人教版高考数学专题复习:解析几何专题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学专题复习:解析几何专题
【命题趋向】
1.注意考查直线的基本概念,求在不同条件下的直线方程,直线的位置关系,此类题大多都属中、低档题,以选择、填空题的形式出现,每年必考
2.考查直线与二次曲线的普通方程,属低档题,对称问题常以选择题、填空题出现
3.考查圆锥曲线的基础知识和基本方法的题多以选择题和填空题的形式出现,与求轨迹有关、与向量结合、与求最值结合的往往是一个灵活性、综合性较强的大题,属中、高档题,
4.解析几何的才查,分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题.
【考题解析与考点分析】
考点1.求参数的值
求参数的值是高考题中的常见题型之一,其解法为从曲线的性质入手,构造方程解之.
例1.若抛物线22y px =的焦点与椭圆22162
x y +=的右焦点重合,则p 的值为( )
A .2-
B .2
C .4-
D .4
考查意图: 本题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的基本几何性质. 解答过程:椭圆22162
x y +=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =,故选D.
考点2. 求线段的长
求线段的长也是高考题中的常见题型之一,其解法为从曲线的性质入手,找出点的坐标,利用距离公式解之.
例2.已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于
A.3
B.4
C.32
D.42
考查意图: 本题主要考查直线与圆锥曲线的位置关系和距离公式的应用.
解:设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b
⎧=-+⇒++-=⇒+=-⎨=+⎩,进而可求出AB 的中点1
1(,)22M b --+,又由11(,)22
M b --+在直线0x y +=上可求出1b =,
∴220x x +-=,由弦长公式可求出AB ==.
故选C
例3.如图,把椭圆2212516x y +=的长轴
AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部
分于1234567
,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点, 则1234567PF P F P F P F P F P F P F ++++++=
____________. 考查意图: 本题主要考查椭圆的性质和距离公式的灵活应用.
解答过程:由椭圆22
12516x y +=的方程知225, 5.a a =∴= ∴12345677277535.2
a PF P F P F P F P F P F P F a ⨯++++++==⨯=⨯= 故填35.
考点3. 曲线的离心率
曲线的离心率是高考题中的热点题型之一,其解法为充分利用:
(1)椭圆的离心率e =a
c ∈(0,1) (e 越大则椭圆越扁); (2) 双曲线的离心率e =a
c ∈(1, +∞) (e 越大则双曲线开口越大). 结合有关知识来解题.
例4.已知双曲线的离心率为2,焦点是(4,0)-,(4,0),则双曲线方程为
A .221412x y -=
B .221124x y -=
C .221106x y -=
D .221610
x y -= 考查意图:本题主要考查双曲线的标准方程和双曲线的离心率以及焦点等基本概念. 解答过程: 2,4,c e c a
===所以22,12.a b ∴==故选(A). 小结: 对双曲线的标准方程和双曲线的离心率以及焦点等基本概念,要注意认真掌握.尤其对双曲线的焦点位置和双曲线标准方程中分母大小关系要认真体会.
例5.已知双曲线9322=-y x ,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于( )
A. 2
B.3
32 C. 2 D.4 考查意图: 本题主要考查双曲线的性质和离心率e =a
c ∈(1, +∞) 的有关知识的应用能力. 解答过程:依题意可知 3293,322=+=+==b a c a .
考点4.求最大(小)值
求最大(小)值, 是高考题中的热点题型之一.其解法为转化为二次函数问题或利用不等式求最大(小)值:特别是,一些题目还需要应用曲线的几何意义来解答.
例6.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A(x 1,y 1),B(x 2,y 2)两点,则y 12+y 22的最小值是 .
考查意图: 本题主要考查直线与抛物线的位置关系,以及利用不等式求最大(小)值的方法. 解:设过点P (4,0)的直线为()()224,8164,y k x k x x x =-∴-+=
故填32.
考点5 圆锥曲线的基本概念和性质
圆锥曲线的定义要能够熟练运用;常用的解题技巧要熟记于心.
例7. 在平面直角坐标系xOy 中,已知圆心在第二象限、半径为22的圆C 与直线y =x 相切于坐标原点O .椭圆9222
y a x +=1与圆C 的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C 的方程;
(2)试探究圆C 上是否存在异于原点的点Q ,使Q 到椭圆右焦点F 的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由.
[考查目的]本小题主要考查直线、椭圆等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.
[解答过程] (1) 设圆C 的圆心为 (m, n)
则,
m n n =-⎧⎪⎨⎪⎩ 解得2,2.
m n =-⎧⎨=⎩ 所求的圆的方程为 22(2)(2)8x y ++-=
(2) 由已知可得 210a = , 5a =.
椭圆的方程为 221259
x y += , 右焦点为 F( 4, 0) ; 假设存在Q 点()
2,2θθ-++使QF OF =,
4.
整理得
s i n 3c o s 2
θθ=+ 代入 22sin cos 1θθ+=.
得:210cos 70θθ++= , cos 1θ=<-.
因此不存在符合题意的Q 点.
例8.如图,曲线G 的方程为)0(22≥=y x y .以原点为圆心,以)0(>t t
为半径的圆分别与曲线G 和y 轴的 正半轴相交于 A 与点B . 直线
AB 与 x 轴相交于点C .
(Ⅰ)求点 A 的横坐标 a 与点 C 的横坐标c 的关系式;
(Ⅱ)设曲线G 上点D 的横坐标为2+a ,求证:直线CD 的斜率为定值.
[考查目的]本小题综合考查平面解析几何知识,主要涉及平面直角坐标素中的
两点间距离公式、直线的方程与斜率、抛物线上的点与曲线方程的关系
,考查运算能力与思维能力,综合分析问题的能力.
[解答过程](I )由题意知,).2,(a a A
因为.2,||22t a a t OA =+=所以
由于.2,02a a t t +=>故有 (1)
由点B (0,t ),C (c ,0)的坐标知,直线BC 的方程为.1=+t
y c x 又因点A 在直线BC 上,故有,12=+t
a c a 将(1)代入上式,得,1)2(2=++a a a c a 解得 )2(22+++=a a c .
(II )因为))2(22(++a a D ,所以直线CD 的斜率为
1)
2(2)2(2))2(22(2)2(22)2(2-=+-+=+++-++=-++=a a a a a a c a a k CD ,
所以直线CD 的斜率为定值.