有机废气处理--活性炭吸附详细计算
有机废气吸附设计与计算及活性炭再生计算
有机废气吸附设计与计算及活性炭再生计算有机废气吸附设计与计算基本原理1、吸附原理当两相组成一个体系时,其组成在相界面与相内部是不同的,处在;两相界面处的成分产生了积蓄(浓缩),这种现象称为吸附。
吸附处理废气时,吸附的对象是气态污染物,被吸附的气体组分称为吸附质,吸附气体组分的物质称为吸附剂。
使已被吸附的组分从达到饱和的吸附剂析出,吸附剂得以再生的操作称为脱附。
即被吸附于界面的物质在一定条件下,离开界面重新进入体相的过程,也成解吸。
而当吸附进行一段时间后,由于表面吸附质的浓集,使其吸附能力明显下降而不能满足吸附净化的要求,此时需要采用一定的措施是吸附剂上已吸附的吸附质脱附,恢复吸附剂的吸附能力,这个过程成为吸附剂的再生。
因此,在实际工作中,正式利用吸附剂的吸附—再生—吸附的循环过程,达到除去废气中污染物质并回收废气中有用组分的目的。
脱附过程是在吸附剂结构不变化或者变化极小的情况下,将吸附质从吸附剂孔隙中除去,恢复它的吸附能力。
通过再生使用,可以降低处理成本,减少废渣排放量,同时回收吸附质。
被吸附的组分重新释放,释放的气体浓度高于原混合气的浓度。
促进解吸的条件有:(1)提高温度(热再生;(2)抽真空以降低压力(变压解吸附);(3)降低吸附剂周围组分的浓度(空气吹扫)。
2、吸附机理吸附和脱附互为可逆过程。
当用新鲜的吸附剂吸附气体中的吸附质时,由于吸附剂表面没有吸附质,因此也就没有吸附质的脱附。
但随着吸附的进行,吸附剂表面上的吸附质逐渐增多,也就出现了吸附质的脱附,且随着时间的推移,脱附速度不断增大。
但从宏观上看,同一时间吸附质的吸附量仍大于脱附量,所以过程的总趋势认为是吸附。
当同一时间吸附质的吸附量与脱附量相等时,吸附和脱附达到动态平衡,此时称为达到吸附平衡。
平衡时,吸附质在流体中的浓度和在吸附剂表面上的浓度不再变化,从宏观上看,吸附过程停止。
平衡时的吸附质在流体中的浓度称为平衡浓度,在吸附剂中的浓度称为平衡吸附量。
活性炭吸附箱处理废气设计计算书
活性炭吸附箱处理废气设计计算书设计计算书:活性炭吸附箱处理废气一、废气处理要求:根据废气成分和排放标准要求,设计一套活性炭吸附箱用于处理废气。
二、工作原理:三、设计参数:1.废气流量:根据实际工况设计,单位时间内流经活性炭吸附箱的废气量。
2.活性炭的吸附容量:活性炭对不同有机物的吸附能力不同,需根据废气成分选择合适的活性炭,并确定吸附容量。
3.碳床层厚度:活性炭填充床层的厚度,根据废气流量和活性炭的吸附容量计算得出。
四、设计步骤:1.确定废气流量:根据实际工况和废气管道截面积计算得出。
废气流量=废气管道截面积×废气流速2.确定活性炭的吸附容量:根据废气成分和排放标准要求,选择合适的活性炭,并参考活性炭供应商提供的活性炭吸附容量数据。
3.确定碳床层厚度:根据废气流量和活性炭的吸附容量计算得出。
碳床层厚度=废气流量/(活性炭吸附容量×预期运行时间)五、实例计算:1.确定废气流量:废气流量=废气管道截面积×废气流速假设废气管道截面积为10m²,废气流速为10m/s2.确定活性炭的吸附容量:假设活性炭的吸附容量为10g/m³3.确定碳床层厚度:碳床层厚度=废气流量/(活性炭吸附容量×预期运行时间)=41.67m³/h六、总结:根据废气处理要求,通过设计计算可以明确废气流量、活性炭吸附容量和碳床层厚度等关键参数,从而设计出符合要求的活性炭吸附箱。
但是需要注意的是,实际操作中还需考虑废气的温度、湿度以及废气中的颗粒物等因素,以确保废气处理的效果。
因此,在实际设计时,应综合考虑各种因素,并与专业人员进行充分的讨论和校对。
活性炭更换周期和吸附量的计算
活性炭更换周期和吸附量的计算(总1页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除活性炭更换周期和吸附量的计算案例:活性炭的吸附量以及使用时间活性炭对不同的有机气体其吸附能力(用S表示)是不一样的,有以下表(参考《工业通风》,孙一坚主编第四版):按一个排污企业150mg/m3,风量在50000m3/h,一天工作时长15小时算,活性炭的平衡保持量取30%,1t活性炭达到饱合的时间为:T(d)=m*S/C*10-6(kg/mg)*F*t(15h/d)m:活性炭的质量,kg;S:平衡保持量,%;C:VOCs总浓度,mg/m3;F:风量,m3/h。
则T=1000*0.3/150*10-6*50000*15=2.67d也就是1t的活性炭在上述条件下,2.67天就达到饱合了。
实例方法一:蜂窝活性炭比重:0.45g/cm3 1克/立方厘米=1000千克/立方米参数:单套设备排风量:25000m3/h,废气总浓度为119.5mg/m3,运行8h/d所采用蜂窝活性炭吸附的平衡保持量取75%计。
一块蜂窝活性炭质量:0.1×0.1×0.1×450kg/m3=0.45kg单套设备需要蜂窝活性炭量为:0.8×1.31×1.33÷0.001=1400块×0.45=630kg根据活性炭更换周期计算公式:T=m×S÷C×10-6×Q×t式中:T—周期,单位天M—活性炭的质量,单位kgS—平衡保持量,%10-6—系数Q—风量,单位m3/hT—运行时间,单位h/dT1=630×0.75÷119.5×10-6×25000×8=7.91天所以单套设备蜂窝炭更换周期为约8天方法二:蜂窝炭1g能吸附600mg的有机废气一块蜂窝活性炭质量:0.1×0.1×0.1×450kg/m3=0.45kg单套设备蜂窝炭重量0.8×1.31×1.33÷0.001=1400块×0.45=630kg设备蜂窝炭的吸附能力为:630kg=630000g总过滤量为25000m3/h×119.5mg/m3=2987500mg/h吸附满周期T2每天工作8小时算T2=126.52h÷8=15.81天因为T2>T1所以本项目活性炭更换周期为8—15天、建议10天一换2。
