最新实验六比例求和运算及其微积分电路

合集下载

基本运算电路比例积分微分

基本运算电路比例积分微分

第一节基本运算电路一、比例运算电路比例运算电路有反相输入、同相输入和差动输入三种基本形式。

1.反相比例运算电路·平衡电阻――使两个差分对管基极对地的电阻一致,故R2的阻值为R 2=R1//RF反相比例运算电路·虚地概念运放的反相输入端电位约等于零,如同接地一样。

“虚地”是反相比例运算电路的一个重要特点。

可求得反相比例运算放大电路的输出电压与输入电压的关系为反相比例运算电路的输入电阻:由于反相输入端为“虚地”,显然电路的输入电阻为 Ri =R1。

反相比例运算电路有如下几个特点:①输出电压与输入电压反相,且与RF 与R1的比值成正比,与运放内部各项参数无关。

当RF =R1时,uO=-uI,称为反相器。

②输入电阻Ri =R1,只决定于R1,一般情况下反相比例运算电路的输入电阻比较低。

③由于同相输入端接地,反相输入端为“虚地”,因此反相比例运算电路没有共模输入信号,故对运放的共模抑制比要求相对比较低。

2.同相比例运算电路利用“虚短”和“虚断”,可得输出电压与输入电压的关系为同相比例运算电路有如下几个特点:①输出电压与输入电压同相,且与RF 与R1的比值成正比,电压放大倍数当Rf =∞或R1=0时,则uO=uI。

这种电路的输出电压与输入电压幅度相等、相位相同,称为电压跟随器,又称为同相跟随器。

②同相比例运算电路的输入电阻很高。

由于电路存在很深的负反馈实际的输入电阻要比Rid高很多倍。

③同相比例运算电路由于u+=u-而u+=uI,因此同相比例运算电路输入端本身加有共模输入电压uIC =uI。

故对运放的共模抑制比相对要求高。

无论是反相比例运算电路还是同相比例运算电路由于引入的是电压负反馈(详细分析见第七章),所以输出电阻Ro很低。

3.差分比例运算电路利用“虚短”和“虚断”,即i+=i-=0、u+=u-,应用叠加定理可求得当满足条件R1=R2、RF=R3时,电路的输出电压与两个输入电压之差成正比,实现了差分比例运算。

多级运算电路实验报告(3篇)

多级运算电路实验报告(3篇)

第1篇一、实验目的1. 理解多级运算电路的工作原理及特点。

2. 掌握多级运算电路的设计方法。

3. 学习使用电子实验设备,如信号发生器、示波器、数字万用表等。

4. 培养实验操作能力和数据分析能力。

二、实验原理多级运算电路是由多个基本运算电路组成的,通过级联多个基本运算电路,可以实现对信号的放大、滤波、调制、解调等功能。

本实验主要涉及以下几种基本运算电路:1. 反相比例运算电路:该电路可以实现信号的放大或衰减,放大倍数由反馈电阻RF和输入电阻R1的比值决定。

2. 同相比例运算电路:该电路可以实现信号的放大,放大倍数由反馈电阻RF和输入电阻R1的比值决定。

3. 加法运算电路:该电路可以将多个信号相加,输出信号为各输入信号的代数和。

4. 减法运算电路:该电路可以实现信号的相减,输出信号为输入信号之差。

三、实验仪器与设备1. 信号发生器:用于产生实验所需的输入信号。

2. 示波器:用于观察实验过程中信号的变化。

3. 数字万用表:用于测量电路的电压、电流等参数。

4. 电阻、电容、二极管、运放等电子元器件。

5. 电路板、导线、焊接工具等。

四、实验内容与步骤1. 设计并搭建反相比例运算电路,测量并记录放大倍数、输入电阻等参数。

2. 设计并搭建同相比例运算电路,测量并记录放大倍数、输入电阻等参数。

3. 设计并搭建加法运算电路,测量并记录输出信号与输入信号的关系。

4. 设计并搭建减法运算电路,测量并记录输出信号与输入信号的关系。

5. 分析实验数据,验证实验结果是否符合理论计算。

五、实验结果与分析1. 反相比例运算电路实验结果:放大倍数为10,输入电阻为10kΩ。

分析:根据理论计算,放大倍数应为RF/R1,输入电阻应为RF+R1。

实验结果与理论计算基本一致。

2. 同相比例运算电路实验结果:放大倍数为10,输入电阻为10kΩ。

分析:根据理论计算,放大倍数应为RF/R1,输入电阻应为RF+R1。

实验结果与理论计算基本一致。

比例、求和、积分、微分电路.

比例、求和、积分、微分电路.

深圳大学实验报告课程名称:实验项目名称:学院:计算机与软件学院班级:实验时间:实验报告提交时间:一、实验目的1、掌握用集成运算放大电路组成比例、求和电路的特点及性能;2、掌握用运算放大器组成积分微分电路;3、学会上述电路的测试和分析方法。

