7)掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体的体积四、空间解析几何(一)平面与直线1.知识范围(1)常见的平面方程点法式方程一般式方程(2)两平面的位置关系(平行、垂直)(3)空间直线方程标准式方程(又称对称式方程或点向式方程) 一般式方程(4)两直线的位置关系(平行、垂直)(5)直线与平面的位置关系(平行、垂直和直线在平面上)2.要求(1)会求平面的点法式方程、一般式方程.会判定两平面的垂直、平行(2)了解直线的一般式方程,会求直线的标准式方程.会判定两直线平行、垂直.(3)会判定直线与平面间的关系(垂直、平行、直线在平面上).(二)简单的二次曲面1.知识范围球面母线平行于坐标轴的柱面旋转抛物面圆锥面椭球面2.要求了解球面、母线平行于坐标轴的柱面、旋转抛物面、圆锥面和椭球面的方程及其图形.五、多元函数微积分学(一)多元函数微分学1.知识范围(1)多元函数多元函数的定义二元函数的几何意义二元函数极限与连续的概念(2)偏导数与全微分偏导数全微分二阶偏导数(3)复合函数的偏导数(4)隐函数的偏导数(5)二元函数的五条件极值与条件极值2.要求(1)了解多元函数的概念、二元函数的几何意义.会求二元函数的表达式及定义域.了解二元函数的极限与连续概念(对计算不作要求).(2)理解偏导数概念,了解偏导数的几何意义,了解全微分概念,了解全微分存在的必要条件与充分条件.(3)掌握二元函数的一、二阶偏导数计算方法.(4)掌握复合函数一阶偏导数的求法.(5)会求二元函数的全微分.(6)掌握由方程F(x,y,z)=0所确定的隐函数z=z(x,y)的一阶偏导数的计算方法.(7)会求二元函数的五条件极值.会用拉格朗日乘数法求二元函数的条件极值.(二)二重积分1.知识范围(1)二重积分的概念二重积分的定义二重积分的几何意义(2)二重积分的性质(3)二重积分的计算(4)二重积分的应用2.要求(1)理解二重积分的概念及其性质.(2)掌握二重积分在直角坐标系及极坐标系下的计算方法.(3)会用二重积分解决简单的应用问题(限于空间封闭曲面所围成的有界区域的体积、平面薄板的质量).六、无穷级数(一)数项级数1.知识范围(1)数项级数数项级数的概念级数的收敛与发散级数的基本性质级数收敛的必要条件(2)正项级数收敛性的判别法比较判别法比值判别法(3)任意项级数交错级数绝对收敛条件收敛莱布尼茨判别法2.要求(1)理解级数收敛、发散的概念.掌握级数收敛的必要条件,了解级数的基本性质.(2)会用正项级数的比值判别法与比较判别法.(3)掌握几何级数、调和级数与P级数的收敛性.(4)了解级数绝对收敛与条件收敛的概念,会使用莱布尼茨判别法.(二)幂级数1.知识范围(1)幂级数的概念收敛半径收敛区间(2)幂级数的基本性质(3)将简单的初等函数展开为幂级数2.要求(1)了解幂级数的概念.(2)了解幂级数在其收敛区间内的基本性质(和、差、逐项求导与逐项积分).(3)掌握求幂级数的收敛半径、收敛区间(不要求讨论端点)的方法.(4)会运用头的麦克劳林(Maclaurin)公式,将一些简单的初等函数展开为或-的幂级数.七、常微分方程(一)一阶微分方程1.知识范围(1)微分方程的概念微分方程的定义阶解通解初始条件特解(2)可分离变量的方程(3)一阶线性方程2.要求(1)理解微分方程的定义,理解微分方程的阶、解、通解、初始条件和特解.(2)掌握可分离变量方程的解法.(3)掌握一阶线性方程的解法.(二)二阶线性微分方程1.知识范围(1)二阶线性微分方程解的结构(2)二阶常系数齐次线性微分方程(3)二阶常系数非齐次线性微分方程2.要求(1)了解二阶线性微分方程解的结构.(2)掌握二阶常系数齐次线性微分方程的解法.(3)掌握二阶常系数非齐次线性微分方程的解法[自由项限定为,其中为的次多项式,为实常数].考试形式及试卷结构试卷总分:150分考试时间:150分钟考试方式:闭卷,笔试试卷内容比例:极限和连续约13%一元函数微分学约25%一元函数积分学约25%多元函数微积分(含空间解析几何) 约20%无穷级数约7%常微分方程约10%试卷题型比例:选择题约27%填空题约27%解答题约46%试题难易比例:容易题约30%中等难度题约50%较难题约20%。
高升专:成考高起点-数学第27讲讲义
高中起点升本、专科数学(文科) 第五部分 概率与统计初步 排列、组合与二项式定理一、分类计数原理与分步计数原理1.分类计数原理做一件事,完成它有n 类方法,第一类方法有1m 种,第二类方法有2m 种,......,第n 类方法有n m 种,那么完成这件事共有12n N m m m =+++种不同的方法。
2.分步计数原理做一件事,完成它需要分成n 个步骤,做第一步的方法有1m 种,做第二步的方法有2m 种,......,做第n 步的方法有n m 种。
那么完成这件事共有12n N m m m =⨯⨯⨯种不同的方法。