活性炭吸附装置设计计算
活性炭吸附床计序号名称符号单位项目符号意义1 VOC 处理风量 Q m3/h 2VOC 气体的浓度 C 0 mg/m3 3 VOC 气体 VOC 气体的温度 T℃ 4 VOC 气体的压力 P Pa 5 原始数据VOC 气体的密度 ρ 0kg/m3 6 VOC 气体的黏度 μ Pa.S 7 VOC 气体的比热容 Cp kJ/(kg. C) 8 蜂窝状活性炭堆积密度 ρs kg/m3 9 蜂窝状活性炭静态活性 X T % 10蜂窝状活性炭动态活性 X T1%11 活性炭 蜂窝状活性炭孔隙率 ε12 数据蜂窝状活性炭比表面积 a m2/g 13 蜂窝状活性炭使用温度 T S ℃ 14 蜂窝状活性炭抗压强度 Mpa 15 蜂窝状活性炭外形规格 mm 16 吸附器吸附效率 η % 17 吸附器的空塔截面流速 um/s 18 固定床 吸附器的截面有效面积 A m2 19 吸附器活性炭层有效高度 Zm 数据及20 活性炭层的容积 Vsm3 计算 21 吸附器的截面有效长度 L m 22 吸附器的截面有效宽度 B m 23 活性炭作用时间 th 24 吸附时间在吸附作用时间内的吸附量Xkg 25 计算吸附波的移动速度 Ucm/s 26 有效高度下的活性炭作用时间 t'h 27 经验公式 活性炭层有效高度 Z m 28 压降计算活性炭床压降△PPa 29活性炭细管内的流速 u1m/s30 细管的当量直径 de31 活性炭平均直径d p3233当量直径34压降计算3536 雷诺数 Re37 当Re/(1- ε) ≤2500时按下式计算38 活性炭床压降△Pm m ABCD Pa附床计算公式算值备注30000500401031251.1272651.91616E-051.002500kg吸附质 /kg 吸附剂(厂家提供)0.35kg吸附质 /kg 吸附剂(实验获得)0.1 取值0.5700≤400≤0.8100x100x1000.93(Q/3600)/A 1.780626781L*B 4.680.5 0.5m~0.9m A*Z(或 L*B*Z) 2.34取值 2.6取值 1.8( Vs* ρs*XT1)/(C/1000000*Q* η) 8.387096774C0*Q/1000000* η*t 117(u* C0/1000000)/( ρs*XT1) 1.78063E-05Z/Uc/3600 7.8 t' 接近t0.5经验公式: 945.1*u 1.055×Z868.5647061u/ ε 3.561253561 1、废气成分:乙酸乙酯、异丙醇、醋酸酯、丙醇等1.一般空塔流速 0.8~1.2m/s 时,动活性XT1=(0.75~0.8)XT ,流速越快,动活性越小,公司取 8%~10%标准上规定:固定床吸附剂颗粒性炭 0.2-0.6 纤维状吸附剂(活性炭纤维毡) 0.1-0.15 蜂窝状吸附剂 0.7-1.2层高中间需要留一定空间,使热量分散,局部碳层过热烧炭被吸附物沸点升高,吸附量增加(规(4* ε) /[a*(1-ε)]6/a2 3(1- ε)/ εμ*u/d p2(1- ε)/ ε2ρ0*u 2/d pd p* ρ0*u/ μ△P=(150*A*B+1.75*C*D)*Z 0.0057142860.00857142920.4644054882416.9832542897.8861464 1795.772293 ≤2500 799.3815182、醋酸正丙活性速越快,动活性越小,颗粒型活维状吸附剂(活性炭蜂窝状吸附剂 0.7- .2使热量均匀热烧炭加(规律)。
活性炭吸附塔风量计算
活性炭吸附塔风量计算
活性炭吸附塔风量计算设计风量:Q=20000m/h=5.56m/s参数设计要求:
设计风量:Q=20000m/h=5.56m/s参数设计要求:
1、管道风速:V:=10~20m/s
2、空塔气速为气体通过吸附器整个横截面的速度。
空塔风
速:V2=0.8~1.2m/s3过滤风速:V3=0.2~0.6m/s
4、过滤停留时间:T=0.2~2s
5、碳层厚度:h=0.2~0.5m
6、碳层间距:0.3~0.5m
活性炭颗粒性质:
平均直径d-.003m表观密度p=670kglm,堆积密度p=470 kglm3孔隙率0.5-0.75,取0.75
(1)、管道直径d取0.8m 则管道截面积A:=0.50m
(2)、取炭体宽度B=2.2m 塔体高度H=2.5m
则空塔风速V2=5.56-2.2+2.5=1.01m/s 满足设计要求。
(3)、炭层长度L; 取 4.3m 2 层炭体,
则过滤风速V=5.56-2.2+4.3-2-0.75=0.392m/s 满足设计要求。
(4)、取炭层厚度为0.35m 炭层间距取0.5m
则过滤停留时间T;=0.35:0.392=0.89s 满足设计要求。
(5)、塔体进出口与炭层距离取0.1m 则塔体主体长度
[=4.3+0.2=4.5m
则塔体长度L=4.5+0.73X=5.96m
考虑安装的实际情况:塔体尺寸LxBxH=6m*2.2m*2.5m。
有机废气吸附设计方案与计算
有机废气吸附设计与计算一、基本原理1、吸附原理当两相组成一个体系时,其组成在相界面与相内部是不同的,处在;两相界面处的成分产生了积蓄(浓缩),这种现象称为吸附。
吸附处理废气时,吸附的对象是气态污染物,被吸附的气体组分称为吸附质,吸附气体组分的物质称为吸附剂。
使已被吸附的组分从达到饱和的吸附剂析出,吸附剂得以再生的操作称为脱附。
