圆锥曲线难题集锦(共75题)

合集下载

圆锥曲线难题集锦(共75题)

圆锥曲线难题集锦(共75题)

圆锥曲线难题集锦1. 如图所示,,分别为椭圆:()的左、右两个焦点,,为两个顶点,已知椭圆上的点到,两点的距离之和为.(1)求椭圆的方程;(2)过椭圆的焦点作的平行线交椭圆于,两点,求的面积.}2. 已知椭圆:的离心率为,过左焦点且倾斜角为的直线被椭圆截得的弦长为.(1)求椭圆的方程;(2)若动直线与椭圆有且只有一个公共点,过点作的垂线,垂足为,求点的轨迹方程.)3. 已知椭圆的离心率为,点在上.(1)求的方程;(2)直线不过原点且不平行于坐标轴,与有两个交点,,线段的中点为.证明:直线的斜率与直线的斜率的乘积为定值.;4. 已知的顶点,在椭圆上,点在直线:上,且.\(1)当边通过坐标原点时,求的长及的面积;(2)当,且斜边的长最大时,求所在直线的方程.—5. 已知椭圆的中心为坐标原点,一个长轴顶点为,它的两个短轴顶点和焦点所组成的四边形为正方形,直线与轴交于点,与椭圆交于异于椭圆顶点的两点,,且.(1)求椭圆的方程;(2)求的取值范围.¥}6. 已知抛物线的焦点为,是抛物线上横坐标为,且位于轴上方的点,到抛物线准线的距离等于,过作垂直于轴,垂足为,的中点为.(1)求抛物线的方程;(2)若过作,垂足为,求点的坐标.:7. 已知圆过定点,且与直线相切,圆心的轨迹为,曲线与直线相交于,两点.(1)求曲线的方程;—(2)当的面积等于时,求的值.【8. 已知直线与椭圆相交于两个不同的点,记与轴的交点为.(1)若,且,求实数的值;(2)若,求面积的最大值,及此时椭圆的方程.【·9. 如图,设抛物线()的焦点为,抛物线上的点到轴的距离等于.(1)求的值;(2)若直线交抛物线于另一点,过与轴平行的直线和过与垂直的直线交于点,与轴交于点.求的横坐标的取值范围.}10. 已知点在椭圆上,且点到两焦点的距离之和为.(1)求椭圆的方程;(2)若斜率为的直线与椭圆交于,两点,以为底作等腰三角形,顶点为,求的面积.【11. 已知椭圆的离心率为,且过点.(1)求椭圆的方程;(2)若,是椭圆上的两个动点,且使的角平分线总垂直于轴,试判断直线的斜率是否为定值若是,求出该值;若不是,说明理由.&:12. 已知椭圆:的离心率为.其右顶点与上顶点的距离为,过点的直线与椭圆相交于,两点.(1)求椭圆的方程;(2)设是中点,且点的坐标为当时,求直线的方程.,13. 设,分别是椭圆的左,右焦点,是上一点且与轴垂直.直线与的另一个交点为.(1)若直线的斜率为的离心率;(2)若直线在轴上的截距为,且,.:14. 在平面直角坐标系中,点,直线与动直线的交点为,线段的中垂线与动直线的交点为.(1)求点的轨迹的方程;(2)过动点作曲线的两条切线,切点分别为,,求证:的大小为定值.)15. 已知中心在原点的双曲线的右焦点为,右顶点为.(1)求该双曲线的方程;(2)若直线:与双曲线左支有两个不同的交点,,求的取值范围.¥16. 己知椭圆与抛物线共焦点,抛物线上的点到轴的距离等于,且椭圆与抛物线的交点满足(1)求抛物线的方程和椭圆的方程;(2)过抛物线上的点作抛物线的切线交椭圆于,两点,设线段的中点为,求的取值范围.,17. 已知右焦点为的椭圆:关于直线对称的图形过坐标原点.(1)求椭圆的方程;(2)过点且不垂直于轴的直线与椭圆交于,两点,点关于轴的对称原点为,证明:直线与轴的交点为.#]18. 在平面直角坐标系中,抛物线的顶点是原点,以轴为对称轴,且经过点.(1)求抛物线的方程;(2)设点,在抛物线上,直线,分别与轴交于点,,.求直线的斜率.19. 已知抛物线与直线相切.(1)求该抛物线的方程;(2)在轴正半轴上,是否存在某个确定的点,过该点的动直线与抛物线交于,两点,使得为定值.如果存在,求出点坐标;如果不存在,请说明理由.{;20. 左、右焦点分别为,的椭圆经过点,为椭圆上一点,的重心为,内心为,.(1)求椭圆的方程;(2)为直线上一点,过点作椭圆的两条切线,,,为切点,问直线是否过定点若过定点,求出定点的坐标;若不过定点,请说明理由.:21. 已知抛物线,为其焦点,过点的直线交抛物线于,两点,过点作轴的垂线,交直线于点,如图所示.(1)求点的轨迹的方程;·(2)直线是抛物线的不与轴重合的切线,切点为,与直线交于点,求证:以线段为直径的圆过点.·22. 已知椭圆,其短轴为,离心率为.(1)求椭圆的方程;(2)设椭圆的右焦点为,过点作斜率不为的直线交椭圆于,两点,设直线和的斜率为,,试判断是否为定值,若是定值,求出该定值;若不是定值,请说明理由.23. 在平面直角坐标系中,抛物线的焦点为,准线交轴于点,过作直线交抛物线于,两点,且.(1)求直线的斜率;(2)若的面积为,求抛物线的方程.|—24. 过双曲线的右支上的一点作一直线与两渐近线交于,两点,其中是的中点;(1)求双曲线的渐近线方程;(2)当坐标为时,求直线的方程;(3)求证:是一个定值./25. 如图,线段经过轴正半轴上一定点,端点,到轴的距离之积为,以轴为对称轴,过,,三点作抛物线.~(1)求抛物线的标准方程;(2)已知点为抛物线上的点,过作倾斜角互补的两直线,,分别交抛物线于,,求证:直线的斜率为定值,并求出这个定值.~26. 如图,已知椭圆的左右顶点分别是,,离心率为.设点,连接交椭圆于点,坐标原点是.(1)证明:;(2)若三角形的面积不大于四边形的面积,求的最小值.【27. 已知抛物线的焦点为,过的直线交于,两点,为线段的中点,为坐标原点.,的延长线与直线分别交于,两点.(1)求动点的轨迹方程;(2)连接,求与的面积比.}\28. 已知抛物线过点.过点作直线与抛物线交于不同的两点,,过点作轴的垂线分别与直线,交于点,,其中为原点.(1)求抛物线的方程,并求其焦点坐标和准线方程;(2)求证:为线段的中点.;29. 如图,在平面直角坐标系中,椭圆的左、右焦点分别为,,离心率为.点在椭圆上,且位于第一象限,过点作直线的垂线,过点作直线的垂线.…(1)求椭圆的标准方程;(2)若直线,的交点在椭圆上,求点的坐标.!30. 如图:中,,,,曲线过点,动点在上运动,且保持的值不变.(1)建立适当的坐标系,求曲线的标准方程;(2)过点且倾斜角为的直线交曲线于,两点,求的长度.~31. 已知椭圆的焦点在轴上,中心在坐标原点;抛物线的焦点在轴上,顶点在坐标原点.在,上各取两个点,将其坐标记录于表格中:(1)求,的标准方程;(2)已知定点,为抛物线上一动点,过点作抛物线的切线交椭圆于,两点,求面积的最大值.'32. 已知点为椭圆:的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线与椭圆有且仅有一个交点.(1)求椭圆的方程;(2)设直线与轴交于,过点的直线与椭圆交于不同的两点,,若的取值范围.^33. 已知点100(,)P x y 为双曲线22221(8x y b b b -=为正常数)上任一点,2F 为双曲线的右焦点,过1P 作右准线的垂线,垂足为A ,连接2F A 并延长交y 轴于点2P . (1)求线段12P P 的中点P 的轨迹E 的方程;(2)设轨迹E 与x 轴交于B ,D 两点,在E 上任取一点Q 111()(0)x y y ≠,,直线QB ,QD 分别交于y 轴于M ,N 两点.求证:以MN【@34. 如图,已知圆G :222(2)x y r -+=是椭圆2216x y +=1的内接ABC △的内切圆,其中A 为椭圆的左顶点. (1)求圆G 的半径r ;(2)过点M (0,1)作圆G 的两条切线交椭圆于E ,F 两点,证明:直线EF 与圆G 相切.—x35. 设点00(,)P x y 在直线(01)x m y m m =≠±<<,上,过点P 作双曲线221x y -=的两条切线,PA PB ,切点为,A B ,定点10M m ⎛⎫⎪⎝⎭,. (1)过点A 作直线0x y -=的垂线,垂足为N ,试求AMN △的垂心G 所在的曲线方 程;(2)求证:A M B 、、三点共线."36. 作斜率为13的直线l 与椭圆22:1364x y C +=交于,A B 两点(如图所示),且P 在直线l 的左上方.(1)证明:PAB ∆的内切圆的圆心在一条定直线上; (2)若60oAPB ∠=,求PAB ∆的面积.《AxyOPB37. 如图,椭圆22122:1(0)x y C a b a b+=>>3x 轴被曲线22:C y x b =-截得的线段长等于1C 的长半轴长.(1)求1C ,2C 的方程;(2)设2C 与y 轴的焦点为M ,过坐标原点O 的直线l 与2C 相交于点A,B ,直线MA,MB 分别与1C 相交与,D E .①证明:MD ME ⊥;¥②记MAB ∆,MDE ∆的面积分别是1S ,2S .问:是否存在直线l ,使得121732S S =请说明理由.】38. 已知抛物线2:4C y x =的焦点为F ,过点(1,0)K -的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D . (1)证明:点F 在直线BD 上; (2)设89FA FB =,求BDK ∆的内切圆M 的方程 .!39. (,)()o o o P x y x a ≠±是双曲线2222:1(0,0)x y E a b a b-=>>上一点,,M N 分别是双曲线E 的左、右顶点,直线,PM PN 的斜率之积为15. (1)求双曲线的离心率;(2)过双曲线E 的右焦点且斜率为1的直线交双曲线于,A B 两点,O 为坐标原点,C 为双曲线上一点,满足OC OA OB λ=+,求λ的值.…40.已知以原点O 为中心,F 为右焦点的双曲线C 的离心率e =(1)求双曲线C 的标准方程及其渐近线方程;(2)如图,已知过点11(,)M x y 的直线1l :1144x x y y +=与过点22(,)N x y (其中21x x ≠)的直线2l :2244x x y y +=的交点E 在双曲线C 上,直线MN 与双曲线的两条渐近线分别交于G 、H 两点,求△OGH 的面积.41.如图,在平面直角坐标系xoy 中,椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1(0)F c -,,2(0)F c ,.已知(1)e ,和e ⎛ ⎝⎭都在椭圆上,其中e 为椭圆的离心率. ~(1)求椭圆的方程;(2)设,A B 是椭圆上位于x 轴上方的两点,且直线1AF 与直线2BF 平行,2AF 与1BF 交于点P .(i)若12AF BF -=1AF 的斜率; (ii )求证:12PF PF +是定值.;42.如图,椭圆C :2222+1x y a b=(a >b >0)的离心率为12,其左焦点到点P (2,1)不过原点O 的直线l 与C 相交于A ,B 两点,且线段AB 被直线OP 平分.(Ⅰ)求椭圆C 的方程;(Ⅱ) 求∆ABP 的面积取最大时直线l 的方程.(43.设A 是单位圆221x y +=上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足||||(0,1)DM m DA m m =>≠且. 当点A 在圆上运动时,记点M 的轨迹为曲线C .(Ⅰ)求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标;(Ⅱ)过原点且斜率为k 的直线交曲线C 于P ,Q 两点,其中P 在第一象限,它在y 轴上的射影为点N ,直线QN 交曲线C 于另一点H . 是否存在m ,使得对任意的0k >,都有PQ PH ⊥若存在,求m 的值;若不存在,请说明理由.…44../45. 已知动直线l 与椭圆C: 22132x y +=交于P ()11,x y 、Q ()22,x y 两不同点,且△OPQ 的面积OPQ S ∆=2其中O 为坐标原点. (Ⅰ)证明2212x x +和2212y y +均为定值;(Ⅱ)设线段PQ 的中点为M ,求||||OM PQ ⋅的最大值;(Ⅲ)椭圆C 上是否存在点D,E,G ,使得ODE ODG OEG S S S ∆∆∆===判断△DEG 的形状;若不存在,请说明理由.%46.如图,已知椭圆C1的中心在原点O ,长轴左、右端点M ,N 在x 轴上,椭圆C2的短轴为MN ,且C1,C2的离心率都为e ,直线l ⊥MN ,l 与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A ,B ,C ,D.(I )设12e =,求BC 与AD 的比值;(II )当e 变化时,是否存在直线l ,使得BO ∥AN ,并说明理由《47. 平面内与两定点12(,0),(,0)(0)->A a A a a 连线的斜率之积等于非零常数m 的点的轨迹,加 上A 1、A 2两点所在所面的曲线C 可以是圆、椭圆或双曲线.(Ⅰ)求曲线C 的方程,并讨论C 的形状与m 的位置关系;(Ⅱ)当m=-1时,对应的曲线为C 1:对给定的(1,0)(0,)m ∈-+∞,对应的曲线为C2, ;设F 1、F 2是C 2的两个焦点,试问:在C 1上,是否存在点N ,使得△F 1NF 2的面 积2S m a =,若存在,求12tan F NF 的值;若不存在,请说明理由.:48.已知一条曲线C 在y 轴右边,每一点到点F (1,0)的距离减去它到y 轴距离的差都是1. (Ⅰ)求曲线C 的方程;(Ⅱ)是否存在正数m ,对于过点M (m ,0)且与曲线C 有两个交点A,B 的任一直线,都有0FA FB •<若存在,求出m 的取值范围;若不存在,请说明理由。

圆锥曲线典型难题大全集学生版

圆锥曲线典型难题大全集学生版

圆锥曲线典型难题大全集目录题型一:数形结合确定直线和圆锥曲线的位置关系5 题型二:弦的垂直平分线问题7题型三:动弦过定点的问题10题型四:过已知曲线上定点的弦的问题12题型五:共线向量问题14题型六:面积问题18题型七:弦或弦长为定值问题20题型八:角度问题21问题九:四点共线问题24问题十:围问题(本质是函数问题)25问题十一、存在性问题:28直线和圆锥曲线经常考查的一些题型直线与椭圆、双曲线、抛物线中每一个曲线的位置关系都有相交、相切、相离三种情况,从几何角度可分为三类:无公共点,仅有一个公共点及有两个相异公共点对于抛物线来说,平行于对称轴的直线与抛物线相交于一点,但并不是相切;对于双曲线来说,平行于渐近线的直线与双曲线只有一个交点,但并不相切.直线和椭圆、双曲线、抛物线中每一个曲线的公共点问题,可以转化为它们的方程所组成的方程组求解的问题,从而用代数方法判断直线与曲线的位置关系。

解决直线和圆锥曲线的位置关系的解题步骤是:(1)直线的斜率不存在,直线的斜率存,(2)联立直线和曲线的方程组;(3)讨论类一元二次方程(4)一元二次方程的判别式(5)韦达定理,同类坐标变换(6)同点纵横坐标变换(7)x,y ,k(斜率)的取值围(8)目标:弦长,中点,垂直,角度,向量,面积,围等等运用的知识:1、中点坐标公式:1212,y 22x x y y x ++==,其中,x y 是点1122(,)(,)A x y B x y ,的中点坐标。

2、弦长公式:若点1122(,)(,)A x y B x y ,在直线(0)y kx b k =+≠上,则1122y kx b y kx b =+=+,,这是同点纵横坐标变换,是两大坐标变换技巧之一,AB ====或者AB ==== 3、两条直线111222:,:l y k x b l y k x b =+=+垂直:则121k k =-两条直线垂直,则直线所在的向量120v v =4、韦达定理:若一元二次方程20(0)ax bx c a ++=≠有两个不同的根12,x x ,则1212,b c x x x x a a+=-=。

圆锥曲线大题专题及答案

圆锥曲线大题专题及答案

解析几何大题专题第一类题型 弦长面积问题1.(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率是2,且过点P .直线2y x m =+与椭圆C 相交于,A B 两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)求PAB △的面积的最大值;(Ⅲ)设直线,PA PB 分别与y 轴交于点,M N .判断||PM ,||PN 的大小关系,并加以证明.2. (本小题14分) 已知椭圆22:13+=x y C m m,直线:20+-=l x y 与椭圆C 相交于P ,Q 两点,与x 轴交于点B ,点,P Q 与点B 不重合.(Ⅰ)求椭圆C 的离心率;(Ⅱ)当2∆=OPQ S 时,求椭圆C 的方程;(Ⅲ)过原点O 作直线l 的垂线,垂足为.N 若λ=PN BQ ,求λ的值.3.(本小题共14分)已知椭圆2222:1(0)x yC a ba b+=>>离心率等于12,(2,3)P、(2,3)Q-是椭圆上的两点.(Ⅰ)求椭圆C的方程;(Ⅱ),A B是椭圆上位于直线PQ两侧的动点,若直线AB的斜率为12,求四边形APBQ面积的最大值.4.(本小题满分14分)已知椭圆C:2231(0)mx my m+=>的长轴长为O为坐标原点.(Ⅰ)求椭圆C的方程和离心率;(Ⅱ)设点(3,0)A,动点B在y轴上,动点P在椭圆C上,且P在y轴的右侧,若||||BA BP=,求四边形OPAB面积的最小值.5.(本小题共14分)已知椭圆C:2214xy+=,F为右焦点,圆O:221x y+=,P为椭圆C上一点,且P位于第一象限,过点P作PT与圆O相切于点T,使得点F,T在OP两侧.(Ⅰ)求椭圆C的焦距及离心率;(Ⅱ)求四边形OFPT面积的最大值.6.(本小题13分)已知抛物线C:y2=2px经过点P(2,2),A,B是抛物线C上异于点O的不同的两点,其中O为原点.(I)求抛物线C的方程,并求其焦点坐标和准线方程;(II)若OA OB,求△AOB面积的最小值.第二类题型 圆过定点问题( 包括点在圆上 点在圆外 点在圆内)1.(本小题满分14 分)已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,椭圆C 与y 轴交于A , B 两点,且|AB |=2.(Ⅰ)求椭圆C 的方程;(Ⅱ)设点P 是椭圆C 上的一个动点,且直线PA ,PB 与直线x =4分别交于M , N两点.是否存在点P 使得以MN 为直径的圆经过点(2,0)?若存在,求出点P 的横坐标;若不存在,说明理由。