二、实验仪器1、数字万用表2、双踪示波器3、信号发生器三、实验内容1. 电压跟随电路实验电路图 4-1如下,按表 4-1内容实验并测量记录。

2. 反相比例放大器实验电路如图 4-2所示, U0=-RF*Ui/R1,按表 4-2内容实验并测量记录。

3. 同相比例放大电路实验电路如图 4-3所示, U0=(1+RF/R1Ui,按表 4-3实验测量并记录。

4. 反相求和放大电路实验电路如图 4-4所示, U0=-RF(Ui1/R1+Ui2/R2,按表 4-4内容进行实验测量。

四、数据分析1. 电压跟随电路R L =∞:(误差如下-2V :(2.005-2 /2*100%=0.25% -0.5V :(0.502-0.5 /0.5*100%=0.4% 0 V: 0% -2V :(0.5-0.499 /0.5*100%=0.2% -2V :(1.002-1 /1*100%=0.2%RL=5K1:(误差如下-2V :(2.003-2 /2*100%=0.15%-0.5V :(0.502-0.5 /0.5*100%=0.4%0 V: 0%-2V :(0.5-0.499 /0.5*100%=0.2%-2V :(1.002-1 /1*100%=0.2%2. 反相比例放大器误差分析:30.05mV :17.3/0.3005/1000*100%=5.757%100mV : 21.1/1/1000*100%=2.11%300mV : 30.0/3/1000*100%=1%1000mV : 84/10/1000*100%=0.84%3000mV : 20030/30/1000*100%=66.767% 这个误差之所以这么大, 是因为电源是 12V ,所以输出电压不可能达到 30V ,最多是 12V 。

实验六 集成运算放大器的应用模拟运算

实验六 集成运算放大器的应用模拟运算

实验六 集成运算放大器的应用(一)模拟运算电路预习部分一、实验目的1. 研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。

2. 掌握运算放大器的使用方法,了解其在实际应用时应考虑的一些问题。

二、实验原理集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。

本实验采用的集成运放型号为μA741,引脚排列如图2-7-1所示。

它是八脚双列直插式组件,②脚和③脚为反相和同相输入端,⑥脚为输出端,⑦脚和④脚为正,负电源端,①脚和⑤脚为失调调零端,①⑤脚之间可接入一只几十K Ω的电位器并将滑动触头接到负电源端。

⑧脚为空脚。

当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。

在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。

1) 反相比例运算电路电路如图2-7-2所示。

对于理想运放, 该电路的输出电压与输入电压之间的关系为Uo =-(R F / R 1)Ui为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1‖R F 。

2) 反相加法电路图2-7-2 反相比例运算电路 图2-7-3反相加法运算电路电路如图2-7-3所示,输出电压与输入电压之间的关系为F i Fi F O //R //R R R U R R U R R U 2132211=⎪⎪⎭⎫ ⎝⎛+-= 图2-7-1 μA741管脚图3) 同相比例运算电路图2-7-4(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 Uo =(1+R F / R 1)Ui R 2=R 1 // R F当R 1→∞时,Uo =Ui ,即得到如图2-7-4(b)所示的电压跟随器。

图中R 2=R F ,用以减小漂移和起保护作用。

一般R F 取10K Ω,R F 太小起不到保护作用,太大则影响跟随性。

(a) 同相比例运算电路 (b) 电压跟随器图2-7-4 同相比例运算电路4) 差动放大电路(减法器)对于图2-7-5所示的减法运算电路,当R 1=R 2,R 3=R F 时, 有如下关系式图2-7-5 减法运算电路 图2-7-6 积分运算电路 5) 积分运算电路反相积分电路如图2-7-6所示。

实验四-比例求和运算电路实验报告

实验四-比例求和运算电路实验报告

实验四 比例求和运算电路一、实验目的1.掌握用集成运算放大器组成比例、求和电路的特点及性能。

2.学会上述电路的测试和分析方法。

二、实验仪器1.数字万用表2.信号发生器3.双踪示波器其中,模拟电子线路实验箱用到直流稳压电源模块,元器件模组以及“比例求和运算电路”模板。

三、实验原理(一)、比例运算电路 1.工作原理a .反相比例运算,最小输入信号min i U 等条件来选择运算放大器和确定外围电路元件参数。

如下图所示。

10k Ω输入电压i U 经电阻R 1加到集成运放的反相输入端,其同相输入端经电阻R 2接地。

输出电压O U 经R F 接回到反相输入端。

通常有: R 2=R 1//R F 由于虚断,有 I +=0 ,则u +=-I +R 2=0。

又因虚短,可得:u -=u +=0 由于I -=0,则有i 1=i f ,可得:Fo1i R u u R u u -=---由此可求得反相比例运算电路的电压放大倍数为: ⎪⎪⎩⎪⎪⎨⎧==-==1i i if 1F i o uf R i uR R R u u A反相比例运算电路的输出电阻为:R of =0输入电阻为:R if =R 1b .同相比例运算10k Ω输入电压i U 接至同相输入端,输出电压O U 通过电阻R F 仍接到反相输入端。

R 2的阻值应为R 2=R 1//R F 。

根据虚短和虚断的特点,可知I -=I +=0,则有 o Fu R R R u ⋅+=-11且 u -=u +=u i ,可得:i o Fu u R R R =⋅+111F i o uf R R 1u u A +==同相比例运算电路输入电阻为: ∞==iiif i u R 输出电阻: R of =0以上比例运算电路可以是交流运算,也可以是直流运算。

输入信号如果是直流,则需加调零电路。

如果是交流信号输入,则输入、输出端要加隔直电容,而调零电路可省略。

(二)求和运算电路 1.反相求和根据“虚短”、“虚断”的概念1212i i o Fu u uR R R +=- 1212()F F o i i R R u u u R R =-+当R 1=R 2=R ,则 12()F o i i R u u u R=-+四、实验内容及步骤1、.电压跟随电路实验电路如图1所示。

比例微积分实验报告(3篇)

比例微积分实验报告(3篇)

第1篇一、实验目的1. 理解比例微积分环节在自动控制系统中的作用。

2. 学习利用运算放大器实现比例微积分环节。

3. 通过实验验证比例微积分环节的阶跃响应特性。

4. 掌握实验数据处理方法。

二、实验原理比例微积分环节是一种线性环节,其传递函数为G(s) = K + Ks,其中K为比例系数,Ks为积分系数。

比例微积分环节具有比例和积分两种特性,可以用于控制系统中的稳态误差补偿、滤波、微分等。

三、实验仪器与设备1. 运算放大器2. 信号发生器3. 示波器4. A/D、D/A卡5. 计算机及实验软件四、实验步骤1. 启动计算机,在桌面信号、自控文件夹中双击图标,运行软件。

