2012第一章随机过程概念(下)
第一章 随机过程 第二节 随机过程的基本概念
FX ( x1 , t1 ) f X ( x1 , t1 ) x1
2 、二维概率分布 为了描述S.P在任意两个时刻t1和t2的状态间的 内在联系,可以引入二维随机变量[X(t1),X(t2)]的分 布函数FX(x1,x2;t1,t2),它是二随机事件{X(t1)≤x1} 和{X(t2)≤x2}同时出现的概率,即
FX(x1,x2;t1,t2)=P{ X(t1)≤x1,X(t2)≤x2}
称为随机过程X(t)的二维分布函数。 若FX(x1,x2;t1,t2)对x1,x2的二阶混合偏导存在, 则 2 F ( x , x ;t ,t )
f X ( x1 , x2 ; t1 , t 2 )
X 1 2 1 2
x1x2
E[cos ] cos f ( )d cos
0 0
2
2
同理
1 d 0 2
E[sin ] 0
mx (t ) 0
2 2 x (t ) 2 (t ) mx (t ) 2 (t ) E[ x2 (t )] x x (2)
2 = E[sin (0t )] E [1 cos(20t 2 )]
t 离散型随机过程:对随机过程任一时刻1 的取值X (t1 ) 都是离散型随机变量。
连续随机序列:随机过程的时间t只能取 t 某些时刻,如 t , 2 ,…..,n t,且这 时得到的随机变量 X ( nt ) 是连续型随机变 量,即时间是离散的。相当于对连续型随 机过程的采样。 离散随机序列:随机过程的时间t只能取 t 某些时刻,如 t , 2 ,…..,n t,且这 时得到的随机变量 X ( nt ) 是离散型随机变 量,即时间和状态是离散的。相当于采样 后再量化 。
随机过程讲义 第一章
第一章 随机过程及其分类在概率论中,我们研究了随机变量,n 维随机向量。
在极限定理中我们研究了无穷多个随机变量,但只局限在它们之间相互独立的情形。
将上述情形加以推广,即研究一族无穷多个、相互有关的随机变量,这就是随机过程。
1. 随机过程的概念定义:设),,(P ∑Ω是一概率空间,对每一个参数T t ∈,),(ωt X 是一定义在概率空间),,(P ∑Ω上的随机变量,则称随机变量族});,({T t t X X T ∈=ω为该概率空间上的一随机过程。
其中R T ⊂是一实数集,称为指标集或参数集。
随机过程的两种描述方法: 用映射表示T X ,R T t X →Ω⨯:),(ω即),(⋅⋅X 是一定义在Ω⨯T 上的二元单值函数,固定T t ∈,),(⋅t X 是一定义在样本空间Ω上的函数,即为一随机变量;对于固定的Ω∈ω,),(ω⋅X 是一个关于参数T t ∈的函数,通常称为样本函数,或称随机过程的一次实现,所有样本函数的集合确定一随机过程。
记号),(ωt X 有时记为)(ωt X 或简记为)(t X 。
参数T 一般表示时间或空间。
常用的参数一般有:(1)},2,1,0{0 ==N T ;(2)},2,1,0{ ±±=T ;(3)],[b a T =,其中a 可以取0或∞-,b 可以取∞+。
当参数取可列集时,一般称随机过程为随机序列。
随机过程});({T t t X ∈可能取值的全体所构成的集合称为此随机过程的状态空间,记作S 。
S 中的元素称为状态。
状态空间可以由复数、实数或更一般的抽象空间构成。
实际应用中,随机过程的状态一般都具有特定的物理意义。
例1:抛掷一枚硬币,样本空间为},{T H =Ω,借此定义:⎩⎨⎧=时当出现,时当出现T 2H ,cos )(t t t X π ),(∞+-∞∈t 其中2/1}{}{==T P H P ,则)},(,)({∞+-∞∈t t X 是一随机过程。
随机过程课件
1
m X (t1 )][ x2 m X (t 2 )] f ( x1 x2 ; t1 , t 2 )dx1dx 2 f ( x1, x2 ; t1 , t 2 )dx1dx 2
x x
1 2
X(t) 协方差与相关函数的关系为 当 mx (t ) 0 时 C X (t 1 , t 2 ) R X (t 1 , t 2 ) 在协方差定义中取t1=t2=t,就有
为XT 的均值函数或数学期望。其中F(x,t)是过程 的一维分布函数。 若是连续型随机变量,有 mX (t) xf(x,t)dx 其中f(x,t)是一维分布密度。 12