32个经典圆锥曲线问题

32个经典圆锥曲线问题

圆锥曲线32题1. 如图所示,,分别为椭圆:()的左、右两个焦点,,为两个顶点,已知椭圆上的点到,两点的距离之和为.(1)求椭圆的方程;(2)过椭圆的焦点作的平行线交椭圆于,两点,求的面积.2. 已知椭圆:的离心率为,过左焦点且倾斜角为的直线被椭圆截得的弦长为.(1)求椭圆的方程;(2)若动直线与椭圆有且只有一个公共点,过点作的垂线,垂足为,求点的轨迹方程.3. 已知椭圆的离心率为在上.(1)求的方程;(2)直线不过原点且不平行于坐标轴,与有两个交点,,线段的中点为.证明:直线的斜率与直线的斜率的乘积为定值.4. 已知的顶点,在椭圆上,点在直线:上,且.(1)当边通过坐标原点时,求的长及的面积;(2)当,且斜边的长最大时,求所在直线的方程.5. 已知椭圆的中心为坐标原点,一个长轴顶点为,它的两个短轴顶点和焦点所组成的四边形为正方形,直线与轴交于点,与椭圆交于异于椭圆顶点的两点,,且.(1)求椭圆的方程;(2)求的取值范围.6. 已知抛物线的焦点为,是抛物线上横坐标为,且位于轴上方的点,到抛物线准线的距离等于,过作垂直于轴,垂足为,的中点为.(1)求抛物线的方程;(2)若过作,垂足为,求点的坐标.7. 已知圆过定点,且与直线相切,圆心的轨迹为,曲线与直线相交于,两点.(1)求曲线的方程;(2)当的面积等于时,求的值.8. 已知直线与椭圆相交于两个不同的点,记与轴的交点为.(1)若,且,求实数的值;(2)若,求面积的最大值,及此时椭圆的方程.9. 如图,设抛物线()的焦点为,抛物线上的点到轴的距离等于.(1)求的值;(2)若直线交抛物线于另一点,过与轴平行的直线和过与垂直的直线交于点,与轴交于点.求的横坐标的取值范围.10. 已知点在椭圆上,且点到两焦点的距离之和为.(1)求椭圆的方程;(2)若斜率为的直线与椭圆交于,两点,以为底作等腰三角形,顶点为,求的面积.11. 已知椭圆的离心率为.(1)求椭圆的方程;(2)若,是椭圆上的两个动点,且使的角平分线总垂直于轴,试判断直线的斜率是否为定值?若是,求出该值;若不是,说明理由.12. 已知椭圆:的离心率为.其右顶点与上顶点的距离为,过点的直线与椭圆相交于,两点.(1)求椭圆的方程;(2)设是中点,且点的坐标为当时,求直线的方程.13. 设,分别是椭圆的左,右焦点,是上一点且与轴垂直.直线与的另一个交点为.(1)若直线的斜率为的离心率;(2)若直线在轴上的截距为,且,.14. 在平面直角坐标系中,点,直线与动直线的交点为,线段的中垂线与动直线的交点为.(1)求点的轨迹的方程;(2)过动点作曲线的两条切线,切点分别为,,求证:的大小为定值.15. 已知中心在原点的双曲线的右焦点为,右顶点为.(1)求该双曲线的方程;(2)若直线:与双曲线左支有两个不同的交点,,求的取值范围.16. 己知椭圆与抛物线共焦点,抛物线上的点到轴的距离等于,且椭圆与抛物线的交点满足.(1)求抛物线的方程和椭圆的方程;(2)过抛物线上的点作抛物线的切线交椭圆于,两点,设线段的中点为,求的取值范围.17. 已知右焦点为的椭圆:关于直线对称的图形过坐标原点.(1)求椭圆的方程;(2)过点且不垂直于轴的直线与椭圆交于,两点,点关于轴的对称原点为,证明:直线与轴的交点为.18. 在平面直角坐标系中,抛物线的顶点是原点,以轴为对称轴,且经过点.(1)求抛物线的方程;(2)设点,在抛物线上,直线,分别与轴交于点,,求直线的斜率.19. 已知抛物线与直线相切.(1)求该抛物线的方程;(2)在轴正半轴上,是否存在某个确定的点,过该点的动直线与抛物线交于,两点,使得为定值.如果存在,求出点坐标;如果不存在,请说明理由.20. 左、右焦点分别为,的椭圆经过点,为椭圆上一点,的重心为,内心为,.(1)求椭圆的方程;(2)为直线上一点,过点作椭圆的两条切线,,,为切点,问直线是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.21. 已知抛物线,为其焦点,过点的直线交抛物线于,两点,过点作轴的垂线,交直线于点,如图所示.(1)求点的轨迹的方程;(2)直线是抛物线的不与轴重合的切线,切点为,与直线交于点,求证:以线段为直径的圆过点.22. 已知椭圆,其短轴为,离心率为.(1)求椭圆的方程;(2)设椭圆的右焦点为,过点作斜率不为的直线交椭圆于,两点,设直线和的斜率为,,试判断是否为定值,若是定值,求出该定值;若不是定值,请说明理由.23. 在平面直角坐标系中,抛物线的焦点为,准线交轴于点,过作直线交抛物线于,两点,且(1)求直线的斜率;(2)若的面积为,求抛物线的方程.24. 过双曲线的右支上的一点作一直线与两渐近线交于,两点,其中是的中点;(1)求双曲线的渐近线方程;(2)当坐标为时,求直线的方程;(3是一个定值.25. 如图,线段经过轴正半轴上一定点,端点,到轴的距离之积为,以轴为对称轴,过,,三点作抛物线.(1)求抛物线的标准方程;(2)已知点为抛物线上的点,过作倾斜角互补的两直线,,分别交抛物线于,,求证:直线的斜率为定值,并求出这个定值.26. 如图,已知椭圆的左右顶点分别是,,离心率为.设点,连接交椭圆于点,坐标原点是.(1)证明:;(2)若三角形的面积不大于四边形的面积,求的最小值.27. 已知抛物线的焦点为,过的直线交于,两点,为线段的中点,为坐标原点.,的延长线与直线分别交于,两点.(1)求动点的轨迹方程;(2)连接,求与的面积比.28. 已知抛物线过点.过点作直线与抛物线交于不同的两点,,过点作轴的垂线分别与直线,交于点,,其中为原点.(1)求抛物线的方程,并求其焦点坐标和准线方程;(2)求证:为线段的中点.29. 如图,在平面直角坐标系中,椭圆的左、右焦点分别为,,离心率为,两准线之间的距离为.点在椭圆上,且位于第一象限,过点作直线的垂线,过点作直线的垂线.(1)求椭圆的标准方程;(2)若直线,的交点在椭圆上,求点的坐标.30. 如图:中,,,,曲线过点,动点在上运动,且保持的值不变.(1)建立适当的坐标系,求曲线的标准方程;(2)过点且倾斜角为的直线交曲线于,两点,求的长度.35. 已知椭圆的焦点在轴上,中心在坐标原点;抛物线的焦点在轴上,顶点在坐标原点.在,上各取两个点,将其坐标记录于表格中:(1)求,的标准方程;(2)已知定点,为抛物线上一动点,过点作抛物线的切线交椭圆于,两点,求面积的最大值.36. 已知点为椭圆:的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线与椭圆有且仅有一个交点.(1)求椭圆的方程;(2)设直线与轴交于,过点的直线与椭圆交于不同的两点,,若的取值范围.圆锥曲线32题答案1. (1)由题设知:,即.将点代入椭圆方程得,解得.所以,故椭圆方程为.(2)由()知,,所以,所以所在直线方程为,由得,设,,则,所以所以2. (1)因为椭圆的离心率为,所以.解得,故椭圆的方程可设为,则椭圆的左焦点坐标为,过左焦点且倾斜角为的直线方程为:.设直线与椭圆的交点为,,由消去,得,解得,.因为,解得.故椭圆的方程为.(2)①当切线的斜率存在且不为时,设的方程为,联立直线和椭圆的方程,得消去并整理,得.因为直线和椭圆有且只有一个交点,所以.化简并整理,得.因为直线与垂直,所以直线的方程为.联立方程组解得所以把代入上式得②当切线的斜率为时,此时或,符合式.③当切线的斜率不存在时,此时或符合式.综上所述,点的轨迹方程为.3. (1)由题意得解得,.所以的方程为.(2)设直线(,),,,.将代入,得.故,.于是直线的斜率所以直线的斜率与直线的斜率的乘积为定值.4. (1)因为,且通过原点,所以所在直线的方程为.由得,两点坐标分别是,.所以.又因为边上的高等于原点到直线的距离.所以,.(2)设所在直线的方程为,由得.因为,两点在椭圆上,所以,即.设,两点坐标分别为,,则,且,.所以又因为的长等于点到直线的距离,即所以.当时,边最长.(显然).所以,所在直线的方程为.5. (1)由题意,知椭圆的焦点在轴上,设椭圆方程为,由题意,知,,又,则,所以椭圆方程为.(2)设,,由题意,知直线的斜率存在,设其方程为,与椭圆方程联立,即消去,得,,由根与系数的关系,知又,即有,所以.则所以.整理,得,又时等式不成立,所以,得,此时.所以的取值范围为.6. (1)抛物线的准线为,所以,所以抛物线方程为.(2)由(1)知点的坐标是,由题意得,.又因为,所以.因为,所以所以的方程为的方程为由联立得所以的坐标为.7. (1)设圆心的坐标为,由题意,知圆心到定点和直线的距离相等,故圆心的轨迹的方程为.(2)由方程组消去,并整理得.设,,则设直线与轴交于点,则.所以因为,所以,解得.经检验,均符合题意,所以.8. (1)因为,所以设点的坐标为,点的坐标为由得则则,解得.(2)设点的坐标为,点的坐标为,由得,得,则.由得,解得,代入上式得:,则,,当且仅当时取等号,此时,又则,解得.所以,面积的最大值为,此时椭圆的方程为.9. (1)由题意可得,抛物线上点到点的距离等于点到直线的距离,由抛物线的定义,即.(2)由(1)得,抛物线方程为,,可设,,.因为不垂直于轴,可设直线:,由消去得,故又直线的斜率为的斜为.从而得直线:,直线:.所以设,由,,三点共线得,于是所以或.经检验,或满足题意.综上,点的横坐标的取值范围是.10. (1)因为,所以.又点在椭圆上,所以,解得,所以椭圆的方程为.(2)设直线的方程为.由得,设,的坐标分别为,,的中点为,则因为是等腰的底边,所以.所以的斜率.此时方程为,解得,,所以,所以.此时,点到直线的距离,所以的面积11. (1)因为椭圆的离心率为,所以,.因为,解得,,所以椭圆的方程为.(2)法1:因为的角平分线总垂直于轴,所以与所在直线关于直线对称.设直线的斜率为,则直线的斜率为所以直线的方程为,直线的方程为.设点,,由消去,得因为点在椭圆上,所以是方程的一个根,则.所以.同理.所以.又.所以直线的斜率为所以直线的斜率为定值,该值为法2:设点,,则直线的斜率,直线的斜率.因为的角平分线总垂直于轴,所以与所在直线关于直线对称.所以,即因为点,在椭圆上,所以由得,得同理由得由得,化简得由得得.得,得所以直线的斜率为为定值.法3:设直线的方程为,点,,则,,直线的斜率,直线的斜率.因为的角平分线总垂直于轴,所以与所在直线关于直线对称.所以,即化简得.把,代入上式,并化简得由消去得则,,代入得,整理得,所以或.若,可得方程的一个根为,不合题意.若时,合题意.所以直线的斜率为定值,该值为.12. (1)由题意可知:,又,,所以,,所以椭圆的方程为:.(2)①若直线的斜率不存在,此时为原点,满足,所以,方程为.②若直线的斜率存在,设其方程为,,将直线方程与椭圆方程联立可得即,可得设,则,,由可知,解得或,将结果代入验证,舍掉.此时,直线的方程为.综上所述,直线的方程为或.13. (1)根据及题设知,.将代入,解得或故的离心率为(2)由题意,得原点为的中点,轴,所以直线与轴的交点是线段的中点,故,即由得设,由题意知,则即代入的方程,得将及代入得.解得,,故,.14. (1)据题意,为点到直线的距离,连接,因为为线段的中垂线与直线的交点,所以所以点的轨迹是抛物线,焦点为,准线为直线所以曲线的方程为.(2)据题意,,过点的切线斜率存在,设为,则切线方程为:,联立抛物线方程可得,由直线和抛物线相切,可得,即因为,所以方程存在两个不等实根,设为,,因为,,由方程可知,所以切线,所以,结论得证.15. (1)由题意设双曲线方程为.由已知得,,再由,得.故双曲线的方程为.(2)设,,将代入,得.由题意知解得.所以的取值范围为.16. (1)因为抛物线上的点到轴的距离等于,所以点到直线的距离等于点到焦点的距离,得是抛物线的准线,即解得,所以抛物线的方程为;可知椭圆的右焦点,左焦点,由,得,又,解得,由椭圆的定义得,所以,又,得,所以椭圆的方程为.(2)显然,,由消去,得,由题意知,得,由消去,得,其中,化简得,又,得,解得,设,,则,由所以的取值范围是.17. (1)由题意可得:,又,解得.所以椭圆的方程为:.(2)设直线的方程为:,代入椭圆方程可得:,由,解得.设,,,所以,,则直线的方程为:,令,可得所以直线与轴的交点为.18. (1)依题意,设抛物线的方程为.由抛物线且经过点,得,所以抛物线的方程为.(2)因为所以,所以,所以直线与的倾斜角互补,所以.依题意,直线的斜率存在,设直线的方程为:,将其代入抛物线的方程,整理得.设,则,,所以.以替换点坐标中的,得.所以所以直线的斜率为19. (1)联立方程有,有,由于直线与抛物线相切,得,所以,所以.(2)假设存在满足条件的点,直线,有,设,,有,,,,,当,满足为定值,所以.20. (1)因为椭圆焦点在轴上,且过点,所以.设内切圆的半径为,点的坐标为,则的重心的坐标为,因为,所以.由面积可得即,则解得,,即所求的椭圆方程为则椭圆方程为.(2)设,,,则切线,的方程分别为,.因为点在两条切线上,所以,.故直线的方程为.又因为点为直线上,所以,即直线的方程可化为,整理得,由解得因此,直线过定点21. (1)由题意可得:直线的斜率存在,设方程为:,设,,动点,由可得.可得.;;由可得即点的轨迹方程为(2)设直线的方程为:(且),由可得,可得,因为直线与抛物线相切,所以,可得,可得,又由可得可得,所以以线段为直径的圆过点.22. (1)由题意可知:,,椭圆的离心率,则,所以椭圆的标准方程:.(2)设直线的方程为.消去整理得:.设,,则,,所以为定值.23. (1)过,两点作准线的垂线,垂足分别为,,易知,,因为所以,所以为的中点,又是的中点,所以是的中位线,所以而,所以所以,,所以,而,所以;(2)因为为的中点,是的中点,所以,所以,所以,所以抛物线的方程为.24. (1)双曲线的,,可得双曲线的渐近线方程为,即为.(2)令可得,解得,(负的舍去),设,,由为的中点,可得,,解得,,即有,可得的斜率为,则直线的方程为,即为.(3)设,即有,设,,由为的中点,可得,,解得,,则为定值.25. (1)设所在直线的方程为,抛物线方程为,联立两方程消去得.设,,则.由题意知,,且,所以,所求抛物线的方程为.(2)由点为抛物线上的点,得.由题意知直线,的斜率均存在,且不为,设直线的方程为,则直线的方程为.由得,因而由得,因而从而直线的斜率26. (1)由题意可知:,,所以椭圆的标准方程:,设直线的方程,则整理得:,解得:,,则点坐标,故直线的斜率,直线的斜率所以所以;(2)由(Ⅰ)可知:四边形的面积,则三角形,,由,整理得:,则,所以,的最小值.27. (1)设,,由题知抛物线焦点为,设焦点弦方程为,代入抛物线方程得,有,解之得,由韦达定理:,所以中点横坐标:,代入直线方程,中点纵坐标:为,消参数,得其方程为:,当线段的斜率不存在时,线段中点为焦点,满足此式,故动点的轨迹方程为:.(2)设,代入,得,,联立,得,同理,,所以,又因为,故与的面积比为.28. (1)因为过点,所以,解得所以抛物线方程为,所以焦点坐标为,准线为(2)设过点的直线方程为,,所以直线为,直线为:,由题意知,,由可得,所以,,所以,所以为线段的中点.29. (1)由题意可知:椭圆的离心率,则椭圆的准线方程,由由解得:,,则,所以椭圆的标准方程:.(2)方法一:设,时,与相交于点,与题设不符,当时,则直线的斜率的方程,直线的斜率,则直线的斜率,直线的方程,联立解得:则,由,在椭圆上,,的横坐标互为相反数,纵坐标应相等或相反,则或,所以或,则解得:则或无解,又在第一象限,所以的坐标为:.方法二:设,由在第一象限,则,,当时,不存在,解得:与重合,不满足题意,当时,,,由,,则,,直线的方程的方程联立解得:,则,由在椭圆方程,由对称性可得:,即,或,由,在椭圆方程,解得:或无解,又在第一象限,所以的坐标为:.30. (1)设中点为,中点为,以,所在的直线分别为轴,轴,为原点建立直角坐标系.因为,动点的轨迹是以,为焦点的椭圆,设其长、短半轴的长分别为,,半焦距为,则,,,所以曲线的方程为:.(2)直线的方程为,设,,由方程组得方程,,,故.35. (1)设,由题意知,点一定在椭圆上,则点也在椭圆上,分别将其代入,得,,解得,,所以的标准方程为.设,依题意知,点在抛物线上,代入抛物线的方程,得,所以的标准方程为.(2)设,,,由知,故直线的方程为,即,代入椭圆的方程,整理得,,,,所以设点到直线的距离为,则所以当且仅当时,取等号,此时满足.综上,面积的最大值为.36. (1)由题意,得,,则椭圆为.由得.因为直线与椭圆有且仅有一个交点,所以,所以椭圆的方程为.(2)由(1)得.因为直线与轴交于,所以当直线与轴垂直时,,所以当直线与轴不垂直时,设直线的方程为,,,由,依题意得,,且,所以所以,因为,所以.综上所述,的取值范围是.。