即被吸附于界面的物质在一定条件下,离开界面重新进入体相的过程,也成解吸。
而当吸附进行一段时间后,由于表面吸附质的浓集,使其吸附能力明显下降而不能满足吸附净化的要求,此时需要采用一定的措施是吸附剂上已吸附的吸附质脱附,恢复吸附剂的吸附能力,这个过程成为吸附剂的再生。
因此,在实际工作中,正式利用吸附剂的吸附—再生—吸附的循环过程,达到除去废气中污染物质并回收废气中有用组分的目的。
脱附过程是在吸附剂结构不变化或者变化极小的情况下,将吸附质从吸附剂孔隙中除去,恢复它的吸附能力。
通过再生使用,可以降低处理成本,减少废渣排放量,同时回收吸附质。
被吸附的组分重新释放,释放的气体浓度高于原混合气的浓度。
促进解吸的条件有:(1)提高温度(热再生;(2)抽真空以降低压力(变压解吸附);(3)降低吸附剂周围组分的浓度(空气吹扫)。
2、吸附机理吸附和脱附互为可逆过程。
当用新鲜的吸附剂吸附气体中的吸附质时,由于吸附剂表面没有吸附质,因此也就没有吸附质的脱附。
但随着吸附的进行,吸附剂表面上的吸附质逐渐增多,也就出现了吸附质的脱附,且随着时间的推移,脱附速度不断增大。
但从宏观上看,同一时间吸附质的吸附量仍大于脱附量,所以过程的总趋势认为是吸附。
当同一时间吸附质的吸附量与脱附量相等时,吸附和脱附达到动态平衡,此时称为达到吸附平衡。
平衡时,吸附质在流体中的浓度和在吸附剂表面上的浓度不再变化,从宏观上看,吸附过程停止。
平衡时的吸附质在流体中的浓度称为平衡浓度,在吸附剂中的浓度称为平衡吸附量。
当吸附质与吸附剂长时间接触后,终将达到吸附平衡。
活性炭吸附VOCs计算公式
活性炭吸附VOCs计算公式
有机废气吸附通常采用活性炭吸附剂进行处理。
活性炭用量的计算涉及到多个因素,包括废气流量、废气中污染物的浓度和性质、活性炭的吸附性能等。
下面提供一个简单的计算方法,但需要注意这只是一种粗略的估算方法,实际应用中需要根据具体情况进行调整和验证。
1)确定废气流量Q,单位为m3/h。
2)确定废气中目标有机污染物的浓度C,单位为mg/n?。
3)确定活性炭的吸附容量(即单位质量活性炭对目标污染物的吸附量),单位为mg∕g o
4)计算活性炭用量V,单位为kg,公式为:
V=Q×C×t∕(1000×S]
式中:
t为废气处理时间,单位为h;
S为活性炭的吸附容量,单位为mg/g。
5)确定活性炭的压缩密度,单位为g∕cπ?,然后将V转换为体积Vi,单位为n?,公式为:
V1=V∕(压缩密度)
6)根据实际情况,选取合适的活性炭颗粒直径和层数,计算需要的活性炭吸附塔的体积。
7)需要注意的是,上述计算中的参数都需要根据实际情况进行调整和验证, 包括废气中的污染物种类和浓度、废气流量和处理时间、活性炭的吸附性能等。
此外,还需要考虑活性炭的再生和更换周期等因素,以确保废气处理效果和经济效益。
活性炭更换周期和吸附量的计算
一块蜂窝活性炭质量:0.1×0.1×0.1×450kg/m3=0.45kg
单套设备蜂窝炭重量
0.8×1.31×1.33÷0.001=1400块×0.45=630kg
设备蜂窝炭的吸附能力为:
630kg=630000g
630000g×600mg=378000000mg
根据活性炭更换周期计算公式:
T=m×S÷C天
M—活性炭的质量,单位kg
S—平衡保持量,%
10-6—系数
Q—风量,单位m3/h
T—运行时间,单位h/d
T1=630×0.75÷119.5×10-6×25000×8=7.91天
所以单套设备蜂窝炭更换周期为约8天
方法二:
总过滤量为25000m3/h×119.5mg/m3=2987500mg/h
吸附满周期T2
378000000mg÷2987500mg/h=126.52h
每天工作8小时算
T2=126.52h÷8=15.81天
因为T2>T1所以本项目活性炭更换周期为8—15天、建议10天一换
T(d)=m*S/C*10-6(kg/mg)*F*t(15h/d)
m:活性炭的质量,kg;
S:平衡保持量,%;
C:VOCs总浓度,mg/m3;
F:风量,m3/h。
则T=1000*0.3/150*10-6*50000*15=2.67d
也就是1t的活性炭在上述条件下,2.67天就达到饱合了。
实例
方法一:
蜂窝活性炭比重:0.45g/cm31克/立方厘米=1000千克/立方米
参数:单套设备排风量:25000m3/h,废气总浓度为119.5mg/m3,运行8h/d
废气处理活性碳量计算公式
废气处理活性碳量计算公式在现代工业生产中,废气处理是一个非常重要的环节。
废气中含有大量的有害物质,如果直接排放到大气中,会对环境和人类健康造成严重的影响。
因此,对废气进行处理是非常必要的。
活性碳是一种常用的废气处理材料,它具有很强的吸附能力,可以有效地去除废气中的有害物质。
在进行废气处理时,需要计算活性碳的用量,以确保废气能够得到有效处理。
下面我们将介绍废气处理活性碳量的计算公式。
活性碳的用量计算公式如下:V = (Q × C × T) / (E × D)。
其中,V表示活性碳的用量,单位为重量(kg);Q表示废气的流量,单位为体积(m3/h);C表示废气中有害物质的浓度,单位为质量浓度(mg/m3);T表示废气处理的时间,单位为小时;E表示活性碳的吸附能力,单位为质量吸附量(mg/g);D表示活性碳的密度,单位为质量密度(g/cm3)。
在进行活性碳用量计算时,首先需要确定废气的流量和有害物质的浓度。
废气的流量可以通过流量计来测量,有害物质的浓度可以通过气体分析仪来测量。
然后,需要确定废气处理的时间,一般来说,处理时间越长,活性碳的用量就越大。
接下来,需要确定活性碳的吸附能力和密度,这些参数可以通过实验室测试或者参考文献来获取。