2. 测试计算机与实验箱的通信是否正常,通信正常继续。

如通信不正常,查找原因使通信正常后才可以继续进行实验。

3. 连接典型环节的模拟电路,电路的输入U1接A/D、D/A卡的DA1输出,电路的输出U2接A/D、D/A卡的AD1输入。

检查无误后接通电源。

4. 在实验项目的下拉列表中选择“典型环节及其阶跃响应”,鼠标单击按钮,弹出实验课题参数设置对话框。

5. 在参数设置对话框中设置相应的实验参数,包括比例系数K、积分系数Ks、采样时间等。

设置完成后,用鼠标单击确定,等待屏幕的显示区显示实验结果。

6. 观测计算机屏幕显示出的响应曲线及数据,记录波形及数据。

7. 改变比例系数K和积分系数Ks,观察响应曲线的变化,分析比例微积分环节的特性。

五、实验结果与分析1. 比例环节在比例环节中,K为比例系数,表示输出信号与输入信号的比例关系。

当K=1时,输出信号与输入信号成线性关系;当K>1时,输出信号放大;当K<1时,输出信号衰减。

2. 积分环节在积分环节中,Ks为积分系数,表示输出信号对输入信号的积分。

当Ks>0时,输出信号随时间逐渐增大;当Ks<0时,输出信号随时间逐渐减小。

3. 比例积分环节比例积分环节具有比例和积分两种特性。

当K和Ks均为正值时,输出信号随时间逐渐增大;当K和Ks均为负值时,输出信号随时间逐渐减小。

1比例求和运算电路

1比例求和运算电路

实验报告(1)学院:课程名称:实验项目:比例、求和运算电路专业班级:小组成员:姓名:学号:指导老师:学生实验报告一、实验目的1.掌握运算放大器组成比例求和电路的特点性能及输出电压与输入电压的函数关系。

2.学会上述电路的测试和分析方法。

二、实验仪器及设备示波器、TB型模拟电路实验仪和⑤号实验板等。

三、实验电路原理集成运算放大器是具有高电压放大倍数的直接耦合多级放大电路。

当外部接入不同的线性或非线性元件组成输入和负反馈电路时,可以实现各种特定的函数关系。

四、实验内容及步骤每个比例、求和运算电路实验,都应先进行以下两项:1.按电路图接好线后,仔细检查,确保正确无误。

将各输入端接地,接通电源,用示波器观察是否出现自激振荡。

若有自激振荡,则需更换集成运算放大电路。

2. 调零:各输入端仍接地,调节调零电位器,使输出电压为零(用示波器测量) ⑴ 反相比例放大器 实验电路如图J5-1所示图J5-1 反相比例放大器预习要求:分析图J5-1反相比例放大器的主要特点(包括反馈类型),求出表J5-1的理论估算值。

表J5-1实验内容:在5号实验模板上按图J5-1“反相比例放大器”连好线,并接上电源线,做表J5-1中的内容。

将反相比例放大器的输入端接DC 信号源的输出,将DC 信号源的转换开关置于合适位置,调节电位器,使i V 分别为表J5-1中所列各值,分别测出o V 的值,填在该表中。

⑵ 同相比例放大器实验电路如图J5-2所示。

预习要求:①分析图J5-2同相比例放大器的主要特点(包括反馈类型),求出表J5-2各理论估算值。

②熟悉实验任务,自拟实验步骤,并做好实验记录准备工作。

图J5-2同相比例放大器表J5-2⑶电压跟随器实验电路如图J5-3所示预习要求:①分析图J5-3电路的特点,求出表J5-3中各理论估算值。

②熟悉实验任务,自拟实验步骤,并做好实验记录准备工作。

图J5-3电压跟随器实验步骤:在5号实验模板上,按图J5-3和表J5-3的要求连好线,分别测出表J5-3中各条件下的V值。

电子技术实验课件-比例求和运算电路

电子技术实验课件-比例求和运算电路

实验结果分析
1
实验数据记录
记录实验过程中得到的数据,包括输入
计算结果总结
2
信号、输出信号和电流电压数值。
根据实验数据进行计算,并对比例求和
电路的性能进行评估和总结。
3
比例求和电路应用案例
介绍比例求和电路在实际应用中的案例, 包括信号处理、自动控制等领域。
实验总结
1 实验感想和收获
分享您在实验过程中的感想和对比例求和电路的理解。
电子技术实验课件-比例求和运 算电路
在本课程中,我们将介绍比例求和运算电路的原理、作用和应用。通过实验 过程和实验结果分析,您将深入了解此电路的设计和调试方法,并了解其在 实际应用中的效果。
引言
比例求和运算电路是一种重要的电子电路,它能够对输入信号进行线性变换 和求和运算。本节将介绍比例求和运算电路的定义、作用和应用领域。
理论知识
1
比例求和电路原理
比例求和电路基于电压与电流之间的线性关系,通过合理的配置电阻和电流源实现信号的比 例变换和求和运算。
2
比例求和电路公式
பைடு நூலகம்
比例求和电路的公式和计算方法将在本节详细介绍,将帮助您更好地理解电路的工作原理。
实验过程
实验器材
收集所需实验器材,包括电阻、电流源、示波器等。
实验步骤
根据电路图设计、元器件连接和电路调试进行实验。
2 实验中遇到的问题及解决方法
描述在实验中遇到的问题,并分享您是如何解决它们的。
3 实验中需要注意的事项
提醒实验者在进行比例求和运算电路实验时需要注意的事项和注意事项。
参考文献
相关电子技术实验教材
推荐一些关于比例求和电路的电子技术实验教 材,以供进一步学习和参考。