2.随机过程的方差 若 DX (t) 2 (t) E[X(t) mX (t)]2 存在,t∈T, X 称为X(t)的方差。 x (t) Dx (t) 称为X(t)的标准差。 它们描绘过程的样本曲线在各个t时刻对均 值 m X ( t ) 的离散程度, 对每个t1∈T, EX (t1 ) 反映t1状态取值的概率平均。 DX (t1 ) 反映t1状态取值与 EX (t1 ) 离散程度。 在工程中随机过程的均方值具有物理意义,比 较有用。均方值定义为: E[ X 2 (t )] X (t ) DX (t ) E( X 2 (t )) E 2 ( X (t )) 有关系式: 13 Dx (t ) x (t ) [mx (t )]2 即
第一章. 随机过程的基本概念
§1.1 随机过程及其概率分布
在实际问题中,有时需要对随机现象的变化进 行研究,这时就必须考虑无穷个随机变量或一族 随机变量, 我们就称这种随机变量族为随机过程。 例1: 生物群体的增长问题。在描述群体的发展 或演变过程中, 以 Xt 表示在时刻 t 群体的个数, 则 对每一个 t ,Xt 是随机变量。假设我们从 t =0 开 始每隔24小时对群体的个数观测一次, 则{Xt , t =0, 1, 2, ...}是一个随机过程。 例2: 电话呼唤问题。某电话总机在[0,t]时间 内收到的呼唤次数用 Xt 来表示, 则对于固定的 t , 1 Xt 是随机变量。于是{Xt , t ∈[0, ∞)}是随机过程。
第1章 随机过程的基本概念习题答案
第一章 随机过程的基本概念1.设随机过程 +∞<<-∞=t t X t X ,cos )(0ω,其中0ω是正常数,而X 是标准正态变量。
试求X (t )的一维概率分布解:∵ 当0cos 0=t ω 即 πω)21(0+=k t 即 πω)21(10+=k t 时 {}10)(==t x p若 0cos 0≠t ω 即 πω)21(10+≠k t 时 {}{}x t X P x x X P t x F ≤=≤=0cos )(),(ω当 0cos 0>t ω时ξπωωξd et x X P t x F t x⎰-=⎭⎬⎫⎩⎨⎧≤=02cos 02021cos ),(·此时 ()te xt x F t x f tx 0cos 2cos 121,),(022ωπω⋅=∂∂=-若 0cos 0<t ω时⎭⎬⎫⎩⎨⎧<-=⎭⎬⎫⎩⎨⎧≥=t x x P t x X P t x F 00cos 1cos ),(ωωξπωξd et x⎰--=02cos 02211同理有 tet x f tx 0cos 2cos 121),(022ωπω⋅-=-综上当:0cos 0≠t ω 即 πω)21(10+≠k t 时 tx et x f 022cos 20|t cos |121),(ωωπ-=2.利用投掷一枚硬币的试验,定义随机过程为⎩⎨⎧=,2,cos )(出现反面出现正面t t t X π 假定“出现正面”和“出现反面”的概率各为21。
试确定)(t X 的一维分布函数)21,(x F 和)1,(x F ,以及二维分布函数)1,21;,(21x x F]解:(1)先求)21,(x F显然⎩⎨⎧=⎪⎩⎪⎨⎧-=⎪⎭⎫ ⎝⎛出现反面出现正面出现反面出现正面10,212,2cos 21πX随机变量⎪⎭⎫⎝⎛21X 的可能取值只有0,1两种可能,于是21021=⎭⎬⎫⎩⎨⎧=⎪⎭⎫ ⎝⎛X P 21121=⎭⎬⎫⎩⎨⎧=⎪⎭⎫ ⎝⎛X P 所以⎪⎩⎪⎨⎧≥<≤<=⎪⎭⎫ ⎝⎛1110210021,x x x x F再求F (x ,1)显然⎩⎨⎧-=⎩⎨⎧=出现反面出现正面出现反面出现正面 2 12cos (1)πX{}{}212)1(-1(1)====X p X p ?所以⎪⎪⎩⎪⎪⎨⎧≥<≤<=2121- 21-10,1)(x x x x F(2) 计算)1,21;,(21x x F⎩⎨⎧-=⎩⎨⎧=出现反面出现正面出现反面出现正面21)1(, 1 0)21( X X于是2 ,1 121 ,12 ,10 211 ,00 )1(;211,21;,21212121212121⎪⎪⎪⎩⎪⎪⎪⎨⎧≥><≤->≤<≤-<≥+∞<<∞-<=⎭⎬⎫⎩⎨⎧≤≤⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛x x x x x x x x x x x X x X p x x F x 或或3.设随机过程(){}+∞<<-∞t t X ,共有三条样本曲线t X t X X cos )t,( ,sin )t,( ,1)t,(321===ϖϖϖ且,31)p()p()p(321===ϖϖϖ试求随机过程()t X 数学期望EX(t)和相关函数R x (t 1,t 2)。
