期末复习(函数)
期末复习(四)反比函数和二次函数(A)
用待定系数法求二次函数解析式
1、已知抛物线上的三点,通常设解析式为 2+bx+c(a≠0) y=ax ________________ 2、已知抛物线顶点坐标(h, k),通常 2+k(a≠0) y=a(x-h) 设抛物线解析式为_______________ 3、已知抛物线与x 轴的两个交点(x1,0)、 y=a(x-x1)(x-x2) (a≠0) (x2,0),通常设解析式为_____________
a<0
b 向下 x 当 2a 时 2 b 4 ac b y随,x的增大而减少 ( ) x b 2a 当 x
向上
2a
4a b
时
y随x的增大而减少 当
b x 2a
2a
y随x的增大而增大
b 当 x 时 2a 2
ymax 4ac b 4a
2a
时
最
值
ymin
4ac b 2 4a
(2)若工厂将当日所生产的护眼灯全部售出,工厂应生产哪一等级 的护眼灯,才能获得最大利润?最大利润是多少?
点拨2(5分钟)
二次函数y=ax2+bx+c(a≠0)的图象和性质 a>0
开口方向 顶点 对称轴 增减性
b x 当 2a 时 b 4ac b 2 (的增大而增大 , ) y随x 2a 4a b x 当 x 2ab 时
一点,过点A作平行四边形ABCD,使点B、C在x轴上, 点D在y轴上,则平行四边形ABCD 的面积为( C ) A.1 B.3 C.6 D.12
y1 y2
3.二次函数y=2x2+mx+8的图象如图所示,则m的值是( B )
A.﹣8 B.8 C.±8 D.6 4. 已知二次函数y = ax2+bx+c(a ≠ 0)的图象如图所示, 则下列结论中正确的是( ) B A.a>0 B.3是方程ax2+bx+c=0的一个根 C.a+b+c=0 D.当x<1时,y随x的增大而减小
期末复习6(一次函数1)
八(上)期末复习(6)(一次函数1)基础训练:1、函数11y x =-的自变量的取值范围是_______ ,函数的自变量x 的取值范围是 。
2、下列不是一次函数的是( )。
A .x x y +=1B .)1(21-=x yC .1-=πxy D .2π+=x y3、已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________.4、直线y=2-3x 不经过第______________象限,y 随x 的增大而___________.5、一次函数22-=x y 与x 轴的交点坐标 ,与y 轴的交点坐标 ,直线与两坐标轴所围成的三角形面积为 。
6、已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______.7、如图,将直线OA 向上平移1个单位,得到一个一次函数的图像,那么这个一次函数的解析式是 .8、直线y=kx+b 和直线y=-3x+8平行,且过点(0,-2)•则此直线的解析式为________.9、已知y 与4x-1成正比例,且当x=3时,y=6,写出y 与x 的函数关系式 。
10、若点(-4,y 1),(2,y 2)都在直线y=1x t 3-+上,则y 1与y 2的大小关系是 ( ) A .y 1>y 2 B .y 1=y 2 C .y 1<y 2 D .无法确定11、一次函数y kx b =+的图象如图所示,当0y <时,x 的取值范围是_________.12、如图,直线l 1、l 2的交点P 的坐标可以看作方程组 的解。
13、直线y =x -1与两坐标轴分别交于A 、B 两点,点C 在坐标轴上,若△ABC 为等腰三角形,则满足条件的点C 最多有( )。
A 、4个B 、5个C 、7个D 、8个例题探究:例1、已知点A (2,m )在直线82+-=x y 上.(1)点A (2,m )向左平移3个单位后的坐标是 ;直线82+-=x y 向左平移3个单位后的直线解析式是 ;(2)点A (2,m )绕原点顺时针旋转90°后的坐标是(3)求直线82+-=x y 绕点P (-1,0)顺时针旋转90°后的直线解析式.例2、已知直线1l :33y x =-和直线2l :362y x =-+相交于点A 。
九下期末复习资料(一)——《二次函数》
九下期末复习资料(一)——《二次函数》【例题讲解】例1:二次函数y=a x 2+b x+c (a ≠0)的图象如图所示,根据图象回答下列问题.(1)如图1,若抛物线经过点A (-3,0),对称轴是直线x =-1,与y 轴的交点坐标为(0,3)①求抛物线的解析式;①写出它的顶点坐标;①写出它与坐标轴的交点坐标;①当x 取何值时,抛物线中y 随x 增大而增大;①已知A (-2, y 1),B (2, y 2)为函数图象上的两个点,请比较y 1和y 2的大小关系; ①已知-3≤x ≤-2,求y 的取值范围;①写出方程ax 2+bx +c =0的根;①写出不等式ax 2+bx +c <0的解集;①若方程ax 2+bx +c =k 无实数根,写出k 的取值范围.(2)二次函数y =ax 2+bx +c 的图象如图1所示,抛物线经过点A (-3,0),对称轴是直线x =-1,下列结论:①abc >0;①2a ﹣b <0;①a ﹣b +c <0;①9a +3b +c <0,其中正确的有 .(3)如图1,抛物线y =ax 2+bx +c (a <0)经过(2, n ),(-4, n )两点,若点M (x 1, y 1),点N (x 2, y 2)也在抛物线上,且满足x 1<x 2,x 1+x 2>-2,则 y 1,y 2的大小关系 . (4)如图2,抛物线y =ax 2+bx +c (a <0)与直线y =kx +n 相交于点C (−52,74)、C (0,3)两点,则关于x 的不等式ax 2+bx +c <kx +n 的解集是 .BC图1 图2例2:如图,抛物线y=a x2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.例3:如图,隧道的截面由抛物线DEC和矩形ABCD构成,矩形的长AB为4m,宽BC为3m,以DC所在的直线为x轴,线段CD的中垂线为y轴,建立平面直角坐标系.y轴是抛物线的对称轴,最高点E到地面距离为4米.(1)求出抛物线的解析式.(2)在距离地面13米高处,隧道的宽度是多少?4(3)如果该隧道内设单行道(只能朝一个方向行驶),现有一辆货运卡车高3.6米,宽2.4米,这辆货运卡车能否通过该隧道?通过计算说明你的结论.【课内练习】1.已知函数y=(m−2)x m2−2+2x−7是二次函数,则m的值为()A.±2B.2C.-2D.m为全体实数2.一台机器原价100万元,若每年的折旧率是x,两年后这台机器约为y万元,则y与x的函数关系式为()A.y=100(1﹣x)B.y=100﹣x2C.y=100(1+x)2D.y=100(1﹣x)23.抛物线y=ax2经过点(2,-8),则a=.4.若二次函数y=x2−6x+9的图象经过A(−1,y1),B(1,y2),C(3,y3)三点,则y1,y 2,y3大小关系为.5.抛物线y=x2-4x+5,当0≤x≤3时,y的取值范围是.6.写出抛物线y=﹣x2+4x的开口方向、对称轴、顶点坐标和最大值.7.如图,利用一面墙(墙的长度为20m),用34m长的篱笆围成两个鸡场,中间用一道篱笆隔开,每个鸡场均留一道1m宽的门,设AB的长为x米.(1)若两个鸡场的面积之和为S,求S关于x的关系式;(2)两个鸡场面积之和S有最大值吗?若有,求出这个最大值.【课后作业】1.抛物线y=−(x+1)2−1的顶点坐标为()A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)2.若二次函数y=2(x−1)2−1的图象如图所示,则坐标原点可能是()A.点A B.点B C.点C D.点D3. 某超市将进价为40元件的商品按50元/件出售时,每月可售出500件.经试销发现,该商品售价每上涨1元,其月销量就减少10件.超市为了每月获利8000元,则每件应涨价多少元?若设每件应涨价x元,则依据题意可列方程为()A.(50−40+x)(500−x)=8000B.(40+x)(500−10x)=8000C.(50−40+x)(500−10x)=8000D.(50−x)(500−10x)=8000第2题图第4题图第5题图4.如图,将一个含45°的直角三角板ABC放在平面直角坐标系的第一象限,使直角顶点A的坐标为(1,0),点C在y轴上.过点A,C作抛物线y=2x2+bx+c,且点A为抛物线的顶点.要使这条抛物线经过点B,那么抛物线要沿对称轴向下平移()A.5个单位B.6个单位C.7个单位D.8个单位5.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-1,0)和B,与y轴交于点C.下列结论:①abc<0;①2a+b>0;①4a-2b+c>0;①3a+c>0.其中错误的结论个数为()A.1个B.2个C.3个D.4个6.已知抛物线y=x2+bx+c经过点A(m,n),B(4﹣m,n),且抛物线与x轴有交点,则c的最大值为()A.0B.2C.4 D.87.已知二次函数y=﹣x2+2x+3,当自变量x的值满足a<x≤2时,函数y的最大值与最小值的差为1,则a的值可以为()A.−12B.12C.﹣1D.18.抛物线y=−(x+1)2−1的顶点坐标为.9.将二次函数y=−x2+6x−8用配方法化成y=(x−ℎ)2+k的形式为y=.10.已知二次函数y=ax2+4x+3(a≠0)的顶点在x轴上,则a= .11.如图,二次函数y=ax2+bx+c的图象与x轴交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是.12.若关于x的函数y=x2−2x+k+1的图象与x轴只有1个交点,则k的值是.13.已知二次函数y=x2﹣x﹣6.求二次函数的图象与坐标轴的交点所构成的三角形的面积.14.已知二次函数y=C x2+bx+c(其中a、b、c为常数,且C≠0)的自变量x的值与它对应的函数值y如下表所示:(1)该二次函数图象的对称轴是直线.(2)如果n=−2,求此二次函数的解析式及其图像与y轴的交点坐标.15.已知抛物线y=−x2+bx+c如图所示,它与x轴的一个交点的坐标为A(−1,0),与y轴的交点坐标为C(0,3).(1)求抛物线对应的函数表达式及与x轴的另一个交点B的坐标;(2)根据图象回答:当x取何值时,y<0;(3)在抛物线的对称轴上有一动点P,求PA+PC的最小值,并求当PA+PC取最小值时点P的坐标.。