积分、微分、比例运算电路

积分、微分、比例运算电路

模拟电路课程设计报告题目:积分、微分、比例运算电路一、设计任务与要求①设计一个可以同时实现积分、微分和比例功能的运算电路。

②用开关控制也可单独实现积分、微分或比例功能③用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。

二、方案设计与论证用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V),为运算电路提供偏置电源。

此电路设计要求同时实现比例、积分、微分运算等功能。

即在一个电路中利用开关或其它方法实现这三个功能。

方案一:用三个Ua741分别实现积分、微分和比例功能,在另外加一个Ua741构成比例求和运算电路,由于要单独实现这三个功能,因此在积分、微分和比例运算电路中再加入三个开关控制三个电路的导通与截止,从而达到实验要求。

缺点:开关线路太多,易产生接触电阻,增大误差。

此运算电路结构复杂,所需元器件多,制作难度大,成本较高。

并且由于用同一个信号源且所用频率不一样,因此难以调节。

流程图如下:图1方案二:用一个Ua741和四个开关一起实现积分、微分和比例功能,并且能够单独实现积分、微分或比例功能。

优点:电路简单,所需成本较低。

电路图如下:积分运算电路 微分运算电路 比例运算电路 比例求和运算电路图2三、单元电路设计与参数计算1、桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V )。

其流程图为:图3直流电源电路图如下:电源变压器整流电路滤波电路稳压电路V1220 Vrms 50 Hz0¡ã U11_AMP T17.321D21N4007D31N4007D41N4007C13.3mF C23.3mF C3220nFC4220nF C5470nFC6470nF C7220uFC8220uFU2LM7812CTLINE VREGCOMMONVOLTAGEU3LM7912CTLINEVREGCOMMON VOLTAGE D51N4007D61N4007LED2LED1R11k¦¸R21k¦¸2345D11N40071516671417图4原理分析: (1)电源变压器:由于要产生±12V 的电压,所以在选择变压器时变压后副边电压应大于24V,由现有的器材可选变压后副边电压为30V 的变压器。

积分电路和微分电路的设计实验报告

积分电路和微分电路的设计实验报告

积分电路和微分电路的设计实验报告一、实验目的本实验旨在通过设计积分电路和微分电路,掌握基本的积分和微分电路的原理、设计方法和实验技能,加深对模拟电子技术的理解。

二、实验器材1.双踪示波器2.函数信号发生器3.直流稳压电源4.万用表5.集成运放(LM741)三、积分电路设计实验1.原理简介:积分电路是一种能够将输入信号进行积分运算的电路,通常由一个运放、一个电容和一个反馈电阻组成。

在输入信号为正弦波时,输出信号为余弦波,并且幅度随时间增加而增大。

2.设计步骤:(1)选择合适的运放:本次实验选用LM741运放。

(2)确定反馈电阻Rf:根据公式Rf=1/(2πfC),其中f为输入信号频率,C为选定的电容值。

本次实验选用C=0.01μF,当输入频率为1kHz时,计算得到Rf=15.92kΩ。

(3)确定输入阻抗Rin:为了保证输入信号不被积分电路影响,需要满足Rin>>Rf。

本次实验选用Rin=1MΩ。

(4)确定电源电压:根据运放数据手册,LM741的最大工作电压为±18V。

本次实验选用±15V的直流稳压电源。

3.实验步骤:(1)按照上述设计步骤连接电路图,并接通电源。

(2)调节函数信号发生器输出正弦波信号,频率为1kHz,幅度为2V。

(3)使用双踪示波器观察输入和输出信号波形,并记录数据。

(4)更改输入信号频率和幅度,重复步骤(2)和(3),记录数据。

4.实验结果分析:根据实验记录的数据,可以得到输入和输出信号的波形图。

当输入为正弦波时,输出为余弦波,并且幅度随时间增加而增大。

当输入频率增加时,输出幅度也相应增加;当输入幅度增加时,输出幅度也相应增加。

五、微分电路设计实验1.原理简介:微分电路是一种能够将输入信号进行微分运算的电路,通常由一个运放、一个电阻和一个反馈电容组成。

在输入信号为正弦波时,输出信号为余弦波,并且幅度随时间减小而减小。

2.设计步骤:(1)选择合适的运放:本次实验选用LM741运放。

电子技术实验课件2-比例求和运算电路

电子技术实验课件2-比例求和运算电路

以上实验内容与1、2相似,参考实验讲义。
返回
五、思考题
⒈ 总结:本实验中5种运算电路的 特点及性能。
⒉ 分析:理论计算与实验结果误 差的原因。
返回
图26-1 同相比例 放大电路
直流电压Vi
测电压Vo
+12V
-12V
3.反相比例放大器 4.反相求和放大电路 5. 差动放大电路
uo RF Au ui R1
RF RF uo ( ui1 ui 2 ) R1 R2
R3 RF RF uo (1 ) ui 2 ui1 R1 R2 R3 R1
2. 信号发生器
3. 数字万用表
返回
三、预习要求
1.
2. 3. 4. 5.
计算表1中的V0和Af
估算表3的理论值 估算表4、表5中的理论值 计算表6中的V0值 计算表7中的V0值
返回
四、实验内容与步骤
1. 电压跟随电路,如图26-1所示。
表 1 Vi(V) V0(V) RL=∞ RL=5K1 相对误差 -2 -2 -0.5 0 +0.5 +1 -2.00
-2
uo u u ui26-1 电压跟随电路
直流电压Vi
测电压Vo
+12V
-12V
2. 同相比例放大器 实验电路如图26-2所示。
R3 RF uo (1 ) ui R1 R2 R3
按表2内容测量并 记录实验数据。
实验电路板的连接如下。
实验 比例求和运算电路
电子技术实验
河北工业大学 电气与自动化学院
电工电子教学中心
实验
比例求和运算电路
一、实验目的 二、实验仪器 三、预习要求 四、实验内容与步骤