随机过程的基本概念
添加标题
添加标题
随机过程在数据挖掘中的应用
添加标题
添加标题
随机过程在数据可视化中的应用
随机过程在机器学习中的重要性 随机过程在机器学习中的具体应用 随机过程在机器学习中的发展趋势 随机过程在机器学习中的研究方向
强化学习:随机过程在强化学习中的应用如Q-lerning、SRS等 动态规划:随机过程在动态规划中的应用如马尔可夫决策过程、动态规划算法等 概率图模型:随机过程在概率图模型中的应用如贝叶斯网络、马尔可夫随机场等 深度学习:随机过程在深度学习中的应用如随机梯度下降、随机优化算法等
应用:在信号处理、控制系统 等领域有广泛应用
例子:布朗运动、白噪声等随 机过程具有平稳性
定义:随机过程在无限长的时间内每个状态出现的概率都趋于一个常数 性质:遍历性是随机过程的基本性质之一它描述了随机过程在长时间内的行为 应用:遍历性在随机过程理论、统计物理、金融等领域都有广泛的应用 例子:布朗运动、随机游走等都是遍历性的例子
性能评估:随机过程用于评估 通信系统的性能指标如误码率、
传输速率等
风险管理:利用随机过程模型 评估金融风险制定风险管理策 略
股票价格预测:利用随机过 程模型预测股票价格走势
投资组合优化:利用随机过程 模型优化投资组合实现收益最
大化
利率预测:利用随机过程模型 预测利率走势为金融机构提供
决策支持
随机过程在物理学 中的应用:如布朗 运动、量子力学等
随机过程的描述:随机过程可以用概率分布、概率密度函数、期望、方差等统计量 来描述
随机过程的分类:根据不同的特性随机过程可以分为平稳过程、非平稳过程、马尔 可夫过程等
随机过程的应用:随机过程在金融、经济、工程等领域有广泛的应用如股票价格、 汇率、信号处理等
第一讲随机过程的概念
随机过程的基本知识
引例:热噪声电压
一、随机过程的定义
定义1 设E是一随机实验,样本空间S={e},T为参数集
若对每个eS ,X(e,t)都是实值函数, 则称{X(e,t),t T}
为随机过程,简记为X(t),t T 或X(t),也可记为X(t).
称族中每一个函数称为这个随机过程的样本函数。
样本函数: xi (t ) a cos( t i ) , i (0 , 2 )
状态空间:I=(-a,a)
例3: 掷骰子试验
伯努利过程 (伯努利随机序列)
以上都是随机过程,状态空间都是:I={1,2,3,4,5,6}
二、随机过程的分类
离散型随机过程
1. 依状态离散还是连续分为:
s, t 0, C X ( s, t ) DX [min{s, t }].
④ C X ( s, t ) Cov( X ( s), X (t ))
E[ X ( s) X ( s)][X (t ) X (t )]
为{X(t),tT}的协方差函数.
⑤ Rx(s,t)=E[X(s)X(t)]为{X(t),tT}的自相关函数, 简称相关函数
诸数字特征的关系:
X (t ) f ( x, t )
称 f ( x, t ) 为随机过程的一维密度函数 称{ f ( x, t ), t T } 为一维密度函数族.
X t 0 ,其中 X Y ( t ) te 例4 设随机过程
e( ) ,求
{Y (t ),t 0}的一维密度函数
y P( X ln ) , t 解: F ( y; t ) P[Y (t ) y ] P(te y ) 0 ,
随机过程课件
。每个可能取的值称为一个状态。
对随机过程 {X (t) , t T} 进行一次试验 (即在 T 上进行一次全程观测) , 其结果是 t 的函数, 记为
x(t) , t T , 称它为随机过程的一个 样 本 函 数 或 样本曲线 .
所有不同的试验结果构成一族样本函数.
随机过程 总体
样本函数 个体
(4)连续参数、连续状态的随机过程。如例3,T=[0,∞], 状态空间为[-∞,∞]。
离散参数的随机过程亦称为随机序列。
四、随机过程的分布函数族
给定随机过程 {X (t),t T}.
对固定的 t T, 随机变量 X (t) 的分布函数一 般与 t 有关, 记为 FX (x,t) P{X (t) x}, x R.