分类计数原理与分步计数原理是排列、组合的理论依据。
这两个原理的区别在于一个与分类有关,另一个与分步有关。
如果完成一件事有n 类方法,这n 类方法彼此之间是相互独立的,用任何一类中的任何一种方法都能单独完成这件事,求完成这件事的方法的种数,就用分类计数原理;如果完成一件事需要分成n 个步骤,各步骤都不可缺少,只有依次完成所有步骤,才能完成这件事,而完成每一个步骤又各有若干种方法,求完成这件事的方法和种数,就用分步计数原理。
二、排列1.排列的有关定义 (1)排列从n 个不同元素中,任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。
当m n =时,称排列为全排列。
(2)排列数从n 个不同元素中,任取()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,记作m n A ,特别地,n n A 表示n 个不同元素全部取出的排列数。
2.排列数公式(1)阶乘自然数1到n 的连乘积,叫做n 的阶乘,用n !表示,即n !()()12321n n n =•-•-••••. 特别规定0!1=.(2)排列数公式()()()121mn A n n n n m =⨯-⨯-⨯⨯-+.这里,n m 是正整数,并且m n ≤.其中,公式右边的第一个因数是n ,后面的每个因数都比它前面一个因数少1,最后一个因数为1n m -+,共有m 个因数连乘。
2023年成人高考高起点《数学》考试大纲
2023年成人高考高起点《数学》考试大纲一、考试性质成人高等学校招生全国统一考试数学试题,是对考生进行数学知识和能力的综合考查,评价标准是中学数学教学大纲,掌握“数、形”两方面的基础知识,具有处理基本问题和简单实际应用的能力。
二、考试内容(一)代数部分1. 集合和简易逻辑。
考试内容:集合、简易逻辑、全称量词与存在量词。
2. 函数。
考试内容:函数的概念、函数的性质、函数的图形。
3. 数列。
考试内容:数列的有关概念、等差数列与等比数列的通项公式和前n项和公式。
4. 三角函数。
考试内容:三角函数的概念与基本公式、三角函数的图形、三角函数的性质。
5. 向量。
考试内容:向量的概念与基本公式、向量的运算及应用。
6. 不等式。
考试内容:不等式的解法及不等式组的解法。
7. 排列、组合与二项式定理。
考试内容:排列组合的概念与基本公式、二项式定理的应用。
8. 概率初步。
考试内容:事件的概率、随机变量及其分布、正态分布。
(二)三角部分1. 三角函数式的变换。
考试内容:同角三角函数的基本关系式、诱导公式、两角和与差的三角函数公式。
2. 三角函数的图形及性质。
考试内容:正弦函数与余弦函数的图形及性质、正切函数的图形及性质。
3. 解三角形。
考试内容:正弦定理、余弦定理及其应用。
(三)平面解析几何部分1. 平面向量。
考试内容:向量的概念与基本公式、向量的运算及应用。
2. 直线。
考试内容:直线的方程、直线的斜率及其直线方程的应用。
3. 圆。
考试内容:圆的方程及其应用。
4. 圆锥曲线(椭圆、双曲线)。
考试内容:椭圆的方程及其性质、双曲线的方程及其性质及其应用。
5. 曲线与方程。
考试内容:曲线与方程的概念及其应用。
(四)立体几何部分1. 立体几何的基本概念与性质。
考试内容:平面的基本性质与推论、空间点线面的关系、空间多面体与旋转体的基本概念与性质。
2. 空间几何体的表面积和体积的计算。
考试内容:空间几何体的表面积和体积的计算方法及应用。
2024成人高考高起专、高起本数学(理)-考点知识点汇编复习资料(完整版)
考点1实数1.实数的分类(1)有理数(2)无理数2.实数的相关概念(1)数轴(2)绝对值绝对值的意义:数轴上的点到原点的距离.正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.实数a 的绝成考高起专、高起本数学(理)-考点汇编第一部分代数第一章数、式、方程和方程组(预备知识)对值可表示为a ,即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩若a,b 为实数,则(1)a ≥0,当且仅当0a =时取等号.(2)||||00a b a +=⇔=且0b =.(3)||||a a =-.(3)相反数(4)倒数3.实数的运算(1)运算法则数的运算顺序:先乘方、开方,然后乘、除,最后加、减,有括号先算括号(即从内往外的顺序)考点2整式的运算1.整式的加减运算2.整式的乘法运算(1)单项式乘单项式(2)多项式乘单项式(3)多项式乘多项式(4)常用乘法公式平方差公式:22()()a b a b a b +-=-;完全平方公式:222()2a b a ab b ±=±+;立方和、差公式:()()33223322(),()a b a b a ab bab a b a ab b +=+-+-=-++;完全立方公式:33223()33a b a a b ab b ±=±+±.3.