粒子群算法通用matlab程序

合集下载

粒子群_Matlab程序代码

粒子群_Matlab程序代码

粒子群优化算法(panicle swarm optimization ,PSO)是kennedy 和Eberhart 在研究鸟类和鱼类的群体行为基础上于1995年提出的一种群智能算法,其思想米源予人工生命和演化计算理论,模仿鸟群飞行觅食行为,通过鸟集体协作使群体达到最优。

1.粒子群算法的原理PSO 中,每个优化问题的解看作搜索空间中的一只鸟(即粒子),所有的粒子都有一个被优化的函数决定的适应值,并且有一个速度决定它们飞翔的方向和速率,粒子们追随当前的最优粒子在解空间中搜索。

算法首先初始化一群随机粒子,然后通过迭代找到最优解。

在每一次迭代中,粒子通过跟踪两个“极值”即个体极值和全局极值来更新自己的速度与位置。

在D 维目标搜索空间中,由种群数为m 的粒子组成粒子群,其中第f 个粒子在第d 维的位置为Xid ,其飞行速度为Vid ,该粒子当前搜索到的最优位置为Pid(goodvalue)和整个粒子群当前的最优位置Pgd(bestvalue)。

每维的速度与位置更新公式如下112(1)()(1)()(1)id id id id id id v v c rand p x c rand g x ω+=⨯+⨯⨯-+⨯⨯-L 11(2)id id id x x v ++=+LW 为惯性权重,C1和C2为学习因子,rand ()——[0,1]范围内变化的随机数。

2.参数介绍与设置(1)ww 是保持粒子运动惯性的参数,能使种群扩展搜索空间,获得较好的求解效果。

较大的w 有利于群体在更大的范围内进行搜索。

而较小的w 能够保证群体收敛到最优位置,所以w 的选择及在迭代中的变化对搜索能力和跳出局优能力具有重要影响。

一般将w 设定为0.8左右。

(1)加速因子c1和c2c1和c2用于调整粒子自身经验和社会经验在其运动中的作用,表示将每个粒子拉向pbest 和gbest 位置的随机加速项的权重,低的值允许粒子在被拉回前可以在目标区域外徘徊, 而高的值则导致粒子突然冲向或越过目标区域。

基本粒子群算法MATLAB编程

基本粒子群算法MATLAB编程
for i=1:N
v(i,:)=w*v(i,:)+c1*rand*(p(i,:)-x(i,:))+c2*rand*(pg-x(i,:));
x(i,:)=x(i,:)+v(i,:);
if fitness(x(i,:),D)<fitness(p(i,:),D)
p(i,:)=x(i,:);
end
if fitness(p(i,:),D)<fitness(pg,D)
pg=p(i,:);
end
end பைடு நூலகம்
Pbest(t)=fitness(pg,D);
end
%最后给出计算结果
disp('*************************************')
disp('函数的全局最优位置为:')
Solution=pg'
disp('最后得到的优化极值为:')
Result=Pbest(t)
disp('*************************************')
clear all;
%clc;
format long;
%给定初始条件
c1=1.4962;%学习因子1
c2=1.4962;%学习因子2
w=0.7298; %惯性权重
MaxDT=1000;%最大迭代数
D=10;%搜索空间维数
N=40;%初始化群体个体数目
%初始化种群的个体(可以在这里限定位置和速度的范围)
pg=x(1,:);%Pg为全局最优
for i=2:N

粒子群算法matlab程序

粒子群算法matlab程序

粒子群算法matlab程序粒子群算法(PSO)是一种基于群体智能的求解优化问题的算法。

其通过模拟鸟群等大规模群体行为,实现全局搜索和基于群体协作的局部搜索。

在PSO中,通过一组粒子(每个粒子代表一个解)来搜索问题的解空间,在搜索过程中,粒子的位置表示该解在解空间中的位置,速度表示该解在该方向(即属性)上的变化速率,最终达到全局最优解或局部最优解。

PSO算法有着简单易懂、实现简便、计算速度快以及易于与其他算法结合等优点。

下面我将介绍一下如何使用matlab编写简单的粒子群算法程序。

程序主要分为以下步骤:1.初始化在程序开始之前需要对粒子进行初始化操作,其中需要确定粒子群的大小、每个粒子的位置、速度等初始参数。

2.计算适应值计算每个粒子的适应值,即根据当前位置计算该解的适应值。

适应值可以根据实际问题进行定义,如最小化目标函数或最大化收益等。

3.更新粒子速度和位置这一步是PSO算法的核心步骤,通过改变粒子的速度和位置来找到更优的解。

其核心公式为:v(t+1) = w * v(t) + c1 * rand() * (pbest - x(t)) + c2 * rand() * (gbest - x(t)) x(t+1) = x(t) + v(t+1)其中w是惯性权重,c1、c2是学习因子,pbest是该粒子的历史最优解,gbest 是当前全局最优解。

4.更新pbest和gbest在每次更新位置之后需要更新每个粒子自己的历史最优解以及全局最优解。

5.停止条件判断设定停止条件,如最小适应值误差、迭代次数、最大迭代次数等,如果达到了停止条件,则程序结束,输出全局最优解。

下面是一份简单的PSO算法的matlab代码:function [best_fit, best_x] = pso(func, dim, lb, ub, max_iter, swarm_size, w, c1, c2)%初始化粒子v = zeros(swarm_size, dim);x = repmat(lb, swarm_size, 1) + repmat(ub - lb, swarm_size, 1) .* rand(swarm_size, dim);pbest = x;[best_fit, best_idx] = min(func(x));gbest = x(best_idx,:);%开始迭代for iter = 1 : max_iter%更新速度和位置v = w * v + c1 * rand(swarm_size, dim) .* (pbest - x) + c2 * rand(swarm_size, dim) .* repmat(gbest, swarm_size, 1) - x;x = x + v;%边界处理x = max(x, repmat(lb, swarm_size, 1));x = min(x, repmat(ub, swarm_size, 1));%更新pbest和gbestidx = func(x) < func(pbest);pbest(idx,:) = x(idx,:);[min_fit, min_idx] = min(func(pbest));if min_fit < best_fitbest_fit = min_fit;best_x = pbest(min_idx,:);endendend在使用上述代码时,需要定义适应值函数(func)、解空间维度(dim)、每个维度的上界(ub)与下界(lb)、最大迭代次数(max_iter)、粒子群大小(swarm_size)、惯性权重(w)、学习因子(c1、c2)等参数。

整数空间粒子群算法MATLAB程序

整数空间粒子群算法MATLAB程序

整数空间粒子群算法clear allclcticT =1200; %最大迭代次数PopSize=40; %种群大小c1 =2; %学习因子1c2 = 2; %学习因子2w=0.9; %惯性因子NDim = 60; %空间维数for i=1:PopSizefor j=1:NDim %初始化各粒子初始位置,在有效范围内随机选数x(i,j)=round(rand*20) + 20;endendvmax=zeros(PopSize,NDim);for i=1:PopSizefor j=1:NDim %初始化各粒子最大速度,使粒子不能越出边界vmax(i,j)=10;endendv = vmax.*rand( PopSize,NDim);%计算初始各粒子的适应度值for i = 1:PopSizefvalue(i) = youhualianxuduo(x(i,:));endpbest = x; %记录各粒子的个体极值点位置fpbest = fvalue; %记录初始个体最佳适应度值[fbestval,index] = min(fvalue); % 找出全局极值和相应的序号gbest1=fbestval;g1=x(index,:);%浸入主循环,按照公式依次迭代直到满足迭代次数for i=1:Tfor j=1:PopSizeif(youhualianxuduo(x(j,:))<fpbest(j))pbest(j,:)=x(j,:);fpbest(j)=youhualianxuduo(x(j,:));endif (fpbest(j)<gbest1)g1=pbest(j,:);gbest1=fpbest(j);endfor d=1:NDimif pbest(j,d)>x(j,d)a1=0;elsea1=c1*(pbest(j,d)-x(j,d));endif pbest(j,d)>x(j,d)b1=c1*(pbest(j,d)-x(j,d));elseb1=0;endif g1(d)>x(j,d)a2=0;elsea2=c2*(g1(d)-x(j,d));endif g1(d)>x(j,d)b2=c2*(g1(d)-x(j,d));elseb2=0;endR1=randi([a1,b1],1,1);R2=randi([a2,b2],1,1);v(j,d)=round(w*v(j,d))+R1+R2;end%更新速度Vfor n=1:PopSize %速度v的限定,最大值为10 for k=1:NDimif v(n,k)>10v(n,k)=10;endif v(n,k)<-10v(n,k)=-10;endendendx(j,:)=x(j,:)+v(j,:); %更新位置x% 逸出标志for l=1:PopSize % 阻止逸出for m=1:NDimif x(l,m)<1|x(l,m)>40x(l,m)=round(rand*20+20);endendendendw=0.9-i*0.5/Tgb1(i)=gbest1;endfigure(7)plot(gb1);TempStr=sprintf('c1=%g,c2=%g',c1,c2); title(TempStr);xlabel('迭代次数');ylabel('适应度值');toc。

