广度优先与深度优先搜索

合集下载

深度优先算法和广度优先算法的时间复杂度

深度优先算法和广度优先算法的时间复杂度

深度优先算法和广度优先算法的时间复杂度深度优先算法和广度优先算法是在图论中常见的两种搜索算法,它们在解决各种问题时都有很重要的作用。

本文将以深入浅出的方式从时间复杂度的角度对这两种算法进行全面评估,并探讨它们在实际应用中的优劣势。

1. 深度优先算法的时间复杂度深度优先算法是一种用于遍历或搜索树或图的算法。

它从图中的某个顶点出发,沿着一条路径一直走到底,直到不能再前进为止,然后回溯到上一个节点,尝试走其他的路径,直到所有路径都被走过为止。

深度优先算法的时间复杂度与图的深度有关。

在最坏情况下,深度优先算法的时间复杂度为O(V+E),其中V表示顶点的数量,E表示边的数量。

2. 广度优先算法的时间复杂度广度优先算法也是一种用于遍历或搜索树或图的算法。

与深度优先算法不同的是,广度优先算法是从图的某个顶点出发,首先访问这个顶点的所有邻接节点,然后再依次访问这些节点的邻接节点,依次类推。

广度优先算法的时间复杂度与图中边的数量有关。

在最坏情况下,广度优先算法的时间复杂度为O(V+E)。

3. 深度优先算法与广度优先算法的比较从时间复杂度的角度来看,深度优先算法和广度优先算法在最坏情况下都是O(V+E),并没有明显的差异。

但从实际运行情况来看,深度优先算法和广度优先算法的性能差异是显而易见的。

在一般情况下,广度优先算法要比深度优先算法快,因为广度优先算法的搜索速度更快,且能够更快地找到最短路径。

4. 个人观点和理解在实际应用中,选择深度优先算法还是广度优先算法取决于具体的问题。

如果要找到两个节点之间的最短路径,那么广度优先算法是更好的选择;而如果要搜索整个图,那么深度优先算法可能是更好的选择。

要根据具体的问题来选择合适的算法。

5. 总结和回顾本文从时间复杂度的角度对深度优先算法和广度优先算法进行了全面评估,探讨了它们的优劣势和实际应用中的选择。

通过对两种算法的时间复杂度进行比较,可以更全面、深刻和灵活地理解深度优先算法和广度优先算法的特点和适用场景。

第7章图的深度和广度优先搜索遍历算法

第7章图的深度和广度优先搜索遍历算法
7.3 图的遍历
和树的遍历类似,我们希望从图中某顶点出发对图中每个顶点访问一次,而且只访问 一次,这一过程称为图的遍历(traversing graph)。 本节介绍两种遍历图的规则:深度优先搜索和广度优先搜索。 这两种方法既适用于无向图,也适用于有向图。
7.3.1 深度优先搜索遍历 一.思路: 从图中某一点(如A)开始,先访问这一点,然后任选它的一个邻点(如V0) 访问,访问完该点后,再任选这个点V0的一个邻点 ( 如 W )访问,如此向 纵深方向访问。直到某个点没有其他未访问的邻点为止,则返回到前一个点。 再任选它的另一个未访问过的邻点 ( 如X )继续重复上述过程的访问,直到全 部点访问完为止。 图(a)的遍历的结果:V1V2V4V8V5V3V6V7 或V1V3V7V6V2V5V8V4
p
v0 w x v 1
V
0
v 2
V
0
typedef struct {VEXNODE adjlist[MAXLEN]; // 邻接链表表头向量 int vexnum, arcnum; // 顶点数和边数 int kind; // 图的类型 }ADJGRAPH;
W W
X
X
7.3.2 广度优先搜索遍历 一.思路:
V
0
A V
0
W W
XXΒιβλιοθήκη 二.深度优先搜索算法的文字描述: 算法中设一数组visited,表示顶点是否访问过的标志。数组长度为 图的顶点数,初值均置为0,表示顶点均未被访问,当Vi被访问过,即 将visitsd对应分量置为1。将该数组设为全局变量。 { 确定从G中某一顶点V0出发,访问V0; visited[V0] = 1; 找出G中V0的第一个邻接顶点->w; while (w存在) do { if visited[w] == 0 继续进行深度优先搜索; 找出G中V0的下一个邻接顶点->w;} }

深度优先搜索和广度优先搜索

深度优先搜索和广度优先搜索

二、 重排九宫问题游戏
在一个 3 乘 3 的九宫中有 1-8 的 8 个数及一个空格随机摆放在其中的格子里。如下面 左图所示。现在要求实现这样的问题:将该九宫调整为如下图右图所示的形式。调整规则是: 每次只能将与空格(上,下或左,右)相临的一个数字平移到空格中。试编程实现。
|2|8 |3|
|1|2|3|
from = f; to = t; distance = d; skip = false; } } class Depth { final int MAX = 100; // This array holds the flight information. FlightInfo flights[] = new FlightInfo[MAX]; int numFlights = 0; // number of entries in flight array Stack btStack = new Stack(); // backtrack stack public static void main(String args[]) {
下面是用深度优先搜索求解的程序:
// Find connections using a depth-first search. import java.util.*; import java.io.*; // Flight information. class FlightInfo {
String from; String to; int distance; boolean skip; // used in backtracking FlightInfo(String f, String t, int d) {
int dist; FlightInfo f; // See if at destination. dist = match(from, to); if(dist != 0) {

深度优先搜索和广度优先搜索

深度优先搜索和广度优先搜索

深度优先搜索和广度优先搜索一、深度优先搜索和广度优先搜索的深入讨论(一)深度优先搜索的特点是无论问题的内容和性质以及求解要求如何不同,它们的程序结构都是相同的,即都是深度优先算法(一)和深度优先算法(二)中描述的算法结构,不相同的仅仅是存储结点数据结构和产生规则以及输出要求。

(2)深度优先搜索法有递归以及非递归两种设计方法。

一般的,当搜索深度较小、问题递归方式比较明显时,用递归方法设计好,它可以使得程序结构更简捷易懂。

当搜索深度较大时,当数据量较大时,由于系统堆栈容量的限制,递归容易产生溢出,用非递归方法设计比较好。

(3)深度优先搜索方法有广义和狭义两种理解。

广义的理解是,只要最新产生的结点(即深度最大的结点)先进行扩展的方法,就称为深度优先搜索方法。

在这种理解情况下,深度优先搜索算法有全部保留和不全部保留产生的结点的两种情况。

而狭义的理解是,仅仅只保留全部产生结点的算法。

本书取前一种广义的理解。

不保留全部结点的算法属于一般的回溯算法范畴。

保留全部结点的算法,实际上是在数据库中产生一个结点之间的搜索树,因此也属于图搜索算法的范畴。

(4)不保留全部结点的深度优先搜索法,由于把扩展望的结点从数据库中弹出删除,这样,一般在数据库中存储的结点数就是深度值,因此它占用的空间较少,所以,当搜索树的结点较多,用其他方法易产生内存溢出时,深度优先搜索不失为一种有效的算法。

