二次根式的加减专题练习
人教版八年级数学下册16-3二次根式的加减 同步练习题
人教版八年级数学下册《16-3二次根式的加减》同步练习题(附答案)1.下列二次根式中,与是同类二次根式的是()A.B.C.D.2.若4与可以合并,则m的值不可以是()A.B.C.D.3.下列运算正确的是()A.=B.+=C.3x3﹣5x3=﹣2D.8x3÷4x=2x34.++…+的整数部分是()A.3B.5C.9D.65.计算(﹣3)2022(+3)2023的值为()A.1B.+3C.﹣3D.36.设x、y都是负数,则等于()A.B.C.D.7.已知:a+b=﹣5,ab=1,则+的值为()A.5B.﹣5C.25D.5或﹣58.若x2+y2=1,则的值为()A.0B.1C.2D.39.已知x=﹣2,x4+8x3+16x2的值为()A.B.C.3D.910.若a=2﹣,则代数式2a2﹣8a﹣1的值等()A.1B.﹣1C.4+4D.﹣211.如图,在一个长方形中无重叠的放入面积分别为9cm2和8cm2的两张正方形纸片,则图中空白部分的面积为()cm2.A.2+1B.1C.8﹣6D.6﹣812.将一个边长为a的正方形硬纸板剪去四角,使它成为正八边形,求正八边形的面积()A.(2﹣2)a2B.a2C.a2D.(3﹣2)a2 13.已知x+y=﹣6,xy=8,求代数式x+y的值.14.已知:,则ab3+a3b的值为.15.已知x=,则x4+2x3+x2+1=.16.已知a+b=3,ab=2,则的值为.17.已知x为奇数,且=,求•的值.18.已知a=.(1)求a2﹣4a+4的值;(2)化简并求值:.19.计算:(1)(1﹣π)0+|﹣|﹣+()﹣1;(2)(+﹣)2﹣(﹣+)2.20.(1)已知x=+2,y=﹣2,求下列各式的值:①+;②x2﹣xy+y2;(2)若+=8,求﹣.参考答案1.解:因为=2,=2,=2,=2,所以与是同类二次根式,故选:B.2.解:A、把代入根式分别化简:4=4=,==,故选项不符合题意;B、把代入根式化简:4=4=;==,故选项不合题意;C、把代入根式化简:4=4=1;=,故选项不合题意;D、把代入根式化简:4=4=,==,故符合题意.故选:D.3.解:A,,正确.B,,不正确.C,3x3﹣5x3=﹣2x3,不正确.D,8x3÷4x=2x2,不正确.故选:A.4.解:原式=+…+=++…+=++…+=++…+=﹣1=﹣1+10=9.故选C.5.解:原式=(﹣3)2022(+3)2022×(+3)=[(﹣3)(+3)]2022×(+3)=(10﹣9)2022×(+3)=1×(+3)=+3,故选:B.6.解:∵x、y都是负数,∴=﹣(﹣x+2﹣y)=﹣()2,故选:D.7.解:∵a+b=﹣5,ab=1,∴a<0,b<0,+=﹣﹣=﹣,又∵a+b=﹣5,ab=1,∴原式=﹣=5;故选:A.8.解:因为x2+y2=1,所以﹣1≤x≤1,﹣1≤y≤1,因为=,其中y﹣2<0,所以x+1≤0,又因为﹣1≤x≤1,所以x+1=0,x=﹣1,所以y=0,所以原式=+=2+0=2.故选:C.9.解:∵x=﹣2,∴x2=(﹣2)2=()2﹣2××2+22=7﹣4+4=11﹣4,则原式=x2(x2+8x+16)=x2(x+4)2=(11﹣4)(﹣2+4)2=(11﹣4)(2+)2=(11﹣4)(11+4)=112﹣(4)2=121﹣112=9,故选:D.10.解:∵a=2﹣,∴2a2﹣8a﹣1=2(a﹣2)2﹣9=2(2﹣﹣2)2﹣9=2×5﹣9=1.故选:A.11.解:如图.由题意知:(cm2),.∴HC=3(cm),LM=LF=MF=.∴S空白部分=S矩形HLFG+S矩形MCDE=HL•LF+MC•ME=HL•LF+MC•LF=(HL+MC)•LF=(HC﹣LM)•LF=(3﹣)×=(cm2).故选:D.12.解:设剪去三角形的直角边长x,根据勾股定理可得,三角形的斜边长为x,即正八边形的边长为x,依题意得x+2x=a,则x==,∴正八边形的面积=a2﹣4××=(2﹣2)a2.故选:A.13.解:∵x+y=﹣6,xy=8,∴x<0,y<0,∴x+y=﹣﹣=﹣2=﹣2=﹣4.故答案为:﹣4.14.解:∵,∴a+b=+=,ab=×==,则原式=ab(a2+b2)=ab[(a+b)2﹣2ab]=×(3﹣2×)=×=,故答案为:.15.解:∵x=,∴x4+2x3+x2+1=x2(x2+2x+1)+1=x2(x+1)2+1=()2×(+1)2+1=×+1=+1=+1=1+1=2,故答案为:2.16.解:===,∵a+b=3,ab=2,∴a>0,b>0,∴原式===,故答案为:.17.解:∵=,∴.解得:7≤x<9.∵x为奇数,∴x=7.∵•==(x+1)•,∴原式=(7+1)×=8×4=32.18.解:(1)a===2﹣,a2﹣4a+4=(a﹣2)2,将a=2﹣代入(a﹣2)2得(﹣)2=3.(2),=﹣=(a﹣1)﹣,∵a=2﹣,∴a﹣1=1﹣<0,∴原式=a﹣1+=2﹣﹣1+2+=3.19.解:(1)原式=1+﹣﹣2+=1﹣;(2)原式=(+﹣+﹣+)(+﹣﹣+﹣)=2×(2﹣2)=4﹣4=4﹣8.20.解:(1)①+=,∵x=+2,y=﹣2,∴x+y=2,xy=3,当x+y=2,xy=3时,原式=;②x2﹣xy+y2=(x+y)2﹣3xy,∵x=+2,y=﹣2,∴x+y=2,xy=3,当x+y=2,xy=3时,原式=(2)2﹣3×3=19;(2)设=x,=y,则39﹣a2=x2,5+a2=y2,∴x2+y2=44,∵+=8,∴(x+y)2=64,∴x2+2xy+y2=64,∴2xy=64﹣(x2+y2)=64﹣44=20,∴(x﹣y)2=x2﹣2xy+y2=44﹣20=24,∴x﹣y=±2,即﹣=±2,故答案为:±2.。
(完整版)二次根式的加减练习题
21.3二次根式的加减法班级 座号 姓名 成绩一、填空与选择(每小题4分,共40分).1.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数 ,称这几个二次根式为同类二次根式.2.二次根式的加减:①先把各个二次根式化成 ____________;②再把 _____________分别合并.3.下列各式中,与2是同类二次根式的是 ( ).A .23B .6C .8D .104. 已知二次根式42-a 与3是同类二次根式,则的a 值可以是( ).A .8B .7C .6D .55.计算8-2的结果是( ).A .6B .6C .2D .26. 下列计算正确的是( )A3= B .532=+ C .= D .224=-7.化简:3+(5-3)=_____________.8.计算:计算:_____________9.如果两个最简二次根式3213+-a a 与能合并,那么=a ________10.如图是由边长为1m 的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A →B →C 所走的路程为_______m .(结果保留根号)二、计算与解答(60分).11.(20分)计算:(1)481227+- (2)()()1515-+(3)22521332+- (4)22)2332()2332(--+12.(8分)若3的整数部分为x ,小数部分为y ,求53xy -的值.13. (10分)先化简再求值: 215),6()3)(3(+=--+-a a a a a 其中14.(提升与拓展)(10分)计算211++321++431++…+100991+15.(提升与拓展)(12分)如图,菱形ABCD 的对角线AC =472,472-=+BD ,求菱形的边长和面积.。
二次根式的加减 分层作业(解析版)
人教版初中数学八年级下册16.3.1二次根式的加减同步练习夯实基础篇一、单选题:1)A BC D2.墨迹覆盖了等式-=)A.+B.-C.×D.÷3.下列二次根式合并过程正确的是()A=B .a =+C .=D .2-=4)A .1和2B .2和3C .3和4D .4和55.若两个最简二次根式)A .B .C .D .【答案】D【分析】先根据同类二次根式的定义求出m 的值,然后代入合并即可.6.已知3a =+3b =-,则22a b ab -的值为()A .1B .17C .D .-7x 的取值范围是()A .6x ≥B .6x ≤C .8x ≥D .8x ≤二、填空题:11.数轴上A、B两点所表示的数是-C是线段AB的中点,则点C所表示的数是_________.12.如图,要在长7.5dm、宽5dm的矩形木板上截两个面积为218dm的正方形,是否可行?8dm和2___________.(填“行”或“不行”)13.若最简二次根式3x-__.14.已知2a =2b =22a b -=________.【点睛】此题主要考查了平方差以及二次根式的计算,正确进行二次根式混合运算是解题关键.三、解答题:15.计算:16.计算:;(2-17.己知x =y =,求222x xy y -+-的值.【答案】8-【分析】先把所求代数式变形为()2x y --,再代值计算即可.【详解】解:222x xy y -+-()222x xy y =--+能力提升篇一、单选题:1.一个等腰三角形的两边长分别为3和)A.5+B.3+C.6+或3+D.3+10+2=n为整数),则m的值可以是()A.6B.12C.18D.24是非负数;②算术平方根a本身是非负数.求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.3.如图,在长方形ABCD中无重叠放入面积分别为8和16的两张正方形纸片,则图中空白部分的面积为()A.8-B.12C.4-D.2二、填空题:4.三角形周长为()cm,cmcm,则第三边的长是__________cm.6.观察下列各式:11111122⎛⎫=+=+-⎪⨯⎝⎭111112323⎛⎫+=+-⎪⨯⎝⎭111113434⎛⎫+=+-⎪⨯⎝⎭…三、解答题:733b b ++=+,x 的整数部分,y 的小数部分.求23x y -的值.8.我们知道,2=3,(2233=3=4-,…如果两个含有二次根式的非零代数式相乘,它们的积不含有二次根式,就说这两个非零代数式互为有理化因式.如33互为有理化因式.利用这种方法,可以将分母中含有二次根式的代数式化为分母是有理数的代数式,这个过程称为分母有理化,_________________;_________________;_________________;(4)。
初中数学专题训练--二次根式--二次根式的加减