最后,将这些参数代入上面的公式中,就可以得到活性碳的用量。
在实际工程中,为了更准确地计算活性碳的用量,还需要考虑一些其他因素。
例如,废气中的有害物质可能不仅仅是一种,而是多种,每种有害物质的吸附能力和密度可能都不同,因此需要对不同的有害物质进行单独的计算,然后将各种有害物质的用量相加。
另外,活性碳在使用过程中会逐渐饱和,需要定期更换,因此还需要考虑活性碳的使用寿命和更换周期。
除了计算活性碳的用量,还需要考虑活性碳的选择和配置。
活性碳的选择应该根据废气中的有害物质的种类和浓度来确定,不同的有害物质可能需要选择不同种类的活性碳。
活性碳的配置应该考虑到废气的流量和浓度,以及处理设备的结构和工艺要求。
活性炭的性能介绍更换周期及吸附量的计算
活性炭的性能介绍更换周期及吸附量的计算⼀、活性炭基本介绍活性炭⼜称活性炭⿊。
是⿊⾊粉末状或颗粒状的⽆定形碳。
活性炭主成分除了碳以外还有氧、氢等元素。
活性炭在结构上由于微晶碳是不规则排列,在交叉连接之间有细孔,在活化时会产⽣碳组织缺陷,因此它是⼀种多孔碳,堆积密度低,⽐表⾯积⼤。
⼆、活性炭净⽔原理活性炭是⼀种很细⼩的炭粒,有很⼤的表⾯积,⽽且炭粒中还有更细⼩的孔——⽑细管。
这种⽑细管具有很强的吸附能⼒,由于炭粒的表⾯积很⼤,所以能与杂质充分接触。
这些杂质碰到⽑细管被吸附,起净化作⽤。
三、活性炭的要求好的活性炭必须具有吸附容量⼤、使⽤寿命长、机械强度⾼、灰份低、易冲洗、出⽔⽔质好等特点,它不但能除去异臭、异味、提⾼⾊度,⽽且对⽔中的各种有毒有害物质如:氯、酚、汞、铅、砷、氯化物、洗涤剂、农药、化肥等污染物具有很⾼的去除率。
具体主要技术指标如下:1、粒度(10—24⽬2.0—0.8mm ):≥95%说明:通常来说,颗粒越⼩的活性炭,⽐外表积越⼤,也就是吸附效果越好,但是颗粒越⼩,损耗也会越⼤,粉尘也会越多。
2、碘吸附值:≥1000mg/g说明:⼀般来说碘吸附值越⾼,活性炭的吸附能⼒越强。
3、⽐表⾯积:1000---1200m2/g说明:若取1克活性炭,将⾥⾯所有的孔壁都展开成⼀个平⾯,这个⾯积将达到1000平⽅⽶(既⽐表⾯积为1000g/m2)!影响活性炭吸附性的主要因素就取决于内部孔隙结构的发达程度。
(及⽐表⾯积越⼤,活性炭的吸附效果越好)。
4、亚甲兰脱⾊⼒:≥10mL/g说明:除⾊能⼒。
5、耐磨强度:≥95%说明:即耐磨损或抗磨擦的性能;强度越⾼,活性炭性能越好。
6、⼲燥减量:≤10%说明:⼲燥减量及指⽔分,此值越低,活性炭质量越好。
7、灼烧残渣:≤3%说明:灼烧残渣及指灰分,此值越低,活性炭质量越好。
8、充填⽐重:0.48---0.55g/mL说明:充填⽐重及指密度,⼀般密度越⼩,活性炭的吸附⼒越好。
活性炭更换周期和吸附量的计算
活性炭更换周期和吸附量的计算案例:活性炭的吸附量以及使用时间活性炭对不同的有机气体其吸附能力(用S表示)是不一样的,有以下表(参考《工业通风》,孙一坚主编第四版):按一个排污企业150mg/m3,风量在50000m3/h,一天工作时长15小时算,活性炭的平衡保持量取30%,1t 活性炭达到饱合的时间为:T(d)=m*S/C*10-6(kg/mg)*F*t(15h/d)m:活性炭的质量,kg;S:平衡保持量,%;C:VOCs总浓度,mg/m3;F:风量,m3/h。
则T=1000*150*10-6*50000*15=也就是1t的活性炭在上述条件下,天就达到饱合了。
实例方法一:蜂窝活性炭比重:cm31克/立方厘米=1000千克/立方米参数:单套设备排风量:25000m3/h,废气总浓度为m3,运行8h/d所采用蜂窝活性炭吸附的平衡保持量取75%计。
一块蜂窝活性炭质量:×××450kg/m3=单套设备需要蜂窝活性炭量为:××÷=1400块×=630kg根据活性炭更换周期计算公式:T=m×S÷C×10-6×Q×t式中:T—周期,单位天M—活性炭的质量,单位kgS—平衡保持量,%10-6—系数Q—风量,单位m3/hT—运行时间,单位h/dT1=630×÷×10-6×25000×8=天所以单套设备蜂窝炭更换周期为约8天方法二:蜂窝炭1g能吸附600mg的有机废气一块蜂窝活性炭质量:×××450kg/m3=单套设备蜂窝炭重量××÷=1400块×=630kg设备蜂窝炭的吸附能力为:630kg=630000g630000g×600mg=0mg总过滤量为25000m3/h×m3=2987500mg/h吸附满周期T20mg÷2987500mg/h=每天工作8小时算T2=÷8=天因为T2>T1所以本项目活性炭更换周期为8—15天、建议10天一换。
活性炭吸附脱附及附设备选型详细计算
活性炭吸附脱附及附设备选型详细计算活性炭吸附脱附及附设备选型是指通过使用活性炭吸附材料来去除废气中的有害物质。
活性炭材料具有很高的比表面积,能够有效地吸附废气中的污染物。
本文将从活性炭吸附脱附原理、设备选型和详细计算三个方面来详细介绍活性炭吸附脱附及附设备选型。
活性炭吸附是指通过活性炭材料吸附废气中的有害物质。
活性炭具有大量的微孔结构和极大的比表面积,可以吸附废气中的有机物、无机物等。
它的吸附作用主要是通过静电吸引力、物理吸附和化学吸附来实现的。
而脱附则是指将被吸附的有害物质从活性炭中解吸出来。
常见的脱附方式有热脱附和汽态脱附。
热脱附是指通过升高温度,使活性炭中的吸附物质解吸出来;汽态脱附是指通过加入空气或蒸汽,使活性炭中的吸附物质挥发出来。
设备选型:活性炭材料的选择:活性炭材料的选择要考虑到废气中有害物质的特性和浓度。
不同的有害物质对活性炭的吸附效果有所差异,所以要选择适合该类有害物质吸附的活性炭材料。
活性炭材料的比表面积和孔径大小也是选择的重要因素。
一般来说,比表面积越大,吸附能力越强。
