【新】人教版数学五年级下册第五单元《图形的运动》知识点总结
图形运动知识点总结
图形运动知识点总结图形运动是在一个平面上的移动,我们可以用数学知识来表达和分析图形的运动。
在这里,我们将总结一些关于图形运动的知识点,包括平移、旋转和变形等。
1. 平移平移是指图形在平面上沿着某个方向以相同的距离移动。
平移可以通过向量来描述,其中向量的方向和大小代表了图形的移动方向和距离。
平移不改变图形的形状和大小,只是改变了图形的位置。
在平移中,平移前后的图形是全等的,也就是说它们的对应的边和角都是相等的。
平移的公式可以表示为:(x', y') = (x + a, y + b)其中 (x', y') 是平移后的点的坐标,(x, y) 是平移前的点的坐标,a 和 b 分别是平移的横向和纵向的距离。
2. 旋转旋转是指图形绕着一个固定点旋转一定的角度。
旋转可以通过变换矩阵来描述,其中矩阵的元素代表了旋转的角度和固定点的位置。
旋转改变了图形的方向和位置,但不改变图形的形状和大小。
旋转的变换矩阵可以表示为:x' = x*cos(θ) - y*sin(θ)y' = x*sin(θ) + y*cos(θ)其中 (x', y') 是旋转后的点的坐标,(x, y) 是旋转前的点的坐标,θ 是旋转的角度。
3. 变形变形是指通过拉伸、挤压、剪切等操作改变图形的形状和大小。
变形可以通过矩阵来描述,其中矩阵的元素代表了图形的变形比例和方向。
变形改变了图形的形状和大小,但不改变图形的位置。
变形的变换矩阵可以表示为:x' = a*x + c*y + ey' = b*x + d*y + f其中 (x', y') 是变形后的点的坐标,(x, y) 是变形前的点的坐标,a、b、c、d 分别是x和y的拉伸、挤压和剪切比例,e 和 f 是平移的横向和纵向的距离。
4. 复合变换在图形运动中,我们可以将平移、旋转和变形等多种变换组合在一起,形成复合变换。
人教版五年级数学下册第五单元《图形的运动》
今天的学习,我们了解了图形运动的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对图形运动的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在本次教学过程中,我发现学生们对图形的运动充满了好奇。他们对于平移、旋转和翻转的概念有了基本的理解,但在区分这些运动类型时,部分学生还是显得有些吃力。这让我意识到,在今后的教学中,我需要更加注重对难点内容的讲解和引导。
此外,在学生小组讨论环节,我发现学生们积极参与,热烈讨论,提出了很多有趣的观点。这让我深感欣慰,也证明了小组讨论这种形式的教学对于提高学生们的合作能力和思维能力具有很好的效果。但同时,我也注意到,部分学生在讨论中显得有些依赖同伴,缺乏独立思考。因此,我需要在今后的教学中,更加关注这部分学生,引导他们学会独立思考和表达自己的观点。
人教版五年级数学下册第五单元《图形的运动》
一、教学内容
人教版五年级数学下册第五单元《图形的运动》主要包括以下内容:
1.图形的平移
-平移的定义与特征
-平移的表示方法
-平移的性质和运用
2.图形的旋转
-旋转的定义与特征
-旋转的表示方法
-旋转的性质和运用
3表示方法
-翻转的性质和运用
-空间想象能力的培养:对于一些空间想象力较弱的学生,理解图形运动可能会比较困难。
-难点解析:教师可利用教具、多媒体等辅助手段,直观展示图形运动过程,帮助学生发展空间想象力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《图形的运动》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体移动、旋转或者翻转的情况?”(例如,玩魔方时的旋转)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索图形运动的奥秘。
人教版五年级下册第五单元《图形的运动(三)》单元学习要点
人教版五年级下册第五单元《图形的运动(三)》单元学习要点第五单元《图形的运动》,是在学生已经初步感知了生活中的对称、平移和旋转现象的基础上,进一步认识图形的旋转变换,并学习在方格纸上画出一个简单的图形旋转90°后的图形,发展空间观念。
一、旋转的意义及要素1、旋转的意义旋转就是物体绕一个点向某一方向转动一定的角度。
如:指针的转动2、旋转的三要素(1)旋转点(或旋转中心):物体旋转时所绕的点,就是旋转点(或旋转中心)。
(2)旋转方向:钟表中指针运动的方向为顺时针方向;与钟表中指针的运动方向相反的方向为逆时针方向。
(3)旋转角度指对应线段的夹角或对应顶点与旋转中心连线的夹角。
(简单的讲就是物体旋转了多少度)二、图形旋转的特征与性质1、旋转前后的图形,旋转中心的位置不变;2、旋转前后的图形,形状、大小不变;3、图形绕某一点按某种方向旋转一定的度数,图形中的对应点、对应线段都按某种方向旋转了相同的度数;4、旋转前后的图形,对应点到旋转中心的距离相等,对应的线段和对应的角度都相等。
三、简单图形旋转90°的画法1、找出原图形的几个关键点或线段(一般是图形的顶点或线段的交点、端点),根据旋转方向,从关键点与旋转点所在线段的某一侧借助三角板作垂线;2、从旋转点开始,在所作垂线上量出(数出)与原线段相等的长度,标出原图形关键点的对应点;3、顺次连接所标出的对应点。
简单概括画法就是三个字:找、标、连。
四、重要习题1、2、数学书第86页第6题这一题是要画出将三角形OAB绕点O按顺时针方向旋转90°后得到的图形。
观察:三角形OAB的关键点是A点和B点,关键线段是OA和OB。
三角形要绕点O按顺时针方向旋转90°,线段OA也会按顺时针方向旋转90°。
根据旋转角度和A点到O点的距离,通过数正方形格子数很快找到A'点,接着用同样的方法找到B'点,(也可以根据对称关系找到B'点),最后连接O、A'、B'三点,旋转后的三角形就画好了。
五年级下数学第五单元图形的运动三知识点整理
第五单元《图形的运动三》
【知识梳理】
轴对称:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。
旋转的性质:图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;其中对应点到旋转中心的距离相等;旋转前后图形的大小和形状没有改变;两组对应点非别与旋转中心的连线所成的角相等,都等于旋转角;旋转中心是唯一不动的点。
1。
人教版五年级数学下册 5 图形的运动(三) 单元重点知识归纳与易错总结
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
分析:运用图形旋转的特性在方格上画图。 状元成才路
3.小小设计师。 请你运用状元成才旋路 转、平移或对称的变换,利
状元成才路
用下面的三角形 ABC状元成才路 设计出美丽图案状元成才路 。 状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
图形 A 平移得到图形 B,图形 B 经过轴 状元成才路
状元成才路
状元成才路
对称变换得到状元成才路图形 C。
2.画出三角形 AOB 绕点 O 顺时针或逆
时针旋转后的状元成才路图形。
状元成才路
状元成才路
顺时针旋状元转成才路 90° 逆时针旋转90° 顺时针旋状元成才转路 180°
错误答案:
状元成才路
正确答案:
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
错点警示:此题错在没有按照图形旋转的方 法去具体操作,从而导致旋转后图形的形状 发生了变化。