函数与导数期末复习题
3D f'(3)e B.e+e eD.06.已知函数f(x)=,则该函数的导函数f'(x)=8.若函数f(x)=a sin x+cos x在x=处有最值,那么a等于()A.B.- C.D.-9.函数y=x-sin x,x∈⎣2,π⎦的最大值是()A.π-1 B.-1C.πD.π+1则称函数f(x)在(a,b)上为“凸函数”,已知f(x)=-x3+x2在(1,4)上为“凸x2x2x28D.(函数与导数期末复习题一、选择题(本大题12小题,每小题5分,共60分)1.已知函数y=f(x)的图象如图,则f′(x A)与f′(x B)的大小关系是()A.f′(x A)>f′(x B)B.f′(x A)<f′(x B)C.f′(x A)=f′(x B)D.不能确定2.已知函数f(x)在x=1处存在导数,则lim∆x→0f(1+∆x)-f(1)3∆x=A.f'(1)B.3f'(1)C.1f'(1)3.已知曲线y=2ax2+1过点(a,3),则该曲线在该点处的切线方程为() A.y=-4x-1B.y=4x-1C.y=4x-11D.y=-4x+7 4.已知f(x)=e-x+e x的导函数为f'(x),则f'(1)=A.e-111C.1+5.函数f(x)=x3+ax-2在区间(1,+∞)内是增函数,则实数a的取值范围是() A.[3,+∞)B.[-3,+∞)C.(-3,+∞)D.(-∞,-3)x2+sin xx2x+cos x x2+x cos x-sin x2x+x cos x-sin xA.B.C.D.2x-cos x7.已知a>0,函数f(x)=-x3+ax在[1,+∞)上是单调减函数,则a的最大值为() A.1B.2C.3D.41π3333333366⎡π⎤π210.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点()A.1个B.2个C.3个D.4个11.丹麦数学家琴生是19世纪对数学分析做出卓越贡献的巨人,特别是在函数的凸凹性与不等式方向留下了很多宝贵的成果.设函数f(x)在(a,b)上的导函数为f'(x),f'(x)在(a,b)上的导函数记为f''(x),若在(a,b)上f''(x)<0恒成立,x4t3432函数”,则实数t的取值范围是A.[3,+∞)B.(3,+∞)C.[51,+∞)518,+∞)13.已知函数 y =f (x )的图象在点 M (1,f (1))处的切线方程是 y = x +2,则 f (1)+f ′(1)= 倾斜角均为 π,有以下命题:17.若函数 f (x )= x 3- ax 2+(a -1)x +1 在区间(1,4)上为减函数,在区间(6,+∞)上为增函 18.已知函数 f (x )=x 3+ax 2+bx +c 在 x =- 与 x =1 时都取得极值.12.已知点 P 为函数 f ( x ) =12x 2 + 2ax 与 g ( x ) = 3a 2 ln x + 2b (a > 0) 图象的公共点,若以P 为切点可作直线 l 与两曲线都相切,则实数 b 的最大值为2 3 A . e 433 34 2 B . e 4 C . e 32 3 3 2 D . e 34二、填空题(本大题共 4 小题,每小题 5 分,共 20 分)1214.设函数 f (x )=ax 3-3x +1 (x ∈R ),若对于 x ∈[-1,1],都有 f (x )≥0,则实数 a 的值为15. f (x )=ax 3﹣x 2+x +2, ,∀ x 1∈(0,1],∀ x 2∈(0,1],使得 f (x 1)≥g (x 2),则实数 a 的取值范围是.16.已知函数 f (x )=x 3+ax 2+bx +c ,x ∈[-2,2]表示过原点的曲线,且在 x =±1 处的切线的34①f (x )的解析式为 f (x )=x 3-4x ,x ∈[-2,2].②f (x )的极值点有且只有一个. ③f (x )的最大值与最小值之和等于零.其中正确命题的序号为________. 三、解答题(本大题共 6 小题,共 70 分)1 1 3 2数,试求实数 a 的取值范围.23(1)求 a ,b 的值与函数 f (x )的单调区间;(2)若对 x ∈[-1,2],不等式 f (x )<c 2 恒成立,求 c 的取值范围.19.一个圆柱形圆木的底面半径为 1 m ,长为 10 m ,将此圆木沿轴所在的平面剖成两部分.如(2)求证:当 x ∈(1,+∞)时,函数 f (x )的图象在 g (x )= x 3+ x 2的下方.图所示,现要把其中一部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形ABCD ,其中 O 为圆心, C , D 在半圆上,设 ∠BOC = θ ,木梁的体积为 V (单位:m 3),表面积为 S (单位:m 2).(1)求V 关于θ 的函数表达式;(2)求θ 的值,使体积V 最大,并判断此时表面积 S 是否也最大.20.已知函数 f (x )=x 2+ln x .(1)求函数 f (x )在[1,e]上的最大值和最小值;2 13 221.设 a 为实数,函数 f (x )=e x -2x +2a ,x ∈R .时,求函数 f ( x ) 在区间 [ , e] 上的最值;(1)求 f (x )的单调区间与极值; (2)求证:当 a >ln 2-1 且 x >0 时,e x >x 2-2ax +1.22.已知函数 f ( x ) = a ln x +a + 12x 2 + 1 .(1)当 a = - 1 12 e(2)讨论 f ( x ) 的单调性;(3)当 -1 < a < 0 时, f ( x ) > 1 +a 2ln( -a ) 恒成立,求实数 a 的取值范围.参考答案,∴k =y ′|x =-1= (x +2)2 (x +2)2 (-1+2)2 8.A [f ′(x )=a cos x - sin x ,由题意 f ′⎝3⎭=0,即 a · - × =0,∴a = .] 9.C [y ′=1-cos x ≥0,所以 y =x -sin x 在⎣2,π⎦上为增函数.∴当 x =π 时,y max =π.] (1-x )2 (1-x )2 (1-x )2 所以 g (x )在区间⎝0,2⎭上单调递增,在区间⎝2,1⎦上单调递减,因此 g (x )max =g ⎝2⎭=4,从而 a ≥4;当 x ∈[-1,0)时,f (x )=ax 3-3x +1≥0 可转化为 a ≤ 2-f ( x 4 15. 解析 设 CD =x ,则点 C 坐标为⎝2,0⎭.点 B 坐标为⎝2,1-⎝2⎭2⎭,∴矩形 ABCD 的面积 S =f (x )=x · ⎣1-⎝2⎭2⎦=- +x (x ∈(0,2)).x 4由 f ′(x )=- x 2+1=0,得 x 1=- (舍),x 2= ,∴x ∈⎝0, 2 ⎫3⎭ ⎛ 2 ,2⎫时,f ′(x )<0,f (x )是递减的,当 x = 的,x ∈⎝ 3 ⎭ 3 时,f (x )取最大值 .16.①③解析 f ′(x )=3x 2+2ax +b ,由题意得 f (0)=0,f ′(-1)=f ′(1)=tan =-1.1.B [f ′ x A )和 f ′ x B )分别表示函数图象在点 A 、B 处的切线斜率,故 f ′ x A )<f ′ x B ).] 2.B [物体的初速度即为 t =0 时物体的瞬时速度,即函数 s (t )在 t =0 处的导数.s ′(0)=s ′|t =0=(3-2t )|t =0=3.]3.B [∵曲线过点( a ,3),∴3=2a 2+1,∴a =1,∴切点为(1,3).由导数定义可得 y ′=4ax =4x , ∴该点处切线斜率为 k =4,∴切线方程为 y -3=4(x -1),即 y =4x -1.] 4.B5.B [f ′(x )=3x 2+a .