电磁感应最新计算题集(学生)
磁场,感应计算题有详细答案(快考试了,希望对同学们有所帮助)
稳恒磁场计算题144.稳恒磁学计算题144、如下图所示,AB 、CD 为长直导线BC 为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O点的磁感应强度.解:如图所示,O 点磁场由DC 、CB 、BA 三部分电流产生,其中:DC 产生 )21(4)2sin 4(sin45cos 40001-=-=RI R IB πμπππμ 方向向里 CB 产生 RIR I B 16224002μμππ== 方向向里 BA 产生 03=BRIR I B B B B O 16)12(400321μπμ+-=++= 方向向里145、如图所示,一载流导线中间部分被弯成半圆弧状,其圆心点为O ,圆弧半径为R 。
若导线的流过电流I ,求圆心O 处的磁感应强度。
解:两段直电流部分在O 点产生的磁场01=B弧线电流在O 点产生的磁场 RIB 2202μπα=RI R I B B B O παμπαμ42220021==+=∴146、载流体如图所示,求两半圆的圆心点P 处的磁感应强度。
解:水平直电流产生01=B大半圆 产生1024R IB μ=方向向里小半圆 产生2034R IB μ=方向向里竖直直电流产生2044R I B πμ=方向向外4321B B B B B O +++=∴ )111(44442210202010R R R I R I R IR IB O πμπμμμ-+=-+=方向向里147、在真空中,有两根互相平行的无限长直导线相距0.1m ,通有方向相反的电流,I 1=20A,I 2=10A ,如图所示.试求空间磁感应强度分布,指明方向和磁感应强度为零的点的位置.、解:取垂直纸面向里为正,如图设X 轴。
)1.0(102102)(2272010x x xx d I x I B --⨯=-+=-πμπμ 在电流1I 左侧,B方向垂直纸面向外在电流1I 、2I 之间,B方向垂直纸面向里在电流2I 右侧,当m x 2.0<时,B方向垂直纸面向外当m x 2.0>时,B方向垂直纸面向里当0=B 时,即0)1.0(1021027=--⨯-x x x则 m x 2.0=处的B为0。
电磁感应最新计算题集
1.如图15(a )所示,一端封闭的两条平行光滑导轨相距L ,距左端L 处的中间一段被弯成半径为H 的1/4圆弧,导轨左右两段处于高度相差H 的水平面上。
圆弧导轨所在区域无磁场,右段区域存在磁场B 0,左段区域存在均匀分布但随时间线性变化的磁场B (t ),如图15(b )所示,两磁场方向均竖直向上。
在圆弧顶端,放置一质量为m 的金属棒ab ,与导轨左段形成闭合回路,从金属棒下滑开始计时,经过时间t 0滑到圆弧顶端。
设金属棒在回路中的电阻为R ,导轨电阻不计,重力加速度为g 。
⑪问金属棒在圆弧内滑动时,回路中感应电流的大小和方向是否发生改变?为什么? ⑫求0到时间t 0内,回路中感应电流产生的焦耳热量。
⑬探讨在金属棒滑到圆弧底端进入匀强磁场B 0的一瞬间,回路中感应电流的大小和方向。
2.如图甲所示,两根足够长的平行光滑金属导轨固定放置在水平面上,间距L =0.2m ,一端通过导线与阻值为R =1Ω的电阻连接;导轨上放一质量为m =0.5kg 的金属杆,金属杆与导轨的电阻均忽略不计.整个装置处于竖直向上的大小为B =0.5T 的匀强磁场中.现用与导轨平行的拉力F 作用在金属杆上,金属杆运动的v-t 图象如图乙所示.(取重力加速度g =10m/s 2)求: (1)t =10s 时拉力的大小及电路的发热功率. (2)在0~10s 内,通过电阻R 上的电量.3.如图所示,AB 和CD 是足够长的平行光滑导轨,其间距为l ,导轨平面与水平面的夹角为θ。
整个装置处在磁感应强度为B 、方向垂直于导轨平面且向上的匀强磁场中。
AC 端连有阻值为R 的电阻。
若将一质量为M 、垂直于导轨的金属棒EF 在距BD 端s 处由静止释放,则棒滑至底端前会有加速和匀速两个运动阶段。
现用大小为F 、方向沿斜面向上的恒力把金属棒EF 从BD 位置由静止推至距BD 端s 处,此时撤去该力,金属棒EF 最后又回到BD 端。
求: (1)金属棒下滑过程中的最大速度。
电磁感应计算题
【例1】如图9-2-1所示,半径为r 的金属环,绕通过某直径的轴OO /以角速度ω转动,匀强磁场的磁感应强度为B .从金属环的平面与磁场方向重合开始计时,则在转过30O的过程中,环中产生的感应电动势的平均值是多大?【例2】在图9-2-2中,设匀强磁场的磁感应强度B=0.10T ,切割磁感线的导线的长度L=40cm ,线框向左匀速运动的速度V=5.0m/s ,整个线框的电阻R=0.5Ω,试求:感应电动势的大小;②感应电流的大小.【例3】如图9-2-3所示,固定在匀强磁场中的正方形导线框abcd ,各边长为L ,其中ab 边是一段电阻为R 的均匀电阻丝,其余三边均为电阻可忽略的铜导线,磁场的磁感应强度为B 方向垂直纸面向里.现有一与ab 段的材料、粗细、长度都相同的电阻丝PQ 架在导线框上,以恒定速度从ad 滑向bc .当PQ 滑过L/3的距离时,通过aP 段电阻丝的电流强度是多大?方向如何?【例4】如图9-2-4所示的电路,L 为自感线圈,R 是一个灯泡,E 是电源,当S 闭合瞬间,通过电灯的电流方向是 ,当S 切断瞬间,通过电灯的电流方向是 .图9-2-3图9-2-1图9-2-2 图9-2-4【例5】.金属杆ab 放在光滑的水平金属导轨上,与导轨组成闭合矩形电话,长L 1 = 0.8m ,宽L 2 = 0.5m ,回路的总电阻R = 0.2Ω,回路处在竖直方向的匀强磁场中,金属杆用水平绳通过定滑轮连接质量M = 0.04kg 的木块,木块放在水平面上,如图9-2-5所示,磁场的磁感应强度从B 0 = 1T 开始随时间均匀增强,5s 末木块将离开水平面,不计一切摩擦,g = 10m/s 2,求回路中的电流强度.【例6】如图9-2-6所示,光滑导体棒bc 固定在竖直放置的足够长的平行金属导轨上,构成框架abcd ,其中bc 棒电阻为R ,其余电阻不计.一不计电阻的导体棒ef 水平放置在框架上,且始终保持良好接触,能无摩擦地滑动,质量为m .整个装置处在磁感应强度为B 的匀强磁场中,磁场方向垂直框面.若用恒力F 向上拉ef ,则当ef 匀速上升时,速度多大?【例7】如图9-2-9所示,两根电阻不计,间距为l 的平行金属导轨,一端接有阻值为R 的电阻,导轨上垂直搁置一根质量为m 、电阻为r 的金属棒,整个装置处于竖直向上磁感强度为B 的匀强磁场中.现给金属棒施一冲量,使它以初速0V 向左滑行.设棒与导轨间的动摩擦因数为 ,金属棒从开始运动到停止的整个过程中,通过电阻R 的电量为q .求:(导轨足够长)(1)金属棒沿导轨滑行的距离;(2)在运动的整个过程中消耗的电能.图9-2-5图9-2-6图9-2-9【例8】CD 、EF 为两足够长的导轨,CE =L ,匀强磁场方向与导轨平面垂直,磁感强度为B ,导体CE 连接一电阻R ,导体ab 质量为m ,框架与导体电阻不计,如图9-2-11所示.框架平面与水平面成θ角,框架与导体ab 间的动摩擦因数为μ,求导体ab 下滑的最大速度?【例9】.如图9-2-12所示,两光滑平行导轨MN 、PQ 水平放置在匀强磁场中,磁场方向与导轨所在平面垂直,金属棒ab 可沿导轨自由移动,导轨左端M 、P 接一定值电阻,金属棒以及导轨的电阻不计.现将金属棒由静止向右拉,若保持拉力F 恒定,经过时间t 1后,金属棒的速度为v ,加速度为a 1,最终以2v 作匀速运动;若保持拉力F 的功率恒定,经过时间t 2后,金属棒的速度为v ,加速度为a 2,最终以2v 作匀速运动.求a 1与 a 2的比值.【例1】如图9-3-1甲所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L .M 、P 两点间接有阻值为R 的电阻.一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直,整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下.导轨和金属杆的电阻可忽略.让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.(1)由b 向a 方向看到的装置如图9-3-1乙所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图; (2)在加速下滑过程中,当ab 杆的速度大小为v 时,求此时ab 杆中的电流及其加速度的大小; (3)求在下滑过程中,ab 杆可以达到的速度最大值.图9-2-11PM NQR a bF图9-2-12甲乙图9-3-1【例2】如图9-3-2,直角三角形导线框abc 固定在匀强磁场中,ab 是一段长为l 、电阻为R 的均匀导线,ac 和bc 的电阻可不计,ac 长度为1/2.磁场的磁感强度为B ,方向垂直于纸面向里.现有一段长度为l/2、电阻为R/2的均匀导体杆MN 架在导线框上,开始时紧靠ac ,然后沿ac 方向以恒定速度v 向b 端滑动,滑动中始终与ac 平行并与导线框保持良好接触.当MN 滑过的距离为l/3时,导线ac 中的电流是多大?方向如何?1. 如图所示,MN 和PQ 为竖直方向的两平行长直金属导轨,间距l 为0.40m ,电阻不计. 导轨所在平面与磁感应强度 5.0T B =的匀强磁场垂直.质量26.010kg m -=⨯、电阻0.5r =Ω的金属杆ab 始终垂直于导轨,并与其保持光滑接触.导轨两端分别接有阻值均为3.0Ω的电阻1R 和2R .重力加速度取210m/s ,且导轨足够长,若使金属杆ab 从静止开始下滑,求: (1)杆下滑的最大速率m v ;(2)稳定后整个电路耗电的总功率P ; (3)杆下滑速度稳定之后电阻2R 两端的电压U .2. 如图所示(俯视图),相距为2L 的光滑平行金属导轨水平放置,导轨的一部分处在以OO '为右边界的匀强磁场中,匀强磁场的磁感应强大小为B ,方向垂直导轨平面向下,导轨右侧接有定值电阻R ,导轨电阻忽略不计。