规避策略:图形旋转时,要找准旋转点、 旋转方向和旋转角度。
易错点 2 考虑问题不全面
状元成才路
【例题2】判断:
状元成才路
状元成才路
的夹角的度数。 状元成才路
顺时针方向或 逆时针方向。
状元成才路
知识点2:图形旋转的特征和性质
状元成才路
状元成才路
状元成才路
状元成才路
1.图形旋转的特征: 状元成才路
图形旋转后,形状、大
小都没有发生变化,只
人教版数学五年级下册第五单元《图形的运动(三)》知识点归纳+典例讲解
五年级下册数学第五单元《图形的运动(三)》知识点归纳+典例讲解【知识点归纳】图形变换的基本方式是平移、对称和旋转。
1、轴对称: 如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
(1)学过的轴对称平面图形:长(正)方形、圆形、等腰三角形、等边三角形、等腰梯形……等腰三角形有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,正方形有4条对称轴,等腰梯形有1条对称轴,任意梯形和平行四边形不是轴对称图形。
(2)圆有无数条对称轴。
(3)对称点到对称轴的距离相等。
(4)轴对称图形的特征和性质:①对应点到对称轴的距离相等;②对应点的连线与对称轴垂直;③对称轴两边的图形大小、形状完全相同。
2、对称图形包括轴对称图形和中心对称图形。
平行四边形(除棱形)属于中心对称图形。
3、旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。
(1)生活中的旋转:电风扇、车轮、纸风车(2)旋转要明确绕点,角度和方向。
(3)长方形绕中点旋转180度与原来重合,正方形绕中点旋转90度与原来重合。
等边三角形绕中点旋转120度与原来重合。
旋转的性质:(1)图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;(2)其中对应点到旋转中心的距离相等;(3)旋转前后图形的大小和形状没有改变;(4)两组对应点非别与旋转中心的连线所成的角相等,都等于旋转角;(5)旋转中心是唯一不动的点。
4、对称和旋转的画法:旋转要注意:顺时针、逆时针、度数【典例讲解】例1.下列图形中,对称轴条数最少的是()A.圆B.半圆C.等边三角形D.长方形【分析】一个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这个图形就是轴对称图形,这条直线就是这个图形的一条对称轴,由此即可确定这个图形的对称轴的条数及位置.【解答】解:圆有无数条对称轴,半圆有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,所以半圆的对称轴的条数最少;故选:B.【点评】此题考查了利用轴对称图形的定义判断轴对称图形的对称轴条数及位置的灵活应用.例2.如图共有 4 条对称轴.【分析】根据轴对称图形的定义:一个图形沿一条直线对折,直线两旁的部分能够完全重合,则这个图形就是轴对称图形,这条直线就是这个图形的一条对称轴,据此即可解答.【解答】解:如图共有4条对称轴.故答案为:4.【点评】此题主要考查如何确定轴对称图形的对称轴条数及位置.例3.长方形和正方形的对称轴条数相等.×(判断对错)【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;依次进行判断即可.【解答】解:长方形有2条对称轴,正方形有4条对称轴,长方形和正方形的对称轴条数不相等,所以本题说法错误;故答案为:×.【点评】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.例4.在如图的方格纸中,照样子画出所给的图形【分析】先确定圆心和半径作出外圆,再找到对应点作出正方形,再找到正方形的边长的中点找到半圆的圆心,作出4个半圆即可求解.【解答】解:如图所示:【点评】考查了运用平移、对称和旋转设计图案,关键是确定圆的圆心和半径.例5.将图向右平移五格得到图形A;再将图形A绕O点顺时针旋转90°画出图形B.【分析】(1)首先把点O以及其他四个顶点向右平移五格得到对应的点,再顺次连接各点得到图形A;(2)再把图形A以点O为旋转中心,顺时针旋转90°画出图形B即可解决问题.【解答】解:答案如图,【点评】解答此类问题,要注意旋转的方向、角度,平移的方向和距离.。
人教版数学五年级下册第五单元《图形的运动(三)》知识梳理及单元测试卷
五年级下数学第五单元《图形的运动(三)》线上线下衔接梳理一、单元梳理(一)课标具体要求(二)教材编排内容2.能从对称、平移和旋转的角度欣赏生活中的图案,并运用它们在方格纸上设计简单的图案,进一步感受图形变换带来的美感以及在生活中的应用。
(四)教学重点认识图形的旋转,探索图形旋转的特征和性质,能在方格纸上画出简单图形旋转90°后的图形;(五)教学难点能在方格纸上画出简单图形旋转90°后的图形。
二、线上学情学生通过线上学习已经基本掌握本单元知识,初步感知了生活中的旋转现象,了解了旋转的含义,知道了图形旋转的特征和性质,能在方格纸上画出简单图形旋转90°后的图形。
通过答疑,我们发现学生在以下方面还存在不足:1.运用旋转三要素描述旋转现象还不够完整、熟练、准确,在判读旋转方向和旋转角度时容易出错;2.在方格纸上画出简单图形旋转90°后的图形时,出没有围绕中心的旋转或旋转方向、旋转角度错误;3.探究多个图形拼组的运动变化过程,不会运用想象、画图等方式准确判断图形运动的现象,解决实际问题。
三、考察标准1.学生能否正确理解旋转的含义,并具有一定的空间观念;能否运用旋转三要素完整、准确、熟练地描述旋转现象;2.学生是否掌握图形旋转的特征和性质;能否运用图形旋转的特征和性质准确方格纸上画出简单图形旋转90°后的图形;3.学生能否用想象、画图等方式,探究多个图形拼组的运动变化过程,并进行简单的设计。
五年级下册第五单元线上教学质量评估卷一、填一填。
(共54分)1.图形旋转有三个关键要素,一是旋转的(),二是旋转的(),三是旋转的()。
2.图形(1)是以点()为中心旋转的;图形(2)是以点()为中心旋转的;图形(3)是以点()为中心旋转的。
3.如图(上右),指针从A开始,顺时针旋转了90°到()点,逆时针旋转了90°到()点;要从A旋转到C,可以按()时针方向旋转()°,也可以按()时针方向旋转()°。
新版五年级数学下册《第5单元图形的运动【全单元练习】》附知识点归纳与小结(PPT版)
填一填。
风车绕点O( 逆 ) 风车绕点O( 逆 ) 时针旋转 90 °。时针旋转 90 °。
看图填空。
(1)指针从“12”绕点O逆时针旋转( 90°)到“9”。 (2)指针从“9”绕点O顺时针旋转180°到(“3”)。
试一试,填一填。
A´
(1)图形OABC绕点O顺时针旋转90°,在右图中 标出点A的对应点A´。
旋转90°
.
旋转180° 长方形旋转
O
180°的倍数
旋转270° 后,与原来
的图形重合。
旋转360°
按上面的方法试一试,你发现下面的图形有什 么特点?
正六边形旋转60°的倍 数后与原来的图形重合;
按上面的方法试一试,你发现下面的图形有什 么特点?
等边三角形旋转120°的 倍数后与原来的图形重合;
按上面的方法试一试,你发现下面的图形有什 么特点?
圆无论旋转多少度都 能与原来的图形重合;
按上面的方法试一试,你发现下面的图形有什 么特点?
正方形旋转90°的倍数 后与原来的图形重合。
这节课你们都学会了哪些知识?
巧识妙记
图形旋转位置变, 形状、大小如从前。 对应点、线随图转,
对应角度永不变。
课堂感想 1、这节课你有什么收获? 2、这节课还有什么疑惑? 说出来和大家一起交流吧!
谢谢观赏!
再见!