令 3x 2+a ≥0,则 a ≥-3x 2,x ∈(1,+∞),∴a ≥-3.]x ′(x +2)-x (x +2)′ 2 2 6.A [∵y ′= = =2,∴切线方程为:y +1=2(x +1),即 y =2x +1.] 7.C1 ⎛π⎫ 1 1 3 3 323 2 3⎡π ⎤ 10.A [由图象看,在图象与 x 轴的交点处左侧 f ′ x )<0,右侧 f ′ x )>0 的点才满足题意,这 样的点只有一个 B 点.]x ′(1-x )-x (1-x )′ 1-x +x 111.C [∵f ′(x )= = = >0,又 x ≠1,∴f (x )的单调增区间为(-∞,1),(1,+∞).]12.B [由题意知,存款量 g (x )=kx (k >0),银行应支付的利息 h (x )=xg (x )=kx 2,x ∈(0,0.048).设银行可获得收益为 y ,则 y =0.048kx -kx 2.于是 y ′=0.048k -2kx ,令 y ′=0,解得 x =0.024,依题意知 y 在 x =0.024 处取得最大值.故当存款利率为 0.024 时, 银行可获得最大收益.] 13.314.4 解析 若 x =0,则不论 a 取何值,f (x )≥0,显然成立;3 1 3 1 3(1-2x ) 当 x ∈(0,1]时, x )=ax 3-3x +1≥0 可转化为 a ≥x 2-x 3,设 g (x )=x 2-x 3,则 g ′(x )= , ⎛ 1⎫ ⎛1 ⎤⎛1⎫ 3 x1 x 3,3 1 3(1-2x )设 g (x )=x 2-x 3,则 g ′(x )= ,所以 g (x )在区间[-1,0)上单调递增. 因此 g (x )min =g (-1)=4,从而 a ≤4,综上所述,a =4.4 3 ⎛x ⎫ ⎛x ⎛x ⎫ ⎫ 9⎡ ⎛x ⎫ ⎤x 3 43 2 2 ⎛4 3 3时,f ′(x )>0,f (x )是递增2 43 93π4,x 2= , 2 3 ( ,-22 3 2 3 3 33 ∴x =- 是极大值点也是最大值点.x = 是极小值点也是最小值点.∴a ≥ =x +1.又∵x +1∈(2,5),∴a ≥5, ①∴a ≤ =x +1. 又∵x +1∈(7,+∞),∴a ≤7, ②⎛ 2⎫ 12-4a +b =0, f ′(1)=3+2a +b =0 得 a =- ,b =-2.f ′(x )=3x 2-x -2=(3x +2)(x -1), 令 f ′(x )>0,得 x <- 或 x >1,令 f ′(x )<0,得- <x <1.所以函数 f (x )的递增区间是⎝-∞,-3⎭和(1,+∞),递减区间是⎝-3,1⎭. ⎛ 2⎫ 22+c 为极大值, (2)f (x )=x 3- x2-2x +c ,x ∈[-1,2],由(1)知,当 x =- 时,f ⎝-3⎭=后,库存量变为零,这样又开始下一次的订购,因此平均库存量为 x 台,所以每年的保管费用为 x ·4 000·10%元,而每年的订货电脑的其它费用为 ·1 600 元,这样每年的总费用为 ·1 600+ x ·4 000·10%元.0 0⎧⎪c =0∴⎨3-2a +b =-1 ⎪⎩3+2a +b =-1,∴a =0,b =-4,c =0.∴f (x )=x 3-4x ,x ∈[-2,2].故①正确.2 3 2 3由 f ′(x )=3x 2-4=0 得 x 1=- 3 3.根据 x 1,x 2 分析 f ′(x )的符号、f (x )的单调性和极值点.(-x( - 2 ,- - 2 3 2 3) 33 3 2 3 2))2f ′(x )+ - +16 3 - f (x ) 0 0916 3 92 3 2 33 3f (x )min +f (x )max =0.∴②错,③正确.17.解 f ′(x )=x 2-ax +a -1,由题意知 f ′(x )≤0 在(1,4)上恒成立,且 f ′(x )≥0 在(6,+ ∞)上恒成立.由 f ′(x )≤0 得 x 2-ax +a -1≤0,即 x 2-1≤a (x -1).∵x ∈(1,4),∴x -1∈(0,3),x 2-1x -1由 f ′(x )≥0 得 x 2-ax +a -1≥0,即 x 2-1≥a (x -1).∵x ∈(6,+∞),∴x -1>0,x 2-1x -1∵①②同时成立,∴5≤a ≤7.经检验 a =5 或 a =7 都符合题意,∴所求 a 的取值范围为 5≤a ≤7. 18.解 (1)f (x )=x 3+ax 2+bx +c ,f ′(x )=3x 2+2ax +b ,由 f ′⎝-3⎭=9 3122 23 3⎛ 2⎫ ⎛ 2 ⎫1 2 2 3 27而 f (2)=2+c ,则 f (2)=2+c 为最大值,要使 f (x )<c 2,x ∈[-1,2]恒成立, 则只需要 c 2>f (2)=2+c ,得 c <-1 或 c >2.19.解 设每次订购电脑的台数为 x ,则开始库存量为 x 台,经过一个周期的正常均匀销售12125 000x5 000 1x 2(-∞,x 1)(x 1,x 2) (x 2,+∞)x 1x 2解得 a ≥ .综上,f (x )在[-1,1]上为单调函数的充分必要条件为 a ≥ .即 a 的取值范围是⎣4,+∞⎭.4 x ·1 600+ 00 ln 2 22.(1)解 ∵f (x )=x 2+ln x ,∴f ′(x )=2x + .∵x >1 时,f ′(x )>0,(2)证明 令 F (x )=f (x )-g (x )= x 2- x 3+ln x ,∴F ′(x )=x -2x 2+ = = = . ∵x >1,∴F ′(x )<0,∴F (x )在(1,+∞)上是减函数,∴F (x )<F (1)= - =- <0.∴f (x )<g (x ).∴当 x ∈(1,+∞)时,函数 f (x )的图象在 g (x )= x 3+ x 2的下方.5 000 1 1 1令 y = 2x ·4 000·10%,y ′=-x 2·5 000·1 600+2·4 000·10%.令 y ′=0,解得 x =200(台).也就是当 x =200 台时,每年订购电脑的其它费用及保管费用总费用达到最小值,最小 值为 80 000 元.20.解 (1)对函数 f (x )求导数,得 f ′(x )=(x 2-2ax )e x +(2x -2a )e x =[x 2+21 -a x -2a ]e x .令 f ′(x )=0,得[x 2+21 -a x -2a ]e x =0,从而 x 2+2(1-a )x -2a =0. 解得 x 1=a -1- 1+a 2,x 2=a -1+ 1+a 2,其中 x 1<x 2. 当 x 变化时,f ′(x )、f (x )的变化如下表:xf ′(x )+-+f (x )极大值极小值当 f (x )在 x =x 1 处取得极大值,在 x =x 2 处取到极小值. 当 a ≥0 时,x 1<-1,x 2≥0.f (x )在(x 1,x 2)为减函数,在(x 2,+∞)为增函数.而当 x <0 时,f (x )=x (x -2a )e x >0; 当 x =0 时,f (x )=0,所以当 x =a -1+ 1+a 2时,f (x )取得最小值.(2)当 a ≥0 时,f (x )在[-1,1]上为单调函数的充要条件是 x 2≥1,即 a -1+ 1+a 2≥1,343 ⎡3⎫ 21.(1)解 由 f (x )=e x -2x +2a ,x ∈R 知 f ′(x )=e x -2,x ∈R .令 f ′(x )=0,得 x =ln 2.于是当 x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,ln 2) (ln 2,+∞)f ′(x )- +f (x )2(1-ln 2+a )故 f (x )的单调递减区间是(-∞,ln 2),单调递增区间是(ln 2,+∞),f (x )在 x =ln 2 处取得极小值,极小值为 f (ln 2)=e ln 2-2ln 2+2a =2(1-ln 2+a ).(2)证明 设 g (x )=e x -x 2+2ax -1,x ∈R ,于是 g ′(x )=e x -2x +2a ,x ∈R . 由(1)知当 a >ln 2-1 时,g ′(x )取最小值为 g ′(ln 2)=2(1-ln 2+a )>0. 于是对任意 x ∈R ,都有 g ′(x )>0,所以 g (x )在 R 内单调递增. 于是当 a >ln 2-1 时,对任意 x ∈(0,+∞),都有 g (x )>g (0). 而 g (0)=0,从而对任意 x ∈(0,+∞),都有 g (x )>0, 即 e x -x 2+2ax -1>0,故 e x >x 2-2ax +1.1x ∴f (x )在[1,e]上是增函数,∴f (x )的最小值是 f (1)=1,最大值是 f (e)=1+e 2.1 2 2 31 x 2-2x 3+1 x 2-x 3-x 3+1 (1-x )(2x 2+x +1)x x x x1 2 1 2 3 62 13 2。
高等数学期末复习:1.1 函数(Function)
5.绝对值(Absolute Value):
a
a a
a0 a0
( a 0)
运算性质:
ab a b;
a a; bb
a b a b a b.