高中数学圆锥曲线难题练习题带答案

高中数学圆锥曲线难题练习题带答案

高中数学圆锥曲线一.选择题(共20小题)1.已知F1、F2是椭圆=1的左、右焦点,点P是椭圆上任意一点,以PF1为直径作圆N,直线ON与圆N交于点Q(点Q不在椭圆内部),则=()A.2B.4C.3D.12.在平面直角坐标系xOy中,已知椭圆+=1(a>b>0),过左焦点F(﹣2,0)倾斜角为的直线交椭圆上半部分于点A,以F A,FO为邻边作平行四边形OF AB,若点B在椭圆上,则b2等于()A.B.2C.3D.43.已知双曲线的右焦点到其中一条新近线的距离等于,抛物线E:y2=2px(p>0)的焦点与双曲线C的右焦点重合,则抛物线E上的动点M到直线l1:4x﹣3y+6=0和l2:x=﹣1的距离之和的最小值为()A.1B.2C.3D.44.已知椭圆(a>b>0)的焦距为2,右顶点为A.过原点与x轴不重合的直线交C于M,N两点,线段AM的中点为B,若直线BN经过C的右焦点,则C的方程为()A.B.C.D.5.已知经过原点O的直线与椭圆相交于M,N两点(M在第二象限),A,F分别是该椭圆的右顶点和右焦点,若直线MF平分线段AN,且|AF|=4,则该椭圆的方程为()A.B.C.D.6.已知椭圆T:的焦点F(﹣2,0),过点M(0,1)引两条互相垂直的两直线l1、l2,若P为椭圆上任一点,记点P到l1、l2的距离分别为d1、d2,则d12+d22的最大值为()A.2B.C.D.7.点F为抛物线C:y2=2px(p>0)的焦点,过F的直线交抛物线C于A,B两点(点A在第一象限),过A、B分别作抛物线C的准线的垂线段,垂足分别为M、N,若|MF|=4,|NF|=3,则直线AB的斜率为()A.1B.C.2D.8.已知双曲线的一条渐近线方程为,且双曲线经过点(2,3),若F1、F2为其左、右焦点,P为双曲线右支上一点,若点A(6,8),则当|P A|+|PF2||取最小值时,点P的坐标为()A.B.C.D.9.已知双曲线C:=1(a>0,b>0)的左、右焦点分别是F1,F2,直线l:y=k(x﹣)过点F2,且与双曲线C在第一象限交于点P,若()•=0(O为坐标原点),且|PF1|=(a+1)|PF2|,则双曲线C的离心率为()A.B.C.D.10.已知点F1,F2是椭圆C1和双曲线C2的公共焦点,e1,e2分别是C1和C2的离心率,点P为C1和C2的一个公共点,且∠F1PF2=,若e2=2,则e1的值是()A.B.C.D.11.已知双曲线﹣=1的左、右焦点分别为F1,F2,O为双曲线的中心,P是双曲线右支上的点,△PF1F2的内切圆的圆心为I,且圆I与x轴相切于点A,过F2作直线PI的垂线,垂足为B,则=()A.1B.2C.3D.412.已知双曲线,F1,F2分别为双曲线的左右焦点,P(x0,y0)为双曲线C上一点,且位于第一象限,若△PF1F2为锐角三角形,则y0的取值范围为()A.B.C.D.13.已知F为双曲线的左焦点,过点F的直线与圆于A,B两点(A在F,B之间),与双曲线E在第一象限的交点为P,O为坐标原点,若F A=BP,∠AOB=120°,则双曲线的离心率为()A.B.C.D.14.已知F1,F2分别为双曲线C:=1的左、右焦点,过点F2的直线与双曲线C的右支交于A,B两点,设点H(x H,y H),G(x G,y G)分别为△AF1F2,△BF1F2的内心,若|y H|=3|y G|,则双曲线离心率的取值范围为()A.[2,+∞)B.(1,]C.(1,2]D.(1,2)15.已知F1,F2分别为双曲线C:的左、右焦点,过点F2的直线与双曲线C的右支交于A,B两点,设点H(x H,y H),G(x G,y G)分别为△AF1F2,△BF1F2的内心,若|y H|=3|y G|,则|HG|=()A.2B.3C.3D.416.设双曲线C:(a>0,b>0),M,N是双曲线C上关于坐标原点对称的两点,P为双曲线C上的一动点,若k PM•k PN=4,则双曲线C的离心率为()A.2B.C.D.517.已知双曲线C:(a>0,b>0)的左、右焦点分别为F1,F2,渐近线分别为l1,l2,过F2作与l1平行的直线l交l2于点P,若|+|=|﹣|,则双曲线C的离心率为()A.B.C.2D.318.已知过抛物线C:y2=4x焦点F的直线交抛物线C于P,Q两点,交圆x2+y2﹣2x=0于M,N两点,其中P,M 位于第一象限,则的最小值为()A.1B.2C.3D.419.已知椭圆,圆A:x2+y2﹣3x﹣y+2=0,P,Q分別为椭圆C和圆A上的点,F(﹣2,0),则|PQ|+|PF|的最小值为()A.B.C.D.20.已知F1,F2是双曲线的左,右焦点,经过点F2且与x轴垂直的直线与双曲线的一条渐近线相交于点A,且,则该双曲线离心率的取值范围是()A.[,]B.[,3]C.[3,]D.[,3]二.填空题(共10小题)21.已知椭圆的短轴长为2,上顶点为A,左顶点为B,左右焦点分别是F1,F2,且△F1AB的面积为,则椭圆的方程为;若点P为椭圆上的任意一点,则的取值范围是.22.已知F是椭圆C:=1(a>b>0)的左焦点,AB是椭圆C过F的弦,AB的垂直平分线交x轴于点P.若,且P为OF的中点,则椭圆C的离心率为.23.椭圆C:和双曲线的左右顶点分别为A,B,点M为椭圆C的上顶点,直线AM与双曲线E的右支交于点P,且,则双曲线的离心率为.24.已知F1,F2分别为双曲线的左焦点和右焦点,过点F2且斜率为k(k>0)的直线l与双曲线的右支交于A,B两点,△AF1F2的内切圆圆心为O1,半径为r1,△BF1F2的内切圆圆心为O2,半径为r2,则直线O1O2的方程为:;若r1=3r2,则k=.25.已知双曲线的一条渐近线为l,圆M:(x﹣a)2+y2=8与l交于A,B两点,若△ABM是等腰直角三角形,且(其中O为坐标原点),则双曲线C的离心率为.26.(文科)已知双曲线C:=1(a>0,b>0)的右焦点为F,以F为圆心,以|OF|为半径的圆交双曲线C 的右支于P,Q两点(O为坐标原点),△OPQ的一个内角为60°,则双曲线C的离心率的平方为.27.已知P是椭圆=1上任意一点,AB是圆x2+(y﹣2)2=1的任意一条直径(A,B为直径两个端点),则的最小值为,最大值为.28.已知抛物线C:x2=2py(p>0)的准线方程为y=﹣1,直线l:3x﹣4y+4=0与抛物线C和圆x2+y2﹣2y=0从左至右的交点依次为A、B、E、F,则抛物线C的方程为,=.29.已知F1,F2分别是双曲线C:,b>0)的左,右焦点,过点F1向一条渐近线作垂线,交双曲线右支于点P,直线F2P与y轴交于点Q(P,Q在x轴同侧),连接QF1,若△PQF1的内切圆圆心恰好落在以F1F2为直径的圆上,则∠F1PF2的大小为;双曲线的离心率为.30.已知点F1、F2分别为双曲线C:(a>0,b>0)的左、右焦点,点M(x0,y0)(x0<0)为C的渐近线与圆x2+y2=a2的一个交点,O为坐标原点,若直线F1M与C的右支交于点N,且|MN|=|NF2|+|OF2|,则双曲线C 的离心率为.三.解答题(共10小题)31.如图,已知抛物线C1:x2=4y与椭圆C2:(a>b>0)交于点A,B,且抛物线C1在点A处的切线l1与椭圆C2在点A处的切线l2互相垂直.(1)求椭圆C2的离心率;(2)设l1与C2交于点P,l2与C1交于点Q,记△ABQ,△ABP的面积分别为S1,S2,问:是否存在椭圆C2,使得S1=2S2?请说明理由.32.已知点N(1,0)和直线x=2,设动点M(x,y)到直线x=2的距离为d,且|MN|=d.(1)求点M的轨迹E的方程;(2)已知P(﹣2,0),若直线l:y=k(x+1)与曲线E交于A,B两点,设点A关于x轴的对称点为C,证明:P,B,C三点共线.33.已知椭圆的离心率为,且坐标原点O到过点(0,b),的直线的距离为.(1)求椭圆C的标准方程;(2)是否存在过点的直线l交椭圆C于A,B两点,且与直线x=3交于点P,使得|P A|,|AB|,|PB|依次成等差数列,若存在,请求出直线l的方程;若不存在,请说明理由.34.已知椭圆C:+=1的右焦点为F,过F的直线与椭圆C交于A,B两点,AB的中点为D.(Ⅰ)若点D的纵坐标为﹣,求直线AB的方程;(Ⅱ)线段AB的中垂线与直线x=﹣4交于点E,若|AB|=,求|DE|.35.已知抛物线C:y2=2px(0<p<5),与圆M:(x﹣5)2+y2=16有且只有两个公共点.(1)求抛物线C的方程;(2)经过R(2,0)的动直线l与抛物线C交于A,B两点,试问在直线y=2上是否存在定点Q,使得直线AQ,BQ的斜率之和为直线RQ斜率的2倍?若存在,求出定点Q;若不存在,请说明理由.36.曲线C:y2=2px(p>0)与曲线E:x2+y2=32交于A、B两点,O为原点,∠AOB=90°.(1)求p;(2)曲线C上一点M的纵坐标为2,过点M作直线l1、l2,l1、l2的斜率分别为k1、k2,k1+k2=2,l1、l2分别交曲线C于异于M的不同点N,P,证明:直线NP恒过定点.37.已知抛物线的准线与半椭圆相交于A,B两点,且.(Ⅰ)求抛物线C1的方程;(Ⅱ)若点P是半椭圆C2上一动点,过点P作抛物线C1的两条切线,切点分别为C,D,求△PCD面积的取值范围.38.已知圆锥曲线+=1过点A(﹣1,),且过抛物线x2=8y的焦点B.(1)求该圆锥曲线的标准方程;(2)设点P在该圆锥曲线上,点D的坐标为(,0)点E的坐标为0,),直线PD与y轴交于点M,直线PE与x轴交于点N,求证:|DN|•|EM|为定值.39.已知双曲线Γ1:﹣=1与圆Γ2:x2+y2=4+b2(b>0)交于点A(x A,y A)(第一象限),曲线Γ为Γ1、Γ2上取满足x>|x A|的部分.(1)若x A=,求b的值;(2)当b=,Γ2与x轴交点记作点F1、F2,P是曲线Γ上一点,且在第一象限,且|PF1|=8,求∠F1PF2;(3)过点D(0,+2)斜率为﹣的直线l与曲线Γ只有两个交点,记为M、N,用b表示•,并求•的取值范围.40.在直角坐标系xOy中,已知点A(﹣2,2),B(2,2),直线AD,BD交于D,且它们的斜率满足:k AD﹣k BD=﹣2.(1)求点D的轨迹C的方程;(2)设过点(0,2)的直线1交曲线C于P,Q两点,直线OP与OQ分别交直线y=﹣1于点M,N,是否存在常数λ,使S△OPQ=λS△OMN,若存在,求出λ的值;若不存在,说明理由.高中数学圆锥曲线一.选择题(共20小题)1.【解答】解:连接PF2,由题意可知|PF2|=2|ON|,|NQ|=|PF1|,所以|OQ|=|ON|+|NQ|=(|PF2|+|PF1|)=×4=2,由极化恒等式可知,所以=3,(极化恒等式:).故选:C.2.【解答】解:依题意,c=2,设A(x1,y1),B(x2,y2),∵四边形OF AB为平行四边形,∴y1=y2,又,,∴x2=﹣x1,又F A∥OB,且直线F A的倾斜角为,∴.∵y1=y2,x2=﹣x1,∴x1=﹣1,x2=1,.得A(﹣1,),将A的坐标代入椭圆方程,可得,①又a2﹣b2=4,②联立①②解得:,.故选:B.3.【解答】解:双曲线C:(b>0)的渐近线方程为y=±,右焦点(,0)到其一条渐近线的距离等于,可得,解得b=2,即有c=,由题意可得=1,解得p=2,即有抛物线的方程为y2=4x,如图,过点M作MA⊥l1于点A,作MB⊥准线l2:x=﹣1于点C,连接MF,根据抛物线的定义得MA+MC=MA+MF,设M到l1的距离为d1,M到直线l2的距离为d2,∴d1+d2=MA+MC=MA+MF,根据平面几何知识,可得当M、A、F三点共线时,MA+MF有最小值.∵F(1,0)到直线l1:4x﹣3y+6=0的距离为.∴MA+MF的最小值是2,由此可得所求距离和的最小值为2.故选:B.4.【解答】解:如图,设M(x0,y0),则N(﹣x0,﹣y0),∵A(a,0),且线段AM的中点为B,∴B(,),由B,F,N三点共线,得,依题意,F(1,0),∴,,即.又y0≠0,解得a=3,∴b2=32﹣12=8.可得C的方程为.故选:C.5.【解答】解:由|AF|=4,得a﹣c=4,设线段AN的中点为P,M(m,n),则N(﹣m,﹣n),又A(a,0),∴P (,),F(a﹣4,0),∵点M、F、P在同一直线上,∴k MF=k FP,即,化简即可求得a=6,∴c=2,则b2=a2﹣c2=32.故椭圆方程为.故选:C.6.【解答】解:由题意知:a2=1+4=5,∴椭圆T:.设P(x0,y0),∵l1⊥l2,且M(0,1),∴,又,∴=.﹣1≤y0≤1,∴当时,d12+d22的最大值为,故选:D.7.【解答】解:由抛物线方程,可得直线方程为x=﹣,F(,0),设A(x1,y1),B(x2,y2),则M(,y1),N(﹣),∴,得,①,得,②又直线AB过焦点F,∴,③联立①②③得,p4=(16﹣p2)(9﹣p2),解得p=(p>0).设抛物线准线交x轴于K,则FK=p=.在Rt△MKF中,可得cos∠MFK=,由抛物线的性质,可得∠AMF=∠AFM=∠MFK,则∠AFK=2∠MFK,∴cos∠AFK=,则cos,∴sin∠AFx=,则tan.∴直线AB的斜率为.故选:D.8.【解答】解;由题意,可设双曲线C的方程为y2﹣3x2=k(k≠0),将点(2,3)代入,可得32﹣3×22=k,即k=﹣3.故双曲线方程为.作出双曲线如图所示,连接PF1,AF1,由双曲线的定义,得|PF1|﹣|PF2|=2.∴|PF2|=|PF1|﹣2,则|P A|+|PF2|=|P A|+|PF1|﹣2≥|AF1|﹣2.当且仅当A,P,F1三点共线时等号成立,由A(6,8),F1(﹣2,0),得直线AF1的方程为y=x+2.联立,得2x2﹣4x﹣7=0.解得x=1±.∵点P在双曲线的右支上,∴点P的坐标为(,).故选:C.9.【解答】解:如右上图,由直线l:y=k(x﹣)过点F2,可得F2(),由()•=0,可得OP=OF2,取PF2的中点M,连接OM,则OM⊥PF2.又OM∥PF1,∴PF1⊥PF2.设PF2=m,则|PF1|=(a+1)|PF2|=(a+1)m,由,解得.∴双曲线C的离心率为e=.故选:C.10.【解答】解:设椭圆和双曲线的半焦距为c,长半轴长为a1,实半轴长为a2,即有e1=,e2=,设P为第一象限的点,|PF1|=m,|PF2|=n,由椭圆和双曲线的定义可得m+n=2a1,m﹣n=2a2,解得m=a1+a2,n=a1﹣a2,由∠F1PF2=,可得4c2=m2+n2﹣2mn cos,即为4c2=3a12+a22,即有,又e2=2,∴.故选:D.11.【解答】解:根据题意得F1(﹣,0)、F2(,0),设△PF1F2的内切圆分别与PF1、PF2切于点A1、B1,与F1F2切于点A,则|P A1|=|PB1|,|F1A1|=|F1A|,|F2B1|=|F2A|,又点P在双曲线右支上,∴|PF1|﹣|PF2|=4,故|F1A|﹣|F2A|=4,而|F1A|+|F2A|=2,设A点坐标为(x,0),则由|F1A|﹣|F2A|=4可得(x+)﹣(﹣x)=4,解得x=2,故|OA|=2,则△PF1F2的内切圆的圆心在直线x=3上,延长F2B交PF1于C,在三角形PCF2中,由题意得,三角形PCF2是一个等腰三角形,PC=PF2,∴在三角形F1CF2中,有|OB|=|CF1|=(|PF1|﹣|PC|)=(|PF1|﹣|PF2|)=2,∴=1.故选:A.12.【解答】解:由双曲线,得F1(﹣,0),F2(,0),∵P位于第一象限,∴∠PF1F2恒为锐角,又△PF1F2为锐角三角形,∴∠PF2F1,∠F1PF2均为锐角.由∠PF2F1为锐角,得2<x0<,∴(0,).∵y0>0,∴y0∈(0,),由∠F1PF2为锐角,得>0,∴>0,即>0,又,∴>0.即>,又y0>0,∴y0>.综上所述,y0∈().故选:C.13.【解答】解:如图,由圆O的方程,得圆O的半径为OA=OB =.过O作AB的垂线OH,则H为AB的中点,又F A=BP,∴H为FP的中点,设双曲线的右焦点为F1,连接PF1,则OH为三角形FF1P的中位线,可得OH∥PF1,则PF1⊥PF,由∠AOB=120°,可得OH=.∴,则PF=,在Rt△PFF1中,由勾股定理可得:,整理得:.解得:e=或e=(舍).故选:D.14.【解答】解:不妨设直线AB的斜率大于0,倾斜角设为θ,连接HG,HF2,GF2,设△AF1F2的内切圆与三边的交点分别为D,E,F,则|AF1|﹣|AF2|=|AD|+|DF1|﹣(|AE|+|EF2|)﹣|DF1|﹣|EF2|=|F1F|﹣|FF2|,即为2a=c+x H﹣(c﹣x H),可得x H=a,同理可得x G=a,则HG⊥F1F2,在直角三角形F2FG中,|FG|=|FF2|tan=(c﹣a)tan,在直角三角形F2FH中,|FH|=|FF2|tan(﹣θ)=(c﹣a)tan(﹣θ),又|y H|=3|y G|,所以|FH|=3|HG|,即(c ﹣a)tan(﹣θ)==3(c﹣a)tan,解得tan=,由θ为锐角,可得=,即θ=,可得直线AB的斜率为,而双曲线的渐近线的方程为y=±x,由过点F2的直线与双曲线C的右支交于A,B 两点,可得>,即b2<3a2,即c2﹣a2<3a2,可得c<2a,由e=,且e>1,则1<e<2,故选:D.15.【解答】解:不妨设直线AB的斜率大于0,连接HG,HF2,GF2,设△AF1F2的内切圆与三边的交点分别为D,E,F,则|AF1|﹣|AF2|=|AD|+|DF1|﹣(|AE|+|EF2|)﹣|DF1|﹣|EF2|=|F1F|﹣|FF2|,即为2a=c+x H﹣(c﹣x H),可得x H=a,同理可得x G=a,则HG⊥F1F2,在直角三角形F2FG中,|FG|=|FF2|tan=(c﹣a)tan,在直角三角形F2FH 中,|FH|=|FF2|tan(﹣θ)=(c﹣a)tan(﹣θ),又|y H|=3|y G|,所以|FH|=3|HG|,即(c﹣a)tan(﹣θ)==3(c﹣a)tan,解得tan=,tanθ==,可得θ=,所以|HG|=4|FG|=4(2﹣)tan=4,故选:D.16.【解答】解:由题意,设M(x1,y1),P(x2,y2),则N(﹣x1,﹣y1),∴k PM•k PN=•=,∵,,∴两式相减可得,即,∵k PM•k PN=4,∴,则e==.故选:C.17.【解答】解:如图所示,l1:y=,l2:y=﹣,F2(c,0),则过焦点F2平行于l1的直线方程为y=.由,解得P().∴|OP|=.由|+|=|﹣|,得F1P⊥F2P,即P在以线段F1F2为直径的圆上.则|OP|=c=,即e=.故选:C.18.【解答】解:设P(x1,y1),Q(x2,y2),再设PQ的方程为x=my+1,联立,得y2﹣4my﹣4=0.∴y1+y2=4m,y1y2=﹣4,则.|PM|•|QN|=(|PF|﹣1)(|QF|﹣1)=(x1+1﹣1)(x2+1﹣1)=x1x2=1,则≥2=2.∴的最小值为2.故选:B.19.【解答】解:由圆A:x2+y2﹣3x﹣y+2=0,得.作出椭圆C与圆A的图象如图,F(﹣2,0)为椭圆的左焦点,设椭圆的右焦点为F′(2,0),则|PQ|+|PF|=|PQ|+2×4﹣|PF′|=8﹣(|PF′|﹣|PQ|),圆A过点F′,要使|PQ|+|PF|最小,则|PF′|﹣|PQ|需要取最大值为圆的直径.∴|PQ|+|PF|的最小值为8﹣.故选:D.20.【解答】解:如图,由题意,A(c,),|F1F2|=2c,则tan.由,得≤≤1,即2≤≤.∴e=∈[].故选:A.二.填空题(共10小题)21.【解答】解:由已知可得2b=2,即b=1,∵△F1AB的面积为,∴(a﹣c)b=,得a﹣c=;∵a2﹣c2=b2=1;∴a=2,c=.可得椭圆方程为;∴==.令|PF1|=m,则.∴=,∵≤m≤,∴1≤﹣m2+4m≤4;∴1≤≤4.故答案为:;[1,4].22.【解答】解:由题意可得直线AB的斜率存在且不为0,设直线AB的方程为x=my﹣c,设A(x1,y1),B(x2,y2),因为P为OF的中点,所以P(﹣,0),因为,所以(﹣c﹣x1,﹣y1)=2(x2+c,y2),所以可得y1=﹣2y2,联立直线AB与椭圆的方程,整理可得:(a2+m2b2)y2﹣2b2mcy+b2c2﹣a2b2=0,所以y1+y2=,x1+x2=m(y1+y2)﹣2c=﹣,所以A,B的中点坐标(﹣,),所以线段AB的中垂线方程为:y﹣=﹣m(x+),令y=0,可得x=,由题意可得﹣=,可得a2(1+m2)=(2+m2)c2,①由,可得:9m2c2=(1+m2)a2②,由①②可得:9m2=2+m2,解得m2=,将m2=代入①可得a2=c2,所以=,故答案为:.23.【解答】解:如图,由已知可得:A(﹣3,0),B(3,0),M(0,).则,AM所在直线方程为y=,设P(x0,y0),则,消去x0,y0,解得b2=6.则c=.∴双曲线的离心率为e=.故答案为:.24.【解答】解:△AF1F2的内切圆圆心为O1,边AF1、AF2、F1F2上的切点分别为M、N、E,则|AM|=|AN|,|F1M|=|F1E|,|F2N|=|F2E|,由|AF1|﹣|AF2|=2a,得|AM|+|MF1|﹣(|AN|+|NF2|)=2a,则|MF1|﹣|NF2|=2a,即|F1E|﹣|F2E|=2a,记O1的横坐标为x0,则E(x0,0),于是x0+c﹣(c﹣x0)=2a,得x0=a,同理可得内心O2的横坐标也为a,则有直线O1O2的方程为x=a;设直线l的倾斜角为θ,则∠OF2O2=,∠O1F2O=90°﹣,在△O1EF2中,tan∠O1F2O=tan(90°﹣)=,在△O2EF2中,tan∠O2F2O=tan=,由r1=3r2,可得3tan =tan(90°﹣)=cot,解得tan=,则直线的斜率为tanθ==.∴k=.故答案为:a;.25.【解答】解:双曲线的一条渐近线l的方程为y=,圆M:(x﹣a)2+y2=8的圆心M(a,0),半径为r=2,由△ABM为等腰直角三角形,可得AB=r=4,设OA=t,由,可得OB=5t,AB=4t,由4t=4,得t=1,过M作MD⊥AB,且D为AB的中点,OD=3,AB=4,AD=2,M到直线l的距离为MD=,在直角三角形OMD中,MD2=OM2﹣OD2,在直角三角形AMD中,MD2=AM2﹣AD2,即有a2﹣9=8﹣4,解得a=,即有MD=2=,解得b=,c=,∴e=.故答案为:.26.【解答】解:如图所示OP=OQ,且△OPQ的一个内角为60°,则△OPQ为等边三角形,∴OP=PQ,设圆与x轴交于G,连接PF,PG,则∠OPG=90°,由∠POG=30°,可得∠OGP=60°,可得PG=PF=FG=c,由OG=2c,可得OP=c,PQ=c,则PH=c,可得OH=c,故P(c,c),又P为双曲线上一点,∴,由b2=c2﹣a2,e=,且e>1,可得9e4﹣16e2+4=0,解得e2=.故答案为:.27.【解答】解:设圆C:x2+(y﹣2)2=1的圆心为C,则=()•()=(﹣﹣)•()==.∵P是椭圆=1上的任意一点,设P(x0,y0),,即.∵点C(0,2),∴==.∵y0∈[﹣1,1],∴当y0=1时,取得最小值1,当时,取得最大值.∴的最小值为0,最大值为.故答案为:0;.28.【解答】解:由抛物线C:x2=2py(p>0)的准线方程为y=﹣1,得﹣,即p=2.∴抛物线C的方程为x2=4y;圆x2+y2﹣2y=0为x2+(y﹣1)2=1,则圆心与抛物线的焦点M重合,圆的半径为1.如图,联立,得4y2﹣17y+4=0.解得:,y F=4.∴|AB|=|AM|﹣1=|AA1|﹣1=;|EF|=|MF|﹣1=|FB1|﹣1=4,则=.故答案为:x2=4y;16.29.【解答】解:设F1(﹣c,0),F2(c,0),如图可得△QF1F2为等腰三角形,则△PQF1的内切圆圆心I在y轴上,又I恰好落在以F1F2为直径的圆上,可设I(0,c),双曲线的一条渐近线方程设为bx+ay=0,则直线PF1的方程设为ax﹣by+ac=0,则I到直线PF1的距离为=|a﹣b|,由图象可得a<b,则|a﹣b|=b﹣a,设Q(0,t),且t>c,则直线QF2的方程为tx﹣cy+tc=0,由内心的性质可得I到直线QF2的距离为b﹣a,即有=b ﹣a,化简可得abt2﹣tc3+abc2=0,由△=c6﹣4a2b2c2=c2(a2﹣b2)2,解得t=或<c(舍去),则Q(0,),直线QF2的斜率为=﹣,可得直线QF2与渐近线OM:bx+ay=0平行,可得∠F1PF2=,由F1到渐近线OM的距离为=b,|OM|==a,由OM为△PF1F2的中位线,可得|PF2|=2|OM|=2a,|PF1|=2|MF1|=2b,又|PF1|﹣|PF2|=2a,则b=2a,e===.故答案为:,.30.【解答】解:如图,由题意可得,直线F1M与圆O相切于点M,且|MF1|=b,由双曲线的定义可知,2a=|NF1|﹣|NF2|=|MN|+|MF1|﹣|NF2|,∵|MN|=|NF2|+|OF2|,且|OF2|=c,∴2a=b+c,即b=2a﹣c,∴b2=(2a﹣c)2=c2﹣4ac+4a2,又b2=c2﹣a2,联立解得4c=5a,即e=.故答案为:.三.解答题(共10小题)31.【解答】解:(1)设切点A(m,n),可得m2=4n,x2=4y即y=的导数为y′=x,可得切线l1的斜率为m,对椭圆+=1两边对x求导,可得+=0,即有y′=﹣,则椭圆C2在点A处的切线l2的斜率为﹣,由题意可得率为m•(﹣)=﹣1,化为b2=a2,则e====;(2)假设存在椭圆C2,使得S1=2S2.由抛物线C1在点A处的切线l1的方程为mx=2(y+n),与椭圆方程x2+2y2=2b2联立,消去x可得(4+2m2)y2+8ny+4n2﹣2b2m2=0,则n+y P=﹣=﹣,解得y P=﹣,可得|y P﹣n|=|﹣﹣n|=,又椭圆C2在点A处的切线l2的方程为mx+2ny=2b2,与抛物线方程x2=4y联立,可得nx2+2mx﹣4b2=0,可得mx Q=﹣,即x Q=﹣=﹣=﹣,y Q=x Q2=•=,所以|y Q﹣n|=,由S1=2S2,可得=2•,即为2n2=1+2n,解得n=+(负的舍去),则2b2=m2+2n2=4n+2n2=4+3,所以存在椭圆C2,且方程为+=1,使得S1=2S2.32.【解答】解:(1)由已知,,∴,化简得动点M的轨迹E的方程:;证明:(2)设A(x1,y1),B(x2,y2),则C(x1,﹣y1),由,得(1+2k2)x2+4k2x+2k2﹣2=0,此时△>0,∴,,由直线BC的方程:,得:,令y=0,则====,∴直线BC过点P(﹣2,0),即P,B,C三点共线.33.【解答】解:(1)由题意可得e==,且a2﹣b2=c2,则a=2b,c=b,坐标原点O到过点(0,b),的直线的距离为,可得••a=•b•c,解得b=1,a=2,则椭圆的方程为+y2=1;(2)假设存在满足题意的直线l,显然其斜率存在,设直线l的方程为y=k(x﹣),且A(x1,y1),B(x2,y2),联立,消去y,可得(1+4k2)x2﹣k2x+k2﹣4=0,由题意,可得△=16(k2+1)>0恒成立,又x1+x2=,x1x2=,由|P A|=|3﹣x1|,|PB|=|3﹣x2|,|AB|=|x1﹣x2|,且|P A|,|AB|,|PB|依次成等差数列,可得|3﹣x1|+|3﹣x2|=2|x1﹣x2|,即6﹣(x1+x2)=2,所以6﹣=2=2•,即52k2+15=4,解得k=±,所以存在这样的直线满足题意,且直线l的方程为y=x﹣或y=﹣x+.34.【解答】解:(Ⅰ)由题意知,F(1,0),设直线AB的方程为x=my+1,A(x1,y1),B(x2,y2),联立,消去x可得(3m2+4)y2+6my﹣9=0.∴.点D的纵坐标为,解得m=2或m=.当m=2时,直线AB的方程为x﹣2y﹣1=0;当m=时,直线AB的方程为3x﹣2y﹣3=0.∴直线AB的方程为x﹣2y﹣1=0或3x﹣2y﹣3=0;(Ⅱ)由(Ⅰ)可知,,.∴|AB|==.令,解得m=±1.从而可得D的纵坐标为,横坐标为.∵DE⊥AB,于是|DE|=.35.【解答】解:(1)联立方程,得x2+(2p﹣10)x+9=0,∵抛物线C与圆M有且只有两个公共点,则△=(2p﹣10)2﹣36=0,解得p=2或p=8(舍去).∴抛物线C的方程为y2=4x;(2)假设直线y=2上存在定点Q(m,2),当直线l的斜率不存在时,A(2,),B(2,),由题知2k RQ=k AQ+k BQ,即恒成立.当直线l的斜率存在时,设直线l的方程为y=k(x ﹣2),A(x1,y1),B(x2,y2),联立,得k2x2﹣4(k2+1)x+4k2=0,则,x1x2=4,由题知2k RQ=k AQ+k BQ,∴===.整理得:(m2﹣4)k﹣2(m+2)=0.∵上式对任意k成立,∴,解得m=﹣2.故所求定点为Q(﹣2,2).36.【解答】解:(1)由对称性可知:A、B关于x轴对称,可设A(a,a),a>0,则a2=2pa⇒a=2p,把A(2p,2p)代入曲线C得:(2p)2+(2p)2=32⇒p=2;(2)证明:由(1)得曲线C的方程为y2=4x,即有M(1,2),设N(x1,y1),P(x2,y2),则,同理,(*),若直线NP斜率为0,直线NP的方程设为y=t0,代入曲线C,仅有一解,不合题意,舍去;当m存在时,设直线NP的方程设为x=my+t,把x=my+t代入y2=4x 整理得:y2=4(my+t)⇒y2﹣4my﹣4t=0,且16m2+16t>0,得,代入(*)式,得:﹣4t=4⇒t=﹣1,故直线NP的方程为x=my﹣1,可得直线NP恒过定点(﹣1,0).37.【解答】解:(1)抛物线的准线:x=﹣,由抛物线的准线与半椭圆相交于A,B两点,且.可得得p=2,所以.(2)设点P坐标为(x0,y0),满足.由题意可知切线斜率不会为0,设切线PC为(x﹣x0)=m1(y﹣y0),代入得y2﹣4m1y+4m1y0﹣4x0=0,由△=0可得①,设切点C(x1,y1),所以y1=2m1,代入①可得②.设切线PD为(x﹣x0)=m2(y﹣y0),切点D(x2,y2),同理可得③.由②③可知y1,y2是方程y2﹣2y0y+4x0=0的两根,所以y1+y2=2y0,y1•y2=4x0,又,,所以代入②③可知C(x1,y1),D(x2,y2)是4x﹣2y0y+4x0=0的两根,即CD直线方程为4x﹣2y0y+4x0=0.∴,∴,S△PCD===,又因为且x0∈[﹣2,0],.38.【解答】解:(1)抛物线x2=8y的焦点B(0,2),将点A(﹣1,),B(0,2)代入方程得:,解得,∴圆锥曲线的标准方程为;证明:(2)由(1)可知,该圆锥曲线为椭圆,且D(),E(0,2),设椭圆上一点P(x0,y0),则直线PD:,令x=0,得,∴|EM|=|2+|;直线PE:,令y=0,得,∴|DN|=||.∴|DN|•|EM|=||•|2+|=||•||=|•|=||.∵点P在椭圆上,∴,即.代入上式得:|DN|•|EM|=||=||=.故|DN|•|EM|为定值.39.【解答】解:(1)由x A=,点A为曲线Γ1与曲线Γ2的交点,联立,解得y A=,b=2;(2)由题意可得F1,F2为曲线Γ1的两个焦点,由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=8,2a=4,所以|PF2|=8﹣4=4,因为b=,则c==3,所以|F1F2|=6,在△PF1F2中,由余弦定理可得cos∠F1PF2===,由0<∠F1PF2<π,可得∠F1PF2=arccos;(3)设直线l:y=﹣x+,可得原点O到直线l的距离d==,所以直线l是圆的切线,设切点为M,所以k OM=,并设OM:y=x与圆x2+y2=4+b2联立,可得x2+x2=4+b2,可得x=b,y=2,即M(b,2),注意直线l与双曲线的斜率为负的渐近线平行,所以只有当y A>2时,直线l才能与曲线Γ有两个交点,由,可得y A2=,所以有4<,解得b2>2+2或b2<2﹣2(舍去),因为为在上的投影可得,•=4+b2,所以•=4+b2>6+2,则•∈(6+2,+∞).40.【解答】解:(1)设D(x,y),由A(﹣2,2),B(2,2),得(x≠﹣2),(x≠2),∵k AD﹣k BD=﹣2,∴,整理得:x2=2y(x≠±2);(2)存在常数入=4,使S△OPQ=λS△OMN.证明如下:由题意,直线l的斜率存在,设直线l:y=kx+2,P(x1,y1),Q(x2,y2).联立,得x2﹣2kx﹣4=0.则x1+x2=2k,x1x2=﹣4.=.则=.直线OP:y=,取y=﹣1,得,直线OQ:y=,取y=﹣1,得.则|x M﹣x N|=||=||===.∴.∴S△OPQ=4S△OMN.故存在常数入=4,使S△OPQ=λS△OMN.第21页(共21页)。