电磁感应定律习题含答案
法拉第电磁感应定律练习题1.闭合电路的一部分导线ab处于匀强磁场中,图1中各情况下导线都在纸面内运动,那么下列判断中正确的是[ ] A.都会产生感应电流B.都不会产生感应电流C.甲、乙不会产生感应电流,丙、丁会产生感应电流D.甲、丙会产生感应电流,乙、丁不会产生感应电流1.关于感应电动势大小的下列说法中,正确的是[ ]A.线圈中磁通量变化越大,线圈中产生的感应电动势一定越大B.线圈中磁通量越大,产生的感应电动势一定越大C.线圈放在磁感强度越强的地方,产生的感应电动势一定越大D.线圈中磁通量变化越快,产生的感应电动势越大2.与x轴夹角为30°的匀强磁场磁感强度为B(图1),一根长l的金属棒在此磁场中运动时始终与z轴平行,以下哪些情况可在棒中得到方向相同、大小为Blv的电动势[ ]A.以2v速率向+x轴方向运动B.以速率v垂直磁场方向运动4.单匝矩形线圈在匀强磁场中匀速转动,转轴垂直于磁场,若线圈所围面积里磁通量随时间变化的规律如图3所示[ ]A.线圈中O时刻感应电动势最大B.线圈中D时刻感应电动势为零C.线圈中D时刻感应电动势最大D.线圈中O至D时间内平均感电动势为0.4V5.一个N匝圆线圈,放在磁感强度为B的匀强磁场中,线圈平面跟磁感强度方向成30°角,磁感强度随时间均匀变化,线圈导线规格不变,下列方法中可使线圈中感应电流增加一倍的是[ ] A.将线圈匝数增加一倍B.将线圈面积增加一倍C.将线圈半径增加一倍D.适当改变线圈的取向6.如图4所示,圆环a与圆环b半径之比为2∶1,两环用同样粗细的、同种材料的导线连成闭合回路,连接两圆环电阻不计,匀强磁场的磁感强度变化率恒定,则在a环单独置于磁场中与b环单独置于磁场中两种情况下,M、N两点的电势差之比为[ ]A.4∶1B.1∶4C.2∶1D.1∶28.如图5所示,相距为l,在足够长度的两条光滑平行导轨上,平行放置着质量与电阻均相同的两根滑杆ab与cd,导轨的电阻不计,磁感强度为B的匀强磁场的方向垂直于导轨平面竖直向下,开始时,ab与cd都处于静止状态,现ab杆上作用一个水平方向的恒力F,下列说法中正确的是[ ]A.cd向左运动B.cd向右运动C.ab与cd均先做变加速运动,后作匀速运动D.ab与cd均先做交加速运动,后作匀加速运动9.如图6所示,RQRS为一正方形导线框,它以恒定速度向右进入以MN为边界的匀强磁场,磁场方向垂直线框平面,MN线与线框的边成45°角,E、F分别为PS与PQ的中点,关于线框中的感应电流[ ]A.当E点经过边界MN时,感应电流最大B.当P点经过边界MN时,感应电流最大C.当F点经过边界MN时,感应电流最大D.当Q点经过边界MN时,感应电流最大10.如图7所示,平行金属导轨的间距为d,一端跨接一阻值为R的电阻,匀强磁场的磁感应强度为B,方向垂直于平行轨道所在平面。
《大学物理学》电磁感应部分练习题(马)
《大学物理学》电磁感应部分自主学习材料一、选择题:1.图示为导线AB 在均匀磁场中作下列四种运动,(1)垂直于磁场作平动;(2)绕固定端A 作垂直于磁场转动;(3)绕其中心点O 作垂直于磁场转动;(4)绕通过中心点O 的水平轴作平行于磁场的转动。
关于导线AB 的两端产生的感应电动势哪个结论是错误的?( ) (A )(1)有感应电动势,A 端为高电势; (B )(2)有感应电动势,B 端为高电势; (C )(3)无感应电动势; (D )(4)无感应电动势。
【提示:(3)虽切割磁感线,但A 、B 两端电势相等;(4)不切割磁感线,(1)和(2)切割磁感线,由右手定则,A 端为高电势】2.如图所示,一根无限长直导线载有电流I ,一个矩形线圈位于导体平面沿垂直于载流导线方向以恒定速率运动,则:( ) (A )线圈中无感应电流;(B )线圈中感应电流为顺时针方向; (C )线圈中感应电流为逆时针方向; (D )线圈中感应电流方向无法确定。
【提示:载流无限长直导线在其附近产生的磁场是非均匀的:02IB rμπ=,知矩形线圈内磁通量发生减小的变化,由右手定则,感应电流为顺时针方向】3.尺寸相同的铁环与铜环所包围的面积中,通以相同变化率的磁通量,则环中:( ) (A )感应电动势不同, 感应电流不同;(B ) 感应电动势相同,感应电流相同; (C )感应电动势不同, 感应电流相同;(D )感应电动势相同,感应电流不同。
【提示:铁环与铜环的电阻不同,所以感应电流不同】4.一“探测线圈”由50匝导线组成,截面积24S cm =,电阻R =25Ω,放在均匀磁场中且线圈平面与磁场方向垂直,若把探测线圈迅速翻转︒90,测得通过线圈的电荷量为C 1045-⨯=∆q ,则此均匀磁场磁感应强度B 的大小为: ( )(A )0.01T ; (B )0.05T ; (C )0.1T ; (D )0.5T 。
【提示:由d d t εΦ=-、N BS Φ=及d q I d t R ε==知N BSq R∆=,∴0.05B T =】5.如图所示,在圆柱形空间有一磁感强度为B 的均匀磁场,B 的大小以速率d Bd t变化,在磁场中有A 、B 两点,其间可放 置一直导线和一弯曲的导线,则有下列哪些情况:( )A(1) (2) (3) (4)(A )电动势只在直导线中产生; (B )电动势只在弯曲的导线中产生;(C )电动势在直导线和弯曲的导线中都产生,且两者大小相等; (D )直导线中的电动势小于弯曲导线中的电动势。
初三电磁感应练习题及答案
初三电磁感应练习题及答案练习题1:1. 一个导线以2.0m/s的速度从一个均匀磁场中通过,磁感应强度为0.4T,导线长度为0.5m。
求导线所受的感应电动势大小。
2. 一个长度为3.0m的导线以10m/s的速度垂直通过一个磁感应强度为1.5T的磁场,求导线两端之间的感应电势差。
3. 一个矩形导线框架的长边长度为2.0m,短边长度为0.5m,框架的整体电阻为6.0Ω。
当磁感应强度为0.8T时,框架被拉动,导线切割磁力线的速度恒定为3.0m/s。
求在导线上出现的电动势大小。
答案:1. 感应电动势的大小与磁感应强度、导线长度和导线在磁场中的速度有关。
根据公式E = B*d*l*v,其中B为磁感应强度,d为导线长度,l为导线在磁场中的速度,v为导线长度。
将已知值代入计算,得到E = 0.4T * 0.5m * 2.0m/s = 0.4V。
故导线所受的感应电动势大小为0.4V。
2. 感应电势差的大小取决于磁感应强度、导线长度和导线在磁场中的速度之积。
根据公式∆V = B*l*v,其中B为磁感应强度,l为导线长度,v为导线在磁场中的速度。
将已知值代入计算,得到∆V = 1.5T * 3.0m * 10m/s = 45V。
导线两端之间的感应电势差为45V。
3. 在导线上出现的电动势大小取决于磁感应强度、导线长度、导线在磁场中的速度和导线的电阻之积。
根据公式E = B*d*l*v/R,其中B为磁感应强度,d为导线长度,l为导线在磁场中的速度,R为导线的电阻。
将已知值代入计算,得到E = 0.8T * 3.0m * 2.0m * 0.5m/s / 6.0Ω = 0.8V。
在导线上出现的电动势大小为0.8V。
练习题2:1. 一个磁感应强度为0.5T的磁场垂直于一个半径为0.2m的圆环,圆环的电阻为2.0Ω。
圆环以5rad/s的角速度绕垂直磁场线旋转,求圆环上出现的感应电动势大小。
2. 一个长度为4.0m的直导线绕过一个半径为2.0m的圆形电感线圈,电感线圈中有100个匝。
初中电磁感应专题练习(含详细答案)
初中电磁感应专题练习(含详细答案)
一、选择题
1. 一个导线在磁场中匀速向右移动,感应电动势的方向如何?
A. 由左向右
B. 由右向左
C. 没有感应电动势
D. 无法确定
答案:B
2. 带电粒子在磁场中匀速运动,运动轨迹如何?
A. 直线运动
B. 圆形运动
C. 抛物线运动
D. 双曲线运动
答案:B
二、计算题
1. 一个弯曲的导线长为10cm,导线中有一个电流I=2A,若在
导线处有一个磁感应强度为B=3T的磁场,求电动势的大小为多少?
解答:
$\mathcal{E}=Blv=\frac{1}{2}Blv=\frac{1}{2}Blsin\theta=\frac{1}{2} \times 3 \times 0.1 \times 2=\frac{3}{20}$V。
三、简答题
1. 什么是电磁感应?
电磁感应是指导体中的电子受到磁场的作用从而在导体两端产
生的电动势。
2. 什么是法拉第电磁感应定律?
法拉第电磁感应定律指出,当导体中的磁力线发生变化时,沿
着导体的任意闭合回路中就会产生感应电动势,其大小与磁通量的
变化率成正比,方向满足楞次定律。
3. 什么是楞次定律?
楞次定律指出,当导体内有感应电流时,该电流所发出的磁场的方向是这样的,即它所引起的磁通量的变化总是阻碍引起这种变化的原因。
4. 什么情况下会产生感应电流?