5 图形的运动(三)
练习二十二
平移和旋转的概念
旋转:物体或者图形以一个点 或一条轴为中心进行转动 。
平移:物体或者图形在同 一平面内沿直线移动。
平移和旋转的特性
平移 移动的 移动的 方向 距离
旋转
旋转 旋转 旋转 中心 方向 角度
平移和旋转改变的是图形的位置,不改变图形的大小。
图形的运动知识总结
图形的运动知识总结图形的运动是指图形在平面上进行移动的过程。
图形的运动可以是平移、旋转、翻转等不同的变换方式,这些运动会改变图形的位置、形状或方向。
通过研究图形的运动,可以帮助我们更好地理解几何学中的各种概念和性质。
平移运动是指图形在平面上沿某一方向移动一定距离,保持图形的大小、形状和方向不变。
平移运动是一种刚体运动,即图形的每一个点都沿着相同的方向和距离移动。
可以用平移向量来描述平移运动,平移向量的大小和方向决定了图形的平移量。
由于平移运动不改变图形的形状和大小,所以平移后的图形与原图形是全等的。
旋转运动是指图形绕某一点或某一直线旋转一定的角度。
旋转运动可以分为顺时针旋转和逆时针旋转两种。
图形绕某一点旋转时,该点称为旋转中心;图形绕某一直线旋转时,该直线称为旋转轴。
旋转运动改变了图形的方向和形状,但不改变图形的中心点位置。
翻转运动又称为对称运动,是指图形关于某一直线或某一点对称。
图形关于直线对称时,称为轴对称;图形关于点对称时,称为中心对称。
轴对称图形按照轴线翻转180度,而中心对称图形则按照中心点旋转180度。
翻转运动改变了图形的形状和方向,但保持了图形的大小。
除了这些基本的运动方式,图形还可以通过组合运动来达到更复杂的效果。
例如,可以先进行平移运动,再进行旋转运动,或者先进行旋转运动,再进行翻转运动。
组合运动可以改变图形的位置、形状、方向和大小,而具体的效果取决于运动的顺序和方式。
图形的运动可以通过向量和矩阵来进行描述和计算。
向量表示平移运动的大小和方向,矩阵表示旋转和翻转运动的变换关系。
通过矩阵乘法的运算,可以将一个图形经过一系列的运动变换之后得到新的图形。
图形的运动在实际生活中有着广泛的应用。
例如,在工程设计中,图形的运动可以用来模拟机械装置的运动轨迹和变换方式;在计算机图形学中,图形的运动可以用来实现动画效果和模拟物体的运动行为。
此外,在数学教育中,图形的运动也是学习几何学和空间感知的重要内容。
小学数学图形的运动知识点总结
小学数学图形的运动知识点总结1.圆与组合图形【知识点归纳】1.圆知识的相关回顾:(1)圆的周长C=2πr=或C=πd(2)圆的面积S=πr2(3)扇形弧长L=圆心角(弧度制)×r=(n为圆心角)(4)扇形面积S==(L为扇形的弧长)(5)圆的直径d=2r2.组合图形的面积计算,可以根据几何图形的特征,通过分割、割补、平移、翻折、对称、旋转等方法,化复杂为简单,变组合图形为基本图形的加减组合.2.组合图形的面积【知识点归纳】方法:①“割法”:观察图形,把图形进行分割成容易求得的图形,再进行相加减.②“补法”:观察图形,给图形补上一部分,形成一个容易求得的图形,再进行相加减.③“割补结合”:观察图形,把图形分割,再进行移补,形成一个容易求得的图形.【命题方向】常考题型:例1:求图中阴影部分的面积.(单位:厘米)分析:根据图所示,可把组合图形分成一个直角梯形和一个圆,阴影部分的面积等于梯形的面积减去圆的面积再加上圆的面积减去三角形面积的差,列式解答即可得到答案.解:[(5+8+5)×5÷2﹣×3.14×52]+(×3.14×52﹣5×5÷2),=[18×5÷2﹣0.785×25]+(0.785×25﹣25÷2),=[90÷2﹣19.625]+(19.625﹣12.5),=[45﹣19.625]+7.125,=25.375+7.125,=32.5(平方厘米);答:阴影部分的面积为32.5平方厘米.点评:此题主要考查的是梯形的面积公式(上底+下底)×高÷2、三角形的面积公式底×高÷2和圆的面积公式S=πr2的应用.3.轴对称【知识点归纳】1.轴对称的性质:像窗花一样,把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,称这两个图形为轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点.把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形,这条直线就是对称轴.2.性质:(1)成轴对称的两个图形全等;(2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线.【命题方向】常考题型:例:如果把一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形.分析:依据轴对称图形的意义,即在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫做轴对称图形,据此即可进行解答.解:据分析可知:如果把一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形.故答案为:一条直线、完全重合、轴对称图形.点评:此题主要考查轴对称图形的意义.4.确定轴对称图形的对称轴条数及位置【知识点归纳】1.对称轴的定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线就是它的对称轴.2.找到对应点的连线,如果连线的中点都在一条直线上,说明是其图形的对称轴.3.掌握一般图形的对称轴数目和位置对于快速判断至关重要.【命题方向】常考题型:例:下列图形中,()的对称轴最多.A、正方形B、等边三角形C、等腰三角形D、圆形分析:依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴,从而可以作出正确选择.解:(1)因为正方形沿两组对边的中线及其对角线对折,对折后的两部分都能完全重合,则正方形是轴对称图形,两组对边的中线及其对角线就是其对称轴,所以正方形有4条对称轴;(2)因为等边三角形分别沿三条边的中线所在的直线对折,对折后的两部分都能完全重合,则等边三角形是轴对称图形,三条边的中线所在的直线就是对称轴,所以等边三角形有3条对称轴;(3)因为等腰梯形沿上底与下底的中点的连线对折,对折后的两部分都能完全重合,则等腰梯形是轴对称图形,上底与下底的中点的连线就是其对称轴,所以等腰梯形有1条对称轴;(4)因为圆沿任意一条直径所在的直线对折,对折后的两部分都能完全重合,则圆是轴对称图形,任意一条直径所在的直线就是圆的对称轴,所以说圆有无数条对称轴.所以说圆的对称轴最多.故选:D.点评:解答此题的主要依据是:轴对称图形的概念及特征.例2:下列图形中,对称轴条数最多的是()分析:先找出对称轴,从而得出对称轴最多的图形.解:A:根据它的组合特点,它有4条对称轴;B:这是一个正八边形,有8条对称轴;C:这个组合图形有3条对称轴;D:这个图形有5条对称轴;故选:B.点评:此题考查了轴对称图形的定义,要求学生能够正确找出轴对称图形的对称轴.5.轴对称图形的辨识【知识点归纳】1.轴对称图形的概念:如果一个图形沿着一条直线对折,直线两边的图形能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.2.学过的图形中,线段、角、等腰三角形、等边三角形、长方形、正方形、等腰梯形、圆形、扇形都是轴对称图形,各自有不同数目的对称轴.【命题方向】常考题型:例:如图的交通标志中,轴对称图形有()A、4B、3C、2D、1分析:依据轴对称图形的定义即可作答.解:图①、③沿一条直线对折后,直线两旁的部分能够互相重合,所以图①、③是轴对称图形;图②、④无论沿哪一条直线对折后,直线两旁的部分都不能够互相重合,所以它们不是轴对称图形.如图的交通标志中,轴对称图形有2个.故选:C.点评:此题主要考查轴对称图形的定义.6.作轴对称图形【知识点归纳】1.