1 0.5
-4
-2
-0.5
2
4
-1
当t固定时,X(t)是随机变量,故{X(t), t>0}是一族随机变量。
另一方面,对随机变量 做一φ次试验得一个试验值 ,
就是一条样本曲线。X (t) a cos(0t )
二、随机过程的概念
1 定义 参数集:设T是实数轴 (, )上的一个子集,且包含无限多
个数。随机过程是一族随机变量,可用 {X (t),t T} 来表示。T称为 随机过程的参数集。
在次概数率是论一中个曾随指机出变,量在,单记位X时(t间)为内[0一,t]电内话的站呼接叫到次的数呼唤 次数可用一离散型随机变量 X()表示,且有
P{X() k} k e , k 0, 1,2, ,( 0)
k! 在[0,t]时间内接到的呼唤次数,这一随机变量可记为X(t)。
P{X(t) k} (t)k et , k 0, 1,2, ,( 0)
《随机过程》课件
f1(x1, t1)
F1(x1, t1) x1
4
● 随机过程 (t) 的二维分布函数:
F2 (x1, x2 ;t1,t2 , ) P (t1) x1, (t2 ) x2
● 随机过程 (t)的二维概率密度函数:
f2
(x1,
x2 ; t1, t2
)
2F2 (x1, x2;t1,t2 ) x1 x2
Dξ t Eξ 2 t 2atξ t a2 t
E[ξ 2 (t)] 2at Eξ t a2 (t)
E[ξ 2 (t)] a2 (t)
于
均
值
所以 a(t
,) 的方偏差离等程于x度2均f。1方(
x值,
t与)d均x值平[a方(t之)]差2
,
它
表
示
随
机
过
程
在
时
刻
t
对
均方值
均值平方
8
● 相关函数
在通信系统中所遇到的信号及噪声,大多数可视为平稳的随机过程。 因此,研究平稳随机过程有着很大的实际意义。
13
● 2.2 各态历经性 ● 问题的提出:我们知道,随机过程的数字特征(均值、相关函数)是对随 机过程的所有样本函数的统计平均,但在实际中常常很难测得大量的样本, 这样,我们自然会提出这样一个问题:能否从一次试验而得到的一个样本 函数x(t)来决定平稳过程的数字特征呢? ● 回答是肯定的。平稳过程在满足一定的条件下具有一个有趣而又非常有用 的特性,称为“各态历经性”(又称“遍历性”)。具有各态历经性的过 程,其数字特征(均为统计平均)完全可由随机过程中的任一实现的时间 平均值来代替。 ● 下面,我们来讨论各态历经性的条件。
R(t1,t2 ) E[ (t1) (t2 )]
随机过程知识点汇总
第一章 随机过程的基本概念与基本类型 一.随机变量及其分布1.随机变量X , 分布函数)()(x X P x F ≤=离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑=kpx F )(连续型随机变量X 的概率分布用概率密度)(x f 分布函数⎰∞-=xdt t f x F )()(2.n 维随机变量),,,(21n X X X X =其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征数学期望:离散型随机变量X ∑=k k p x EX 连续型随机变量X ⎰∞∞-=dx x xf EX )(方差:222)()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度 协方差(两个随机变量Y X ,):EY EX XY E EY Y EX X E B XY ⋅-=--=)()])([( 相关系数(两个随机变量Y X ,):DYDX B XY XY ⋅=ρ 若0=ρ,则称Y X ,不相关。
独立⇒不相关⇔0=ρ4.特征函数)()(itXeE t g = 离散 ∑=k itx p et g k)( 连续 ⎰∞∞-=dx x f e t g itx )()(重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,kk k EX i g =)0( 5.常见随机变量的分布列或概率密度、期望、方差0-1分布 q X P p X P ====)0(,)1( p EX = pq DX = 二项分布 kn k k n q p C k X P -==)( np EX = n p qDX = 泊松分布 !)(k ek X P kλλ-== λ=EX λ=DX 均匀分布略正态分布),(2σa N 22)(21)(σσπa x ex f --=a EX = 2σ=DX指数分布 ⎩⎨⎧<≥=-0,00,)(x x e x f x λλ λ1=EX 21λ=DX6.N维正态随机变量),,,(21n X X X X =的联合概率密度),(~B a N X)}()(21exp{||)2(1),,,(121221a x B a x B x x x f T nn ---=-π),,,(21n a a a a =,),,,(21n x x x x =,n n ij b B ⨯=)(正定协方差阵二.随机过程的基本概念 1.随机过程的一般定义设),(P Ω是概率空间,T 是给定的参数集,若对每个T t ∈,都有一个随机变量X 与之对应,则称随机变量族{}T t e t X ∈),,(是),(P Ω上的随机过程。