设备的结构和工艺参数:活性炭吸附设备的结构包括吸附塔、脱附塔、再生设备等。
吸附塔一般选用多层塔板结构,以增加吸附材料的接触面积。
脱附塔一般采用加热方式,如通过外加热源或内部电加热方式。
设备的工艺参数包括吸附时间、温度、压力、流速等。
这些参数要根据废气中有害物质的特性来确定。
设备的处理能力和效果:设备的处理能力一般通过单位时间内处理的废气量来衡量。
根据废气的浓度和需求,可以计算出设备的处理能力。
设备的效果则通过去除率来衡量。
一般来说,活性炭吸附设备的去除率可以达到90%以上。
详细计算:具体的设备计算需要根据实际情况进行。
以吸附塔的计算为例,主要计算床层高度、流速和时间。
计算开始时,首先要确定废气中有害物质的浓度和流量。
然后,根据吸附塔的设计参数和废气特性,计算出所需的床层高度。
床层高度的计算一般是根据床层的容积和活性炭的比表面积来确定的。
活性炭吸附率计算公式
活性炭吸附率计算公式吸附率=(C0-C)/C0*100%其中,C0为初始浓度,C为吸附后的浓度。
1.获得试验数据:首先,需要获得实验室或现场实验所得的初始浓度(C0)和吸附后的浓度(C)。
2.固定试验参数:在进行实验之前,需要确定活性炭的用量和接触时间等试验参数,并将这些参数保持恒定。
3.实施实验:将活性炭与待吸附物质接触一段时间,然后测量吸附后的浓度(C)。
4.计算吸附率:根据上述公式,将实测的初始浓度(C0)和吸附后的浓度(C)带入公式中,计算出吸附率。
示例:以去除有机物的活性炭吸附实验为例,假设初始浓度为60 mg/L,吸附后的浓度为10 mg/L,那么吸附率可以计算如下:吸附率=(60-10)/60*100%=83.33%这表示活性炭对该有机物的吸附效率为83.33%。
1.初始浓度(C0):初始浓度的增加会导致吸附率的降低,因为随着初始浓度的增加,活性炭表面吸附位点会逐渐饱和,吸附速率降低。
2.活性炭性质:活性炭的性质包括比表面积、孔径分布、孔隙体积等,这些性质的不同会影响活性炭的吸附能力。
3.待吸附物质性质:待吸附物质的分子大小、极性、溶解度等性质也会影响活性炭的吸附能力。
4.接触时间:吸附速率随着时间的延长而增加,但是活性炭的吸附容量也会有一定限度,达到饱和后,吸附率基本不再增加。
总结:活性炭吸附率的计算公式是根据实测的初始浓度和吸附后的浓度进行计算的。
吸附率的计算可用于评价活性炭对特定物质的吸附效率,且吸附率受多个因素的影响,包括初始浓度、活性炭性质、待吸附物质性质和接触时间等。
对于具体的活性炭吸附实验,需要根据实际情况选择合适的试验参数,并进行系统的实验数据记录和分析。
活性炭更换周期和吸附量的计算
活性炭更换周期和吸附量的计算案例:
活性炭的吸附量以及使用时间活性炭对不同的有机气体其吸附能力(用S表示)是不一样的,有以下表(参考《工业通风》,孙一坚主编第四版):
按一个排污企业150mg/m3,风量在50000m3/h,一天工作时长15小时算,活性炭的平衡保持量取30%,1t 活性炭达到饱合的时间为:
T(d)=m*S/C*10-6(kg/mg)*F*t(15h/d)
m
S
F:
则
实例
根据活性炭更换周期计算公式:
T=m×S÷C×10-6×Q×t
式中:
T—周期,单位天
M—活性炭的质量,单位kg
S—平衡保持量,%
10-6—系数
Q—风量,单位m3/h
T—运行时间,单位h/d
T1=630×0.75÷119.5×10-6×25000×8=7.91天
所以单套设备蜂窝炭更换周期为约8天
方法二:
蜂窝炭1g能吸附600mg的有机废气
一块蜂窝活性炭质量:0.1×0.1×0.1×450kg/m3=0.45kg 单套设备蜂窝炭重量
0.8×1.31×1.33÷0.001=1400块×0.45=630kg
因为。
活性炭吸附更换周期计算
序
号项
目参
数单
位说
明
1
风量
80,000.00
m³/h
2
浓度
100.00
mg/m³
实际估算
3
废气速率
8.00
kg/h
4
空塔风速
1.20
m/s
0.8-1.2
5
活性炭截面
18.52
㎡
6
床层厚度Biblioteka 0.60m7
停留时间
0.50
S
8
活性炭体积
11.11
m³
9
活性炭密度
380.00
kg/m³
380-450
10
活性炭质量
4,222.22
kg
11
苯静态吸附量
30%-40%
12
动态吸附量
0.10
参数不稳定,静态吸附≥动态吸附
13
吸附量
422.22
kg
14
排放浓度限值
80.00
mg/m³
15
排放速率限值
5.00
kg/h
16
吸附率
0.20
不考虑排放速率,吸附率逐渐递减
17
吸附率
0.80
18
废气吸附量MAX/H
6.40
80%净化效率吸附量
19
废气吸附量MIN/H
1.60
kg/h
达标净化效率吸附量
20
活性炭饱和时间
65.97
h
21
活性炭饱和时间
263.89
h
22
要求浓度净化效率
0.20
23
活性炭吸附工程-计算书
活性炭吸附工程-计算书
引言
该文档旨在描述活性炭吸附工程的计算方法,以便工程师准确计算和设计活性炭吸附处理系统。
计算方法
活性炭吸附工程计算涉及以下方面:
- 活性炭选型
- 吸附器容量计算
- 平衡时间计算
- 活性炭更换时间计算
- 等等
这些计算需要考虑到以下因素:
- 水的质量:流量、温度、总固体含量、pH值、COD
- 活性炭的质量:颗粒度、比表面积、孔径、密度、碘吸附值等
- 吸附器的参数:直径、高度、填料层数、填料高度、出水浓度等
具体的计算公式如下:
1. 活性炭质量的计算:
活性炭质量 = 水量 × COD / 碳质吸附值
2. 吸附器容量计算:
吸附器容量 = 活性炭质量 / 饱和度