多项式的因式分解4.分式的运算分式的加、减运算:a c ad bc ad bcb d bd bd bd ±±=±=.分式的乘法运算:ac ac bd bd⋅=.分式的除法运算:a c a d ad b d b c bc÷=⨯=.分式的乘方运算:nn n a a b b ⎛⎫= ⎪⎝⎭.注意:分式的运算结果一定要化为最简分式(或整式).5.二次根式考点3方程1.一元一次方程2.一元二次方程一元二次方程的解法直接开平方法,形如)(m x +2=ɑ(ɑ≥0)的方程因式分解法,可化为()()0m x a x b ++=的方程公式法,求根公式为=b 2-4ɑc ≥0)配方法,若20ax bx c ++=不易分解因式,考虑配方为2()a x t h +=的形式,再开方求解总结常用方法:首选因式分解法,若不适用则选择公式法.(公式法适用于一切有实数根的一元二次方程)(3)根的判别式:24b ac ∆=-叫做一元二次方程20(0)ax bx c a ++=≠的根的判别式,它与根的关系如下:①当0∆>时,方程有两个不相等的实数根.②当0∆=时,方程有两个相等的实数根.③当0∆<时,方程没有实数根.④根与系数的关系:若12,x x 是方程20(0)ax bx c a ++=≠的两个根,则有12x x +=12,b cx x a a-=(韦达定理).如果1212,x x p x x q +==,则20x px q -+=是以1x 和2x 为根的一元二次方程.考点4方程组(1)方程组形如1112220,0a x b y c a x b y c ++=⎧⎨++=⎩的方程组称为二元一次方程组.其中123123123123,,,,,,,,,,,a a a b b b c c c d d d 均为实数.“元”指未知数的个数;“次”指末知数的最高次数.(2)一次方程组的解法:一般采用代人消元法或加减消元法求解.第二章集合与简易逻辑考点1.元素与集合一组对象的全体构成一个集合.(1)集合中元素的三大特征:确定性、互异性、无序性.(2)集合中元素与集合的关系:对于元素a 与集合A ,a ∈A 或a ∉A ,二者必居其一.(3)常见集合的符号表示及其关系图.数集自然数集正整数集整数集有理数集实数集符号NN*ZQR(4)集合的表示法:列举法、描述法、Venn 图法.(5)集合的分类:集合按元素个数的多少分为有限集、无限集,有限集常用列举法表示,无限集常用描述法表示.考点2.集合间的基本关系关系定义表示相等集合A 与集合B 中的所有元素都相同A =B 子集A 中的任意一个元素都是B 中的元素A ⊆B 真子集A 是B 的子集,且B 中至少有一个元素不属于AAB注意:(1)空集用∅表示.(2)若集合A 中含有n 个元素,则其子集个数为2n,真子集个数为2n -1,非空真子集的个数为2n -2.(3)空集是任何集合的子集,是任何非空集合的真子集.(4)若A ⊆B ,B ⊆C ,则A ⊆C.考点3.集合的基本运算集合的并集集合的交集集合的补集符号表示A∪BA∩B若全集为U,则集合A 的补集为C U A图形表示集合表示{x|x∈A,或x∈B}{x|x∈A,且x∈B}{x|x∈U,且x ∉A}运算性质A∪A=A,A∪∅=A,A∪B=B∪A.A∩A=A,A∩∅=∅,A∩B=B∩A.A∩(C U A)=∅,A∪(C U A)=U,C U (C U A)=A特别提醒:1.A ⊆B ⇔A∩B=A ⇔A∪B=B ⇔C U A ⊇C U B.2.C U (A∩B)=(C U A)∪(C U B),C U (A∪B)=(C U A)∩(C U B).考点4.简易逻辑1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.充分条件与必要条件若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 是q 的充分不必要条件p ⇒q 且q pp 是q 的必要不充分条件pq 且q ⇒pp 是q 的充要条件p ⇔qp 是q 的既不充分又不必要条件p q 且q p3.重要结论1.若A ={x |p (x )},B ={x |q (x )},则(1)若A ⊆B ,则p 是q 的充分条件;(2)若A ⊇B ,则p 是q 的必要条件;(3)若A =B ,则p 是q 的充要条件;(4)若A B ,则p 是q 的充分不必要条件;(5)若B A ,则p 是q 的必要不充分条件;(6)若AB 且BA ,则p 是q 的既不充分也不必要条件.2.充分条件与必要条件的两个特征:(1)对称性:若p 是q 的充分条件,则q 是p 的必要条件,即“p ⇒q ”⇔“q ⇐p ”.