圆锥曲线44道大题特训(含答案)

圆锥曲线44道大题特训(含答案)

圆锥曲线44道特训(只要做不死就给死里做)1.已知双曲线12222=-by a x C :的离心率为3,点)0,3(是双曲线的一个顶点.(1)求双曲线的方程;(2)经过的双曲线右焦点2F 作倾斜角为30°直线l ,直线l 与双曲线交于不同的B A ,两点,求AB 的长.2.如图,在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b +=>>的离心率为12,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 斜率为0时,7AB CD +=.(1)求椭圆的方程;(2)求AB CD +的取值范围.3.已知椭圆C :2222+1(0)x y a b a b=>>的一个焦点为(1,0)F ,离心率为22.设P 是椭圆C 长轴上的一个动点,过点P 且斜率为1的直线l 交椭圆于A ,B 两点.(1)求椭圆C 的方程;(2)求22||||PA PB +的最大值.4.已知椭圆C :22221(0)x y a b a b+=>>的右焦点为(1,0)F ,短轴的一个端点B 到F 的距离等于焦距.(1)求椭圆C 的方程;(2)过点F 的直线l 与椭圆C 交于不同的两点M ,N ,是否存在直线l ,使得△BFM 与△BFN 的面积比值为2?若存在,求出直线l 的方程;若不存在,说明理由.5.已知椭圆C :2222x y a b+=1(a >b >0)过点P(-1,-1),c 为椭圆的半焦距,且c 2b .过点P 作两条互相垂直的直线l 1,l 2与椭圆C 分别交于另两点M ,N .(1)求椭圆C 的方程;(2)若直线l 1的斜率为-1,求△PMN 的面积;(3)若线段MN 的中点在x 轴上,求直线MN 的方程.6.已知椭圆E 的两个焦点分别为(1,0)-和(1,0),离心率e = (1)求椭圆E 的方程;(2)若直线:l y kx m =+(0k ≠)与椭圆E 交于不同的两点A 、B ,且线段AB 的垂直平分线过定点1(,0)2P ,求实数k 的取值范围.7.已知椭圆E 的两个焦点分别为(1,0)-和(1,0),离心率2e =. (1)求椭圆E 的方程;(2)设直线:l y x m =+(0m ≠)与椭圆E 交于A 、B 两点,线段AB 的垂直平分线交x 轴于点T ,当m 变化时,求TAB V 面积的最大值.8.已知椭圆错误!未找到引用源。

高考数学必做61道圆锥曲线问题——圆锥曲线性质大全.doc

高考数学必做61道圆锥曲线问题——圆锥曲线性质大全.doc

高考数学必做61道圆锥曲线问题——圆锥曲线性质大全.doc
高考数学必做 61 道圆锥曲线问题——圆
锥曲线性质大全
一、神奇曲线,定义统一
01. 距离和差,轨迹椭双
02. 距离定比,三线统一
二、过焦半径,相关问题
03.切线焦径,准线作法
04. 焦点切线,射影是圆
05. 焦半径圆,切于大圆
06. 焦点弦圆,准线定位
07. 焦三角形,内心轨迹
三、焦点之弦,相关问题
08.焦点半径,倒和定值
09.正交焦弦,倒和定值
10. 焦弦中垂,焦交定长
11. 焦弦投影,连线截中
12. 焦弦长轴,三点共线
13. 对焦连线,互相垂直
14. 相交焦弦,轨迹准线
15. 相交焦弦,角分垂直
16. 定点交弦,轨迹直线
17. 焦弦直线,中轴分比。

(完整版)圆锥曲线练习题含标准答案(最新整理)

(完整版)圆锥曲线练习题含标准答案(最新整理)

当 0 m 1 时,
y2 1
x2 1
1, e2
a2 b2 a2
1m
3,m 4
1 ,a2 4
1 m
4, a
2
m
20. x2 y2 1 20 5
设双曲线的方程为 x2 4 y2 , ( 0) ,焦距 2c 10, c2 25
5 /9

0 时,
x2
y2
1,
4
25,
20 ;
4

0
时,
y2
x2
1,
(
)
4
25,
20
4
21. (, 4) (1, ) (4 k)(1 k) 0, (k 4)(k 1) 0, k 1,或k 4
22. x 3 2 p 6, p 3, x p 3
2
22
23.1
焦点在 y 轴上,则 y2 x2 1, c2 5 1 4, k 1
28. ( 7, 0) 渐近线方程为 y m x ,得 m 3, c 7 ,且焦点在 x 轴上 2
29. b2 a2
设A( x1 ,y1), NhomakorabeaB(x2 ,
y2
)
,则中点
M
(
x1
2
x2
,
x
, 2
x2
8x
4
0,
x1
x2
8,
y1
y2
x1
x2
4
4
中点坐标为 ( x1 x2 , y1 y2 ) (4, 2)
2
2
27. , 2
t2 设 Q(
,t) ,由
PQ
a
t2 得(

圆锥曲线大题综合测试(含详细答案)

圆锥曲线大题综合测试(含详细答案)

圆锥曲线1.设椭圆222:12x y M a +=(a >的右焦点为1F ,直线2:22-=a a x l 与x 轴交于点A ,若112OF F A =(其中O 为坐标原点). (1)求椭圆M 的方程;(2)设P 是椭圆M 上的任意一点,EF 为圆()12:22=-+y x N 的任意一条直径(E 、F 为直径的两个端点),求⋅的最大值.2 . 已知椭圆E :()222210x y a b a b +=>>的一个焦点为()1F ,而且过点12H ⎫⎪⎭.(Ⅰ)求椭圆E 的方程;(Ⅱ)设椭圆E 的上下顶点分别为12,A A ,P 是椭圆上异于12,A A 的任一点,直线12,PA PA 分别交x 轴于点,N M ,若直线OT 与过点,M N 的圆G 相切,切点为T .证明:线段OT 的长为定值,并求出该定值.3、已知圆O:222=+y x 交x 轴于A,B 两点,曲线C 是以AB 为长轴,离心率为22的椭圆,其左焦点为F,若P 是圆O 上一点,连结PF,过原点O 作直线PF 的垂线交直线x=-2于点Q. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)若点P 的坐标为(1,1),求证:直线PQ 与圆O 相切; (Ⅲ)试探究:当点P 在圆O 上运动时(不与A 、B 重合),直线PQ 与圆O 是否保持相切的位置关系?若是,请证明;若不是,请说明理由. 4设)0(1),(),,(22222211>>=+b a bx x y y x B y x A 是椭圆上的两点,满足0),(),(2211=⋅ay b x a y b x ,椭圆的离心率,23=e 短轴长为2,0为坐标原点.(1)求椭圆的方程; (2)若直线AB 过椭圆的焦点F (0,c ),(c 为半焦距),求直线AB 的斜率k 的值;(3)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.5 、直线l :y = mx + 1,双曲线C :3x 2 - y 2 = 1,问是否存在m 的值,使l 与C 相交于A , B 两点,且以AB 为直径的圆过原点6 已知双曲线C :22221(0,0)x y a b a b-=>>的两个焦点为F 1(-2,0),F 2(2,0),点P 在曲线C 上。

高考圆锥曲线解答题汇编(含答案)题目难度中等

高考圆锥曲线解答题汇编(含答案)题目难度中等

1.〔难度★★★〕如图,直角三角形ABC 的顶点坐标(2,0)A -,直角顶点(0,22)B -,顶点C 在x 轴上,点P 为线段OA 的中点.〔1〕求BC 边所在直线方程;〔2〕M 为直角三角形ABC 外接圆的圆心,求圆M 的方程; 〔3〕假设动圆N 过点P 且与圆M 内切,求动圆N 的圆心N 的轨迹方程.【解】〔1〕∵2AB k =-,AB BC ⊥,∴22CB k =,∴2:222BC y x =- 〔4分〕 〔2〕在上式中,令0y =,得(4,0)C ,∴圆心(1,0)M又∵3AM =,∴外接圆的方程为22(1)9x y -+= 〔9分〕〔3〕∵(1,0)P -,(1,0)M∵圆N 过点(1,0)P -,∴PN 是该圆的半径又∵动圆N 与圆M 内切,∴3MN PN =-,即3MN PN += ∴点N 的轨迹是以M 、P 为焦点,长轴长为3的椭圆,∴32a =,1c =,2254b a c =-=,∴轨迹方程为2219544x y += 〔14分〕2. 〔难度★★★☆〕设椭圆)0(12222>>=+b a by a x 的离心率为e =22〔1〕椭圆的左、右焦点分别为F 1、F 2、A 是椭圆上的一点,且点A 到此两焦点的距离之和为4,求椭圆的方程.〔2〕求b 为何值时,过圆x 2+y 2=t 2上一点M 〔2,2〕处的切线交椭圆于Q 1、Q 2两点,而且OQ 1⊥OQ 2.答案:〔1〕椭圆的方程为12422=+y x〔2〕解: 过圆222x y t +=上的一点M 〔2,2〕处的切线方程为 2x+2y -6=0.…令111()Q x y ,,222()Q x y ,, 那么⎪⎩⎪⎨⎧=+=-+222220622by x y x化为5x 2-24x +36-2b 2=0, 由⊿>0得:5103>b541818)(62,5236,524221212122121b x x x x y y b x x x x -=++-=-==+由12OQ OQ ⊥知,9022121=⇒=+b y y x x ,即b=3∈〔5103,+∞〕,故b=33.〔难度★★★〕曲线c 上任意一点P 到两个定点F 1(3-,0)和F 2(3,0)的距离之和为4. 〔1〕求曲线c 的方程;〔2〕设过(0,2-)的直线l 与曲线c 交于C 、D 两点,且O OD OC (0=⋅为坐标原点〕,求直线l 的方程.答案:解:〔1〕根据椭圆的定义,可知动点M 的轨迹为椭圆, ……………………1分 其中2a =,c =1b ==. ………………………………………2分所以动点M 的轨迹方程为2214x y +=.………………………………………………4分〔2〕当直线l 的斜率不存在时,不满足题意.………………………………………5分 当直线l 的斜率存在时,设直线l 的方程为2y kx =-,设11(,)C x y ,22(,)D x y , ∵0OC OD ⋅=,∴12120x x y y +=.……………………………………………6分 ∵112y kx =-,222y kx =-,∴21212122()4y y k x x k x x =⋅-++.∴ 21212(1)2()40k x x k x x +-++=.………… ① ………………………7分由方程组221,4 2.x y y kx ⎧+=⎪⎨⎪=-⎩得()221416120k x kx +-+=. 那么1221614k x x k +=+,1221214x x k ⋅=+,………………………………………9分 代入①,得()222121612401414kk k kk+⋅-⋅+=++. 即24k =,解得,2k =或2k =-.…………………………………………11分 所以,直线l 的方程是22y x =-或22y x =--.…………………………12分4.〔难度★★★〕点M 在椭圆)0(12222>>=+b a by a x 上, 以M 为圆心的圆与x 轴相切于椭圆的右焦点F .(1)假设圆M 与y 轴相切,求椭圆的离心率;(2)假设圆M 与y 轴相交于B A ,两点,且ABM ∆是边长为2的正三角形,求椭圆的方程. 解:(1)设),(00y x M ,圆M 的半径为r . 依题意得||00y r c x ===将c x =0代入椭圆方程得:a b y 20=,所以c ab =2,又222c a b -= 从而得 022=-+a ac c ,两边除以2a 得:012=-+e e解得:251±-=e ,因为 )1,0(∈e ,所以 215-=e . (2)因为ABM ∆是边长为2的正三角形,所以圆M 的半径2=r ,M 到y 轴的距离3=d 又由(1)知:ab r 2=,c d =所以,3=c ,22=ab 又因为 222c b a =-,解得:3=a , 622==a b 所求椭圆方程是:16922=+y x5、〔难度★★★〕圆C :224x y +=.〔1〕直线l 过点()1,2P ,且与圆C 交于A 、B 两点,假设||AB =l 的方程;〔2〕过圆C 上一动点M 作平行于x 轴的直线m ,设m 与y 轴的交点为N ,假设向量OQ OM ON =+,求动点Q 的轨迹方程,并说明此轨迹是什么曲线.解〔Ⅰ〕①当直线l 垂直于x 轴时,那么此时直线方程为1=x ,l 与圆的两个交点坐标为()3,1和()3,1-,其距离为32,满足题意…………………… 2分 ②假设直线l 不垂直于x 轴,设其方程为()12-=-x k y ,即02=+--k y kx …………………………………………………… 3分 设圆心到此直线的距离为d ,那么24232d -=,得1=d ∴1|2|12++-=k k ,34k =, 故所求直线方程为3450x y -+= ……………………………………5分 综上所述,所求直线为3450x y -+=或1=x …………………… 6分 〔Ⅱ〕设点M 的坐标为()00,y x ,Q 点坐标为()y x ,那么N 点坐标是()0,0y …………………… 7分 ∵OQ OM ON =+,∴()()00,,2x y x y = 即x x =0,20yy =……………………9分 又∵42020=+y x ,∴4422=+y x …………………………… 10分由,直线m //ox 轴,所以,0y ≠,…………………………… 11分∴Q 点的轨迹方程是221(0)164y x y +=≠,…………………… 12分轨迹是焦点坐标为12(0,F F -,长轴为8的椭圆,并去掉(2,0)±两点。

圆锥曲线大题集锦

圆锥曲线大题集锦

圆锥曲线大题集锦1.在平面直角坐标系xOy 中,F 是椭圆2222:1(0)x y a b a bΓ+=>>的右焦点,已知点A (0,-2)与椭圆左顶点关于直线y x =对称,且直线AF 的斜率为3. (1)求椭圆Γ的方程;(2)过点Q (-1,0)的直线l 交椭圆Γ于M ,N 两点,交直线x =-4于点E ,,MQ QN ME EN λμ==,证明:λμ+为定值.2已知定圆M :16)3(22=++y x ,动圆N 过点)0,3(F 且与圆M 相切,记圆心N 的轨迹为E 。

(1)求轨迹E 的方程;(2)设点A ,B ,C 在E 上运动,A 与B 关于原点对称,且CB AC =,当ABC ∆的面积最小时,求直线AB 的方程。

3.已知1F ,2F 分别是椭圆C :22221(0)x y a b a b+=>>的两个焦点,)221(,P 是椭圆上一点,且12PF ,21F F ,22PF成等差数列. (1)求椭圆C 的标准方程;(2)已知动直线l 过点2F ,且与椭圆C 交于A B 、两点,试问x 轴上是否存在定点Q ,使得716QA QB ⋅=-恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.(2)假设在x 轴上存在点0Q m (,),使得716QA QB ⋅=-恒成立.①当直线l 的斜率不存在时,A ,(1,B ,由于(7(1,(1,2216m m ---=-,解得54m =或34m =;4.已知定点C (-1,0)及椭圆x 2+3y 2=5,过点C 的动直线与椭圆相交于A ,B 两点. (1)若线段AB 中点的横坐标是-12,求直线AB 的方程;(2)在x 轴上是否存在点M ,使MA MB 为常数?若存在,求出点M 的坐标;若不存在,请说明理由.解:(1)依题意,直线AB 的斜率存在,设直线AB 的方程为y =k (x +1), 将y =k (x +1)代入x 2+3y 2=5,消去y 整理得(3k 2+1)x 2+6k 2x +3k 2-5=0. 设A (x 1,y 1),B (x 2,y 2),则⎪⎩⎪⎨⎧+-=+>-+-=∆②.136①,0)53)(13(4362221224k k x x k k k由线段AB 中点的横坐标是21-,得21221-=+x x ,解得33±=k 都满足① 所以直线AB 的方程为013=+-y x 或013=++y x (2)假设在x 轴上存在点M (m ,0),使MA MB ⋅为常数.(ⅰ)当直线AB 与x 轴不垂直时,由(1)知x 1+x 2=-6k 23k 2+1,x 1x 2=3k 2-53k 2+1. ③所以MA MB ⋅=(x 1-m )(x 2-m )+y 1y 2=(x 1-m )(x 2-m )+k 2(x 1+1)(x 2+1) =(k 2+1)x 1x 2+(k 2-m )(x 1+x 2)+k 2+m 2. 将③代入,整理得MA MB ⋅=(6m -1)k 2-53k 2+1+m 2=222114(2)(31)23331m k m m k -+--++=m 2+2m -13-6m +143(3k 2+1). 注意到MA MB ⋅是与k 无关的常数,从而有6m +14=0,此时73m =-,此时49MA MB ⋅=. (ⅱ)当直线AB 与x 轴垂直时,此时点A 、B 的坐标分别为(1-、(1-,),当73m =-时,也有49MA MB ⋅=.综上,在x 轴上存在定点7(,0)3M -使MA MB ⋅为常数.5设椭圆C :12222=+by a x (a >b >0)的一个顶点与抛物线C :x 2=43y 的焦点重合,F 1,F 2分别是椭圆的左、右焦点,且离心率e =12,过椭圆右焦点F 2的直线l 与椭圆C 交于M ,N 两点.(1)求椭圆C 的方程;(2)若OM →·ON →=-2,求直线l 的方程;(3)若AB 是椭圆C 经过原点O 的弦,MN ∥AB ,求证:|AB |2|MN |为定值.(1)解 由题意知,椭圆的一个顶点为(0,3),即b =3,e =c a =12,∴a =2,∴椭圆的标准方程为x 24+y 23=1.(2)解 由题意可知,直线l 与椭圆必相交. ①当直线斜率不存在时,经检验不合题意.②当斜率存在时,设直线l 的方程为y =k (x -1)(k ≠0),且M (x 1,y 1),N (x 2,y 2).由⎪⎩⎪⎨⎧-==+)1(13422x k y y x ,得(3+4k 2)x 2-8k 2x +4k 2-12=0, x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k2,OM →·ON →=x 1x 2+y 1y 2=x 1x 2+k 2[x 1x 2-(x 1+x 2)+1]=4k 2-123+4k 2+k 2(4k 2-123+4k 2-8k 23+4k 2+1)=-5k 2-123+4k2=-2, 解得k =±2,故直线l 的方程为y =2(x -1)或y =-2(x -1), 即2x -y -2=0或2x +y -2=0.(3)证明 设M (x 1,y 1),N (x 2,y 2),A (x 3,y 3),B (x 4,y 4),由(2)可得 |MN |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]= (1+k 2)[(8k 23+4k 2)2-4(4k 2-123+4k2)]=12(k 2+1)3+4k2, 由⎪⎩⎪⎨⎧==+kx y y x 13422, 消去y 并整理得x 2=123+4k 2, |AB |=1+k 2|x 3-x 4|=43(1+k 2)3+4k 2,∴|AB |2|MN |=48(1+k 2)3+4k 212(k 2+1)3+4k2=4,为定值.。

高中数学圆锥曲线难题

高中数学圆锥曲线难题

高中数学圆锥曲线难题1.题目:找出以原点为中心,主轴长度为10,次轴长度为6的椭圆的方程。

答案:方程为x^2/25+y^2/9=1。

2.题目:确定以顶点(-5,0)和(5,0),焦点(-8,0)和(8,0)的双曲线的标准形式方程。

答案:方程为x^2/9-y^2/16=1。

3.题目:已知方程为4x^2+9y^2-24x+36y+39=0的椭圆,求其中心、轴长和离心率。

答案:中心为(3,-2),主轴长度为10,次轴长度为6,离心率为√(55/36)。

4.题目:找出以焦点(2,3)和准线为y=1的抛物线的方程。

答案:方程为(x-2)^2=4(y-3)。

5.题目:确定以焦点(±7,0)和次轴长度为8的椭圆的标准形式方程。

答案:方程为x^2/49+y^2/16=1。

6.题目:已知方程为9x^2-4y^2-54x+32y-107=0的双曲线,求其中心、焦点和渐近线。

答案:中心为(3,2),焦点为(5,2)和(1,2),渐近线为y=x/3+1/3和y=-x/3+11/3。

7.题目:找出以顶点(0,0)和准线为y=-4的抛物线的方程。

答案:方程为y^2=16x。

8.题目:确定以顶点(0,±7)和离心率为√(10/3)的双曲线的标准形式方程。

答案:方程为x^2/49-y^2/24=1。

9.题目:已知方程为25x^2-36y^2+150x+48y-1516=0的双曲线,求其中心、焦点和渐近线。

答案:中心为(-3,-2),焦点为(-5,-2)和(1,-2),渐近线为y=-x/3-4/3和y=x/3+2/3。

10.题目:找出以焦点(±6,0)和主轴长度为10的椭圆的方程。

答案:方程为x^2/25+y^2/9=1。

(完整版)圆锥曲线经典题目(含答案)

(完整版)圆锥曲线经典题目(含答案)