随机过程-第一章
• {X(t, e),t∈T ,e∈Ω} 为一随机过程。
• 其实际意义就是: 若一物理过程,当时间t(或广义时间)固定,
过程所处的状态是随机的(不确定的),则此
过程就为随机过程。对该过程的一次记录(或
一个观察)就是一个现实,或称作随机过程的
一个样本函数或样本曲线。 • 固定t0,X(t0)是随机变量。 • 固定e0,X(t,e0)是一个现实,是t的函数,记 为 x(t)。
例4:具有随机初位相的简谐波。 X(t)=acos(ω0t+Φ),-∞<t<+∞, 其中a与ω0是正常数, Φ是在[0,2π]上均匀分布的随机变量。 一方面,随机过程X(t)是一族随机变量。 对每个固定t0, X(t0)= acos(ω0t+Φ)是个 随机变量。对(-∞,+∞)上有多少个t, 就对应多少个随机变量。∴对(-∞,+∞) 所有t,X(t)看作一族随机变量。 另一方面,随机过程是一族样本函数(曲线) 对样本空间Ω中每个基本事件e对应一个样本 函数,本例,Φ在Ω=[0,2π] 上任给定一个 相 位φi=e,就对应一个样本曲线,如:书P 4。
例6: 利用抛掷硬币的试验定义一个随机过程。
X(t) { sin π t,出现正面 ,记为记为 ω 0 e ,出现反面, 记 ω 1
t
(t R)
写出X(t)的所有样本函数(现实)
二、随机过程的的分布(有限维分布族) 1、对任意固定的t0∈T,随机过程X(t)的状态 X(t0)是一维随机变量, 其分布函数是P{X(t0)≤x} F(x,t0) 由于t的任意性,称F(x; t) = P{X(t) ≤x } 为随机过程X(t)的一维分布函数。 F(x,t)是与t有关的一维分布函数,在t,x平 面上是X(t)落在区间(X(t) ≤x)上的概率。
随机过程课件
随机过程课件随机过程课件随机过程是概率论与数理统计中的重要概念,它描述了随机变量随时间的演化规律。
在现代科学和工程领域,随机过程被广泛应用于信号处理、通信系统、金融市场等众多领域。
本文将介绍随机过程的基本概念、分类以及一些常见的应用。
一、随机过程的基本概念随机过程是一族随机变量的集合,它描述了随机变量随时间的变化。
在数学上,随机过程可以用函数的形式表示,即X(t),其中t表示时间,X(t)表示在时间t时刻的随机变量。
随机过程可以分为离散时间和连续时间两种类型。
离散时间随机过程是指随机变量在离散时间点上的演化,例如抛硬币的结果、骰子的点数等。
连续时间随机过程是指随机变量在连续时间上的演化,例如股票价格的变动、电信号的传输等。
二、随机过程的分类根据随机过程的性质和演化规律,可以将其分为多种类型。
常见的分类包括马尔可夫过程、泊松过程、布朗运动等。
1. 马尔可夫过程马尔可夫过程是指在给定当前状态下,未来的演化只与当前状态有关,与过去的状态无关。
马尔可夫过程具有“无记忆”的特性,常用于描述具有时序性质的问题,如排队系统、信道传输等。
2. 泊松过程泊松过程是一种用于描述随机事件的发生次数的随机过程。
它具有独立增量和无记忆性的特点,常用于描述到达率恒定的随机事件,如电话呼叫、交通流量等。
3. 布朗运动布朗运动是一种连续时间的随机过程,其演化规律由随机变量驱动。
布朗运动具有连续性、无界性和马尔可夫性等特点,广泛应用于金融市场、物理学等领域。
三、随机过程的应用随机过程在现代科学和工程领域有着广泛的应用。
以下列举几个常见的应用领域。
1. 信号处理随机过程在信号处理中起到了重要的作用。
通过对信号进行建模,可以利用随机过程的理论和方法对信号进行分析和处理,如图像压缩、语音识别等。
2. 通信系统随机过程在通信系统中也有着重要的应用。
通过对信道的建模,可以利用随机过程的理论来分析和优化通信系统的性能,如误码率分析、信道编码等。
随机过程讲义
2.基本公式
定理1(乘法公式)
假设 若 则
A1,A2, ,An为任意n个事件( n 2 ),
P(A1 A2 An) 0
P(A1 A2 An) P( A1 ) P( A2 | A1 ) P( A3 | A1 A2 )
则
pi P( X xi ) pij
(i 1,2,
j 1,2,)
p j P(Y y j ) pij
i 1
j 1
分别称为( X , Y )关于 X 和 Y 的边缘分布律。
X和Y相互独立的充要条件是
pij pi p j
连续型
若随机变量(X,Y)的概率密度为
P(Ai1 Ai2 Ais) P(Ai1)P(Ai2) P(Ais)
则称事件
A1,A2, ,An 相互独立。
美国有一对夫妻连续生了8个儿子。他们原本只想要4 个小孩,但是当前面4个小孩都是男孩时,他们想再生一 个女孩,直到连续生了7个男孩。后来他们的医生都保证 说,按照平均数定律,下次生女孩的概率是99%。不幸的 是,第8次还是男孩。因为生孩子和扔硬币一样,连续8个 男孩的概率固然很小,但是在已经生了7个男孩之后,下 一个是女孩的概率仍然是50%。
2
2
3.性质
(1)
E (C ) C
n n
D(C ) 0
2
E(CX ) CE ( X ) D(CX ) C D( X )