绝对值不等式:
x a (a 0)
a x a;
x a (a 0)
x a 或 x a;
二、函数概念
例 圆内接正多边形的周长
S3
S4
不含任何元素的集合称为空集,记作 . 规定 : 对任何集合A, A.
集合的运算
设A, B是两个集合 并 A B {x | x A或x B} 交 A B {x | x A且x B}
差 A \ B {x | x A且x B} 余 Ac {x | x A},对某个给定的大集合
(, b) {x | x b}
ob
x
(,b] {x | x b}
ob
x
以上这四种区间称为无限区间 R也 可 记 作(,)
3.邻域 (neighborhood) 邻域是一种常见的区间
邻域U(a) :以a为中心的任何开区间
邻域U(a, ) {x || x a | }
中心
a
a
半径
a x
0
若a是集合A的元素, 则称a属于A, 记作a A; 若a不是集合A的元素, 则称a不属于A, 记作a A.
列举法: A {a1 ,a2 , ,an } 描述法: A {a | a具有的特征}
数集是常见的集合. 自然数 (natural numbers) N {0,1, ,n, } 正整数 (positive integers) N {1,2, ,n, }
Sn 2nr sin n
n 3,4,5,
S5
第二章 函数 期末综合复习测评卷高一上学期数学北师大版(2019)必修第一册
第二章 函数 期末综合复习测评卷一、单选题 1.函数()g x =) A .(2,0)(0,1)- B .[2,0)(0,1]- C .(1,0)(0,1]-⋃ D .[1,0)(0,2]-⋃2.已知(),()f x g x 都是定义在R 上的函数,下列两个命题: ①若()f x 、()g x 都不是单调函数,则(())f g x 不是增函数. ①若()f x 、()g x 都是非奇非偶函数,则(())f g x 不是偶函数. 则( ) A .①①都正确B .①正确①错误C .①错误①正确D .①①都错误3.设()f x 为定义在R 上的奇函数,且满足()(4)f x f x =+,(1)1f =,则(1)(8)f f -+=( ) A .2-B .1-C .0D .14.设函数17,0()20xx f x x ⎧⎛⎫-<⎪ ⎪=⎝⎭⎨≥,若()1f a <,则实数a 的取值范围是( )A .(,3)-∞-B .(1,)+∞C .(3,1)-D .(,3)(1,)-∞-⋃+∞5.函数()f x 在(),-∞+∞单调递减,且为奇函数,若()21f =-,则满足()111f x -≤-≤的x 的取值范围为( )A .[]22-,B .[]1,3-C .[]1,3D .[]1,1-6.函数y =331x x -的图象大致是( )A .B .C .D .7.已知函数()[]f x x x =-,其中[]x 表示不超过x 的最大整数,如[]1,81=,[]1,82-=-.下面说法错误的是( )A .当[)0,1x ∈时,()f x x =;B .函数()y f x =的值域是[)0,1;C .函数()y f x =与函数14y x =的图象有4个交点;D .方程()40f x x -=根的个数为7个.8.黎曼函数()R x 是由德国数学家黎曼发现并提出的,在高等数学中有着广泛的应用,()R x 在[]0,1上的定义为:当qx p =(p q >,且p ,q 为互质的正整数)时,()1R x p=;当0x =或1x =或x 为()0,1内的无理数时,()0R x =.已知a ,b ,[]0,1a b +∈,则( )注:p ,q 为互质的正整数()p q >,即qp为已约分的最简真分数. A .()R x 的值域为10,2⎡⎤⎢⎥⎣⎦B .()()()R a b R a R b ⋅≥⋅C .()()()R a b R a R b +≥+D .以上选项都不对二、多选题9.函数()y f x =的图象如图所示,则( )A .函数()f x 的定义域为[-4,4)B .函数()f x 的值域为[)0,+∞C .此函数在定义域内是增函数D .对于任意的()5,∈+∞y ,都有唯一的自变量x 与之对应10.某条公共汽车线路收支差额y 与乘客量x 的函数关系如图8-3-1所示(收支差额=车票收入-支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(1)不改变车票价格,减少支出费用;建议(2)不改变支出费用,提高车票价格.下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则( )A .①反映建议(1)B .①反映建议(1)C .①反映建议(2)D .①反映建议(2)11.有下列几个命题,其中正确的是( ) A .函数y =2x 2+x +1在(0,+∞)上是增函数 B .函数y =11x +在(-∞,-1)①(-1,+∞)上是减函数C .函数y [-2,+∞)D .已知函数g (x )=23,0(),0x x f x x ->⎧⎨<⎩是奇函数,则f (x )=2x +312.对于定义在 R 上的函数()f x ,下列判断错误的有( ). A .若()()22f f ->,则函数()f x 是 R 的单调增函数 B .若()()22f f -≠,则函数()f x 不是偶函数 C .若()00f =,则函数()f x 是奇函数D .函数()f x 在区间 (−∞,0]上是单调增函数,在区间 (0,+∞)上也是单调增函数,则()f x 是 R 上的单调增函数三、填空题 13.若函数()2743kx f x kx kx +=++的定义域为R ,则实数k 的取值范围是__________ .14.已知函数()()3,01,0x x f x f x x ≤⎧=⎨->⎩,则56f ⎛⎫= ⎪⎝⎭_______ 15.已知函数()f x x=()2g x x ,则()()f x g x +=_________. 16.已知偶函数()y f x =定义在(1,1)-上,且在(1,0]-上是单调增加的.若不等式(1)(31)f a f a -<-成立,则实数a 的取值范围是___________.四、解答题17.已知幂函数22()(22)m f x m m x +=+-,且在(0,)+∞上是减函数. (1)求()f x 的解析式;(2)若(3)(1)m m a a ->-,求a 的取值范围.18.已知函数11()1(0)2f x x x =-+>.(1)若0m n >>时,()()f m f n =,求11m n+的值; (2)若0m n >>时,函数()f x 的定义域与值域均为[],n m ,求所有,m n 值.19.已知函数()f x 是定义在R 上的奇函数,且当0x ≤时,()22f x x x =+.(1)求出函数()f x 在R 上的解析式,并补出函数()f x 在y 轴右侧的图像; (2)①根据图像写出函数()f x 的单调递减区间;①若[]1,x m ∈-时函数()f x 的值域是[]1,1-,求m 的取值范围.20.已知函数f (x )=221x x +.(1)求f (2)+f 12⎛⎫ ⎪⎝⎭,f (3)+f 13⎛⎫⎪⎝⎭的值;(2)由(1)中求得的结果,你发现f (x )与f 1x ⎛⎫⎪⎝⎭有什么关系?并证明你的发现.(3)求2f (1)+f (2)+f 12⎛⎫ ⎪⎝⎭+f (3)+f 13⎛⎫ ⎪⎝⎭+…+f (2017)+f 12017⎛⎫⎪⎝⎭+f (2018)+f 12018⎛⎫ ⎪⎝⎭的值.21.已知函数2(1)(f x ax bx a b =++,均为实数),x ∈R , (),0()(),0f x x F x f x x >⎧=⎨-<⎩.(1)若(1)0f -=,且函数()f x 的值域为[0)+∞,,求()F x 的解析式; (2)在(1)的条件下,当2][2x ∈-,时,()()g x f x kx =-是单调函数,求实数k 的取值范围; (3)设000mn m n a <+>>,,,且()f x 为偶函数,判断()()F m F n +是否大于零,并说明理由.22.已知函数()y x ϕ=的图象关于点(),P a b 成中心对称图形的充要条件是()()2a x a x b ϕϕ++-=.给定函数()61f x x x =-+. (1)求函数()f x 图象的对称中心;(2)判断()f x 在区间()0,∞+上的单调性(只写出结论即可);(3)已知函数()g x 的图象关于点()1,1对称,且当[]0,1x ∈时,()2g x x mx m =-+.若对任意[]10,2x ∈,总存在[]21,5x ∈,使得()()12g x f x =,求实数m 的取值范围.参考答案1.B 【分析】首先根据题中所给的函数解析式,结合偶次根式和分式的要求列出不等式组求得结果.