圆锥曲线经典题型一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.27.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=110.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)【解答】解:∵直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,∴1>b>0或b>1.∴e==>1且e≠.故选:D.2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.【解答】解:取PF2的中点A,则∵,∴⊥∵O是F1F2的中点∴OA∥PF1,∴PF1⊥PF2,∵|PF1|=3|PF2|,∴2a=|PF1|﹣|PF2|=2|PF2|,∵|PF1|2+|PF2|2=4c2,∴10a2=4c2,∴e=故选C.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.【解答】解:设F(c,0),则直线AB的方程为y=(x﹣c)代入双曲线渐近线方程y=﹣x得A(,﹣),由=2,可得B(﹣,﹣),把B点坐标代入双曲线方程﹣=1,即=1,整理可得c=a,即离心率e==.故选:C.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)【解答】解:∵双曲线渐近线为bx±ay=0,与圆(x﹣2)2+y2=2相交∴圆心到渐近线的距离小于半径,即∴b2<a2,∴c2=a2+b2<2a2,∴e=<∵e>1∴1<e<故选C.6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.2【解答】解:设F(c,0),渐近线方程为y=x,可得F到渐近线的距离为=b,即有圆F的半径为b,令x=c,可得y=±b=±,由题意可得=b,即a=b,c==a,即离心率e==,故选C.7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=2|PF2|,得|PF2|=2a,|PF1|=4a;在RT△PF1F2中,|F1F2|2=|PF1|2+|PF2|2,∴4c2=16a2+4a2,即c2=5a2,则b2=4a2.即b=2a,双曲线=1一条渐近线方程:y=2x;故选:C.8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)【解答】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【解答】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.【解答】解:由双曲线C:x2﹣=1的右焦点F(2,0),PF与x轴垂直,设(2,y),y>0,则y=3,则P(2,3),∴AP⊥PF,则丨AP丨=1,丨PF丨=3,∴△APF的面积S=×丨AP丨×丨PF丨=,同理当y<0时,则△APF的面积S=,故选D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是20.【解答】解:∵|PF1|+|QF1|=|PQ|=8∵双曲线x2﹣=1的通径为==8∵PQ=8∴PQ是双曲线的通径∴PQ⊥F1F2,且PF1=QF1=PQ=4∵由题意,|PF2|﹣|PF1|=2,|QF2|﹣|QF1|=2∴|PF2|+|QF2|=|PF1|+|QF1|+4=4+4+4=12∴△PF2Q的周长=|PF2|+|QF2|+|PQ|=12+8=20,故答案为20.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.【解答】解:取PF2的中点A,则∵,∴2•=0,∴,∵OA是△PF1F2的中位线,∴PF1⊥PF2,OA=PF1.由双曲线的定义得|PF1|﹣|PF2|=2a,∵|PF1|=|PF2|,∴|PF2|=,|PF1|=.△PF1F2中,由勾股定理得|PF1|2+|PF2|2=4c2,∴()2+()2=4c2,∴e=.故答案为:.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.【解答】解:(1)设F2,M的坐标分别为,因为点M在双曲线C上,所以,即,所以,在Rt△MF2F1中,∠MF1F2=30°,,所以…(3分)由双曲线的定义可知:故双曲线C的方程为:…(6分)(2)由条件可知:两条渐近线分别为…(8分)设双曲线C上的点Q(x0,y0),设两渐近线的夹角为θ,则点Q到两条渐近线的距离分别为,…(11分)因为Q(x0,y0)在双曲线C:上,所以,又cosθ=,所以=﹣…(14分)14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.【解答】(Ⅰ)解:由题知:a2+b2=2,曲线C2的离心率为…(2分)∵曲线C1的离心率是曲线C2的离心率的倍,∴=即a2=b2,…(3分)∴a=b=1,∴曲线C1的方程为x2﹣y2=1;…(4分)(Ⅱ)证明:由直线AB的斜率不能为零知可设直线AB的方程为:x=ny+…(5分)与双曲线方程x2﹣y2=1联立,可得(n2﹣1)y2+2ny+1=0设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=,…(7分)由题可设点C(,y2),由点斜式得直线AC的方程:y﹣y2=(x﹣)…(9分)令y=0,可得x===…(11分)∴直线AC过定点(,0).…(12分)15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.【解答】解:(Ⅰ)由题意可得e==,当P为右顶点时,可得PF取得最小值,即有c﹣a=﹣1,解得a=1,c=,b==,可得双曲线的方程为x2﹣=1;(Ⅱ)过点P(1,1)假设存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点.设R(x1,y1),T(x2,y2),可得x12﹣=1,x22﹣=1,两式相减可得(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2),由中点坐标公式可得x1+x2=2,y1+y2=2,可得直线l的斜率为k===2,即有直线l的方程为y﹣1=2(x﹣1),即为y=2x﹣1,代入双曲线的方程,可得2x2﹣4x+3=0,由判别式为16﹣4×2×3=﹣8<0,可得二次方程无实数解.故这样的直线l不存在.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.【解答】解:(Ⅰ)∵C:的离心率e=,且b=,∴=,且b=,∴a=1,c=∴双曲线C的方程;(Ⅱ)令|PE|=p,|PF|=q由双曲线定义:|p﹣q|=2a=2平方得:p2﹣2pq+q2=4•=0,∠EPF=90°,由勾股定理得:p2+q2=|EF|2=12所以pq=4即S=|PE|•|PF|=2.。

圆锥曲线的综合试题(全部大题目)含问题详解

圆锥曲线的综合试题(全部大题目)含问题详解

1.平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦•设过抛物线2x 2py 外一点P(X o ,y o )的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦 AB的交点为Q 。

2.已知定点F (1 , 0),动点P 在y 轴上运动,过点 P 作PM 交x 轴于点M ,并延长 MP 到点 N ,且 PM PF 0,| PM | | PN |. (1 )动点N 的轨迹方程;(2 )线I 与动点N 的轨迹交于 A , B 两点,若OA OB 直线l 的斜率k 的取值范围2止 1的左右顶点分别为3A 、B , P 为双曲线C 2 :支上(X 轴上方)一点,连 AP 交C 1于C ,连PB 并延长交 C 1于D ,且△ACD 与APCD 的(1 )求证:抛物线切点弦的方程为 X o X p(y + y o );(2)求证:1 1 2PC PPD| |PQ|4,且 4.6 | AB| 4 30 ,求3.如图,椭圆C 1面积相等,求直线 PD 的斜率及直线 CD 的倾斜角.4.已知点M ( 2,0), N(2,0),动点P 满足条件| PM | W .(I)求W 的方程;uur uuu(n)若RB 是W 上的不同两点,O 是坐标原点,求 OA OB 的最小值.2 25.已知曲线 C 的方程为:kx 2+(4- k )y 2=k +1,(k €R)| PN | 2 •记动点P 的轨迹为实用标准文案(I)若曲线C是椭圆,求k的取值范围;实用标准文案1(n)若曲线C 是双曲线,且有一条渐近线的倾斜角是60。

,求此双曲线的方程;(川)满足(n)的双曲线上是否存在两点 P ,Q 关于直线I : y=x -1对称,若存在,求出过P ,Q 的直线方程;若不存在,说明理由。

6.如图(21 )图,M (-2 , 0 )和N (2 , 0)是平面上的两点, 的两条渐进线I 1, I 2分别交于点M,N ,与椭圆交于点 A, B . °)若MON 3,双曲线的焦距为4。

圆锥曲线综合题九种题型好题难题集

圆锥曲线综合题九种题型好题难题集

已知椭圆 C
: x2 a2
y2 b2
1( a b 0 )的左、右顶点分别为
A 、 B ,焦距为 2,点 P 为椭
圆上异于 A 、 B 的点,且直线 PA 和 PB 的斜率之积为 3 .
4 (1) C 的方程;
(2)设直线 AP 与 y 轴的交点为 Q ,过坐标原点 O 作 OM //AP 交椭圆于点 M ,试证明
范围
存在性问题
圆锥曲线综合题 九种题型好题难题集
1、弦中点、中点弦 2、对称问题 3、定值 4、最值 5、定点 6、范围 7、与角相关综合 8、求直线方程 9、存在性
• 题型:弦中点、中点弦
对称问题
定点
最值
定值
| AP | | AQ | | OM |2 为定值,并求出该定值.
解:(1)已知点 P 在椭圆 C :
x2 a2
y2 b2
1( a b 0 )上,
可设 P
x0, y0
,即 x02 a2
y02 b2
1,
又 kAP kBP
y0 y0 x0 a x0 a
y02 x02 a2
b2 a2

联立直线 OM 与椭圆 C 的方程可得: 3 4k2 x2 12 0 ,
即 xM2
12 3 4k2
,即
|
AP | | | OM
AQ |2
|
xp xA xQ xA xM 2
xP
2 xM
|0
2
2
|
2
.
求直线方程
与角有关的综合
3 4

且 2c 2 ,可得椭圆 C 的方程为 x2 y2 1 . 43
(2)设直线 AP 的方程为: y k(x 2) ,则直线 OM 的方程为 y kx .

圆锥曲线单选难题20道-含答案

圆锥曲线单选难题20道-含答案

圆锥曲线单选难题20道1.(2023春·重庆渝中·高三重庆巴蜀中学校考阶段练习)已知双曲线()222210,0x y a b a b -=>>的左、右焦点分别为1F ,2F ,过点2F 的直线与双曲线的右支交于P ,Q 两点,若12PF F △的内切圆1O 的半径与12QF F 的内切圆2O 的半径的乘积为2a ,则双曲线的离心率为()A .2B .3C D2.(2021秋·重庆北碚·高二重庆市朝阳中学校考期中)已知椭圆22122:1(0)x y C a b a b+=>>与圆22224:5b C x y +=,若在椭圆1C 上不存在点P ,使得由点P 所作的圆2C 的两条切线互相垂直,则椭圆1C 的离心率的取值范围是()A .3⎛⎫ ⎪ ⎪⎝⎭B .4⎛⎫ ⎪ ⎪⎝⎭C .⎫⎪⎣⎭D .,14⎫⎪⎪⎣⎭3.(2023秋·重庆铜梁·高二校联考期末)如图,O 是坐标原点,P 是双曲线2222:1(0,0)x y E a b a b-=>>右支上的一点,F 是E 的右焦点,延长PO ,PF 分别交E 于Q ,R 两点,已知QF ⊥FR ,且||2||QF FR =,则E 的离心率为()A .4B .3C D4.(2022·重庆·校联考模拟预测)已知F1,F2分别为双曲线22221(0,0)x y a ba b-=>>的左焦点和右焦点,过F2的直线l与双曲线的右支交于A,B两点,△AF1F2的内切圆半径为r1,△BF1F2的内切圆半径为r2,若r1=2r2,则直线l的斜率为()A.1B C.2D.。

(完整版)全国卷高考数学圆锥曲线大题集大全,推荐文档

(完整版)全国卷高考数学圆锥曲线大题集大全,推荐文档

高考二轮复习专项:圆锥曲线大题集1.如图,直线 l1与l2是同一平面内两条互相垂直的直线,交点是 A,点 B、D 在直线 l1上(B、D 位于点 A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l1上的射影点是 N,且|BN|=2|DM|.(Ⅰ) 建立适当的坐标系,求动点 M 的轨迹 C 的方程.(Ⅱ)过点 D 且不与 l1、l2垂直的直线 l 交(Ⅰ)中的轨迹 C 于E、F 两点;另外平面上的点G、H 满足:①AG =AD(∈ R); ②GE +GF ③求点 G 的横坐标的取值范围.e =2.设椭圆的中心是坐标原点,焦点在x 轴上,离心率上的点的最远距离是 4,求这个椭圆的方程. ,已知点P(0,3) 到这个椭圆x 2 y 2 253.已知椭圆C1 :2+2= 1(a >b > 0) x =的一条准线方程是,4 其左、右顶点分别3l2MA D NB l1a b是A、B;双曲线x 2 y 2C2 :a 2-b 2= 1的一条渐近线方程为 3x-5y=0.(Ⅰ)求椭圆 C1的方程及双曲线 C2的离心率;(Ⅱ)在第一象限内取双曲线C2上一点P,连结AP 交椭圆C1于点M,连结PB 并延长交椭圆C1于点 N,若 AM =MP . 求证: MN •AB = 0.4.椭圆的中心在坐标原点 O,右焦点 F(c,0)到相应准线的距离为 1,倾斜角为45°的直线交椭圆于 A,B 两点.设 AB 中点为 M,直线 AB 与OM 的夹角为 a.(1)用半焦距 c 表示椭圆的方程及 tan;(2)若2<tan<3,求椭圆率心率 e 的取值范围.x2 +y2 e =65.已知椭圆a2b2 (a>b>0)的离心率 3 ,过点 A(0,-b)和 B(a,0)的直3线与原点的距离为2(1)求椭圆的方程(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C D 两点问:是否存在k 的值,使以CD 为直径的圆过E 点?请说明理由6. 在直角坐标平面中, ∆ABC 的两个顶点 A , B 的坐标分别为 A (-1,0) , B (1,0) ,平面内两点G , M 同时满足下列条件:① GA + GB + GC = 0 ;② == ;③ GM ∥ AB (1) 求∆ABC 的顶点C 的轨迹方程; (2) 过点P (3,0) 的直线l 与(1)中轨迹交于 E , F 两点,求 PE ⋅ PF 的取值范围x , y ∈ Ri , j7.设,为直角坐标平面内 x 轴.y 轴正方向上的单位向量,若= a = xi + ( y + 2) j , bxi + ( y - 2) j | a ,且 | +| b |= 8 (Ⅰ)求动点 M(x,y)的轨迹 C 的方程;(Ⅱ)设曲线 C 上两点 A .B ,满足(1)直线 AB 过点(0,3),(2)若OP = OA + OB ,则 OAPB为矩形,试求 AB 方程.yD CEAO A 1 xD 1C 1y 2= m (x + n ),(m ≠ 0, n > 0) 8. 已知抛物线 C :的焦点为原点,C 的准线与直线l : kx - y + 2k = 0(k ≠ 0) 的交点 M 在x 轴上, l 与 C 交于不同的两点 A 、B ,线段 AB 的垂直平分线交 x 轴于点 N (p ,0).(Ⅰ)求抛物线 C 的方程; (Ⅱ)求实数 p 的取值范围;(Ⅲ)若 C 的焦点和准线为椭圆 Q 的一个焦点和一条准线,试求 Q 的短轴的端点的轨迹方程.9. 如图,椭圆的中心在原点,长轴 AA 1 在x 轴上.以 A 、A 1 为焦点的双曲线交椭圆于1 AE =C 、D 、D 1、C 1 四点,且|CD|= 2 |AA 1|.椭圆的一条弦 AC 交双曲线于E ,设 EC ,当 2 ≤ ≤ 334 时,求双曲线的离心率 e 的取值范围.4x 2+ 5 y =2 80 10. 已知三角形 ABC 的三个顶点均在椭圆点(点 A 在 y 轴正半轴上).上,且点 A 是椭圆短轴的一个端 若三角形 ABC 的重心是椭圆的右焦点,试求直线 BC 的方程; 若角 A 为900,AD 垂直 BC 于 D ,试求点 D 的轨迹方程.x 2 = 4 yP (0, m ) (m > 0)11.如图,过抛物线的对称轴上任一点作直线与抛物线交于A ,B 两点,点Q 是点 P 关于原点的对称点.(1) 设点 P 分有向线段 AB 所成的比为,证明:QP ⊥ (QA -QB ) ;(2) 设直线 AB 的方程是 x - 2 y +12 = 0 ,过 A , B 两点的圆C 与抛物线在点 A 处有共同的切线,求圆C 的方程.1 +p 2 p12. 已知动点 P (p ,-1),Q (p , 2 ),过 Q 作斜率为 2 的直线 l ,P Q 中点 M 的轨迹为曲线 C.(1) 证明:l 经过一个定点而且与曲线 C 一定有两个公共点; (2) 若(1)中的其中一个公共点为 A ,证明:AP 是曲线 C 的切线; (3) 设直线 AP 的倾斜角为,AP 与l 的夹角为,证明:+ 或- 是定值.7 3 113.在平面直角坐标系内有两个定点F 1、F 2 和动点 P , F 1、F 2 坐标分别为 F 1 (-1,0) 、| PF 1 | =F 2 (1,0) ,动点 P 满足| PF 2 | 2 ,动点 P 的轨迹为曲线C ,曲线C 关于直线 y = x 的对称曲线为曲线C ' ,直线 y = x + m - 3 与曲线C' 交于 A 、B 两点,O 是坐标原点,△ABO 的 面积为 ,(1)求曲线 C 的方程;(2)求m 的值。