(2)
E ( X i ) E ( X i )
i 1 i 1
(3) 若X和Y相互独立,则
E( XY ) E ( X ) E(Y )
随机过程的基本概念 精华版
-1 0 20 40 60
二、随机过程的数字特征
•均值 均值 •方差 方差
2 σ X (t ) = E{[ X (t ) − mX (t )]2}
2 = E{X 2 (t )} − mX (t )
mX (t ) = E{X (t )} = ∫ xf X ( x, t )dx
−∞
+∞
•均值与方差的物理意义: 均值与方差的物理意义: 均值与方差的物理意义
每次观测所得结果都不同,都是时间t 每次观测所得结果都不同,都是时间t的 不同函数,观测前又不能预知观测结果, 不同函数,观测前又不能预知观测结果, 没有确定的变化规律。 没有确定的变化规律。
实际过程
正弦信号
调制信号
周期性脉冲信号
雷达接收机的噪声
鸟叫声
爆破信号
2.1 随机过程的基本概念及定义 2.2 随机过程的统计描述 2.3 平稳随机过程 2.4 随机过程的联合分布和互相关函数 2.5 随机过程的功率谱密度
RX (t1 , t 2 ) = 0 ,则称 X (t1 ) 和 X(t2 ) 是相互正交的。如果 是相互正交 正交的
f X ( x1 , x2 , t1 , t 2 ) = f X ( x1 , t1 ) f X ( x 2 , t 2 ) ,则称随机过程在
t1
和 t 2 时刻的状态是相互独立的。 时刻的状态是相互独立的 独立
二、平稳随机过程自相关函数性质
RX (0)
2 σX
2 mX
RX (τ )
τ
0
相关函数示意图
RX (−τ ) = RX (τ )
RX (0) ≥ RX (τ )
2 2 RX (0) = σ X + mX
随机过程基本概念
X(t)
X(t) A cos(t )
样本曲线x1(t)
状态X(t0)
t0
状态X(t0)
t 样本曲线x2(t)
随机过程定义
设(Ω,F,P)为一概率空间,T为一参数集,T R,
若对每一 t ∈T,均有定义在(Ω,F,P)上的一个 随机变量X(ω,t),(ω∈Ω)与之对应,则称 X(ω,t)为(Ω,F,P)上的一个随机过程(Stachastic Processes,简记为:S.P.)
对任意t∈T, X (t)为一随机变量.称其分布 函数 F (t ; x)=P(X(t) ≤x), x ∈R 为随机过程{X(t),t∈T}的一维分布函数.
2.二维分布函数
对任意固定的t1,t2∈T, X (t1) ,X (t2)为两个随 机变量.称其联合分布函数 F (t1,t2; x1, x2)=P(X(t1) ≤x1, X(t2) ≤x2 ), x1, x2∈R 为随机过程{X(t),t∈T}的二维分布函数.
4.根据参数集与状态空间离散与否,随机过程可分为
参数,连续状态的随机过程
● 连续参数,离散状态的随机过程
● 连续参数,连续状态的随机过程
参数集为离散的随机过程也称为随机序列, 或时间序列.
二
随机过程的有限维分布函数族
设{X(t),t∈T}是S.P.
1.一维分布函数
3. n维分布函数
对任意固定的t1,t2, …,tn∈T, X (t1) ,X (t2),…, X (tn)为n个随机变量.称其联合分布函数
F (t1,t2 ,…,tn ; x1, x2,…, xn) = P(X(t1) ≤x1, X(t2) ≤x2 … X(tn) ≤xn ) x1 x2,…, xn ∈R 为随机过程{X(t),t∈T}的n维分布函数.
随机过程知识点汇总
第一章随机过程的基本概念与基本类型一.随机变量及其分布1.随机变量,分布函数离散型随机变量的概率分布用分布列分布函数连续型随机变量的概率分布用概率密度分布函数2.n 维随机变量其联合分布函数离散型联合分布列连续型联合概率密度3 .随机变量的数字特征数学期望:离散型随机变量连续型随机变量方差:反映随机变量取值的离散程度协方差(两个随机变量):相关系数(两个随机变量):若,则称不相关。
独立不相关4•特征函数离散连续重要性质:,,,5 •常见随机变量的分布列或概率密度、期望、方差0 — 1分布二项分布泊松分布均匀分布略正态分布指数分布6.N维正态随机变量的联合概率密度,,正定协方差阵二.随机过程的基本概念1.随机过程的一般定义设是概率空间,是给定的参数集,若对每个,都有一个随机变量与之对应,则称随机变量族是上的随机过程。
简记为。
含义:随机过程是随机现象的变化过程,用一族随机变量才能刻画出这种随机现象的全部统计规律性。
另一方面,它是某种随机实验的结果,而实验出现的样本函数是随机的。
当固定时,是随机变量。
当固定时,时普通函数,称为随机过程的一个样本函数或轨道。
分类:根据参数集和状态空间是否可列,分四类。
也可以根据之间的概率关系分类,如独立增量过程,马尔可夫过程,平稳过程等。
2 .随机过程的分布律和数字特征用有限维分布函数族来刻划随机过程的统计规律性。
随机过程的一维分布,二维分布,…,维分布的全体称为有限维分布函数族。
随机过程的有限维分布函数族是随机过程概率特征的完整描述。
在实际中,要知道随机过程的全部有限维分布函数族是不可能的,因此用某些统计特征来取代。