pso算法matlab代码

pso算法matlab代码

pso算法matlab代码pso算法是一种优化算法,全称为粒子群优化算法(Particle Swarm Optimization)。

它模拟了鸟群或者鱼群的行为,通过不断地迭代寻找最优解。

在许多优化问题中,pso算法都有着良好的表现,特别是在连续空间的优化问题中。

在matlab中实现pso算法并不复杂,以下是一个简单的例子:```matlabfunction [best_pos, best_val] = pso_algorithm(fitness_func,num_particles, num_iterations, range)% 初始化粒子的位置和速度positions = rand(num_particles, length(range)) .* (range(2) - range(1)) + range(1);velocities = rand(num_particles, length(range)) .* (range(2) - range(1)) + range(1);% 初始化每个粒子的最佳位置和适应度值personal_best_pos = positions;personal_best_val = arrayfun(fitness_func, personal_best_pos);% 初始化全局最佳位置和适应度值[global_best_val, global_best_idx] = min(personal_best_val);global_best_pos = personal_best_pos(global_best_idx, :);% 开始迭代for iter = 1:num_iterations% 更新粒子的速度和位置inertia_weight = 0.9 - iter * (0.5 / num_iterations); % 慢慢减小惯性权重cognitive_weight = 2;social_weight = 2;r1 = rand(num_particles, length(range));r2 = rand(num_particles, length(range));velocities = inertia_weight .* velocities + ...cognitive_weight .* r1 .* (personal_best_pos - positions) + ...social_weight .* r2 .* (global_best_pos - positions);positions = positions + velocities;% 更新每个粒子的最佳位置和适应度值new_vals = arrayfun(fitness_func, positions);update_idx = new_vals < personal_best_val;personal_best_pos(update_idx, :) = positions(update_idx, :);personal_best_val(update_idx) = new_vals(update_idx);% 更新全局最佳位置和适应度值[min_val, min_idx] = min(personal_best_val);if min_val < global_best_valglobal_best_val = min_val;global_best_pos = personal_best_pos(min_idx, :);endendbest_pos = global_best_pos;best_val = global_best_val;end```上面的代码实现了一个简单的pso算法,其中`fitness_func`是待优化的目标函数,`num_particles`是粒子数量,`num_iterations`是迭代次数,`range`是变量的范围。