(5)从输出结果可看出,深度优先搜索找到的第一个解并不一定是最优解.如果要求出最优解的话,一种方法将是后面要介绍的动态规划法,另一种方法是修改原算法:把原输出过程的地方改为记录过程,即记录达到当前目标的路径和相应的路程值,并与前面已记录的值进行比较,保留其中最优的,等全部搜索完成后,才把保留的最优解输出。

二、广度优先搜索法的显著特点是:(1)在产生新的子结点时,深度越小的结点越先得到扩展,即先产生它的子结点。

为使算法便于实现,存放结点的数据库一般用队列的结构。

广度优先和深度优先的例子

广度优先和深度优先的例子

广度优先和深度优先的例子广度优先搜索(BFS)和深度优先搜索(DFS)是图遍历中常用的两种算法。

它们在解决许多问题时都能提供有效的解决方案。

本文将分别介绍广度优先搜索和深度优先搜索,并给出各自的应用例子。

一、广度优先搜索(BFS)广度优先搜索是一种遍历或搜索图的算法,它从起始节点开始,逐层扩展,先访问起始节点的所有邻居节点,再依次访问其邻居节点的邻居节点,直到遍历完所有节点或找到目标节点。

例子1:迷宫问题假设有一个迷宫,迷宫中有多个房间,每个房间有四个相邻的房间:上、下、左、右。

现在我们需要找到从起始房间到目标房间的最短路径。

可以使用广度优先搜索算法来解决这个问题。

例子2:社交网络中的好友推荐在社交网络中,我们希望给用户推荐可能认识的新朋友。

可以使用广度优先搜索算法从用户的好友列表开始,逐层扩展,找到可能认识的新朋友。

例子3:网页爬虫网页爬虫是搜索引擎抓取网页的重要工具。

爬虫可以使用广度优先搜索算法从一个网页开始,逐层扩展,找到所有相关的网页并进行抓取。

例子4:图的最短路径在图中,我们希望找到两个节点之间的最短路径。

可以使用广度优先搜索算法从起始节点开始,逐层扩展,直到找到目标节点。

例子5:推荐系统在推荐系统中,我们希望给用户推荐可能感兴趣的物品。

可以使用广度优先搜索算法从用户喜欢的物品开始,逐层扩展,找到可能感兴趣的其他物品。

二、深度优先搜索(DFS)深度优先搜索是一种遍历或搜索图的算法,它从起始节点开始,沿着一条路径一直走到底,直到不能再继续下去为止,然后回溯到上一个节点,继续探索其他路径。

例子1:二叉树的遍历在二叉树中,深度优先搜索算法可以用来实现前序遍历、中序遍历和后序遍历。

通过深度优先搜索算法,我们可以按照不同的遍历顺序找到二叉树中所有节点。

例子2:回溯算法回溯算法是一种通过深度优先搜索的方式,在问题的解空间中搜索所有可能的解的算法。

回溯算法常用于解决组合问题、排列问题和子集问题。

例子3:拓扑排序拓扑排序是一种对有向无环图(DAG)进行排序的算法。

广度优先搜索和深度优先搜索有何区别

广度优先搜索和深度优先搜索有何区别

广度优先搜索和深度优先搜索有何区别在计算机科学和算法领域中,广度优先搜索(BreadthFirst Search,简称 BFS)和深度优先搜索(DepthFirst Search,简称 DFS)是两种常见且重要的图或树的遍历算法。