3. 平衡时间计算:
平衡时间 = 吸附器体积 / 进水流量
4. 活性炭更换时间计算:
更换周期 = (吸附器体积 ×更换周期浓度)/(进水流量 ×COD / 碳质吸附值)
结论
通过学习本文档,工程师能够掌握活性炭吸附工程计算方法,准确地设计和计算活性炭吸附系统。
但是,具体的计算需要根据不同的工程实际情况进行量身定制。
有机废气处理--活性炭吸附详细计算
活性炭吸附脱附及附属设备选型详细计算书目录1.绪论 (1)1.1概述 (1)1.1.1有机废气的来源 (1)1.1.2有机物对大气的破坏和对人类的危害 (1)1.2有机废气治理技术现状及进展 (2)1.2.1各种净化方法的分析比较 (2)2设计任务说明 (4)2.1设计任务 (4)2.2设计进气指标 (4)2.3设计出气指标 (4)2.4设计目标 (4)3工艺流程说明 (5)3.1工艺选择 (5)3.2工艺流程 (5)4设计与计算 (7)4.1基本原理 (7)4.1.1吸附原理 (7)4.1.2吸附机理 (7)4.1.3吸附等温线与吸附等温方程式 (8)4.1.4吸附量 (10)4.1.5吸附速率 (11)4.2吸附器选择的设计计算 (11)4.2.1吸附器的确定 (11)4.2.2吸附剂的选择 (13)4.2.3空塔气速和横截面积的确定 (15)4.2.4固定床吸附层高度的计算 (15)4.2.5吸附剂(活性炭)用量的计算 (17)4.2.6床层压降的计算]15[ (17)4.2.7活性炭再生的计算]16[ (18)4.3集气罩的设计计算 (19)4.3.1集气罩气流的流动特性 (19)4.3.2集气罩的分类及设计原则 (20)4.3.3集气罩的选型 (20)4.4吸附前的预处理 (22)4.5管道系统设计计算 (23)4.5.1管道系统的配置 (23)4.5.2管道内流体流速的选择 (24)4.5.3管道直径的确定 (24)4.5.4管道内流体的压力损失 (25)4.5.5风机和电机的选择 (25)5工程核算 (28)5.1工程造价 (28)5.2运行费用核算 (28)5.2.1价格标准 (28)5.2.2运行费用 (29)6结论与建议 (30)6.1结论 (30)6.2建议 (30)致谢 (33)1.绪论1.1概述1.1.1有机废气的来源有机废气的来源主要有固定源和移动源两种。
移动源主要有汽车、轮船和飞机等以石油产品为燃料的交通工具的排放气;固定源的种类极多,主要为石油化工工艺过程和储存设备等的排出物及各种使用有机溶剂的场合,如喷漆、印刷、金属除油和脱脂、粘合剂、制药、塑料、涂料和橡胶加工等。
颗粒活性炭吸附有机废气设计与计算
· 59 ·
三、结束语 综合上述所言不难看出,国内在水处 理技术和水环境保护领域的工作依旧存在
些许不合理之处,仍需相关领域学者的积 极探索和深入研究。本篇文章中,笔者首 先简析常见的水处理技术,最后提出几点 有效强化水资源环境保护的措施。基于文 章的一系列论述可以看出水处理技术的应 用具有较高价值,特别是以科学技术为支 持的当前,多种水处理技术不断研发,就 需要不同区域的人员要按照具体情况应用 不同的水处理技术。希望本文可为业内相 关领域工作人员提供一些帮助,更好促进 国内水资源匮乏问题的解决。
(1)
K = ρbXT ρfUc 0
(2)
式(1)、式(2)中:
τ——为活性炭固定床操作周期,单
位为分钟(min);
τ0——为活性炭固定床操作周期,
单位为分钟(min);
Z——为活性炭固定床高度,单位为
米(m);
K——系数,单位为分钟每米(min/
m);
XT——为活性炭平衡吸附量,单位为
千克每立方米(kg/m3);
2500 。王
纯、张殿印等 2012 年 11 月编写,由化
学工业出版社出版的《废气处理工程技术
手册》也作了相同内容的描述和编写。但
他们所得出的压力降数学模型公式与其他
相关文献资料存在较大差异,因此,本文
对活性炭固定床压力降数学模型进行了重 新推导和整理 [4]。
2 固定床压力降计算公式
活 性 炭 固 定 床 是 由 不 同 的 长 度、 粒
)
(5)
式 (5)中:α——为活性炭颗粒表
面积,m2。
对于球形活性炭颗粒有:
a= 6 dP
(6)
式 (6)中:dp——为活性炭颗粒的
活性炭更换周期和吸附量的计算
活性炭更换周期和吸附量的计算来⾃环保之家论坛-废⽓处理版案例:活性炭的吸附量以及使⽤时间活性炭对不同的有机⽓体其吸附能⼒(⽤S表⽰)是不⼀样的,有以下表(参考《⼯业通风》,孙⼀坚主编第四版):按⼀个排污企业150mg/m3,风量在50000m3/h,⼀天⼯作时长15⼩时算,活性炭的平衡保持量取30%,1t活性炭达到饱合的时间为:T(d)=m*S/C*10-6(kg/mg)*F*t(15h/d)m:活性炭的质量,kg;S:平衡保持量,%;C:VOCs总浓度,mg/m3;F:风量,m3/h。
则T=1000*0.3/150*10-6*50000*15=2.67d也就是1t的活性炭在上述条件下,2.67天就达到饱合了。
实例⽅法⼀:蜂窝活性炭⽐重:0.45g/cm31克/⽴⽅厘⽶=1000千克/⽴⽅⽶参数:单套设备排风量:25000m3/h,废⽓总浓度为119.5mg/m3,运⾏8h/d所采⽤蜂窝活性炭吸附的平衡保持量取75%计。