粒子群算法源程序

粒子群算法源程序

粒子群算法源程序二维粒子群matlab源程序%function [pso F] = pso_2D()% FUNCTION PSO --------USE Particle Swarm OptimizationAlgorithm% global present;% close all;clc;clear all;pop_size = 10; % pop_size 种群大小 ///粒子数量 part_size = 2; % part_size 粒子大小 ///粒子的维数 gbest = zeros(1,part_size+1); % gbest 当前搜索到的最小的值 max_gen = 200; % max_gen 最大迭代次数%best=zeros(part_size,pop_size*part_size);%xuanregion=zeros(part_size,2); % 设定搜索空间范围->解空间 region=10*[-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3]; %每一维设定不同范围(称之为解空间,不是可行域空间)rand('state',sum(100*clock)); % 重置随机数发生器状态 %当前种群的信息矩阵,逐代进化的群体 % 当前位置,随机初始化 % 一个10*3的随机的矩阵(初始化所有粒子的所有维数的位置值),其中最后一列为arr_present = ini_pos(pop_size,part_size);% 初始化当前速度% 一个10*2的随机的矩阵(初始化所有粒子的所有维数的速度值)v=ini_v(pop_size,part_size);%不是当前种群,可看作是一个外部的记忆体,存储每个粒子历史最优值(2维数值):根据适应度更新~%注意:pbest数组10*3 最后一列保存的是适应度pbest = zeros(pop_size,part_size+1); % pbest:粒子以前搜索到的最优值,最后一列包括这些值的适应度% 1*80 保存每代的最优值best_record = zeros(part_size+1,max_gen); % best_record数组:记录每一代的最好的粒子的适应度w_max = 0.9; % w_max权系数最大值w_min = 0.2; % w_min权系数最小值v_max = 2; % 最大速度,为粒子的范围宽度c1 = 2; % 学习因子1c2 = 2; % 学习因子2% ————————————————————————% 计算原始种群的适应度,及初始化% ————————————————————————% 注意:传入的第一个参数是当前的粒子群体,ini_fit函数计算每个粒子的适应度% arr_present(:,end)是最后一列,保存每个粒子的适应值,是这样的~xuan arr_present(:,end)= ini_fit( arr_present, pop_size, part_size );% 数组赋值,初始化每个粒子个体的历史最优值,以后会更新的 pbest = arr_present; % 初始化各个粒子最优值% 找到当前群体中适应度最小的(在最后一列中寻找),best_value % 改为max,表示关联度最大[best_value best_index] = max(arr_present(:,end)); %初始化全局最优,即适应度为全局最小的值,根据需要也可以选取为最大值% 唯一的全局最优值,是当前代所有粒子中最好的一个 gbest =arr_present(best_index,:);% 因为是多目标,因此这个-----------------% 只是示意性的画出3维的%x=[-3:0.01:3];%y=[-3:0.01:3];%[X,Y]=meshgrid(x,y);%Z1=(-10)*exp((-0.2)*sqrt(X^2+Y^2));%Z2=(abs(X))^0.8+abs(Y)^0.8+5*sin(X^3)+5*sin(Y^3);%z1=@(x,y)(-10)*exp((-0.2)*sqrt(x^2+y^2));%z2=@(x,y)(abs(x))^0.8+abs(y)^0.8+5*sin(x^3)+5*sin(y^3);%ezmeshc(z1);grid on;%ezmeshc(z2);grid on;%开始进化,直到最大代数截至for i=1:max_gen%grid on;%三维图象 %多维图象是画不出来的%ezmesh(z),hold on,grid on;%画出粒子群%plot3(arr_present(:,1),arr_present(:,2),arr_present(:,3),'*'),h old off;%drawnow%flush%pause(0.01);w = w_max-(w_max-w_min)*i/max_gen; % 线形递减权重% 当前进化代数:对于每个粒子进行更新和评价----->>>>>>>for j=1:pop_sizev(j,:) =w.*v(j,:)+c1.*rand.*(pbest(j,1:part_size)-arr_present(j,1:part_size ))...+c2.*rand.*(gbest(1:part_size)-arr_present(j,1:part_size)); % 粒子速度更新 (a)% 判断v的大小,限制v的绝对值小于20———————————————————for k=1:part_sizeif abs(v(j,k))>20rand('state',sum(100*clock));v(j,k)=20*rand();endend%前几列是位置信息arr_present(j,1:part_size) =arr_present(j,1:part_size)+v(j,1:part_size);% 粒子位置更新(b) %最后一列是适应度arr_present(j,end) =fitness(part_size,arr_present(j,1:part_size)); % 适应度更新 (保存至最后一列)% 适应度评价与可行域限制if(arr_present(j,end)>pbest(j,end))&(Region_in(arr_present(j,:),regi on)) % 根据条件更新pbest,如果是最小的值为小于号,相反则为大于号pbest(j,:) = arr_present(j,:); % 更新个体的历史极值endend% 以下更新全局的极值[best best_index] = max(arr_present(:,end)); % 如果是最小的值为min,相反则为maxif best>gbest(end) & ( Region_in(arr_present(best_index,:),region) ) % 如果当前最好的结果比以前的好,则更新最优值gbest,如果是最小的值为小于号,相反则为大于号gbest = arr_present(best_index,:); % 全局的极值end%------------混沌---------------------------------xlhd = gbest(1:part_size);if(1)for p=1:25 %次数%1生成cxl=rand(1,part_size);for j=1:part_sizeif cxl(j)==0cxl(j)=0.1;endif cxl(j)==0.25cxl(j)=0.26;endif cxl(j)==0.5cxl(j)=0.51;endif cxl(j)==0.75cxl(j)=0.76;endif cxl(j)==1cxl(j)=0.9;endend%2映射al=-30;bl=30;rxl=al+(bl-al)*cxl;%3搜索bate = 0.1;xlhd=xlhd+bate*rxl;if fitness(part_size,xlhd)>gbest(end) gbest(1:part_size)=xlhd;gbest(end)=fitness(part_size,xlhd);end%4更新for j=1:part_sizecxl(j)=4*cxl(j)*(1-cxl(j));endendend%-------------混沌-------------------------------- %当前代的最优粒子的适应度(取自)保存best_record(:,i) = gbest; % gbest:一个行向量 end pso = gbest; % 最优个体display(gbest);figure;plot(best_record(end,:));% 最优解与代数的进化关系图best=zeros(part_size,max_gen); for i=1:part_size-1 best(i,:)=best_record(i,:);endpareto1= zeros(1,max_gen);pareto2= zeros(1,max_gen);for i=1:max_genpareto1(i)=f1(part_size, best(:,i) );pareto2(i)=f2(part_size, best(:,i) ); endfigure;i=1:max_gen;%plot(i,pareto1(i),'r*',i,pareto2(i),'g*');plot(pareto1(i),pareto2(i),'r+'); xlabel('f1');ylabel('f2');title('Pareto曲线');%figure;%plot(,f2(best_record),);% movie2avi(F,'pso_2D1.avi','compression','MSVC');%子函数%------------------------------------------------------------------------- %------------------------------------------------------------------------- %返回随机的位置function ini_present=ini_pos(pop_size,part_size)ini_present = 10*3*rand(pop_size,part_size+1); %初始化当前粒子位置,使其随机的分布在工作空间%返回一个随机的矩阵,10*(2+1),最后一列将用来保存适应度%返回随机的速度function ini_velocity=ini_v(pop_size,part_size)ini_velocity =20*(rand(pop_size,part_size)); %初始化当前粒子速度,使其随机的分布在速度范围内%判断是否处于范围内function flag = Region_in(pos_present,region)[m n]=size(pos_present); % 1*11 n返回解的维数10 flag=1;for j=1:n-1flag = flag & ( pos_present(1,j)>=region(j,1) ) &( pos_present(1,j)<=region(j,2) );end%初始化适应度function arr_fitness = ini_fit(pos_present,pop_size,part_size) for k=1:pop_sizearr_fitness(k,1) =fitness(part_size,pos_present(k,1:part_size)); %计算原始种群的适应度end%***************************************************************************% 计算适应度%***************************************************************************function fit = fitness(n,xp)%需要求极值的函数,本例即peaks函数%y0=[-85.4974,-29.9217]; % 注意:这是基准序列,也就是单个最优的极值y0=[-9.9907,-7.7507];%y0=[-39.6162,-18.4561];% y0=[-86.8312,-29.9217];y1=[f1(n,xp),f2(n,xp)]; % n为粒子维数fit=graydegree(2,y0,y1); % 关联度在某种意义上就是适应度%目标函数1function r=f1(n,x)r=0;for i=1:n-1r=r+(-10)*exp((-0.2)*sqrt(x(i)^2+x(i+1)^2)); end%目标函数2function r=f2(n,x)r=0;for i=1:nr=r+(abs(x(i)))^0.8+5*sin(x(i)^3);end%约束函数1function r=g1(n,x)r=0;for i=1:nr=0;end%约束函数2function r=g2(n,x)r=0;for i=1:nr=0;end% 灰色关联度计算函数 ( 越大相似性越好 )% tn目标函数个数 x0基准序列(一组值) x1贷检(一组值) function gama = graydegree( tn,y0,y1 )gama=0;rou =0.5;kesa= zeros(tn,1);m1= abs(y0(1)-y1(1)) ; m2= abs(y0(1)-y1(1)) ; for i=1:tnif( abs(y0(i)-y1(i))>m2 ) %------------------应该取大于呢还是小于m2= abs(y0(i)-y1(i));endendfor i=1:tnkesa(i) = ( m1+rou*m2)/( abs(y0(i)-y1(i)) +rou*m2 );gama = gama + kesa(i); endgama = gama/tn;% 可行解的判决函数 gn为约束条件的个数(暂时未用) n为解(粒子)的维数function bool = feasible( x,n ) r=0;%for i=1:gnr=max( 0, g1(n,x), g2(n,x) );%判断约束条件%endif(r>0)bool=0; %不可行解elsebool=1; %可行解endPSO粒子群算法解决旅行商问题的MATLAB源码PSO粒子群算法解决旅行商问题的MATLAB源码 %粒子群算法求解旅行商问题% By lReijclose all;clear all;PopSize=500;%种群大小CityNum = 14;%城市数OldBestFitness=0;%旧的最优适应度值Iteration=0;%迭代次数MaxIteration =2000;%最大迭代次数IsStop=0;%程序停止标志Num=0;%取得相同适应度值的迭代次数c1=0.5;%认知系数c2=0.7;%社会学习系数w=0.96-Iteration/MaxIteration;%惯性系数,随迭代次数增加而递减%节点坐标node=[16.47 96.10; 16.47 94.44; 20.09 92.54; 22.39 93.37; 25.2397.24;...22.00 96.05; 20.47 97.02; 17.20 96.29; 16.30 97.38; 14.05 98.12;...16.53 97.38; 21.52 95.59; 19.41 97.13; 20.09 94.55];%初始化各粒子,即产生路径种群Group=ones(CityNum,PopSize);for i=1:PopSizeGroup(:,i)=randperm(CityNum)';endGroup=Arrange(Group);%初始化粒子速度(即交换序)Velocity =zeros(CityNum,PopSize); for i=1:PopSizeVelocity(:,i)=round(rand(1,CityNum)'*CityNum); %round取整end%计算每个城市之间的距离CityBetweenDistance=zeros(CityNum,CityNum); for i=1:CityNumfor j=1:CityNumCityBetweenDistance(i,j)=sqrt((node(i,1)-node(j,1))^2+(node(i,2)-node(j,2))^2);endend%计算每条路径的距离for i=1:PopSizeEachPathDis(i) = PathDistance(Group(:,i)',CityBetweenDistance);endIndivdualBest=Group;%记录各粒子的个体极值点位置,即个体找到的最短路径IndivdualBestFitness=EachPathDis;%记录最佳适应度值,即个体找到的最短路径的长度 [GlobalBestFitness,index]=min(EachPathDis);%找出全局最优值和相应序号%初始随机解figure;subplot(2,2,1);PathPlot(node,CityNum,index,IndivdualBest); title('随机解');%寻优while(IsStop == 0) & (Iteration < MaxIteration)%迭代次数递增Iteration = Iteration +1;%更新全局极值点位置,这里指路径for i=1:PopSizeGlobalBest(:,i) = Group(:,index);end%求pij-xij ,pgj-xij交换序,并以概率c1,c2的保留交换序pij_xij=GenerateChangeNums(Group,IndivdualBest);pij_xij=HoldByOdds(pij_xij,c1);pgj_xij=GenerateChangeNums(Group,GlobalBest);pgj_xij=HoldByOdds(pgj_xij,c2);%以概率w保留上一代交换序Velocity=HoldByOdds(Velocity,w);Group = PathExchange(Group,Velocity); %根据交换序进行路径交换Group = PathExchange(Group,pij_xij);Group = PathExchange(Group,pgj_xij);for i = 1:PopSize % 更新各路径总距离EachPathDis(i) = PathDistance(Group(:,i)',CityBetweenDistance);endIsChange = EachPathDis<IndivdualBestFitness;%更新后的距离优于更新前的,记录序号IndivdualBest(:, find(IsChange)) = Group(:, find(IsChange));%更新个体最佳路径IndivdualBestFitness = IndivdualBestFitness.*( ~IsChange) + EachPathDis.*IsChange;%更新个体最佳路径距离[GlobalBestFitness, index] = min(EachPathDis);%更新全局最佳路径,记录相应的序号if GlobalBestFitness==OldBestFitness %比较更新前和更新后的适应度值;Num=Num+1; %相等时记录加一;elseOldBestFitness=GlobalBestFitness;%不相等时更新适应度值,并记录清零;Num=0;endif Num >= 20 %多次迭代的适应度值相近时程序停止IsStop=1;endBestFitness(Iteration) =GlobalBestFitness;%每一代的最优适应度end%最优解subplot(2,2,2);PathPlot(node,CityNum,index,IndivdualBest);title('优化解');%进化曲线subplot(2,2,3);plot((1:Iteration),BestFitness(1:Iteration));grid on;title('进化曲线');%最小路径值GlobalBestFitnessfunction Group=Arrange(Group)[x y]=size(Group);[NO1,index]=min(Group',[],2); %找到最小值1for i=1:ypop=Group(:,i);temp1=pop([1: index(i)-1]);temp2=pop([index(i): x]);Group(:,i)=[temp2' temp1']';endfunction ChangeNums=GenerateChangeNums(Group,BestVar);[x y]=size(Group);ChangeNums=zeros(x,y);for i=1:ypop=BestVar(:,i);%从BestVar取出一个顺序pop1=Group(:,i);%从粒子群中取出对应的顺序for j=1:x %从BestVar的顺序中取出一个序号NoFromBestVar=pop(j);for k=1:x %从对应的粒子顺序中取出一个序号NoFromGroup=pop1(k);if (NoFromBestVar==NoFromGroup) && (j~=k) %两序号同且不在同一位置ChangeNums(j,i)=k; %交换子pop1(k)=pop1(j);pop1(j)=NoFromGroup;endendendendfunction Hold=HoldByOdds(Hold,Odds) [x,y]=size(Hold);for i=1:xfor j=1:yif rand>OddsHold(i,j)=0;endendendfunction SumDistance=PathDistance(path,CityBetweenDistance)L=length(path); %path为一个循环的节点顺序SumDistance=0;for i=1:L-1SumDistance=SumDistance+CityBetweenDistance(path(i),path(i+1));endSumDistance=SumDistance+CityBetweenDistance(path(1),path(L)); %加上首尾节点的距离function Group=PathExchange(Group,Index)[x y]=size(Group);for i=1:ya=Index(:,i); %取出其中一组交换序pop=Group(:,i); %取出对应的粒子for j=1:x %取出其中一个交换算子作交换if a(j)~=0pop1=pop(j);pop(j)=pop(a(j));pop(a(j))=pop1;endendGroup(:,i)=pop;endfunction PathPlot(node,CityNum,index,EachBest);for i=1:CityNumNowBest(i,:)=node((EachBest(i,index)),:);endNowBest(CityNum+1,:)=NowBest(1,:); plot(node(:,1),node(:,2),'*'); line(NowBest(:,1),NowBest(:,2)); grid on;。

粒子群优化算法介绍及matlab程序

粒子群优化算法介绍及matlab程序

粒子群优化算法(1)—粒子群优化算法简介PSO算法就是模拟一群鸟寻找食物的过程,每个鸟就是PSO中的粒子,也就是我们需要求解问题的可能解,这些鸟在寻找食物的过程中,不停改变自己在空中飞行的位置与速度。

大家也可以观察一下,鸟群在寻找食物的过程中,开始鸟群比较分散,逐渐这些鸟就会聚成一群,这个群忽高忽低、忽左忽右,直到最后找到食物。

这个过程我们转化为一个数学问题。

寻找函数y=1-cos(3*x)*exp(-x)的在[0,4]最大值。

该函数的图形如下:当x=0.9350-0.9450,达到最大值y=1.3706。

为了得到该函数的最大值,我们在[0, 4]之间随机的洒一些点,为了演示,我们放置两个点,并且计算这两个点的函数值,同时给这两个点设置在[0, 4]之间的一个速度。