当导体在磁场中发生运动或被磁场线穿过而发生变化时,就会在导体中产生感应电流。
《大学物理》电磁感应练习题及答案
《大学物理》电磁感应练习题及答案一、简答题1、简述电磁感应定律答:当穿过闭合回路所围面积的磁通量发生变化时,不论这种变化是什么原因引起的,回路中都会建立起感应电动势,且此感应电动势等于磁通量对时间变化率的负值,即dtd i φε-=。
2、简述动生电动势和感生电动势答:由于回路所围面积的变化或面积取向变化而引起的感应电动势称为动生电动势。
由于磁感强度变化而引起的感应电动势称为感生电动势。
3、简述自感和互感答:某回路的自感在数值上等于回路中的电流为一个单位时,穿过此回路所围成面积的磁通量,即LI LI =Φ=Φ。
两个线圈的互感M M 值在数值上等于其中一个线圈中的电流为一单位时,穿过另一个线圈所围成面积的磁通量,即212121MI MI ==φφ或。
4、简述位移电流与传导电流有什么异同答:共同点:都能产生磁场。
不同点:位移电流是变化电场产生的(不表示有电荷定向运动,只表示电场变化),不产生焦耳热;传导电流是电荷的宏观定向运动产生的,产生焦耳热。
5 简述感应电场与静电场的区别?答:感生电场和静电场的区别6、写出麦克斯韦电磁场方程的积分形式。
答:⎰⎰==⋅s v q dv ds D ρ dS tB l E s L ⋅∂∂-=⋅⎰⎰d 0d =⋅⎰S S B dS t D j l H s l ⋅⎪⎭⎫ ⎝⎛∂∂+=⋅⎰⎰d 7、简述产生动生电动势物理本质答:在磁场中导体作切割磁力线运动时,其自由电子受洛仑滋力的作用,从而在导体两端产生电势差8、 简述磁能密度, 并写出其表达式答:单位体积中的磁场能量,221H μ。
9、 简述何谓楞次定律答:闭合的导线回路中所出现的感应电流,总是使它自己所激发的磁场反抗任何引发电磁感应的原因(反抗相对运动、磁场变化或线圈变形等).这个规律就叫做楞次定律。
10、全电流安培环路定理答:磁场强度沿任意闭合回路的积分等于穿过闭合回路围成的曲面的全电流 s d t D j l d H s e •⎪⎪⎭⎫ ⎝⎛∂∂+=•⎰⎰二、选择题1、有一圆形线圈在均匀磁场中做下列几种运动,那种情况在线圈中会产生感应电流( D )A 、线圈平面法线沿磁场方向平移B 、线圈平面法线沿垂直于磁场方向平移C 、线圈以自身的直径为轴转动,轴与磁场方向平行D 、线圈以自身的直径为轴转动,轴与磁场方向垂直2、有两个线圈,线圈1对线圈2的互感系数为21M ,而线圈2对线圈1的互感系数为12M .若它们分别流过1i 和2i 的变化电流且dt di dt di 21<,并设由2i 变化在线圈1中产生的互感电动势为12ε,由1i 变化在线圈1中产生的互感电动势为21ε,下述论断正确的是( D )A 、 12212112,εε==M MB 、 12212112,εε≠≠M MC 、 12212112,εε>=M MD 、 12212112,εε<=M M3、对于位移电流,下列四种说法中哪一种说法是正确的 ( A )A 、位移电流的实质是变化的电场B 、位移电流和传导电流一样是定向运动的电荷C 、位移电流服从传导电流遵循的所有规律D 、位移电流的磁效应不服从安培环路定理4、下列概念正确的是 ( B )。
电磁感应计算题及解答
电磁感应一、选择题1、如图所示,空间存在两个磁场,磁感应强度大小均为B,方向相反且垂直纸面,MN、PQ为其边界,OO’为其对称轴。
一导线折成变长为的正方形闭合回路abcd,回路在纸面内以恒定速度v o向右运动,当运动到关于OO’对称的位置时A.穿过回路的磁通量为零B.回路中感应电动势大小为C.回路中感应电流的方向为顺时针方向D.回路中ab边与cd边所受安培力方向相同2、如图8,在O点下方有一个具有理想边界的磁场,铜环在A点由静止释放向右摆至最高点B,不考虑空气阻力,则下列说法正确的是()A.A、B两点在同一水平线B.A点高于B点C.A点低于B点D.铜环将做等幅摆动二、计算题3、如图所示,两根质量均为m=2kg的金属棒垂直地放在光滑的水平导轨上,左右两部分导轨间距之比为1∶2,导轨间有大小相等但左右两部分方向相反的匀强磁场,CD棒电阻为AB棒电阻的两倍,不计导轨电阻,今用250N的水平力F向右拉CD棒,在CD棒运动0.5m的过程中,两棒上产生的焦耳热共为45J,此时CD棒速率为8m/s,立即撤去拉力F,设导轨足够长且两棒始终在不同磁场中运动,求:(1)撤去拉力F瞬间AB棒速度v A;(2)两棒最终匀速运动的速度v A′和v C′。
4、如图所示,光滑矩形斜面ABCD的倾角为,在其上放置一矩形金属线框,的边长,的边长,线框的质量,电阻,线框通过细线绕过定滑轮与重物相连,细线与斜面平行且靠近。
重物质量,离地面的高度为。
斜面上区域是有界匀强磁场,方向垂直于斜面向上,已知AB到的距离为,到的距离为,到CD的距离为,取。
现让线框从静止开始运动(开始时刻与AB边重合),发现线框匀速穿过匀强磁场区域,求:(1)区域内匀强磁场的磁感应强度B(2)线框在通过磁场区域过程中产生的焦耳热Q(3)通过计算分析画出线框从开始运动到边与CD边重合过程中线框的图象5、如图所示,半径为r的圆形导线框内有一匀强磁场,磁场方向垂直于导线框所在平面,导线框的左端通过导线接一对水平放置的平行的金属板,两极间的距离为d,板长为L。
(完整版)电磁感应综合-导轨模型计算题(精选26题含答案详解),推荐文档
电磁感应综合-导轨模型计算题1.(9 分)如图所示,两根间距 L=1m、电阻不计的平行光滑金属导轨 ab、cd 水平放置,一端与阻值 R=2Ω的电阻相连。
质量 m=1kg 的导体棒 ef 在外力作用下沿导轨以 v=5m/s 的速度向右匀速运动。
整个装置处于磁感应强度 B=0.2T 的竖直向下的匀强磁场中。
求:a ebRc f d(1)感应电动势大小;(2)回路中感应电流大小;(3)导体棒所受安培力大小。
【答案】(1)E = 1V (2)I = 0.5A (3)F安= 0.1N【解析】试题分析:(1)导体棒向右运动,切割磁感线产生感应电动势E =BLv代入数据解得:E = 1V(2)感应电流I =ER代入数据解得:I = 0.5A(3)导体棒所受安培力F安=BIL代入数据解得:F安= 0.1N考点:本题考查了电磁感应定律、欧姆定律、安培力。
2.如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距 1 m,导轨平面与水平面成θ=37°角,下端连接阻值为 R 的电阻.匀强磁场方向与导轨平面垂直,质量为0.2 kg、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为 0.25.(1)求金属棒沿导轨由静止开始下滑时的加速度大小.(2)当金属棒下滑速度达到稳定时,电阻 R 消耗的功率为 8 W,求该速度的大小.(3)在上问中,若 R=2 Ω,金属棒中的电流方向由 a 到b,求磁感应强度的大小与方向. (g 取10 m/s2,sin 37°=0.6,cos 37°=0.8)【答案】(1)4m/s2(2)10m/s (3)0.4T【解析】试题分析:(1)金属棒开始下滑的初速为零,V由牛顿第二定律得:mgsinθ-μmgcosθ=ma①由①式解得:a=10×(0.6-0.25×0.8)m/s2=4m/s2②;(2)设金属棒运动达到稳定时,速度为 v,所受安培力为 F,棒在沿导轨方向受力平衡:mgsinθ一μmgcos0一F=0 ③此时金属棒克服安培力做功的功率等于电路中电阻R 消耗的电功率:Fv=P ④由③、④两式解得:v =F =80.2 ⨯10 ⨯ (0.6 - 0.25 ⨯ 0.8)m / s = 10m / s ⑤(3)设电路中电流为 I,两导轨间金属棒的长为 l,磁场的磁感应强度为 B,Blv感应电流:I =⑥R电功率:P=I2R ⑦由⑥、⑦两式解得:B =PRvl 磁场方向垂直导轨平面向上;=8 ⨯ 2T = 0.4T ⑧10 ⨯1考点:牛顿第二定律;电功率;法拉第电磁感应定律.3.(13 分)如图,在竖直向下的磁感应强度为 B 的匀强磁场中,两根足够长的平行光滑金属轨道 MN、PQ 固定在水平面内,相距为 L。
九年级物理电磁感应题库及答案
九年级物理电磁感应题库及答案一、选择题1、下列设备中,利用电磁感应原理工作的是()A 电动机B 发电机C 电铃D 电磁铁答案:B解析:发电机是利用电磁感应原理工作的,闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中就会产生感应电流。
电动机是利用通电导体在磁场中受力的作用而工作的;电铃和电磁铁是利用电流的磁效应工作的。
2、关于产生感应电流的条件,下列说法中正确的是()A 只要导体在磁场中运动,就会产生感应电流B 只要闭合电路的一部分导体在磁场中运动,就会产生感应电流C 只要闭合电路的一部分导体在磁场中做切割磁感线运动,就会产生感应电流D 闭合电路的全部导体在磁场中做切割磁感线运动,才会产生感应电流答案:C解析:产生感应电流的条件:一是“闭合电路”,二是“一部分导体”,三是“做切割磁感线运动”,三个条件缺一不可。
选项 A 中,导体在磁场中运动,如果不是闭合电路,或者导体没有做切割磁感线运动,都不会产生感应电流;选项B 中,闭合电路的一部分导体在磁场中运动,如果不是做切割磁感线运动,也不会产生感应电流;选项 D 中,闭合电路的全部导体在磁场中做切割磁感线运动时,也不一定会产生感应电流,比如全部导体都沿着磁感线运动。
3、如图所示,在探究“什么情况下磁可以生电”的实验中,保持磁体不动,下列现象描述正确的是()A 导线 ab 竖直向上运动时,电流表指针会偏转B 导线 ab 竖直向下运动时,电流表指针会偏转C 导线 ab 水平向左运动时,电流表指针会偏转D 导线 ab 静止不动时,电流表指针会偏转答案:C解析:产生感应电流的条件是闭合电路的一部分导体在磁场中做切割磁感线运动。
导线 ab 竖直向上或竖直向下运动时,都没有做切割磁感线运动,所以电流表指针不会偏转;导线 ab 水平向左运动时,做切割磁感线运动,电流表指针会偏转;导线 ab 静止不动时,没有做切割磁感线运动,电流表指针不会偏转。