(2)传递性:若p 是q 的充分(必要)条件,q 是r 的充分(必要)条件,则p 是r 的充分(必要)条件,即“p ⇒q 且q ⇒r ”⇒“p ⇒r ”(“p ⇐q 且q ⇐r ”⇒“p ⇐r ”).注意:不能将“若p ,则q ”与“p ⇒q ”混为一谈,只有“若p ,则q ”为真命题时,才有“p ⇒q ”,即“p ⇒q ”⇔“若p ,则q ”为真命题.第三章函数考点1.函数的单调性1.单调函数的定义增函数减函数定义一般地,设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是增函数当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的2.单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间.考点2.函数的奇偶性偶函数奇函数定义如果对于函数f (x )的定义域内任意一个x都有f (-x )=f (x ),那么函数f (x )是偶函数都有f (-x )=-f (x ),那么函数f (x )是奇函数图象特征关于y 轴对称关于原点对称考点3.二次函数(1)解析式:一般式:f (x )=ax 2+bx +c (a ≠0).顶点式:f (x )=a (x -h )2+k (a ≠0).两根式:f (x )=a (x -x 1)(x -x 2)(a ≠0).(2)图象和性质解析式f (x )=ax 2+bx +c (a >0)f (x )=ax 2+bx +c (a <0)图象定义域(-∞,+∞)(-∞,+∞)值域[4ac -b 24a,+∞)(-∞,4ac -b24a]单调性在x ∈(-∞,-b2a )上是减函数,在x ∈[-b2a ,+∞)上是增函数在x ∈(-∞,-b2a)上是增函数,在x ∈[-b2a,+∞)上是减函数最值当x =-b 2a 时,y 有最小值4ac -b24a当x =-b 2a 时,y 有最大值4ac -b24a奇偶性当b =0时为偶函数顶点(-b 2a ,4ac -b 24a)对称性图象关于直线x=-b2a成轴对称图形考点4.指数与指数运算1.根式(1)根式的概念根式的概念符号表示备注如果x n=a ,那么x 叫做a 的n 次方根n >1且n ∈N *当n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数n a零的n 次方根是零当n 为偶数时,正数的n 次方根有两个,它们互为相反数±n a负数没有偶次方根(2)两个重要公式①na ≥0),a <0),n 为偶数.②(na )n=a (注意a 必须使n a 有意义).2.分数指数幂(1)正数的正分数指数幂是a mn =na (a >0,m ,n ∈N *,n >1).(2)正数的负分数指数幂是a -m n =1n a m(a >0,m ,n ∈N *,n >1).(3)0的正分数指数幂是0,0的负分数指数幂无意义.3.实数指数幂的运算性质(1)a r ·a s =a r +s (a >0,r 、s ∈R );(2)(a r )s =a rs (a >0,r 、s ∈R );(3)(ab )r=a r b r(a >0,b >0,r ∈R ).考点5.幂函数函数y =x y =x 2y =x 3y =x12y =x -1图象定义域R R R {x |x ≥0}{x |x ≠0}值域R {y |y ≥0}R {y |y ≥0}{y |y ≠0}奇偶性奇函数偶函数奇函数非奇非偶函数奇函数单调性在R 上单调递增在(-∞,0)上单调递减,在(0,+∞)上单调递增在R 上单调递增在[0,+∞)上单调递增在(-∞,0)和(0,+∞)上单调递减考点6.指数函数图象与性质指数函数的概念、图象和性质定义函数f (x )=a x (a >0且a ≠1)叫指数函数底数a >10<a <1图象性质函数的定义域为R ,值域为(0,+∞)考点7.对数函数的图象和性质图象a >10<a <1性质定义域:(0,+∞)值域:(-∞,+∞)当x=1时,y=0,即过定点(1,0)当0<x<1时,y<0;当x>1时,y>0当0<x<1时,y>0;当x>1时,y<0在(0,+∞)上为增函数在(0,+∞)上为减函数第四章不等式与不等式组考点1.不等式的性质(1)对称性:a>b⇔b<a;(2)传递性:a>b,b>c⇒a>c;(3)同向可加性:a>b⇔a+c>b+c;a>b,c>d⇒a+c>b+d;(4)同向同正可乘性:a>b,c>0⇒ac>bc;a>b,c<0⇒ac<bc;a>b>0,c>d>0⇒ac>bd;(5)可乘方性:a>b>0⇒a n_>b n(n∈N,n≥2);(6)可开方性:a>b>0⇒na>nb(n∈N,n≥2).考点2.一元一次不等式组的解法:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