下面这些点就会按照一定的公式更改自己的位置,到达新位置后,再计算这两个点的值,然后再按照一定的公式更新自己的位置。

直到最后在y=1.3706这个点停止自己的更新。

这个过程与粒子群算法作为对照如下:这两个点就是粒子群算法中的粒子。

该函数的最大值就是鸟群中的食物。

计算两个点函数值就是粒子群算法中的适应值,计算用的函数就是粒子群算法中的适应度函数。

更新自己位置的公式就是粒子群算法中的位置速度更新公式。

下面演示一下这个算法运行一次的大概过程:第一次初始化第一次更新位置第二次更新位置第21次更新最后的结果(30次迭代)最后所有的点都集中在最大值的地方。

粒子群优化算法(2)—标准粒子群优化算法在上一节的叙述中,唯一没有给大家介绍的就是函数的这些随机的点(粒子)是如何运动的,只是说按照一定的公式更新。

这个公式就是粒子群算法中的位置速度更新公式。

下面就介绍这个公式是什么。

在上一节中我们求取函数y=1-cos(3*x)*exp(-x)的在[0, 4]最大值。

并在[0,4]之间放置了两个随机的点,这些点的坐标假设为x1=1.5,x2=2.5;这里的点是一个标量,但是我们经常遇到的问题可能是更一般的情况—x 为一个矢量的情况,比如二维z=2*x1+3*x22的情况。

matlab粒子群算法实例

matlab粒子群算法实例

matlab粒子群算法实例
粒子群算法(Particle Swarm Optimization, PSO)是一种基于群体智能的优化算法,常用于解决寻优问题。

在Matlab中,你可以使用以下示例来实现粒子群算法:
matlab.
% 首先,定义适应度函数。

fitnessFunction = @(x) x(1)^2 + x(2)^2; % 这里以一个简单的二元函数 x^2 + y^2 为例。

% 然后,设置粒子群算法的参数。

options =
optimoptions('particleswarm','SwarmSize',100,'HybridFcn',@f mincon);
% 接着,运行粒子群算法。

[x,fval] = particleswarm(fitnessFunction,2,[-10,-
10],[10,10],options);
% 最后,输出结果。

disp('最优解,');
disp(x);
disp('最优值,');
disp(fval);
在这个示例中,首先定义了一个简单的二元适应度函数,然后
使用`optimoptions`函数设置了粒子群算法的参数,包括群体大小
和混合函数。

接着调用`particleswarm`函数来运行粒子群算法,最
后输出最优解和最优值。

当然,这只是一个简单的示例,实际应用中你可能需要根据具
体问题对适应度函数和算法参数进行调整。

希望这个示例能帮到你。

粒子群算法matlab代码(PDF)

粒子群算法matlab代码(PDF)

粒子群算法(1)----粒子群算法简介一、粒子群算法的历史粒子群算法源于复杂适应系统(Complex Adaptive System,CAS)。

CAS理论于1994年正式提出,CAS中的成员称为主体。

比如研究鸟群系统,每个鸟在这个系统中就称为主体。

主体有适应性,它能够与环境及其他的主体进行交流,并且根据交流的过程“学习”或“积累经验”改变自身结构与行为。

整个系统的演变或进化包括:新层次的产生(小鸟的出生);分化和多样性的出现(鸟群中的鸟分成许多小的群);新的主题的出现(鸟寻找食物过程中,不断发现新的食物)。

所以CAS系统中的主体具有4个基本特点(这些特点是粒子群算法发展变化的依据):首先,主体是主动的、活动的。

主体与环境及其他主体是相互影响、相互作用的,这种影响是系统发展变化的主要动力。

环境的影响是宏观的,主体之间的影响是微观的,宏观与微观要有机结合。

最后,整个系统可能还要受一些随机因素的影响。

粒子群算法就是对一个CAS系统---鸟群社会系统的研究得出的。

粒子群算法(Particle Swarm Optimization,PSO)最早是由Eberhart和Kennedy于1995年提出,它的基本概念源于对鸟群觅食行为的研究。

设想这样一个场景:一群鸟在随机搜寻食物,在这个区域里只有一块食物,所有的鸟都不知道食物在哪里,但是它们知道当前的位置离食物还有多远。

那么找到食物的最优策略是什么呢?最简单有效的就是搜寻目前离食物最近的鸟的周围区域。

PSO算法就从这种生物种群行为特性中得到启发并用于求解优化问题。

在PSO中,每个优化问题的潜在解都可以想象成d维搜索空间上的一个点,我们称之为“粒子”(Particle),所有的粒子都有一个被目标函数决定的适应值(Fitness Value),每个粒子还有一个速度决定他们飞翔的方向和距离,然后粒子们就追随当前的最优粒子在解空间中搜索。

Reynolds对鸟群飞行的研究发现。

(完整word版)用MATLAB编写PSO算法及实例

(完整word版)用MATLAB编写PSO算法及实例

用MATLAB 编写PSO 算法及实例1.1 粒子群算法PSO 从这种模型中得到启示并用于解决优化问题。

PSO 中,每个优化问题的潜在解都是搜索空间中的一只鸟,称之为粒子。

所有的粒子都有一个由被优化的函数决定的适值( fitness value) ,每个粒子还有一个速度决定它们飞翔的方向和距离。

然后粒子们就追随当前的最优粒子在解空间中搜索。

PSO 初始化为一群随机粒子(随机解),然后通过迭代找到最优解。

在每一次迭代中,粒子通过跟踪两个极值来更新自己;第一个就是粒子本身所找到的最优解,这个解称为个体极值;另一个极值是整个种群目前找到的最优解,这个极值是全局极值。

另外也可以不用整个种群而只是用其中一部分作为粒子的邻居,那么在所有邻居中的极值就是局部极值。

假设在一个维的目标搜索空间中,有个粒子组成一个群落,其中第个粒子表示为一个维的向量,。

第个粒子的“飞行 ”速度也是一个维的向量,记为,。

第个粒子迄今为止搜索到的最优位置称为个体极值,记为,。

整个粒子群迄今为止搜索到的最优位置为全局极值,记为在找到这两个最优值时,粒子根据如下的公式(1.1)和( 1.2)来更新自己的速度和位置:(1.1) (1. 2)其中:和为学习因子,也称加速常数(acceleration constant),和为[0,1]范围内的均匀随机数。

式(1.1)右边由三部分组成,第一部分为“惯性(inertia)”或“动量(momentum)”部分,反映了粒子的运动“习惯(habit)”,代表粒子有维持自己D N i D ),,,(21iD i i i x x x X N i ,,2,1 i D ),,21i iD i i v v v V ,( 3,2,1 i i ),,,(21iD i i best p p p p N i ,,2,1 ),,,(21gD g g best p p p g )(2211id gd id id id id x p r c x p r c v w v id id id v x x 1c 2c 1r 2r先前速度的趋势;第二部分为“认知(cognition)”部分,反映了粒子对自身历史经验的记忆(memory)或回忆(remembrance),代表粒子有向自身历史最佳位置逼近的趋势;第三部分为“社会(social)”部分,反映了粒子间协同合作与知识共享的群体历史经验。

粒子群算法解决VRP代码(matlab)

粒子群算法解决VRP代码(matlab)

粒子群算法解决VRP代码(matlab)particle_swarm_optimization.m文件:function PSOforTSP%初始化Alpha=0.25; %个体经验保留概率Beta=0.25; %全局经验保留概率NC_max=100; %最大迭代次数m=80; %微粒数CityNum=14; %问题的规模(城市个数)[dislist,Clist]=tsp(CityNum);NC=1;%迭代计数器R_best=zeros(NC_max,CityNum); %各代最佳路线L_best=inf.*ones(NC_max,1);%各代最佳路线的长度L_ave=zeros(NC_max,1);%各代路线的平均长度%产生微粒的初始位置for i=1:mx(i,:)=randperm(CityNum);L(i)=CalDist(dislist,x(i,:));endp=x; %p为个体最好解pL=L;[L_best(1,1) n_best]=min(L);R_best(1,:)=x(n_best,:);L_ave(1,1)=mean(L);%初始交换序v=ones(CityNum-1,2,m)*(round(rand*(CityNum-1))+1);figure(1);while NC<=NC_max %停止条件之一:达到最大迭代次数for i=1:mxnew(i,:)=changeFun(x(i,:),v(:,:,i));A=changeNum(x(i,:),p(i,:));Arand=randFun(A,Alpha);xnew(i,:)=changeFun(xnew(i,:),Arand);B=changeNum(x(i,:),R_best(NC,:));Brand=randFun(B,Beta);xnew(i,:)=changeFun(xnew(i,:),Brand);v(:,:,i)=changeNum(x(i,:),xnew(i,:));L(i)=CalDist(dislist,xnew(i,:));if L(i)<pl(i)< p="">p(i,:)=xnew(i,:);pL(i)=L(i);endend[L_bestnew n_best]=min(L);R_bestnew=xnew(n_best,:);L_ave(NC+1,1)=mean(L);if L_bestnew<l_best(nc,1)< p="">L_best(NC+1,1)=L_bestnew;R_best(NC+1,:)=R_bestnew;elseL_best(NC+1,1)=L_best(NC,1);R_best(NC+1,:)=R_best(NC,:);endx=xnew;drawTSP10(Clist,R_best(NC,:),L_best(NC,1),NC,0); %pause;NC=NC+1;end%输出结果Pos=find(L_best==min(L_best));Shortest_Route=R_best(Pos(1),:);Shortest_Length=L_best(Pos(1)); figure(2);plot([L_best L_ave]);legend('最短距离','平均距离'); endfunction xnew=changeFun(x,C); changeLen=size(C,1);xnew=x;for i=1:changeLena=xnew(C(i,1));xnew(C(i,1))=xnew(C(i,2));xnew(C(i,2))=a;endendfunction C=changeNum(x,y); CityNum=size(x,2);C=ones(CityNum-1,2);for i=1:CityNum-1pos=find(x==y(i));C(i,:)=[i pos];x=changeFun(x,C(i,:));endendfunction v=randFun(v,w);randLen=size(v,1);for i=1:randLenif rand>wv(i,2)=v(i,1);endendendfunction F=CalDist(dislist,s)%计算回路路径距离DistanV=0;n=size(s,2);for i=1:(n-1)DistanV=DistanV+dislist(s(i),s(i+1));endDistanV=DistanV+dislist(s(n),s(1));F=DistanV;endfunction [DLn,cityn]=tsp(n)city14=[0 0;0.3 0.334;0.08 0.433;0.166 0.456;0.5 0.4439;0.2439 0.1463;0.1207 0.2293;0.2293 0.761;0.6171 0.9414;0.8732 0.6536;0.6878 0.5219;0.8488 0.3609;0.6683 0.2536;0.6195 0.2634];for i=1:14for j=1:14DL14(i,j)=((city14(i,1)-city14(j,1))^2+(city14(i,2)-city14(j,2))^2)^0.5;endendDLn=DL14;cityn=city14;enddrawTSP10.m文件:function m=drawTSP(Clist,BSF,bsf,p,f)CityNum=size(Clist,1);for i=1:CityNum-1plot([Clist(BSF(i),1),Clist(BSF(i+1),1)],[Clist(BSF(i),2),Clist(BSF(i +1),2)],'ms-','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','g');hold on;endaxis([0,1,0,1]);plot([Clist(BSF(CityNum),1),Clist(BSF(1),1)],[Clist(BSF(CityNu m),2),Clist(BSF(1), 2)],'ms-','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','g');title([num2str(CityNum),'城市TSP']);if f==0text(0.1,0.1,['第',int2str(p),' 步',' 最短距离为',num2str(bsf)]);elsetext(0.1,0.1,['最终搜索结果:最短距离',num2str(bsf)]);endhold off;pause(0.05);</l_best(nc,1)<></pl(i)<>。