模电实验报告 比例求和运算及微积分电路

模电实验报告  比例求和运算及微积分电路

实验六 比例求和运算及微积分电路一、实验目的1、掌握集成运算放大器的特点,性能及使用方法。

2、掌握比例求和电路的测试及分析方法。

3、掌握各电路的功能工作原理和计算方法。

二、实验仪器 1、数字万用表 2、信号发生器 3、示波器4、交流毫伏表5、直流稳压电源 三、实验内容 1、电压跟随器验证电压跟随器的电压跟随特性。

(此电路经常用于多级放大器的第一级,起阻抗匹配作用)经测量Ui=Uo=14.142mV2、反相比例电路验证反相比例运算电路的输入与输出的关系为:i ifo U R R U -= 电路图如下:经验证Uo=10Ui=141.406mV3、同相比例放大器验证同相比例放大电路输入与输出之间的关系:Ui R Rf U o ⎪⎪⎭⎫⎝⎛+=11 电路图如下:测得Ui=14.142mV Uo=155.546mV Uo=101Ui4、反相求和电路验证反相求和电路的输入与输出之间的关系式:)2211(U Ui R Rf Ui R Rf o +-=电路图如下图所示:由图可知:Ui1=6.955mV, Ui2=2.303mV, Uo=92.564mV验证92.564mV = -【(R3/R4)6.955+(R3/R1)2.303】mV5、加减运算放大电路验证其输入输出之间的关系式:)12(1Ui Ui R RfUo -=电路图如下图所示:实验测得:Ui1=6.978mV Ui2=2.318mV Uo=46.655mV 可验证Uo=10(6.978-2.318)6、积分电路连接积分电路,检查无误之后接通12±V 直流电源。

①取Ui=-1V ,用示波器观察波形Uo ,并且测量运放输出电压的正向饱和电压值。

②取Ui=1V ,测量运放的负向饱和电压值③将电路中的积分电容改为0.1微法,Ui 分别输入1KHz 幅值为2V 的方波和正弦信号,观察Ui 和Uo 的大小及相位关系,并记录波形,计算电路的有效积分时间。

实验6比例、求和运算电路

实验6比例、求和运算电路

实验六比例、求和运算电路一.实验目的1. 用运算放大器等元件构成反相比例放大器,同相比例放大器,电压跟随器,反相求和电路及同相求和电路,通过实验测试和分析,进一步掌握它们的主要特点和性能及输出电压与输入电压的函数关系.二.实验设备名称数量型号1.DC信号源 1 块 -5V~+5V2.信号发生器 1台3.示波器 1台4.万用表1只5.电阻 11只 100Ω*1 2.4kΩ*110kΩ*4 20kΩ*2100kΩ*2 1MΩ*16.集成块芯片 1只 LM741*110. 短接桥和连接导线若干 P8-1和5014811. 实验用9孔插件方板 297mm×300mm三.实验内容与步骤每个比例,求和运算电路实验,都应先进行以下两项:1)按电路图接好线后,仔细检查,确保正确无误。

将各输入端接地,接通电源,用示波器观察是否出现自激振荡。

若有自激振荡,则需更换集成运放电路。

2)调零:各输入端仍接地,调节调零电位器,使输出电压为零(用数字电压表200mV档测量,输出电压绝对值不超过5mV)。

1. 反相比例放大器,实验电路如图8-1所示。

图8-1 反相比例放大器2)分析图8-1反相比例放大器的主要特点(包括反馈类型),求出表8-1中的理论估算值。

表8-12. 同相比例放大器,实验电路如图8-2所示。

1)分析图8-2同相比例放大器的主要特点(包括反馈类型),求出表8-2中各理论估算值,并定性说明输入电阻和电阻的大小。

图8-2 同相比例放大器表8-23. 电压跟随器,实验电路如图8-31)分析图8-3电路的特点,求出表8-3中各理论估算值。

图8-3 电压跟随器2)分别测出表8-3中各条件下的V o值。

表8-34. 反相求和电路,实验电路如图8-4 所示1)分析图8-4反相求和电路的特点,并估算:a. 按静态时运放两个输入端的外接电阻应对称的要求,R’的阻值应多大?b. 设输入信号V11=1V, V12=2V, V13=-1.5V, V14=-2V,试求出V o的理论估算值。

积分电路和微分电路实验报告

积分电路和微分电路实验报告

竭诚为您提供优质文档/双击可除积分电路和微分电路实验报告篇一:实验6积分与微分电路实验6积分与微分电路1.实验目的学习使用运放组成积分和微分电路。

2.实验仪器双踪示波器、信号发生器、交流毫伏表、数字万用表。

3.预习内容1)阅读op07的“数据手册”,了解op07的性能。

2)复习关于积分和微分电路的理论知识。

3)阅读本次实验的教材。

4.实验内容1)积分电路如图5.1。

在理想条件下,为零时,则dV(t)Vi(t)??co,当c两端的初始电压RdtVo(t)??1tVi(t)dtRc?o因此而得名为积分电路。

(1)取运放直流偏置为?12V,输入幅值Vi=-1V的阶跃电压,测量输出饱和电压和有效积分时间。

若输入为幅值Vi=-1V阶跃电压时,输出为Vo(t)??Vi1tVdt??t,(1)iRc?oRc这时输出电压将随时间增长而线性上升。

通常运放存在输入直流失调电压,图6.1所示电路运放直流开路,运放以开环放大倍数放大输入直流失调电压,往往使运放输出限幅,即输出电压接近直流电源电压,输出饱和,运放不能正常工作。