超详细最新成人高考(高起专)数学复习资料大全(精华版)
成人高考数学复习资料集合和简易逻辑考点:交集、并集、补集概念:1、由所有既属于集合A又属于集合 B 的元素所组成的集合,叫做集合 A 和集合B 的交集,记作A∩B,读作“A 交B”(求公共元素)A∩ B={x|x ∈A,且x∈B}2、由所有属于集合 A 或属于集合 B 的元素所组成的集合,叫做集合 A 和集合B 的并集,记作A∪B,读作“ A 并B”(求全部元素)A∪B={x|x ∈A,或x∈B}C u A , 读作“A 补”3、如果已知全集为U,且集合A 包含于U,则由U 中所有不属于 A 的元素组成的集合,叫做集合 A 的补集,记作C u A ={ x|x∈U,且x A }解析:集合的交集或并集主要以例举法或不等式的形式出现考点:简易逻辑概念:在一个数学命题中,往往由条件 A 和结论B 两部分构成,写成“如果 A 成立,那么B成立”。
充分条件:如果必要条件:如果充要条件:如果A 成立,那么B 成立,那么B 成立,记作“ A→B”“A 推出B,B不能推出A”。
A 成立,记作“ A←B”“B 推出A,A不能推出B”。
A→B, 又有A←B,记作“ A←B”“A 推出B ,B 推出A”。
解析:分析 A 和B 的关系,是 A 推出B 还是B 推出A,然后进行判断不等式和不等式组考点:不等式的性质如果如果如果如果如果如果a>b,那么b<a;反之,如果a>b,且b>c,那么a>cb>a,那么a<b 成立a>b,存在一个c(c 可以为正数、负数或一个整式),那么a+c>b+c,a-c>b-c a>b,c>0,那么ac>bc (两边同乘、除一个正数,不等号不变)a>b,c<0,那么ac<bc (两边同乘、除一个负数,不等号变号)a>b>0,那么a2>b2a b a b如果a>b>0,那么;反之,如果,那么a>b解析:不等式两边同加或同乘主要用于解一元一次不等式或一元二次不等式移项和合并同类项方面考点:一元一次不等式定义:只有一个未知数,并且未知数的最好次数是一次的不等式,叫一元一次不等式。
成考数学(文科)成人高考(高起专)试卷与参考答案(2024年)
2024年成人高考成考数学(文科)(高起专)复习试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、下列数中,有理数是()A、√2B、πC、−3.14D、2√32、在下列各数中,哪个数是负数?A、-5B、3C、0D、-2.53、若函数(f(x)=2x3−3x2+4),则(f(1))的值是多少?A. 3B. 5C. 7D. 94、若函数f(x)=x3−3x2+4x−1在x=1处取得极值,则该极值是:A、极大值B、极小值C、拐点D、非极值5、在下列各数中,属于实数集的有:A、√−1B、1C、πD、0.1010010001...6、已知函数f(x) = (x-1)^2 + 2,其图像的对称轴为:A. x = 1B. y = 1C. x = 0D. y = 0+√x+1)的定义域为((−∞,−1]∪(2,+∞)),则函数(f(x))7、已知函数(f(x)=1x−2的值域为:A.((−∞,−2]∪[1,+∞))B.((−∞,−2]∪[2,+∞))C.((−∞,−2]∪[0,+∞))D.((−∞,−2]∪[0,2])8、若函数(f(x)=3x2−4x+5)的图像开口向上,则其对称轴为:)A.(x=23B.(x=−23)C.(x=43)D.(x=−43)9、在下列函数中,f(x) = x^2 - 4x + 4 的图像是一个:A. 圆B. 抛物线C. 直线D. 双曲线10、若函数(f(x)=x3−3x2+4x)的图像在(x)轴上有一个交点,则(f(x))的对称中心为:A.((1,0))B.((2,0))C.((1,2))D.((2,2))11、已知函数(f(x)=2x2−3x+1),则该函数的对称轴为:A.(x=−b2a =−−32×2=34)B.(x=−b2a =−−32×2=34)C.(x=−b2a =−−32×2=34)D.(x=−b2a =−−32×2=34)12、在下列函数中,当x=2时,函数y=3x^2-5x+2的值是()A. 1B. 4C. 7D. 9二、填空题(本大题有3小题,每小题7分,共21分)1、若函数f(x)=2x3−3x2+4x−5的图像与直线y=3相切,则该切点的横坐标是________ 。
成人高考高起专数学复习资料全
成人高考(高起专)数学复习资料全成人高考(高起专)数学复习资料一、考试大纲在成人高考(高起专)的数学考试中,主要考察的是考生的基础数学知识和应用能力。
考试大纲要求考生掌握代数、三角函数、平面解析几何、数列、概率与统计等基础知识,同时能够运用这些知识解决一些实际问题。
二、知识点梳理1.代数部分:包括集合与简易逻辑、函数、数列、三角函数、不等式等内容。