粒子群算法 matlab源代码

粒子群算法  matlab源代码

%相关参数的设置UB=600; %函数的上界LB=300; %函数的下界PopSize=40; %种群的大小Dim=10; %微粒的维数c1=2; %学习因子c2=2; %学习因子w_start=0.9;%惯性权重的开始值w_end=0.4;%惯性权重的最后值Vmax=100;%微粒的最大速度MaxIter=1500;%最大迭代次数Iter=0;%初始迭代次数%初始化群和速度X=rand(PopSize,Dim)*(UB-LB)+LB;%微粒位置随机初始化V=rand(PopSize,Dim);%微粒速度随机初始化;%测试函数:Griewank函数ind=repmat(1:Dim,PopSize,1);FX=sum(((X.^2)/4000)')'- prod(cos(X./sqrt(ind))')'+1;%设定当前位置为粒子的最好位置,并记录其最好值PBest=X;FPBest=FX;%找到初始微粒群体的最好微粒[Fgbest,r]=min(FX);CF=Fgbest;%记录当前全局最优值Best=X(r,:);%用于保存最优粒子的位置FBest=Fgbest;%循环while(Iter<=MaxIter)Iter=Iter+1;%更新惯性权重的值;w_now=((w_start-w_end)*(MaxIter-Iter)/MaxIter)+w_end;A=repmat(X(r,:),PopSize,1);%生成随机数R1=rand(PopSize,Dim);R2=rand(PopSize,Dim);%速度更新V=w_now*V+c1*R1.*(PBest-X)+c2*R2.*(A-X);%对进化后速度大于最大速度的微粒进行处理changeRows=V>Vmax;VStep(find(changeRows))=Vmax;%对进化后速度小雨最小速度的微粒进行处理changeRows=V<-Vmax;V(find(changeRows))=-Vmax;%微粒位置进行更新X=X+1.0*V;%重新计算新位置的适应度值ind=repmat(1:Dim,PopSize,1);FX=sum(((X.^2)/4000)')'- prod(cos(X./sqrt(ind))')'+1;%更新每个微粒的最好位置P=FX<FPBest;FPBest(find(P))=FX(find(P));%适应值更换PBest(find(P),:)=X(find(P),:)%粒子位置更换[Fgbest,g]=min(FPBest);%保存最好适应值if Fgbest<CF %如果本次适应值好于上次则保存[fBest,b]=min(FPBest);%最好适应值为fBestBest=PBest(b,:);%最好位置为BestendCF=Fgbest;%保留本次适应值准备与下次比较end %循环结束。

粒子群算法matlab(算法已经调试)

粒子群算法matlab(算法已经调试)