如果一个图形沿着一条直线对折,直线两边的图形能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.2.学过的图形中,线段、角、等腰三角形、等边三角形、长方形、正方形、等腰梯形、圆形、扇形都是轴对称图形,各自有不同数目的对称轴.通过以上图形的组合就可以得到轴对称图形了.【命题方向】常考题型:例:(1)画出图A的另一半,使它成为一个轴对称图形.(2)把图B向右平移4格.(3)把图C绕O点顺时针旋转180°.分析:(1)根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,在对称轴的下边画出图形A的关键对称点,连结涂色即可.(2)根据平移的特征,把图形B的各点分别向右平移4格,再依次连结、涂色即可.(3)根据旋转图形的特征,图形C绕点O顺时针旋转180°,点O的位置不动,其余各部分均绕点O按相同的方向旋转相同的度数即可画出旋转后的图形.解:(1)画出图A的另一半,使它成为一个轴对称图形(下图).(2)把图B向右平移4格(下图).(3)把图C绕O点顺时针旋转180°(下图).点评:此题是考查作轴对称图形、作平移的图形、作旋转图形.关键是确定对称点(对应点)的位置.7.平移【知识点归纳】1.平移:把一个图形整体沿某一方向移动一定的距离,图形的这种移动,叫做平移.2.平移后图形的位置改变,形状、大小不变.【命题方向】常考题型:例:电梯上升是()现象.A、旋转B、平移C、翻折D、对称分析:平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动.电梯的升降是上下位置的平行移动所以是平移,据此解答判断.解:电梯的升降是上下位置的平行移动,所以电梯的升降是平移现象;故选:B.点评:本题主要考查平移的意义,在实际当中的运用.8.作平移后的图形【知识点归纳】1.确定平移后图形的基本要素有两个:平移方向、平移距离.2.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.【命题方向】常考题型:例:分别画出将向上平移3格、向右平移8格后得到的图形.分析:根据平移图形的特征,把平行四边形A的四个顶点分别向上平移3格,再首尾连结各点,即可得到平行四边形A向上平移3格的平行四边形B;同理,把平行四边形B的四个顶点分别向右平移8格,再首尾连结各点,即可得到平行四边形B向右平移8格的平行四边形C.解:作平移后的图形如下:点评:作平移后的图形关键是把对应点的位置画正确.。
五年级下册图形的运动知识点
五年级下册图形的运动知识点篇目一:五年级数学图形的运动重点知识点复习一、三种图形的运动——平移、旋转、翻折三种运动都不改变图形的大小和形状。
在运动前后的图形中,对应角和对应线段相等。
平移中,对应点的距离相等,并且就是图形的平移距离。
旋转中,对应点到旋转中心的距离相等。
翻折中,对应点到对称轴的距离相等。
二、三种图形——旋转对称图形、中心对称图形、轴对称图形都是指一个图形的性质。
旋转对称图形的最小旋转角和旋转角的区别。
中心对称图形是旋转对称图形中的一种特殊情况。
三、几种特殊图形①正多边形:正多边形都是旋转对称图形,最小旋转角是360/n偶数正多边形是中心对称图形,奇数边正多边形不是。
正多边形都是轴对称图形,对称轴条数就是边数。
②圆形是旋转对称图形,没有最小旋转角,有无数个旋转角。
圆形是中心对称图形。
圆形是轴对称图形,对称轴有无数条。
③角是轴对称图形,对称轴是角平分线所在直线。
④线段有两条对称轴,一条是其中垂线,另一条是线段所在的直线。
四、两种位置关系——中心对称和轴对称都是指两个图形的位置关系。
两个图形关于某个点(对称中心)中心对称。
两个图形关于某条直线(对称轴)轴对称。
五、作图辅助线用虚线,其余用实线。
中心对称图形或两图形中心对称,任何一组对称点的中点就是对称中心。
或者任意两组对称点的交点也是对称中心。
轴对称图形或两图形轴对称,任何一组对称点的中垂线就是对称轴。
或者任意两组对称点连线段的中点的连线就是对称轴。
篇目二:一、认识图形的旋转,探索图形旋转的特征和性质,体会图形旋转的基本要素。
1.旋转的含义:物体绕某一点或轴运动,这种运动现象称为旋转。
2.旋转的特征:旋转中心的位置不变,所有边旋转的方向相同,旋转的角度也相同;旋转后图形的形状、大小都没有发生变化,只是位置变了。
3.把与钟表上指针的旋转方向相同的方向称为顺时针方向,与钟表上指针的方向相反的方向称为逆时针方向。
温馨提示:把钟面看作一个圆周,是360度。
人教版数学五年级下册第五单元《图形的运动(三)》知识点梳理
第五单元《图形的运动(三)》知识点梳理知识点归纳知识点一:确定轴对称图形的对称轴条数及位置1.对称轴的定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线就是它的对称轴.2.找到对应点的连线,如果连线的中点都在一条直线上,说明是其图形的对称轴.3.掌握一般图形的对称轴数目和位置对于快速判断至关重要.知识点二:将简单图形平移或旋转一定的度数1.平移:平移前后图形的大小、方向、角度不发生变化,位置发生变化.2.旋转:(1)三维旋转:点动成线,线动成面,面动成体.(2)二维旋转:旋转前后图形的大小不发生变化,位置发生变化.知识点三:运用平移、对称和旋转设计图案1.一个长方形(或正方体)沿一条边旋转就会成为一个圆柱.2.一个已知半圆,以直径为轴翻转后的图形与已知半圆能变成一个圆.3.一个直角三角形沿着一条直角边旋转就会变成一个圆锥.考点一:确定轴对称图形的对称轴条数及位置典例分析例1.(2020秋•罗湖区期中)这些图形有几条对称轴?【分析】一个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这个图形就是轴对称图形,这条直线就是这个图形的一条对称轴,由此即可确定这个图形的对称轴的条数及位置.解:根据轴对称图形的定义可知:第一个图形有1条对称轴,第二个图形有2条对称轴,第三个图形有5条,第四个图形有1条对称轴,画出它们的对称轴如图所示:故答案为:1条、2条、5条、1条.【点评】此题考查了利用轴对称图形的定义判断轴对称图形的对称轴条数及位置的灵活应用.真题分析1.(2019春•新华区期末)下面图形各有几条对称轴,填在下面的括号里【分析】依据轴对称图形的定义即可作答:一个图形沿某条直线对折,直线两旁的部分能够完全重合,这个图形就是轴对称图形,这条直线就是这个图形的一条对称轴.解:据分析可得:故答案为:无数、0、4.【点评】此题主要考查轴对称图形定义及对称轴的条数,熟记常见轴对称图形的对称轴条数即可解答.2.(2018秋•武侯区月考)写出下面各轴对称图形的对称轴的条数.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.解:故答案为:1,2,1.【点评】掌握轴对称图形的意义,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.3.(2015秋•连州市期中)你能找到几条对称轴?画一画,并填写在()里出【分析】根据对称轴的定义可知,如果沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴;由此可以确定上图中对称轴的条数.解:【点评】解答此题的主要依据是:轴对称图形的概念及特征和对称轴的条数.考点二:将简单图形平移或旋转一定的度数典例分析例2.(2015春•兴国县校级月考)悉心连一连.【分析】我们知道点动成线,线动成面,面动成体.由于长方形或正方形的对边相等,长方形或正方形以它的一边为轴旋转一周,它的上、下两个面就是以半径相等的两个圆面,与轴平行的一边形成一个曲面,这个长方形或正方形就成为一个圆柱;一个直角三角形,以它的一条直角边为轴,旋转一周,它的一面就是一个以另一条直角边为半径的一个圆面,直角三角形的斜边形成一个曲斜面,由于直角三角形的另一点在轴上,旋转后还是一点,这个直角三角形就形成一个圆锥;一个半圆,如果以它的直径为旋转轴,旋转一周后会得到一个圆.