在op07的“数据手册”中,其输入直流失调电压的典型值为30μV;开环增益约为112db,即4×105。

据此可以估算,当Vi=0V时,Vo=30μV×4×105=12V。

电路实际输出接近直流偏置电压,已无法正常工作。

建议用以下方法。

按图6.1接好电路后,将直流信号源输出端与此同时Vi相接,调整直流信号源,使其输出为-1V,将输出Vo接示波器输入,用示波器可观察到积分电路输出饱和。

保持电路状态,关闭直流偏置电源,示波器x轴扫描速度置0.2sec/div,Y轴输入电压灵敏度置2V/div,将扫描线移至示波器屏的下方。

等待至电容上的电荷放尽。

当扫描光点在示波器屏的左下方时,即时打开直流偏置电源,示波器屏上积分电路的输出为线性上升的直线,大约1秒后,积分电路输出由线性上升的直线变为水平直线,即积分电路已饱和,立即按下示波器的“stop”键。

模电实验六 比例、求和运算电路实验

模电实验六 比例、求和运算电路实验

6 实验报告要求
准备报告: 写出电路的具体设计过程。 准备报告: 写出电路的具体设计过程。 总结报告: 总结报告: 根据实验结果,分析产生误差的原因。 根据实验结果,分析产生误差的原因。
实验八:比例、求和运算电路实验 实验八:比例、
1.实验目的 .
掌握比例、求和电路的设计方法。通过实验, 掌握比例、求和电路的设计方法。通过实验,了解影 响比例、求和运算精度的因素,进一步熟悉电路的特 响比例、求和运算精度的因素, 点和功能。 点和功能。
2.实验题目 .
(1)设计一个能实现下列运算关系的电路 设计一个能实现下列运算关系的电路: 设计一个能实现下列运算关系的电路 UO=10UI1-5UI2 - UI1=UI2=0.1~1V ~
V DD -12V V DD RF 40kO
4
2
U1 1 Uo
U i3
4
R32Βιβλιοθήκη 10kO 5 U i2 6
R2
3
6
20kO
7 1 5
741
U i1
R1 20kO 3 R4 40kO 12V 0 V CC V CC
比例求和设计电路
µΑ741器件的引脚排列和说明 器件的引脚排列和说明
• 引脚说明: 引脚说明: 2脚IN--:反相输入端 3脚IN+:同相输入端 6脚OUT:放大器输出端 4 脚 V-- : 负电源入端 ( -12V ) 负电源入端( 7脚V+:正电源入(+12V) 正电源入(
4.实验内容及要求
根据设计题目要求,选定电路, ① 根据设计题目要求,选定电路,确定集成 运算放大器型号, 运算放大器型号,并进行参数设计 ② 按照设计方案组装电路 在设计题目所给输入信号范围内, ③ 在设计题目所给输入信号范围内,任选几 组信号输入, 组信号输入,测出相应输出电压 uo,将的 , 实测值与理论值作比较,计算误差。 实测值与理论值作比较,计算误差。 注意:输入信号可以选用直流信号。 注意:输入信号可以选用直流信号。

实验七-比例求和运算及微分运算电路

实验七-比例求和运算及微分运算电路

实验七比例求和运算及微分运算电路一.实验目的1.掌握集成运算放大器的特点,性能及使用方法。

2.掌握比例求和电路,微积分电路的测试和分析方法。

3.掌握各电路的工作原理和理论计算方法。

二.实验仪器1.GOS-620模拟示波器2.GFG-8250A信号发生器3.台式三位半数字万用表4.指针式交流毫伏表5.SPD3303C直流电源三.实验内容及步骤1.搭接电压跟随器并验证其跟随特性,测量2-3组数据进行验证。

Ui(V) 6.0mV 7.0mV 8.0mV Uo(V) 6.0mV 7.0mV 8.0mV2.测量反向比例电路的比例系数,测量其计算值与理论值进行比较理论值:Uo=-(R F/Ri)*Ui,ui=7mV,uo=-70mV实际值: uo=7mV,ui=69mV3.测量同相比例放大器的比例系数及上限截止频率理论值:uo=-(1+RF/Ri)*ui,ui=6.9mV,uo=75.9mV实际值:ui=6.9mV,uo=76mV4.测量反相求和电路的求和特性,注意多路输入信号可通过电阻分压法获取仿真值如下图所示,Ui1=3.185mV,Ui2=1.706mV,Uo=48.899mV,满足输入与输出运算关系:Uo=-[(RF /R1)*Ui1+( RF /R2)*Ui2]5.验证双端输入求和的运算关系6.积分电路如图所示连接积分运算电路,检查无误后接通±12V直流电源①取ui=-1V,用示波器观察波形uo,并测量运放输出电压值的正向饱和电压值正向饱和电压值为11V②取ui=1V,测量运放的负向饱和电压值。

注意±1V的信号源可用1Hz交流信号代替反向饱和电压值为-11V③将电路中的积分电容改为0.1uF,ui分别输入1kHz幅值为2V的方波和正弦波信号,观察ui和uo的大小及相位关系并记录波形,计算电路的有效积分时间。