它们在解决各种问题时都有着广泛的应用,但在搜索策略和特点上存在着显著的差异。

让我们先来了解一下广度优先搜索。

想象一下你正在一个迷宫中,你从入口开始,先探索与入口相邻的所有房间,然后再依次探索这些相邻房间相邻的房间,以此类推。

这就是广度优先搜索的基本思路。

广度优先搜索是以逐层的方式进行的。

它首先访问起始节点,然后依次访问起始节点的所有邻接节点,接着再访问这些邻接节点的邻接节点,就像在平静的湖面上泛起的层层涟漪。

这种搜索方式确保在访问更深层次的节点之前,先访问同一层次的所有节点。

在实现广度优先搜索时,通常会使用一个队列(Queue)数据结构。

将起始节点入队,然后循环取出队列头部的节点,并将其未访问过的邻接节点入队,直到队列为空。

这种方式保证了搜索的顺序是按照层次进行的。

广度优先搜索的一个重要应用是在寻找最短路径问题上。

因为它先访问距离起始节点近的节点,所以如果存在最短路径,它往往能够更快地找到。

例如,在地图导航中,要找到从一个地点到另一个地点的最短路线,广度优先搜索就可能是一个不错的选择。

接下来,我们看看深度优先搜索。

如果说广度优先搜索是逐层展开,那么深度优先搜索就像是一个勇敢的探险家,沿着一条路径一直走下去,直到走到尽头或者无法继续,然后才回溯并尝试其他路径。

深度优先搜索通过递归或者使用栈(Stack)来实现。

从起始节点开始,不断深入访问未访问过的邻接节点,直到无法继续,然后回溯到上一个未完全探索的节点,继续探索其他分支。

深度优先搜索在探索复杂的树形结构或者处理递归问题时非常有用。

比如在检查一个表达式是否合法、遍历一个复杂的文件目录结构等方面,深度优先搜索能够发挥其优势。

深度优先和广度优先比较

深度优先和广度优先比较

深度优先和⼴度优先⽐较区别:1)⼆叉树的深度优先遍历的⾮递归的通⽤做法是采⽤栈,⼴度优先遍历的⾮递归的通⽤做法是采⽤队列。

2)深度优先遍历:对每⼀个可能的分⽀路径深⼊到不能再深⼊为⽌,⽽且每个结点只能访问⼀次。

要特别注意的是,⼆叉树的深度优先遍历⽐较特殊,可以细分为先序遍历、中序遍历、后序遍历。

具体说明如下:先序遍历:对任⼀⼦树,先访问根,然后遍历其左⼦树,最后遍历其右⼦树。

中序遍历:对任⼀⼦树,先遍历其左⼦树,然后访问根,最后遍历其右⼦树。

后序遍历:对任⼀⼦树,先遍历其左⼦树,然后遍历其右⼦树,最后访问根。

⼴度优先遍历:⼜叫层次遍历,从上往下对每⼀层依次访问,在每⼀层中,从左往右(也可以从右往左)访问结点,访问完⼀层就进⼊下⼀层,直到没有结点可以访问为⽌。

3)深度优先搜素算法:不全部保留结点,占⽤空间少;有回溯操作(即有⼊栈、出栈操作),运⾏速度慢。

⼴度优先搜索算法:保留全部结点,占⽤空间⼤;⽆回溯操作(即⽆⼊栈、出栈操作),运⾏速度快。

通常深度优先搜索法不全部保留结点,扩展完的结点从数据库中弹出删去,这样,⼀般在数据库中存储的结点数就是深度值,因此它占⽤空间较少。

所以,当搜索树的结点较多,⽤其它⽅法易产⽣内存溢出时,深度优先搜索不失为⼀种有效的求解⽅法。

 ⼴度优先搜索算法,⼀般需存储产⽣的所有结点,占⽤的存储空间要⽐深度优先搜索⼤得多,因此,程序设计中,必须考虑溢出和节省内存空间的问题。

但⼴度优先搜索法⼀般⽆回溯操作,即⼊栈和出栈的操作,所以运⾏速度⽐深度优先搜索要快些深度优先:前序遍历:35,20,15,16,29,28,30,40,50,45,55中序遍历:15,16,20,28,29,30,35,40,45,50,55后序遍历:16,15,28,30,29,20,45,55,50,40,35⼴度优先遍历:35 20 40 15 29 50 16 28 30 45 55代码:package www.hhy;import java.beans.beancontext.BeanContextChild;import java.util.*;class Binarytree {class TreeNode{int value;TreeNode left;TreeNode right;public TreeNode(int value) {this.value = value;}}//⽤递归创建⼆叉树public int i = 0;TreeNode creatTesttree(String s){TreeNode root = null;if (s.charAt(i)!='#') {root = new TreeNode(s.charAt(i));i++;root.left = creatTesttree(s);root.right = creatTesttree(s);}else{i++;}return root;}//⼆叉树的前序遍历递归void binaryTreePrevOrder(TreeNode root){if(root==null){return;}System.out.println(root.value+" ");binaryTreePrevOrder(root.left);binaryTreePrevOrder(root.right);}//⼆叉树的中序遍历递归void binaryTreeInOrder(TreeNode root){if(root==null){return;}binaryTreeInOrder(root.left);System.out.println(root.value+" ");binaryTreeInOrder(root.right);}//⼆叉树的后续遍历递归void binaryTreePostOrder(TreeNode root){if(root==null){return;}binaryTreePostOrder(root.left);binaryTreePostOrder(root.right);System.out.println(root.value+" ");}//层序遍历void binaryTreeLevelOrder(TreeNode root,int level){if(root ==null||level<1){return;}if(level==1){System.out.print(root.value+" ");}binaryTreeLevelOrder(root.left,level-1);binaryTreeLevelOrder(root.right,level-1);}void BTreeLevelOrder(TreeNode root){if (root == null)return;int dep = getHeight(root);for (int i = 1; i <= dep; i++){binaryTreeLevelOrder(root,i);}}//⼆叉树的层序遍历⾮递归void binaryTreeLevelOrder(TreeNode root) {Queue<TreeNode> queue = new LinkedList<>();if(root != null) {queue.offer(root);//LinkedList offer add}while (!queue.isEmpty()) {//1、拿到队头的元素把队头元素的左右⼦树⼊队 TreeNode cur = queue.poll();System.out.print(cur.value+" ");//2、不为空的时候才能⼊队if(cur.left != null) {queue.offer(cur.left);}if(cur.right != null) {queue.offer(cur.right);}}}//⼆叉树的前序遍历⾮递归void binaryTreePrevOrderNonR(TreeNode root){Stack<TreeNode> stack = new Stack<>();TreeNode cur = root;TreeNode top = null;while (cur != null || !stack.empty()) {while (cur != null) {stack.push(cur);System.out.print(cur.value + " ");cur = cur.left;}top = stack.pop();cur = top.right;}System.out.println();}//⼆叉树的中序遍历⾮递归void binaryTreeInOrderNonR(TreeNode root){Stack<TreeNode> stack = new Stack<>();TreeNode cur = root;TreeNode top = null;while (cur != null || !stack.empty()) {while (cur != null) {stack.push(cur);cur = cur.left;}top = stack.pop();System.out.print(top.value+" ");cur = top.right;}System.out.println();}//⼆叉树的后序遍历⾮递归void binaryTreePostOrderNonR(TreeNode root) {Stack<TreeNode> stack = new Stack<>();TreeNode cur = root;TreeNode prev = null;while (cur != null || !stack.empty()) {while (cur != null) {stack.push(cur);cur = cur.left;}cur = stack.peek();//L D//cur.right == prev 代表的是 cur的右边已经打印过了if(cur.right == null || cur.right == prev) {stack.pop();System.out.println(cur.value);prev = cur;cur = null;}else {cur = cur.right;}}}//⼆叉树的节点个数递归int getSize(TreeNode root){if(root==null){return 0;}return getSize(root.left)+getSize(root.right)+1;}//⼆叉树的叶⼦节点的个数递归int getLeafSize(TreeNode root){if(root==null){return 0;}if(root.left==null && root.right==null){return 1;}return getLeafSize(root.left)+getLeafSize(root.right); }//⼆叉树得到第K层结点的个数int getKlevelSize(TreeNode root ,int k){if(root==null){return 0;}if(k == 1){return 1;}return getKlevelSize(root.left,k-1)+getKlevelSize(root.right,k-1);}//⼆叉树查找并返回该结点递归// 查找,依次在⼆叉树的根、左⼦树、// 右⼦树中查找 value,如果找到,返回结点,否则返回 nullTreeNode find(TreeNode root, int value){if(root == null) {return null;}if(root.value == value){return root;}TreeNode ret = find(root.left,value);if(ret != null) {return ret;}ret = find(root.right,value);if(ret != null) {return ret;}return null;}//⼆叉树的⾼度int getHeight(TreeNode root){if(root==null){return 0;}int leftHeight = getHeight(root.left);int rightHeight = getHeight(root.right);return leftHeight>rightHeight ? leftHeight+1:rightHeight+1;}//判断⼀个树是不是完全⼆叉树public int binaryTreeComplete(TreeNode root) {Queue<TreeNode> queue = new LinkedList<TreeNode>();if(root != null) {queue.add(root);//offer}while(!queue.isEmpty()) {TreeNode cur = queue.peek();queue.poll();if(cur != null) {queue.add(cur.left);queue.add(cur.right);}else {break;}}while(!queue.isEmpty()) {TreeNode cur = queue.peek();if (cur != null){//说明不是满⼆叉树return -1;}else{queue.poll();}}return 0;//代表是完全⼆叉树}//检查两棵树是否是相同的,如果两棵树结构相同,并且在结点上的值相同,那么这两棵树是相同返回true public boolean isSameTree(TreeNode p,TreeNode q){if((p==null&&q!=null)||(p!=null&&q==null)){}if(p==null && q==null){return true;}if(p.value!=q.value){return false;}return isSameTree(p.left,q.left)&&isSameTree(p.right,q.left);}//检查是否为⼦树public boolean isSubTree(TreeNode s,TreeNode t){if(s==null||t==null){return false;}if(isSameTree(s,t)){return true;}else if (isSubTree(s.left,t)){return true;}else if(isSubTree(s.right,t)){return true;}else{return false;}}//1.判断是否为平衡⼆叉树,左右⼦树的⾼度之差不超过 "1"(⼤根本⾝是平衡⼆叉树,左右⼦树也必须是平衡⼆叉树) // 时间复杂度为n^2//2.求复杂度为O(n)的解法public boolean isBanlanced(TreeNode root){if(root==null){return true;}else{int leftHeight = getHeight(root.left);int rightHeight = getHeight(root.right);return Math.abs(leftHeight-rightHeight)<2&&isBanlanced(root.left)&&isBanlanced(root.right);}}//判断是否为对称⼆叉树public boolean isSymmetric(TreeNode root){if(root==null){return true;}return isSymmetric(root.left,root.right);}public boolean isSymmetric(TreeNode lefttree,TreeNode righttree){if((lefttree==null && righttree!=null)||(lefttree!=null && righttree ==null)){return false;}if(lefttree == null && righttree == null){return true;}return lefttree.value == righttree.value && isSymmetric(lefttree.left,righttree.right)&& isSymmetric(lefttree.right,righttree.left);}//⼆叉树创建字符串⾮递归写法public String tree2str(TreeNode t){StringBuilder sb = new StringBuilder();tree2strchild(t,sb);return sb.toString();}public void tree2strchild(TreeNode t ,StringBuilder sb){if (t==null){}sb.append(t.value);if (t.left!=null){sb.append("(");tree2strchild(t.left,sb);sb.append(")");}else {if (t.right==null){}}}//⼆叉树字符串递归写法public String CreateStr(TreeNode t){if(t==null){return "";}if(t.left==null&&t.right==null){return t.value+"";}if(t.left==null){return t.value+"()"+"("+CreateStr(t.right)+")";}if(t.right==null){return t.value+"("+CreateStr(t.left)+")";}return t.value+"("+CreateStr(t.left)+")"+"("+CreateStr(t.right)+")";}public int rob(TreeNode root) {if (root == null) return 0;return Math.max(robOK(root), robNG(root));}private int robOK(TreeNode root) {if (root == null) return 0;return root.value + robNG(root.left) + robNG(root.right);}private int robNG(TreeNode root) {if (root == null) return 0;return rob(root.left) + rob(root.right);}//⼆叉树的公共祖先public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) { if(root==null){return null;}if(root==p||root==q){return root;}TreeNode leftTree = lowestCommonAncestor(root.left,p,q);//p||q nullTreeNode rightTree = lowestCommonAncestor(root.right,p,q);//p||q null//3if(leftTree!=null && rightTree!=null){return root;}//左边找到else if (leftTree!=null ){return leftTree;}//右边找到else if(rightTree!=null){return rightTree;}//都没找到的情况下return null;}//⼆叉搜索树,若他的左⼦树不为空,左⼦树上的所有节点都⼩于根节点,//如果他的右⼦树不为空,右⼦树上的所有节点都⼤于根节点//最终他的中序排列都是有序结果//输⼊⼀棵⼆叉搜索树,将该⼆叉搜索树转换成⼀个排序的双向链表。