解:连线如下:【点评】此题主要考查的是学生空间想象能力的应用.真题分析1.(2014春•海原县月考)你知道方格纸上图形的位置关系吗?(1)图形B可以看作图形A绕点顺时针方向旋转90°得到的.(2)图形C可以看作图形B绕点O顺时针方向旋转得到的.(3)图形B绕点O顺时针旋转180°到图形在位置.(4)图形D可以看作图形C绕点O顺时针方向旋转得到的.【分析】根据旋转的特征,一个图形绕某点按一定的方向旋转一定的度数后,某点的位置不动,其余各部分均绕此点按相同方向旋转相同的度数.图形A绕点O顺时针方向旋转90°可得到图形B;图形B绕点O顺时针方向旋转90°可得到图形C;图形B顺时针方向旋转180°可得到图形D;图形C顺时针方向旋转90°可得到图形D.解:如图,(1)图形B可以看作图形A绕点顺时针方向旋转90°得到的.(2)图形C可以看作图形B绕点O顺时针方向旋转得到的.(3)图形B绕点O顺时针旋转180°到图形所在位置是图形D.(4)图形D可以看作图形C绕点O顺时针方向旋转90°得到的.【点评】旋转作图要注意:①旋转方向;②旋转角度.整个旋转作图,就是把整个图案的每一个特征点绕旋转中心按一定的旋转方向和一定的旋转角度旋转移动.2.(2014•海安县模拟)小红用彩纸和小棒做了一面长方形的彩旗(如图).旋转小棒,观察并想象彩旗旋转一周所成的形状.你知道旋转后红色和黄色部分的体积分别是多少?【分析】黄色直角三角形围绕直角边旋转后的形状是一个底面半径是4厘米,高是3厘米的圆锥体;红色直角三角形不是围绕直角边旋转的,所以不能形成圆锥体.长方形彩旗旋转后的形状是圆柱体.红色部分的体积等于圆柱的体积减去圆锥的体积.解:黄色部分体积:3.14×42×3×=3.14×16=50.24(平方厘米)红色部分体积:3.14×42×3﹣3.14×42×3×=3.14×42×3×(1﹣)=3.14×32=100.48(平方厘米)答:旋转后黄色和红色部分的体积分别50.24立方厘米和100.48立方厘米.【点评】此题主要是考查圆柱、圆锥体积的计算.关键明白,一个直角三角形只有绕一条直角边旋转一周才能得到一个以旋转边为高,另一直角边为底面半径的圆锥,图中只有黄色直角三形才能形成圆锥,而红色三角形则不能,它与黄色三角形组合起来是一个长方形,旋转形成圆柱,只有用圆柱的体积减去圆锥的体积才能求出红色三角形旋转一周形成的几何体的体积.3.(2014春•博野县校级月考)想一想,连一连.【分析】长方形绕长(或宽)旋转一周得到一个圆柱;直角三角绕一直角边旋转一周得到一个圆锥;半圆绕直径旋转一周得到一个球体;直角梯形绕直角腰旋转一周得到一个圆台;结合图形要看由哪些图形组成的.解:【点评】此题主要考查立体图形中旋转体,也就是把一个图形绕一条直线旋转得到的图形,要掌握基本的图形特征,才能正确判定.考点三:运用平移、对称和旋转设计图案典例分析例3.(2013春•青铜峡市期中)你知道下面的花边是怎么得到的吗?自己试着设计一组吧!【分析】观图可知:花边是三角形平移后得到的图形;先在图中画一个小旗,然后根据旋转图形的特征,将图中的小旗绕点O顺(或逆)时针旋转90°,点O的位置不动,其余各边都绕点O旋转90°,再旋转90°,再旋转90°,然后再平移即可得到如图美丽的图案.解:由分析作图如下:【点评】本题是考查用平移或旋转设计图案,用平移或旋转设计图案是根据图形平移或旋转后大小、形状不变、位置变化这一特征设计的.真题分析1.(2013春•西安期中)你能用直尺和圆规画出下面的图形吗?试一试吧.【分析】(1)首先画出正方形,然后分别以正方形的四个顶点为圆心,以边长的一半为半径,画出其余的4段弧即可;(2)首先画出正方形,然后分别以正方形的四个顶点为圆心,以边长为半径,画出其余的4段弧即可;(3)首先画出正方形,然后分别以正方形的四条边中点为圆心,以边长的一半为半径,画出其余的4段弧即可;(4)首先画出正方形,然后分别以正方形的四条边的中点为圆心,以边长的一半为半径,画出其余的4段弧;最后以正方形的中心为圆心,以正方形的对角线长度的一半为半径,画出正方形的外接圆,再去掉正方形的四条边即可.解:根据分析,可得(1);(2);(3);(4).【点评】此题主要考查了组图能力的应用,解答此题的关键是判断出每个图形分别由哪几部分组成.2.(2013春•城厢区期末)下面图形是由一个图形平移或旋转得到,是平移的在括号里画“﹣”,是旋转的在括号里画“○”.【分析】根据平移的意义“平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫作图形的平移运动,简称平移”,和旋转的意义“在平面内,把一个图形绕点O转动一个角度的图形变换叫做旋转.”来解决问题.解:如图,(1)旋转,(2)平移,(3)首先平移,然后逆时针旋转90°.故答案为:o,﹣,﹣o.【点评】熟练掌握平移和旋转的意义是解决此题的关键.3.(2013春•湖北期末)利用旋转画一朵小花.【分析】把原图绕点O顺时针(或逆时针)旋转90°、180°、270°即可成为一朵小花.解:利用旋转画一朵花如下:【点评】根据图形旋转的特征,把原图绕O点旋转时,点O的位置不动,其余各点(线段)均绕点O按相同方向旋转相同的角度,旋转成一朵美丽小花.。
五年级数学下册复习——《图形的运动》知识清单
5图形的运动(三)一、认识图形的旋转,探索图形旋转的特征和性质,体会图形旋转的基本要素。
1.旋转的含义:物体绕某一点或轴运动,这种运动现象称为旋转。
2.旋转的特征:旋转中心的位置不变,所有边旋转的方向相同,旋转的角度也相同;旋转后图形的形状、大小都没有发生变化,只是位置变了。
3.把与钟表上指针的旋转方向相同的方向称为顺时针方向,与钟表上指针的方向相反的方向称为逆时针方向。
4.图形旋转的性质:图形绕某一点旋转一定的度数,图形中的对应点、对应线段都旋转相同的度数,对应点到旋转点的距离相等,对应线段、对应角都分别相等。
5.旋转的三要素:(1)旋转中心:物体旋转时所绕的点,也叫旋转中心。
(2)旋转方向:顺时针方向或逆时针方向。
(3)旋转角度:对应线段的夹角或对应顶点与旋转点连线的夹角的度数。
6.描述图形旋转的方法:图形绕哪个点按什么方向转动了多少度。
二、能在方格纸上进行旋转作图。
1.把一个简单图形旋转一定角度的画法:(1)找出原图形的几个关键点所在的位置;(2)确定关键点到旋转点的距离;(3)确定关键点的对应点,对应点与旋转点所连线段和温馨提示:把钟面看作一个圆周,是360度。
钟面上有12个大格,每个大格是360÷12=30(度),也就是说,指针每走1个大格就旋转了30度。
温馨提示:描述物体的旋转时,一定要说清旋转中心、旋转方向和旋转角度。
旋转后的图形与旋转前的图形相比较,每条边、每个点都旋转了相同的角度,但图形的大小、形状都没有发生改变。
易错点:用平移和旋转拼组图形时,要先观察和思考变化前后各部分的位置,再确定位置改变的图形是如何通过平移或旋转得到的。
相应关键点与旋转点所连线段形成的夹角和旋转的度数一致,对应点到旋转点的距离与相应的关键点到旋转点的距离相等;(4)把描出的对应点按顺序连线。
2.图形旋转时,它的中心点、角上的点都可以作为旋转中心,可根据实际需要来选择。
哪一点在旋转过程中位置没有改变,就是绕那一点旋转的。
人教版五年级数学下册图形的运动(三)知识点doc资料
人教版五年级数学下册图形的运动(三)知
识点
精品文档
第五章图形的运动(三)
一、轴对称
1、轴对称定义:把一个图形沿着某一条直线对折,如果它能够与另一个图形完全重合,就说这两个图形成轴对称。
这条直线就是对称轴;互相重合的点叫对应点/对称点;互相重合的线段叫对应线段;互相重合的角叫做对应角
2、轴对称的性质:对应点到对称轴的距离相等
轴对称的特征:沿对称轴对折,对应点、对应线段、对应角分别重合
3、画一个图形的轴对称图形的方法
①定:确定已知图形的关键点:顶点、相交点、端点
②数(或量):数或量出关键点到对称轴的距离
③描:在对称轴的另一侧描出关键点的对应点
④连:连接各对应点
4、成轴对称的两个图形对称轴的画法