Ui=1.414V,Uo=222.157mVUi=2V,Uo=288.8mV④改变电路的输入信号的频率,观察ui和uo的相位,幅值关系。

实验6 比例求和运算电路

实验6  比例求和运算电路

传输函数为:Vo = R3
Vi 2 R1

Vi 1 R2
= 10(Vi2 − Vi1)
直流测量数据记录如下: Vi1(V) Vi2(V) Vo(V) 1 0.5 -4.68 2 1.8 -1.896 0.2 -0.2 -3.776
交流测量波形如下:
R3 R2
Vi = −10Vi
100
300
1000
3000
输出
理论估算
-300mv
-1V
-3V
-10V
-30V -10V 超范围
电压 V0 实测值 误差
-296.7mv -0.957V -2.839V -9.430V 3.3mv 43mv 161mv 570mv
由于运放存在线性工作区和非线性工作区,输入 3V 时超出了线性工 作区。 交流测量如下: (分别按表中的数据作为输入波形的幅值,测得输出 波形的幅值) Vi Vo 30mv 0.28V 100mv 1V 300mv 2.85V 1000mv 10V
交流测量数据记录: (分别按表中的数据作为输入波形的幅值,测得
输出波形的幅值) Vi(V) Vo(V) 2 2V 0.5 0.49V 0 0V 1 0.98V
波形如下:为跟随特性。
2、反相比例放大器 实验电路如下:
反比例放大器的传输函数:Vo = − (1) 数据记录如下: 直流输入电压(mV) 30
3、同相比例放大器 电路如下:
电路传输函数:Vo = 1 +
R3 R2
Vi = 11Vi
(1)实验测量并记录 直流输入电压(mV) 输出 理论估算 30 330mv 316.9mv 13.1mv 100 1.1V 1.082V 18mv 300 3.3V 3.28V 20mv 1000 11V 10.98V 20mv

比例、求和、 积分、微分电路

比例、求和、 积分、微分电路

深圳大学实验报告课程名称:电路与电子学实验项目名称:比例、求和、积分、微分电路学院:专业:指导教师:报告人:学号:班级:实验时间:实验报告提交时间:教务处制一、实验目的1、掌握用集成运算放大电路组成比例、求和电路的特点及性能;2、掌握用运算放大器组成积分微分电路;3、学会上述电路的测试和分析方法二、实验环境1、数字万用表2、双踪示波器3、信号发生器三、实验内容与步骤:1.电压跟随电路实验电路图如下,按表1内容实验并测量记录。

V i(V) -2 -0.5 0 +0.5 1R L=∞V0(V)R L=5.1KΩ2.反相比例放大器实验电路如图,U0=-R F*U i/R1,按表2内容实验并测量记录。

表23.同相比例放大电路实验电路如下所示,U 0=(1+R F /R 1)U i ,按表3实验测量并记录。

直流输入电压V i (mV)30 100 300 1000 3000 输出电压V 0理论估算(V)实际值(V) 误差(mV )4.反相求和放大电路直流输入电压V i (mV)30 100 300 1000 3000 输出电压V 0理论估算(V)实际值(V )误差(mV)实验电路如图,U0=-RF(Ui1/R1+Ui2/R2),按表4内容进行实验测量。

Vi1(V) 0.3 -0.3Vi2(V) 0.2 0.2V0(V)V0估(V)表4四、实验结果与数据分析:五、实验体会及自我评价:六、诚信承诺:本人郑重承诺在完成该项目的过程中不发生任何不诚信现象,一切不诚信所导致的后果均由本人承担。

签名:2、教师批改学生实验报告时间应在学生提交实验报告时间后10日内。

电子技术实验课件-比例求和运算电路

电子技术实验课件-比例求和运算电路
例如,在音频处理中,比例求和运算 电路可用于调整音频信号的音量和音 调;在控制系统里,比例求和运算电 路可用于调节系统的增益和偏差。
02
实验原理
比例运算电路
01
02
03
比例运算电路
通过改变输入信号的幅度, 以一定的比例输出信号的 电路。
放大器
实现比例运算的电子器件, 通过改变输入信号的电压 或电流,以一定的比例放 大或缩小输出信号。
应用前景
比例求和运算电路在物联网、智能家居、医疗电子等领域具有广泛的应用前景。随着人工智能和机器 学习技术的不断发展,比例求和运算电路在信号处理和模式识别等领域的应用也将得到进一步拓展。
THANKS FOR WATCHING
感谢您的观看
缺点
由于电路中存在模拟元件,其性能会受到温度、湿度等因素的影响,导致电路性 能不稳定。此外,电路的精度和线性度也受到元件参数分散性的影响,需要进行 精确的调整和校准。
展望比例求和运算电路未来的发展趋势和应用前景
发展趋势
随着电子技术的不断进步和应用需求的不断提高,比例求和运算电路将朝着高精度、高稳定性、智能 化等方向发展。新型的集成电路技术和数字化控制技术将为比例求和运算电路的发展提供有力支持。
合理的电路布局可以减小电路 的不对称性,从而减小误差。
提高测量设备精度
采用高精度的测量设备,可以 更准确地测量电路元件的参数
和电路的输出结果。
05
实验总结与展望
总结实验收获与不足
总结实验收获
通过本次实验,我们深入了解了比例求和运算电路的工作原理和实现方式,掌 握了电路的设计和搭建技巧,增强了动手实践能力和解决问题的能力。
搭建比例求和运算电路
根据实验要求,将各个元件按照正确的顺序连接起来,构成比例求和运算电路。 注意检查连接是否正确,确保没有短路或断路现象。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验六比例求和运算及其微积分电路
实验六 比例求和运算及微积分电路
实验内容及步骤
1 .搭接电压跟随器并验证其跟随特性。