典型例题一例01.在下列二次根式中,与b a +是同类二次根式是( )A .3)(52b a +B .)(231b a + C .4)(1b a b a ++ D .b a +3 分析 因3)(52b a +=b a b a ++)(52, b a b a +=+32)(231, ⋅++=++=++=++)(313),()(1)(124b a ba b a b a b a b a b a b a 故只有A 的二次根式与b a +被开方数完全相同. 是同类二次根式.解答 A说明 判断是否为同类二次根式,必须先化成最简二次根式.典型例题二例02.下列算式中,正确的是( )A .333n m n m -=-B .ab b a 835=+C .1037=+x xD .52523521=+ 分析 3)(33n m n m -=-,n m -应添上括号,所以A 是错的. B 中a 5,b 3不是同类二次根式,不能合并. x x x 1037=+. 故C 也是错的.解答 D说明 二次根式相加减,就是合并同类二次根式,与整式加减类似.典型例题三例03.计算:)315.125.4()5.248116(+---分析 先将题目中的每个二项根式化简,为此要把被开方数中的带分数和小数化假分数,为二次根式的化简创造有利条件.解答 )315.125.4()5.248116(+--- 33125222322722931215213217212363122529249896-+--=-+--⨯=-+--= 331223312)25232729(-=-+--= 说明 本题源于课本中的有关计算题,可以再适当变换题目中的被开方数、正负号,增加括号等,都不涉及课本的实质. 对这样的题目,要能熟练地进行运算.典型例题四例04.已知最简根式)23(34+-+a b a 和)62(4+--+b a b 是同类根式,求2)2(b a +的值. 分析 由同类根式的定义可知,根指数相同,可得到关于a ,b 的二元方程组. 解答 由同类根式的定义可知⎩⎨⎧+=++--=+-434)62()23(b b a b a a 解⎩⎨⎧=-=62b a ∴10010)622()2(222==⋅+-=+b a 典型例题五例05.化简:(1)725341874321a a a a a a --+(2)xxy x x xy x 14434114831434+-- (3)x x x x x x x 1082363273223-+-(4))0(22>>++--+b a ba ab b a a b 解答 (1)原式=a aa a a a a a a 2324874321--+ a a a a a a a a a a 83214874321-=--+=(2)原式=x xxy x x x x y x 42123411334+--x y y x x y y x )1112(338)1112(3)434(2424-+-=-+-= (3)原式=x x x x x x x x x 362336333322⋅-+-⋅ 03)322(3332332=-+-=-+-=x x x x x xx x x x x x x(4)∵0>>b a ,∴10<<a b ,1>ba ba ab b a a b <<<∴,0 ∴原式=22++--+b a a b b a a bab ab aba ab a b b a b a a b b a a b b a a b b a a b 22)()()(22-=-=+--=+--=+--= 说明 利用二次根式的性质来化简.典型例题六例06.计算:(1)1477175483+- (2)a a a a a 235425-+(3))20125.02()3155.03(--- 解答 (1)1477175483+- 38335343=+-⨯= (2)a a a a a 235425-+a a aa a a a a 2222845=-+=(3))20125.02()3155.03(--- 52335252221335223+-=+--=说明 二次根式的加减,首先是化简,即把每一个二次根式都化为最简二次根式. 在化简后,就是类似整式加减的运算了. 整式加减无非是去括号,合并同类项. 二次根式的加减在化简后也是这样,同类二次根式类似于同类项,加法的运算律同样适用. 合并同类二次根式,相当于合并它们的“系数”.防止产生的错误有:①没有化成最简二次根式. 如题(1)错为12248=;②不同类根式的错误合并,如题(3)错为3与2合并为5;③表达不正确,如223. 根号前的分数应写成假分数,不应写成带分数.典型例题七例07.设32,32-=-+=-c b b a ,求ac bc ab c b a ---++222的值. 解答 因32+=-b a ,32-=-c b , 故4)32(32)()(=-++=-+-=-c b b a c a又因ac bc ab c b a ---++222 .153021]4)32()32[(21])()()[(21)222222(21222222222=⨯=+-++=-+-+-=---++=c a c b b a ac bc ab c b a 说明 在解代数式的化简和求值问题时,对条件、结论往往需要变形. 请注意以下两个常见的变形.(1)])()()[(212222c a c b b a ac bc ab c -+-+-=--- (2)))((3222333ac bc ab c b a c b a abc c b a ---++++=-++习题精选之填空题(1)______2008275=-+;(2)______80453202=+-;(3)______24327482=++;(4)______1085124755=--;(5)______6148252294=+-; (6)______216216524354=++-; (7)______216312454600=--+; (8)______5.1281132=+-;(9)______125.045.022.05=+-; (10)______22121423=-+. 参考答案: (1)2635-;(2)5-;(3)320;(4)313-;(5)76615-;(6)65;(7)69;(8)2423;(9)5;(10)229 选择题1.选择题(1)下列各组根式中是同类二次根式的是( )(A )ab 与2ab (B )mn 与nm 11+ (C )22n m +与22n m - (D )4398b a 与2943b a (2)下列各式中与271是同类二次根式的是( ) (A )18 (B )12 (C )32 (D )92 (3)下列各式中与b a 3不是同类二次根式的是( )(A )4ab (B )a b (C )22b a (D )ab1 (4)下列二次根式中与yx 不是同类二次根式的是( )(A )2xy (B )y x 3 (C )xy1 (D )3x y (5)二次根式①5.03,②315,③125.02,④20中是同类二次根式的是( ) (A )②和③ (B )③和④ (C )①和③ (D )①和④(6)下列各组二次式中,可化为同类二次根式的是( )(A )2a 和23a (B )x x 2和xx 12 (C )x 2和x 3 (D )33a 和43a(7)在二次根式b a 3,2ab ,a b ,ab1,22b a 中,是同类二次根式的个数为( )(A )2 (B )3 (C )4 (D )52.选择题(1)下列二次根式中,是同类二次根式的是( ) ①b a 34,②a b a 423,③232b a ,④b a b 2 (A )①② (B )②④ (C )①② ④ (D )①③④(2)化简xx x x 2118612-得( ) (A )x x x x 23- (B )x x x 2212-(C )x x 22 (D )0(3)下列命题中正确的是( )(A )3a 和a1是同类二次根式 (B )a 2与a 2是同类二次根式(C )被开方数完全相同的二次根式不一定是同类二次根式(D )a1与a 不是同类二次根式 (4)下列根式中与8是同类二次根式的是( )(A )2 (B )3 (C )5 (D )6(5)下列各组式子中,不是同类二次根式的是( )(A )181与18 (B )63与281- (C )48与8.4 (D )125.0与128(6)与a 27是同类二次根式的是( )(A )a 54 (B )a 121- (C )31a (D )482a 3.选择题(1)下列式子中,是同类二次根式的一组是( )(A )36.0与6.02 (B )b a 33与22ab(C )22b a -与2221b a + (D )c b a b a 53与acb b a 24 (2)下列计算中,化简正确的一组是( )(A )1073=+ (B )a a a 32=+(C )x y x x y x x x y xx 1)(1112+=+=+ (D )b aa b a b a a b b a 221622123218222-=-=- (3)下列说法正确的是( )(A )被开方数不同的二次根式一定不是同类二次根式(B )a 2与a 2是同类二次根式(C )a1与a 不是同类二次根式 (D )被开方数完全相同的二次根式是同类二次根式(4)当2523<<x 时,化简961222+-++-x x x x 得( ) (A )x 2 (B )2 (C )2- (D )x 2-参考答案:1.(1)D (2)B (3)C (4)A (5)C (6)B (7)B2.(1)C (2)D (3)A (4)A (5)C (6)B3.(1)D (2)D (3)D (4)B判断题1.判断下列各组二次根式是不是同类二次根式(1)543和245 (2)7521和2713 (3)3241和5.0 (4)32x 与x21 (5)39a a 与533a (6)175-与631 (7)b a 3,a b 3与b a (8)c ab 5161,27bc a 与54ab c 2.下列各式中,哪些是同类二次根式? ①312,②2712,③a b -,④84,⑤21.0-⑥75.0,⑦b a a b ,⑧ab 1,⑨108,⑩531b a a 3.判断题(1)2222=+( )(2)x b a x b x a -=-( )(3)ab b a 752=+( )(4)x x x 353332=+( )(5)235=-a a ( )(6)x b a x b x a )(-=- ( )(7)83与61不是同类二次根式 ( ) (8)3a 、2ab 与a 1不是同类二次根式 ( ) (9)33a 与a 是同类二次根式 ( )(10)272、6与54是同类二次根式 ( )参考答案:1.(1)是 (2)是 (3)是 (4)是 (5)不是 (6)是 (7)是 (8)不是2.①④⑤是同类二次根式,②⑥⑨是同类二次根式,③⑦⑧⑩是同类二次根式.3.(1)×(2)×(3)×(4)√(5)×(6)√(7)×(8)×(9)×(10)√ 解答题1.合并同类二次根式(1)3218121-+ (2)32222133123+-+-(3)4832315311312--+ (4)2001286175.142112+-+ (5)xx x x x x 12964212-+ (6)b a b a 9735+--(7)32518283+-(8)3417343731--+ (9)b a b a 128275186-+- (10)c a c ab ab c a ab a 333328534321123636-+-2.计算题(1)32128-++ (2)192214721- (3)5018283-+ (4)3004875-+(5)8200242+- (6)1509654-+(7)312316+- (8)10210005240+- 3.计算题 (1)5.050182183+-+(2)212525401000-+- (3))40551736516(633++- (4)32935148x x x x x x x +-- (5)91114275444328+-- (6)4135941125221300+-- 4.计算题(1))75315(27+- (2))9921765(44-- (3))5145354(203++-参考答案:1.(1)285 (2)332223+ (3)0 (4)73522051+ (5)x x (6)a b 26-(7)220 (8)732321- (9)b a 3725- (10)ac ac ab ab 722732-2.(1)323+ (2)3225-(3)27 (4)3- (5)23 (6)62 (7)3 (8)03.(1)23 (2)10217 (3)55137757- (4)x x - (5)1135 (6)13294.(1)3310-(2)1112- (3)5536- 解答题1.已知长方形长为a ,宽为b ,求与下列长方形面积相等的正方形的边长x :(1)8,49==b a (2)8.0,6.3==b a(3)12513,532==b a (4)m b m a 641,41== 2.计算题(1))323485()5012739(---+(2))132331242()4882(+-+ (3))1881()3122112(--+-(4))300512732()162912(---3.计算题 (1)a a a a a 235425-+ (2)5343581b bb b b +- (3)mm m m m m 12964212-+ 4.求值:已知2,3==y x ,求y x x xy y x xy x 2252353312+--的值.参考答案:1.(1)214 (2)256 (3)2513 (4)16m 2.(1)2733+ (2)3327-- (3)249338+ (4)0 3.(1)a a 28 (2)b b 10 (3)m m4.(1)3645353)(22-=+--y x x y x解答题1.计算题(1)187825-+ (2)101252403-- (3)232282xy x x +- (4))2775298(18+--2.已知直角三角形的两条直角边为a 、b 、c 为斜边,且27=a ,275=c ,求这个直角三角形的周长.3.证明:已知ABC Rt ∆中,斜边为c ,直角边长a 、b ,求证:b c a c a c a c a c 2=+-+-+.参考答案:1.(1)214- (2)10528 (3)x y x 2)221(+- (4)2437- 2.218318+〔提示:21822=-=a c b 〕3.提示:等式左边a c a c a c a c +-+-+=22a c a c a c --++=222ac c -=b c 2==右边。