圆锥曲线难题汇编

圆锥曲线难题汇编

第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题(题型注释)1.已知点,,P A B 在双曲线12222=-by a x 上,直线AB 过坐标原点,且直线PA 、PB 的斜率之积为31,则双曲线的离心率为( ) A.332 B.315 C.2 D.210【答案】A 【解析】试题分析:因为直线AB 过原点,且在双曲线上,所以,A B 两点关于原点对称,则可设111122,,,,,A x y Bx y P x y ,所以2121PAy y k x x ,2121PB y y k x x ,由题意得222121212221212113PA PBy y y y y y k k x x x x x x ,又由2211221x y a b ,2222221x y ab ,相减得2222212122x x y y a b ,即222212222113y y b a x x ,2213b a ,所以222242333a c ab eaa a .故正确答案为A. 考点:1.直线与双曲线;2.双曲线的离心率.2.已知椭圆12222=+by a x )0(>>b a 上一点A 关于原点的对称点为点B ,F 为其右焦点,若BF AF ⊥,设α=∠ABF ,且⎥⎦⎤⎢⎣⎡∈4,6ππα,则该椭圆离心率e 的取值范围为( ) A 、]13,22[- B 、)1,22[ C 、]23,22[ D 、]36,33[ 【答案】A 【解析】 试题分析::∵B 和A 关于原点对称 ∴B 也在椭圆上 设左焦点为F ′根据椭圆定义:a F A AF 2||||='+又∵=||AF ||BF ∴+||AF ||BF a 2= ①o 是ABF Rt ∆的斜边中点,∴c AB 2||=又αsin 2||c AF = ②αcos 2||a BF = ③②③代入①αsin 2c +αcos 2a a 2= ∴)4sin(21cos sin 1πααα+=+=a c即)4sin(21πα+=e⎥⎦⎤⎢⎣⎡∈4,6ππα∴125π24ππα≤+≤,1)4sin(426≤+≤+πα 所以1322-≤≤e . 考点:椭圆的性质.3.已知双曲线221124x y -=的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线的斜率的取值范围是( )A.33⎡-⎢⎣⎦B.]3,3[-C.33⎛⎫- ⎪ ⎪⎝⎭D.( 【答案】A.【解析】试题分析:双曲线221124x y -=的渐近线方程是x y 33±=,过右焦点)0,4(F 分别作两条渐近线的平行线1l 和2l ,由下图图像可知,符合条件的直线的斜率的范围是]33,33[-.故应选A.考点:直线与圆锥曲线的关系;直线的斜率;双曲线的简单性质.4.设1F 、2F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点.若在双曲线右支上存在点P ,满足212PF F F =,且2F 到直线1PF 的距离等于双曲线的实轴长,则该双曲线的离心率为 ( ) A .45 B .2 C .2 D .35【答案】D【解析】试题分析:由已知得,在12PF F ∆中,212PF F F ==2c ,由双曲线定义得,122PF a c =+,过点2F 作21F M PF ⊥,垂足为M ,则在2Rt PF M ∆中有222()(2)(2)a c a c ++=,化简得2252ac 3c 0a +-=,23e 2e 50--=,得5e 3=.考点:1、双曲线的标准方程;2、双曲线的简单几何性质.5.已知双曲线)0,0(12222>>=-b a by a x 的离心率为26,则此双曲线的渐近线方程为( )A.2y x =±B.2y x =C. x y 22±= D.12y x =±【答案】C 【解析】试题分析:由已知得,22222232c a b e a a +===,故22b a =,所以双曲线的渐近线方程为x y 22±=. 考点:双曲线的标准方程和简单几何性质.6.抛物线)0(2:2>=p px y C 的焦点为F , M 为抛物线C 上一点,若OFM ∆的外接圆与抛物线C 的准线相切(O 为坐标原点),且外接圆的面积为9π,则=p ( ) A .2 B .4 C .6 D .8 【答案】B 【解析】试题分析:设OFM ∆的外接圆圆心为P ,且半径为3,由已知得点P 到抛物线准线的距离等于PF ,故点P 在抛物线上,且点P 的横坐标为4p,由抛物线定义得,342p p+=,所以4p = 考点:抛物线的标准方程和定义.7.已知a b >,椭圆1C 的方程为22221x y a b +=,双曲线2C 的方程为22221x y a b-=,1C 与2C ,则2C 的渐近线方程为( )A.0x =0y ±= C.20x y ±= D.20x y ±= 【答案】A.【解析】试题分析:由题意可得,椭圆1C 的离心率1e a =,双曲线2C 的离心率2e a=,∴12e e a =⇒=⇒=,∴双曲线2C 的渐近线方程为by x a=±,即0x ±=.考点:椭圆与双曲线的标准方程.8.已知直线:(2)(0)l y k x k =->与抛物线2:8C y x =交于,A B 两点,F 为抛物线C 的焦点,若||2||AF BF =,则k 的值是( )A.13B.3 C.4D.【答案】D【解析】试题分析:∵直线y=k (x-2)(k >0)恒过定点(2,0)即为抛物线y 2=8x 的焦点F 过A ,B 两点分别作准线的垂线,垂足分别为C ,D ,再过B 作AC 的垂线,垂足为E ,设|BF|=m , ∵|FA|=2|FB|,∴|AF|=2m∴AC=AF=2m ,|BD|=|BF|=m如图,在直角三角形ABE 中,AE=AC-BD=2m-m=m ,AB=3m ,∴cos ∠BAE=31=AB AE ∴直线AB 的斜率为:k=tan ∠BAE=22, 故选 D.考点:直线与圆锥曲线的关系.9.已知21,F F 是椭圆191622=+y x 的两个焦点,过1F 的直线与椭圆交于M、N两点,则2MNF ∆的周长为A. 16 B. 8 C. 25 D. 32【答案】A 【解析】试题分析:由题意可知:2MNF ∆的周长为 2121NF NF MF MF +++a 4=16=. 考点:椭圆的定义即应用.10.如图所示,已知双曲线22221(0)x y a b a b-=>>的右焦点为F ,过F 的直线l 交双曲线的渐近线于A 、B 两点,且直线l 的倾斜角是渐近线OA 倾斜角的2倍,若2AF FB =,则该双曲线的离心率为 (A )324 (B 23 (C 30(D 5【答案】B 【解析】试题分析:双曲线22221(x y a b a b -=>>的渐近线方程为x aby ±=,∵直线l 的倾斜角是渐近线OA 倾斜角的2倍,∴2222212b a abab a bk OA-=-=, ∴直线l 的方程为)(222c x ba aby --=, 与x a b y ±=联立,可得2232b a abc y --=或222ba abcy +=, ∵FB AF 2=, ∴)32(222222ba abcb a abc -⋅=+, ∴b a 3=,∴c=2b , ∴332==a c e .故选:B . 考点:双曲线的简单性质.11.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点F 是抛物线28y x =的焦点,两曲线的一个公共点为P ,且||5PF =,则双曲线的离心率为A 55.2 D .233【答案】C 【解析】试题分析:由题意可得:双曲线2222:1(0,0)x y C a b a b-=>>的焦点为()()0,2,0,21F F -,且两曲线的一个公共点为P 在y 轴右侧,因为||5PF =,因此可设点()62,3P ,所以71=PF ,所以221=-=PF PF a , 所以双曲线的离心率为2==ace . 考点:双曲线、抛物线的定义及性质.12.对于任意给定的实数m ,直线03=+-m y x 与双曲线0(12222>=-a by a x ,)0>b 最多有一个交点则,双曲线的离心率等于A .2B .2C .3D .10 【答案】D【解析】试题分析:由条件可得:双曲线的渐近线方程为x aby ±=,又因为直线03=+-m y x 与双曲线0(12222>=-a by a x ,)0>b 最多有一个交点,所以直线03=+-m y x 与渐近线方程x aby ±=平行,所以3=a b ,所以双曲线的离心率1010===a a a c e . 考点:双曲线的性质.13.椭圆的中心在原点,焦点在x 轴上,长轴长为24,焦距为4,则该椭圆的方程为( )A 11632=+22y xB 212x +28y =1C 28x +24y =1D 212x +24y =1 【答案】C . 【解析】试题分析:由题意可设所求椭圆方程为1ba 22=+22y x ,又因为长轴长为24和焦距为4,所以242=a 、42=c ,即22=a ,2=c ,再由4222=-=c a b ,故所求椭圆方程为148=+22y x ,故选C . 考点:椭圆的标准方程.14.抛物线22y px =(0>p )的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足120AFB ∠=︒.过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则ABMN 的最大值为( ) A.33 B.1 C.233D.2 【答案】A. 【解析】试题分析:设b BF a AF ==,,连接AF 、BF ,由抛物线的定义知,BP BF AQ AF ==,,在梯形ABPQ 中, ba BP AQ MN +=+=2;应用余弦定理得ab b a ab b a AB ++=-+=220222120cos 2,配方得 abb a AB -+=22)(,又因为2)2(b a ab +≤,所以2222)(43)(41)()(b a b a b a ab b a +=+-+≥-+,得到)(23b a AB +≥.所以33)(23)(21=++≤b a b a AB MN ,即AB MN 的最大值为33,故选A.考点:抛物线的简单性质. 15.已知双曲线﹣=1(a >0,b >0),F 是左焦点,A 、B 分别是虚轴上、下两端,C 是它的左顶点,直线AC 与直线FB 相交于点D ,若双曲线的离心率为,则∠BDA 的余弦值等于( ) A .B .C .D .【答案】 【解析】试题分析:由离心率可知a=b ,因此∠BAD=4π,sin ∠ABD=36,cos ∠ABD=33,在三角形ABD 中,cos ∠BDA=cos[π-(∠BAD+∠ABD )]=-cos (∠BAD+∠ABD )=6632-,答案选B.考点:1.双曲线的图象及其几何性质;2.三角函数的定义及和角公式;3.三角形的内角和定理16.已知F 2、F 1是双曲线22y a -22x b=1(a>0,b>0)的上、下焦点,点F 2关于渐近线的对称点恰好落在以F 1为圆心,|OF 1|为半径的圆上,则双曲线的离心率为( ) A .3 BC .2 D【答案】C 【解析】试题分析:设2F 关于渐近线的对称点为P ,P F 2的中点为M ,连接1,PF OM ,则1//PF OM21PF PF ⊥∴,又c F F 221= ,c PF =1,点2F 到渐近线的距离b ba bc d =+=22()()22222b c c +=∴,即224a c =,2=e考点:双曲线性质的应用.17.已知双曲线22221x y a b-=,以右顶点为圆心,实半轴长为半径的圆被双曲线的一条渐近线分为弧长为1:2的两部分,则双曲线的离心率为( )32【答案】B 【解析】试题分析:由题意知圆的圆心()0,a 半径a r =∴圆的方程()222a y a x =+-,渐近线方程x aby =即0=-ay bx 渐近线分弧长为1:2,劣弧所对角为32π由余弦定理得弦长2222332cos 2a a a a a l =⎪⎭⎫⎝⎛⋅⋅-+=πa l 3=∴,圆心()0,a 到直线0=-ay bx 的距离 22322a a d =⎪⎪⎭⎫ ⎝⎛-=222aba ab =+∴化简得223b a =3323422222==+===∴a b a a c a c e 考点:双曲线性质的综合应用.18.抛物线1C :2(0)y ax a =>的焦点与双曲线2C :2213x y -=的右焦点的连线交1C 于第一象限的点M ,若1C 在点M 处的切线平行于2C 的一条渐近线,则a =( )BCD【答案】B 【解析】试题分析:经过第一象限的双曲线的渐近线为y x =,抛物线的焦点为1(0,)4F a ,双曲线的右焦点为2(2,0)F ,设M (0x ,20ax ),则2y ax '=,所以曲线1C 在M 点的切线斜率为02ax ,由题知02ax=3,所以0x=6a ,因为三点1(0,)4F a,2(2,0)F,1)12M a共线,所以10402a-=-,即a = B. 考点:双曲线的性质,抛物线的性质,导数的几何意义,三点共线的充要条件,两直线平行的充要条件19.设,a b 是关于t 的方程2cos sin 0t t θθ+=的两个不等实根,则过2(,)A a a ,2(,)B b b 两点的直线与双曲线22221cos sin x y θθ-=的公共点的个数为 A .3 B .2 C .1 D .0 【答案】D 【解析】试题分析:关于t 的方程2cos sin 0t t θθ+=的不同的两根为0,tan θ,不妨取a =0,b =tan θ,直线AB 过原点,斜率为AB k =2tan tan θθ=tan θ,恰是双曲线22221cos sin x y θθ-=的一条渐近线,故与该双曲线的公共点的个数为0,故选D.考点:直线的方程,双曲线的渐近线,20.已知抛物线22y px =(0p >)的焦点F 为双曲线22221x y a b-=(0,0a b >>)的一个焦点,经过两曲线交点的直线恰过点F ,则该双曲线的离心率为( )B.1D.1【答案】B 【解析】试题分析:抛物线22y px =(0p >)的焦点,02p F ⎛⎫⎪⎝⎭,它也是双曲线22221x y a b -=(0,0a b >>)的一个焦点,所以有2pc =①,由两曲线交点的直线恰过点F ,可知它们在第一象限的交点为,2p p ⎛⎫⎪⎝⎭,此点也在双曲线上,故有222214p p a b -=②,由①②消去p ,得222241c c a b-=,即422460c a c a -+=,即42610e e -+=,因为1e >,所以1e =+选择B ,求离心率的值关键是寻找到关于,,a b c 的等式,然后转化到e 的方程,从而解出e .考点:圆锥曲线的性质21.斜率为2的直线L 经过抛物线22(0)y px p =>的焦点F ,且交抛物线与A 、B 两点,若AB 的中点到抛物线准线的距离1,则P 的值为( ). A.1 B.45 C.35 D.25【答案】B 【解析】试题分析:设斜率为2且经过抛物线22(0)y px p =>的焦点F 的直线L 的方程为p x p x y -=-=2)2(2,联立⎩⎨⎧=-=pxy p x y 222,得px p x 2)2(2=-,即0642=+-p px x ;设),(),,(2211y x B y x A ,中点),(00y x M ;则43,23021px p x x ==+;因为AB 的中点到抛物线准线的距离为1,所以14524320==+=+pp p p x ,54=∴p .考点:直线与抛物线的位置关系.22(a>0,b>0)的右焦点是抛物线y 2=8x 的焦点F ,两曲线的一个公共点为P ,且|PF| =5,则此双曲线的离心率为( )A C .2 D 【答案】C 【解析】试题分析:()02,F ,根据抛物线的焦半径公式知:522=+=+p p x px ,3=∴p x ,代入得62±=p y , 代入双曲线方程124922=-b a ,422=+b a ,解得:3,122==b a ,42=∴c ,2==∴ace ,故选C. 考点:双曲线与抛物线的性质23.从椭圆22x a+22y b =1(a>b>0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP(O 是坐标原点),则该椭圆的离心率是( )A .4 B .12C .2D .2 【答案】C【解析】由题意设P(-c ,y 0),将P(-c ,y 0)代入22x a +22y b =1,得22c a +202y b=1,则20y =b 2221c a ⎛⎫- ⎪⎝⎭=b 2·222a c a -=42b a . ∴y 0=2b a 或y 0=-2b a(舍去),∴P 2,b c a ⎛⎫- ⎪⎝⎭,∴k OP =-2b ac .∵A(a,0),B(0,b),∴ k AB =0b a--=-b a .又∵AB ∥OP ,∴k AB =k OP ,∴-ba=-2b ac ,∴b =c .∴e =ca 2.故选C .24.已知双曲线22x a-22y b =1(a >0,b >0)的两条渐近线均和圆C :x 2+y 2-6x +5=0相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为( )A .25x -24y =1B .24x -25y =1C .23x -26y =1D .26x -23y =1【答案】A 【解析】由x 2+y 2-6x +5=0知圆心C(3,0),半径r =2.又22x a-22y b =1的渐近线为bx±ay=0,且与圆C 相切.=2,即5b 2=4a 2,①因为双曲线右焦点为圆C 的圆心,所以c =3,从而9=a 2+b 2,②由①②联立,得a 2=5,b 2=4,故所求双曲线方程为25x -24y =1,选A .25.已知抛物线C :28y x =与点()2,2M -,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点,若0MA MB ⋅=,则k =( )A .12 B .2C .2 【答案】D 【解析】试题分析:由题可得抛物线的焦点坐标为()0,2,则过C 的焦点且斜率为k 的直线方程为()2-=x k y ,设直线与抛物线的交点坐标分别为()11,y x A ,()22,y x B ,则由{2(2)8y k x y x=-=得()x k x k 84222+-24k +=0,则有222184kk x x +=+,421=x x ,所以得())4(2)2(212121-+=-+-=+x x k x k x k y y k8=,()()()[]=++-=--=42222121221221x x x x k x x k y y 16,又()2,211-+=y x ,()2,222-+=y x ,因为MA MB ⋅=所以有()()()()022222121=--+++y y x x ,即()()424221212121++-++++y y y y x x x x 0=,即0442=+-k k ,所以2=k ,选D考点:抛物线的概念、向量的运算第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人 得分二、填空题(题型注释)26.已知在平面直角坐标系下,点B A ,分别为x 轴和y 轴上的两个动点,满足10||=AB ,点M 为线段AB 的中点,已知点)0,10(P ,)3,6(A ,则||||21AM PM +的最小值为______. 【答案】 【解析】试题分析:试题有误,无法给出解析和答案. 考点:27.我们把离心率215+=e 的双曲线()0,012222>>=-b a b y a x 称为黄金双曲线.如图是双曲线()222222,0,01b a c b a by a x +=>>=-的图象,给出以下几个说法:①双曲线115222=+-y x 是黄金双曲线; ②若ac b =2,则该双曲线是黄金双曲线;③若21,F F 为左右焦点,21,A A 为左右顶点,1B (0,b ),2B (0,﹣b )且021190=∠A B F ,则该双曲线是黄金双曲线;④若MN 经过右焦点2F 且21F F MN ⊥,090=∠MON ,则该双曲线是黄金双曲线. 其中正确命题的序号为 _________ .【答案】①②③④ 【解析】试题分析:对于①,215,122+==b a ,则235222+=+=b a c ,2222215235⎪⎪⎭⎫ ⎝⎛+=+==a c e ,215+=∴e ,所以双曲线是黄金双曲线;对于②,ac a c b =-=222,整理得012=--e e解得251+=e ,所以双曲线是黄金双曲线;对于③()2221222212211,,2c a A F a b A B b c B F +=+=+=,由勾股定理得()22222c a a b b c +=+++,整理得ac b =2由②可知251+=e 所以双曲线是黄金双曲线;对于④由于()0,2c F ,把c x =代入双曲线方程得12222=-b y a c ,解得a b y 2±=,a b NF 22=,由对称关系知2ONF ∆为等腰直角三角形,ab c 2=∴,即ac b =2,由①可知251+=e 所以双曲线是黄金双曲线. 考点:双曲线的综合应用.28.已知双曲线)0,0(12222>>=-b a by a x 的右焦点为F ,由F 向其渐近线引垂线,垂足为P ,若线段PF 的中点在此双曲线上,则此双曲线的离心率为 .【解析】试题分析:F (c,0),双曲线一条渐近线方程为by x a=,则过F 与该渐近线垂直的直线方程为()ay x c b =--,联立解得P(2a c ,ab c ),所以PF 的中点(222a c c +,2ab c),代入双曲线方程求得ca考点:双曲线的性质,两直线的位置关系29.对于曲线122=+-y xy x 有以下判断:(1)它表示圆;(2)它关于原点对称;(3)它关于直线x y =对称;(4)1,1≤≤y x .其中正确的有________(填上相应的序号即可). 【答案】(2)、(3). 【解析】试题分析:(1) 曲线122=+-y xy x 中含有xy 项,方程不表示圆,即不正确;(2)在原方程中,同时将x 换成x -,且将y 换成y -,方程不变,就说明曲线关于原点对称;(3)在原方程中,将x ,y ,互换,方程不变,因此曲线关于直线x y =对称;(4)21=x 时,04322=--y y ,所以4131±=y ,不满足1≤y ,即(4)不正确. 考点:轨迹方程.评卷人 得分三、解答题(题型注释)30.(本题满分15分)已知点)2,0(F 是抛物线2x ay =的焦点. (1)求抛物线方程;(2)若点00(,)P x y 为圆122=+y x 上一动点,直线l 是圆在点P 处的切线,直线l 与抛物线相交于,A B 两点(B A ,在y 轴的两侧),求平面图形OAFB 面积的最小值.【答案】(1)28x y =;(2)2.【解析】试题分析:(1)由条件可知24a=,8a =,则抛物线的方程为28x y =;(2)由题意可知直线l 的方程为001x x y y +=,与抛物线方程联立消去y 可得200880y x x x +-=,设11(,)A x y ,22(,)B x y ,再由A ,B 在y 轴两侧,可得12080x x y =-<,从而可知001y <≤,再由示意图,考虑到121||||2OAFB AOF BOF S S S OF x x ∆=+=⋅⋅-,即可知求四边形OAFB 面积的最大值等价于求12||x x -的最大值,从而22220001212122200064643232||()4x x y x x x x x x y y y +-=+-=+=220020064(1)321117322()3248y y y y ⎡⎤-+==+-≥⎢⎥⎣⎦,当且仅当01y =时等号成立,∴121||||2S OF x x =⋅-≥,即平面图形OAFB面积的最小值为 试题解析:(1)∵)2,0(F 是抛物线2x ay =的焦点,∴24a =,8a =,即抛物线方程为28x y = 2分;(2)由题意,可知直线l 的方程为001x x y y +=,即0001x y x y y =-+,联立直线l 与抛物线方程000218x y x y y x y ⎧=-+⎪⎨⎪=⎩,可得200880y x x x +-=,设11(,)A x y ,22(,)B x y ,由题意可得20064320x y ∆=+>且12080x x y =-<,故001y <≤, 8分 而01208x x x y +=-,1208x x y =-,且22001x y +=, 10分 ∴22220001212122200064643232||()4x x y x x x x x x y y y +-=+-=+=, 12分 220020064(1)321117322()3248y y y y ⎡⎤-+==+-≥⎢⎥⎣⎦, .14分 当且仅当01y =时等号成立,∴12||x x -≥121||||2S OF x x =⋅-≥, 15分即平面图形OAFB面积的最小值为考点:1.抛物线的标准方程;2.直线与抛物线相交.31.(12分)点),(y x P 为曲线C 上任一点,点)0,1(2F ,直线4:=x l ,点P 到直线l 的距离为d ,且满足22=PF d. (1)求曲线C 的轨迹方程;(2)点)0,1(1-F ,点M 为直线l 上的一个动点,且直线1MF 与曲线C 交于两点21,A A ,直线2MF 与曲线C 交于两点21,B B ,求2121B B A A +的取值范围.【答案】(1)13422=+y x (2)]8,6(2121∈+B B A A 【解析】试题分析:(1)利用椭圆的第二定义等价条件求出椭圆的方程(2)解决直线和椭圆的综合问题时注意:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与椭圆的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式∆:计算一元二次方程根.第四步:写出根与系数的关系.第五步:根据题设条件求解问题中结论.试题解析:(1)根据条件有:2)1(422=+--yx x ,化简可得13422=+y x (2)设直线)1(:11+=x k y MF ,直线)1(:22-=x k y MF ,联立它们和曲线C 的方程分别有2121212121221438,01248)43(k k x x k x k x k +-=+=-+++; 2222432222222438,01248)43(k k x x k x k x k +=+=-+-+,根据焦半径公式 )(21)(218)(2)(2432143212121x x x x x x e a x x e a B B A A +-++=+-+++=+又1MF ,2MF 均过点),4(m M ,所以有3,521mk m k ==,所以222222212142727475756427447548m m m m m m B B A A ++++=+-+-=+,又02≥m ,所以有]8,6(2121∈+B B A A考点:(1)椭圆的标准方程;(2)直线与椭圆的综合问题.32.(12分)已知椭圆C:12222=+by a x )0(>>b a 过点)22,1(A ,且离心率为22. (1)求椭圆的标准方程;(2)过右焦点的直线l 与椭圆C 相交于Q P ,两点,且Q F P F 11⊥,求直线l 的方程.【答案】(1)1222=+y x (2)直线l 的方程为017=-+y x 或017=--y x 【解析】试题分析:(1)设椭圆的方程,用待定系数法求出22,b a 的值;(2)解决直线和椭圆的综合问题时注意:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与椭圆的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式∆:计算一元二次方程根.第四步:写出根与系数的关系.第五步:根据题设条件求解问题中结论.(3)求直线方程式一定不要忘记斜率不存在时 试题解析:(1)根据题意,2222,,c e a b a c c a ==∴=∴=-=故可设椭圆C :222212x y c c +=.将)22,1(A 代入得12=c , 故椭圆C 的方程为1222=+y x . (2)当直线l 的斜率不存在时,其方程为1=x ,经验证,不符合题意; 当直线的斜率存在时,设直线l 的方程为)1(-=x k y . 由22(1)12y k x x y =-⎧⎪⎨+=⎪⎩可得 得2222(21)42(1)0k x k x k +-+-=.设),(),,(2211y x Q y x P ,则2212121111222242(1) (1 ) (1 )2121k k x x x x F P x y FQ x y k k -+===+=+++,,,,,因为F F 11⊥, 所以011=⋅Q F P F ,即21212121212(1)(1)()1(1)(1)x x y y x x x x k x x +++=++++-- 2221212(1)(1)()1k x x k x x k =+--+++2271021k k -==+,解得712=k ,即77±=k .故直线l 的方程为017=-+y x 或017=--y x .考点:求椭圆方程及求与椭圆有关的直线方程33.(12分)已知21,F F 为椭圆C :12222=+by a x )0(>>b a 的左右焦点,椭圆上的点到2F 的最近距离为2,且离心率为31.(1)椭圆C 的方程;(2)若E 是椭圆C 上的动点,求21EF ⋅的最大值和最小值.【答案】(1)18922=+y x (2)最大值8最小值7 【解析】试题分析:(1)由已知设出椭圆的标准方程,根据已知条件建立关于c b a ,,的方程组,解方程组求出22,b a 的值;将解代入方程,即为所求;(2)求最值时可先判定函数在某个区间上的单调性,进而求最值;二次函数一般用配方法求最值.试题解析:(1)由已知条件得213a c c a -=⎧⎪⎨=⎪⎩解得: 3,1==a c 则82=b∴椭圆C 的方程为:18922=+y x (2)设E ),(00y x ,则有:189220=+y x ∵)0,1(1-F , )0,1(2F ,所以 2212000000(1,)(1,)1EF EF x y x y x y ⋅=---⋅--=+- 22200018(1)1799x x x =+--=+ ∵点E 在椭圆上 9020≤≤∴x ∴[],8,779120∈+x ∴当020=x 时,所求最小值为7. 当920=x 时,所求最大值为8.考点:(1)求椭圆标准方程(2)求最值.34.(13分)已知椭圆C :14522=+y x 的两焦点为21,F F ,长轴两顶点为21,A A .(1)P 是椭圆上一点,且02130=∠PF F ,求21PF F ∆的面积;(2)过椭圆的左焦点作一条倾斜角为45°的直线l 与椭圆交于B A ,两点,求弦长||AB .【答案】(1))32(4-(2)9516 【解析】试题分析:(1)求三角形面积时,一般角优先,再利用椭圆的定义及性质求得需求的量;(2)求直线与椭圆相交所得得弦长的求法,一、把直线方程与椭圆的方程联立,消去)(x y 或得到关于)(y x 或的二次函数;二、当0>∆时,利用根与系数的关系,得到两根之和及两根之积;三、利用弦长公式求得弦长. 试题解析:(1)联立12222121212||||22cos30PF PF a PF PF PF PF F F ⎧+==⎪⎨+-︒=⎪⎩可得:12||||16(2PF PF ⋅= ,12121||||sin 304(22F PF S PF PF ∆=⋅︒=-(2)F (-1,0),直线1:+=x y l ,设),(),,(2211y x B y x A ,将直线方程与椭圆方程联立得2221910150154y x x x x y =+⎧⎪⇒+-=⎨+=⎪⎩,则91021=+x x ,1212102())9AB a ex a ex a e x x ∴=+++=++=-= 考点:求三角形面积及弦长.35.(13分)已知抛物线:x y 42=,(1)直线1:+=kx y l 与抛物线有且仅有一个公共点,求实数k 的值; (2)定点)0,2(A ,P 为抛物线上任意一点,求线段长||PA 的最小值 【答案】(1)0=k 或1=k (2)||PA 的最小值为2 【解析】试题分析:(1)设抛物线方程为)0(22>=p px y ,直线,0=++C By Ax 将直线方程与抛物线方程联立,消去y 得到关于x 的方程02=++q ny mx ,当00>∆≠时,m 时,直线与抛物线由两个交点;0=∆直线与抛物线有一个交点,0<∆直线与抛物线无交点,当0,0≠=n m 时直线与抛物线有一个交点(2)求最值时可先判定函数在某个区间上的单调性,进而求最值;二次函数一般用配方法求最值.试题解析:(1)抛物线方程与直线方程联立得2221(24)104y kx k x k x y x =+⎧⇒+-+=⎨=⎩当0=k 时,交点为)1,41(,满足题意; 当0≠k 时,由0=∆得1=k ,综上,01k =或(2)设点),(y x p ,则=+-=22)2(||y x PA )0(44)2(22≥+=+-x x x x ,min 02x PA ==当时,考点:(1)直线与抛物线位置关系(2)求函数最值.36.过x 轴上动点(,0)A a 引抛物线21y x =+的两条切线AP 、AQ ,P 、Q 为切点,设切线AP 、AQ 的斜率分别为1k 和2k .(Ⅰ)求证:124k k =-;(Ⅱ)求证:直线PQ 恒过定点,并求出此定点坐标; 【答案】(Ⅰ)见解析;(Ⅱ)(0,2) 【解析】试题分析:(Ⅰ)设过)0,(a A 与抛物线12+=x y 的相切的直线的斜率是k ,则该切线的方程为)(a x k y -=,将直线方程代入抛物线的方程化简得0)1(2=++-ka kx x ,由0=∆得0442=--ak k ,而12,k k 都是方程2440k ak --=的解,故124k k =-;(Ⅱ)法1:设()()1122,,,P x y Q x y ,由导数的几何意义求出切线的斜率,由点斜式写出切线方程并化简变形得切线AP 方程为1112y yx x +=+,切线AQ 方程为2212y y x x +=+,又由于A 点在AP 、AQ 上,所以1112y x a =+,2212yx a =+,则直线PQ 的方程是22+=ax y ,则直线PQ 过定点()0,2.;法2:由(1)知P 、Q 的横坐标是方程0)1(2=++-ka kx x 的根,可设221122(,1),(,1)2424k k k k P Q ++,由两点坐标求得PQ 的方程并化简为即4442121+-+=ak k ax y ,由(1)知211440k ak --=,所以直线PQ 的方程是22+=ax y ,则直线PQ 过定点()0,2.试题解析:(Ⅰ)设过)0,(a A 与抛物线12+=x y 的相切的直线的斜率是k , 则该切线的方程为:()y k x a =-,由()21y k x a y x ⎧=-⎨=+⎩得()210x kx ka -++= ()2241440k ka k ak ∴∆=-+=--=,则12,k k 都是方程2440k ak --=的解,故124k k =-。