先找出两个图形一组对应点,连接对应点成一条线段,过这条线段的中点作它的垂线,这条垂线所在的直线就是对称轴
二、旋转
1、含义:物体绕着某一点或轴运动,这种现象称为旋转
2、旋转三要素:旋转点、旋转方向、旋转角度
3、图形旋转的特征:旋转后,形状、大小都没有发生变化,只是位置变了
4、图形旋转的性质:图形绕某一点旋转一定的度数,图形中的对应点、对应线段都旋转相同的度数,对应点到旋转点的距离相等,对应线段、对应角都分别相等
5、画图形旋转90°的方法:找出关键点所在的线段,根据旋转方向作线段的垂线→从旋转点开始,在所作垂线上量出与原线段相等的长度→连接对应点
三、欣赏设计
1、设计图案的基本方法:平移、旋转、对称
2、运用平移设计的方法:确定平移方向、距离
3、运用旋转设计的方法:确定旋转点、旋转角度
4、运用对称设计的方法:确定对称轴
收集于网络,如有侵权请联系管理员删除。
五年级数学下册第5单元图形的运动三第1课时旋转的含义及三要素课件新人教版
知 识 点 2 旋转的三要素
3.看图填一填。
(1)箭头从点A绕点O按顺时针方向旋转90°到点( B )。 (2)(1)中的旋转中心是点( O ),旋转方向是( 顺时
针),旋转角度是( 90° ),这就是旋转的从“12”绕点O按顺时针方向旋转( 30° )到 “1”。
(2)指针从“12”绕点O按顺时针方向旋转120°到 “( 4 )”。
(3)指针从“6”绕点O按逆时针方向旋转( 90° )到 “3”。
(4)指针从“12”绕点O按逆时针方向旋转( 180° )到 “6”。
(5)从“12”到“5”,指针绕点O按顺时针方向旋转了 ( 150° )。
点拨:指针旋转一格是360°÷12=30°。
提 升 点 运用旋转的含义解决问题
5.【易错题】如图,四边形ABCD是正方形,三角形DAE旋 转后能与三角形DCF重合。
(1)三角形DAE按( 逆时针 )方向旋转( 90 )度后能与 三角形DCF重合。
(2)若连接EF,三角形DEF是什么三角形? 三角形DEF是等腰直角三角形。
点拨:三角形DAE旋转后能与三角形DCF重合,旋转中心便是两 个三角形的公共顶点。要想知道旋转角度是多少度,就要找准旋转 前后两个三角形的对应边,看对应边之间的夹角是多少度,旋转角 度就是多少度。连接EF后,因为∠EDF是直角,DE=DF,所以 三角形DEF是等腰直角三角形。
典典是12时到家的。
6.找规律,在最后一幅图上涂一涂。
点拨:观察题图发现,圆中的图形按逆时针旋转,每次旋转1格。
7.看图填一填。
(1)图形1绕点O按( 顺 )时针方向旋转90°得到图形4。 (2)图形1绕点O按( 逆 )时针方向旋转90°得到图形2。
小学五年级下册数学讲义第五章 图形的运动(三) 人教新课标版(含解析)
人教版小学五年级数学下册同步复习与测试讲义第五章图形的运动(三)【知识点归纳总结】1. 确定轴对称图形的对称轴条数及位置1.对称轴的定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线就是它的对称轴.2.找到对应点的连线,如果连线的中点都在一条直线上,说明是其图形的对称轴.3.掌握一般图形的对称轴数目和位置对于快速判断至关重要.【经典例题】例:下列图形中,()的对称轴最多.A、正方形B、等边三角形C、等腰三角形D、圆形分析:依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴,从而可以作出正确选择.解:(1)因为正方形沿两组对边的中线及其对角线对折,对折后的两部分都能完全重合,则正方形是轴对称图形,两组对边的中线及其对角线就是其对称轴,所以正方形有4条对称轴;(2)因为等边三角形分别沿三条边的中线所在的直线对折,对折后的两部分都能完全重合,则等边三角形是轴对称图形,三条边的中线所在的直线就是对称轴,所以等边三角形有3条对称轴;(3)因为等腰梯形沿上底与下底的中点的连线对折,对折后的两部分都能完全重合,则等腰梯形是轴对称图形,上底与下底的中点的连线就是其对称轴,所以等腰梯形有1条对称轴;(4)因为圆沿任意一条直径所在的直线对折,对折后的两部分都能完全重合,则圆是轴对称图形,任意一条直径所在的直线就是圆的对称轴,所以说圆有无数条对称轴.所以说圆的对称轴最多.故选:D.点评:解答此题的主要依据是:轴对称图形的概念及特征.例2:下列图形中,对称轴条数最多的是()分析:先找出对称轴,从而得出对称轴最多的图形.解:A:根据它的组合特点,它有4条对称轴;B:这是一个正八边形,有8条对称轴;C:这个组合图形有3条对称轴;D:这个图形有5条对称轴;故选:B.点评:此题考查了轴对称图形的定义,要求学生能够正确找出轴对称图形的对称轴.2. 将简单图形平移或旋转一定的度数1.平移:平移前后图形的大小、方向、角度不发生变化,位置发生变化.2.旋转:(1)三维旋转:点动成线,线动成面,面动成体.(2)二维旋转:旋转前后图形的大小不发生变化,位置发生变化.【经典例题】例:按要求画一画.(1)画出三角形A向右平移5格后的图形B.(2)画出三角形B绕点O按逆时针方向旋转90度后的图形C.(3)画出三角形A按2:1放大后的图形D.分析:把原三角形的另外两个顶点分别命名为E、F,(1)把O向右平移5格后得到O′,把E向右平移5格后得到E′,把F向右平移5格后得到F′,然后连接O′E′F′三个点得到三角形B,(2)把E′绕O′点按逆时针方向旋转90度后得到E′′,把F′绕O′点按逆时针方向旋转90度后得到F′′,然后连接O′E′′F′′得到三角形C,(3)根据放大比例,把底变为原来的两倍,得到点F′′′,把高变以原来的两倍,得到E′′′,然后连接O′′′F′′′E′′′得到三角形D.解:(1)三角形A向右平移5格后的图形B如下图所示:(2)三角形B绕点O按逆时针方向旋转90度后的图形C如下图所示:(3)三角形A按2:1放大后的图形如下图所示:点评:此题考查了简单图形的平移和旋转以及按比例放大.3. 运用平移、对称和旋转设计图案1.一个长方形(或正方体)沿一条边旋转就会成为一个圆柱.2.一个已知半圆,以直径为轴翻转后的图形与已知半圆能变成一个圆.3.一个直角三角形沿着一条直角边旋转就会变成一个圆锥.【经典例题】例:画出图形的另一半,使它成为一个轴对称图形.分析:找出7个端点的轴对称点,用同样粗细的线段逐点连接,即可得解.解:点评:此题考查了运用平移、对称和旋转设计图案.【同步测试】单元同步测试题一.选择题(共8小题)1.如图沿逆时针方向转了90°以后的图形是()A.B.C.D.2.将平面图形绕轴旋转一周后得到的图形是()A.B.C.D.3.下列图形中,只有一条对称轴的是()A.圆心角是90°的扇形B.长方形C.等边三角形4.下面图形中,()的对称轴最少.A.正方形B.圆C.扇形D.长方形5.把一个图形绕某点顺时针旋转30°,所得的图形与原来的图形相比()A.变大了B.大小不变C.变小了D.无法确定大小是否变化6.如图是由☆经过()变换得到的.A.平移B.旋转C.对称7.左图是由经过()变换得到的.A.平移B.旋转C.对称D.折叠8.如图的图形中,()是由旋转得到的.A.B.C.二.填空题(共7小题)9.图形的基本变换方式有、、.10.(1)指针从“1”绕点0顺时针旋转60°后指向(2)指针从“1”绕点0逆时针旋转90°后指向.11.长方形沿一条长旋转一周后形成一个,直角三角形沿着一条直角边旋转之后形成一个.12.☆有条对称轴.13.这个图形有条对称轴.14.小芳卧室的一面墙上贴着瓷砖,中间的6块组成了一个图案.在保持组合图案不变的情况下,有种不同的贴法.15.你知道方格纸上图形的位置关系吗?(1)图形B可以看作图形A绕点顺时针方向旋转90°得到的.(2)图形C可以看作图形B绕点O顺时针方向旋转得到的.(3)图形B绕点O顺时针旋转180°到图形所在位置.(4)图形D可以看作图形C绕点O顺时针方向旋转得到的.三.判断题(共5小题)16.长方形是轴对称图形,有2条对称轴,长方形是特殊的平行四边形,所以平行四边形也是轴对称图形,有两条对称轴.(判断对错)17.