⼀块蜂窝活性炭质量:0.1×0.1×0.1×450kg/m3=0.45kg单套设备需要蜂窝活性炭量为:0.8×1.31×1.33÷0.001=1400块×0.45=630kg根据活性炭更换周期计算公式:T=m×S÷C×10-6×Q×t式中:T—周期,单位天M—活性炭的质量,单位kgS—平衡保持量,%10-6—系数Q—风量,单位m3/hT—运⾏时间,单位h/dT1=630×0.75÷119.5×10-6×25000×8=7.91天所以单套设备蜂窝炭更换周期为约8天⽅法⼆:蜂窝炭1g能吸附600mg的有机废⽓⼀块蜂窝活性炭质量:0.1×0.1×0.1×450kg/m3=0.45kg单套设备蜂窝炭重量0.8×1.31×1.33÷0.001=1400块×0.45=630kg设备蜂窝炭的吸附能⼒为:630kg=630000g630000g×600mg=378000000mg总过滤量为25000m3/h×119.5mg/m3=2987500mg/h吸附满周期T2378000000mg÷2987500mg/h=126.52h每天⼯作8⼩时算T2=126.52h÷8=15.81天因为T2>T1所以本项⽬活性炭更换周期为8—15天、建议10天⼀换来⾃环保之家论坛-废⽓处理版,进⼊原帖发表你的观点来源:环保之家论坛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
活性炭吸附脱附及附属设备选型详细计算书目录1.绪论 (1)1.1概述 (1)1.1.1有机废气的来源 (1)1.1.2有机物对大气的破坏和对人类的危害 (1)1.2有机废气治理技术现状及进展 (2)1.2.1各种净化法的分析比较 (2)2设计任务说明 (4)2.1设计任务 (4)2.2设计进气指标 (4)2.3设计出气指标 (4)2.4设计目标 (4)3工艺流程说明 (5)3.1工艺选择 (5)3.2工艺流程 (5)4设计与计算 (7)4.1基本原理 (7)4.1.1吸附原理 (7)4.1.2吸附机理 (7)4.1.3吸附等温线与吸附等温程式 (8)4.1.4吸附量 (10)4.1.5吸附速率 (11)4.2吸附器选择的设计计算 (11)4.2.1吸附器的确定 (11)4.2.2吸附剂的选择 (13)4.2.3空塔气速和横截面积的确定 (15)4.2.4固定床吸附层高度的计算 (15)4.2.5吸附剂(活性炭)用量的计算 (17)4.2.6床层压降的计算]15[ (17)4.2.7活性炭再生的计算]16[ (18)4.3集气罩的设计计算 (19)4.3.1集气罩气流的流动特性 (19)4.3.2集气罩的分类及设计原则 (20)4.3.3集气罩的选型 (20)4.4吸附前的预处理 (22)4.5管道系统设计计算 (23)4.5.1管道系统的配置 (23)4.5.2管道流体流速的选择 (24)4.5.3管道直径的确定 (24)4.5.4管道流体的压力损失 (25)4.5.5风机和电机的选择 (25)5工程核算 (28)5.1工程造价 (28)5.2运行费用核算 (28)5.2.1价格标准 (28)5.2.2运行费用 (29)6结论与建议 (30)6.1结论 (30)6.2建议 (30)致 (33)1.绪论1.1概述1.1.1有机废气的来源有机废气的来源主要有固定源和移动源两种。
移动源主要有汽车、轮船和飞机等以油产品为燃料的交通工具的排放气;固定源的种类极多,主要为油化工工艺过程和储存设备等的排出物及各种使用有机溶剂的场合,如喷漆、印刷、金属除油和脱脂、粘合剂、制药、塑料、涂料和橡胶加工等。
1.1.2有机物对大气的破坏和对人类的危害有机废气中的挥发性有机物称为VOCs(Volatileorganiccompounds),在涂装、印刷、制鞋和化工生产的多行业中,一些工业产品的生产工艺过程都伴有大量的挥发性有机化合物(VOCs)废气的排出。
VOCs废气排入大气环境中会产生以下几个面的影响:①VOCs是光化学反应的前体,有照射时,在合适的条件下VOCs与NOx及其它悬浮化学物质发生一系列光化学反应,主要生成臭氧,形成光化学烟雾,从而发生光化学污染;②光化学烟雾会刺激人的眼睛和呼吸系统,有些VOCs还具有强烈刺激气味,空气中达到一定浓度时则产生令人不适的感觉,影响空气质量;③有些有毒的VOCs(如芳香烃等)气体在环境中存在会损害人们的健康,长时间暴露在污染空气中会引发癌变或引起其它重疾病,如苯对骨髓的造血机能造成破坏,是一种致癌物;甲苯和二甲苯对中枢神经具有强的麻醉作用;氯乙烯为致癌物。
在制鞋业,由于“三苯”中毒而导致工人致死事件已发生过多起,而涂料工业使用的溶剂中,主要是甲苯、二甲苯和其它毒性有机物。
光化学烟雾也会危害人的健康和植物的生长,1965年日本各大城市频繁发生的光化学烟雾,1966年美国洛杉矶的光化学烟雾均对人类健康造成危害。
VOCs对环境的极大危害和对人体健康的重威胁,引起了世界各国政府的高度重视。
美国环保署E P A(EnvironmentalProtectionAgency)定义的污染物中VOCs 占了300多种,而美国1990年的《清洁空气法》(CleanAirAct)要求减少90%排放量的189种毒性化学物中,70%属于VOCs]1[。
我国在1997年1月1日开始实3工艺流程说明3.1工艺选择处理工艺的选择,应根据气量大小、净化要求、回收的可能性、设备建造和运转的经济性等条件全面考虑,实际工作中应特别注意与工艺密切配合,尽可能做到综合利用。
目前]4[,国外对有机废气治理的常用法有三种:液体吸收法、活性炭吸附法及催化燃烧法。
液体吸收法净化效率为60%~80%,适合处理低浓度,大风量的有机废气,但存在着二次污染;催化燃烧法净化率为95%,适合处理高浓度,小风量的有机废气,缺点是对处理对象要求苛刻,要求气体的温度较高,为了提高废气温度,要消耗大量的燃料,所以运行费用很高;活性炭吸附法净化效率为99.2%~99.3%,对于处理大风量、低浓度的有机废气,国外一致认为该法是最为成熟和可靠的技术,但该工艺流程过长,操作费用高,另外需要稳定的蒸气源也常常是比较困难的事情。