4、下列电器中,工作时利用电磁感应原理的是()A 电烤箱B 电热水器C 发电机D 电熨斗答案:C解析:电烤箱、电热水器和电熨斗都是利用电流的热效应工作的,即电流通过电阻时会产生热量。
电磁感应定律典型计算题
.电磁感应定律典型计算题一、计算题(本大题共41小题,共410.0分)1.如图,不计电阻的U形导轨水平放置,导轨宽l=0.5m,左端连接阻值为0.4Ω的电阻R.在导轨上垂直于导轨放一电阻为0.1Ω的导体棒MN ,并用水平轻绳通过定滑轮吊着质量为m=2.4g的重物,图中L=0.8m.开始重物与水平地面接触并处于静止.整个装置处于竖直向上的匀强磁场中,磁感强度B0=0.5T,并且以的规律在增大.不计摩擦阻力.求至少经过多长时间才能将重物吊起?(g=10m/s2)2.在如图甲所示的电路中,螺线管匝数n=1500匝,横截面积S=20cm2.螺线管导线电阻r=1.0Ω,R1=4.0Ω,R2=5.0Ω,C=30μF.在一段时间内,穿过螺线管的磁场的磁感应强度B按如图乙所示的规律变化.求:(1)求螺线管中产生的感应电动势;(2)闭合S,电路中的电流稳定后,求电阻R1的电功率;(3)S断开后,求流经R2的电量.3.如图甲所示,回路中有一个C=60μF的电容器,已知回路的面积为1.0×10-2m 2,垂直穿过回路的磁场的磁感应强度B随时间t的变化图象如图乙所示,求:(1)t=5s时,回路中的感应电动势;(2)电容器上的电荷量.4.如图甲所示,一个圆形线圈的匝数n=1 000,线圈面积S=300cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,线圈处在有一方向垂直线圈平面向里的圆形磁场中,圆形磁场的面积S0=200cm2,磁感应强度随时间的变化规律如图乙所示.求:(1)第4秒时线圈的磁通量及前4s内磁通量的变化量(2)前4s内的感应电动势和前4s内通过R的电荷量;(3)线圈电阻r消耗的功率.5.如图所示,一个圆形线圈的匝数n=1000,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图所示;求:(1)前4s内的感应电动势(2)前5s内的感应电动势.6.如图所示,电阻不计的足够长光滑平行金属导轨倾斜放置,两导轨间距为L,导轨平面与水平面之间的夹角为α,下端接有阻值为R的电阻.质量为m、电阻为r的导体棒ab与固定轻质弹簧连接后放在导轨上,整个装置处于磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁场中,开始时导体棒ab处于锁定状态且弹簧处于原长.某时刻将导体棒解锁并给导体棒一个沿导轨平面向下的初速度v0使导体棒ab沿导轨平面运动,整个运动过程中导体棒始终与导轨垂直并保持良好接触,弹簧的劲度系数为k且弹簧的中心轴线与导轨平行,导体棒运动过程中弹簧始终处于弹性限度内,重力加速度为g.(1)若导体棒的速度达到最大时弹簧的劲度系数k与其形变量x、导体棒ab的质量之间的关系为k=,求导体棒ab的速度达到最大时通过电阻R的电流大小;(2)若导体棒ab第一次回到初始位置时的速度大小为v,求此时导体棒ab的加速度大小;(3)若导体最终静止时弹簧的弹性势能为E p,求导体棒从开始运动直到停止的过程中,.电阻R上产生的热量.7.如图所示,两根足够长固定平行金属导轨位于倾角θ=30°的斜面上,导轨上、下端各接有阻值R=20Ω的电阻,导轨电阻忽略不计,导轨宽度L=2m,在整个导轨平面内都有垂直于导轨平面向上的匀强磁场,磁感应强度B=1T.质量m=0.1kg、连入电路的电阻r=10Ω的金属棒ab在较高处由静止释放,当金属棒ab下滑高度h=3m时,速度恰好达到最大值v=2m/s.金属棒ab在下滑过程中始终与导轨垂直且与导轨良好接触g取10m/s2.求:(1)金属棒ab由静止至下滑高度为3m的运动过程中机械能的减少量.(2)金属棒ab由静止至下滑高度为3m的运动过程中导轨上端电阻R中产生的热量.8.如图所示,有一磁感应强度大小为B的水平匀强磁场,其上下水平边界的间距为H;磁场的正上方有一长方形导线框,其长和宽分别为L、d(d<H),质量为m,电阻为R.现将线框从其下边缘与磁场上边界间的距离为h处由静止释放,测得线框进入磁场的过程所用的时间为t.线框平面始终与磁场方向垂直,线框上下边始终保持水平,重力加速度为g.求:(1)线框下边缘刚进入磁场时线框中感应电流的大小和方向;(2)线框的上边缘刚进磁场时线框的速率v1;(3)线框下边缘刚进入磁场到下边缘刚离开磁场的全过程中产生的总焦耳热Q.9.如图所示,相距L=0.4m、电阻不计的两平行光滑金属导轨水平放置,一端与阻值R=0.15Ω的电阻相连,导轨处于磁感应强度B=0.5T的匀强磁场中,磁场方向垂直于导轨平面.质量m=0.1kg、电阻r=0.05Ω的金属棒置于导轨上,并与导轨垂直.t=0时起棒在水平外力F作用下以初速度v0=2m/s、加速度a=1m/s2沿导轨向右匀加速运动.求:(1)t=2s时回路中的电流;(2)t=2s时外力F大小;(3)第2s内通过棒的电荷量.10.如图所示,面积为0.2m2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面,已知磁感应强度随时间变化的规律为B=0.2t T,定值电阻R1=6Ω,线圈电阻R2=4Ω.求:(1)回路的感应电动势;(2)a、b两点间的电压.11.如图甲所示,有一面积S=100cm2,匝数n=100匝的闭合线圈,电阻为R=10Ω,线圈中磁场变化规律如图乙所示,磁场方向垂直纸面向里为正方向,求:(1)t=1s时,穿过每匝线圈的磁通量为多少?(2)t=2s内,线圈产生的感应电动势为多少?12.如图所示,两根光滑的平行金属导轨MN、PQ处于同一水平面内,相距L=0.5m,导轨的左端用R=3Ω的电阻相连,导轨电阻不计,导轨上跨接一电阻r=1Ω的金属杆ab,质量m=0.2kg,整个装置放在竖直向上的匀强磁场中,磁感应强度B=2T,现对杆施加水平向右的拉力F=2N,使它由静止开始运动,求:(1)杆能达到的最大速度多大?(2)若已知杆从静止开始运动至最大速度的过程中,R上总共产生了10.2J的电热,则此过程中金属杆ab的位移多大?(3)接(2)问,此过程中流过电阻R的电量?经历的时间?13.如图甲所示,光滑的平行水平金属导轨MN、PQ相距L,在M点和P点间连接一个阻值为R的电阻,一质量为m、电阻为r、长度也刚好为L的导体棒ab垂直搁在导轨上,在导体棒的右侧导轨间加一有界匀强磁场,磁场方向垂直于导轨平面,宽度为d0,磁感应强度为B,设磁场左边界到导体棒的距离为d.现用一个水平向右的力F拉导体棒,使它由静止开始运动,棒离开磁场前已做匀速直线运动,与导轨始终保持良好接触,导轨电阻不计,水平力F与位移x的关系图象如图乙所示,F0已知.求:.(1)导体棒ab离开磁场右边界时的速度.(2)导体棒ab通过磁场区域的过程中整个回路所消耗的电能.(3)d0满足什么条件时,导体棒ab进入磁场后一直做匀速运动?14.如图所示,在宽为0.5m的平行导轨上垂直导轨放置一个有效电阻为r=0.6Ω的导体棒,在导轨的两端分别连接两个电阻R1=4Ω、R2=6Ω,其他电阻不计.整个装置处在垂直导轨向里的匀强磁场中,如图所示,磁感应强度 B=0.1T.当直导体棒在导轨上以v=6m/s的速度向右运动时,求:直导体棒两端的电压和流过电阻R1和R2的电流大小.15.如图所示,宽为L的光滑导轨与水平面成θ角,匀强磁场垂直导轨平面向上,磁感应强度为B,质量为m、电阻为r的金属杆ab沿导轨下滑,导轨下端的定值电阻为R,导轨的电阻不计,试求:(1)杆ab沿导轨下滑时的稳定速度的大小;(2)杆ab稳定下滑时两端的电势差.16.如图所示,竖直放置的足够长的光滑平行金属导轨,间距为l=0.50m,导轨上端接有电阻R=0.80Ω,导轨电阻忽略不计.空间有一水平方向的有上边界的匀强磁场,磁感应强度大小为B=0.40T,方向垂直于金属导轨平面向外.质量为m=0.02kg、电阻r=0.20Ω的金属杆MN,从静止开始沿着金属导轨下滑,下落一定高度后以v=2.5m/s的速度进入匀强磁场中,在磁场下落过程中金属杆始终与导轨垂直且接触良好.已知重力加速度为g=10m/s2,不计空气阻力,求在磁场中,(1)金属杆刚进入磁场区域时加速度;(2)若金属杆在磁场区域又下落h开始以v0匀速运动,求v 0大小.17.竖直放置的光滑U形导轨宽0.5m,电阻不计,置于很大的磁感应强度是1T的匀强磁场中,磁场垂直于导轨平面,如图所示,质量为10g,电阻为1Ω的金属杆PQ无初速度释放后,紧贴导轨下滑(始终能处于水平位置).问:(1)到通过PQ的电量达到0.2c时,PQ下落了多大高度?(2)若此时PQ正好到达最大速度,此速度多大?(3)以上过程产生了多少热量?18.如图甲所示,平行金属导轨与水平面的夹角为θ=37°,导轨间距为L=1m,底端接有电阻R=6Ω,虚线00'下方有垂直于导轨平面向下的匀强磁场.现将质量m=1kg、电阻r=3Ω的金属杆ab从00'上方某处静止释放,杆下滑4m过程中(没有滑到底端)始终保持与导轨垂直且良好接触,杆的加速度a与下滑距离s的关系如图乙所示.(sin37°=0.6,cos37°=0.8,g=10m/s2,其余电阻不计)求:(1)金属杆ab与导轨间的动摩擦因数μ(2)磁感应强度B的大小.19.如图,在竖直平面内有金属框ABCD,B=0.1T的匀强磁场垂直线框平面向外,线框电阻不计,框间距离为0.1m.线框上有一个长0.1m的可滑动的金属杆ab,已知金属杆质量为0.2g,金属杆电阻r=0.1Ω,电阻R=0.2Ω,不计其他阻力,求金属杆ab匀速下落时的速度.20.一个面积为0.2m2的100匝线圈处在匀强磁场中,磁场方问垂直于线圈平面,已知磁感应强度随时间变化的规律为B=(2+0.2t)T,定值电阻R=6Ω,线圈电阻r=4Ω,求:(1)线圈中磁通量的变化率和回路的感应电动势;(2)a、b两点间电压U ab..21.一线圈匝数为N、电阻为r,在线圈外接一阻值为2r的电阻R,如图甲所示.线圈内有垂直纸面向里的匀强磁场,磁通量Φ随时间t变化的规律如图乙所示.求0至t0时间内:(1)线圈中产生的感应电动势大小;(2)通过R的感应电流大小和方向;(3)电阻R中感应电流产生的焦耳热.22.