高中数学圆锥曲线难题

高中数学圆锥曲线难题

高中数学圆锥曲线难题高中数学圆锥曲线难题一.选择题(共10小题)1.已知椭圆+=1,过右焦点F作不垂直于x轴的弦交椭圆于B两点,AB的垂直平分线交x轴于N,则|NF|:|AB|等于()A.B.C.D.2.设点P与正方体ABCD﹣A1B1C1D1的三条棱AD、BC、C1D1所在直线的距离相等,则点P的轨迹是()A.圆B.椭圆C.双曲线D.抛物线3.(2010•密云县一模)如图过抛物线y2=2px(p>0)的焦点F的直线依次交抛物线及准线于点A,B,C,若|BC|=2|BF|,且|AF|=3,则抛物线的方程为()A.y2=x B.y2=9x C.y2=xD.y2=3x4.(2011•海珠区一模)一圆形纸片的圆心为原点O,点Q是圆外的一定点,A是圆周上一点,把纸片折叠使点A 与点Q重合,然后展开纸片,折痕CD与OA交于P点,当点A运动时P的轨迹是()A.椭圆B.双曲线C.抛物线D.圆5.(2012•武汉模拟)抛物线y2=2px(p>0)的焦点为F,A、B在抛物线上,且,弦AB的中点M在其准线上的射影为N,则的最大值为()A.B.C.1D.6.(2014•齐齐哈尔二模)如图,在等腰梯形ABCD中,AB∥CD,且AB=2AD,设∠DAB=θ,θ∈(0,),以A,B为焦点且过点D的双曲线的离心率为e1,以C,D为焦点且过点A的椭圆的离心率为e2,则()A.随着角度θ的增大,e1增大,e1e2为定值B.随着角度θ的增大,e1减小,e1e2为定值C.随着角度θ的增大,e1增大,e1e2也增大D.随着角度θ的增大,e1减小,e1e2也减小7.(2014•怀化三模)从(其中m,n∈{﹣1,2,3})所表示的圆锥曲线(椭圆、双曲线、抛物线)方程中任取一个,则此方程是焦点在x轴上的双曲线方程的概率为()A.B.C.D.8.(2013•温州二模)抛物线y2=2px(p>0)的准线交x轴于点C,焦点为F.A、B是抛物线上的两点.己知A.B,C三点共线,且|AF|、|AB|、|BF|成等差数列,直线AB的斜率为k,则有()A.B.C.D.9.(2014•和平区模拟)在抛物线y=x2+ax﹣5(a≠0)上取横坐标为x1=﹣4,x2=2的两点,经过两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆5x2+5y2=36相切,则抛物线顶点的坐标为()A.(﹣2,﹣9)B.(0,﹣5)C.(2,﹣9)D.(1,6)10.(2012•安徽模拟)下列四个命题中不正确的是()A.若动点P与定点A(﹣4,0)、B(4,0)连线PA、PB的斜率之积为定值,则动点P的轨迹为双曲线的一部分B.设m,n∈R,常数a>0,定义运算“*”:m*n=(m+n)2﹣(m﹣n)2,若x≥0,则动点的轨迹是抛物线的一部分C.已知两圆A:(x+1)2+y2=1、圆B:(x﹣1)2+y2=25,动圆M与圆A外切、与圆B内切,则动圆的圆心M的轨迹是椭圆D.已知A(7,0),B(﹣7,0),C(2,﹣12),椭圆过A,B两点且以C为其一个焦点,则椭圆的另一个焦点的轨迹为双曲线二.解答题(共10小题)11.(2008•天津)已知中心在原点的双曲线C的一个焦点是F1(﹣3,0),一条渐近线的方程是.(Ⅰ)求双曲线C的方程;(Ⅱ)若以k(k≠0)为斜率的直线l与双曲线C相交于两个不同的点M,N,且线段MN的垂直平分线与两坐标轴围成的三角形的面积为,求k的取值范围.12.(2013•北京)直线y=kx+m(m≠0)与椭圆相交于A,C两点,O是坐标原点.(Ⅰ)当点B的坐标为(0,1),且四边形OABC为菱形时,求AC的长;(Ⅱ)当点B在W上且不是W的顶点时,证明:四边形OABC不可能为菱形.13.已知焦点在x轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点A(0,)为圆心,1为半径为圆相切,又知C的一个焦点与A关于直线y=x对称.(1)求双曲线C的方程;(2)若Q是双曲线C上的任一点,F1、F2为双曲线C的左、右两个焦点,从F1引∠F1QF2的平分线的垂线,垂足为N,试求点N的轨迹方程.14.(2011•安徽)设λ>0,点A的坐标为(1,1),点B在抛物线y=x2上运动,点Q满足,经过点Q与x轴垂直的直线交抛物线于点M,点P满足,求点P的轨迹方程.15.(2013•南开区一模)已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线的焦点,离心率等于.(1)求椭圆C的方程;(2)过椭圆C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,若,,求证:λ1+λ2为定值.16.(2013•广东)已知抛物线C的顶点为原点,其焦点F(0,c)(c>0)到直线l:x﹣y﹣2=0的距离为,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.(1)求抛物线C的方程;(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;(3)当点P在直线l上移动时,求|AF|•|BF|的最小值.17.(2008•上海)已知双曲线.(1)求双曲线C的渐近线方程;(2)已知点M的坐标为(0,1).设P是双曲线C上的点,Q是点P关于原点的对称点.记.求λ的取值范围;(3)已知点D,E,M的坐标分别为(﹣2,﹣1),(2,﹣1),(0,1),P为双曲线C上在第一象限内的点.记l 为经过原点与点P的直线,s为△DEM截直线l所得线段的长.试将s表示为直线l的斜率k的函数.18.(2011•南通三模)过抛物线y2=4x上一点A(1,2)作抛物线的切线,分别交x轴于点B,交y轴于点D,点C(异于点A)在抛物线上,点E在线段AC上,满足=λ1;点F在线段BC上,满足=λ2,且λ1+λ2=1,线段CD与EF交于点P.(1)设,求λ;(2)当点C在抛物线上移动时,求点P的轨迹方程.19.(2013•四川)已知椭圆C:(a>b>0)的两个焦点分别为F1(﹣1,0),F2(1,0),且椭圆C经过点.(Ⅰ)求椭圆C的离心率:(Ⅱ)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且,求点Q的轨迹方程.20.(2014•宜昌模拟)已知点A,B的坐标分别是(0,﹣1),(0,1),直线AM,BM相交于点M,且它们的斜率之积﹣.(1)求点M轨迹C的方程;(2)若过点D(2,0)的直线l与(1)中的轨迹C交于不同的两点E、F(E在D、F之间),试求△ODE与△ODF 面积之比的取值范围(O为坐标原点).高中数学圆锥曲线难题参考答案与试题解析一.选择题(共10小题)1.已知椭圆+=1,过右焦点F作不垂直于x轴的弦交椭圆于B两点,AB的垂直平分线交x轴于N,则|NF|:|AB|等于()A.B.C.D.考点:椭圆的应用.专题:计算题;压轴题.分析:本题适合于特值法.不妨取直线的斜率为1.由此推导出|NF|:|AB|的值.解答:解:取直线的斜率为1.右焦点F(2,0).直线AB的方程为y=x﹣2.联立方程组,把y=x﹣2代入整理得14x2﹣36x﹣9=0,设A(x1,y1),B(x2,y2),则,,∴AB中点坐标为(),则AB的中垂线方程为,令y=0,得,∴点N的坐标().∴|NF|=,|AB|==,∴|NF|:|AB|=,故选B.点评:特值法是求解选择题和填空题的有效方法.2.设点P与正方体ABCD﹣A1B1C1D1的三条棱AD、BC、C1D1所在直线的距离相等,则点P的轨迹是()A.圆B.椭圆C.双曲线D.抛物线考点:抛物线的定义.专题:压轴题;圆锥曲线的定义、性质与方程.分析:设AB的中点为E,CD的中点为F,过EF做一个平面EFMN与BC平行,M∈C1D1,N∈A1B1,故平面EFMN 内的点到AD和BC的距离相等.PM为P到C1D1的距离.根据P到BC的距离等于P到点M的距离,可得点P的轨迹.解答:解:由题意可得AD和BC平行且相等,设AB的中点为E,CD的中点为F,过EF做一个平面EFMN与BC平行,且M∈C1D1,N∈A1B1,则平面EFMN与AD也平行,故平面EFMN内的点到AD和BC的距离相等.由正方体的性质可得平面EFMN垂直于平面CDD1C1,故有D1C1垂直于平面EFMN,故PM为P到C1D1的距离.由此可得P到BC的距离等于P到点M的距离,故点P的轨迹是抛物线,故选D.点评:本题主要考查抛物线的定义的应用,属于基础题.3.(2010•密云县一模)如图过抛物线y2=2px(p>0)的焦点F的直线依次交抛物线及准线于点A,B,C,若|BC|=2|BF|,且|AF|=3,则抛物线的方程为()A.y2=x B.y2=9x C.y2=xD.y2=3x考点:抛物线的标准方程.专题:计算题;压轴题;数形结合.分析:分别过点A,B作准线的垂线,分别交准线于点E,D,设|BF|=a,根据抛物线定义可知|BD|=a,进而推断出∠BCD的值,在直角三角形中求得a,进而根据BD∥FG,利用比例线段的性质可求得p,则抛物线方程可得.解答:解:如图分别过点A,B作准线的垂线,分别交准线于点E,D,设|BF|=a,则由已知得:|BC|=2a,由定义得:|BD|=a,故∠BCD=30°,在直角三角形ACE中,∵|AF|=3,|AC|=3+3a,∴2|AE|=|AC|∴3+3a=6,从而得a=1,∵BD∥FG,∴=求得p=,因此抛物线方程为y2=3x.故选D.点评:本题主要考查了抛物线的标准方程.考查了学生对抛物线的定义和基本知识的综合把握.4.(2011•海珠区一模)一圆形纸片的圆心为原点O,点Q是圆外的一定点,A是圆周上一点,把纸片折叠使点A 与点Q重合,然后展开纸片,折痕CD与OA交于P点,当点A运动时P的轨迹是()A.椭圆B.双曲线C.抛物线D.圆考点:双曲线的定义.专题:计算题;压轴题;数形结合.分析:根据CD是线段AQ的垂直平分线.可推断出|PA|=|PQ|,进而可知|PO|﹣|PQ|=|PO|﹣|PA|=|OA|结果为定值,进而根据双曲线的定义推断出点P的轨迹.解答:解:由题意知,CD是线段AQ的垂直平分线∴|PA|=|PQ|,∴|PO|﹣|PQ|=|PO|﹣|PA|=|OA|(定值),∴根据双曲线的定义可推断出点P轨迹是以Q、O两点为焦点的双曲线,故选B.点评:本题主要考查了双曲线的定义的应用,考查了学生对椭圆基础知识的理解和应用,属于基础题.5.(2012•武汉模拟)抛物线y2=2px(p>0)的焦点为F,A、B在抛物线上,且,弦AB的中点M在其准线上的射影为N,则的最大值为()A.B.C.1D.考点:抛物线的简单性质.专题:计算题;压轴题.分析:设|AF|=a,|BF|=b,由抛物线定义,2|MN|=a+b.再由勾股定理可得|AB|2=a2+b2,进而根据基本不等式,求得|AB|的范围,进而可得答案.解答:解:设|AF|=a,|BF|=b,由抛物线定义,得AF|=|AQ|,|BF|=|BP|在梯形ABPQ中,∴2|MN|=|AQ|+|BP|=a+b.由勾股定理得,|AB|2=a2+b2配方得,|AB|2=(a+b)2﹣2ab,又ab≤,∴(a+b)2﹣2ab≥(a+b)2﹣得到|AB|≥(a+b).所以≤=,即的最大值为.故选A.点评:本题主要考查抛物线的应用和余弦定理的应用,考查了学生综合分析问题和解决问题的能力.6.(2014•齐齐哈尔二模)如图,在等腰梯形ABCD中,AB∥CD,且AB=2AD,设∠DAB=θ,θ∈(0,),以A,B为焦点且过点D的双曲线的离心率为e1,以C,D为焦点且过点A的椭圆的离心率为e2,则()A.随着角度θ的增大,e1增大,e1e2为定值B.随着角度θ的增大,e1减小,e1e2为定值C.随着角度θ的增大,e1增大,e1e2也增大D.随着角度θ的增大,e1减小,e1e2也减小考点:椭圆的简单性质.专题:计算题;压轴题.分析:连接BD、AC,假设AD=t,根据余弦定理表示出BD,进而根据双曲线的性质可得到a的值,再由AB=2c,e=可表示出e1=,最后根据余弦函数的单调性可判断e1的单调性;同样表示出椭圆中的c'和a'表示出e2的关系式,最后令e1、e2相乘即可得到e1e2的关系.解答:解:连接BD,AC设AD=t则BD==∴双曲线中a=e1=∵y=cosθ在(0,)上单调减,进而可知当θ增大时,y==减小,即e1减小∵AC=BD∴椭圆中CD=2t(1﹣cosθ)=2c∴c'=t(1﹣cosθ)AC+AD=+t,∴a'=(+t)e2==∴e1e2=×=1故选B.点评:本题主要考查椭圆和双曲线的离心率的表示,考查考生对圆锥曲线的性质的应用,圆锥曲线是高考的重点每年必考,平时要注意基础知识的积累和练习.7.(2014•怀化三模)从(其中m,n∈{﹣1,2,3})所表示的圆锥曲线(椭圆、双曲线、抛物线)方程中任取一个,则此方程是焦点在x轴上的双曲线方程的概率为()A.B.C.D.考点:双曲线的标准方程;列举法计算基本事件数及事件发生的概率.专题:计算题;压轴题.分析:m和n的所有可能取值共有3×3=9个,其中有两种不符合题意,故共有7种,可一一列举,从中数出能使方程是焦点在x轴上的双曲线的选法,即m和n都为正的选法数,最后由古典概型的概率计算公式即可得其概率解答:解:设(m,n)表示m,n的取值组合,则取值的所有情况有(﹣1,﹣1),(2,﹣1),(2,2),(2,3),(3,﹣1),(3,2),(3,3)共7个,(注意(﹣1,2),(﹣1,3)不合题意)其中能使方程是焦点在x轴上的双曲线的有:(2,2),(2,3),(3,2),(3,3)共4个∴此方程是焦点在x轴上的双曲线方程的概率为故选B点评:本题考查了古典概型概率的求法,椭圆、双曲线、抛物线的标准方程,列举法计数的技巧,准确计数是解决本题的关键8.(2013•温州二模)抛物线y2=2px(p>0)的准线交x轴于点C,焦点为F.A、B是抛物线上的两点.己知A.B,C三点共线,且|AF|、|AB|、|BF|成等差数列,直线AB的斜率为k,则有()A.B.C.D.考点:椭圆的标准方程;等差数列的通项公式;直线的斜率.专题:计算题;圆锥曲线的定义、性质与方程.分析:根据抛物线方程求出点C(﹣,0),可得直线AB方程为y=k(x﹣),将其与抛物线方程消去y得到关于x的一元二次方程,由根与系数的关系得到x1+x2和x1x2关于p、k的式子,结合两点间的距离公式算出|AB|=•.再利用抛物线的定义,得到|AF|+|BF|=x1+x2+p=+p,而|AF|、|AB|、|BF|成等差数列得出|AF|+|BF|=2|AB|,从而建立关于p、k的等式,化简整理得•=,即可解出,得到本题答案.解答:解:∵抛物线y2=2px的准线方程为x=﹣,∴准线与x轴的交点C坐标为(﹣,0)因此,得到直线AB方程为y=k(x﹣),与抛物线y2=2px消去y,化简整理,得,设A(x1,y1),B(x2,y2),由根与系数的关系得∴|AB|==•=•=•∵|AF|、|AB|、|BF|成等差数列,∴|AF|+|BF|=2|AB|,根据抛物线的定义得|AF|=x1+,|BF|=x2+,因此,得到x1+x2+p=2•,即+p=2•,化简得=,约去得•=∴(1+k2)(1﹣k2)=,解之得k2=故选:D点评:本题给出抛物线准线交对称轴于点C,过点C的直线交抛物线于A、B两点,A、B与焦点F构成的三角形的三边成等差数列,求直线AB的斜率.着重考查了抛物线的定义与简单几何性质,直线与抛物线位置关系等知识点,属于中档题.9.(2014•和平区模拟)在抛物线y=x2+ax﹣5(a≠0)上取横坐标为x1=﹣4,x2=2的两点,经过两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆5x2+5y2=36相切,则抛物线顶点的坐标为()A.(﹣2,﹣9)B.(0,﹣5)C.(2,﹣9)D.(1,6)考点:抛物线的应用.专题:计算题;压轴题.分析:求出两个点的坐标,利用两点连线的斜率公式求出割线的斜率;利用导数在切点处的值为切线的斜率求出切点坐标;利用直线方程的点斜式求出直线方程;利用直线与圆相切的条件求出a,求出抛物线的顶点坐标.解答:解:两点坐标为(﹣4,11﹣4a);(2,2a﹣1)两点连线的斜率k=对于y=x2+ax﹣5y′=2x+a∴2x+a=a﹣2解得x=﹣1在抛物线上的切点为(﹣1,﹣a﹣4)切线方程为(a﹣2)x﹣y﹣6=0直线与圆相切,圆心(0,0)到直线的距离=圆半径解得a=4或0(0舍去)抛物线方程为y=x2+4x﹣5顶点坐标为(﹣2,﹣9)故选A.点评:本题考查两点连线的斜率公式、考查导数在切点处的值为切线的斜率、考查直线与圆相切的充要条件是圆心到直线的距离等于半径.10.(2012•安徽模拟)下列四个命题中不正确的是()A.若动点P与定点A(﹣4,0)、B(4,0)连线PA、PB的斜率之积为定值,则动点P的轨迹为双曲线的一部分B.设m,n∈R,常数a>0,定义运算“*”:m*n=(m+n)2﹣(m﹣n)2,若x≥0,则动点的轨迹是抛物线的一部分C.已知两圆A:(x+1)2+y2=1、圆B:(x﹣1)2+y2=25,动圆M与圆A外切、与圆B内切,则动圆的圆心M的轨迹是椭圆D.已知A(7,0),B(﹣7,0),C(2,﹣12),椭圆过A,B两点且以C为其一个焦点,则椭圆的另一个焦点的轨迹为双曲线考点:椭圆的定义;轨迹方程.专题:证明题;压轴题.分析:利用直译法,求A选项中动点P的轨迹方程,进而判断表示的曲线;利用新定义运算,利用直译法求选项B中曲线的轨迹方程,进而判断轨迹图形;利用圆与圆的位置关系,利用定义法判断选项C中动点的轨迹;利用椭圆定义,由定义法判断D中动点的轨迹即可解答:解:A:设P(x,y),因为直线PA、PB的斜率存在,所以x≠±4,直线PA、PB的斜率分别是k1=,k2=,∴×=,化简得9y2=4x2﹣64,即(x≠±4),∴动点P的轨迹为双曲线的一部分,A正确;B:∵m*n=(m+n)2﹣(m﹣n)2,∴==,设P(x,y),则y=,即y2=4ax(x≥0,y≥0),即动点的轨迹是抛物线的一部分,B正确;C:由题意可知,动圆M与定圆A相外切与定圆B相内切∴MA=r+1,MB=5﹣r∴MA+MB=6>AB=2∴动圆圆心M的轨迹是以A,B为焦点的椭圆,C正确;D设此椭圆的另一焦点的坐标D (x,y),∵椭圆过A、B两点,则CA+DA=CB+DB,∴15+DA=13+DB,∴DB﹣DA=2<AB,∴椭圆的另一焦点的轨迹是以A、B为焦点的双曲线一支,D错误故选D点评:本题综合考查了求动点轨迹的两种方法:直译法和定义法,考查了圆、椭圆、抛物线、双曲线的定义,椭圆、双曲线、抛物线的标准方程,有一定难度二.解答题(共10小题)11.(2008•天津)已知中心在原点的双曲线C的一个焦点是F1(﹣3,0),一条渐近线的方程是.(Ⅰ)求双曲线C的方程;(Ⅱ)若以k(k≠0)为斜率的直线l与双曲线C相交于两个不同的点M,N,且线段MN的垂直平分线与两坐标轴围成的三角形的面积为,求k的取值范围.考点:双曲线的应用.专题:计算题;压轴题.分析:(1)设出双曲线方程,根据焦点坐标及渐近线方程求出待定系数,即得双曲线C的方程.(2)设出直线l的方程,代入双曲线C的方程,利用判别式及根与系数的关系求出MN的中点坐标,从而得到线段MN的垂直平分线方程,通过求出直平分线与坐标轴的交点,计算围城的三角形面积,由判别式大于0,求得k的取值范围.解答:解:(Ⅰ)解:设双曲线C的方程为(a>0,b>0).由题设得,解得,所以双曲线方程为.(Ⅱ)解:设直线l的方程为y=kx+m(k≠0).点M(x1,y1),N(x2,y2)的坐标满足方程组将①式代入②式,得,整理得(5﹣4k2)x2﹣8kmx﹣4m2﹣20=0.此方程有两个不等实根,于是5﹣4k2≠0,且△=(﹣8km)2+4(5﹣4k2)(4m2+20)>0.整理得m2+5﹣4k2>0.③由根与系数的关系可知线段MN的中点坐标(x0,y0)满足,.从而线段MN的垂直平分线方程为.此直线与x轴,y轴的交点坐标分别为,.由题设可得.整理得,k≠0.将上式代入③式得,整理得(4k2﹣5)(4k2﹣|k|﹣5)>0,k≠0.解得或.所以k的取值范围是.点评:本小题主要考查双曲线的标准方程和几何性质、直线方程、两条直线垂直、线段的定比分点等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理运算能力.12.(2013•北京)直线y=kx+m(m≠0)与椭圆相交于A,C两点,O是坐标原点.(Ⅰ)当点B的坐标为(0,1),且四边形OABC为菱形时,求AC的长;(Ⅱ)当点B在W上且不是W的顶点时,证明:四边形OABC不可能为菱形.考点:椭圆的简单性质;两点间的距离公式.专题:压轴题;圆锥曲线的定义、性质与方程.分析:(I)先根据条件得出线段OB的垂直平分线方程为y=,从而A、C的坐标为(,),根据两点间的距离公式即可得出AC的长;(II)欲证明四边形OABC不可能为菱形,只须证明若OA=OC,则A、C两点的横坐标相等或互为相反数.设OA=OC=r,则A、C为圆x2+y2=r2与椭圆的交点,从而解得,则A、C两点的横坐标相等或互为相反数.于是结论得证.解答:解:(I)∵点B的坐标为(0,1),当四边形OABC为菱形时,AC⊥OB,而B(0,1),O(0,0),∴线段OB的垂直平分线为y=,将y=代入椭圆方程得x=±,因此A、C的坐标为(,),如图,于是AC=2.(II)欲证明四边形OABC不可能为菱形,利用反证法,假设四边形OABC为菱形,则有OA=OC,设OA=OC=r,则A、C为圆x2+y2=r2与椭圆的交点,故,x2=(r2﹣1),则A、C两点的横坐标相等或互为相反数.从而得到点B是W的顶点.这与题设矛盾.于是结论得证.点评:本题主要考查了椭圆的简单性质,直线与椭圆的位置关系,考查等价转化思想,属于基础题.13.已知焦点在x轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点A(0,)为圆心,1为半径为圆相切,又知C的一个焦点与A关于直线y=x对称.(1)求双曲线C的方程;(2)若Q是双曲线C上的任一点,F1、F2为双曲线C的左、右两个焦点,从F1引∠F1QF2的平分线的垂线,垂足为N,试求点N的轨迹方程.