程序1当22111==c c ,5.12212==c c ,2.1=w 。

a)%主函数源程序(main.m )%------基本粒子群算法 (particle swarm optimization )%------名称: 基本粒子群算法%------初始格式化clear all ; %清除所有变量clc; %清屏format long ; %将数据显示为长整形科学计数%------给定初始条条件------------------N=40; %³初始化群体个数D=10; %初始化群体维数T=100; %初始化群体最迭代次数c11=2; %学习因子1c21=2; %学习因子2c12=1.5;c22=1.5;w=1.2; %惯性权重eps=10^(-6); %设置精度(在已知最小值的时候用) %------初始化种群个体(限定位置和速度)------------x=zeros(N,D);v=zeros(N,D);for i=1:Nfor j=1:Dx(i,j)=randn; %随机初始化位置v(i,j)=randn; %随机初始化速度endend%------显示群位置----------------------figure(1)for j=1:Dif (rem(D,2)>0)subplot((D+1)/2,2,j)elsesubplot(D/2,2,j)endplot(x(:,j),'b*');grid onxlabel('粒子')ylabel('初始位置')tInfo=strcat('第',char(j+48),'维');if(j>9)tInfo=strcat('第',char(floor(j/10)+48),char(rem(j,10)+48),'维');endtitle(tInfo)end%------显示种群速度figure(2)for j=1:Dif(rem(D,2)>0)subplot((D+1)/2,2,j)elsesubplot(D/2,2,j)endplot(x(:,j),'b*');grid onxlabel('粒子')ylabel('初始速度')tInfo=strcat('第,char(j+48),'维');if(j>9)tInfo=strcat('第',char(floor(j/10)+48), char(rem(j,10)+48),'维);endtitle(tInfo)endfigure(3)%第一个图subplot(1,2,1)%------初始化种群个体(在此限定速度和位置)------------x1=x;v1=v;%------初始化个体最优位置和最优值---p1=x1;pbest1=ones(N,1);for i=1:Npbest1(i)=fitness(x1(i,:),D);end%------初始化全局最优位置和最优值---------------g1=1000*ones(1,D);gbest1=1000;for i=1:Nif(pbest1(i)<gbest1)g1=p1(i,:);gbest1=pbest1(i);endendgb1=ones(1,T);%-----浸入主循环,按照公式依次迭代直到满足精度或者迭代次数---for i=1:Tfor j=1:Nif (fitness(x1(j,:),D)<pbest1(j))p1(j,:)=x1(j,:);pbest1(j)=fitness(x1(j,:),D);endif(pbest1(j)<gbest1)g1=p1(j,:);gbest1=pbest1(j);endv1(j,:)=w*v1(j,:)+c11*rand*(p1(j,:)-x1(j,:))+c21*rand*(g1-x1(j,:));x1(j,:)=x1(j,:)+v1(j,:);endgb1(i)=gbest1;endplot(gb1)TempStr=sprintf('c1= %g ,c2=%g',c11,c21);title(TempStr);xlabel('迭代次数');ylabel('适应度值');%第二个图subplot(1,2,2)%-----初始化种群个体(在此限定速度和位置)------------x2=x;v2=v;%-----初始化种群个体最有位置和最优解-----------p2=x2;pbest2=ones(N,1);for i=1:Npbest2(i)=fitness(x2(i,:),D);end%-----初始化种全局最有位置和最优解------g2=1000*ones(1,D);gbest2=1000;for i=1:Nif(pbest2(i)<gbest2)g2=p2(i,:);gbest2=pbest2(i);endendgb2=ones(1,T);%------浸入主循环,按照公式依次迭代直到满足精度或者迭代次数---for i=1:Tfor j=1:Nif (fitness(x2(j,:),D)<pbest2(j))p2(j,:)=x2(j,:);pbest2(j)=fitness(x2(j,:),D);endif(pbest2(j)<gbest2)g2=p2(j,:);gbest2=pbest2(j);endv2(j,:)=w*v2(j,:)+c12*rand*(p2(j,:)-x2(j,:))+c22*rand*(g2-x2(j,:)); x2(j,:)=x2(j,:)+v2(j,:);endgb2(i)=gbest2;endplot(gb2)TempStr=sprintf('c1= %g ,c2=%g',c12,c22);title(TempStr);xlabel('迭代次数');ylabel('适应度值');b )适应度函数%适应度函数(fitness.m )function result=fitness(x,D)sum=0;for i=1:Dsum=sum+x(i)^2;endresult=sum;程序2当22111==c c 于2.1,2,02212===w c c 对比a)%主函数源程序(main.m )%------基本粒子群算法 (particle swarm optimization )%------名称: 基本粒子群算法%------初始格式化clear all ; %清除所有变量clc; %清屏format long ; %将数据显示为长整形科学计数%------给定初始条条件------------------N=40; %³初始化群体个数D=10; %初始化群体维数T=100; %初始化群体最迭代次数c11=2; %学习因子1c21=2; %学习因子2c12=0;c22=2;w=1.2; %惯性权重eps=10^(-6); %设置精度(在已知最小值的时候用)%------初始化种群个体(限定位置和速度)------------x=zeros(N,D);v=zeros(N,D);for i=1:Nfor j=1:Dx(i,j)=randn; %随机初始化位置v(i,j)=randn; %随机初始化速度endend%------显示群位置----------------------figure(1)for j=1:Dif(rem(D,2)>0)subplot((D+1)/2,2,j)elsesubplot(D/2,2,j)endplot(x(:,j),'b*');grid onxlabel('粒子')ylabel('初始位置')tInfo=strcat('第',char(j+48),'维');if(j>9)tInfo=strcat('第',char(floor(j/10)+48),char(rem(j,10)+48),'维');endtitle(tInfo)end%------显示种群速度figure(2)for j=1:Dif(rem(D,2)>0)subplot((D+1)/2,2,j)elsesubplot(D/2,2,j)endplot(x(:,j),'b*');grid onxlabel('粒子')ylabel('初始速度')tInfo=strcat('第,char(j+48),'维');if(j>9)tInfo=strcat('第',char(floor(j/10)+48),char(rem(j,10)+48),'维);endtitle(tInfo)endfigure(3)%第一个图subplot(1,2,1)%------初始化种群个体(在此限定速度和位置)------------x1=x;v1=v;%------初始化个体最优位置和最优值---p1=x1;pbest1=ones(N,1);for i=1:Npbest1(i)=fitness(x1(i,:),D);end%------初始化全局最优位置和最优值---------------g1=1000*ones(1,D);gbest1=1000;for i=1:Nif(pbest1(i)<gbest1)g1=p1(i,:);gbest1=pbest1(i);endendgb1=ones(1,T);%-----浸入主循环,按照公式依次迭代直到满足精度或者迭代次数---for i=1:Tfor j=1:Nif (fitness(x1(j,:),D)<pbest1(j))p1(j,:)=x1(j,:);pbest1(j)=fitness(x1(j,:),D);endif(pbest1(j)<gbest1)g1=p1(j,:);gbest1=pbest1(j);endv1(j,:)=w*v1(j,:)+c11*rand*(p1(j,:)-x1(j,:))+c21*rand*(g1-x1(j,:));x1(j,:)=x1(j,:)+v1(j,:);endgb1(i)=gbest1;endplot(gb1)TempStr=sprintf('c1= %g ,c2=%g',c11,c21);title(TempStr);xlabel('迭代次数');ylabel('适应度值');%第二个图subplot(1,2,2)%-----初始化种群个体(在此限定速度和位置)------------x2=x;v2=v;%-----初始化种群个体最有位置和最优解-----------p2=x2;pbest2=ones(N,1);for i=1:Npbest2(i)=fitness(x2(i,:),D);end%-----初始化种全局最有位置和最优解------g2=1000*ones(1,D);gbest2=1000;for i=1:Nif(pbest2(i)<gbest2)g2=p2(i,:);gbest2=pbest2(i);endendgb2=ones(1,T);%------浸入主循环,按照公式依次迭代直到满足精度或者迭代次数---for i=1:Tfor j=1:Nif (fitness(x2(j,:),D)<pbest2(j))p2(j,:)=x2(j,:);pbest2(j)=fitness(x2(j,:),D);endif(pbest2(j)<gbest2)g2=p2(j,:);gbest2=pbest2(j);endv2(j,:)=w*v2(j,:)+c12*rand*(p2(j,:)-x2(j,:))+c22*rand*(g2-x2(j,:));x2(j,:)=x2(j,:)+v2(j,:);endgb2(i)=gbest2;endplot(gb2)TempStr=sprintf('c1= %g ,c2=%g',c12,c22);title(TempStr);xlabel('迭代次数');ylabel('适应度值');b)适应度函数%适应度函数(fitness.m)function result=fitness(x,D)sum=0;for i=1:Dsum=sum+x(i)^2;endresult=sum;程序3当2.1,22111===w c c 于2.1,0,22212===w c c 对比a)%主函数源程序(main.m )%------基本粒子群算法 (particle swarm optimization ) %------名称: 基本粒子群算法%------初始格式化clear all ; %清除所有变量clc; %清屏format long ; %将数据显示为长整形科学计数 %------给定初始条条件------------------N=40; %³初始化群体个数D=10; %初始化群体维数T=100; %初始化群体最迭代次数c11=2; %学习因子1c21=2; %学习因子2c12=2;c22=0;w=1.2; %惯性权重eps=10^(-6); %设置精度(在已知最小值的时候用) %------初始化种群个体(限定位置和速度)------------x=zeros(N,D);v=zeros(N,D);for i=1:Nfor j=1:Dx(i,j)=randn; %随机初始化位置v(i,j)=randn; %随机初始化速度endend%------显示群位置----------------------figure(1)for j=1:Dif (rem(D,2)>0)subplot((D+1)/2,2,j)elsesubplot(D/2,2,j)endplot(x(:,j),'b*');grid onxlabel('粒子')ylabel('初始位置')tInfo=strcat('第',char(j+48),'维');if(j>9)tInfo=strcat('第',char(floor(j/10)+48),char(rem(j,10)+48),'维');endtitle(tInfo)end%------显示种群速度figure(2)for j=1:Dif(rem(D,2)>0)subplot((D+1)/2,2,j)elsesubplot(D/2,2,j)endplot(x(:,j),'b*');grid onxlabel('粒子')ylabel('初始速度')tInfo=strcat('第,char(j+48),'维');if(j>9)tInfo=strcat('第',char(floor(j/10)+48), char(rem(j,10)+48),'维);endtitle(tInfo)endfigure(3)%第一个图subplot(1,2,1)%------初始化种群个体(在此限定速度和位置)------------x1=x;v1=v;%------初始化个体最优位置和最优值---p1=x1;pbest1=ones(N,1);for i=1:Npbest1(i)=fitness(x1(i,:),D);end%------初始化全局最优位置和最优值---------------g1=1000*ones(1,D);gbest1=1000;for i=1:Nif(pbest1(i)<gbest1)g1=p1(i,:);gbest1=pbest1(i);endendgb1=ones(1,T);%-----浸入主循环,按照公式依次迭代直到满足精度或者迭代次数---for i=1:Tfor j=1:Nif (fitness(x1(j,:),D)<pbest1(j))p1(j,:)=x1(j,:);pbest1(j)=fitness(x1(j,:),D);endif(pbest1(j)<gbest1)g1=p1(j,:);gbest1=pbest1(j);endv1(j,:)=w*v1(j,:)+c11*rand*(p1(j,:)-x1(j,:))+c21*rand*(g1-x1(j,:));x1(j,:)=x1(j,:)+v1(j,:);endgb1(i)=gbest1;endplot(gb1)TempStr=sprintf('c1= %g ,c2=%g',c11,c21);title(TempStr);xlabel('迭代次数');ylabel('适应度值');%第二个图subplot(1,2,2)%-----初始化种群个体(在此限定速度和位置)------------x2=x;v2=v;%-----初始化种群个体最有位置和最优解-----------p2=x2;pbest2=ones(N,1);for i=1:Npbest2(i)=fitness(x2(i,:),D);end%-----初始化种全局最有位置和最优解------g2=1000*ones(1,D);gbest2=1000;for i=1:Nif(pbest2(i)<gbest2)g2=p2(i,:);gbest2=pbest2(i);endendgb2=ones(1,T);%------浸入主循环,按照公式依次迭代直到满足精度或者迭代次数---for i=1:Tfor j=1:Nif (fitness(x2(j,:),D)<pbest2(j))p2(j,:)=x2(j,:);pbest2(j)=fitness(x2(j,:),D);endif(pbest2(j)<gbest2)g2=p2(j,:);gbest2=pbest2(j);endv2(j,:)=w*v2(j,:)+c12*rand*(p2(j,:)-x2(j,:))+c22*rand*(g2-x2(j,:)); x2(j,:)=x2(j,:)+v2(j,:);endgb2(i)=gbest2;endplot(gb2)TempStr=sprintf('c1= %g ,c2=%g',c12,c22);title(TempStr);xlabel('迭代次数');ylabel('适应度值');b )适应度函数%适应度函数(fitness.m )function result=fitness(x,D)sum=0;for i=1:Dsum=sum+x(i)^2;endresult=sum;程序4对21c c ≠,21w w ≠分别对其取值1.11=c ,22=c ,2.11=w ,5.12=w 测试函数。