金属框架平面与磁感线垂直,金属与框架的电阻忽略,电流计内阻R=20Ω,磁感强度B=1T,导轨宽L=50cm,棒以2m/s的速度作切割磁感线运动,那么(1)电路中产生的感应电动势为多少伏?(2)电流的总功率为多少瓦?(3)为了维持金属棒作匀速运动,外力F的大小为多少牛?23.如图所示,导轨是水平的,其间距l1=0.5m,ab杆与导轨左端的距离l2=0.8m,由导轨与ab杆所构成的回路电阻为0.2Ω,方向垂直导轨平面向下的匀强磁场的磁感应强度B=1T,滑轮下挂一重物质量0.04kg,ah杆与导轨间的摩擦不计,现使磁场以=0.2T/s的变化率均匀地增大,问:当t为多少时,M刚离开地面?(g取10m/s2)24.如图(甲)所示,光滑且足够长的平行金属导轨MN、PQ固定在同一水平面上,两导轨间的距离L=1m,定值电阻R 1=6Ω,R2=3Ω,导轨上放一质量为m=1kg的金属杆,杆的电阻r=2Ω,导轨的电阻不计,整个装置处于磁感应强度为B=0.8T的匀强磁场中,磁场的方向垂直导轨平面向下.现用一拉力F沿水平方向拉杆,使金属杆以一定的初速度开始运动.图(乙)所示为通过R1中电流的平方I12随时间t的变化关系图象,求:(1)5s末金属杆的速度;(2)金属杆在t时刻所受的安培力;(3)5s内拉力F所做的功.25.在光滑绝缘水平面上,电阻为0.1Ω、质量为0.05kg的长方形金属框abcd,以10m/s的初速度向磁感应强度B=0.5T、方向垂直水平面向下、范围足够大的匀强磁场滑去.当金属框进入磁场到达如图所示位置时,已产生1.6J的热量.(1)求出在图示位置时金属框的动能.(2)求图示位置时金属框中感应电流的功率.(已知ab边长L=0.1m)26.如图所示,两平行金属导轨之间的距离为L=0.6m,两导轨所在平面与水平面之间的夹角为θ=37°,电阻R的阻值为1Ω(其余电阻不计),一质量为m=0.1kg的导体棒横放在导轨上,整个装置处于匀强磁场中,磁感应强度为B=0.5T,方向垂直导轨平面斜向上,已知导体棒与金属导轨间的动摩擦因数为μ=0.3,今由静止释放导体棒,当通过导体棒的电荷量为1.8C时,导体棒开始做匀速直线运动.已知:sin37°=0.6,cos37°=0.8,重力加速度g=10m/s2,求:(1)导体棒匀速运动的速度;(2)求导体从静止开始到匀速过程中下滑的距离S.(3)导体棒下滑s的过程中产生的电能.27.如图甲所示,一个圆形线圈的匝数n=1000,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间的变化规律如图乙所示.求:(1)请说明线圈中的电流方向;(2)前4s内的感应电动势;.(3)前4s内通过R的电荷量.28.如图所示,水平方向的匀强磁场呈带状分布,两区域磁感应强度不同,宽度都是L,间隔是2L.边长为L、质量为m、电阻为R的正方形金属线框,处于竖直平面且与磁场方向垂直,底边平行于磁场边界,离第一磁场的上边界的距离为L.线框从静止开始自由下落,当线框穿过两磁场区域时恰好都能匀速运动.若重力加速度为g,求:(1)第一个磁场区域的磁感应强度B1;(2)线框从开始下落到刚好穿过第二磁场区域的过程中产生的总热量Q.29.如图所示,框架的面积为S,匀强磁场的磁感应强度为B.试求:①框架平面与磁感应强度B垂直时,穿过框架平面的磁通量为多少?②若框架绕OO′转过60°,则穿过框架平面的磁通量为多少?③在此过程中,穿过框架平面的磁通量的变化量大小为多少?30.如图所示,一U形光滑金属框的可动边AC棒长L=1m,电阻为r=1Ω.匀强磁场的磁感强度为B=0.5T,AC以v=8m/s的速度水平向右移动,电阻R=7Ω,(其它电阻均不计).求:(1)电路中产生的感应电动势的大小.(2)通过R的感应电流大小.(3)AC两端的电压大小.31.如图,光滑平行的水平金属导轨MN、PQ相距l,在M点和P点间接一个阻值为R 的电阻,在两导轨间OO1O1′O′矩形区域内有垂直导轨平面竖直向下、宽为d的匀强磁场,磁感强度为B.一质量为m,电阻为r的导体棒ab,垂直搁在导轨上,与磁场左边界相距d0.现用一大小为F、水平向右的恒力拉ab棒,使它由静止开始运动,棒ab在离开磁场前已经做匀速直线运动(棒ab与导轨始终保持良好的接触,导轨电阻不计).求:(1)棒ab在离开磁场右边界时的速度;(2)棒ab通过磁场区的过程中整个回路所消耗的电能.32.如图所示,两足够长平行光滑的金属导轨MN、PQ相距为L,导轨平面与水平面夹角α=30°,导轨电阻不计.磁感应强度为B的匀强磁场垂直导轨平面向上,两根长为L的完全相同的金属棒ab、cd垂直于MN、PQ放置在导轨上,且与导轨接触良好,每根棒的质量均为m、电阻均为R.现对ab施加平行导轨向上的恒力F,当ab向上做匀速直线运动时,cd保持静止状态.(1)求力F的大小及ab运动速度v的大小.(2)若施加在ab上的力的大小突然变为2mg,方向不变,则当两棒运动的加速度刚好相同时回路中的电流强度I和电功率P分别为多大?33.如图甲所示,abcd是位于竖直平面内的正方形闭合金属线框,金属线框的质量为m,电阻为R,在金属线框的下方有一匀强磁场区域,MN和PQ是匀强磁场区域的水平边界.并与线框的bc边平行,磁场方向垂直于线框平面向里.现使金属线框从MN上方某一高度处由静止开始下落,如图乙是金属线框由开始下落到完全穿过匀强磁场区域瞬间的v-t图象,图中字母均为已知量.重力加速度为g,不计空气阻力.求:(1)金属线框的边长;(2)金属线框在进入磁场的过程中通过线框截面的电量;(3)金属线框在0~t4时间内安培力做的总功.34.如图所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距为L,左端接有阻值为R的电阻,一质量为m、电阻为r的金属棒MN垂直放置在导轨上,整个装置置于竖直向上的匀强磁场中.当.棒以速度v匀速运动时,加在棒上的水平拉力大小为F1;若改变水平拉力的大小,让棒以初速度v做匀加速直线运动,当棒匀加速运动的位移为x时,速度达到3v.己知导轨足够长且电阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保待良好接触.(1)求磁场的磁感应强度大小;(2)在金属棒的速度由v变为3v的匀加速运动过程中,拉力对金属棒做的功为W F,求这一过程回路产生的电热为多少?(3)通过计算写出金属棒匀加速直线运动时所需外力F随时间t变化的函数关系式.35.相距为L的两光滑平行导轨与水平面成θ角放置.上端连接一阻值为R的电阻,其他电阻不计.整个装置处在方向竖直向上的匀强磁场中,磁感强度为B,质量为m,电阻为r的导体MN,垂直导轨放在导轨上,如图所示.由静止释放导体MN,求:(1)MN可达的最大速度v m;(2)MN速度v=时的加速度a;(3)回路产生的最大电功率P m.36.如图,MN、PQ两条平行的光滑金属轨道与水平面成θ角固定,轨距为d.空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B.P、M间接有阻值为3R的电阻.Q、N间接有阻值为6R的电阻,质量为m的金属杆ab水平放置在轨道上,其有效电阻为R.现从静止释放ab,当它沿轨道下滑距离s时,达到最大速度.若轨道足够长且电阻不计,重力加速度为g.求:(1)金属杆ab运动的最大速度;(2)金属杆ab运动的加速度为gsinθ时,金属杆ab消耗的电功率;(3)金属杆ab从静止到具有最大速度的过程中,通过6R的电量;(4)金属杆ab从静止到具有最大速度的过程中,克服安培力所做的功.37.如图所示,竖直放置的光滑平行金属导轨MN、PQ相距L=1m,在M点和P点间接有一个阻值为R=0.8Ω的电阻,在两导轨间的矩形区域OO1O1′O′内有垂直导轨平面向里、高度h=1.55m的匀强磁场,磁感应强度为B=T,一质量为m=0.5kg的导体棒ab垂直资料地搁在导轨上,与磁场的上边界相距h0=0.45m,现使ab棒由静止开始释放,下落过程中,棒ab与导轨始终保持良好接触且保持水平,在离开磁场前已经做匀速直线运动,已知导体棒在导轨间的有效电阻由0.2Ω,导轨的电阻不计,g取10m/s2.(1)ab棒离开磁场的下边届时的速度大小;(2)ab棒从静止释放到离开磁场下边届的运动过程中,其速度达到2m/s时的加速度大小和方向;(3)ab棒在通过磁场区的过程中产生的焦耳热.38.如图所示PQ、MN为足够长的两平行金属导轨,它们之间连接一个阻值R=8Ω的电阻;导轨间距为L=1m;一质量为m=0.1kg,电阻r=2Ω,长约1m的均匀金属杆水平放置在导轨上,它与导轨的滑动摩擦因数μ=,导轨平面的倾角为θ=30°在垂直导轨平面方向有匀强磁场,磁感应强度为B=0.5T,今让金属杆AB由静止开始下滑,下滑过程中杆AB与导轨一直保持良好接触,杆从静止开始到杆AB恰好匀速运动的过程中经过杆的电量q=l C,求:(1)当AB下滑速度为2m/s时加速度的大小(2)AB 下滑的最大速度(3)从静止开始到AB匀速运动过程R上产生的热量.39.如图所示,“U”形导线框固定在水平面上,右端放有质量为m的金属棒ab,ab与导轨间的动摩擦因数为μ,它们围成的矩形边长分别为L1、L2,回路的总电阻为R.从t=0时刻起,在竖直向上方向加一个随时间均匀增加的磁场B=kt,那么(1)在磁场均匀增加过程,金属棒ab电流方向?(2)时间t为多大时,金属棒开始移动?(最大静摩擦力fm近似为滑动摩擦力f滑)40.如图所示,在光滑绝缘的水平面上有一个用均匀导体围成的正方形线框abcd,其边长为L,总电阻为R.边界MN的右侧有垂直于纸面向里的匀强磁场,磁感应强度为B.线框在大小为F的恒力作用下向右运动,其中ab边保持与MN平行.当线框以速度v0进入磁场区域时,它恰好做匀速运动.在线框进入磁场的过程中,求:高中物理试卷第12页,共13页.(1)线框ab边产生的感应电动势E的大小;(2)线框a、b两点的电势差;(3)线框中产生的焦耳热.41.如图所示,宽度为L=0.2m的足够长的平行光滑金属导轨固定在绝缘水平面上,导轨的一端连接阻值为R=1Ω的电阻.导轨所在空间存在竖直向下的匀强磁场,磁感应强度大小为B=0.5T.一根质量为m=10g的导体棒MN放在导轨上与导轨接触良好,导轨和导体棒的电阻均可忽略不计.现用一平行于导轨的拉力拉动导体棒沿导轨向右匀速运动,运动速度v=10m/s,在运动过程中保持导体棒与导轨垂直.求:(1)在闭合回路中产生的感应电流的大小.(2)作用在导体棒上的拉力的大小.(3)当导体棒移动30cm时撤去拉力,求:从撤去拉力至棒停下来过程中电阻R上产生的热量.资料。