针对这些问题,结合本毕业设计特点和具体要求,采用利用活性炭固定床吸附系统对工业有机废气进行净化,选用蜂窝状活性炭做为吸附剂。
3.2工艺流程注:1集气罩;2除雾过滤器;3活性炭固定吸附床;4提供蒸汽的风机;5离心风机;6排气罩.图2.3有机废气工艺流程图该处理工艺系统组合十分紧凑,集吸附-脱附于一体。
在生产过程所产生的废气主要为苯、甲苯、二甲苯等,根据苯类性质,本案采用活性炭作为吸附剂对废气进行吸收处理,吸附床一般配置2台以上,轮换使用,当1台吸附床吸附的有机物达到规定的吸附量时,换到另1台吸附床进行吸附净化操作,同时对前面1台吸附床进行脱附再生。
脱附是在外加蒸汽的作用下通过加温进行的,由尾气放出的热气流大部分用于吸附床吸附剂的脱附再生,达到余热的利用。
生产中挥发出来的废气,通过离心风机将其送至吸附塔以活性炭作为吸附剂,在塔的气体从右到左,从下到上通过活性炭过滤层对气体进行处理,净化后的气体通过排气管排入大气。
如附图1所示吸附和脱附互为可逆过程。
当用新鲜的吸附剂吸附气体中的吸附质时,由于吸附剂表面没有吸附质,因此也就没有吸附质的脱附。
但随着吸附的进行,吸附剂表面上的吸附质量逐渐增多,也就出现了吸附质的脱附,且随时间的推移,脱附速度不断增大。
但从宏观上看,同一时间吸附质的吸附量仍大于脱附量,所以过程的总趋势认为吸附。
当同一时间吸附质的吸附量与脱附量相等时,吸附和脱附达到动态平衡,此时称为达到吸附平衡。
平衡时,吸附质再在流体中的浓度和在吸附剂表面上的浓度不再变化,从宏观上看,吸附过程停止。
平衡时的吸附质在流体中的浓度称为平衡浓度,在吸附剂中的浓度称为平衡吸附量。
当吸附质与吸附剂长时间接触后,终将达到吸附平衡。
吸附平衡量是吸附剂对吸附质的极限吸附量,亦称静吸附量分数或静活性分数,用Xt表示,无量纲。
它是设计和生产中十分重要的参数。
吸附平衡时,吸附质在气、固两相中的浓度关系,一般用吸附等温线表示。
吸附等温线通常根据实验数据绘制,也常用各种经验程式来表示。
4.1.3吸附等温线与吸附等温程式平衡吸附量表示的是吸附剂对吸附质吸附数量的极限,其数值对吸附造作,设计和过程控制有着重要的意义。
达到吸附平衡时,平衡吸附量与吸附质在流体中的浓度与吸附温度间存在着一定的函数关系,此关系即为吸附平衡关系,其一般都是根据实验测得的,也可以用经验程式表示。
4.1.3.1吸附等温线在气体吸附中,其平衡关系可表示为:A=f(p,T)式中A——平衡吸附量;p——吸附平衡时吸附质在气相中的分压力;T——吸附温度根据需要。
对一定的吸附体系可测得如下关系:①当保持T不变,可测得A与P的变化关系②当保持P不变,可测得A与T的变化关系③当保持A不变,可测得P与T的变化关系依据上述变化关系,可分别绘出相应的关系曲线,分别为吸附等温线,吸附等压线和吸附等量线。
由于吸附过程中,吸附温度一般变化不大,因此吸附等温线最为常用。
吸附等温线描述的是在吸附温度不变的情况下,平衡时,吸附剂的吸附量随气相中组分压力的不同而变化的情况。
根据对大量的不同气体与蒸气的吸附测定,吸附等温线形式可归纳为六种基本类型。
4.1.3.2吸附等温程式根据大量的吸附等温线整理出描述吸附平衡状态的经验程式,即为吸附等温程式,其中有的完全依据实验数据所表现的规律整理而得,一定条件围具有应用意义,但不具有理论指导意义,如弗罗因德利希(Freundlich)吸附等温程式;有些是以一定的理论假设为前提得出的程式,如朗格谬尔(Langmuir)吸附等温程式和B·E·T程,后者应用较多。
(1)朗格谬尔程式朗格谬尔吸附理论假定:①吸附仅是单分子层的;②气体分子在吸附剂表面上吸附与脱附呈动态平衡;③吸附剂表面性质是均一的,被吸附的分子之间相互不受影响;④气体的吸附速率与该气体在气相的分压成正比。
根据上述假设,可推导出朗格谬尔等温式:式中θ——吸附剂表面被吸附分子覆盖的百分数;a——吸附系数,是吸附作用的平衡常数;p——气相分压。
朗格谬尔等温式的另一表现形式为:式中Vm——单分子层覆盖满时(θ 1)的吸附量;V——在气相分压p下的吸附量。
在压力很低时,或者吸附很若时,ap≤1,上式变成:V=Vmap由朗格谬尔等温式得到的结果与多实验现象相符合,能够解释很多实验结果,因此,它目前仍是常用的、基本的等温式。
在很多体系中,朗格谬尔等温式不能在较大的θ围与实验结果相吻合。
(2)弗罗因德利希程式式中q——固体吸附气体的量,㎏/㎏吸附剂;P——平衡时气体分压;k,n——经验常数。
在一定温度下,对一定体系而言是常数,k和n随温度变化而变化;m——吸附质质量,㎏;x——被吸附气体的质量。
弗罗因德利希等温程式只是一个经验式,它所适用的θ围比朗格谬尔式要大些,可用于未知组成物质的吸附,如有机物或矿物油的脱色,通过实验来确定k 与n。
有资料认为它在高压围不能很好地吻合实验值。
(3)B·E·T程由于朗格谬尔的单分子层吸附理论及其等温程对中压合高压物理吸附不能很好地吻合,在此基础上发展了B·E·T理论。
它除了接受朗格谬尔理论地几条假定,即固体表面是均匀的,被吸附分子不受其它分子的影响,吸附与脱附在吸附剂表面达到动态平衡以外,还认为在吸附剂表面吸附了一层分子以后,由于德华力地作用还可以吸附多层分子,而第一层与以后的各层有所不同。
吸附达平衡后,吸附总数(V)为:P——平衡时气体分压;V——压力为p时的吸附总量;Vm——吸附剂表面为单分子层铺满时的吸附量;P0——实际温度下气体的饱和蒸气压;C——与气体有关的常数。
很多实验证明,当比压p/p0在0.05-0.35围时,B·E·T公式是比较准确的,在低压下可以与朗格谬尔等温式一致。
4.1.4吸附量吸附量是指在一定条件下单位质量地吸附剂上所吸附的吸附质的量,通常以㎏吸附质/㎏吸附剂或质量百分数表示,它是吸附剂所具有吸附能力的标志。