U1
UA741CP
3
2
4
76
5
112V VEE
-12V
VCC
VEE
XFG1
XSC1
A
B
Ext Trig
+
+
_
_
+_
R15.1kΩ2
1
仿真图如上
输出输入波形重合,其跟随特性得以验证. 实测数据显示Uo=Ui,验证运放性能良好。

2 .测量反相比例电路的比例系数。

由图:为反相比例放大,输入电压为10mv,输出电压为100mv,且输出波形与输入波形反相,放大倍数10。

理论值:Uo=-Rf/Ri*Ui=-10Ui,反相比例系数为-10.
实测数据如下:
Uo/mv 10 15 20
Ui/v 0.11 0.165 0.22
分析,Uo与Ui反相,反相比例电路的比例系数为-10.
3 .测量同相比例放大器的比例系数及上限截止频率。

仿真图如下:
输入输出波形如下
由图:Ui=10mv,Uo=100mv,且输入输出同相,放大系数约为10倍。

实测数据如下:
Ui/mv 10 20 30 40 50 60
Uo/v 0.11 0.22 0.33 0.43 0.545 0.66
Au 11 11 11 10.5 10.9 11
所以实际放大倍数约为11,与理论值接近。

测量截止频率:首先将函数发生器的输入电压幅值调为20mv,此时观察示波器输出约为0.22v,然后调节函数发生器的调频旋钮,随着频率增大,当
Uo=0.22*0.707=0.15554v时,对应电压即为上限截止频率,fh=94.78khz.
4 .测量反相求和电路的求和特性。

分析:输入Ui1=20mv,Ui2=10mv,输出Uo=2.5v,且输出与输入反相。

理论值:Uo=-(R3/R2*Ui1+R3/R1*Ui2)=-(10*Ui1+10*Ui2)
实验测得:
Ui1/mv 10 20 40 80 160
Ui2/mv 5 10 20 40 80
Uo/v -0.14 -0.27 -0.58 -1.1 -2.4
-0.15 -0.3 -0.6 -1.2 -2.4.
理论值
Uo/v
验证在误差允许的范围内,此电路具有反相求和特性。

5 .验证双端输入求和电路的运算关系。

输入输出波形:
输入电压Ui2为20mv,Ui1为10mv,输出Uo为100mv。

理论值:Uo=Rf/R1(Ui2-Ui1)=10(Ui2-Ui1)
实验测得:
Ui2/mv 10 20 50 100 200 300
Ui1/mv 5 10 25 50 100 150
Uo/v 0.05 0.1 0.25 0.5 1.0 1.6
0.05 0.1 0.25 0.5 1.0 1.5
理论值
Uo/v
∵实验值Uo与理论值Uo接近,∴双端输入求和电路的运算关系为
Uo=Rf/R1(Ui2-Ui1)
6 .积分电路
按照图7-8(a )连接积分电路,检查无误后接通±12V 直流电源。

①取ui = -1V,用示波器观察波形uo ,并测量运放输出电压的正向饱和电压值。

④改变电路的输入信号的频率,观察 ui 和uo 的相位,幅值关系。

仿真如下:①取ui = -1V,
U1
UA741CD
3
2
4
7
65
1
R110kΩR210kΩ
100kΩKey=A
50%C110uF
1
VCC
12V VEE
-12V
VCC
2VEE
XSC1
A
B Ext T rig
+
+_
_
+
_
XFG1
3
0VDD
-1V
VDD
由上图读出运放输出电压的正向饱和电压值为 5v ,此时滑变为50k.. ②取ui = 1V ,测量运放的负向饱和电压值。

读出Ui=1v,Uo=-5V,
③将电路中的积分电容改为 0.1μF,ui 分别输入 1kHz幅值为 2V的方波和正弦信号观察ui 和uo 的大小及相位关系,并记录波形,计算电路的有效积分时间。

当输入正弦信号时,输入输出波形如下:
可看出输入正弦波,经过积分后变成余弦波。

当ui 输入 1kHz幅值为 2V的方波如下,输出为三角波。

输入方波为2v,输出三角波为0.5v,有效积分时间为1ms.
④改变电路的输入信号的频率,观察 ui 和uo 的相位,幅值关系。

f/HZ599 1600 2500 3500.0
Uo/v 1.0 0.4 0.32 0.2
7 .微分电路
实验电路如图7-8(b )所示。

①输入正弦波信号, f =500Hz ,有效值为 1V,用示波器观察ui 和uo 的
波形并测量输出电压值。

输入正弦波为1v,输出电压值为3.2v。

②改变正弦波频率( 20Hz -- 40Hz),观察ui 和uo 的相位、幅值变化情
况并记录。

f=25HZ时,Uo 的幅值为0.2v,Ui与Uo的相位差为90°。

改变正弦波频率,Uo幅值变小了,Ui与Uo的相位差也变小了。

③输入方波, f = 200Hz,U = ±5V,用示波器观察uo 波形。

并重复上述
实验。

实验测的输出尖顶波波形幅值为10.2v,滑动变阻器为11KΩ。

改变频率,幅值会变大。

④输入三角波,f = 200Hz,U = ±2V,用示波器观察uo 波形。

重复上述实验。

由图:输入三角波±2v,输出方波为1.8v。

实验测得Uo为1.9v,滑动变阻器为130Ω。

改变频率,会使输出波形幅值变小。

8 .积分—微分电路
①输入f = 200Hz,U =±6V的方波信号,用示波器观察u i和u o的波形并记录。

分析:输入电压幅值为6v,输出电压幅值也约为6v。

输入方波,经过积分—微分电路,理论上输出波形应该是方波,可仿真结果并不是方波。

②将 f改为 500Hz,重复上述实验。

分析:输出电压幅值变小了。

相关文档
最新文档