高考物理电磁感应练习题及答案
高考物理电磁感应练习题及答案1. 单选题:(1) 当穿过一根金属导线的电流方向改变时,导线中的电磁场磁感应强度的变化过程是:A. 逐渐增大,然后逐渐减小B. 逐渐减小C. 总是不变D. 逐渐增大答案:D(2) 一个圆形回路平面内以T/秒的速度向外运动,一匀强磁场的磁感应强度大小为B,方向垂直于回路平面。
圆形回路中的恒定磁通量的大小等于:A. BTB. BπT^2C. B/TD. B/T^2答案:B(3) 一根长度为l的匀强磁场中有一导线,导线以v的速度作匀速运动。
如果导线与磁感线的夹角为α,则磁感应强度大小的变化率为:A. l/vcosαB. vcosα/lC. v/lcosαD. v/(lcosα)答案:A2. 多选题:(1) 关于法拉第电磁感应定律的描述,下列说法中正确的是:A. 在一个闭合电路中,当磁通量发生变化时,电路中会产生感应电流B. 直流电流产生的磁感应强度可以通过法拉第电磁感应定律计算C. 在一个闭合电路中,当磁感应强度发生变化时,电路中会产生感应电流D. 电流在导体中流动会产生磁场,这是法拉第电磁感应定律的基础答案:A、B(2) 以下哪些现象可以用电磁感应来解释?A. 电动机的工作原理B. 发电机的工作原理C. 变压器的工作原理D. 电磁铁的吸铁石的原理答案:A、B、C3. 计算题:(1) 一根直导线的长度为0.2m,电流强度为2A。
将这根导线竖直放置在一个垂直于地面的匀强磁场中,磁感应强度为0.5T。
求导线上电流产生的磁场的磁感应强度大小。
解答:根据安培定律,导线产生的磁场的磁感应强度大小与电流强度和导线与磁感应强度之间的夹角有关。
在这个问题中,导线与磁场方向垂直,所以夹角为90°。
由于导线长度为0.2m,电流强度为2A,根据毕奥-萨伐尔定律,我们可以使用以下公式来计算导线上电流产生的磁场的磁感应强度大小:磁感应强度大小= (μ0/4π) * (I/l)其中,μ0是真空中的磁导率,其数值为4π * 10^-7 T·m/A,I是电流强度,l是导线长度。
电磁感应计算题大全
a b s P Q 1.1. 如图所示,如图所示,MN MN MN、、PQ 是两条彼此平行的金属导轨,水平放置,匀强磁场的磁感线垂直导轨平面。
导轨左端连接一阻值R =1.5Ω的电阻,电阻两端并联一电压表,在导轨上垂直导轨跨接一金属杆ab ab,,ab 的质量m =0.1kg 0.1kg,电,电阻为r =0.50.5,,ab 与导轨间动摩擦因数μ=0.50.5,导轨电阻不计。
现用大小,导轨电阻不计。
现用大小恒定的力F =0.7N 水平向右拉ab 运动,经t=2s 后,后,ab ab 开始匀速运动,此时,电压表的示数为0.3V 0.3V。
求:。
求:。
求:(1)ab 匀速运动时,外力F 的功率的功率(2)从ab 开始运动到ab 匀速运动的过程中,通过电路中的电量匀速运动的过程中,通过电路中的电量2.2. 用电阻为18Ω的均匀导线弯成图9-5中直径D=0.80m 的封闭金属圆环,环上AB 弧所对圆心角为6060°,°,将圆环垂直于磁感线方向固定在磁感应强度B=0.50T 的匀强磁场中,磁场方向垂直于纸面向里。
一根每米电阻为1.25Ω的直导线PQ PQ,,沿圆环平面向左以3.0m/s 的速度匀速滑行的速度匀速滑行((速度方向与PQ 垂直垂直)),滑行中直导线与圆环紧密接触线与圆环紧密接触((忽略接触处的电阻忽略接触处的电阻)),当它通过环上A 、B 位置时,求:位置时,求:(1)(1)直导线直导线AB 段产生的感应电动势,并指明该段直导线中电流的方向。
段产生的感应电动势,并指明该段直导线中电流的方向。
(2)(2)此时圆环上发热损耗的电功率。
此时圆环上发热损耗的电功率。
此时圆环上发热损耗的电功率。
3.3. 如图所示,在磁感应强度为0.4T 的匀强磁场中,让长为0.5m 0.5m、电阻为、电阻为0.1Ω的导体ab 在金属框上以10m/s 的速度向右匀速滑动,如电阻R1=6Ω,R2=4Ω,其他导线上的电阻可忽略不计,求:其他导线上的电阻可忽略不计,求:(1)导体ab 中的电流强度与方向;中的电流强度与方向;(2)为使ab 棒匀速运动,外力的机械功率;棒匀速运动,外力的机械功率;4.4. 如图所示,两根足够长的平行光滑导轨,竖直放置在匀强磁场中,磁场的方向与导轨所在的平面垂直,金属棒PQ 两端套在导轨上且可以自由滑动,电源的电动势为3V 3V,电源内阻与金属棒的电阻相等,其余部分电阻不计。
根据磁感应定律计算题专题训练
根据磁感应定律计算题专题训练
根据磁感应定律(法拉第电磁感应定律),当导体中的磁通量
发生变化时,会在导体中产生感应电动势。
根据该定律,我们可以
通过一系列计算题来加深对该定律的理解和应用。
以下是一些根据磁感应定律的计算题目,供您进行专题训练:
1. 题目:一个半径为 10cm 的圆形线圈,其平面与一个磁感应
强度为 0.05 T 的均匀磁场垂直,线圈有 1000 个匝。
求当线圈绕过
磁场中心轴转动 20 圈时,线圈中的感应电动势的变化量。
2. 题目:一个磁感应强度为0.1 T 的均匀磁场与一条导线垂直,导线的长度为 2 m。
如果导线以 10 m/s 的速度从垂直于磁场的位置
移动到与磁场平行的位置,求导线两端的感应电动势。
3. 题目:一个磁感应强度为 0.2 T 的均匀磁场与一条导线夹角
为 30°,导线的长度为 5 m。
当导线上的电流为 2 A 时,求导线两
端的感应电动势。
以上题目需要根据磁感应定律进行计算,您可以使用法拉第电磁感应定律的公式来求解。
请确保在计算过程中注意单位的转换和计算的准确性。
通过解答这些题目,您可以进一步熟练地应用磁感应定律进行计算和分析。
祝您训练顺利,希望以上信息对您有所帮助!。
电磁感应练习题40道
姓名:_______________班级:_______________1、法拉第通过精心设计的一系列试验,发现了电磁感应定律,将历史上认为各自独立的学科“电学”与“磁学”联系起来.在下面几个典型的实验设计思想中,所作的推论后来被实验否定的是()A.既然磁铁可使近旁的铁块带磁,静电荷可使近旁的导体表面感应出电荷,那么静止导线上的稳恒电流也可在近旁静止的线圈中感应出电流B.既然磁铁可在近旁运动的导体中感应出电动势,那么稳恒电流也可在近旁运动的线圈中感应出电流C.既然运动的磁铁可在近旁静止的线圈中感应出电流,那么静止的磁铁也可在近旁运动的导体中感应出电动势D.既然运动的磁铁可在近旁的导体中感应出电动势,那么运动导线上的稳恒电流也可在近旁的线圈中感应出电流2、关于磁通量的概念,以下说法中正确的是()A.磁通量发生变化,一定是磁场发生变化引起的B.磁感应强度越大,穿过闭合回路的磁通量也越大#C.磁感应强度越大,线圈面积越大,则穿过线圈的磁通量也越大D.穿过线圈的磁通量为零,但该处的磁感应强度不一定为零3、在物理学发展史上许许多多科学家为物理学的发展做出了巨大贡献。
以下选项中说法正确的是( )A. 电流的磁效应是法国物理学家法拉第首先通过实验发现的B. 万有引力常量是牛顿通过实验测定的C. 行星运动定律是第谷系统完整地提出的D. 牛顿有句名言:“如果说我比笛卡尔看得更远,那是因为我站在巨人的肩上。
”就牛顿发现牛顿第一定律而言,起关键作用的这位“巨人”是指伽利略6、如图所示,一矩形线圈与通有相同大小电流的平行直导线在同一平面内,而且处在两导线的中央,则( )A.两电流反向时,穿过线圈的磁通量为零(B.两电流同向时,穿过线圈的磁通量为零C.两电流同向或反向时,穿过线圈的磁通量相等D.因电流产生的磁场不均匀,因而不能判定穿过线圈的磁通量是否为零7、如图所示,通电螺线管置于闭合金属环a的轴线上,当螺线管中电流I减小时[ ]A.环有缩小的趋势以阻碍原磁通量的减小B.环有扩大的趋势以阻碍原磁通量的减小C.环有缩小的趋势以阻碍原磁通量的增大D.环有扩大的趋势以阻碍原磁通量的增大8、如图3所示是某电磁冲击钻的原理图,若突然发现钻头M向右运动,则可能是()A.开关S闭合瞬间!B.开关S由闭合到断开的瞬间C.开关S已经是闭合的,滑动变阻器滑片P向左迅速滑动D.开关S已经是闭合的,滑动变阻器滑片P向右迅速滑动9、对电磁感应现象,下列说法中正确的是( )A.只要有磁通量穿过回路,回路中就有感应电流B.只要闭合回路在做切割磁感线运动,回路中就有感应电流C.只要穿过闭合回路的磁通量足够大,回路中就有感应电流D.只要穿过闭合回路的磁通量发生变化,回路中就有感应电流10、如图所示,无限大磁场的方向垂直于纸面向里,图中线圈在纸面内由小变大(由图中实线矩形变成虚线矩形),图中线圈正绕点在平面内旋转,C图与D图中线圈正绕轴转动,则线圈中能产生感应电流的是( )(11、超导是当今高科技的热点.超导材料的研制与开发是一项新的物理课题,当一块磁体靠近超导体时,超导体中会产生强大的电流,超导体中产生强大电流是由于( )A.穿过超导体中磁通量很大B.超导体中磁通量变化率很大C.超导体电阻极小趋近于零 D.超导体电阻变大12、1873年奥地利维也纳世博会上,比利时出生的法国工程师格拉姆在布展中偶然接错了导线,把另一直流发电机发出的电接到了他自己送展的直流发电机的电流输出端。
大学物理2磁学与电磁感应试题及答案(新)