信息学奥赛——深度优先搜索和广度优先搜索

信息学奥赛——深度优先搜索和广度优先搜索

全国青少年信息学奥林匹克联赛搜索基础算法一、深度搜索(DFS)从一个简单题目开始。

例1.输出n个元素的无重复的全排列。

(1<=n<=9)在这里我们可以对每一个元素编号,形成1,2,…,8,9个数字的全排列。

我们用一个一维数组来处理,相当于有9个位置,每个位置可以放1到9,再进行重复性判断,即在每个位置放一个数字时判断它前面是否已经使用该数字。

通过数组中元素值的变化,产生全排列。

下面给出非递归例程,其中,变量k是表示位置指针,数组x用来装每个位置的值。

const n=5;varx:array[1..10] of integer;k:integer; {位置指针}function try:boolean; {判重函数}var i:integer;beginfor i:=1 to k-1 doif x[i]=x[k] thenbegin try:=false;exit;end;try:=true;end;procedure out; {输出过程}var i:integer;beginfor i:=1 to n dowrite(x[i]);writeln;end;begink:=1;x[1]:=0;while k>0 dobegininc(x[k]); {当前第k个位置中增加1}if x[k]>n then {判断当前第k个位置中是否超界,超界指针后移一位} dec(k)elseif try then {判重}begininc(k);x[k]:=0; {前进1位}if k>n then {判断指针是否超界,决定一个排列是否完成,完成指针后移一位}begin out;dec(k);end;end;end;end.下面是递归例程:const n=5;varx:array[1..10] of integer;function try(v1,k:integer):boolean; {判重函数,v1表示位置,k表示所放的值}var i:integer;beginfor i:=1 to v1-1 doif x[i]=k thenbegin try:=false;exit;end;try:=true;end;procedure out; {输出过程}beginfor i:=1 to n dowrite(x[i]);writeln;end;procedure search(v:integer); {v表示第v个位置}var i:integer;beginif v>n then begin out;exit;end; {若v超界,一个排列完成}for i:=1 to n do {在第v个位置上分别放1到n}if try(v,i) then {如果不重复,处理第v+1个位置}begin x[v]:=i;search(v+1);end;end;beginsearch(1);end.说明:使用非递归的好处是节约内存,当一些题目对内存消耗较大时,建议使用非递归方式;但使用递归方式在程序运行时间上要好一些,因为在每个节点扩展时,递归方式少一个范围超界判断。

的遍历算法详解深度优先搜索与广度优先搜索

的遍历算法详解深度优先搜索与广度优先搜索

的遍历算法详解深度优先搜索与广度优先搜索的遍历算法详解——深度优先搜索与广度优先搜索遍历算法是计算机科学中常用的算法之一,用于按照一定规则遍历图或树的各个节点。

本文将详细介绍两种常用的遍历算法——深度优先搜索和广度优先搜索。

1. 深度优先搜索(Depth-First Search,DFS)深度优先搜索是一种先序遍历的算法,其主要思想是从某一个节点出发,优先访问它的所有邻接节点,并递归地遍历各个邻接节点的邻接节点,直到到达没有未访问节点的情况,然后回溯到前一节点,重复上述过程,直到遍历完整个图或树。

深度优先搜索可以使用递归或栈来实现。

以递归方式实现的深度优先搜索算法如下:```procedure DFS(node):if node is null:returnvisit(node)node.visited = truefor each adj_node in node.adjacentNodes:if adj_node.visited is false:DFS(adj_node)```2. 广度优先搜索(Breadth-First Search,BFS)广度优先搜索是一种层序遍历的算法,其主要思想是从某一个节点出发,依次访问其所有邻接节点,然后再访问邻接节点的邻接节点,以此类推,直到遍历完整个图或树。

广度优先搜索可以使用队列来实现。

广度优先搜索算法如下:```procedure BFS(start_node):queue = new Queue()start_node.visited = trueenqueue(queue, start_node)while queue is not empty:node = dequeue(queue)visit(node)for each adj_node in node.adjacentNodes:if adj_node.visited is false:adj_node.visited = trueenqueue(queue, adj_node)```深度优先搜索和广度优先搜索各自有其应用场景。

广度优先搜索和深度优先搜索

广度优先搜索和深度优先搜索

有两种常用的方法可用来搜索图:即深度优先搜索和广度优先搜索。

它们最终都会到达所有连通的顶点。

深度优先搜索通过栈来实现,而广度优先搜索通过队列来实现。

深度优先搜索:深度优先搜索就是在搜索树的每一层始终先只扩展一个子节点,不断地向纵深前进直到不能再前进(到达叶子节点或受到深度限制)时,才从当前节点返回到上一级节点,沿另一方向又继续前进。