(1)均值函数表示随机过程在时刻的平均值。
(2)方差函数表示随机过程在时刻对均值的偏离程度。
(3)协方差函数且有(4)相关函数(3)和(4)表示随机过程在时刻,时的线性相关程度。
(5)互相关函数:,是两个二阶距过程,则下式称为它们的互协方差函数。
,那么,称为互相关函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
t>0
其中,Y 和 Z 是相互独立的随机变量,且EY = EZ = 0,DY = DZ = σ2,求X(t)的均值函数和协方差函数。
课堂练习:
设随机过程 X(t) = Vcos4t,其中V是随机变量,其数 学期望是5,方差为6,求随机过程X(t)的均值Mx(t)、方差 Dx(t)、相关函数 RX(t1, t2) 和协方差函数Bx (t1, t2)。
Kolmogorov存在定理(柯尔莫哥洛夫);
设已给参数集T及满足对称性和相容性条件的分布函数 族F1,则必存在概率空间(Ω,F,P)及定义在其上的随机 过程 { X(t), t∈T },它的有限维分布函数族是F1。
均值函数
设XT = { X(t), t∈T } 是随机过程,如果对任意 t∈T,EX(t)存在,则称函数:
(1)正交增量过程
定义:
设 {X(t), t∈T} 是零均值的二阶矩过程,若对任意 的t1<t2≤t3<t4 ∈T,有:
−−−−−−−−−−−−−−−
E[(X (t2 ) − X (t1))(X (t4 ) − X (t3))] = 0
则称X(t)是正交增量过程。
例题1-11:
设 {X(t),t∈T} 是正交增量过程,T=[a,b]为有限区 间,且规定 X(a)=0,当a<s<t<b时,求其协方差函数 BX(s,t)。 结论: 正交增量过程的协方差可以由它的方差确定.
def
m x (t) = EX (t), t ∈ T
为 XT 的均值函数,反映随机过程在时刻 t 的平均值。
均方值函数和方差函数
反映随机过程平均功率
反映随机过程在时刻t对均值的偏离程度
自相关函数
协方差函数
若对任意t∈T,E(X(t))2 存在,则称 XT 为二阶矩过 程,而称:
def
BX (s,t) = E[{X (s) − mX (s)}{X (t) − mX (t)}], s,t ∈T
(2)独立增量过程
定义: 设 {X(t),t∈T} 是随机过程,若对任意的正整数n和
t1<t2<…<tn ∈T,随机变量X(t2)-X(t1),X(t3)-X(t2), …,X(tn)X(tn-1)是互相独立的,则称 {X(t),t∈T} 是独立增量过程。
特点: 独立增量过程在任一个时间间隔上过程状态的改变,不
考虑一种设备一直使用到损坏为止,然后换上同类型 的设备。假设设备的使用寿命是随机变量,令N(t) 为在时 间段 [0,t] 内更换设备的件数,通常可以认为{N(t),t≥0} 是平稳独立增量过程。
在第Wi次试验中测量获得的噪声电压X(t)是一个样本函数:
定义2:随机过程
设E是随机实验, Ω ={ e }是样本空间,对于每一个 样本e,总可以以某种规则确定一个时间函数 X(t,e) (称为样本函数或者轨道),t ∈T,则对于所有的e ∈ Ω ,就得到一个函数的集合,称此集合为随机过程,简 记为 X(t)。
RZ (s,t) = E[Z sZ t ]
−−−−−−−−−−−−
B Z ( s , t ) = E [( Z s − m Z ( s )) ( Z t − m Z (t )) ]
−−−−−−
B Z (s, t) = R Z (s, t) − m Z (s) m Z (t)
两个复随机过程{Xt},{Yt}的互相关函数定义为:
描述。 (2)另外一种过程没有确定的变化形式,不能用一个时间 t
的确定函数来描述。
例如:液面上的质点的运动。用 { x(t), y(t) } 表示 t 时刻 该质点在液面上的坐标。
随机变量
在每次随机试验的结果中,以一定的概率取某个事先未 知,但为确定的数值。
在实际应用中,我们经常要涉及到在随机试验过程中 随时间 t 而改变的随机变量。此时,这种随机现象是个“过 程”。
例题1-10:
设 X(t) 为信号过程,Y(t) 为噪声过程,令W(t) = X(t) + Y(t),求 W(t) 的均值函数和相关函数。
解:
当两个随机过程互不相关且均值函数为零时:
1.7 复随机过程
复随机过程定义:
设{Xt, t∈T},{Yt, t∈T}是取实数值的两个随机过程,若 对任意t∈T, Z t = X t + iYt ,其中 i = −1 ,则称{Zt, t∈T}为复随机过程。
R XY (s, t ) = E ( X sYt )
互协方差函数定义为:
_______________
B XY ( s, t ) = E[ X s − m X ( s )] [Yt − mY (t )]
1.8 随机过程基本类型
随机过程的几种基本类型:
(1)正交增量过程; (2)独立增量过程; (3)马尔可夫过程; (4)正态过程; (5)维纳过程; (6)平稳过程。
判断以下现象是否是一个随机过程?