【解析】由题意得2200x x x ⎧--+≥⎨≠⎩,即2200x x x ⎧+-≤⎨≠⎩,解得21x -≤≤且0x ≠,所以函数()g x =[2,0)(0,1]-, 故选:B. 2.D【解析】解::当1,0()()0,0x f x g x x x ⎧≠⎪==⎨⎪=⎩,则(())f g x x =,故①不正确;当2()(1)f x x =+,()1g x x =-,则2(())f g x x =,故①不正确. ①①①都错误. 故选:D . 3.B 【解析】解:()f x 是定义在R 上的奇函数,(0)0f =,满足()(4)f x f x =+,(8)(4)(0)0f f f ∴===,又(1)(1)1f f -=-=-,(1)(8)1f f ∴-+=-.故选:B. 【点睛】本题考查了利用奇偶性和周期性求函数值,属于基础题. 4.C 【分析】0a <时,()1f a <即1()712a-<,0a1<,分别求解即可.【解析】0a <时,()1f a <即1()712a-<,解得3a >-,所以30a -<<;0a1,解得01a <综上可得:31a -<< 故选:C . 【点睛】本题考查分段函数解不等式问题,考查了分类讨论思想的应用,属基本题,难度不大. 5.B【分析】根据函数的奇偶性以及函数的单调性求出x 的范围即可. 【解析】解:因为()f x 为奇函数, 所以()()221f f -=-=,于是()111f x -≤-≤等价于()()()212f f x f ≤-≤-, 又()f x 在(,)-∞+∞单调递减,212x ∴-≤-≤,13x ∴-≤≤.故选:B . 【点睛】本题考查了函数的单调性和奇偶性问题,考查转化思想,属于中档题. 6.C【解析】由函数解析式可得,该函数定义域为(-∞,0)①(0,+∞),故排除A ;取x =-1,y =1113--=32>0,故再排除B ;当x→+∞时,3x-1远远大于x 3的值且都为正,故331xx -→0且大于0,故排除D ,选C. 7.C 【分析】作出函数()[]f x x x =-的图像,结合图像可判断A ,B 均正确,再作出14y x =,14y x =的图像,结合方程的根与函数零点的关系,可判断C ,D 是否正确.【解析】解:作出函数()[]f x x x =-的图像如图所示,显然A ,B 均正确; 在同一坐标系内作函数14y x =的图像(坐标系内第一象限的射线部分), 作出14y x =的图像(图像中的折线部分),可以得到C 错误,D 正确. 故选:C.【点睛】本题考查了函数图像的应用,考查了函数值域的求解,考查了函数的零点与方程的根.本题的关键是由题目条件,作出()[]f x x x =-的图像.本题的难点是作图时,临界点空心圆、实心圆的标定. 8.B 【分析】设q A x x p ⎧⎫==⎨⎬⎩⎭,(p q >,且p ,q 为互质的正整数) ,B ={x |x =0或x =1或x 是[0,1]上的无理数},然后对A 选项,根据黎曼函数()R x 在[]0,1上的定义分析即可求解;对B 、C选项:分①a A ∈,b A ∈;①a B ∈,b B ∈;①a A b B ∈⎧⎨∈⎩或a Bb A ∈⎧⎨∈⎩分析讨论即可.【解析】解:设q A x x p ⎧⎫==⎨⎬⎩⎭,(p q >,且p ,q 为互质的正整数),B ={x |x =0或x =1或x 是[0,1]上的无理数},对A 选项:由题意,()R x 的值域为1110,,,,,23p ⎧⎫⎨⎬⎩⎭,其中p 是大于等于2的正整数, 故选项A 错误; 对B 、C 选项:①当a A ∈,b A ∈,则()()()R a b R a R b +≤+,()()()R a b R a R b ⋅≥⋅; ①当a B ∈,b B ∈,则()()()R a b R a R b +=+,()()()R a b R a R b ⋅≥⋅=0;①当a A b B ∈⎧⎨∈⎩或a B b A ∈⎧⎨∈⎩,则()()()R a b R a R b +≤+,()()()R a b R a R b ⋅≥⋅,所以选项B 正确,选项C 、D 错误, 故选:B. 【点睛】关键点点睛:本题解题的关键是牢牢抓住黎曼函数()R x 在[]0,1上的定义去分析. 9.BD 【分析】结合函数图象一一分析即可;【解析】解:由题图可知,函数()f x 的定义域为[][)4,01,4-⋃,故A 错误; 函数()f x 的值域为[)0,+∞,故B 正确; 函数()f x 在定义域内不单调,故C 错误;对于任意的()5,∈+∞y ,都有唯一的自变量x 与之对应,故D 正确. 故选:BD .【分析】由于图象表示收支差额y 与乘客量x 的函数关系,因此需要正确理解图中直线的倾斜角及纵截距的含义.同时对于建议(1)(2)前后图象的变化,也可以理解为对原图象做平移或旋转得到新的图象【解析】对于建议(1)因为不改变车票价格,故建议后的图象(虚线)与目前的图象(实线)倾斜方向相同(即平行),由于减少支出费用,收支差变大,则纵截距变大,相当于将原图象向上平移即可得到,故①反映建议(1);对于建议(2)因为不改变支出费用,则乘客量为0时前后的收支差是相等的,即前后图象纵截距相等,由于提高车票价格,故建议后的图象(虚线)比目前的图象(实线)的倾斜角大.相当于将原图象绕与y 轴的交点按逆时针旋转一定的角度得到的图象,故①反映建议(2). 故选:AC. 11.AD 【分析】根据简单函数的单调性,复合函数的单调性,以及由函数奇偶性求函数解析式,即可容易判断和选择.【解析】由y =2x 2+x +1=2217()48x ++在1[,)4-+∞上递增知,函数y =2x 2+x +1在(0,+∞)上是增函数,故A 正确; y =11x +在(-∞,-1),(-1,+∞)上均是减函数, 但在(-∞,-1)①(-1,+∞)上不是减函数, 如-2<0,但112101<-++故B 错误;y [),(5,)2,1--+∞上无意义, 从而在[-2,+∞)上不是单调函数,故C 错误; 设x <0,则-x >0,g (-x )=-2x -3,因为g (x )为奇函数,所以f (x )=g (x )=-g (-x )=2x +3,故D 正确. 故选:AD . 【点睛】本题考查函数单调区间的求解,复合函数的单调性判断以及利用函数奇偶性求函数解析式,属中档题. 12.ACD利用单调性的定义及性质,奇偶函数定义进行判断即可.【解析】A 选项,由()()22f f ->,则()f x 在 R 上必定不是增函数; B 选项,正确;C 选项,()2f x x =,满足()00f =,但不是奇函数;D 选项,该函数为分段函数,在x =0 处,有可能会出现右侧比左侧低的情况,故错误. 故选:ACD 【点睛】本题考查了函数的单调性的定义和性质,考查了函数奇偶性的性质,属于基础题. 13.30,4⎡⎫⎪⎢⎣⎭【分析】分析可知,对任意的x ∈R ,2430kx kx ++≠恒成立,分0k =、0k ≠两种情况讨论,结合已知条件可求得实数k 的取值范围. 【解析】因为函数()2743kx f x kx kx +=++的定义域为R ,所以,对任意的x ∈R ,2430kx kx ++≠恒成立. ①当0k =时,则有30≠,合乎题意;①当0k ≠时,由题意可得216120k k ∆=-<,解得304k <<. 综上所述,实数k 的取值范围是30,4⎡⎫⎪⎢⎣⎭.故答案为:30,4⎡⎫⎪⎢⎣⎭.14.12-【分析】利用函数()f x 的解析式可求得56f ⎛⎫⎪⎝⎭的值.【解析】因为()()3,01,0x x f x f x x ≤⎧=⎨->⎩,所以,511136662f f ⎛⎫⎛⎫⎛⎫=-=⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故答案为:12-.15.()0x x -> 【分析】求出函数()f x 、()g x 的定义域,将函数()f x 、()g x 解析式相加即可得解.【解析】函数()f x x =()2g x x =的定义域均为()0,∞+, 因此,()()()0f x g x x x +=->.故答案为:()0x x ->.16.1(0,)2【分析】由()y f x =在(1,0]-上为单调增,结合函数的奇偶性,可得()y f x =在[)0,1上为单调减,将(1)(31)f a f a -<-转化为131a a ->-,结合定义域,解不等式可得a 的取值范围. 【解析】偶函数()y f x =在(1,0]-上为单调增,∴()y f x =在[)0,1上为单调减,∴(1)(31)f a f a -<-等价于1311111311a a a a ⎧->-⎪-<-<⎨⎪-<-<⎩,解得:10202203a a a ⎧<<⎪⎪<<⎨⎪⎪<<⎩∴实数a 的取值范围是1(0,)2. 故答案为:1(0,)2. 