这种方法的搜索树是从树根开始一枝一枝逐渐形成的。

下面图中的数字显示了深度优先搜索顶点被访问的顺序。

为了实现深度优先搜索,首先选择一个起始顶点并需要遵守三个规则:(1) 如果可能,访问一个邻接的未访问顶点,标记它,并把它放入栈中。

(2) 当不能执行规则1时,如果栈不空,就从栈中弹出一个顶点。

(3) 如果不能执行规则1和规则2,就完成了整个搜索过程。

广度优先搜索:在深度优先搜索算法中,是深度越大的结点越先得到扩展。

如果在搜索中把算法改为按结点的层次进行搜索,本层的结点没有搜索处理完时,不能对下层结点进行处理,即深度越小的结点越先得到扩展,也就是说先产生的结点先得以扩展处理,这种搜索算法称为广度优先搜索法。

在深度优先搜索中,算法表现得好像要尽快地远离起始点似的。

相反,在广度优先搜索中,算法好像要尽可能地靠近起始点。

它首先访问起始顶点的所有邻接点,然后再访问较远的区域。

它是用队列来实现的。

下面图中的数字显示了广度优先搜索顶点被访问的顺序。

实现广度优先搜索,也要遵守三个规则:(1) 访问下一个未来访问的邻接点,这个顶点必须是当前顶点的邻接点,标记它,并把它插入到队列中。

(2) 如果因为已经没有未访问顶点而不能执行规则1时,那么从队列头取一个顶点,并使其成为当前顶点。

(3) 如果因为队列为空而不能执行规则2,则搜索结束。

BFS是一种盲目搜寻法,目的是系统地展开并检查图中的所有节点,以找寻结果。

换句话说,它并不考虑结果的可能位址,彻底地搜索整张图,直到找到结果为止。

BFS并不使用经验法则算法。

浅析深度优先和广度优先遍历实现过程、区别及使用场景

浅析深度优先和广度优先遍历实现过程、区别及使用场景

浅析深度优先和⼴度优先遍历实现过程、区别及使⽤场景⼀、什么是深度/⼴度优先遍历? 深度优先遍历简称DFS(Depth First Search),⼴度优先遍历简称BFS(Breadth First Search),它们是遍历图当中所有顶点的两种⽅式。

这两种遍历⽅式有什么不同呢?我们来举个栗⼦: 我们来到⼀个游乐场,游乐场⾥有11个景点。

我们从景点0开始,要玩遍游乐场的所有景点,可以有什么样的游玩次序呢?1、深度优先遍历 第⼀种是⼀头扎到底的玩法。

我们选择⼀条⽀路,尽可能不断地深⼊,如果遇到死路就往回退,回退过程中如果遇到没探索过的⽀路,就进⼊该⽀路继续深⼊。

在图中,我们⾸先选择景点1的这条路,继续深⼊到景点7、景点8,终于发现⾛不动了: 于是,我们退回到景点7,然后探索景点10,⼜⾛到了死胡同。

于是,退回到景点1,探索景点9: 按照这个思路,我们再退回到景点0,后续依次探索景点2、3、5、4、发现相邻的都玩过了,再回退到3,再接着玩6,终于玩遍了整个游乐场: 具体次序如下图,景点旁边的数字代表探索次序。

当然还可以有别的排法。

像这样先深⼊探索,⾛到头再回退寻找其他出路的遍历⽅式,就叫做深度优先遍历(DFS)。

这⽅式看起来很像⼆叉树的前序遍历。

没错,其实⼆叉树的前序、中序、后序遍历,本质上也可以认为是深度优先遍历。

2、⼴度优先遍历 除了像深度优先遍历这样⼀头扎到底的玩法以外,我们还有另⼀种玩法:⾸先把起点相邻的⼏个景点玩遍,然后去玩距离起点稍远⼀些(隔⼀层)的景点,然后再去玩距离起点更远⼀些(隔两层)的景点… 在图中,我们⾸先探索景点0的相邻景点1、2、3、4: 接着,我们探索与景点0相隔⼀层的景点7、9、5、6: 最后,我们探索与景点0相隔两层的景点8、10: 像这样⼀层⼀层由内⽽外的遍历⽅式,就叫做⼴度优先遍历(BFS)。

这⽅式看起来很像⼆叉树的层序遍历。

没错,其实⼆叉树的层序遍历,本质上也可以认为是⼴度优先遍历。

深度优先和广度优先算法

深度优先和广度优先算法

深度优先和广度优先算法深度优先和广度优先算法深度优先遍历和广度优先遍历是两种常用的图遍历算法。

它们的策略不同,各有优缺点,可以在不同的场景中使用。

一、深度优先遍历深度优先遍历(Depth First Search,DFS)是一种搜索算法,它从一个顶点开始遍历,尽可能深地搜索图中的每一个可能的路径,直到找到所有的路径。

该算法使用栈来实现。

1. 算法描述深度优先遍历的过程可以描述为:- 访问起始顶点v,并标记为已访问; - 从v的未被访问的邻接顶点开始深度优先遍历,直到所有的邻接顶点都被访问过或不存在未访问的邻接顶点; - 如果图中还有未被访问的顶点,则从这些顶点中任选一个,重复步骤1。

2. 算法实现深度优先遍历算法可以使用递归或者栈来实现。

以下是使用栈实现深度优先遍历的示例代码:``` void DFS(Graph g, int v, bool[] visited) { visited[v] = true; printf("%d ", v);for (int w : g.adj(v)) { if(!visited[w]) { DFS(g, w,visited); } } } ```3. 算法分析深度优先遍历的时间复杂度为O(V+E),其中V是顶点数,E是边数。

由于该算法使用栈来实现,因此空间复杂度为O(V)。

二、广度优先遍历广度优先遍历(Breadth First Search,BFS)是一种搜索算法,它从一个顶点开始遍历,逐步扩展到它的邻接顶点,直到找到所有的路径。

该算法使用队列来实现。

1. 算法描述广度优先遍历的过程可以描述为:- 访问起始顶点v,并标记为已访问; - 将v的所有未被访问的邻接顶点加入队列中; - 从队列头取出一个顶点w,并标记为已访问; - 将w的所有未被访问的邻接顶点加入队列中; - 如果队列不为空,则重复步骤3。