二次根式的加减练习题及答案
试卷第1页,总4页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:________班级:________考号:________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………第Ⅰ卷(选择题)一.选择题(共17小题) 1.下列二次根式中,与是同类二次根式的是( ) A .B .C .D .2.下列二次根式中,与是同类二次根式的是( ) A .B .C .D .3.下列二次根式能与合并的是( ) A .B .C .D .4.若最简二次根式是同类二次根式,则x 的值为( )A .B .C .x =1D .x =﹣15.下列各式中,化简后能与合并的是( ) A .B .C .D .6.下列计算正确的是( ) A .4﹣3=1B .+=C .+=3D .3+2=57.下列计算错误的是( ) A .3﹣=2B .a 0=1C .﹣2+|﹣2|=0D .(﹣3)﹣2=8.化简2﹣||的结果是( )A .4B .C .D .29.下列计算正确的为( ) A .B .C .D .10.计算的结果估计在( ) A .7与8之间B .8与9之间C .9与10之间D .10与11之间11.下列说法正确的是( ) A .的倒数B .C .的相反数是试卷第2页,总4页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………D .是分数12.若a =+1,则a 2﹣2a +1的值为( )A .6B .C .﹣2D .+213.已知a =+,b =﹣,那么ab 的值为( )A .B .C .x ﹣yD .x +y14.已知:m =+1,n =﹣1,则=( ) A .±3B .﹣3C .3D .15.已知x +=7(0<x <1),则的值为( )A .﹣B .﹣C .D .16.已知a 、b 、c 是△ABC 三边的长,则+|a +b ﹣c |的值为( ) A .2a B .2b C .2cD .2(a 一c )17.方程的解为( )A .B .C .D .试卷第3页,总4页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:________班级:________考号:________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………第Ⅱ卷(非选择题)二.填空题(共11小题) 18.若二次根式与相等,则a = ,b = .19.若最简二次根式与是同类二次根式,则a = .20.与最简二次根式是同类二次根式,则m = . 21.两个最简二次根式与相加得6,则a +b +c = .22.计算:= . 23.计算:= .24.一个长方形的长和宽分别为和2,则这个长方形的面积为 .25.已知x ,y 是实数,且满足y =++,则的值是 .26.当x =2+时,x 2﹣4x +2020= .27.如图,大、小两个正方形连在一起,大正方形的边长为10,小正方形的边长为6,则阴影部分的面积为 .28.如图,在长方形ABCD 内,两个小正方形的面积分别为1,2,则图中阴影部分的面积等于 .三.解答题(共4小题) 29.计算: (1);(2).30.计算:试卷第4页,总4页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)(2020﹣)0+|4﹣|﹣;(2)(+)(3﹣2)﹣(﹣)2.31.计算:32.设a ,b 是任意两个实数,规定a 与b 之间的一种运算“⊕”为:例如:;(﹣3)⊕2=(﹣3)﹣2=﹣5,(因为x 2+1>0)参照上面材料,解答下列问题: (1)= ,= ;(2)解方程:2⊕(x ﹣2)=8⊕(x 2﹣4) (3)解不等式::﹣3⊕(2x ﹣1)>0⊕(x +9)参考答案与试题解析一.选择题(共17小题)1.下列二次根式中,与是同类二次根式的是()A .B .C .D .【分析】各项化简得到结果,判断即可.【解答】解:A 、原式=,不符合题意;B、不是同类二次根式,不符合题意;C、原式=2,符合题意;D、原式=2,不符合题意,故选:C.【点评】此题考查了同类二次根式,以及二次根式的性质与化简,熟练掌握同类二次根式的定义是解本题的关键.2.下列二次根式中,与是同类二次根式的是()A .B .C .D .【分析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的概念判断即可.【解答】解:A 、=5,与不是同类二次根式;B 、=,与是同类二次根式;C 、与不是同类二次根式;D 、=5,与不是同类二次根式;故选:B.【点评】本题考查的是同类二次根式的概念、二次根式的性质,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.3.下列二次根式能与合并的是()A .B .C .D .【分析】化为最简二次根式,然后根据同类二次根式的定义解答.【解答】解:的被开方数是3,而、=2、的被开方数分别是5、2、2,所以它们不是同类二次根式,不能合并,即选项A、B、D都不符合题意.=2的被开方数是3,与是同类二次根式,能合并,即选项C符合题意.故选:C.1本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
(完整word版)二次根式的加减基础题30道解答题含答案解析
12.3 二次根式的加减基础题汇编(3)一.解答题(共30小题)1.(2015•嘉定区一模)计算:|1﹣sin30°|+cot30°•tan60°+. 2.(2014秋•大英县校级期末)计算:0.3.(2014秋•萝岗区期末)化简:(1)(﹣)(2)(a+2)2﹣a(a﹣4)4.(2014秋•宝兴县校级期末)(1)(﹣4)﹣(3﹣2);(2)(5+﹣6)÷.5.(2014秋•大英县校级期末)计算:(1)(2)6cos60°﹣(sin21°﹣1)0×5tan45°.6.(2014秋•青神县期末)﹣3﹣×.7.(2014秋•福田区期末)计算:(1)(2015﹣π)0+()﹣1﹣(+1)(﹣1)(2)+×.8.(2014秋•宝兴县校级期末)计算:()÷.9.(2014秋•宝兴县校级期末)+﹣4+2(﹣1)0.10.(2014•相城区一模)计算化简(1)计算:(2)化简:,然后选择一个合适的x的值代入上式求值.11.(2014•石家庄模拟)化简(1)﹣+sin45°;(2).12.(2014•高邮市模拟)计算:(1)(1﹣)0﹣tan60°+(﹣)﹣1;(2)3(1﹣)+.13.(2014•孟津县一模)计算下列各题(1)(﹣)+;(2)(﹣2)3+(2014﹣)0﹣tan60°.14.(2014•建宁县校级质检)(1)计算:(2)先化简,再求值:,其中x=﹣4.15.(2014春•淮北期中)计算(1)﹣+|1﹣|+()﹣1(2)(﹣3)2+(+3)(﹣3)16.(2013•闵行区三模)计算:.17.(2013秋•汉川市期中)计算:(1)•(+)﹣(﹣5);(2)(3+)(﹣4).18.(2012•潘集区模拟)计算:(1);(2).19.(2012•建宁县校级质检)(1)计算:(2)解不等式组:,并把解集在数轴上表示出来.20.(2011•海门市一模)计算:(1);(2). 21.(2010•巫山县模拟)计算:(1)(2).22.(2002•西藏)当a=时,求代数式﹣﹣的值.23.(1997•山东)先化简,再求值:+.其中x=,y=.24.计算:2a﹣+(a>0)25.计算:(1)+2﹣4﹣(2)(﹣2)﹣(+)(3)+6﹣2x.26.计算:(1).(2)++.(3)(﹣4)﹣(3﹣4).(4)3﹣5+7.27.计算:(1)﹣9+3(2)(a+4)﹣(﹣b).28.计算:(1)+6;(2)(a)﹣(﹣b).29.计算:.30.化简:(+2++).12.3 二次根式的加减基础题汇编(3)参考答案与试题解析一.解答题(共30小题)1.(2015•嘉定区一模)计算:|1﹣sin30°|+cot30°•tan60°+.考点:二次根式的混合运算;特殊角的三角函数值.分析:利用特殊角的三角函数值及二次根式的混合运算的顺序求解即可.解答:解:|1﹣sin30°|+cot30°•tan60°+.=|1﹣|+××+,=++,=﹣2.点评:本题主要考查了二次根式的混合运算及特殊角的三角函数值,解题的关键是熟记特殊角的三角函数值及二次根式的混合运算的顺序.2.(2014秋•大英县校级期末)计算:0.考点:二次根式的混合运算;零指数幂.分析:先根据零指数幂的意义计算,再把各二次根式化为最简二次根式,然后合并即可.解答:解:原式=3+﹣+1=3+1.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.3.(2014秋•萝岗区期末)化简:(1)(﹣)(2)(a+2)2﹣a(a﹣4)考点:二次根式的混合运算;整式的混合运算.专题:计算题.分析:(1)根据二次根式的乘法法则运算;(2)利用乘法公式展开,然后合并同类项即可.解答:解:(1)原式=﹣=4﹣2=2;(2)原式=a2+4a+4﹣a2+4a=8a+4.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了整式的混合运算.4.(2014秋•宝兴县校级期末)(1)(﹣4)﹣(3﹣2);(2)(5+﹣6)÷.考点:二次根式的混合运算.专题:计算题.分析:(1)先把各二次根式化为最简二次根式,然后去括号后合并即可;(2)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.解答:解:(1)原式=4﹣﹣+=3;(2)原式=(20+2﹣6)÷=(22﹣6)=22﹣2.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.5.(2014秋•大英县校级期末)计算:(1)(2)6cos60°﹣(sin21°﹣1)0×5tan45°.考点:二次根式的混合运算;零指数幂;特殊角的三角函数值.专题:计算题.分析:(1)先把各二次根式化为最简二次根式,然后合并即可;(2)根据零指数幂与特殊角的三角函数值得到原式=6×﹣1×5×1,然后进行有理数的混合运算.解答:解:(1)原式=4+﹣12﹣=﹣;(2)原式=6×﹣1×5×1=3﹣5=﹣2.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂与特殊角的三角函数值.6.(2014秋•青神县期末)﹣3﹣×.考点:二次根式的混合运算.专题:计算题.分析:先把各二次根式化为最简二次根式,再进行二次根式的乘法运算,然后合并即可.解答:解:原式=2﹣2﹣4•=﹣4a.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.7.(2014秋•福田区期末)计算:(1)(2015﹣π)0+()﹣1﹣(+1)(﹣1)(2)+×.考点:二次根式的混合运算;零指数幂;负整数指数幂.专题:计算题.分析:(1)根据零指数幂、负整数指数幂和平方差公式得到原式=1+2﹣(3﹣1),然后进行有理数的加减运算;(2)根据二次根式的乘除法则运算.解答:解:(1)原式=1+2﹣(3﹣1)=3﹣2=1;(2)原式=+=3+6=9.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂和负整数指数幂.8.