【点睛】本题主要考查利用函数的奇偶性和单调性求解不等式问题,考查计算能力,属于中档题. 17.(1)()1f x x=;(2){|23a a <<或1}a <. 【分析】(1)根据幂函数的定义和单调性建立条件关系即可得到结论,(2)令3()g x x -=,根据其单调性即可求解结论.【解析】解:(1)函数是幂函数,2221m m ∴+-=, 即2230m m +-=,解得1m =或3m =-,幂函数()f x 在(0,)+∞上是减函数,20m ∴+<,即2m <-,3m ∴=-,(2)令3()g x x -=,因为()g x 的定义域为(-∞,0)(0⋃,)+∞,且在(,0)-∞和(0,)+∞上均为减函数,33(3)(1)a a --->-,310a a ∴-<-<或031a a <-<-或301a a ->>-,解得23a <<或1a <,故a 的取值范围为:{|23a a <<或1}a <.18.(1)2;(2)32m =,12n =. 【分析】(1)根据绝对值定义去掉绝对值,由()()f m f n =化简即可得出结果;(2)根据01n m <<≤,1m n >≥,01n m <<<三种情况去掉绝对值,根据函数的单调性,列出方程,计算求解即可得出结果.【解析】(1)因为()()f m f n =,所以11111122m n -+=-+ 所以1111m n -=-, 所以1111m n -=-或1111m n -=-,因为0m n >>,所以112m n+=. (2)1 当01n m <<≤时,11()2f x x =-在[],n m 上单调递减,因为函数()f x 的定义域与值域均为[],n m ,所以()()f n m f m n=⎧⎨=⎩,两式相减得1mn =不合,舍去. 2 当1m n >≥时,31()2f x x =-在[],n m 上单调递增,因为函数()f x 的定义域与值域均为[],n m ,所以()()f m m f n n =⎧⎨=⎩,无实数解. 3 当01n m <<<时,11,[,1],2()31,(1,],2x n x f x x m x⎧-∈⎪⎪=⎨⎪-∈⎪⎩ 所以函数()f x 在[,1]n 上单调递减,在(]1,m 上单调递增.因为函数()f x 的定义域与值域均为[],n m ,所以1(1)2n f ==,13()22m f ==.综合所述,32m =,12n =. 【点睛】本题考查分段函数的单调性及值域问题,考查分类讨论的思想,属于中档题.19.(1)()222,02,0x x x f x x x x ⎧+≤=⎨-+>⎩,图象答案见解析;(2)①减区间为:(),1-∞-和()1,+∞;①1m ⎡⎤∈⎣⎦.【分析】(1)由奇函数的定义求得解析式,根据对称性作出图象.(2)由图象的上升与下降得增减区间,解出方程221x x -+=-的正数解,可得结论.【解析】(1)当0x >,0x -<,则()()2222f x x x x x -=--=-因为()f x 为奇函数,则()()f x f x -=-,即0x >时,()22f x x x =-+ 所以()222,02,0x x x f x x x x ⎧+≤=⎨-+>⎩, 图象如下:(2)如图可知,减区间为:(),1-∞-和()1,+∞()11f -=-,()11f =令22212101x x x x x -+=-⇒--=⇒==①1x >①1x =故由图可知1m ⎡⎤∈⎣⎦. 【点睛】本题考查函数的奇偶性,考查图象的应用,由图象得单调区间,得函数值域.是我们学好数学的基本技能.20.(1)f (2)+f 12⎛⎫ ⎪⎝⎭=1,f (3)+f 13⎛⎫ ⎪⎝⎭=1;(2)f (x )+f 1x ⎛⎫ ⎪⎝⎭=1;证明见解析;(3)2018. 【分析】(1)根据函数解析式,代值计算即可;(2)观察(1)中所求()11f x f x ⎛⎫+= ⎪⎝⎭,结合函数解析式,即可证明; (3)根据(2)中所求,两两配对,即可容易求得结果.【解析】(1)因为f (x )=221x x +, 所以f (2)+f 12⎛⎫ ⎪⎝⎭=22212++2212112⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭=1 f (3)+f 13⎛⎫ ⎪⎝⎭=22313++2213113⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭=1. (2)由(1)可发现f (x )+f 1x ⎛⎫ ⎪⎝⎭=1.证明如下: f (x )+f 1x ⎛⎫ ⎪⎝⎭=221x x ++22111x x ⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭ =221x x ++211x +=2211x x ++=1,是定值. (3)由(2)知,f (x )+f 1x ⎛⎫ ⎪⎝⎭=1, 因为f (1)+f (1)=1,f (2)+f 12⎛⎫ ⎪⎝⎭=1, f (3)+f 13⎛⎫ ⎪⎝⎭=1, f (4)+f 14⎛⎫ ⎪⎝⎭=1, …f (2018)+f 12018⎛⎫ ⎪⎝⎭=1,所以2f (1)+f (2)+f 12⎛⎫ ⎪⎝⎭+f (3)+f 13⎛⎫ ⎪⎝⎭+…+f (2017)+f 12017⎛⎫ ⎪⎝⎭+f (2018)+f 12018⎛⎫ ⎪⎝⎭=2018.【点睛】本题考查函数值的求解,注意观察,属基础题.21.(1)22(1),0()(1),0x x F x x x ⎧+>=⎨-+<⎩;(2)(][)26∞∞-,-,+;(3)大于零,理由见解析. 【分析】(1)由(1)0f -=,得10a b -+=及函数()f x 的值域为[0)+∞,,得240a b -=, 联立求解可得;(2)由222(2)()124()k k g x x --=++-,当2][2x ∈-,时,()()g x f x kx =-是单调函数,则222k -≤-或222k -≥得解; (3)()f x 为偶函数,则2()1f x ax =+,不妨设m n >,则0n <,由0m n +>,得0m n >->,则22m n >所以2222()()()()(1)(1)()0F m F n f m f n am an a m n +=-+-+=->=得解【解析】(1)因为(1)0f -=,所以10a b -+= ①.又函数()f x 的值域为[0)+∞,,所以0a ≠. 由224()24b a b y a x a a-=++知2404a b a -=, 即240a b -=①.解①①,得12a b ==,. 所以22()21(1)f x x x x =++=+.所以22(1),0()(1),0x x F x x x ⎧+>=⎨-+<⎩; (2)由(1)得2222(2()())()21()124k k g x f x kx x k x x --=-=-=++-++ 因为当2][2x ∈-,时,()()g x f x kx =-是单调函数, 所以222k -≤-或222k -≥, 即2k ≤-或6k ≥,故实数k 的取值范围为(][)26∞∞-,-,+(3)大于零.理由如下:因为()f x 为偶函数,所以2()1f x ax =+,所以221,0()1,0ax x F x ax x ⎧+>=⎨--<⎩不妨设m n >,则0n <由0m n +>,得0m n >->所以22m n >又0a >,所以2222()()()()(1)(1)()0F m F n f m f n am an a m n +=-+-+=->=,所以()()F m F n +大于零.【点睛】本题考查函数性质的应用,涉及分段函数解析式、函数的值域,单调性,奇偶性,属于基础题.22.(1)()1,1--;(2)()f x 在区间()0,∞+上为增函数;(3)[]2,4-.【分析】(1)根据题意可知,若函数()f x 关于点(),a b 中心对称,则()()2f a x f a x b ++-=, 然后利用()61f x x x =-+得出()f a x +与()f a x -,代入上式求解; (2)因为函数y x =及函数61y x =-+在()0,∞+上递增,所以函数()61f x x x =-+在()0,∞+上递增; (3)根据题意可知,若对任意[]10,2x ∈,总存在[]21,5x ∈,使得()()12g x f x =,则只需使函数()g x 在[]10,2x ∈上的值域为()f x 在[]21,5x ∈上的值域的子集,然后分类讨论求解函数()g x 的值域与函数()f x 的值域,根据集合间的包含关求解参数m 的取值范围.【解析】解:(1)设函数()f x 图象的对称中心为(),a b ,则()()20f a x f a x b ++--=. 