2. 算法实现广度优先遍历算法可以使用队列来实现。

深度优先搜索和广度优先搜索的区别

深度优先搜索和广度优先搜索的区别

深度优先搜索和⼴度优先搜索的区别1、深度优先算法占内存少但速度较慢,⼴度优先算法占内存多但速度较快,在距离和深度成正⽐的情况下能较快地求出最优解。

2、深度优先与⼴度优先的控制结构和产⽣系统很相似,唯⼀的区别在于对扩展节点选取上。

由于其保留了所有的前继节点,所以在产⽣后继节点时可以去掉⼀部分重复的节点,从⽽提⾼了搜索效率。

3、这两种算法每次都扩展⼀个节点的所有⼦节点,⽽不同的是,深度优先下⼀次扩展的是本次扩展出来的⼦节点中的⼀个,⽽⼴度优先扩展的则是本次扩展的节点的兄弟点。

在具体实现上为了提⾼效率,所以采⽤了不同的数据结构。

4、深度优先搜索的基本思想:任意选择图G的⼀个顶点v0作为根,通过相继地添加边来形成在顶点v0开始的路,其中每条新边都与路上的最后⼀个顶点以及不在路上的⼀个顶点相关联。

继续尽可能多地添加边到这条路。

若这条路经过图G的所有顶点,则这条路即为G的⼀棵⽣成树;若这条路没有经过G的所有顶点,不妨设形成这条路的顶点顺序v0,v1,......,vn。

则返回到路⾥的次最后顶点v(n-1).若有可能,则形成在顶点v(n-1)开始的经过的还没有放过的顶点的路;否则,返回到路⾥的顶点v(n-2)。

然后再试。

重复这个过程,在所访问过的最后⼀个顶点开始,在路上次返回的顶点,只要有可能就形成新的路,知道不能添加更多的边为⽌。

5、⼴度优先搜索的基本思想:从图的顶点中任意第选择⼀个根,然后添加与这个顶点相关联的所有边,在这个阶段添加的新顶点成为⽣成树⾥1层上的顶点,任意地排序它们。

下⼀步,按照顺序访问1层上的每⼀个顶点,只要不产⽣回路,就添加与这个顶点相关联的每个边。

这样就产⽣了树⾥2的上的顶点。

遵循同样的原则继续下去,经有限步骤就产⽣了⽣成树。

深度优先搜索和广度优先搜索

深度优先搜索和广度优先搜索

深度优先搜索和广度优先搜索深度优先搜索(DFS)和广度优先搜索(BFS)是图论中常用的两种搜索算法。

它们是解决许多与图相关的问题的重要工具。

本文将着重介绍深度优先搜索和广度优先搜索的原理、应用场景以及优缺点。

一、深度优先搜索(DFS)深度优先搜索是一种先序遍历二叉树的思想。

从图的一个顶点出发,递归地访问与该顶点相邻的顶点,直到无法再继续前进为止,然后回溯到前一个顶点,继续访问其未被访问的邻接顶点,直到遍历完整个图。

深度优先搜索的基本思想可用以下步骤总结:1. 选择一个初始顶点;2. 访问该顶点,并标记为已访问;3. 递归访问该顶点的邻接顶点,直到所有邻接顶点均被访问过。

深度优先搜索的应用场景较为广泛。

在寻找连通分量、解决迷宫问题、查找拓扑排序等问题中,深度优先搜索都能够发挥重要作用。

它的主要优点是容易实现,缺点是可能进入无限循环。

二、广度优先搜索(BFS)广度优先搜索是一种逐层访问的思想。

从图的一个顶点出发,先访问该顶点,然后依次访问与该顶点邻接且未被访问的顶点,直到遍历完整个图。

广度优先搜索的基本思想可用以下步骤总结:1. 选择一个初始顶点;2. 访问该顶点,并标记为已访问;3. 将该顶点的所有邻接顶点加入一个队列;4. 从队列中依次取出一个顶点,并访问该顶点的邻接顶点,标记为已访问;5. 重复步骤4,直到队列为空。

广度优先搜索的应用场景也非常广泛。

在求最短路径、社交网络分析、网络爬虫等方面都可以使用广度优先搜索算法。

它的主要优点是可以找到最短路径,缺点是需要使用队列数据结构。

三、DFS与BFS的比较深度优先搜索和广度优先搜索各自有着不同的优缺点,适用于不同的场景。

深度优先搜索的优点是在空间复杂度较低的情况下找到解,但可能陷入无限循环,搜索路径不一定是最短的。

广度优先搜索能找到最短路径,但需要保存所有搜索过的节点,空间复杂度较高。

需要根据实际问题选择合适的搜索算法,例如在求最短路径问题中,广度优先搜索更加合适;而在解决连通分量问题时,深度优先搜索更为适用。

深度优先遍历算法和广度优先遍历算法实验小结

深度优先遍历算法和广度优先遍历算法实验小结

深度优先遍历算法和广度优先遍历算法实验小结一、引言在计算机科学领域,图的遍历是一种基本的算法操作。

深度优先遍历算法(Depth First Search,DFS)和广度优先遍历算法(Breadth First Search,BFS)是两种常用的图遍历算法。

它们在解决图的连通性和可达性等问题上具有重要的应用价值。

本文将从理论基础、算法原理、实验设计和实验结果等方面对深度优先遍历算法和广度优先遍历算法进行实验小结。

二、深度优先遍历算法深度优先遍历算法是一种用于遍历或搜索树或图的算法。

该算法从图的某个顶点开始遍历,沿着一条路径一直向前直到不能再继续前进为止,然后退回到上一个节点,尝试下一个节点,直到遍历完整个图。

深度优先遍历算法通常使用栈来实现。

以下是深度优先遍历算法的伪代码:1. 创建一个栈并将起始节点压入栈中2. 将起始节点标记为已访问3. 当栈不为空时,执行以下步骤:a. 弹出栈顶节点,并访问该节点b. 将该节点尚未访问的邻居节点压入栈中,并标记为已访问4. 重复步骤3,直到栈为空三、广度优先遍历算法广度优先遍历算法是一种用于遍历或搜索树或图的算法。

该算法从图的某个顶点开始遍历,先访问起始节点的所有相邻节点,然后再依次访问这些相邻节点的相邻节点,依次类推,直到遍历完整个图。

广度优先遍历算法通常使用队列来实现。

以下是广度优先遍历算法的伪代码:1. 创建一个队列并将起始节点入队2. 将起始节点标记为已访问3. 当队列不为空时,执行以下步骤:a. 出队一个节点,并访问该节点b. 将该节点尚未访问的邻居节点入队,并标记为已访问4. 重复步骤3,直到队列为空四、实验设计本次实验旨在通过编程实现深度优先遍历算法和广度优先遍历算法,并通过对比它们在不同图结构下的遍历效果,验证其算法的正确性和有效性。

具体实验设计如下:1. 实验工具:使用Python编程语言实现深度优先遍历算法和广度优先遍历算法2. 实验数据:设计多组图结构数据,包括树、稠密图、稀疏图等3. 实验环境:在相同的硬件环境下运行实验程序,确保实验结果的可比性4. 实验步骤:编写程序实现深度优先遍历算法和广度优先遍历算法,进行多次实验并记录实验结果5. 实验指标:记录每种算法的遍历路径、遍历时间和空间复杂度等指标,进行对比分析五、实验结果在不同图结构下,经过多次实验,分别记录了深度优先遍历算法和广度优先遍历算法的实验结果。