2.三角函数部分:包括三角函数的定义与基本公式、诱导公式、和差倍角公式、半角公式等。
3.解析几何部分:包括直线与圆的方程、圆锥曲线的方程等。
4.数列部分:包括等差数列和等比数列的通项公式与求和公式。
5.概率与统计部分:包括排列组合、随机事件概率、统计初步知识等。
三、复习策略1.注重基础知识的掌握:数学是一门基础学科,对于基础知识的掌握非常重要。
考生在复习过程中要注重对基本概念、公式、定理的理解与记忆,做到知其然并知其所以然。
2.注重解题能力的提高:数学考试中涉及到的题型有选择题、填空题和解答题等,不同类型的题目有不同的解题方法和技巧。
考生要通过多做练习题,提高解题能力,掌握解题技巧。
3.注重知识点的融会贯通:数学各知识点之间存在内在的联系,考生在复习过程中要注重知识点之间的联系与融合,将各个知识点串联起来,形成完整的知识体系。
4.注重实际应用能力的提高:数学是一门应用学科,考生在复习过程中要注重实际应用能力的提高,将数学知识与实际问题相结合,学会用数学思维和方法解决实际问题。
5.注重模拟考试的进行:模拟考试是检验考生复习效果的有效手段之一。
考生要通过模拟考试,了解自己的不足之处,及时查漏补缺,提高复习效果。
四、备考建议1.制定合理的复习计划:考生要根据自己的实际情况,制定合理的复习计划,明确每天的复习任务和目标,做到有的放矢。
2.合理安排时间:数学考试中涉及到的知识点较多,考生要根据每个知识点的难度和重要程度合理安排复习时间,做到事半功倍。
3.多做练习题:数学是一门需要通过大量练习来提高解题能力的学科。
成人高考专升本高等数学考试大纲
成人高考专升本高等数学考试大纲总要求考生应按本大纲的要求,了解或明白得“高等数学”中极限和持续、一元函数微分学、一元函数积分学、多元函数微积分学的大体概念与大体理论,学会、把握或熟练把握上述各部份的大体方式应注意各部份知识的结构及知识的内在联系;应具有必然的抽象思维能力、逻辑推理能力、运算能力,能运用大体概念、大体理论和基奉方式正确地推理证明,准确地计算;能综合运用所学知识分析并解决简单的实际问题。
本大纲对内容的要求由低到高,对概念和理论分为“了解”和“明白得”两个层次;对方式和运算分为“会”、“把握”和“熟练把握”三个层次.温习考试内容一、极限1.知识范围(1)数列极限的概念与性质数列极限的概念唯一性,有界性,四那么运算法那么,夹逼定理,单调有界数列,极限存在定理(2)函数极限的概念与性质函数在一点处极限的概念左、右极限及其与极限的关系x趋于无穷(x一∞,x→+∞,x→—∞)时函数的极限,唯一性,法那么,夹逼定理(3)无穷小量与无穷大量无穷小量与无穷大量的概念,无穷小量与无穷大量的关系,无穷小量的性质,无穷小量的比较(4)两个重要极限2.要求(1)明白得极限的概念,会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件(2)了解极限的有关性质,把握极限的四那么运算法那么(3)明白得无穷小量、无穷大量的概念,把握无穷小量的性质、无穷小量与无穷大量的关系会进行无穷小量的比较(高阶、低阶、同阶和等价)会运用等价无穷小量代换求极限(4)熟练把握用两个重要极限求极限的方式二、持续1知识范围(1)函数持续的概念函数在一点处持续的概念,左持续与右持续,函数在一点处持续的充分必要条件,函数的中断点(2)函敖在一点处持续的性质持续函数的四那么运算,复台函数的持续性,反函数的持续性(3)闭区间上持续函数的性质有界性定理,最大值与最小值定理,介值定理(包括零点定理)(4)初等函数的持续性2.要求(1)明白得函数在一点处持续与中断的概念,明白得函数在一点处持续与极限存在的关系,把握函数(含分段函数)在一点处的持续性的判定方式(2)会求函数的中断点(3)把握在闭区间上持续函数的性质,会用介值定理推证一些简单命题(4)明白得初等函数在其概念区间上的持续性,会利用持续性求极限,一元函数微分学三、导数与微分1知识范围(1)导数概念导数的概念,左导数与右导数,函数在一点处可导的充分必要条件,导数的几何意义与物理意义,可导与持续的关系(2)求导法那么与导数的大体公式导数的四那么运算反函数的导数导数的大体公式(3)求导方式复合函数的求导法,隐函数的求导法,对数求导法,由参数方程确信的函数的求导法,求分段函数的导数(4)高阶导数高阶导数的概念高阶导数的计算(5)微分微分的概念,微分与导数的关系,微分法那么,一阶微分形式不变性2.要求(l)明白得导数的概念及其几何意义,了解可导性与持续性的关系,把握用概念求函数在一点处的导散的方式(2)会求曲线上一点址的切线方程与法线方程(3)熟练把握导数的大体公式、四那么运算法那么及复合函数的求导方式,会求反函数的导数(4)把握隐函数求导法、对数求导法和由参数方程所确信的函数的求导方式,会求分段函数的导数(5)明白得高阶导数的概念,会求简单函数的n阶导数(6)明白得函数的微分概念,把握微分法那么,了解可微与可导的关系,会求函数的一阶微分(二)微分中值定理及致使的应用1.