(1)示波器产生的余弦波X(t)=acos(wt+B),其中,a, w为常量,B为初始相位,并为(0,2π)上均匀分布的 随机变量。
(2)正弦波X(t)=Vcoswt,其中,V为在(0,1)均匀分布的 随机变量,并画出X(t)的一个样本函数。
通常我们可以根据随机变量 X(t) 在时间和状态上的 类型区分随机过程的类型。
复随机过程的数字特征函数:
均值函数 方差函数 相关函数 协方差函数 相互之间的关系
m Z (t ) = E ( Z t ) = EX t + iEY t
−−−−−−−−−−−−
DZ (t) = E[| Z t − mZ (t) |2 ] = E[(Z t − mZ (t)) (Z t − mZ (t))]
在时间和状态上都连续
连续型随机过程
在时间上连续状态上离散
离散型随机过程
在时间上离散状态上连续
连续型随机序列
在时间上离散状态上离散
离散型随机序列
联合分布函数 有限个随机变量
统计规律
随机过程
有限维分布函数族
统计规律
设XT = { X(t), t∈T } 是随机过程,对任意n≥1和 t1,t2, …,tn ∈T,随机向量 (X(t1),X(t2), …,X(tn)) 的联合分布 函数为: Ft1,",tn (x1, x2 ,", xn ) = P{X (t1 ) ≤ x1," X (tn ) ≤ xn }
为 XT 的协方差函数(混合中心矩),反映随机过程在时 刻 t 和 s 时的状态起伏值的线性相关程度。
协方差函数和相关函数有如下关系:
B X (s,t) = R X (s,t) −m X (s)m X (t)
例题1-9:
设随机过程:
X (t ) = Y cos( θ t ) + Z sin( θ t ),
例题1-8:
联合分布函数 有限个随机变量
随机过程
有限维分布函数族
统计规律 统计规律
设XT= {X(t),t∈T} 是随机过程,对任意n≥1和 t1,t2, …,tn ∈T,随机向量(X(t1),X(t2), …,X(tn))的n维联合 分布函数为
Ft1,",tn ( x1, x2 ,", xn ) = P{X (t1 ) ≤ x1," X (tn ) ≤ xn }
天气预报问题:
每天的天气(晴,雨,阴)是随机的,对于确定的一天 (假设 t=1,代表第一天),天气状况是一个离散型的随机 变量,记为 Zt ,所以,每天的天气状况 { Zt ,t=1,2,3… } 是 一个随机过程。
对于一个固定的时刻 t , Zt 是一个随机变量。
电阻的噪声电压:
对于一个固定的时刻 t ,电阻的噪声电压 X(t) 是一 个随机变量, X(t) 是随时间变化的, 所以噪声电压 { X(t), t ∈[0,∞) } 是一个随机过程。
随机过程也是有规律的,如何描述一个随机过程?
随机过程
电话交换台接入呼叫次数问题:
某电话交换台在一定时间段内[ 0,t ]内接到的呼叫次 数是与 t 有关的随机变量,记为 Z(t);对于固定的时刻 t, Z(t) 是一个取非负整数的随机变量,故 {Z(t), t ∈[0,∞)}是一个随机过程。
对于一个固定的时刻 t, Z(t)是一个随机变量。
Ft1 ,",tn ( x1 , x 2 ," , x n ) = Fti1 ,",tin ( xti1 ," , xtin )
相容性
当m<n时,
Ft1,",tm (x1, x2 ,", xm ) = Ft1,",tm ,",tn (x1, x2 ,", xm , ∞,", ∞)
随机过程
有限维分布函数族 相容性 对称性
称为随机过程X(t)的n维分布函数。
这些分布函数的全体:
F = { Ft1 ," tn ( x1 , x 2 ," x n ), t1 , t 2 ," , t n ∈ T , n ≥ 1}
称为XT= {Xt,t ∈T} 的有限维分布函数族。
n维概率密度函数为:
有限维分布函数的性质:
对称性 对于 {t1,t2, …,tn} 的任意排列{ti1 , ti2 ," , tin }
w=1 X (t) w=2 X (t) w=3 X (t)
w=k X (t)
w=n X (t)
t1
t2
随机过程 { X(t,e), t ∈T } 可以认为是定义在 T× Ω 上 的一个二元函数。 ① 对固定的t,X(t,e)是一个随机变量; ② 对固定的e, X(t,e)是随机过程 { X (t,e), t ∈T } 的一个 样本函数(轨道),即定义在T上的普通函数; ① 对于固定的 t, X(t,e) 是一个标量,它表示时刻t所处的 状态,X(t )所有可能的状态构成的集合称为状态空间; ② 当t和e都是变量时, X(t,e)是一个随机变量族或者时间函 数族都称为随机过程。