磁学练习答案: 磁学练习(打*为选做题)一. 选择题:1. 在磁感强度为B的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n与B 的夹角为α ,则通过半球面S 的磁通量(取弯面向外为正)为 [ A ](A) -πr 2B cos α.(B) -πr 2B sin α. (C) 2 πr 2B . (D) πr 2B . 2. 通有电流I 的无限长直导线有如图三种形状,则C ,O ,A 各点磁感强度的大小B C ,B O ,B A 间的关系为:[ B ] (A) B O > B A > B C . (B) B O > B C > B A (C )B C > B O > B A .(D) B A > B C > B O . 3.无限长的载流导体电流密度均匀,电流沿导体长度方向流动,其在空间产生的磁场如图中曲线表示B -x 的关系(半径为导体R ,x 坐标轴垂直导体轴线,原点在中心轴线),此载流导体为[ B ] (A )无限长圆柱体 (B )空心长圆筒形导体 (C )无限长直导线 (D )无限长半圆柱体4. 如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B 沿图中闭合路径L 的积分⎰⋅Ll Bd 等于[ A ](B)I 0μ.(C) 3/20I μ. (D) 6/0I μ . [ A ]5.2063一均匀磁场,磁场方向垂直纸面向里,有四个质量、电荷大小均相等的带电粒子,在O 点沿相同方向垂直于磁感线射入均匀磁场后的偏转轨迹如图,四个粒子中动能最大的带负电的粒子的轨迹是(A) Oa . (B) Ob .(C) Oc . (D) Od . [ B ] 6.2464xRO把通电的直导线放在蹄形磁铁磁极的上方,如图所示.导线可以自由活动,且不计重力.当导线内通以如图所示的电流时,导线将(A) 不动.(B) 顺时针方向转动(从上往下看).(C) 逆时针方向转动(从上往下看),然后下降.(D) 顺时针方向转动(从上往下看),然后下降.(E) 逆时针方向转动(从上往下看),然后上升.[ D ]7. 2518有甲乙两个带铁芯的线圈如图所示.接通甲线圈电源后,抽出甲中铁芯,则乙线圈中产生感生电流情况,则(A) 无感生电流产生.(B) 感生电流的方向a到b方向.(C) 感生电流的方向b到a方向.[ C ]8.2314如图所示,M、N为水平面内两根平行金属导轨,ab与cd为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使ab向右平移时,cd(A) 向左移动.(B) 向右移动.(C) 不动.(D) 转动.[ B ]9. 5138在一自感线圈中通过的电流I随时间t的变化规律如图(a)所示,若以I的正流向作为 的正方向,则代表线圈内自感电动势 随时间t变化规律的曲线应为图(b)中(A)、(B)、(C)、(D)中的哪一个?[ C ]10.2564甲乙bNtt ttt(b)(a)如图,两根导线沿半径方向引到铁环(半径为r )的上A 、B 两点,并在很远处与电源相连,则环中心的磁感强度为 (A)2032rI μ (B) 0(C)r I 80μ (D) 22rI πμ [ B ]11.2420在圆柱形空间内有一磁感强度为B 的均匀磁场,如图所示.B的大小以速率d B /d t 变化.在磁场中有A 、B 两点,其间可放直导线AB 和弯曲的导线AB ,则 (A) 电动势只在AB 导线中产生. (B) 电动势只在AB 导线中产生. (C) 电动势在AB 和AB 中都产生,且两者大小相等.(D) AB 导线中的电动势小于AB 导线中的电动势. [ D ] 12.2148半径为r 的小绝缘圆环,置于半径为R 的大导线圆环中心,二者在同一平面内,且r <<R .在大导线环中通有正弦电流(取逆时针方向为正)I =I 0sin ωt ,其中ω、I 0为常数,t 为时间,则任一时刻小线环中感应电动势(取逆时针方向为正)为 (A)t I Rrωωμcos 202π (B) t I R r ωωμcos 2020π-(C)t I Rrωωμsin 202π (D) t I Rrωωμsin 202π-[ B ]13.2690一根直导线长为L 在磁感强度为B 的均匀磁场中以速度 v运动切割磁力线.导线中对应于非静电力的场强(称作非静电场场强)KE为:(A) B V⨯ (B) V B ⨯(C) VBL (D) l d B V L⋅⨯⎰)( [ A ]14. 5468电流I 由长直导线1沿垂直bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点流出,经长直导线2沿cb 延长线方向返回电源(如图).若载流直导线1在O 点产生的磁感强度为1B, 2和三角形框中的电流在框中心O 点产生的磁感强度分别用2B 和3B表示,则O 点的磁感强度大小(A)B ≠ 0,因为虽然B 3 = 0、B 1= 0,但B 2≠ 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B,B 3 = 0.(C) B = 0,因为B 1 = B 2 = B 3 = 0.(D) B ≠ 0,因为虽然021≠+B B ,但3B≠ 0. [ A ]15. 5121在图(a)和(b)中各有一半径相同的圆形回路L 1、L 2,圆周内有电流I 1、I 2,其分布相同,且均在真空中,但在(b)图中L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则:(A) =⎰⋅1d L l B⎰⋅2d L l B, 21P P B B =(B) ≠⎰⋅1d L l B⎰⋅2d L l B, 21P P B B =.(C) ≠⎰⋅1d L l B⎰⋅2d L l B, 21P P B B ≠.(D) =⎰⋅1d L l B⎰⋅2d L l B ,21P P B B ≠. [ D ]16. 2059一匀强磁场,其磁感强度方向垂直于纸面(指向如图),两带电粒子在该磁场中的运动轨迹如图所示,则 (A) 两粒子的动量大小必然不同. (B) 两粒子的运动周期必然不同.(C) 粒子的电荷可以同号也可以异号.(D) 两粒子的电荷必然同号. [ C ]17 2092L 1 2I 3(a)(b)⊙两个同心圆线圈,大圆半径为R ,通有电流I 1;小圆半径为r ,通有电流I 2,方向如图.若r << R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为 (A) 0 . (B)RrI I 22210μ.(C) rR I I 22210πμ. (D)Rr I I 22210πμ. [ A ]18. 2315如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势ε和a 、c 两点间的电势差U a – U c 为 (A)ε =0, U a – U c =221l B ω. (B)ε =2l B ω,U a – U c =221l B ω. (C)ε =2l B ω,U a – U c =221l B ω-.(D) ε =0,U a – U c =221l B ω-. [ D ]二、填空题1.2004磁场中某点的磁感强度为B ,在该点放一个小的载流试验线圈(可以确定该点的磁感强度,其大小等 于放在该点处试验线圈所受的__最大磁力矩___和线圈的_磁矩___的比值. *2.2558在真空中,半径为R 的细导线环中的通有电流,离环上所有点的距离皆等于r (r ≥R )的一点处的磁感强度大小为B 0 ,则细导线环中通有的电流I =2302Rr B μ 。
电磁感应实验练习题计算磁场变化引起的感应电动势
电磁感应实验练习题计算磁场变化引起的感应电动势对于电磁感应实验中计算磁场变化引起的感应电动势,我们需要首先了解电磁感应的基本原理。
根据法拉第电磁感应定律,当磁场的变化穿过一定的导体回路时,会产生感应电动势。
感应电动势的计算公式为:ε = -N ∆Φ/∆t其中,ε表示感应电动势,N表示线圈的匝数,∆Φ表示磁通量的变化量,∆t表示磁场变化的时间。
下面,我们通过练习题来计算磁场变化引起的感应电动势。
练习题一:一个螺线管有100个匝,截面积为0.01平方米。
当磁感应强度从0.2特斯拉增加到0.6特斯拉,变化所用的时间为2秒。
求在这个过程中产生的感应电动势。
解答一:根据感应电动势的计算公式,我们可以得到:N = 100A = 0.01平方米∆B = 0.6特斯拉 - 0.2特斯拉 = 0.4特斯拉∆t = 2秒感应电动势ε = -N ∆Φ/∆t而磁通量Φ可以表示为磁感应强度B乘以面积A,即∆Φ = BΔA ∆Φ = ∆B * A = 0.4特斯拉 * 0.01平方米 = 0.004特斯拉·平方米代入计算公式,得到:ε = -N ∆Φ/∆t= -100 * 0.004特斯拉·平方米 / 2秒= -0.2伏特答案:在这个过程中,产生的感应电动势为0.2伏特。
练习题二:一个平行板电容器的板间距离为0.02米,两个平行板上的电压为5伏特。
当板间的磁感应强度发生变化时,感应电动势为多少?解答二:根据感应电动势的计算公式,我们可以得到:N = 1(由于只有一对平行板)A = 0.02平方米∆B = 变化后的磁感应强度 - 变化前的磁感应强度 = B2 - B1∆t = 1秒(假设变化所用的时间为1秒)感应电动势ε = -N ∆Φ/∆t在这个情况下,磁通量Φ仍然可以表示为磁感应强度B乘以面积A,即∆Φ = BΔA∆Φ = ∆B * A = (B2 - B1) * 0.02平方米代入计算公式,得到:ε = -N ∆Φ/∆t= -(B2 - B1) * 0.02平方米 / 1秒= -0.02(B2 - B1)伏特答案:在这个过程中,感应电动势为-0.02(B2 - B1)伏特。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁感应最新计算题集1.如图15(a )所示,一端封闭的两条平行光滑导轨相距L ,距左端L 处的中间一段被弯成半径为H 的1/4圆弧,导轨左右两段处于高度相差H 的水平面上。
圆弧导轨所在区域无磁场,右段区域存在磁场B 0,左段区域存在均匀分布但随时间线性变化的磁场B (t ),如图15(b )所示,两磁场方向均竖直向上。
在圆弧顶端,放置一质量为m 的金属棒ab ,与导轨左段形成闭合回路,从金属棒下滑开始计时,经过时间t 0滑到圆弧顶端。
设金属棒在回路中的电阻为R ,导轨电阻不计,重力加速度为g 。
⑴问金属棒在圆弧内滑动时,回路中感应电流的大小和方向是否发生改变?为什么? ⑵求0到时间t 0内,回路中感应电流产生的焦耳热量。
⑶探讨在金属棒滑到圆弧底端进入匀强磁场B 0的一瞬间,回路中感应电流的大小和方向。