15基于粒子群算法的连续函数优化通用MATLAB源代码

15基于粒子群算法的连续函数优化通用MATLAB源代码

基于蚁群算法的连续函数优化通用MATLAB源代码此源码是对粒子群算法的一种实现,用于无约束连续函数的优化求解,对于含有约束的情况,可以先使用罚函数等方法,把问题处理成无约束的模型,再使用本源码进行求解。

function [BESTX,BESTY,ALLX,ALLY]= PSOUCP(K,N,LB,UB,WR,CR1,CR2,Alpha,Beta,Gamma)%% 无约束连续函数的粒子群优化算法% GreenSim团队——专业级算法设计&代写程序% 欢迎访问GreenSim团队主页→/greensim%% 此函数实现粒子群算法,用于求解无约束连续函数最小化问题%% 对于最大化问题,请先将其加负号转化为最小化问题%% 输入参数列表% K 最大迭代次数% N 初始粒子群规模(要求为偶数)% LB 决策变量的下界,M×1的向量% UB 决策变量的上界,M×1的向量% WR 粒子群算法控制参数1,惯性系数% CR1 粒子群算法控制参数2,当前最优学习参数% CR2 粒子群算法控制参数3,历史最优学习参数%% 输出参数列表% BESTX K×1细胞结构,每一个元素是M×1向量,记录每一代的最优个体% BESTY K×1矩阵,记录每一代的最优个体的评价函数值% ALLX K×1细胞结构,每一个元素是M×N矩阵,记录全部个体% ALLY K×N矩阵,记录全部个体的评价函数值%% 初始化M=length(LB);%决策变量的个数%种群初始化,每一列是一个样本farm=zeros(M,N);for i=1:Mx=unifrnd(LB(i),UB(i),1,N);farm(i,:)=x;endSumWCR=WR+CR1+CR2;WR=WR/SumWCR;CR1=CR1/SumWCR;CR2=CR2/SumWCR;%输出变量初始化ALLX=cell(K,1);ALLY=zeros(K,N);BESTX=cell(K,1);BESTY=zeros(K,1);k=1;%迭代计数器初始化%% 以下是迭代过程while k<=Knewfarm=zeros(M,2*N);Ser=randperm(N);A=farm(:,Ser(1));B=farm(:,Ser(2));P0=unidrnd(M-1);a=[A(1:P0,:);B((P0+1):end,:)];b=[B(1:P0,:);A((P0+1):end,:)];newfarm(:,2*N-1)=a;newfarm(:,2*N)=b;for i=1:(N-1)A=farm(:,Ser(i));B=farm(:,Ser(i+1));P0=unidrnd(M-1);a=[A(1:P0,:);B((P0+1):end,:)];b=[B(1:P0,:);A((P0+1):end,:)];newfarm(:,2*i-1)=a;newfarm(:,2*i)=b;endnewfarm2=zeros(M,N);for i=1:Mx=unifrnd(LB(i),UB(i),1,N);newfarm2(i,:)=x;endnewfarm3=zeros(M,N);for i=1:Nif Gamma>randAA=farm(:,i);BB=QuantumMutation(AA,LB,UB,Beta);newfarm3(:,i)=BB;endendnewfarm4=farm;if k>=3Pgd=BESTX{k-1};Pid=BESTX{k-2};for i=1:Nnewfarm4(:,i)=WR*farm(:,i)+CR1*Pid+CR2*Pgd;endendFARM=[farm,newfarm,newfarm2,newfarm3,newfarm4];SER=randperm(6*N);FITNESS=zeros(1,6*N);fitness=zeros(1,N);for i=1:(6*N)BETA=FARM(:,i);SE=FIT(BETA);FITNESS(i)=SE;endfor i=1:Nf1=FITNESS(SER(6*i-5));f2=FITNESS(SER(6*i-4));f3=FITNESS(SER(6*i-3));f4=FITNESS(SER(6*i-2));f5=FITNESS(SER(6*i-1));f6=FITNESS(SER(6*i));if f1<=f2&&f1<=f3&&f1<=f4&&f1<=f5&&f1<=f6 farm(:,i)=FARM(:,SER(6*i-5));fitness(:,i)=FITNESS(:,SER(6*i-5));elseif f2<=f1&&f2<=f3&&f2<=f4&&f2<=f5&&f2<=f6 farm(:,i)=FARM(:,SER(6*i-4));fitness(:,i)=FITNESS(:,SER(6*i-4));elseif f3<=f1&&f3<=f2&&f3<=f4&&f3<=f5&&f3<=f6 farm(:,i)=FARM(:,SER(6*i-3));fitness(:,i)=FITNESS(:,SER(6*i-3));elseif f4<=f1&&f4<=f2&&f4<=f3&&f4<=f5&&f4<=f6 farm(:,i)=FARM(:,SER(6*i-2));fitness(:,i)=FITNESS(:,SER(6*i-2));elseif f5<=f1&&f5<=f2&&f5<=f3&&f5<=f4&&f5<=f6 farm(:,i)=FARM(:,SER(6*i-1));fitness(:,i)=FITNESS(:,SER(6*i-1));elsefarm(:,i)=FARM(:,SER(6*i));fitness(:,i)=FITNESS(:,SER(6*i));endendX=farm;Y=fitness;ALLX{k}=X;ALLY(k,:)=Y;minY=min(Y);pos=find(Y==minY);BESTX{k}=X(:,pos(1));BESTY(k)=minY;Alpha=Alpha*1.01;disp(k);k=k+1;end。

有约束多目标粒子群算法matlab程序

有约束多目标粒子群算法matlab程序

有约束多目标粒子群算法matlab程序约束多目标粒子群算法(Constrained Multi-Objective Particle Swarm Optimization,CMOPSO)是一种用于处理多目标优化问题的进化算法。