(2014秋•宝兴县校级期末)计算:()÷.考点:二次根式的混合运算.专题:计算题.分析:根据二次根式的除法法则运算.解答:解:原式=﹣+2+=a2﹣+2+a.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.9.(2014秋•宝兴县校级期末)+﹣4+2(﹣1)0.考点:二次根式的混合运算;零指数幂.专题:计算题.分析:根据零指数幂的意义和分母有理化得到原式=5+2(﹣1)﹣2+2×1,然后去括号后合并即可.解答:解:原式=5+2(﹣1)﹣2+2×1=5+2﹣2﹣2+2=5.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.10.(2014•相城区一模)计算化简(1)计算:(2)化简:,然后选择一个合适的x的值代入上式求值.考点:二次根式的混合运算;分式的化简求值;负整数指数幂;特殊角的三角函数值.分析:(1)首先化简二次根式,代入角的三角函数值,分母有理化,最后合并同类二次根式即可;(2)首先对括号内的两个分式通分相加,然后把除法转化成乘法运算,即可把分式进行化简,然后代入x的值求解即可.解答:解:(1)原式=2+2﹣=2+2﹣(2﹣)=;(2)原式=[﹣]÷=•=当x=1时,原式=1.点评:本题考查的是二次根式的混合运算,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算.第二个题目的计算中要注意分式有意义的条件,x的值不能取0和±3.11.(2014•石家庄模拟)化简(1)﹣+sin45°;(2).考点:二次根式的混合运算;特殊角的三角函数值.专题:计算题.分析:(1)根据分母有理化和特殊角的三角函数值得到原式=﹣3+,然后合并即可;(2)根据特殊角的三角函数值得到原式=,然后进行乘除运算即可.解答:解:(1)原式=﹣3+=﹣2;(2)原式==1.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了特殊角的三角函数值.12.(2014•高邮市模拟)计算:(1)(1﹣)0﹣tan60°+(﹣)﹣1;(2)3(1﹣)+.考点:二次根式的混合运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:(1)根据零指数幂、负整数指数幂和特殊角的三角函数值得到原式=1﹣﹣2,然后合并即可;(2)先进行二次根式的乘法运算和分母有理化得到﹣6+2(﹣1),然后合并即可.解答:解:(1)原式=1﹣﹣2=﹣1﹣;(2)原式=3﹣6﹣=3﹣6﹣2(+1)=3﹣6﹣2﹣2=﹣8.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂和特殊角的三角函数值.13.(2014•孟津县一模)计算下列各题(1)(﹣)+;(2)(﹣2)3+(2014﹣)0﹣tan60°.考点:二次根式的混合运算;零指数幂;特殊角的三角函数值.分析:(1)先进行二次根式的乘法运算,然后再进行加法运算即可求解;(2)分别进行零指数幂、特殊角的三角函数值等运算,然后合并.解答:解:(1)原式=2﹣+=2;(2)原式=﹣8+﹣×=﹣8+﹣=﹣9.点评:本题考查了二次根式的混合运算,掌握运算法则解答本题的关键.14.(2014•建宁县校级质检)(1)计算:(2)先化简,再求值:,其中x=﹣4.考点:二次根式的混合运算;分式的化简求值;零指数幂;负整数指数幂.专题:计算题.分析:(1)根据零指数幂、负整数指数幂得到原式=3﹣+1﹣3,然后合并即可;(2)先把括号内通分,再把除法运算化为乘法运算,然后把分式分母因式分解后约分得到原式=,再把x的值代入计算.解答:解:(1)原式=3﹣+1﹣3=1﹣;(2)原式=•=,当x=﹣4时,原式=.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂和分式的化简求值.15.(2014春•淮北期中)计算(1)﹣+|1﹣|+()﹣1(2)(﹣3)2+(+3)(﹣3)考点:二次根式的混合运算;负整数指数幂.专题:计算题.分析:(1)分别进行二次根式的化简,分母有理化及负整数指数幂的运算,然后合并即可;(2)根据完全平方公式及平方差公式,进行计算即可.解答:解:(1)原式=3﹣+﹣1+2=3+1;(2)原式=5﹣6+9+11﹣9=16﹣6.点评:本题考查的是二次根式的混合运算,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算.16.(2013•闵行区三模)计算:.考点:二次根式的混合运算;分数指数幂;零指数幂.专题:计算题.分析:根据零指数幂、分数指数幂和分母有理化得原式=1﹣(2﹣)++2(2﹣),然后去括号后合并即可.解答:解:原式=1﹣(2﹣)++2(2﹣)=1﹣2+++4﹣2=3.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、分数指数幂.17.(2013秋•汉川市期中)计算:(1)•(+)﹣(﹣5);(2)(3+)(﹣4).考点:二次根式的混合运算.分析:(1)先进行二次根式的乘法运算,二次根式的化简,最后合并同类二次根式即可;(2)先将二次根式化为最简,然后运用平方差公式进行计算即可.解答:解:(1)原式=2+3﹣2+=3+;(2)原式=(3+4)(3﹣4)=18﹣48=﹣30.点评:本题考查了二次根式的混合运算,在运算之前先观察,有简便算法时,尽量用简便算法.18.(2012•潘集区模拟)计算:(1);(2).考点:二次根式的混合运算;零指数幂;负整数指数幂.专题:计算题.分析:(1)根据平方差公式和完全平方公式得到原式=2﹣1+7﹣,然后进行加减运算;(2)根据零指数幂与负整数指数幂的意义得到原式=1++3+﹣+1,然后合并同类二次根式即可.解答:解:(1)原式=2﹣1+7﹣=8﹣;(2)原式=1++3+﹣+1=5.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂与负整数指数幂.19.(2012•建宁县校级质检)(1)计算:(2)解不等式组:,并把解集在数轴上表示出来.考点:二次根式的混合运算;在数轴上表示不等式的解集;解一元一次不等式组.分析:(1)首先分母有理化,利用公式计算二次根式的乘法、乘方,然后合并同类二次根式即可;(2)首先解每个不等式,在数轴上表示出不等式的解集,两个解集的公共部分就是不等式组的解集.解答:解:(1)原式==2+4﹣﹣1=5﹣(2)由①得:x≤3由②得:x>﹣3∴原不等式组的解集是:﹣3<x≤3.点评:本题考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.20.(2011•海门市一模)计算:(1);(2).考点:二次根式的混合运算;零指数幂.专题:计算题.分析:(1)根据绝对值、二次根式的化简、零指数幂进行计算即可;(2)先化简二次根式,再合并即可.解答:解:(1)原式==;(2)原式==.点评:本题考查了二次根式的混合运算以及零指数幂,是基础知识要熟练掌握.21.(2010•巫山县模拟)计算:(1)(2).考点:二次根式的混合运算;零指数幂.专题:计算题.分析:(1)先化简二次根式,再合并同类二次根式即可.(2)根据同底数幂乘法的逆运算和零指数幂、绝对值进行计算即可.解答:解:(1)原式=(3分)=(5分)(2)原式=(2分)=(3分)=(4分)=(5分)点评:本题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.22.(2002•西藏)当a=时,求代数式﹣﹣的值.考点:二次根式的化简求值.分析:原式第一项分子利用完全平方公式化简,第二项分子利用二次根式的化简公式计算,分母提取公因式化简,约分后合并得到最简结果,将a分母有理化后代入计算即可求出值.解答:解:∵a==2﹣,∴a﹣1=2﹣﹣1=1﹣<0,则原式=﹣﹣=a﹣1+﹣=a﹣1=2﹣﹣1=1﹣.点评:此题考查了二次根式的化简求值,熟练掌握运算法则是解本题的关键.23.(1997•山东)先化简,再求值:+.其中x=,y=.考点:二次根式的化简求值.分析:首先对每个根式进行分母有理化,然后进行同分母的分式的加减,最后进行约分即可化简,把x、y的值代入分母有理化即可求解.解答:解:原式=﹣+==∵x=,y=.∴原式==2(﹣)2.点评:本题考查了根式的化简求值,正确进行分母有理化是关键.24.计算:2a﹣+(a>0)考点:二次根式的加减法.分析:先化简二次根式,然后去括号,合并同类二次根式.解答:解:原式=2a﹣+=.点评:本题考查了二次根式的加减法,解答本题的关键是掌握二次根式的化简以及加减运算法则.25.计算:(1)+2﹣4﹣(2)(﹣2)﹣(+)(3)+6﹣2x.考点:二次根式的加减法.分析:(1)先把各根式化为最简二次根式,再合并同类项即可;(2)先去括号,再把各根式化为最简二次根式,合并同类项即可;(3)先把各根式化为最简二次根式,再合并同类项即可.解答:解:(1)原式=+2﹣﹣=2﹣;(2)原式=﹣2﹣+=2﹣1﹣+5+4=(2﹣+5+4)﹣1=﹣1;(3)原式=2+3﹣2=3.点评:本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.26.计算:(1).(2)++.(3)(﹣4)﹣(3﹣4).(4)3﹣5+7.考点:二次根式的加减法.分析:(1)先进行二次根式的化简,然后合并;(2)先进行二次根式的化简,然后合并;(3)先进行二次根式的化简,然后合并;(4)先进行二次根式的化简,然后合并.解答:解:(1)原式=2+2﹣=+2;(2)原式=++=;(3)原式=2﹣﹣+2=+;(4)原式=3﹣10+21=14.点评:本题考查了二次根式的加减法,掌握运算法则是解答本题的关键.27.计算:(1)﹣9+3(2)(a+4)﹣(﹣b).考点:二次根式的加减法.分析:(1)先进行二次根式的化简,然后合并;(2)先进行二次根式的化简,然后进行二次根式的加减运算.解答:解:(1)原式=4﹣3+6=7;(2)原式=+4﹣+=+5.点评:本题考查了二次根式的加减法,解答本题的关键是掌握二次根式的化简以及同类二次根式合并.28.计算:(1)+6;(2)(a)﹣(﹣b).考点:二次根式的加减法.分析:(1)先把各根式化为最简二次根式,再合并同类项即可;(2)先把各根式化为最简二次根式,再去括号,合并同类项即可.解答:解:(1)原式=2+3﹣2=3;(2)原式=(+4)﹣(﹣)=+4﹣+=3+.点评:本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.29.计算:.考点:二次根式的加减法.分析:首先把二次根式化简,再去括号合并同类二次根式即可.解答:解:原式=﹣﹣+2=﹣+2.点评:此题主要考查了二次根式的加减,法则:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.30.化简:(+2++).考点:二次根式的混合运算.专题:计算题.分析:根据二次根式的乘法法则运算.解答:解:原式=•+2++=ab+2b+a+1.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.。
二次根式加减乘除及乘方混合运算(综合)88题(巩固篇)八年级数学上册基础知识专项讲练(北师大版)