第五章状态空间的各种搜索

第五章状态空间的各种搜索

四.等代价搜索 等代价搜索
分析:城市间旅费=节点间代价,制约条件是代价最小,先扩展代 价最小的节点。如从A->B->E, cost(B)=7,cost(E)=cost(B)+m(B,E)=7+12=19.设计以A为起点, 用等代价搜索得出部分搜索树,连线上数字为从父节点到子节点 的代价.节点上方小圆圈内数字为节点扩展顺序,方框左上方为 从A到该节点总代价.
例:图中各点间连线表示从一处到另一处所消耗的费 用,试编一程序求任意两地之间的最小费用(代价最小) 的路线,并打印所付出费用.
六.分枝限界法 分枝限界法
设求从v1->v5所付出代价最小路径 设变量s=从始点到某点总代价 (1)第一步扩展v1获得第一级子节点: v1->v2:2 v1->v3:4 V1->v4:5
五.A*算法 算法
例:炸迷宫问题 有一个N*N迷宫,每一格或是空,或者是实,如果 有一人位于迷宫的一空格(x,y)中,则他仅能到达相邻 的空格(指上下左右).现有一人从(1,1)始点出发,目 标是(N,N),他随身带着K个炸弹(0<=K<=N),一个炸弹 的威力能把与他相邻的一个实格炸成空格. 编一程序,求出R个被炸实格位置(0<=R<=K)和 此人从起始点到目标的路径,并要求R满足条件中的最 小值. 要求:
第五章 状态空间的各种搜索
一.概述 概述
广度优先搜索法:以接近起始节点的程度依次 广度优先搜索法 扩展节点,即对下一层节点搜索前,必须先搜 索完本层所有节点 深度优先搜索法:首先扩展最新产生的节点, 深度优先搜索法 每层只对一个节点进行扩展,除非搜索失败或 已达到预先约定的最大深度,才会退回去搜索 原来忽略节点
三.深度优先搜索 深度优先搜索

广度优先搜索

广度优先搜索

(一)深度优先搜索遍历算法深度优先搜索的过程深度优先搜索所遵循的搜索策略是尽可能“深”地搜索图。

在深度优先搜索中,对于最新发现的节点,如果它还有以此为起点而未搜索的边,就沿此边继续搜索下去。

当节点v的所有边都己被探寻过,搜索将回溯到发现节点v有那条边的始节点。

这一过程一直进行到已发现从源节点可达的所有节点为止。

如果还存在未被发现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被发现为止。

即⒈以给定的某个顶点V0为起始点,访问该顶点;⒉选取一个与顶点V0相邻接且未被访问过的顶点V1,用V1作为新的起始点,重复上述过程;⒊当到达一个其所有邻接的顶点都已被访问过的顶点Vi时,就退回到新近被访问过的顶点Vi- 1,继续访问Vi-1尚未访问的邻接点,重复上述搜索过程;⒋直到从任意一个已访问过的顶点出发,再也找不到未被访问过的顶点为止,遍历便告完成。

这种搜索的次序体现了向纵深发展的趋势,所以称之为深度优先搜索。

深度优先搜索算法描述:程序实现有两种方式--递归与非递归。

一、递归递归过程为:Procedure DEF-GO(step)for i:=1 to max doif 子结点符合条件 then产生新的子结点入栈;if 子结点是目标结点 then 输出else DEF-GO(step+1);栈顶结点出栈;endif;enddo;主程序为:Program DFS;初始状态入栈;DEF-GO(1);二、非递归Program DEF(step);step:=0;repeatstep:=step+1;j:=0;p:=falserepeatj:=j+1;if 结点符合条件 then产生子结点入栈;if 子结点是目标结点 then 输出else p:=true;elseif j>=max then 回溯 p:=false;endif;until p=true;until step=0;回溯过程如下:Procedure BACK;step:=step-1;if step>0 then 栈顶结点出栈else p:=true;例如八数码难题--已知8个数的起始状态如图1(a),要得到目标状态为图1(b)。

数据结构与算法(13):深度优先搜索和广度优先搜索

数据结构与算法(13):深度优先搜索和广度优先搜索
因此访问顺序是:A => C => D => F => B => G => E
2.2.2 有向图的广广度优先搜索
下面面以“有向图”为例例,来对广广度优先搜索进行行行演示。还是以上面面的图G2为例例进行行行说明。
第1步:访问A。 第2步:访问B。 第3步:依次访问C,E,F。 在访问了了B之后,接下来访问B的出边的另一一个顶点,即C,E,F。前 面面已经说过,在本文文实现中,顶点ABCDEFG按照顺序存储的,因此会先访问C,再依次访 问E,F。 第4步:依次访问D,G。 在访问完C,E,F之后,再依次访问它们的出边的另一一个顶点。还是按 照C,E,F的顺序访问,C的已经全部访问过了了,那么就只剩下E,F;先访问E的邻接点D,再访 问F的邻接点G。
if(mVexs[i]==ch)
return i;
return -1;
}
/* * 读取一一个输入入字符
*/
private char readChar() {
char ch='0';
do {
try {
ch = (char)System.in.read();
} catch (IOException e) {
数据结构与算法(13):深度优先搜索和 广广度优先搜索
BFS和DFS是两种十十分重要的搜索算法,BFS适合查找最优解,DFS适合查找是否存在解(或者说 能找到任意一一个可行行行解)。用用这两种算法即可以解决大大部分树和图的问题。
一一、深度优先搜索(DFS)
1.1 介绍
图的深度优先搜索(Depth First Search),和树的先序遍历比比较类似。 它的思想:假设初始状态是图中所有顶点均未被访问,则从某个顶点V出发,首首先访问该顶点, 然后依次从它的各个未被访问的邻接点出发深度优先搜索遍历图,直至至图中所有和V有路路径相通 的顶点都被访问到。若此时尚有其他顶点未被访问到,则另选一一个未被访问的顶点作起始点,重 复上述过程,直至至图中所有顶点都被访问到为止止。 显然,深度优先搜索是一一个递归的过程。

深度优先搜索和广度优先搜索的比较和应用场景

深度优先搜索和广度优先搜索的比较和应用场景

深度优先搜索和广度优先搜索的比较和应用场景在计算机科学中,深度优先搜索(DFS)和广度优先搜索(BFS)是两种常用的图搜索算法。

它们在解决许多问题时都能够发挥重要作用,但在不同的情况下具有不同的优势和适用性。

本文将对深度优先搜索和广度优先搜索进行比较和分析,并讨论它们在不同应用场景中的使用。

一、深度优先搜索(DFS)深度优先搜索是一种通过遍历图的深度节点来查找目标节点的算法。

它的基本思想是从起始节点开始,依次遍历该节点的相邻节点,直到到达目标节点或者无法继续搜索为止。

如果当前节点有未被访问的相邻节点,则选择其中一个作为下一个节点继续进行深度搜索;如果当前节点没有未被访问的相邻节点,则回溯到上一个节点,并选择其未被访问的相邻节点进行搜索。