利用平移、对称和旋转变换可以设计许多美丽的镶嵌图案..(判断对错)18.直角三角形绕其中一条边旋转一周后得到的图形一定是圆锥.(判断对错)19.在图中,以直线为轴旋转,可以得出圆锥只有1个..(判断对错)20.如图的花边是用平移对称的方法设计的.(判断对错)四.应用题(共1小题)21.李师傅计划用2.5米长的铁丝做一个如图所示的框架.你认为够不够?五.操作题(共1小题)22.在如图的方格纸中,照样子画出所给的图形六.解答题(共3小题)23.写出下面各轴对称图形的对称轴的条数.24.按要求填一填、画一画.(1)向平移了格.(2)向平移了格.(3)将向左平移4格.25.利用旋转画一朵小花.参考答案与试题解析一.选择题(共8小题)1.【分析】紧扣图形翻转和旋转的定义,将这个图形分别推理变形,即可得出答案,进行选择.【解答】解根据旋转的定义可得,将翻转后的图形按逆时针方向旋转90°得到的图形是:故选:A.【点评】此题考查了利用翻转和旋转的定义将简单图形进行变形的方法.2.【分析】这个平面图形是一个直角梯形,也可看作是一个直角三形与长方形的组成图形,且直角三形的一条直角边与长方形的一边重合,直角三角形绕一直角边旋转可形成圆锥,长方形绕一边旋转可形成圆柱,因此,这个平面图形绕轴旋转后形成的立体图形是圆柱与圆锥的组合体,且圆柱与圆锥有公共底.【解答】解:如图,绕轴旋转一周后得到的图形是:.故选:B.【点评】此题主要是考查学生的空间想象能力,根据平面图形及各立体图形的特征即可判定.3.【分析】根据轴对称图形的意义,并结合题意,进行依次分析,继而得出结论.【解答】解:A、圆心角是90°的扇形有1条对称轴;B、长方形有2条对称轴;C、等边三角形有3条对称轴.故选:A.【点评】此题根据轴对称的意义进行分析即可解答.4.【分析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴,据此即可解答.【解答】解:A、正方形有4条对称轴;B、圆有无数条对称轴;C、扇形有1条对称轴;D、长方形有2条对称轴;故选:C.【点评】解答此题的主要依据是:轴对称图形的概念及特征,借助画图,更容易解答.5.【分析】根据旋转的性质可知把一个图形绕某点顺时针旋转30°后得到的图形与原图形的大小不变,据此解答即可.【解答】解:根据旋转的性质,可知把一个图形绕某点顺时针旋转30°后得到的图形与原图形的大小不变.故选:B.【点评】解答此题的关键是旋转的性质:旋转前后图形全等.6.【分析】平移就是水平移动,大小和形状不变;旋转除了大小和形状不变外,还要有一个绕点;对称形成的图形要能找到一条对称轴.据此得解.【解答】解:图形中有5个五角星并排在一条直线上,因此是由☆经过平移变换得到的.故选:A.【点评】此题考查了运用平移、对称和旋转设计图案,锻炼了学生的空间想象力和创新思维能力.7.【分析】采用平移的方法,平移4次,复制下图案,即可得到左图.【解答】解:采用平移的方法,平移4次,复制下图案,即可得到左图.故选:A.【点评】此题考查了运用平移、对称和旋转设计图案.8.【分析】根据对称和旋转设计图案的方法可知,A、B是完全重合的,而C不能,只能用旋转得到,从而可以进行选择.【解答】解:由对称和旋转设计图案的方法可知,A、B是对折后是完全重合的,而C不能,只能用旋转得到,故选:C.【点评】此题考查了利用对称和旋转设计图案.二.填空题(共7小题)9.【分析】根据图形的基本变换方式有三种:平移、旋转、轴对称解答即可.【解答】解:由分析知:图形的基本变换方式有平移、旋转、轴对称.故答案为:平移,旋转,轴对称.【点评】此题主要考查了学生对图形变换的三种基本方式的掌握情况.10.【分析】钟面上12个数字把这个钟面平均分成了12个大格,1个大格的度数是360°÷12=30°,由此先分别计算出它们旋转后分别经过了几个大格,即可解决问题.【解答】解:(1)指针从“1”绕点0顺时针旋转60°后,是旋转经过了60÷30=2格,所以指向3;(2)指针从“1”绕点0逆时针旋转90°后,是旋转经过了90÷30=3格,所以指向10;故答案为:3,10.【点评】抓住钟面上每一大格的度数是30°特点,计算出旋转经过了几个大格即可解决此类问题,这里要注意顺时针与逆时针旋转.11.【分析】(1)将长方形,围绕它的一条长边为轴旋转一周,得到的是圆柱,其中长是圆柱的高,宽就是圆柱的底面半径;(2)根据圆锥的特征:一个直角三角形沿一条直角边旋转一周,就会得到一个圆锥体,为轴的那条直角边是旋转后的圆锥的高,另一条直角边是旋转后的圆锥的底面半径;进而得出结论.【解答】解:长方形沿一条长旋转一周后形成一个圆柱,直角三角形沿着一条直角边旋转之后形成一个圆锥.故答案为:圆柱、圆锥.【点评】解答此题的关键:根据圆柱和圆锥的特征进行解答即可.12.【分析】把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线就是它的对称轴,据此解答即可.【解答】解:☆有5条对称轴;故答案为:5.【点评】此题考查了轴对称图形的定义,要求学生能够正确找出轴对称图形的对称轴.13.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【解答】解:这个图形有1条对称轴;故答案为:1.【点评】此题是考查确定轴对称图形对称轴的条数及位置.根据各种图形的特征及对称轴的意义即可判定.14.【分析】根据题意保持组合图案不变的情况下,即只能通过平移的方法来解决问题,图案水平有3块竖直2块共占6块,小芳卧室的一面墙水平有11块、竖直有6块,在图案平移的过程中分两部完成,第一步水平移动:有11﹣3+1种方法;第二步竖直平移:有6﹣2+1种方法;根据数列的乘法原理,即可得解.【解答】解:贴法如下图:(11﹣3+1)×(6﹣2+1)=9×5=45(种)答:在保持组合图案不变的情况下,有45种不同的贴法.故答案为:45.【点评】此题主要考查了运用平移设计图案;还考查了灵活应用数列的知识来解决问题.15.【分析】根据旋转的特征,一个图形绕某点按一定的方向旋转一定的度数后,某点的位置不动,其余各部分均绕此点按相同方向旋转相同的度数.图形A绕点O顺时针方向旋转90°可得到图形B;图形B 绕点O顺时针方向旋转90°可得到图形C;图形B顺时针方向旋转180°可得到图形D;图形C顺时针方向旋转90°可得到图形D.【解答】解:如图,(1)图形B可以看作图形A绕点顺时针方向旋转90°得到的.(2)图形C可以看作图形B绕点O顺时针方向旋转得到的.(3)图形B绕点O顺时针旋转180°到图形所在位置是图形D.(4)图形D可以看作图形C绕点O顺时针方向旋转90°得到的.【点评】旋转作图要注意:①旋转方向;②旋转角度.整个旋转作图,就是把整个图案的每一个特征点绕旋转中心按一定的旋转方向和一定的旋转角度旋转移动.三.判断题(共5小题)16.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断.【解答】解:长方形是轴对称图形,有2条对称轴,长方形是特殊的平行四边形,这些说法都是正确的;但一般的平行四边形不是轴对称图形,所以原题说法错误.故答案为:×.【点评】判断是不是轴对称图形的关键是找出对称轴,图形两部分沿对称轴折叠后能完全重合.17.【分析】规则的平面分割叫做镶嵌,镶嵌图形是完全没有重叠并且没有空隙的封闭图形的排列.一般来说,构成一个镶嵌图形的基本单元是多边形或类似的常规形状,例如经常在地板上使用的方瓦.利用平移、对称、旋转变换可以设计许多美丽的镶嵌图案.【解答】解:例如蜜蜂的蜂窝就是正六边形的平移、旋转、对称的典型图案;如下图所示,利用平移、对称和旋转变换设计的许多美丽的镶嵌图案:故答案为:√.【点评】此题考查了运用平移、对称和旋转设计图案.18.【分析】直角三形绕其中一条直角边旋转一周后得到的图形一定是一个圆锥(旋转直角边为圆锥的高,另一直角边为底面半径);如果绕斜边旋转一周,得到的是有公共底面的两个圆锥组合体.【解答】解:直角三角形绕其中一条边旋转一周后得到的图形一定是圆锥是错误的,只有绕其中一直角边旋转一周后得到的图形才一定是圆锥.