考点:双曲线的标准方程;轨迹方程;双曲线的简单性质.专题:计算题;压轴题.分析:(1)设双曲线C的渐近线方程为y=kx,根据题意可得k=±1,所以双曲线C的方程为,C的一个焦点与A关于直线y=x对称,可得双曲线的焦点坐标进而求出双曲线的标准方程.(2)若Q在双曲线的右支上,则延长QF2到T,使|QT|=|OF1|;若Q在双曲线的左支上,则在QF2上取一点T,使|QT|=|QF1|,根据双曲线的定义|TF2|=2,再利用相关点代入法求出轨迹方程即可.解答:解:(1)设双曲线C的渐近线方程为y=kx,即kx﹣y=0∵该直线与圆相切,∴双曲线C的两条渐近线方程为y=±x…(3分)故设双曲线C的方程为,又∵双曲线C的一个焦点为∴2a2=2,a2=1,∴双曲线C的方程为x2﹣y2=1…(6分)(2)若Q在双曲线的右支上,则延长QF2到T,使|QT|=|OF1|若Q在双曲线的左支上,则在QF2上取一点T,使|QT|=|QF1|…(8分)根据双曲线的定义|TF2|=2,所以点T在以F2为圆心,2为半径的圆上,即点T的轨迹方程是①…(10分)由于点N是线段F1T的中点,设N(x,y),T(x T,y T)则…(12分)代入①并整理得点N的轨迹方程为…(14分)点评:本题主要考查双曲线的有关性质与定义,以及求轨迹方程的方法(如相关点代入法).14.(2011•安徽)设λ>0,点A的坐标为(1,1),点B在抛物线y=x2上运动,点Q满足,经过点Q与x轴垂直的直线交抛物线于点M,点P满足,求点P的轨迹方程.考点:抛物线的应用;轨迹方程.专题:综合题;压轴题.分析:设出点的坐标,利用向量的坐标公式求出向量的坐标,代入已知条件中的向量关系得到各点的坐标关系;表示出B点的坐标;将B的坐标代入抛物线方程求出p的轨迹方程.解答:解:由知Q,M,P三点在同一条垂直于x轴的直线上,故可设P(x,y),Q(x,y0),M(x,x2)则x2﹣y0=λ(y﹣x2)即y0=(1+λ)x2﹣λy①再设B(x1,y1)由得将①代入②式得又点B在抛物线y=x2将③代入得(1+λ)2x2﹣λ(1+λ)y﹣λ=((1+λ)x﹣λ)2整理得2λ(1+λ)x﹣λ(1+λ)y﹣λ(1+λ)=0因为λ>0所以2x﹣y﹣1=0故所求的点P的轨迹方程:y=2x﹣1点评:本题考查题中的向量关系提供点的坐标关系、求轨迹方程的重要方法:相关点法,即求出相关点的坐标,将相关点的坐标代入其满足的方程,求出动点的轨迹方程.15.(2013•南开区一模)已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线的焦点,离心率等于.(1)求椭圆C的方程;(2)过椭圆C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,若,,求证:λ1+λ2为定值.考点:椭圆的标准方程;直线与圆锥曲线的综合问题.专题:综合题;压轴题.分析:(1)根据椭圆C的一个顶点恰好是抛物线的焦点,离心率等于.易求出a,b的值,得到椭圆C的方程.(2)设A、B、M点的坐标分别为A(x1,y1),B(x2,y2),设直线l的斜率为k,则直线l的方程是y=k (x﹣2),然后采用“联立方程”+“设而不求”+“韦达定理”,结合已知中,,求出λ1+λ2值,即可得到结论.解答:解:(1)设椭圆C的方程为,则由题意知b=1.…(2分)∴.∴a2=5.…(4分)∴椭圆C的方程为.…(5分)(2)设A、B、M点的坐标分别为A(x1,y1),B(x2,y2),M(0,y0).又易知F点的坐标为(2,0).…(6分)显然直线l存在的斜率,设直线l的斜率为k,则直线l的方程是y=k(x﹣2).…(7分)将直线l的方程代入到椭圆C的方程中,消去y并整理得(1+5k2)x2﹣20k2x+20k2﹣5=0.…(8分)∴.…(9分)又∵.(11分)∴.…(12分)点评:本题考查的知识点是椭圆的标准方程,直线与圆锥曲线的综合问题,其中根据已知条件计算出椭圆的标准方程是解答本题的关键.16.(2013•广东)已知抛物线C的顶点为原点,其焦点F(0,c)(c>0)到直线l:x﹣y﹣2=0的距离为,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.(1)求抛物线C 的方程;(2)当点P (x 0,y 0)为直线l 上的定点时,求直线AB 的方程; (3)当点P 在直线l 上移动时,求|AF|•|BF|的最小值.考点:抛物线的标准方程;利用导数研究曲线上某点切线方程;抛物线的简单性质. 专题:压轴题;圆锥曲线的定义、性质与方程. 分析:(1)利用焦点到直线l :x ﹣y ﹣2=0的距离建立关于变量c 的方程,即可解得c ,从而得出抛物线C 的方程; (2)先设,,由(1)得到抛物线C 的方程求导数,得到切线PA ,PB 的斜率,最后利用直线AB 的斜率的不同表示形式,即可得出直线AB 的方程; (3)根据抛物线的定义,有,,从而表示出|AF|•|BF|,再由(2)得x 1+x 2=2x 0,x 1x 2=4y 0,x 0=y 0+2,将它表示成关于y 0的二次函数的形式,从而即可求出|AF|•|BF|的最小值. 解答:解:(1)焦点F (0,c )(c >0)到直线l :x ﹣y ﹣2=0的距离,解得c=1所以抛物线C 的方程为x 2=4y(2)设,由(1)得抛物线C 的方程为,,所以切线PA ,PB 的斜率分别为,所以PA :①PB :②联立①②可得点P 的坐标为,即,又因为切线PA 的斜率为,整理得直线AB 的斜率所以直线AB 的方程为 整理得,即因为点P (x 0,y 0)为直线l :x ﹣y ﹣2=0上的点,所以x 0﹣y 0﹣2=0,即y 0=x 0﹣2 所以直线AB 的方程为 (3)根据抛物线的定义,有,所以=由(2)得x 1+x 2=2x 0,x 1x 2=4y 0,x 0=y 0+2 所以=所以当时,|AF|•|BF|的最小值为点评: 本题以抛物线为载体,考查抛物线的标准方程,考查利用导数研究曲线的切线方程,考查计算能力,有一定的综合性.17.(2008•上海)已知双曲线.(1)求双曲线C 的渐近线方程;(2)已知点M 的坐标为(0,1).设P 是双曲线C 上的点,Q 是点P 关于原点的对称点.记.求λ的取值范围;(3)已知点D ,E ,M 的坐标分别为(﹣2,﹣1),(2,﹣1),(0,1),P 为双曲线C 上在第一象限内的点.记l 为经过原点与点P 的直线,s 为△DEM 截直线l 所得线段的长.试将s 表示为直线l 的斜率k 的函数.考点: 双曲线的简单性质;直线与圆锥曲线的综合问题. 专题: 计算题;压轴题. 分析:(1)在双曲线,把1换成0,就得到它的渐近线方程.(2)设P 的坐标为(x 0,y 0),则Q 的坐标为(﹣x 0,﹣y 0),先求出,然后运用向量数量积的坐标运算能够求出λ的取值范围.(3)根据P 为双曲线C 上第一象限内的点,可知直线l 的斜率再由题设条件根据k 的不同取值范围试将s 表示为直线l 的斜率k 的函数.解答:解:(1)在双曲线,把1换成0,所求渐近线方程为(2)设P 的坐标为(x 0,y 0),则Q 的坐标为(﹣x 0,﹣y 0),=∵∴λ的取值范围是(﹣∞,﹣1].(3)若P 为双曲线C 上第一象限内的点, 则直线l 的斜率由计算可得,当;当∴s表示为直线l的斜率k的函数是点评:本题是直线与圆锥曲线的综合问题,解题要熟练掌握双曲线的性质和解题技巧.18.(2011•南通三模)过抛物线y2=4x上一点A(1,2)作抛物线的切线,分别交x轴于点B,交y轴于点D,点C(异于点A)在抛物线上,点E在线段AC上,满足=λ1;点F在线段BC上,满足=λ2,且λ1+λ2=1,线段CD与EF交于点P.(1)设,求λ;(2)当点C在抛物线上移动时,求点P的轨迹方程.考点:抛物线的简单性质;向量在几何中的应用.专题:综合题;压轴题.分析:(1)设出过A点的切线方程,确定出D点,分别表示出,,根据λ1+λ2=1,求出λ的值.(2)设C(x0,y0),P(x,y),用x0,y0表示出x,y,代入抛物线方程,进而确定P点的轨迹.解答:解:(1)过点A的切线方程为y=x+1.…(1分)切线交x轴于点B(﹣1,0),交y轴交于点D(0,1),则D是AB的中点.所以.(1)…(3分)由⇒=(1+λ)⇒.(2)同理由=λ1,得=(1+λ1),(3)=λ2,得=(1+λ2).(4)将(2)、(3)、(4)式代入(1)得.因为E、P、F三点共线,所以+=1,再由λ1+λ2=1,解之得λ=.…(6分)(2)由(1)得CP=2PD,D是AB的中点,所以点P为△ABC的重心.所以,x=,y=.解得x0=3x,y0=3y﹣2,代入y02=4x0得,(3y﹣2)2=12x.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线难题集锦徐荣先汇编1. 如图所示,,分别为椭圆:()的左、右两个焦点,,为两个顶点,已知椭圆上的点到,两点的距离之和为.(1)求椭圆的方程;(2)过椭圆的焦点作的平行线交椭圆于,两点,求的面积.}2. 已知椭圆:的离心率为,过左焦点且倾斜角为的直线被椭圆截得的弦长为.(1)求椭圆的方程;(2)若动直线与椭圆有且只有一个公共点,过点作的垂线,垂足为,求点的轨迹方程.)3. 已知椭圆的离心率为,点在上.(1)求的方程;(2)直线不过原点且不平行于坐标轴,与有两个交点,,线段的中点为.证明:直线的斜率与直线的斜率的乘积为定值.;4. 已知的顶点,在椭圆上,点在直线:上,且.\(1)当边通过坐标原点时,求的长及的面积;(2)当,且斜边的长最大时,求所在直线的方程.—5. 已知椭圆的中心为坐标原点,一个长轴顶点为,它的两个短轴顶点和焦点所组成的四边形为正方形,直线与轴交于点,与椭圆交于异于椭圆顶点的两点,,且.(1)求椭圆的方程;(2)求的取值范围.¥}6. 已知抛物线的焦点为,是抛物线上横坐标为,且位于轴上方的点,到抛物线准线的距离等于,过作垂直于轴,垂足为,的中点为.(1)求抛物线的方程;(2)若过作,垂足为,求点的坐标.:7. 已知圆过定点,且与直线相切,圆心的轨迹为,曲线与直线相交于,两点.(1)求曲线的方程;—(2)当的面积等于时,求的值.【8. 已知直线与椭圆相交于两个不同的点,记与轴的交点为.(1)若,且,求实数的值;(2)若,求面积的最大值,及此时椭圆的方程.【·9. 如图,设抛物线()的焦点为,抛物线上的点到轴的距离等于.(1)求的值;(2)若直线交抛物线于另一点,过与轴平行的直线和过与垂直的直线交于点,与轴交于点.求的横坐标的取值范围.}?10. 已知点在椭圆上,且点到两焦点的距离之和为.(1)求椭圆的方程;(2)若斜率为的直线与椭圆交于,两点,以为底作等腰三角形,顶点为,求的面积.【11. 已知椭圆的离心率为,且过点.(1)求椭圆的方程;(2)若,是椭圆上的两个动点,且使的角平分线总垂直于轴,试判断直线的斜率是否为定值若是,求出该值;若不是,说明理由.&:12. 已知椭圆:的离心率为.其右顶点与上顶点的距离为,过点的直线与椭圆相交于,两点.(1)求椭圆的方程;(2)设是中点,且点的坐标为当时,求直线的方程.,13. 设,分别是椭圆的左,右焦点,是上一点且与轴垂直.直线与的另一个交点为.(1)若直线的斜率为的离心率;(2)若直线在轴上的截距为,且,.:?14. 在平面直角坐标系中,点,直线与动直线的交点为,线段的中垂线与动直线的交点为.(1)求点的轨迹的方程;(2)过动点作曲线的两条切线,切点分别为,,求证:的大小为定值.)15. 已知中心在原点的双曲线的右焦点为,右顶点为.(1)求该双曲线的方程;(2)若直线:与双曲线左支有两个不同的交点,,求的取值范围.?¥16. 己知椭圆与抛物线共焦点,抛物线上的点到轴的距离等于,且椭圆与抛物线的交点满足(1)求抛物线的方程和椭圆的方程;(2)过抛物线上的点作抛物线的切线交椭圆于,两点,设线段的中点为,求的取值范围.,17. 已知右焦点为的椭圆:关于直线对称的图形过坐标原点.(1)求椭圆的方程;(2)过点且不垂直于轴的直线与椭圆交于,两点,点关于轴的对称原点为,证明:直线与轴的交点为.#]18. 在平面直角坐标系中,抛物线的顶点是原点,以轴为对称轴,且经过点.(1)求抛物线的方程;(2)设点,在抛物线上,直线,分别与轴交于点,,.求直线的斜率.19. 已知抛物线与直线相切.(1)求该抛物线的方程;(2)在轴正半轴上,是否存在某个确定的点,过该点的动直线与抛物线交于,两点,使得为定值.如果存在,求出点坐标;如果不存在,请说明理由.{;20. 左、右焦点分别为,的椭圆经过点,为椭圆上一点,的重心为,内心为,.(1)求椭圆的方程;(2)为直线上一点,过点作椭圆的两条切线,,,为切点,问直线是否过定点若过定点,求出定点的坐标;若不过定点,请说明理由.:21. 已知抛物线,为其焦点,过点的直线交抛物线于,两点,过点作轴的垂线,交直线于点,如图所示.(1)求点的轨迹的方程;·(2)直线是抛物线的不与轴重合的切线,切点为,与直线交于点,求证:以线段为直径的圆过点.·22. 已知椭圆,其短轴为,离心率为.(1)求椭圆的方程;(2)设椭圆的右焦点为,过点作斜率不为的直线交椭圆于,两点,设直线和的斜率为,,试判断是否为定值,若是定值,求出该定值;若不是定值,请说明理由.23. 在平面直角坐标系中,抛物线的焦点为,准线交轴于点,过作直线交抛物线于,两点,且.(1)求直线的斜率;(2)若的面积为,求抛物线的方程.|—24. 过双曲线的右支上的一点作一直线与两渐近线交于,两点,其中是的中点;(1)求双曲线的渐近线方程;(2)当坐标为时,求直线的方程;(3)求证:是一个定值./25. 如图,线段经过轴正半轴上一定点,端点,到轴的距离之积为,以轴为对称轴,过,,三点作抛物线.~(1)求抛物线的标准方程;(2)已知点为抛物线上的点,过作倾斜角互补的两直线,,分别交抛物线于,,求证:直线的斜率为定值,并求出这个定值.~26. 如图,已知椭圆的左右顶点分别是,,离心率为.设点,连接交椭圆于点,坐标原点是.(1)证明:;(2)若三角形的面积不大于四边形的面积,求的最小值.【27. 已知抛物线的焦点为,过的直线交于,两点,为线段的中点,为坐标原点.,的延长线与直线分别交于,两点.(1)求动点的轨迹方程;(2)连接,求与的面积比.}\28. 已知抛物线过点.过点作直线与抛物线交于不同的两点,,过点作轴的垂线分别与直线,交于点,,其中为原点.(1)求抛物线的方程,并求其焦点坐标和准线方程;(2)求证:为线段的中点.;29. 如图,在平面直角坐标系中,椭圆的左、右焦点分别为,,离心率为.点在椭圆上,且位于第一象限,过点作直线的垂线,过点作直线的垂线.…(1)求椭圆的标准方程;(2)若直线,的交点在椭圆上,求点的坐标.!30. 如图:中,,,,曲线过点,动点在上运动,且保持的值不变.(1)建立适当的坐标系,求曲线的标准方程;(2)过点且倾斜角为的直线交曲线于,两点,求的长度.~31. 已知椭圆的焦点在轴上,中心在坐标原点;抛物线的焦点在轴上,顶点在坐标原点.在,上各取两个点,将其坐标记录于表格中:(1)求,的标准方程;(2)已知定点,为抛物线上一动点,过点作抛物线的切线交椭圆于,两点,求面积的最大值.'32. 已知点为椭圆:的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线与椭圆有且仅有一个交点.(1)求椭圆的方程;(2)设直线与轴交于,过点的直线与椭圆交于不同的两点,,若的取值范围.^33. 已知点100(,)P x y 为双曲线22221(8x y b b b -=为正常数)上任一点,2F 为双曲线的右焦点,过1P 作右准线的垂线,垂足为A ,连接2F A 并延长交y 轴于点2P . (1)求线段12P P 的中点P 的轨迹E 的方程;(2)设轨迹E 与x 轴交于B ,D 两点,在E 上任取一点Q 111()(0)x y y ≠,,直线QB ,QD 分别交于y 轴于M ,N 两点.求证:以MN【@34. 如图,已知圆G :222(2)x y r -+=是椭圆2216x y +=1的内接ABC △的内切圆,其中A 为椭圆的左顶点. (1)求圆G 的半径r ;(2)过点M (0,1)作圆G 的两条切线交椭圆于E ,F 两点,证明:直线EF 与圆G 相切.—x35. 设点00(,)P x y 在直线(01)x m y m m =≠±<<,上,过点P 作双曲线221x y -=的两条切线,PA PB ,切点为,A B ,定点10M m ⎛⎫⎪⎝⎭,. (1)过点A 作直线0x y -=的垂线,垂足为N ,试求AMN △的垂心G 所在的曲线方 程;(2)求证:A M B 、、三点共线."36. 作斜率为13的直线l 与椭圆22:1364x y C +=交于,A B 两点(如图所示),且P 在直线l 的左上方.(1)证明:PAB ∆的内切圆的圆心在一条定直线上; (2)若60oAPB ∠=,求PAB ∆的面积.《AxyOPB37. 如图,椭圆22122:1(0)x y C a b a b+=>>3x 轴被曲线22:C y x b =-截得的线段长等于1C 的长半轴长.(1)求1C ,2C 的方程;(2)设2C 与y 轴的焦点为M ,过坐标原点O 的直线l 与2C 相交于点A,B ,直线MA,MB 分别与1C 相交与,D E .①证明:MD ME ⊥;¥②记MAB ∆,MDE ∆的面积分别是1S ,2S .问:是否存在直线l ,使得121732S S =请说明理由.】38. 已知抛物线2:4C y x =的焦点为F ,过点(1,0)K -的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D . (1)证明:点F 在直线BD 上; (2)设89FA FB =,求BDK ∆的内切圆M 的方程 .!39. (,)()o o o P x y x a ≠±是双曲线2222:1(0,0)x y E a b a b-=>>上一点,,M N 分别是双曲线E 的左、右顶点,直线,PM PN 的斜率之积为15. (1)求双曲线的离心率;(2)过双曲线E 的右焦点且斜率为1的直线交双曲线于,A B 两点,O 为坐标原点,C 为双曲线上一点,满足OC OA OB λ=+,求λ的值.…40.已知以原点O 为中心,F 为右焦点的双曲线C 的离心率e =(1)求双曲线C 的标准方程及其渐近线方程;(2)如图,已知过点11(,)M x y 的直线1l :1144x x y y +=与过点22(,)N x y (其中21x x ≠)的直线2l :2244x x y y +=的交点E 在双曲线C 上,直线MN 与双曲线的两条渐近线分别交于G 、H 两点,求△OGH 的面积.41.如图,在平面直角坐标系xoy 中,椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1(0)F c -,,2(0)F c ,.已知(1)e ,和e ⎛ ⎝⎭都在椭圆上,其中e 为椭圆的离心率. ~(1)求椭圆的方程;(2)设,A B 是椭圆上位于x 轴上方的两点,且直线1AF 与直线2BF 平行,2AF 与1BF 交于点P .(i)若12AF BF -=1AF 的斜率; (ii )求证:12PF PF +是定值.;42.如图,椭圆C :2222+1x y a b=(a >b >0)的离心率为12,其左焦点到点P (2,1)不过原点O 的直线l 与C 相交于A ,B 两点,且线段AB 被直线OP 平分.(Ⅰ)求椭圆C 的方程;(Ⅱ) 求∆ABP 的面积取最大时直线l 的方程.(43.设A 是单位圆221x y +=上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足||||(0,1)DM m DA m m =>≠且. 当点A 在圆上运动时,记点M 的轨迹为曲线C .(Ⅰ)求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标;(Ⅱ)过原点且斜率为k 的直线交曲线C 于P ,Q 两点,其中P 在第一象限,它在y 轴上的射影为点N ,直线QN 交曲线C 于另一点H . 是否存在m ,使得对任意的0k >,都有PQ PH ⊥若存在,求m 的值;若不存在,请说明理由.…44../45. 已知动直线l 与椭圆C: 22132x y +=交于P ()11,x y 、Q ()22,x y 两不同点,且△OPQ 的面积OPQ S ∆=2其中O 为坐标原点. (Ⅰ)证明2212x x +和2212y y +均为定值;(Ⅱ)设线段PQ 的中点为M ,求||||OM PQ ⋅的最大值;(Ⅲ)椭圆C 上是否存在点D,E,G ,使得ODE ODG OEG S S S ∆∆∆===判断△DEG 的形状;若不存在,请说明理由.%46.如图,已知椭圆C1的中心在原点O ,长轴左、右端点M ,N 在x 轴上,椭圆C2的短轴为MN ,且C1,C2的离心率都为e ,直线l ⊥MN ,l 与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A ,B ,C ,D.(I )设12e =,求BC 与AD 的比值;(II )当e 变化时,是否存在直线l ,使得BO ∥AN ,并说明理由《47. 平面内与两定点12(,0),(,0)(0)->A a A a a 连线的斜率之积等于非零常数m 的点的轨迹,加 上A 1、A 2两点所在所面的曲线C 可以是圆、椭圆或双曲线.(Ⅰ)求曲线C 的方程,并讨论C 的形状与m 的位置关系;(Ⅱ)当m=-1时,对应的曲线为C 1:对给定的(1,0)(0,)m ∈-+∞,对应的曲线为C2, ;设F 1、F 2是C 2的两个焦点,试问:在C 1上,是否存在点N ,使得△F 1NF 2的面 积2S m a =,若存在,求12tan F NF 的值;若不存在,请说明理由.:48.已知一条曲线C 在y 轴右边,每一点到点F (1,0)的距离减去它到y 轴距离的差都是1. (Ⅰ)求曲线C 的方程;(Ⅱ)是否存在正数m ,对于过点M (m ,0)且与曲线C 有两个交点A,B 的任一直线,都有0FA FB •<若存在,求出m 的取值范围;若不存在,请说明理由。

相关文档
最新文档