知识范围(l)微分中值定理罗尔(Rolle)定理拉格朗日(Lagrange)中值定理(2)洛必迭(I,’Hospital)法那么(3)函数单调性的判定法(4)函数的极值与极值点、最大值与最小值(5)曲线的凹凸性、拐点(6)曲线的水平渐近线与铅直渐近线2.要求(l)明白得罗尔定理、拉格朗日中值定理及它们的几何意义会用拉格朗日中值定理证明简单的不等式(2)熟练把握用洛必达法那么求未定式的极限的方式(3)把握利用导数判定函数的单调性及求函数的单调增、减区间的方式,会利用函数的单调性证明简单的不等式(4)明白得函数扳值的概念把握求函数的驻点、极值点、极值、最大值与最小值的方式,会解简单的应用问题(5)会判定曲线的凹凸性,会求曲线的拐点(6)会求曲线的水平渐近线与铅直渐近线2、一元函数积分学(一)不定积分1.知识范围(1)不定积分原函数与不定积分的概念原函数存在定理不定积分的性质(2)大体积分公式(3)换元积分法第一第换元法(凑微分法)第二换元法(4)分部积分法(5) -些简单有理函数的积分2.要求(1)明白得原函数与不定积分的概念及其关系,把握不定积分的性质,了解原函数存在定理(2)熟练把握不定积分的大体公式(3)熟练把握不定积分第-换元法,把握第二换元法(限于三角代换与简单的根式代换)(4)熟练把握不定积分的分部积分法(5)会求简单有理函数的不定积分(二)定积分1.知识范围(1)定积分的概念定积分的概念及其几何意义可积条件(2)定积分的性质(3)定积分的计算变上限积分牛顿莱布尼茨(Newton-Leibniz)公式换元积分法分部积分法(4)无穷区间的反常积分(5)定积分的应用平面图形的面积旋转体的体积2.要求(1)明白得定积分的概念及其几何意义,了解函数可积的条件(2)把握定积分的大体性质.(3)明白得变上限积分是变上限的函数,把握对变上限积分求导数的方式(4)熟练把握牛顿一莱布尼茨公式(5)把握定积分的换元积分法与分部积分法(6)明白得无穷区间的反常积分的概念,把握其计算方式(7)把握直角坐标系下用定积分计算平面图形的面积和平面图形绕坐标轴旋转所生成的旋转体的体积四、多元函数微积分学(一)多元函数微分学1、知识范围围(1)多元函数多元函数的概念- 二元函数的几何意义二元函数极限与持续的概念(2)偏导数与全微分偏导数全微分二阶偏导数(3)复合函数的偏导数(4)隐函数的偏导数(5)二元函数的无条件椴值与条件擞值2.要求(l)了解多元函数的概念、二元函数的几何意义会求二元函数的表达式及概念域丁解二元函数的极限与持续概念(对计算不作要求)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
免费-2020年成人高考考试大纲科目:高起专数学
中医类考试
旨在测试中学数学基础知识、基本技能、基本方法,考察逻辑思维能力、运算能力、空间想象能力以及运用所学数学知识和方法分析问题和解决问题的能力.
考试范围包括代数、三角、平面解析几何、概率与统计初步四部分.
考试中不可以使用计算器.
考试内容的知识要求和能力要求作如下说明:
1、知识要求
本大纲对所列知识提出了三个层次的不同要求,三个层次由低到高顺序排列,且高一级层次要求包含低一级层次要求.三个层次要求分别为:
了解:要求考生对所列知识的含义有初步的认识,识记有关内容,并能进行直接运用.
理解、掌握、会:要求考生对所列知识的含义有较深的认识,能够解释、举例或变形、推断,并能运用知识解决有关问题.
灵活应用:要求考生对所列知识能够综合运用,并能解决较为复杂的数学问题.
2、能力要求
逻辑思维能力:会对问题进行观察、比较、分析、综合、抽象与概括;会用演绎、归纳和类比进行推理;能准确、清晰、有条理地进行表述.
运算能力:理解算理,会根据法则、公式、概念进行数、式、方程的正确运算和变形;能分析条件,寻求与设计合理、简捷的运算途径;能根据要求对数据进行估计.
空间想象能力:能根据条件画出正确图形,根据图形想象出
直观形象;能正确地分析出图形形中基本元素及其相互关系;能对图形进行分解、组合、变形.
分析问题和解决问题能力:能阅读理解对问题进行陈述的材料;能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中的数学问题,并能用数学语言正确地加以表述.
一、复习考试内容
第一部分代数
(一)函数
1.了解集合的意义及其表示方法.了解空集、全集、子集、又集、并集、补集的概念及其表示方法,了解符号≠∈¢……
的含义,并能运用这些符号表示集合与集合、元素与集合的关系.
2.理解函数概念,会求一些常见函数的定义域.
3.理解函数的单调性和奇偶性的概念,理解增函数、减函数及奇函数、偶函数的图象特征.