专题2.20 二次根式加减乘除及乘方混合运算(综合)88题(巩固篇)(专项练习)1.计算:(2)22.计算:(1)212--)133.计算:111)3-⎛⎫+-⎪⎝⎭4.计算1112π-⎛⎫-+ ⎪⎝⎭5.计算:(1)|1-6.计算:2(- 2(17.(1 (2)2(2(2-++.8.(1 (2)9.计算:(2)(222-10.计算:)2-2 111.计算下列各式的值1⎫⎪⎭12.计算:(2)⎝13.计算:(1)(2)2+14.计算:(1)2(2)5.15.计算下列各题:(3) ))2112+.16.计算下列各题:(1) (2) ÷(3)⋅(4) 217.计算:(1) (2) (2+÷18.计算:).(1) 2((2) 119.计算:(1) -;(2) (.20.计算:(1) (2) ))2222+21.计算:(1) ; (2) ))2111-.22.计算:(1) 20( 3.14)π+- (2) 2+23.计算:(1) (2)(3) (4) 1)1)24.计算:(1). (2 )(﹣1)2.25.计算:(1)2 (2) ×|126.计算:(1) (2)27.计算:(1) (2) (++28.计算:0111()2π--+ (2)(29.计算:(3)(4)(÷30.计算:(1) 11032238[1(0.2)]4271000π--+--⨯-(2)112133211127883---⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪⎝⎭⎝⎭⎝⎭.31.32.计算:(1) 1230.1)3(2)-⎡⨯---+⎣;(2) 20152014;(3) 3.33.计算:(1) ⎛ ⎝ (2)-34.计算:(1) (22+(3() ÷(35.计算:(2)2201(1)(3)|12-⎛⎫-+-+- ⎪⎝⎭π36.计算:(1) 2 (2)⎝⎭(3) ⎭37.计算:(1) 1-38.计算下列各式:(1) (3)()()1139.计算:|140.计算.(1)(2)()2÷41.计算:2(3+.42.计算:(1) 21)3)-(2)43.计算:(2)(2-44.计算:(2)(÷45.计算:+(1)2(2)3-1(3)22))+446.计算:(1)(2)(3)5x47.计算:(1)(2)(2-48.计算:(2)249.计算:(1) (2) (-50.计算:(1) (2)(3) (020163+ (4) (512(1.52.计算:(1) (2) 53.计算(1) (2) (54.计算:(1) (2) ÷(3) (4) -55.计算:(1) (2) 256.计算:(1)(2) ((23+-57.计算:(1) ⎛ ⎝ (2)()21+58.计算:(1 (2(-(3) (4))2259.计算:(1) ()032π-+-; (2) .60.计算:(3)(6)2 (4)3)-5)61.计算:(2)(101224-⎛⎫ ⎪⎝⎭;2+; ⎛ ⎝62.计算:(1) ; (2) ))(202120222222-.63.计算下列各式:(1) (2)2)64.计算:(1) (2) 1÷().65.计算:(1) 03 (2) 266.化简:(1)(2) (;(3) ; (4) ⎛ ⎝67.计算:(1) 2(2)(3) )11 (4)68.计算:(1) (2))21-.69.(1)计算:()11202112π-⎛⎫-- ⎪⎝⎭2) 70.计算(1) 02); (2) 212-⎛⎫ ⎪⎝⎭.71.计算:(1)( 04172.计算:(2)()2÷73.计算; (2)22-74.计算:(1) 0113()2π--+;(3)2-; (4)0(3)1-.75.计算:(1()111π--+(2(2176.计算:(1) (2) )41-+(3) )1)1 (4)277.计算0241)1)+78.计算:(1) ()222-+(2) (312-79.计算题(1)202220222)2)+(2)220(2)2|π--⨯+8081.计算.(1)(2)(3) (2+.82.计算:(1) ()020212π- (2))(4483.计算(1) (2)(3) (4)84.计算题(1) (2) ;(4) 2-.85.计算:(1) (2)(3) + (4)86.计算:(1) |1 (2) +.87.计算(1) (2)(3) (4) 22)3)+88.计算:(1);(2).参考答案1.【分析】(1)先将二次根式化简,再合并即可得到答案;(2)先将二次根式化简,再计算乘法,最后计算加减即可.(1)=(2)2=5+3=5+3-=5+33=5【点拨】本题主要考查了二次根式的混合运算,正确化简二次根式是解答本题的关键.2.(1)2(2)1【分析】(1)根据有理数的乘方,立方根,绝对值,算术平方根的计算法则求解即可;(2)根据二次根式的混合计算法则,去绝对值法则求解即可.(1)解:212--=--+⨯1323=2;(2))13=234=1.【点拨】本题主要考查了实数的混合计算,二次根式的混合计算,熟知相关计算法则是解题的关键.3.(1)2【分析】(1)首先根据二次根式的乘除运算法则进行运算,再把二次根式化为最简二次根式,最后合并同类二次根式,即可求得结果;(2)首先根据负整数指数幂及零指数幂的运算法则、分母有理化法则进行运算,再合并同类项即可求得结果.(1)====(2)1 01 1)3-⎛⎫+-⎪⎝⎭13=-2=【点拨】本题考查了二次根式的混合运算,负整数指数幂及零指数幂的运算法则、分母有理化法则,熟练掌握和运用各运算法则是解决本题的关键.4.2+(2)【分析】(1)先根据绝对值的性质,零指数次幂,负整数指数幂,进行化简,再根据二次根式加减法依次进行计算即可.(2)根据二次根式混合运算法则进行计算即可.(1)解:原式=)1122-+=.(2)解:原式=4=.【点拨】本题考查了绝对值的化简,零指数次幂,负整数指数幂,以及二次根式混合运算,准确理解相关概念并进行正确的运算是解题的关键.5.(1)12【分析】(1)分别化简各项,再作加减法;(2)先算乘除,去绝对值,再作加减法.(1)==|1=(()1-112+=12.【点拨】本题考查了实数的混合运算,二次根式的混合运算,解题的关键是掌握运算法则.6.(1)12(2)4【分析】(1)原式先计算二次根式的乘方,再计算除法,最后合并即可; (2)原式先计算二次根式的乘方,再计算除法,最后合并即可.2(-1212=12;2(1=1-=4【点拨】本题主要考查了二次根式的混合运算,熟练掌握运算法则是解答本题的关键.7.(1)(2) 6-【分析】(1)根据二次根式的乘法,化简计算的方法计算即可; (2)利用平方差公式,完全平方公式计算即可.解:3=(2)2(2(2++-=22224-+-=6-.【点拨】本题考查了二次根式的乘法,除法,平方差公式,完全平方公式化简,熟练掌握公式化简计算是解题的关键.8.(1(2)32【分析】(1)先将每个二次根式化为最简二次根式,再合并同类二次根式即可; (2)先化简每个二次根式,再转化成乘法运算,利用二次根式的乘法法则解答.解:(1=(2)=÷32=32=【点拨】本题考查二次根式的混合运算,涉及最简二次根式、合并同类二次根式等知识,是重要考点,掌握相关知识是解题关键.9.5(2)10-【分析】(1)先化简二次根式,再计算加减法;(2)先根据完全平方公式及平方差公式计算乘法,再计算加减法.(1)解:原式=55;(2)原式=()3645---=10-【点拨】此题考查了二次根式的运算,正确掌握各计算法则及二次根式的化简是解题的关键.10.(1)3【分析】(1)先根据二次根式的乘法进行计算,再进行加减计算即可;(2)先根据算术平方根、绝对值、立方根的性质进行化简,再进行加减即可. (1)解:原式=22+=(2)解:原式=311+=3.【点拨】本题考查了二次根式的混合运算及实数的混合运算,解决本题的关键是熟练掌握二次根式的运算法则.11.(2)4【分析】(1)先根据算术平方根、立方根及绝对值的性质进行计算,再进行加减计算即可; (2)运用二次根式的乘法及加法进行计算即可. (1)解:原式=541-(2)解:原式=31+=4【点拨】本题考查了算术平方根、立方根、绝对值的性质及二次根式的混合运算,解决本题的关键是熟练掌握二次根式的运算法则.12.【分析】(1)根据二次根式的加减运算法则求解即可; (2)按照多项式乘多项式的法则展开求解即可.(1)解:原式=(--((2)解:原式-1-= 【点拨】此题考查了二次根式的加减乘除运算,解题的关键是熟练掌握二次根式的加减乘除运算法则.13. 【分析】(1)根据合并同类二次根式的运算法则直接求解即可; (2)根据完全平方差公式、二次根式的乘除运算化简求值即可.(1)解:(=+=(2)解:2-+22⎡⎤=-+⎢⎥⎣⎦5=-5=.【点拨】本题考查二次根式的运算,涉及到合并同类二次根式的运算、完全平方差公式、二次根式的乘除运算,掌握二次根式相关概念及相关运算法则是解决问题的关键.14.【分析】(1)直接利用二次根式的乘除运算法则计算得出答案; (2)直接化简二次根式,进而合并得出答案.(1)解:2 122=-10=;(2)51552x =⋅==【点拨】此题主要考查了二次根式的混合运算,熟练掌握二次根式的性质及运算法则是解决问题的关键.15.(1)48-【分析】(1)先化简各二次根式,再合并同类二次根式即可; (2)先计算二次根式乘法与除法,再计算加减法即可; (3)先运用平方差与完全平方公式计算,再合并即可. (1)解:原式==;(2)解:原式4=(3)解:原式2134=-+-8=-【点拨】本题考查二次根式的混合运算,熟练掌握二次根式的四则运算法则是解题的关键.16.(1)2-23+【分析】(1)先用乘法分配律,再计算二次根式的乘法;(2)先将除法转化为乘法,在用乘法分配律,再计算根式的乘法;(3)直接用平方差公式,再将结果相减即可;(4)直接用完全平方公式,再将结果化简即可.(1)(2)÷-=2-(3)⋅-=53=2(4)2(22=+⨯2=+18523=+【点拨】本题考查二次根式的混合运算,乘方公式的应用,能够熟练掌握运算顺序是解决本题的关键.17.(1)-18-【分析】(1)直接利用二次根式的乘法运算法则计算乘法,再化简二次根式,最后利用二次根式的加减运算法则计算得出答案;(1)利用完全平方公式和二次根式的除法法则计算化简,再利用二次根式的加减运算法则计算得出答案.(1)解:==-(2)解:(2+=-126=-1818=-【点拨】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(1)2(2)4【分析】(1)先计算平方、开平方和开立方,后计算加减;(2)先算乘法,再计算加减即可.(1)原式= 35+42-=,(2)原式= 3234-+=【点拨】此题考查了实数的混合运算能力,关键是能确定准确的运算顺序,并能对各种运算进行准确计算.19.(1)-(2)6【分析】(1)先化简成最简二次根式,再去括号后,合并同类二次根式即可;(2)根据平方差公式展开,再合并即可.(1)解:-=-==-;(2)解:(=(=22-=12-6=6.【点拨】此题考查了二次根式的混合运算、平方差公式等知识点,熟练掌握运算法则是解题的关键.20.(1)(2)10+【分析】(1)先计算二次根式的乘法,再计算加、减;(2)利用乘法分配律和平方差公式去括号,再相加、减即可.(1)===;(2)解:))2222+=95-4+=10+【点拨】考查了二次根式的混合运算.在二次根式的混合运算中,结合题目特点,灵活运用二次根式的性质是解题的关键,混淆完全平方公式及平方差公式是解题的易错点.21.(1)2(2)1【分析】(1)先化简各二次根式,再计算二次根式除法,最后合并同类二次根式即可; (2)先运用完全平方公式与平方差公式计算,再合并即可求解.(1)解:原式==2=2(2)解:原式=﹣(3﹣1)=﹣2=+1【点拨】本题考查二次根式的混合运算,熟练掌握二次根式的运算法则,灵活运用完全平方公式与平方差公式进行计算是解题的关键.22.(1)15(2)9【分析】(1)根据公式01(0)a a =≠及立方根的概念逐个求解即可;(2)根据完全平方式展开,再由二次根式的加减乘除混合运算逐个求解即可.(1)解:原式=()1212+--15=.(2)解:原式=66623633 =96262=9.【点拨】本题考查了二次根式的四则运算、完全平方式及公式01(0)a a =≠的使用,属于基础题,熟练掌握运算法则及各个公式是解决本题的关键.23.(1)2(2)0(3)-6(4)1+【分析】(1)根据二次根式的乘除混合计算法则求解即可;(2)根据立方根,算术平方根的计算法则求解即可;(3)根据二次根式的混合计算法则求解即可;(4)利用平方差公式和完全平方公式求解即可.(1)解:==2=;(2)451=-+-0=;(3)3⎛= ⎝ (=6=-;(4)解:1))221=- ()531=--531=-+1=+【点拨】本题主要考查了二次根式的计算,实数的计算,熟知相关计算法则和乘法公式是解题的关键.24.