即()()662011x a x a b x a x a +-+-+--=++-++, 整理得()()()()22161a b x a b a a -=-+-+,于是()()()()21610a b a b a a -=-+-+=,解得1a b ==-.所以()f x 的对称中心为()1,1--;(2)函数()f x 在()0,∞+上为增函数;(3)由已知,()g x 值域为()f x 值域的子集.由(2)知()f x 在[]1,5上单增,所以()f x 的值域为[]2,4-.于是原问题转化为()g x 在[]0,2上的值域[]2.4A ⊆-.①当02m ≤,即0m ≤时,()g x 在[]0,1单增,注意到()2g x x mx m =-+的图象恒过对称中心()1,1,可知()g x 在(]1,2上亦单增,所以()g x 在[]0,2上单增,又()0g m =,()()2202g g m =-=-,所以[],2A m m =-.因为[][],22,4m m -⊆-,所以224m m ≥-⎧⎨-≤⎩,解得20m -≤≤. ①当012m <<,即02m <<时,()g x 在0,2m ⎛⎫ ⎪⎝⎭单减,,12m ⎛⎫ ⎪⎝⎭单增, 又()g x 过对称中心()1,1,所以()g x 在1,22m ⎛⎫- ⎪⎝⎭单增,2,22m ⎛⎤- ⎥⎝⎦单减; 此时()()min 2,,max 0,222m m A g g g g ⎛⎫⎧⎫⎧⎫⎛⎫⎛⎫=-⎨⎬⎨⎬ ⎪ ⎪ ⎪⎝⎭⎝⎭⎩⎭⎩⎭⎝⎭. 欲使[]2,4A ⊆-,只需()()222022224g g m m m g m ⎧=-=-≥-⎪⎨⎛⎫=-+≥- ⎪⎪⎝⎭⎩且()2042224224g m m m m g g m ⎧=≤⎪⎨⎛⎫⎛⎫-=-=-+≤ ⎪ ⎪⎪⎝⎭⎝⎭⎩解不等式得24m -≤,又02m <<,此时02m <<.①当12m ≥,即2m ≥时,()g x 在[]0,1单减,在(]1,2上亦单减, 由对称性,知()g x 在[]0,2上单减,于是[]2,A m m =-.因为[][]2,2,4m m -⊆-,所以224m m -≥-⎧⎨≤⎩,解得24m ≤≤. 综上,实数m 的取值范围为[]2,4-。
期末复习 《一次函数》常考题与易错题精选(50题)(解析版)
期末复习- 《一次函数》常考题与易错题精选(52题)一.常量与变量(共2小题)1.在圆锥体积公式中(其中,r表示圆锥底面半径,h表示圆锥的高),常量与变量分别是( )A.常量是,变量是V,hB.常量是,变量是h,rC.常量是,变量是V,h,rD.常量是,变量是V,h,π,r【分析】根据圆锥体积公式中(其中,r表示圆锥底面半径,h表示圆锥的高),即可得常量与变量.【解答】解:由圆锥体积公式中(其中,r表示圆锥底面半径,h表示圆锥的高),可知:常量是,变量是V,h,r.故选:C.【点评】本题考查了常量与变量、认识立体图形,解决本题的关键是掌握常量与变量的概念.2.小李驾车以70km/h的速度行驶时,他所走的路程s(km)与时间t(h)之间可用公式s=70t来表示,则下列说法正确的是( )A.数70和s,t都是变量B.s是常量,数70和t是变量C.数70是常量,s和t是变量D.t是常量,数70和s是变量【分析】根据常量与变量的定义判断.【解答】解:由题意得:70是常数,其值恒定不变,是常量,行驶过程中时间不断增加,t的值不断变化,是变量,路程随时间t的不合而变化,s也是变量,∴A,B,D均不合题意,C合题意.故选:C.【点评】本题考查常量与变量,理解题意,搞清变与不变是求解本题的关键.二.函数的概念(共2小题)3.下列各图象中,不能表示y是x的函数的是( )A.B.C.D.【分析】根据函数的概念:对于自变量x的每一个值,因变量y都有唯一的值与它对应,逐一判断即可解答.【解答】解:A、对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数,故A不符合题意;B、对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数,故B不符合题意;C、对于自变量x的每一个值,因变量y不是都有唯一的值与它对应,所以不能表示y是x的函数,故C符合题意;D、对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数,故D不符合题意;故选:C.【点评】本题考查了函数的概念,熟练掌握函数的概念是解题的关键.4.下列说法正确的是( )A.变量x,y满足,则y是x的函数B.变量x,y满足y2=x,则y是x的函数C.变量x,y满足|y|=x,则y是x的函数D.在中,常量是,r是自变量,V是r的函数【分析】根据函数的概念,对于自变量x的每一个值,y都有唯一的值与它对应,即可解答.【解答】解:A、变量x,y满足,对于自变量x的每一个值,y都有唯一的值与它对应,则y 是x的函数,故A符合题意;B、变量x,y满足y2=x,对于自变量x的每一个值,y都有两个值与它对应,则y不是x的函数,故B不符合题意;C、变量x,y满足|y|=x,对于自变量x的每一个值,y都有两个值与它对应,则y不是x的函数,故C不符合题意;D、在中,π是常量,r是自变量,对于自变量r的每一个值,V都有唯一的值与它对应,则V是r的函数,故D不符合题意,故选:A.【点评】本题考查了函数的概念,常量与变量,熟练掌握函数的概念是解题的关键.三.函数关系式(共3小题)5.物理学告诉我们,液体的压强只与液体的密度和深度有关,其公式为p=ρgh.已知水的密度为ρ=1×103kg/m3,g=9.8N/kg,水的压强p随水的深度h的变化而变化,则p与h之间满足的关系式为 p=9.8×103h .【分析】根据已知条件求出一次函数的系数,确定一次函数的解析式.【解答】解:∵ρ=1×103kg/m3,g=9.8N/kg,∴ρ×g=1×103×9.8=9.8×103,p=9.8×103h;故答案为:p=9.8×103h.【点评】考查一次函数解析式,关键掌握待定系数法求函数解析式.6.一艘轮船装载2800吨货物,写出平均卸货速度v(单位:吨/天)与卸货天数t之间的关系式为 v= .【分析】根据题中等量关系直接列出函数关系式.【解答】解:由题意得:2800=vt.∴v=.故答案为:v=.【点评】本题考查求函数关系式,理解题意,找到等量关系是求解本题的关键.7.如图,在矩形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y和x,求y关于x的函数解析式 y=x .【分析】根据组成圆柱后,底面圆的周长等于剩余长方形的长列出方程,再化成函数关系式即可.【解答】解:由题意得:=y﹣,∴y=,即y=x,故答案为:y=x.【点评】本题考查了函数关系式,展开图折叠成几何体,根据题目的已知条件并结合图形找到等量关系是解题的关键.四.函数自变量的取值范围(共3小题)8.函数y=﹣(x+1)0中自变量x的取值范围是( )A.x≥﹣2B.x>﹣2C.x>﹣2且x≠﹣1D.x≥﹣2且x≠﹣1【分析】根据二次根式(a≥0),以及a0=1(a≠0)可得x+2≥0且x+1≠0,然后进行计算即可解答.【解答】解:由题意得:x+2≥0且x+1≠0,∴x≥﹣2且x≠﹣1,故选:D.【点评】本题考查了函数自变量的取值范围,零指数幂,熟练掌握二次根式(a≥0),以及a0=1(a≠0)是解题的关键.9.在函数中,自变量x的取值范围是( )A.x≥﹣3B.x>﹣3C.x≥﹣3且x≠0D.x≠0且x≠﹣3【分析】根据分式有意义的条件和二次根式有意义的条件,可得,然后进行计算即可解答.【解答】解:根据题意可得:,解得:x≥﹣3且x≠0,故选:C.【点评】本题考查了函数自变量的取值范围,熟练掌握分式有意义的条件和二次根式有意义的条件是解题的关键.10.函数的自变量x的取值范围是( )A.x≥﹣3B.x>﹣3C.x≠0且x≠﹣3D.x≥﹣3且x≠0【分析】根据二次根式(a≥0)且分母不为0,可得x+3≥0且x≠0,然后进行计算即可解答.【解答】解:由题意得:x+3≥0且x≠0,解得:x≥﹣3且x≠0,故选:D.【点评】本题考查了函数自变量的取值范围,熟练掌握二次根式(a≥0)且分母不为0是解题的关键.五.函数值(共3小题)11.根据如图所示的程序计算函数y的值,若输入x的值是3,则输出y的值是﹣3.若输入x的值是﹣5,则输出y的值是( )A.5B.7C.13D.16【分析】根据题意把x=3,y=﹣3代入y=中,从而求出b的值,然后再把x=﹣5,b=﹣3代入y=﹣2x+b中,进行计算即可解答.【解答】解:由题意得:把x=3,y=﹣3代入y=中可得:﹣3=,解得:b=﹣3,把x=﹣5,b=﹣3代入y=﹣2x+b中可得:y=﹣2×(﹣5)+(﹣3)=10﹣3=7,故选:B.【点评】本题考查了函数值,根据题意把x=3,y=﹣3代入y=中求出b值是解题的关键.12.当x=﹣1时,函数y=的值是( )A.1B.﹣1C.D.