深度优先搜索的主要优势是其在搜索树的深度方向上进行,能够快速达到目标节点。

它通常使用递归或栈数据结构来实现,代码实现相对简单。

深度优先搜索适用于以下情况:1. 图中的路径问题:深度优先搜索能够在图中找到一条路径是否存在。

2. 拓扑排序问题:深度优先搜索能够对有向无环图进行拓扑排序,找到图中节点的一个线性排序。

3. 连通性问题:深度优先搜索能够判断图中的连通分量数量以及它们的具体节点组合。

二、广度优先搜索(BFS)广度优先搜索是一种通过遍历图的广度节点来查找目标节点的算法。

它的基本思想是从起始节点开始,先遍历起始节点的所有相邻节点,然后再遍历相邻节点的相邻节点,以此类推,直到到达目标节点或者无法继续搜索为止。

广度优先搜索通常使用队列数据结构来实现。

广度优先搜索的主要优势是其在搜索树的广度方向上进行,能够逐层地搜索目标节点所在的路径。

它逐层扩展搜索,直到找到目标节点或者遍历完整个图。

广度优先搜索适用于以下情况:1. 最短路径问题:广度优先搜索能够在无权图中找到起始节点到目标节点的最短路径。

2. 网络分析问题:广度优先搜索能够在图中查找节点的邻居节点、度数或者群组。

三、深度优先搜索和广度优先搜索的比较深度优先搜索和广度优先搜索在以下方面有所不同:1. 搜索顺序:深度优先搜索按照深度优先的顺序进行搜索,而广度优先搜索按照广度优先的顺序进行搜索。

深搜与广搜

深搜与广搜
内容
深度优先搜索:
广度优先搜索:
2
深度优先搜索属于图算法的一种。 其过程简要来说是对每一个可能的分支路径深入到不能再
深入为止,而且每个节点只能访问一次.
3
深度优先遍历图的方法是,从图中某顶点v出发: (1)访问顶点v; (2)依次从v的未被访问的邻接点出发,对图进行深度优先遍历;直
7
8
1 7
2
6
3
4 5
1 8 7
2
3 4
6
5
Problem Description: There is a 3-by-3 chessboard with 8 numbers. Your mission is to transform the origin shape to the target shape only by moving the blank check in four directions. Now you should figure out the minimum steps.
至图中和v有路径相通的顶点都被访问; (3)若此时图中尚有顶点未被访问,则从一个未被访问的顶点出发, 重新进行深度优先遍历,直到图中所有顶点均被访问过为止。
4
迷宫问题:

将起点标记为已走过并压栈; while (栈非空) { 从栈顶弹出一个点p; if (p这个点是终点) break; 否则沿右、下、左、上四个方向探索相邻的点 if (和p相邻的点有路可走,并且还没走过) 将相邻的点标记为已走过并压栈,它的前趋就是p点; } if (p点是终点) { 打印p点的坐标; while (p点有前趋) { p点 = p点的前趋; 打印p点的坐标; } } else 没有路线可以到达点;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

#include "string.h"
#include "stdlib.h"
#include "malloc.h"
#include "stdio.h"
#define MAX_VERTEX_NUM 10
#define MAXQSIZE 10
int visited[MAX_VERTEX_NUM];
typedef struct Node{
int adjvex;
struct Node *next;
}EdgeNode;
typedef struct VNode{
int vertex;
EdgeNode *firstedge;
}V ertexNode;
typedef V ertexNode AdjList[MAX_VERTEX_NUM]; typedef struct{
AdjList adjlist;
int n,e;
}ALGraph;
typedef struct{
int *base;
int front;
int rear;
}SqQueue;
int InitQueue(SqQueue *Q)
{
Q->base=(int *)malloc(MAXQSIZE*sizeof(int));
if(!Q->base)
return 0;
Q->front=Q->rear=0;
return 1;
}
int EnQueue(SqQueue *Q,int e)
{
if((Q->rear+1)%MAXQSIZE==Q->front)
return 0;
Q->base[Q->rear]=e;
Q->rear=(Q->rear+1)%MAXQSIZE;
return 1;
}
int DeQueue(SqQueue *Q)
{
int i;
i=Q->base[Q->front];
Q->front=(Q->front+1)%MAXQSIZE;
return i;
}
int QueueEmpty(SqQueue *Q)
{
if(Q->front==Q->rear)
return 1;
return 0;
}
void BFS(ALGraph *G,int k)
{
int e;
SqQueue Q;
EdgeNode *p;
InitQueue(&Q);
printf("这次访问顶点:%d\n",G->adjlist[k].vertex);
visited[k]=1;
p=G->adjlist[k].firstedge;
while(p!=NULL)
{
EnQueue(&Q,p->adjvex);
printf("这次访问顶点:%d\n",G->adjlist[p->adjvex].vertex);
visited[p->adjvex]=1;
p=p->next;
}
while(!QueueEmpty(&Q))
{
e=DeQueue(&Q);
p=G->adjlist[e].firstedge;
while( p!=NULL )
{
if(visited[p->adjvex]==0)
{
printf("这次访问顶点:%d\n",G->adjlist[p->adjvex].vertex);
visited[p->adjvex]=1;
EnQueue(&Q,p->adjvex);
}
p=p->next;
}
}
}
void CreateALGraph(ALGraph *G)
{
int i,j,k;
EdgeNode *s;
printf("设定无向图的顶点数n:\n");
scanf("%d",&(G->n));
printf("设定无向图的边数e:\n");
scanf("%d",&G->e);
for(i=0;i<(G->n);i++)
{
G->adjlist[i].vertex=i;
G->adjlist[i].firstedge=NULL;
printf("第%d个顶点信息为%d,序号:%d\n",i+1,i,i);
}
for(k=0;k<G->e;k++)
{
printf("读入边(vi,vj)的顶点对序号:(用空格隔开)\n");
scanf("%d%d",&i,&j);
s=(EdgeNode *)malloc(sizeof(EdgeNode));
s->adjvex=j;
s->next=G->adjlist[i].firstedge;
G->adjlist[i].firstedge=s;
s=(EdgeNode *)malloc(sizeof(EdgeNode));
s->adjvex=i;
s->next=G->adjlist[j].firstedge;
G->adjlist[j].firstedge=s;
}
}
void DFS(ALGraph *G,int i){
EdgeNode *p;
printf("这次访问顶点:%d\n",G->adjlist[i].vertex);
visited[i]=1;
p=G->adjlist[i].firstedge;
while(p)
{
if (!visited[p->adjvex])
DFS(G,p->adjvex);
p=p->next;
}
}
void InitVisited()
{
int i;
for(i=0;i<MAX_VERTEX_NUM;i++)
{
visited[i]=0;
}
}
main()
{
ALGraph *G;
int i,k;
G=(ALGraph *)malloc(sizeof(ALGraph));
printf("预令最大顶点数为10。

\n");
InitVisited();
CreateALGraph(G);
printf("从哪个顶点开始进行深度优先搜索?请输入该顶点的序号:\n");
scanf("%d",&i);
DFS(G,i);
printf("从哪个顶点开始进行广度优先搜索?请输入该顶点的序号:\n");
scanf("%d",&k);
InitVisited();
BFS(G,k);
}。

相关文档
最新文档