【分析】(1)先化简,再进行加减;(2)利用平方差公式和完全平方公式化简后再进行加减运算.(1)解:原式(1=1--1+86⎛ ⎝(2)解:原式=((22--【点拨】本题考查了二次根式的混合运算,熟练准确的化简和正确的运算是解决本题的关键.25.(1)3(2)1-【分析】(1)根据二次根式的加减运算,按照运算法则及运算顺序求解即可;(2)根据二次根式的加减乘除运算及去绝对值运算,按照运算法则及运算顺序求解即可.(1)解:(2542=-+3=;(2)1)1=1=1=-.【点拨】本题考查二次根式的混合运算,涉及到二次根式加减乘除相关运算法则、去绝对值运算等知识点,熟练掌握相关运算法则及运算顺序是解决问题的关键.26.(1)【分析】(1)根据二次根式的加减运算法则求解即可;(2)根据二次根式的加减乘除运算法则求解即可.(1)=42==(2)====【点拨】本题考查二次根式的加减乘除混合运算,熟练掌握二次根式的运算法则,尤其是合并同类二次根式是解决问题的关键.27.(1)2+(1)先化简二次根式,分母有理化,再进行合并即可;(2)先利用平方差公式化简二次根式,再进行计算.(1)解:原式=263⨯⨯==(2)解:原式=53-+,=2+【点拨】本题考查二次根式的混合运算及分母有理化的知识,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,可以直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.28.(1)8【分析】(1)利用二次根式的运算、绝对值的化简、零指数幂的意义、负整数指数幂的意义计算;(2)把第二个括号内部分化简后,再利用平方差公式计算.(1)0111()2π-+112=-+=(2)解:( (==22-2012=-8=【点拨】此题考查了二次根式的运算、绝对值的化简、零指数幂的意义、负整数指数幂的意义,熟练掌握相关运算法则是解题的关键.29.(1)0(2)2【分析】(1)先化简二次根式,再合并同类二次根式即可;(2)先化简二次根式,再合并同类二次根式即可;(3)括号内的二次根式先化简再合并,而后运用二次根式的乘法法则计算即可; (4)先用分配率做除法化简,化简结果再相减.==0;=263⨯==;(3)=(5⨯==(4)(÷==2 【点拨】此题主要考查了二次根式的运算,解题的关键是熟练掌握二次根式的化简依据,混合运算顺序和各种运算法则.30.(1)1678-(2)32【分析】(1)利用负整数指数幂、零指数幂、分数指数幂的定义以及二次根式的性质进行计算; (2)利用负整数指数幂、分数指数幂的定义以及绝对值的性质进行计算.(1)解:原式21111(0.0080.008)3167⎡⎤=+--⨯-÷⎣⎦ 123716=⨯-⨯ 1218=- 1678=-(2)解:原式()8229=----9692=+- 32= 【点拨】本题考查了实数的混合运算,熟练掌握负整数指数幂、零指数幂、分数指数幂以及根式的运算法则是解题的关键.31.【分析】根据二次根式的混合运算法则求解即可.2===【点拨】此题考查了二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算法则.32.(1)19【分析】(1)利用根式的运算、负指数幂的定义进行运算,求出结果;(2)将2015改写成2014,再利用积的乘方的逆用与平方差公式进行简便计算; (3(1)解:1230.1)3(2)-⎡⨯---⎣ 2(410)(982)3=-÷-⨯-++ 2(6)13=-÷-⨯ 19=(2)解:2015201420142014=2014⎡⎤=⎣⎦20146)=-=(3)解:3=22⎤=-⎦2(35)⎤=--⎦6)==【点拨】本题考查了实数的混合运算,熟练掌握实数的运算法则和乘法公式是解题的关键.33.(1)683【分析】先化简各二次根式,再去括号,再合并即可;先分别计算二次根式的乘法与除法运算,再合并即可.(1)⎛ ⎝ 22332223=(2)-2223683 12683683【点拨】本题考查的是二次根式的加减运算,二次根式的混合运算,掌握“二次根式的混合运算的运算顺序”是解本题的关键.34.(1)-5(2)-6【分析】(1)先利用完全平方公式和平方差公式计算,然后化简后合并即可;(2)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.(1)解:原式)1)7﹣﹣1=﹣5(2)原式=﹣6.【点拨】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.35.(1)3【分析】(1)先化简二次根式,同步进行二次根式的乘法与除法运算,再合并即可;(2)先计算乘方,零次幂,负整数指数幂,同步化简绝对值,再合并即可.(1)26464=(2)2201(1)(3)|12-⎛⎫-+-+- ⎪⎝⎭π 112143=【点拨】本题考查的是二次根式的混合运算,零次幂,负整数指数幂的含义,掌握以上基础运算是解本题的关键.36.294(3)1612【分析】(1)化简二次根式,利用二次根式的乘除运算法则化简,再利用二次根式的加减运算法则计算得出答案;(2)利用平方差公式计算得出答案;(3)化简二次根式,再利用除法法则计算得出答案.(1)22=2=(2)解:⎝⎭22=-⎝⎭=8-34=294;(3)解:⎭⎛=÷⎝⎭=4312=+【点拨】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.37.(1)1+【分析】(1)原式先化简二次根式,再合并即可;(2)原式先化简绝对值,再计算除法,最后进行加减运算即可得到答案.(1)===;1=-1=-+4121=+【点拨】本题主要考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解答本题的关键.38.(1)【分析】(1(2)再利用二次根式加减法和除法的运算法则来求解;(3)利用平方差公式,结合二次根式的乘法和加减法计算法则求解.(1)解:===(2)=44=54=;1(3)解:()()11(221=-181=-17=.【点拨】本题主要考查了二次根式的混合运算法则和最简二次根式,先将各二次根式化为最简二次根式是解答关键.39.(1)52 (2)1-【分析】(1)先计算立方根,算术平方根,然后进行加减运算即可;(2)先计算立方根,化简绝对值,二次根式的混合运算,然后进行加减运算即可.(1)解:原式34=-++3342=-++=52.(2)解:原式212=1=-.【点拨】本题考查了立方根,算术平方根,绝对值,二次根式的混合运算等知识.解题的关键在于正确的计算.40.(1)-1-【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)先根据二次根式的除法法则、零指数幂的意义进行计算,然后分母有理化后合并即可.(1)原式==2=-(2)原式21=+1=-1==1【点拨】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可,在二次根式的混合运算中,能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径是解题的关键.41.2-(2)2【分析】(1)然后进行二次根式的乘除运算,再合并即可;提取公因数后利用平方(2(3差公式简化计算,然后获得最终答案.(1)解:原式(11)++=-112=2(2)解:原式1)1)==1)=+2【点拨】本题主要考查了二次根式的混合运算,解题关键是掌握好运算顺序和运算法则.42.(1)10-【分析】利用多项式的乘法以及二次根式的运算法则进行计算即可.(1)解:21)3)-8189=--+10=-(2)解:==.【点拨】本题主要考查了多项式的乘法,二次根式的混合运算,最简二次根式,将二次根式化到最简是解决本题的关键.43.(1);(2)2-+【分析】(1)利用二次根式混合运算法则计算即可;(2)利用平方差公式和完全平方公式进行计算.(1)===(2)解:(2- ((2222⎡=--+-⎢⎣181253=---+2=-+【点拨】本题考查了二次根式的混合运算,平方差公式以及完全平方公式,能够熟练应用运算法则和掌握公式的应用是解题的关键.44.(1)0(2)【分析】(1)根据二次根式的混合运算法则计算即可;(2)根据二次根式的混合运算法则计算即可.=2==(2)(÷=÷4((2=(==【点拨】本题考查二次根式的混合运算.掌握二次根式的混合运算法则是解题关键.45.(1)(2)1(3)42【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用绝对值、负整数指数幂、二次根式的性质以及乘方的定义进行计算;(3)利用完全平方公式进行计算;(1)原式==;(2)原式=13|3-+=133+=1;(3)原式=516516-++=42.【点拨】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.46.(1)6【分析】根据二次根式的性质化简,再进行加减计算即可;(1)解:原式==(2)解:原式=523-+6=(3)+=【点拨】本题考查了二次根式的性质化简,掌握二次根式的性质是解题的关键.47.(2)29﹣【分析】(1)先把各二次根式化简为最简二次根式,然后合并即可;(2)利用完全平方公式和平方差公式计算.(1)解:原式263=⨯+⨯==(2)解:原式((22222⎡⎤=-⨯--⎢⎥⎣⎦=12﹣18﹣(6﹣5)=30﹣1=29﹣【点拨】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.48.(1)2(3)2(4)【分析】(1)根据二次根式的性质化简即可;(2)根据平方差公式求解即可;(3)根据二次根式的性质和去绝对值运算化简即可;(4)根据二次根式的性质化简即可.(1)===(2)解:22=-=-53=;2(3)2(=+2=2=;2(4)===【点拨】本题考查实数的混合运算,涉及到二次根式的性质及相关运算、去绝对值运算、平方差公式的运用等知识,熟练掌握相关运算法则是解决问题的关键.49.(1)4-【分析】(1)先化简二次根式,再根据二次根式的加减法则计算;(2)首先根据二次根式乘除法则计算,再化简合并.解: (1 (421=-+=()2原式=4=-4=- 【点拨】本题考查二次根式的应用,熟练掌握二次根式的意义、性质和四则运算法则是解题关键.50.-2(4)6 【分析】(1)先化简,再进行二次根式的乘法运算即可;(2)先化简,除法转为乘法,最后根据二次根式的乘法运算即可;(3)根据幂运算的性质、绝对值的化简进行计算:(020161==(4)利用平方差公式进行求解较简便;(1)解:== 10=;(2)===(3)(020163132+=+-=-解:。
八年级数学下册-专题. 二次根式的加减【十大题型】(举一反三)(沪科版)(解析版)
【题型 8
二次根式混合运算的实际应用】 ...........................................................................................................19
【题型 9
二次根式的新定义类问题】 ...................................................................................................................23
①同类二次根式类似于整式中的同类项;
②几个同类二次根式在没有化简之前,被开方数完全可以互不相同;
③判断两个二次根式是否是同类二次根式,首先要把它们化为最简二次根式,然后再看被开方数是否相同.
【题型 1
判断同类二次根式】
【例 1】(2023·上海·八年级假期作业)判断下列各组的二次根式是否为同类二次根式?
∵ �2 > 0,则 5� + 8 > 0,
∴当� = 1 时,5� + 8 = 7,解得� =− 0.2,不是正整数,舍去;
当� = 2 时,5� + 8 = 28,解得� = 4,符合题意,
即�的最小正整数为 4.