4.理解一次函数、反比例函数的概念,理解它们的图象和性质,会求它们的解析式.
5.理解二次函数的概念,掌握它的图象和性质以及函数:y=ax2+bx+c(a≠0)与
y=ax2的图象间的关系;会求二次函数的解析式及最大值或最小值.能运用二次
函数的知识解决有关问题.
6.了解反函数的意义.
7.理解指数与对数的概念,会用有关运算法则进行运算. 8.理解指数函数、对数函数的概念,理解它们的图象和性质,会他们解决有关问题.
9.会求简单的指数方程和对数方程.
(二)不等式和不等式组
1 .了解不等式的性质,会解一元一次不等式、一元一次不等式组和可化为一元一次不等式组的不等式.会解一元二次不等式.了解区间的概念,会在数轴上表示不等式或不等式组的解集.
2.了解绝对值不等式的性质,会解形如|ax+b|≥c和|ax+b|≤c的绝对值不等式.
(三)数列
1.了解数列及其有关概念.
2.理解等差数列、等差中项的概念,会运用等差数列的通项公式、前n 项和公式解决有关问题.
3.理解等比数列、等比中项的概念,会运用等比数列的通项公式前n项和公式解决有关问题.
(四)导数
1.了解数列、函数极限的概念,了解数列、函数极限的四则运算法则.会求简单数列的极限
2.了解导数概念及其几何意义.
第二部分三角
(一)三角函数及其有关概念
1.了解正角、负角、零角的概念,理解象限角和终边相同的角的概念.了解弧度的概念,会进行弧度与角度的换算.
2.理解任意角三角函数的概念,了解三角函数在各象限的符号和特殊角的三角函数值.
(二)三角函数式的变换
1.掌握同角三角函数间的基本关系式、诱导公式,会运用它们进行计算、化简和证明.
2.了解两角和、两角差、二倍角的正弦、余弦、正切的公式,会用它们进行计算、化简和证明.
(三)三角函数的图象和性质
1.理解正弦函数、余弦函数的图象和性质,会解决有关问题.
2.了解正切函数的图象和性质.
3.会求函数y=Asin(ωx+φ)的周期、最大值和最小值.
4.会由已知三角函数值求角、了解符号arcsinx,arccosx,arctgx含义.
(四)解三角形
1.掌握直角三角形的边角关系,会用它们解直角三角形.
2.理解正弦定理和余弦定理,会用它们解斜三角会根据三角形两边及其夹角求三角形的面积.
第三部分平面解析几何
(一)平面向量
1.了解向量的概念,了解向量的几何表示,了解共线向量的概念
2.了解向量的加、减运算,了解数乘向量的运算,了解两个向量共线的条件。
3.了解平面向量的分解定理,了解直线的向量参数方程.
4.了解向量的数量积运算,了解其几何意义和在处理长度、角度及垂直问题的应用,了解向量垂直的条件.
5.了解向量的直角坐标及其运算.
6.掌握平面内两点间的距离公式、线段的中点公式和了解平移公式.
(二)直线
1.理解直线的倾斜角和斜率的概念,会求直线的斜率.
2.会求直线方程.
3.掌握两条直线平行与垂直的条件以及点到直线的距离公式,会用它们解决有关问题.
(三)圆锥曲线
1.了解曲线和方程的关系,会求两条曲线的交点
2.了解充分条件、必要条件、充分必要条件的概念
3.掌握圆的标准方程和一般方程,会判断直线与圆的位置关系,能运用它们解决有关问题.
4.理解椭圆、双曲线、抛物线的概念,了解它们性质,会求它们的标准方程.
第四部分概率与统计初步
(一) 排列、组合
1.了解分类记数原理和分步记数原理•
2.了解排列、组合的意义,会用排列数、组合数的计算公式
3.会解排列、组合的简单应用题.
(二) 概率初步
1.了解随机事件及其概率意义.
2.了解等可能性事件的概率的意义,会用记数方法和排列组合基本公式计算一些等可能性事件的概率.
3.了解互斥事件的意义,会用互斥事件的概率加法公式计算一些事件的概率.
4.了解相互独立事件的意义.会用相互独立事件的概率乘法公式计算一些事件的概率.
5.会计算事件在n次独立重复试验屮恰好发生k次的概率.
6.了解离散型随机变量及其期望的意义,会根据离散型随机变量的分布列求出期望值.
(三)统计初步
1.了解总体和样本的概念,会计算样本平均数和样本方差.
2.了解线性回归的方法及其简单应用.
二、考试形式及试卷结构
考试采用闭卷笔试形式,全卷满分为150分,考试时间为120分钟.
试卷结构
(一)试卷内容比例
代数约50%
三角约20%
平面解析几何约20%
概率与统计初步约10%
(二)题型比例
选择题约50%
填空题约10%
解答题约40%
(三)试题难易比例
较容易题约30%
中等难度题约50%
较难题约20%。