2.如图甲所示,两根足够长的平行光滑金属导轨固定放置在水平面上,间距L =0.2m ,一端通过导线与阻值为R =1Ω的电阻连接;导轨上放一质量为m =0.5kg 的金属杆,金属杆与导轨的电阻均忽略不计.整个装置处于竖直向上的大小为B =0.5T 的匀强磁场中.现用与导轨平行的拉力F 作用在金属杆上,金属杆运动的v-t 图象如图乙所示.(取重力加速度g =10m/s 2)求: (1)t =10s 时拉力的大小及电路的发热功率. (2)在0~10s 内,通过电阻R 上的电量.3.如图所示,AB 和CD 是足够长的平行光滑导轨,其间距为l ,导轨平面与水平面的夹角为θ。
整个装置处在磁感应强度为B 、方向垂直于导轨平面且向上的匀强磁场中。
AC 端连有阻值为R 的电阻。
若将一质量为M 、垂直于导轨的金属棒EF 在距BD 端s 处由静止释放,则棒滑至底端前会有加速和匀速两个运动阶段。
现用大小为F 、方向沿斜面向上的恒力把金属棒EF 从BD位置由静止推至距BD 端s 处,此时撤去该力,金属棒EF 最后又回到BD 端。
求:(1)金属棒下滑过程中的最大速度。
(2)金属棒棒自BD 端出发又回到BD 端的整个过程中,有多少电能转化成了内能(金属棒及导轨的电阻不计)?F RB图甲 t 15 10 5 0 24v(m/s) 图乙 A B CE FBsθR4.如图(A )所示,固定于水平桌面上的金属架cdef ,处在一竖直向下的匀强磁场中,磁感强度的大小为B 0,金属棒ab 搁在框架上,可无摩擦地滑动,此时adeb 构成一个边长为l 的正方形,金属棒的电阻为r ,其余部分的电阻不计。
从t =0的时刻起,磁场开始均匀增加,磁感强度变化率的大小为k (k =ΔBΔt)。
求:1用垂直于金属棒的水平拉力F 使金属棒保持静止,写出F 的大小随时间t 变化的关系式。
2如果竖直向下的磁场是非均匀增大的(即k 不是常数),金属棒以速度v 0向什么方向匀速运动时,可使金属棒中始终不产生感应电流,写出该磁感强度B t 随时间t 变化的关系式。
3如果非均匀变化磁场在0—t 1时间内的方向竖直向下,在t 1—t 2时间内的方向竖直向上,若t =0时刻和t 1时刻磁感强度的大小均为B 0,且adeb 的面积均为l 2。
当金属棒按图(B )中的规律运动时,为使金属棒中始终不产生感应电流,请在图(C )中示意地画出变化的磁场的磁感强度B t 随时间变化的图像(t 1-t 0=t 2-t 1<lv)。
5.一有界匀强磁场区域如图甲所示,质量为m 、电阻为R 的长方形矩形线圈abcd 边长分别为L 和2L ,线圈一半在磁场内,一半在磁场外,磁感强度为B 0。
t =0时刻磁场开始均匀减小,线圈中产生感应电流,在磁场力作用下运动,v -t 图象如图乙,图中斜向虚线为过0点速度图线的切线,数据由图中给出,不考虑重力影响。
⑴磁场磁感强度的变化率。
⑵t 3时刻回路电功率。
6.如图所示,竖直向上的匀强磁场在初始时刻的磁感应强度B 0=0.5T ,并且以Bt∆∆=1T/s 在增加,水平导轨的电阻和摩擦阻力均不计,导轨宽为0.5m ,左端所接电阻R =0.4Ω。
在导轨上l =1.0m 处的右端搁一金属棒ab ,其电阻R 0=0.1Ω,并用水平细绳通过定滑轮吊着质量为M =2kg 的重物,欲将重物吊起,问: (1)感应电流的方向(请将电流方向标在本题图上)以及感应电流的大小; (2)经过多长时间能吊起重物。
图正方向正方向-L 2 Ba bcd甲乙7.如图所示,在磁感应强度为B 的水平方向的匀强磁场中竖直放置两平行导轨,磁场方向与导轨所在平面垂直。
导轨上端跨接一阻值为R 的电阻(导轨电阻不计)。
两金属棒a 和b 的电阻均为R ,质量分别为kg m a 2102-⨯=和kg m b 2101-⨯=,它们与导轨相连,并可沿导轨无摩擦滑动。
闭合开关S ,先固定b ,用一恒力F 向上拉,稳定后a 以s m v /101=的速度匀速运动,此时再释放b ,b 恰好保持静止,设导轨足够长,取2/10s m g =。
(1)求拉力F 的大小;(2)若将金属棒a 固定,让金属棒b 自由滑下(开关仍闭合),求b 滑行的最大速度2v ;(3)若断开开关,将金属棒a 和b 都固定,使磁感应强度从B 随时间均匀增加,经0.1s 后磁感应强度增到2B 时,a 棒受到的安培力正好等于a 棒的重力,求两金属棒间的距离h 。
8.如图15所示,矩形裸导线框长边的长度为2l ,短边的长度为l ,在两个短边上均接有电阻R ,其余部分电阻不计。
导线框一长边与x 轴重合,左边的坐标x=0,线框内有一垂直于线框平面的磁场,磁场的磁感应强度满足关系B=B 0sin (lx2π)。
一光滑导体棒AB 与短边平行且与长边接触良好,电阻也是R 。
开始时导体棒处于x=0处,从t=0时刻起,导体棒AB 在沿x 方向的力F 作用下做速度为v 的匀速运动,求: (1)导体棒AB 从x=0到x=2l 的过程中力F 随时间t 变化的规律; (2)导体棒AB 从x=0到x=2l 的过程中回路产生的热量。
图159.水平面上两根足够长的金属导轨平行固定放置,问距为L ,一端通过导线与阻值为R 的电阻连接;导轨上放一质量为m 的金属杆(见右上图),金属杆与导轨的电阻忽略不计;均匀磁场竖直向下.用与导轨平行的恒定拉力F 作用在金属杆上,杆最终将做匀速运动.当改变拉力的大小时,相对应的匀速运动速度v 也会变化,v 与F 的关系如右下图。
(取重力加速度g=10m/s2)(1)金属杆在匀速运动之前做什么运动? (2)若m=0.5kg ,L=0.5m ,R=0.5Ω;磁感应强度B 为多大? (3)由v —F 图线的截距可求得什么物理量?其值为多少?10.如图(a )所示,光滑的平行长直金属导轨置于水平面内,间距为L 、导轨左端接有阻值为R 的电阻,质量为m 的导体棒垂直跨接在导轨上。
导轨和导体棒的电阻均不计,且接触良好。
在导轨平面上有一矩形区域内存在着竖直向下的匀强磁场,磁感应强度大小为B 。
开始时,导体棒静止于磁场区域的右端,当磁场以速度v 1匀速向右移动时,导体棒随之开始运动,同时受到水平向左、大小为f 的恒定阻力,并很快达到恒定速度,此时导体棒仍处于磁场区域内。
⑴求导体棒所达到的恒定速度v 2;⑵为使导体棒能随磁场运动,阻力最大不能超过多少? ⑶导体棒以恒定速度运动时,单位时间内克服阻力所做的功和电路中消耗的电功率各为多大? ⑷若t =0时磁场由静止开始水平向右做匀加速直线运动,经过较短时间后,导体棒也做匀加速直线运动,其v -t 关系如图(b )所示,已知在时刻t 导体棒瞬时速度大小为v t ,求导体棒做匀加速直线运动时的加速度大小。
v R× × × ×× × × × × × × ×B Lm v 1 (a ) t v tO (b )11.如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距l m ,导轨平面与水平面成θ=37°角,下端连接阻值为尺的电阻.匀强磁场方向与导轨平面垂直.质量为0.2kg 、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25. (1)求金属棒沿导轨由静止开始下滑时的加速度大小;(2)当金属棒下滑速度达到稳定时,电阻尺消耗的功率为8W ,求该速度的大小;(3)在上问中,若R =2Ω,金属棒中的电流方向由a 到b ,求磁感应强度的大小与方向.(g =10rn /s 2,sin37°=0.6,cos37°=0.8)12、如图所示PQ 、MN 为足够长的两平行金属导轨,它们之间连接一个阻值Ω=8R 的电阻;导轨间距为kg m m L 1.0;1==一质量为,电阻Ω=2r ,长约m 1的均匀金属杆水平放置在导轨上,它与导轨的滑动摩擦因数53=μ,导轨平面的倾角为030=θ在垂直导轨平面方向有匀强磁场,磁感应强度为0.5T B =,今让金属杆AB 由静止开始下滑从杆静止开始到杆AB 恰好匀速运动的过程中经过杆的电量1C q =,求: (1)当AB 下滑速度为s m /2时加速度的大小 (2)AB 下滑的最大速度(3)从静止开始到AB 匀速运动过程R 上产生的热量θ RBABMPQN13.光滑平行金属导轨水平面内固定,导轨间距L=0.5m,导轨右端接有电阻R L=4Ω小灯泡,导轨电阻不计。
如图甲,在导轨的MNQP矩形区域内有竖直向上的磁场,MN、PQ间距d=3m,此区域磁感应强度B随时间t变化规律如图乙所示,垂直导轨跨接一金属杆,其电阻r=1Ω,在t=0时刻,用水平恒力F拉金属杆,使其由静止开始自GH位往右运动,在金属杆由GH 位到PQ位运动过程中,小灯发光始终没变化,求:(1)小灯泡发光电功率;(2)水平恒力F大小;(3)金属杆质量m.14.两根光滑的长直金属导轨导轨MN、M'N'平行置于同一水平面内,导轨间距为l,电阻不计,M、M'处接有如图所示的电路,电路中各电阻的阻值均为R,电容器的电容为C。
长度也为l、阻值同为R的金属棒ab垂直于导轨放置,导轨处于磁感应强度为B、方向竖直向下的匀强磁场中。
ab在外力作用下向右匀速运动且与导轨保持良好接触,在ab运动距离为s的过程中,整个回路中产生的焦耳热为Q。
求:⑴ab运动速度v的大小;⑵电容器所带的电荷量q。
电磁感应计算题答案1、解:⑴感应电流的大小和方向均不发生改变。
因为金属棒滑到圆弧任意位置时,回路中磁通量的变化率相同。
⑵0—t 0时间内,设回路中感应电动势大小为E 0,感应电流为I ,感应电流产生的焦耳热为Q ,由法拉第电磁感应定律:0020t B L t E =∆∆=φ 根据闭合电路的欧姆定律:REI 0= 由焦耳定律有:R t B L Rt I Q 0242== 解得:4200L B Q t R=⑶设金属进入磁场B 0一瞬间的速度变v ,金属棒在圆弧区域下滑的过程中,机械能守恒:221mv mgH =在很短的时间t ∆内,根据法拉第电磁感应定律,金属棒进入磁场B 0区域瞬间的感应电动势为E ,则:E t φ∆=∆ x v t ∆=∆ )(20t B L x L B ∆+∆=∆φ由闭合电路欧姆定律得:EI R= 解得感应电流:⎪⎪⎭⎫ ⎝⎛-=002t L gH R L B I 根据上式讨论: I 、当02t LgH =时,I =0; II 、当02t LgH >时,⎪⎪⎭⎫ ⎝⎛-=002t L gH R L B I ,方向为a b →; III 、当02t LgH <时,⎪⎪⎭⎫ ⎝⎛-=gH t L R L B I 200,方向为b a →。