【点睛】本题主要考查同类二次根式的概念,此题中要注意前面一个二次根式并不是最简的,根据题意列出
1
3
+ 48 ÷ 2 3
(2) 2 6 + 3 × 2 6 − 3 − (3 3 − 2)2 +
【答案】(1)
14
4
6− 2
3
(2)−8 + 7 6 + 2
十六章二次根式的加减(第一课时)练习题
16.3 二次根式的加减(第一课时)◆随堂检测1、下列计算正确的是( )A ==4= D 3=-2、计算:0(π1)+=_____________.3、计算(1)27412732+- (2))+4、先化简,再求值:(-(,其中x=32,y=27. ●拓展提高1、下列各式:①②17=1;;.其中正确的有( ). A .3个 B .2个 C .1个 D .0个2、计算:8+(-1)3-2×22=_____________.3≈2.236)-)的值.(结果精确到0.01)4、计算:5、已知4x 2+y 2-4x-6y+10=0,求(23+y -(x 提示:本题首先将已知等式进行变形,把它配成完全平方式,得(2x-1)2+(y-3)2=0,即x=12,y=3.其次,根据二次根式的加减运算,先把各项化成最简二次根式,再代入求值. ●体验中考1、(2009年,泰安)化简:____________.2、(2009的结果是( )A .1B .-1C -(提示:首先要将各二次根式正确化简,然后进行二次根式的加减运算.)参考答案:◆随堂检测1、B2、解:1原式=0(π1)11+=-=3、解:(1)27412732+-3343273222⨯+⨯-=31231432+-=3)12142(+-==0;(2)+4、解:原式(=(6+3-4-6当x=32,y=27时,原式92.◆课下作业●拓展提高 1、C 只有④是正确的,故选C.2、2-1 原式=22-1-2=2-1.3、解:原式354512515≈15×2.236≈0.45.4、解:(1)原式=(12-3+65、解:∵4x 2+y 2-4x-6y+10=0, ∴4x 2-4x+1+y 2-6y+9=0, ∴(2x-1)2+(y-3)2=0, ∴x=12,y=3.∴原式=23+y∴当x=12,y=3时,原式=124. ●体验中考1、-原式==-2、C 原式==故选C.。
二次根式计算专题——30题
二次根式计算专题1.计算:⑴ ()()24632463+- ⑵ 20(3)(3)2732π++-+- 【答案】(1)22; (2) 643- 【解析】试题分析:(1)根据平方差公式,把括号展开进行计算即可求出答案. (2)分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案. 试题解析:(1) ()()24632463+- 22(36)(42)=-=54-32=22.(2)20(3)(3)2732π++-+-313323=+-+-643=-考点: 实数的混合运算.2.计算(1)﹣× (2)(6﹣2x )÷3. 【答案】(1)1;(2)13【解析】试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案.试题解析:2051123525532335=-⨯32=-1=;(2)1(62)34x x x÷62)3x x x x =÷ (3)3x x x =÷3x x =13=.考点: 二次根式的混合运算.3.计算:⎛÷⎝【答案】143.【解析】试题分析:先将二次根式化成最简二次根式,再算括号里面的,最后算除法.试题解析:⎛÷⎝÷=143=.考点:二次根式运算.4.计算:322663-+-⨯【答案】22.【解析】试题分析:先算乘除、去绝对值符号,再算加减.试题解析:原式=23323-+-=22考点:二次根式运算.5.计算:)23(3182+-⨯【答案】-【解析】试题分析:先将二次根式化成最简二次根式,再化简.6=-考点:二次根式化简.6.计算:2421332--.【答案】22.【解析】试题分析:根据二次根式的运算法则计算即可.22-==.考点:二次根式的计算.7.计算:)13)(13(2612-++÷-.2.【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.1)=31-2. 考点:二次根式的化简.8⎝ 【答案】0.【解析】试题分析: 根据二次根式运算法则计算即可.0==⎝. 考点:二次根式计算.9.计算:()0+1π.【答案】1-【解析】试题分析:任何非零数的零次方都为1,负数的绝对值等于它的相反数,再对二次根式进行化简即可.试题解析:()0+1π11=-=-考点:二次根式的化简.10.计算:435.03138+-+ 【答案】323223+. 【解析】试题分析:先化成最简二次根式,再进行运算.试题解析:原式=2322322+-+=323223+. 考点:二次根式的化简.11.计算:(1)(2)()020********π----【答案】(1)1+(2)3-.【解析】试题分析:(1)根据二次根式的运算法则计算即可;(2)针对有理数的乘方,零指数幂,二次根式化简,.绝对值4个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:(1)(1==(2)()020141201431133π---=--+=-. 考点:1.实数的运算;2.有理数的乘方;3.零指数幂;4.二次根式化简;5.绝对值.12.计算: 212)31()23)(23(0+---+ 【答案】2.【解析】试题分析:本题主要考查了二次根式的混合运算.熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.本题中先根据平方差公式计算乘法以及零指数幂的意义,去掉括号后,计算加减法.试题解析:解:原式=2123+-- =2考点:二次根式的混合运算.130(2013)|+-+-.【答案】1.【解析】0(2013)|-+-1=+1=.考点:二次根式化简.14.计算12)824323(÷+-【答案】2-.【解析】试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案.试题解析:???=- 考点: 二次根式的混合运算.15-2-. 【解析】试题分析:把二次根式化简,再合并同类二次根式即可求出答案.==- 考点: 二次根式的运算.16.化简:(1)83250+ (2)2163)1526(-⨯-【答案】(1)92;(2)- 【解析】试题分析:(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.试题解析:(1)原式92=;(2)原式==-考点:二次根式的混合运算;17.计算(1)2(2)2【答案】(1)3+(2)3.【解析】试题分析:(1)根据运算顺序计算即可;(2)将括号内化为最简二次根式后合并再平方运算即可.试题解析:(1)233=-=.(2)(2223===.考点:二次根式化简.181)(1-+ 【答案】17.【解析】,运用平方差公式计算1)(1+,再进行计算求解.181-- =17考点:实数的运算.19.计算:231|21|27)3(0++-+--【答案】-.【解析】试题分析: 本题涉及零指数幂、二次根式的化简、分母有理化、绝对值化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=11-+=-考点:1.实数的运算;2.零指数幂;3.分母有理化.20.计算:① 01 2⎛⎫+- ⎪⎝⎭ ② ⎛ ⎝ ③⎛- ⎝1;②143;③a 3-. 【解析】试题分析:①针对算术平方根,绝对值,零指数3个考点分别进行计算,然后根据实数的运算法则求得计算结果;②根据二次根式运算法则计算即可;③根据二次根式运算法则计算即可.1112⎛⎫+-= ⎪⎝⎭.②143⎛⎛=÷ ⎝⎝.1a 2a 63⎛-=-⋅=- ⎝. 考点:1.二次根式计算;2.绝对值;3.0指数幂.21.计算:(1)2012101(1)5()1)2----++(2)【答案】(1)0;(2)【解析】试题分析:(1)原式=152310-++-=;(2)原式==.考点:1.实数的运算;2.二次根式的加减法.22.计算与化简(1(0π (2)2(3(4+-【答案】(1)1;(2)5.【解析】试题分析:(1)将前两项化为最简二次根式,第三项根据0指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1(011π==.(2)((()2344951675+--=+--=.考点:1.二次根式化简;2.0指数幂;3.完全平方公式和平方差公式.23.(1)18282-+(2)3127112-+ (3)0)31(33122-++(4))2332)(2332(-+【答案】(1)-(2) (3)6;(4)6- 【解析】试题分析:本题主要考查根式的根式的混合运算和0次幂运算.根据运算法则先算乘除法,是分式应该先将分式转化为整式,再按运算法则计算。
专题16 二次根式的加减【九大题型】(举一反三)(人教版)(原卷版)
专题16.3 二次根式的加减【八大题型】【人教版】【题型1 同类二次根式的判断】 (1)【题型2 求同类二次根式中的参数】 (1)【题型3 二次根式的加减运算】 (2)【题型4 二次根式的混合运算】 (3)【题型5 已知字母的值化简求值】 (3)【题型6 已知条件式化简求值】 (4)【题型7 二次根式的新定义运算】 (4)【题型8 二次根式的应用】 (4)【题型1 同类二次根式的判断】【例1】(2022春•西华县期末)下列各组二次根式中,化简后可以合并的是()A.√3与√32B.√6与√12C.√5与√75D.√12与√27【变式1-1】(2022春•郯城县期中)下列根式中,与√6x不是同类二次根式的是()A.√x6B.√6xC.√16xD.√6+x【变式1-2】(2022春•肥城市期中)若两个二次根式化为最简二次根式后被开方数相同,则称这样的二次根式为同类二次根式,那么下列各组二次根式,不是同类二次根式的一组是()A.√8与√32B.√45与√20C.√27与√75D.√24与√80【变式1-3】(2022春•河西区校级月考)下列各式中与√a+b是同类二次根式的是()A.1a √(a+b)2B.13√3(a+b)C.√a+b2D.√9a+b【题型2 求同类二次根式中的参数】【例2】(2022春•怀远县期中)已知二次根式−√x −2. (1)求使得该二次根式有意义的x 的取值范围;(2)已知−√x −2为最简二次根式,且与√52为同类二次根式,求x 的值,并求出这两个二次根式的积.【变式2-1】(2022秋•仓山区校级期末)如果最简二次根式√3a +8与√12−a 是同类二次根式,那么3√a 的值为 .【变式2-2】(2022春•西华县期末)先阅读下面的解题过程,再回答后面的问题: 如果√16(2m +n)和√m +7m−n−1在二次根式的加减运算中可以合并成一项,求m 、n 的值.解:因为√16(2m +n)与√m +7m−n−1可以合并所以{m −n −1=216(2m +n)=m +7即{m −n =331m +16n =7解得{m =5547n =−8647问:(1)以上解是否正确?答 . (2)若以上解法不正确,请给出正确解法.【变式2-3】(2022春•孟村县期中)若最简二次根式√2x +y −53x−10和√x −3y +11是同类二次根式. (1)求x ,y 的值; (2)求√x 2+y 2的值.【题型3 二次根式的加减运算】 【例3】(2022春•普兰店区期中)计算: (1)√18−√32+√2 (2)7a √8a −4a 2√18a+7a √2a .【变式3-1】(2022春•高密市校级月考)计算: (1)√0.25+√925+√0.49+|−√1100|(2)√0.01−√1100+(﹣1)3√(−0.01)2+√0(3)4√5+√45−√8+4√2.【变式3-2】(2022秋•浦东新区期中)化简:√8ab −b√2a b−a√b2a(a >0,b >0)【变式3-3】(2022秋•浦东新区期末)计算下列各式: (1)√5−√6−√20+√23+√95 (2)√12−√0.5−2√13−√18+√18(3)√27a −a√3a +3√a 3+12a √75a 3(4)23x √9x +6x √y x +y √x y −x 2√1x .【题型4 二次根式的混合运算】 【例4】(2022春•安庆期末)计算:(1)√48÷√3+2√15×√30−(2√2+√3)2(2)(−12)﹣2﹣(﹣1)2012×(π−√2)0−√(−4)2+√25【变式4-1】(2022春•岳池县期中)计算:√2×√6√3(√3−2)2−√2(√2−√6)【变式4-2】(2022春•天心区校级期中)计算: (1)(√20+√5+5)÷√5−√13×√24−√5;(2)√18−√92√3+√6√3+(√3−2)0+√(1−√2)2.【变式4-3】(2022秋•昌江区校级期末)(√a √ab √a+√b)÷(√ab+b√ab−a√aba ≠b ).【题型5 已知字母的值化简求值】【例5】(2022秋•如东县期末)已知x =1−√3,求代数式(4+2√3)x 2+(1−√3)x +8√3. 【变式5-1】(2022秋•杨浦区期中)计算与求值. 已知a =2+√3,求a 2−2a+1a−1−√a 2−2a+1a 2−a的值.【变式5-2】(2022春•容县校级月考)已知a =2,b =3,求式子√a 3b −√ab +√a 3b 3的值. 【变式5-3】(2022秋•天河区校级月考)已知x =√2021−√2020,则x 6﹣2√2020x 5−x 4+x 3−2√2021x 2+2x −√2021的值为( ) A .0B .1C .√2020D .√2021【题型6 已知条件式化简求值】 【例6】(2022秋•虹口区校级期中)已知x−b a=2−x−a b,且a +b =2,请化简并求值以下代数式:√x+1−√x √x+1+√x√x+1+√x√x+1−√x.