以下是一个简单的MATLAB 示例程序,演示了如何实现CMOPSO。

请注意,这只是一个基本的框架,你可能需要根据你的具体问题进行适当的修改。

```matlabfunction [paretoFront, paretoSet] = cmopso(objectiveFunction, constraintFunction, nParticles, nIterations, nObjectives)% 参数设置nVariables = 2; % 例子中假设有两个变量w = 0.5; % 权重因子c1 = 2; % 学习因子1c2 = 2; % 学习因子2vMax = 0.2; % 最大速度nConstraints = 2; % 约束数量% 初始化粒子群particles.position = rand(nParticles, nVariables);particles.velocity = rand(nParticles, nVariables);particles.bestPosition = particles.position;particles.bestValue = inf(nParticles, nObjectives);% 迭代优化for iteration = 1:nIterations% 更新粒子位置和速度for i = 1:nParticles% 计算适应值fitness = objectiveFunction(particles.position(i, :));% 计算约束违反度constraintViolation = constraintFunction(particles.position(i, :));% 更新粒子最优解if all(constraintViolation <= 0) && dominates(fitness, particles.bestValue(i, :))particles.bestPosition(i, :) = particles.position(i, :);particles.bestValue(i, :) = fitness;end% 更新全局最优解if all(constraintViolation <= 0) && dominates(fitness, globalBestValue)globalBestPosition = particles.position(i, :);globalBestValue = fitness;end% 更新粒子速度和位置r1 = rand(1, nVariables);r2 = rand(1, nVariables);particles.velocity(i, :) = w * particles.velocity(i, :) + ...c1 * r1 .* (particles.bestPosition(i, :) - particles.position(i, :)) + ...c2 * r2 .* (globalBestPosition - particles.position(i, :));% 速度限制particles.velocity(i, :) = min(max(particles.velocity(i, :), -vMax), vMax);% 更新粒子位置particles.position(i, :) = particles.position(i, :) + particles.velocity(i, :);endend% 获取Pareto 前沿和Pareto 集paretoFront = [];paretoSet = [];for i = 1:nParticlesif all(constraintFunction(particles.position(i, :)) <= 0)isDominated = false;for j = 1:size(paretoFront, 1)if dominates(particles.bestValue(i, :), paretoFront(j, :))isDominated = true;break;elseif dominates(paretoFront(j, :), particles.bestValue(i, :))paretoFront(j, :) = [];break;endendif ~isDominatedparetoFront = [paretoFront; particles.bestValue(i, :)];paretoSet = [paretoSet; particles.bestPosition(i, :)];endendendendfunction result = dominates(a, b)% 判断a 是否支配bresult = all(a <= b) && any(a < b);end```请注意,这只是一个简单的示例,具体问题的约束函数和目标函数需要根据你的应用进行修改。

粒子群Matlab程序代码

粒子群Matlab程序代码

粒子群优化算法(panicle swarm optimization ,PSO)是kennedy 和Eberhart 在研究鸟类和鱼类的群体行为基础上于1995年提出的一种群智能算法,其思想米源予人工生命和演化计算理论,模仿鸟群飞行觅食行为,通过鸟集体协作使群体达到最优。

1.粒子群算法的原理PSO 中,每个优化问题的解看作搜索空间中的一只鸟(即粒子),所有的粒子都有一个被优化的函数决定的适应值,并且有一个速度决定它们飞翔的方向和速率,粒子们追随当前的最优粒子在解空间中搜索。

算法首先初始化一群随机粒子,然后通过迭代找到最优解。

在每一次迭代中,粒子通过跟踪两个“极值”即个体极值和全局极值来更新自己的速度与位置。

在D 维目标搜索空间中,由种群数为m 的粒子组成粒子群,其中第f 个粒子在第d 维的位置为Xid ,其飞行速度为Vid ,该粒子当前搜索到的最优位置为Pid(goodvalue)和整个粒子群当前的最优位置Pgd(bestvalue)。

每维的速度与位置更新公式如下112(1)()(1)()(1)id id id id id id v v c rand p x c rand g x ω+=⨯+⨯⨯-+⨯⨯-11(2)id id id x x v ++=+W 为惯性权重,C1和C2为学习因子,rand ()——[0,1]范围内变化的随机数。

2.参数介绍与设置(1)ww 是保持粒子运动惯性的参数,能使种群扩展搜索空间,获得较好的求解效果。

较大的w 有利于群体在更大的范围内进行搜索。

而较小的w 能够保证群体收敛到最优位置,所以w 的选择及在迭代中的变化对搜索能力和跳出局优能力具有重要影响。

一般将w 设定为0.8左右。

(1)加速因子c1和c2c1和c2用于调整粒子自身经验和社会经验在其运动中的作用,表示将每个粒子拉向pbest 和gbest 位置的随机加速项的权重,低的值允许粒子在被拉回前可以在目标区域外徘徊, 而高的值则导致粒子突然冲向或越过目标区域。

粒子群算法matlab代码

粒子群算法matlab代码

一、粒子群主程序psize=20; %粒子个数的设置pd=12; %粒子的维数lz=zeros(psize,pd);for i=1:psize %随机生成粒子群,psize行pd列,pd维。

suiji=rand(1,pd);for j=1:pd/2if suiji(j)<0.5lz(i,j)=fix(unifrnd(0,100))*100;elselz(i,j)=fix(unifrnd(0,100)+1)*100;endendfor j=pd/2+1:1:pdif suiji(j)<0.5lz(i,j)=fix(unifrnd(0,45))/100;elselz(i,j)=fix(unifrnd(0,45)+1)/100;endendlz(i,1:pd/2)=sort(lz(i,1:pd/2));lz(i,pd/2+1:pd)=sort(lz(i,pd/2+1:pd));endlv=lz;goodvalue=lz; %每个粒子自己历史最好值初始化,psize行pd列。

vmax=20; %速度上限c1=2;c2=2; %学习因子w=0.729; %随机因子和惯性因子bestvalue=zeros(1,pd); %全局最好值初始化,1行pd列for j=1:pdbestvalue(1,j)=goodvalue(1,j);endfnew=zeros(1,psize);for j=1:psizefnew(j)=fpso(lz(1,:));endfold=fnew;flagstop=0; %终止标志k=0; %迭代次数记录f0=fpso(bestvalue); %适应值初始化while flagstop==0for i=1:psize %适应值比较,更新各自历史最好值(位置)fnew(i)=fpso(lz(i,:)); %记录每次每个粒子的适应值,便于以后设置终止条件if fnew(i)<fold(i)fold(i)=fnew(i); %fold记录每个粒子的最好历史值goodvalue(i,j)=lz(i,j);endendendfor i=1:psize%每个粒子历史最好值比较,更新全局最好值f1=fold(i);if f1<f0f0=f1;for j=1:pdbestvalue(1,j)=goodvalue(i,j);endendend%*********粒子趋一点终止条件*********%flagstop0=max(abs(fold)); %比较当次的所有粒子的适应值,flagstop1=min(abs(fold)); %若它们之间差别较小,则可以停止。

基于MATLAB的粒子群优化算法程序设计

基于MATLAB的粒子群优化算法程序设计

基于MATLAB的粒子群优化算法程序设计一、概述粒子群优化(Particle Swarm Optimization,PSO)算法是一种基于群体智能的优化搜索技术,它通过模拟鸟群、鱼群等动物群体的社会行为,利用群体中的个体信息共享机制,引导粒子在解空间中搜索最优解。

自1995年由Eberhart博士和Kennedy博士提出以来,PSO 算法因其简单、高效的特点,在函数优化、神经网络训练、模糊系统控制等多个领域得到了广泛的应用。

在MATLAB环境中实现粒子群优化算法,可以充分利用MATLAB强大的数值计算能力和高效的编程环境,实现算法的快速开发和优化。

MATLAB具有简单易用的语法和丰富的函数库,使得开发者能够快速地构建算法模型,进行仿真实验,并对算法性能进行分析和评估。

基于MATLAB的粒子群优化算法程序设计,旨在提供一个完整的算法实现框架,帮助读者理解PSO算法的基本原理和实现细节。

通过该程序设计,读者可以掌握如何在MATLAB中构建粒子群优化算法,如何设置算法参数,如何进行仿真实验,并如何分析和评估算法性能。

该程序设计还可以作为进一步研究和开发粒子群优化算法的基础,为实际应用提供有力的技术支持。

1. 粒子群优化算法(PSO)简介粒子群优化算法(Particle Swarm Optimization, PSO)是一种群体智能优化技术,起源于对鸟群觅食行为的社会心理学模拟。

该算法通过模拟鸟群中的信息共享机制,使得每个个体(粒子)能够在解空间中不断更新自己的位置和速度,从而寻找到问题的最优解。

PSO 算法以其简单、易实现和高效的特点,在函数优化、神经网络训练、模糊系统控制等多个领域得到了广泛应用。

在PSO算法中,每个粒子都代表着问题解空间中的一个候选解,它们根据自己的飞行经验以及群体中最优粒子的飞行经验来调整自己的飞行轨迹。

粒子的位置信息对应着问题的解,而粒子的速度则决定了其搜索解空间的方向和步长。

智能算法之粒子群优化算法-matlab程序-可运行

智能算法之粒子群优化算法-matlab程序-可运行
w = 0.8; % 惯性权重
c1 = 0.5; % 自我学习因子
c2 = 0.5; % 群体学习因子
for i = 1:d
x = limit(i, 1) + (limit(i, 2) - limit(i, 1)) * rand(N, d);%初始种群的位置
plot(x0, f(x0), 'b-', x, f(x), 'ro');title('状态位置变化')
pause(0.1)
iter = iter+1;
end
figure(3);plot(record);title('收敛过程')
x0 = 0 : 0.01 : 20;
d = 1; % 空间维数
ger = 100; % 最大迭代次数
limit = [0, 20]; % 设置位置参数限制
vlimit = [-1, 1]; % 设置速度限制
end
v = v * w + c1 * rand * (xm - x) + c2 * rand * (repmat(ym, N, 1) - x);% 速度更新
%Hale Waihona Puke 边界速度处理 v(v > vlimit(2)) = vlimit(2);
v(v < vlimit(1)) = vlimit(1);
while iter <= ger
fx = f(x) ; % 个体当前适应度
for i = 1:N
if fxm(i) < fx(i)
fxm(i) = fx(i); % 更新个体历史最佳适应度

标准粒子群算法(PSO)及其Matlab程序和常见改进算法

标准粒子群算法(PSO)及其Matlab程序和常见改进算法

一、粒子群算法概述粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),1995 年由Eberhart 博士和kennedy 博士提出,源于对鸟群捕食的行为研究。

该算法最初是受到飞鸟集群活动的规律性启发,进而利用群体智能建立的一个简化模型。

粒子群算法在对动物集群活动行为观察基础上,利用群体中的个体对信息的共享使整个群体的运动在问题求解空间中产生从无序到有序的演化过程,从而获得最优解。

PSO中,每个优化问题的解都是搜索空间中的一只鸟。

我们称之为“粒子”。

所有的粒子都有一个由被优化的函数决定的适应值(fitness value),每个粒子还有一个速度决定他们飞翔的方向和距离。

然后粒子们就追随当前的最优粒子在解空间中搜索。

PSO 初始化为一群随机粒子(随机解)。

然后通过迭代找到最优解。

在每一次迭代中,粒子通过跟踪两个”极值”来更新自己。

第一个就是粒子本身所找到的最优解,这个解叫做个体极值pBest。

另一个极值是整个种群目前找到的最优解,这个极值是全局极值gBest。

另外也可以不用整个种群而只是用其中一部分作为粒子的邻居,那么在所有邻居中的极值就是局部极值。

二、算法原理粒子群算法采用常数学习因子,及惯性权重,粒子根据如下的公式更新自己的速度和位置。

V ki=ωk V i−1i+c1r1(Q bi−Q k−1i)+c2r2(Q bg−Q k−1i)Q ki=Q k−1i+V ki三、算法步骤1、随机初始化种群中各微粒的位置和速度;2、评价个粒子的适应度,将各粒子的位置和适应度储存在各微粒的pbest(Q bi)中,将所有pbest中适应度最优的个体的位置和适应度存储在gbest(Q bg)中。

3、更新粒子的速度和位移。

V ki=ωk V i−1i+c1r1(Q bi−Q k−1i)+c2r2(Q bg−Q k−1i)Q ki=Q k−1i+V ki4、对每个微粒,与其前一个最优位置比较,如果较好,则将其作为当前的最优位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

% 优化函数以m文件的形式放在fitness.m里面,对不同的优化函数只要修改fitness.m 就可
%------基本粒子群优化算法(Particle Swarm Optimization, PSO)-----------
%------初始格式化--------------------------------------------------
clear all;
clc;
format long;
%------给定初始化条件----------------------------------------------
c1=1.4962; %学习因子1
c2=1.4962; %学习因子2
w=0.7298; %惯性权重
MaxDT=1000; %最大迭代次数
D=4; %搜索空间维数(未知数个数)
N=10; %初始化群体个体数目
eps=10^(-6); %设置精度(在已知最小值时候用)
%------初始化种群的个体(可以在这里限定位置和速度的范围)------------
x=0:0.1:1,y=[-.447,1.978,3.11,5.25,5.02,4.66,4.01,4.58,3.45,5.35,9.22]
%------先计算各个粒子的适应度,并初始化Pi和Pg----------------------
for i=1:N
p(i)=fitness(x(i,:),D);
y(i,:)=x(i,:);
end
pg=x(1,:); %Pg为全局最优
for i=2:N
if fitness(x(i,:),D)<fitness(pg,D)
pg=x(i,:);
end
end
%------进入主要循环,按照公式依次迭代,直到满足精度要求------------
for t=1:MaxDT
for i=1:N
v(i,:)=w*v(i,:)+c1*rand*(y(i,:)-x(i,:))+c2*rand*(pg-x(i,:));
x(i,:)=x(i,:)+v(i,:);
if fitness(x(i,:),D)<p(i)
p(i)=fitness(x(i,:),D);
y(i,:)=x(i,:);
end
if p(i)<fitness(pg,D)
pg=y(i,:);
end
end
Pbest(t)=fitness(pg,D);
end
%------最后给出计算结果
disp('*************************************************************') disp('函数的全局最优位置为:')
Solution=pg'
disp('最后得到的优化极值为:')
Result=fitness(pg,D)
disp('*************************************************************') %------算法结束--------------------------------------。

相关文档
最新文档