故答案为:×.【点评】以直角三角形的一直角边为轴旋转一周,将得到一个以旋转直角边为高,另一直角边为底面半径的圆锥.是培养学生的空间想象能力.19.【分析】只有直角三角形绕它的一条对角边旋转一周,才可以得到一个以旋转边为高,为一直角边为底面半径的圆锥.【解答】解:根据各图形的特征,①旋转后得到一个圆柱与一个圆锥的组合体;②旋转后得到一个圆柱;③旋转后得到一个圆柱与两个圆锥的组合体;④旋转后得到一个圆锥.故答案为:√.【点评】本题一是考查将一个简单图形绕一轴旋转一周所组成的图形是什么图形,根据各平面图形特征即可判定.20.【分析】这个花边可以看作是由一个图案通过轴对称,再轴对称……得到的,也可看作是一次轴对称,然后通过间隔平移得到的,每次单个图案平移的距离是一个图案的距离.【解答】解:如图花边是用平移对称的方法设计的原题说法正确.故答案为:√.【点评】此题是考查平移、轴对称的特征.四.应用题(共1小题)21.【分析】根据题意,把图形0.38m的边平移到与0.22m相平,短竖边平移到0.27m的边上面,就变成了一个长是0.63m,宽是0.22+0.38=0.6m的长方形,根据长方形的周长公式,求出周长,然后再与2.5米进行比较解答.【解答】解:经过平移可得:(0.22+0.38+0.63)×2=1.23×2=2.46(米)2.46<2.5答:用2.5米长的铁丝够.【点评】本题关键是把不规则的图形通过平移变成规则图形,然后再求出周长进行比较解答.五.操作题(共1小题)22.【分析】先确定圆心和半径作出外圆,再找到对应点作出正方形,再找到正方形的边长的中点找到半圆的圆心,作出4个半圆即可求解.【解答】解:如图所示:【点评】考查了运用平移、对称和旋转设计图案,关键是确定圆的圆心和半径.六.解答题(共3小题)23.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【解答】解:故答案为:1,2,1.【点评】掌握轴对称图形的意义,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.24.【分析】观察图形可知,(1)右边的各顶点分别是由左边的的顶点向右平移6格得到的;(2)上面的的顶点分别是由下面的顶点向上平移4格得到的;(4)把图中的顶点分别向左平移4格,然后首尾连接各点,即可画出.【解答】解:(1)向右平移了6格.(2)向上平移了4格;(3)画图如下:【点评】本题主要是考查图形的平移.图形平移后形状、大小不变,只是位置变化.25.【分析】根据旋转图形的特征,把这个图形绕O点顺时针旋转90°,再旋转90°,再旋转90°就可能得到一朵小花.【解答】解:画图如下:【点评】要根据旋转图形的特征,一个图形绕某点旋转后,大小、形状不变,只是位置变化来设计图案.。
第五单元《图形的运动》(解析)2022-2023学年五年级数学下册重难点讲义(人教版)
20222023学年人教版五年级下册同步重难点讲义精讲精练第五单元图形的运动知识点一:旋转1.旋转的意义把一个图形绕着某一点转动一定的角度的图形变换叫做旋转。
2.旋转的三要素(1)旋转点(或旋转中心):物体旋转时所绕的点就是旋转点(或旋转中心)。
(2)旋转方向:钟表中指针运动的方向为顺时针方向;与钟表中指针运动的方向相反的方向为逆时针方向。
(3)旋转角度:对应线段的夹角或对应点与旋转中心所连线段的夹角就是旋转角度。
3.图形旋转的特征:图形旋转后,形状和大小都没有发生变化,只是方向和位置变化了。
4.图形旋转的性质:旋转时,旋转中心的位置不变,图形的每个点、每条线段、每个角都绕旋转点按旋转方向转动了大小等于旋转角度的角。
旋转前后,对应点到旋转点的距离相等,对应线段和对应角分别相等。
5.在方格纸上画简单图形旋转90°后的图形的方法(1)找出原图形的关键点;(2)明确是顺时针旋转还是逆时针旋转。
(3)根据旋转方向,借助三角尺或量角器画原图形关键点与旋转中心所连线段的垂线;(4)在所画垂线上量出或数出与原线段相等的长度(即找到原图形关键点的对应点);(5)顺次连接所找到的对应点,即可得到原图形旋转90°后的图形。
知识点二:利用平移或旋转等变换方式拼图先观察变换后的图形,然后思路分析其中的每部分可以由原始图案经过什么样的变换得到,灵活运用平移和旋转可以有不同的变换方法。
考点1:确定轴对称图形的对称轴条数及位置【典例分析01】(2021春•迁安市期末)下面图形中,对称轴最多的是()A. B. C.【思路点拨】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此解答即可。
【规范解答】解:下面图形中,对称轴最多的是圆形,有无数条;正方形有4条对称轴;等腰三角形有1条对称轴。
故选:A。
【考点评析】掌握轴对称图形的意义,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合。
庄河市二小五年级数学下册 5 图形的运动三单元重点知识归纳与易错总结课件 新人教版
(二)易错警示
易错点 1 没有掌握图形旋转的方式
【例题1 ]在以下图中画出四边形ABCD绕点
C′顺时针旋转90°后的图形A′B′C′D′。
错误答案 :
准确答案 :
错点警示 :此题错在没有按照图形旋转的方 式去具体操作 , 从而导致旋转后图形的形状 发生了变化。
规避策略 : 图形旋转时 , 要找准旋转点、 旋转方向和旋转角度。
2.10以内既是奇数又是合数的数有( B ) 个。 A.0 B.1 C.2 D.3.
3.一个合数至少有( C )个因数。 A.1 B. 2 C.3 D.4
第5课时 统计与数学广角
R·五年级下册
学习目标
1. 进一步理解统计在生活中的意义和作用 , 认识 复式折线统计图 , 并能対数据进行简单的分析和预测。
自然数
质数 合数 1
只有1和本身两个因数 至少有3个因数 既不是质数也不是合数
熟记 20 以内的质数:
2,3,5,7,11,13,17,19
三、自主选择方法,制作100以内的质数表
1 2 3 4 5 6 7 8 9 10
找出100以内的 11 12 13 14 15 16 17 18 19 20
质数,做一个 质数表。
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
根据因数的个数,你能将1~20进行分类吗?
二、建立质数和合数的概念
只有一个因数 只有1和它本身 有两个以上因数的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5图形的运动(三)
一、认识图形的旋转,探索图形旋转的
特征和性质,体会图形旋转的基本要素。
1.旋转的含义:
物体绕某一点或轴运动,这种运动现象称为旋转。
2.旋转的特征:
旋转中心的位置不变,所有边旋转的方向相同,旋转的角度也相同;旋转后图形的形状、大小都没有发生变化,只是位置变了。
3.把与钟表上指针的旋转方向相同的方向称为顺时针方向,与钟表上指针的方向相反的方向称为逆时针方向。
4.图形旋转的性质:
图形绕某一点旋转一定的度数,图形中的对应点、对应线段都旋转相同的度数,对应点到旋转点的距离相等,对应线段、对应角都分别相等。
5.旋转的三要素:
(1)旋转中心:
物体旋转时所绕的点,也叫旋转中心。
(2)旋转方向:
顺时针方向或逆时针方向。
(3)旋转角度:
对应线段的夹角或对应顶点与旋转点连线的夹角的度数。
6.描述图形旋转的方法:
图形绕哪个点按什么方向转动了多少度。
二、能在方格纸上进行旋转作图。
温馨提示:
把钟面看作一个圆周,是360度。
钟面上有12个大格,每个大格是360÷12=30(度),也就是说,指针每走1个大格就旋转了30度。
温馨提示:
描述物体的旋转时,一定要说清旋转中心、旋转方向和旋转角度。
旋转后的图形与旋转前的图形相比较,每条边、每个点都旋转了相同的角度,但图形的大小、形状都没有发生改变。
易错点:用平移和旋转拼组图形时,要先观察和思考变化前后各部分。