【变式6-1】(2022春•阳信县期中)已知√x−69−x =√x−6√9−x,且x 为奇数,求(1+x )•√x 2−5x+4x 2−1的值.【变式6-2】(2022秋•鼓楼区校级期末)若三个正数a ,b ,c 满足a +4√ab +3b ﹣2√bc −c =0,则√a+√b√c的值是 .【变式6-3】(2022春•芝罘区期末)若实数a ,b 满足(√a +√b )(√a +√b −2)=3,则√a +√b 的值是 . 【题型7 二次根式的新定义运算】【例7】(2022春•郧阳区期中)对于任意的正数m ,n 定义运算*为:m *n ={√m −√n(m ≥n)√m +√n(m <n),计算(3*2)+(8*12)的结果为 .【变式7-1】(2022春•江岸区校级月考)对于实数a 、b 作新定义:a @b =ab ,a ※b =a b ,在此定义下,计算:(√43−√32)@√12−(√75−4√3)※2= .【变式7-2】(2022秋•内江期末)我们规定运算符号“△”的意义是:当a >b 时,a △b =a +b ;当a ≤b 时,a △b =a ﹣b ,其它运算符号的意义不变,计算:(√3△√2)﹣(2√3△3√2)= . 【变式7-3】(2022秋•厦门期末)若a +b =2,则称a 与b 是关于1的平衡数. (1)3与 是关于1的平衡数,5−√2与 是关于1的平衡数;(2)若(m +√3)×(1−√3)=﹣5+3√3,判断m +√3与5−√3是否是关于1的平衡数,并说明理由. 【题型8 二次根式的应用】【例8】(2022春•定州市校级月考)2016年6月4日葫芦岛日报报道,南票区住建局已全面加大城镇园林绿化力度,组织环卫工作人员加紧开展9000m 2的草坪种植,切实掀起了绿化城区的热潮.若环卫工人在一块长方形的土地上种植草坪,已知该长方形土地的长为√243m 、宽为√128m . (1)求该长方形土地的周长;(2)若在该长方形土地上种植造价为每平方米2元的草坪,求在该长方形土地上全部种植草坪的总费用(提示:√6≈2.45)【变式8-1】(2022春•岱岳区期末)在一个边长为(2√3+3√5)cm 的正方形的内部挖去一个长为(2√3+√10)cm ,宽为(√6−√5)cm 的矩形,求剩余部分图形的面积.【变式8-2】(2022春•广丰区校级期中)阅读材料:如果一个三角形的三边长分别为a ,b ,c ,记p =a+b+c 2,那么这个三角形的面积S=√p(p−a)(p−b)(p−c).这个公式叫“海伦公式”,它是利用三角形三条边的边长直接求三角形面积的公式.中国的秦九韶也得出了类似的公式,称三斜求积术,故这个公式又被称为“海伦﹣﹣秦九韶公式”.完成下列问题:如图,在△ABC中,a=9,b=7,c=8.(1)求△ABC的面积;(2)设AB边上的高为h1,AC边上的高为h2,求h1+h2的值.【变式8-3】(2022秋•长安区校级期末)某居民小区有块形状为长方形ABCD的绿地,长方形绿地的长BC 为8√3米,宽AB为√98米,现要在长方形绿地中修建一个长方形花坛(即图中阴影部分),长方形花坛的长为√13+1米,宽为√13−1米.(1)长方形ABCD的周长是多少?(结果化为最简二次根式)(2)除去修建花坛的地方.其它地方全修建成通道,通道上要铺上造价为6元/m2的地砖,要铺完整个通道,则购买地砖需要花费多少元?(结果化为最简二次根式)。
初中数学二次根式的加减乘除混合运算练习题(附答案)
初中数学二次根式的加减乘除混合运算练习题一、单选题1.下列计算或运算中, 正确的是( )A.===-= 2.下列计算正确的是( )A ==4= D =3. )A .2-B .2±C .2D .4 4.下列是最简二次根式( )A C 5.下列说法中,正确的是( )A 3=±B .64的立方根是4±C .6D .25的算术平方根是5 6.下列运算正确的是( )A 2=-B .26=C =D =7.下列二次根式中,x 的取值范围是3x ≥的是( )AB C D 8.下列计算中,正确的是( )4±B.9.3的平方根是( )A.9 C. D.10. )A.3和4之间B.4和5之间C.5和6之间D.6和7之间二、计算题11.计算下列各式的值.1.35(5)()7-÷---三、填空题12.已知,x y 10y +=,则y x += .13.计算= .14.= . 15.如果一个正方形的面积是3,那么它的边长是 .参考答案1.答案:B解析:A.22=⨯=;==C.÷=D.-=故选B. 2.答案:A解析:3.答案:C解析:2==.故选:C .4.答案:C=2=; C 5.答案:D解析:解:A 3=,此选项错误;B .64的立方根是4,此选项错误;C.6的平方根是,此选项错误;D.25的算术平方根是5,此选项正确;故选:D.6.答案:D解析:2=,故本选项错误;B:212=,故本选项错误;CD:根据二次根式乘法运算的法则知本选项正确.故选:D.7.答案:C解析:8.答案:D9.答案:D解析:3的平方根是10.答案:B解析:5==,又,4和5之间,选B.11.答案:1.原式5125()71687=-⨯--=.2.原式=311722 -=-.3.原式=57 12944 -+=-4.原式=1156110 56⨯-⨯=-=.解析:12.答案:1解析:由题意得,2010xy-=⎧⎨+=⎩,解得21xy=⎧⎨=-⎩,则121y x+=-+=13.答案:2====.解析:解:原式2故答案为:214.答案:2===解析:原式2故答案为215.解析:。
二次根式的加减法专题训练
I n n a t u r e t h e r e a r e n o r e w a r ds o r p u n i s h me n t s ; t h e r e a r e c 。 n 8 e q u 曲c e ・
( 答 案在参 考答 案第 1页)
、 、
、
、 ・ — — — — - — — — ・ — - — - - - — - — - — ・ — — — - — - — - — — — ・ — — - — - — - — - … 、 — — … ・ — … — — — - — — — — — - — - — - — - … — - — - ・ ・ — - — — — - — - — ・ — - — — — - — - … — ・ — - — - — - … … … 一
) .
住 2 x X / -  ̄ + 詈
1 4 . 已知 、 / 1 . 4 1 4 ,
.
1 . 7 3 2 求 下 列
j
B. a > c > b
D. b >c > a
5 , 若口 , b分 别 是 6 一 、 / 百 的 整 数 部分 和 小 数
部分 , 那么 2 6的值是 ( ) .
( +
) _ l ( 悸一 ) .
7 . 估算、 / + 3的值 (
A . 在 5和 6之 间 C 、 . 在 7和 8之 间
) .
B . 在 6和 7之 间 D . 在 8和 9之 间 1 5 . 已知 0 = — . 求 2 o - 3的值 . 、 / 了一 1
B. a =l , 6 : 一 1
D. a =l , b =l
二、 填 空题
.
《二次根式》专题专练(一)(4个专题)
分析:本题先根据图形进行计算,再探究规律.
解:(1) ;
(2)依题意: ;
;
;
依此类推 ,所以△ 的周长为 .
点评:数与形是一个问题的两个方面,数无形不直观,形缺数难入微,数形结合既有助于找到解答思路,也常使解答简捷,数形结合的关键在于几何图形转化为数的知识去探索规律,本题就体现了这种数与形的统一与和谐!
3.考查同类二次根式的概念
例4.(2007年眉山市)下列二次根式中与 是同类二次根式的是( ).
A. B. C. D.
分析:只要将所给式子化成最简二次根式,再看是否与2相同即可.
解:因为 ; ; ; ,故选D.
点评:判断是否与同类二次根式关键是化成最简二次根式以后,被开方数相同那就是同类二次根式,重点考查对概念的理解和把握情况.
点评:判断是否是二次根式的条件是 ≥0),要特别注意 ≥0这个条件,本题重点考查对二次根式概念的理解.
例2.(2007年成都市: ≥0,又 ≥0,再由非负数的性质就可以求出a,b的值.
解:由已知条件可得:a=2,b= -5,所以a+b=2-5= -3.
专练四:
1.写出和为6的两个无理数(只需写出一对)
2.借助计算器可以求出 , , , ,……仔细观察上面几道题中的计算结果,试猜想: =。
3.动手操作题:用计算器探索:已知按一定规律排列的一组数:1, , ,…, , 。如果从中选出若干个数,使它们的和大于3,那么至少需要选个数。
4.阅读下列解题过程,并按要求填空:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式的加减专题练习
(一)知识要点:
知识点1:同类二次根式
(Ⅰ)几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式,如x x 25,2223-和和这样的二次根式都是同类二次根式。
(Ⅱ)判断同类二次根式的方法:(1)首先将不是最简形式的二次根式化为最简二次根式以后,再看被开方数是否相同。
(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关。
知识点2:合并同类二次根式的方法
合并同类二次根式的理论依据是逆用乘法对加法的分配律,合并同类二次根式,只把它们的系数相加,根指数和被开方数都不变,不是同类二次根式的不能合并。
知识点3:二次根式的加减法则
二次根式相加减先把各个二次根式化成最简二次根式,再把同类二次根式合并,合并的方法为系数相加,根式不变。
知识点4:二次根式的混合运算方法和顺序
运算方法是利用加、减、乘、除法则以及与多项式乘法类似法则进行混合运算。
运算的顺序是先乘方,后乘除,最后加减,有括号的先算括号内的。
知识点5:二次根式的加减法则与乘除法则的区别
乘除法中,系数相乘,被开方数相乘,与两根式是否是同类根式无关,加减法中,系数相加,被开方数不变而且两根式须是同类最简根式。
【典型例题】
例1. 下面各组里的二次根式是不是同类二次根式?说说你的理由。
(1)23,22,2
(2)232,18,8-- (3),223 (4)53,32,2
解:(1)
23,22,2是同类二次根式 (2)∵
232,2318,228--=-= ∴是同类二次根式232,18,8-
- (3)223与不是同类二次根式
(4)53,32,2不是同类二次根式
例2. 计算
(1)2332332+-+
(2)10101540+-
(3)4832714
122+- 解:(1)2332332+-+= 243)223()3332(+-=++-
(2)10101540+-= 10251010105102=+⨯-
(3)4832714
122+-=3914031239434=+- 注意:(3)中的39140不能写成39515
例3. 计算
(1)
6)35278(⨯- (2))52)(103(-+
解:(1)
6)35278(⨯-=215346356278(-=⨯-⨯
(2))52)(103(-+=52225525323--=-+-
例4. 计算
(1))32)(32(-+ (2)2)533(+ (3)2)336(+
解:(1))32)(32(-+=4-3=1
(2)2)533(+=9+5185459518+=⨯+
(3)2)336(+=336633933636+=⨯++
例5. 计算
(1)a a a a 124693
2-+ (a>0) (2))12()41(b b a b a a --+ (a>0,b>0)
解:(1)原式=a a a a 3232=-+
(2)原式=()()a b a b +--212
b a b a b a 321212+=+-
+=
例6. 若m n m n m ++--7)2(161和是同类根式,求m ,n 的值。
解:∵n m n m +=+24)2(16
⎩⎨⎧+=+=--∴m n m n m 7221
∴==⎧⎨⎩m n 52
例7. 已知:x =
的值求32,132--+x x 。
解:∵4)1(3222--=--x x x
∴当x =1434)113(,132-=-=--+=+原式时
例8. 已知的值
试求)1()1(,32,32x y y x y x +⋅+-=+=。
解:∵32,32-=+=y x
∴3
2)32)(32(3
2321
1-=-+-=+=x
3
2)32)(32(3
23211+=+-+=-=y
∴)
3232)(3232()1)(1(-+-+++=++x y y x
=(4+241216)32(4)324)(322=-=-=-
例9. 不求近似值比较的大小
与321
352
--。
解:∵3
5)35)(35()
35(2352+=+-+=-
3
432)32)(32(3
2321+=+=+-+=-
又∵35+>34+
∴352->321
-
例10. 已知821
21
+-+-=x x y ,求代
数式)
(224y y
x x xy x xy y x y x y x +÷+++---的值。
解:由题意,得
8,21==y x )(224y y x x xy
x xy y x y x y x +÷+++--- =)()()(2)2)(2(2y x y x xy
y x x y x y
x y x y x +⨯++---+ =y x y y x +=-+2
将x
22522228218,21=+=+===代入原式y
例11. 是否存在正整数a ,b (a<b ),使其满足1404=+b a 若存在,试求出a ,b 的值;若不存在,请说明理由。
解:存在1404=+b a =396
设,39m a =b =n 39
∴m+n =6
∵a ,b 为正整数,a<b ∴m<n
∴==⎧⎨⎩==⎧⎨⎩m n m n 11
221524, ∴a 1=39,b 1=975;a 2=156,b 2=624.。