【分析】把x=﹣1代入函数解析式求得相应的y值即可.【解答】解:当x=﹣1时,y===.故选:D.【点评】本题主要考查了函数值的求解,把自变量的值代入函数解析式计算即可,是基础题,比较简单.13.有下列四个函数:①y=x;②y=﹣x﹣5;③y=;④y=x2+4x﹣1.当自变量满足﹣4≤x≤﹣1时,函数值满足﹣4≤y≤﹣1的函数有( )A.①②B.①②③C.①③④D.①②③④【分析】根据一次函数的增减性,反比例函数的增减性以及二次函数的增减性分别作出判断即可得解.【解答】解:①y=x,x=﹣4时y取最小值﹣4,x=﹣1时,y取最大值﹣1,符合,②y=﹣x﹣5,x=﹣4时y取最大值﹣1,x=﹣1时y取最小值﹣4,符合,③y=,x=﹣4时y取最大值﹣1,x=﹣1时y取最小值﹣4,符合,④y=x2+4x﹣1=(x+2)2﹣5,对称轴是直线x=﹣2,x=﹣4时,y取最大值﹣1,x=﹣2时y取最小值﹣5,x=﹣1时y=﹣4,不是最小值,不符合.综上所述,符合条件的函数有①②③共3个.故选:B.【点评】本题考查了二次函数的性质,一次函数的性质,反比例函数的性质,熟练掌握各函数的增减性是解题的关键.六.函数的图象(共6小题)14.晚饭后彤彤和妈妈散步到小区旁边的公园,在公园中央的休息区聊了会天,然后一起跑步回家,下面能反映彤彤和妈妈离家的距离y与时间x的函数关系的大致图象是( )A.B.C.D.【分析】根据在每段中,离家的距离随时间的变化情况即可进行判断.【解答】解:图象应分三个阶段,第一阶段:散步到离家较远的公园,在这个阶段,离家的距离随时间的增大而增大;第二阶段:在公园中央的休息区聊了会天,这一阶段离家的距离不随时间的变化而改变.故D错误;第三阶段:跑步回家,这一阶段,离家的距离随时间的增大而减小,故A错误,并且这段的速度大于第一阶段的速度,则B错误.故选:C.【点评】本题考查了函数的图象,解题的关键是理解路程y的含义,理解直线的倾斜程度与速度的关系,属于中考常考题型.15.将一圆柱形小水杯固定在大圆柱形容器底面中央,小水杯中有部分水,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致是( )A.B.C.D.【分析】根据将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水,即可求出小水杯内水面的高度h(cm)与注水时间t(min)的函数图象.【解答】解:将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于0,则可以判断A、D一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小玻璃杯,因而这段时间h不变,当大杯中的水面与小杯水平时,开始向小杯中流水,h随t的增大而增大,当水注满小杯后,小杯内水面的高度h不再变化.故选:B.【点评】本题考查了函数的图象.正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.16.如图,图中折线表示张师傅在某天上班途中的情景:骑车离家行了一段路,由于车子出现故障,于是停下修车,修好车子后继续骑行,按时赶到单位.下列关于图中信息的说法中,错误的是( )A.张师傅修车用了15分钟B.张师傅的单位距他家2000米C.张师傅从家到单位共用了20分钟D.修车后的骑行速度是修车前的2倍【分析】根据题意和函数图象中的数据可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:由图可得,张师傅修车用了15﹣10=5(分钟),故选项A符合题意;张师傅上班处距他家2000米,故选项B不合题意;张师傅路上耗时20分钟,故选项C不合题意,修车后张师傅骑车速度是修车前的:=2(倍),故选项D不合题意,故选:A.【点评】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.17.某自行车厂甲、乙两名工人组装自行车,2小时后,甲的机器出现故障进行维修,乙加速组装.他们每人组装自行车y(辆)与生产时间t(小时)的关系如图所示.根据图象回答:(1)2小时后,乙每小时组装几辆自行车?当t为多少小时,乙组装自行车25辆?(2)甲维修好机器后,每小时组装几辆自行车?(3)甲维修好机器后,t的值为多少时,甲与乙组装的车辆一样多?【分析】(1)根据图象,用车辆数÷时间可得出每小时组装车辆;再根据车辆总数÷速度可得出时间;(2)根据图象,用车辆数÷时间可得出每小时组装车辆;(3)根据函数图象和图象中的数据可以求得甲乙对应的函数解析式,从而可以解答本题.【解答】解:(1)由图象可知:2小时后,乙每小时组装(40﹣4)÷(8﹣2)=6(辆)自行车,(25﹣4)÷6=3.5,∴t=3.5+2=5.5(小时).(2)甲维修好机器后,每小时组装(40﹣10)÷(7﹣5)=15辆.(3)设甲维修好机器后,经过x小时,甲与乙组装的车辆一样多.由题意可知,10+15x=4+6(3+x),10+15x=6x+22;解得:.此时,.【点评】本题考查一次函数的应用、函数图象,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.18.为迎接体质监测,小明和小军进行了1000米跑练习.如图是两人的路程s(米)与时间t(分钟)之间关系的图象,根据图象解答下列问题:(1)2分钟时,谁跑在前面?(2)谁先跑到终点?(3)小军的平均速度是多少?(4)起跑后两人第一次相遇时距离终点多少米?【分析】(1)由图象可直接得出结论.(2)根据图象可知,小明用的时间小,所以小明先跑到终点.(3)利用速度=路程÷时间,可得出小军的速度.(4)利用总路程﹣走过的路程=剩下的路程可得出结论.【解答】解:(1)由图象可知,2分钟时,小军跑在前面.(2)由图象可知,小明用时3.8分钟,小军用时4分钟,∴小明先跑到终点.(3)小军的平均速度为:1000÷4=250(米/分钟).∴小军的平均速度为:250米/分钟.(4)起跑后两人第一次相遇时距离终点:1000﹣250×3.4=150(米).∴起跑后两人第一次相遇时距离终点150米.【点评】本题考查函数图象的应用,借助函数图象表达题目中的信息,读懂图象是关键.注意图中的时间﹣路程的函数图象意义.19.甲、乙两人在笔直的公路AB上从起点A地以不同的速度匀速跑向终点B地,先到B地的人原地休息,已知A、B两地相距1500米,且甲比乙早出发,甲、乙两人之间的距离y(米)与甲出发的时间x(秒)的关系如图所示.(1)甲早出发 30 秒,乙出发时两人距离 75 米;(2)甲的速度是 2.5 米/秒,甲从A地跑到B地共需 600 秒;(3)乙出发 150 秒时追上了甲;(4)甲出发 420或552 秒时,两人相距120米.【分析】(1)根据图象解答即可;(2)根据题意和图象中的数据即可求出甲的速度,进而求出甲从A地跑到B地共需要的时间;(3)根据题意可知,当y=0时,乙追上甲,由图象可得出结果;(4)根据题意列方程解答即可.【解答】解:(1)由图象可知,甲早出发30秒,乙出发时两人距离75米;故答案为:30;75.(2)根据题意得,甲的速度为:75÷30=2.5米/秒,1500÷2.5=600(秒).即甲从A地跑到B地共需600秒.故答案为:2.5;600.(3)180﹣30=150(秒),∴乙出发150秒时追上了甲.故答案为:150;(4)设甲出发x秒时,两人相距120米,根据题意得:3(x﹣30)﹣2.5x=120或2.5x=1500﹣120,解得x=420或552.即甲出发420秒或552秒时,两人相距120米.故答案为:420或552.【点评】本题考查函数图象的应用,解答本题的关键是明确题意,利用数形结合的思想和时间﹣距离图象进行解答.七.动点问题的函数图象(共3小题)20.小明在一个半圆形的花园的周边散步,如图1,小明从圆心O出发,按图中箭头所示的方向,依次匀速走完下列三条线路:(1)线段OA;(2)半圆弧AB;(3)线段BO后,回到出发点.小明离出发点的距离S(小明所在位置与O点之间线段的长度)与时间t之间的图象如图2所示,请据图回答下列问题(圆周率π的值取3):(1)请直接写出:花园的半径是 100 米,小明的速度是 50 米/分,a= 8 ;(2)若沿途只有一处小明遇到了一位同学停下来交谈了2分钟,并且小明在遇到同学的前后,始终保持速度不变,请你求出:①小明遇到同学的地方离出发点的距离;②小明返回起点O的时间.【分析】(1)由t在2﹣a变化时,S不变可知,半径为100米,速度为50米/分,再求出在半圆上的运动时间即可;(2)①由(1)根据图象,第11分时,小明继续行走,则小明之前行走9分,可求出已经行走路北,用全程路程减去已走路程即可;②可求全程时间为500用时10分钟,再加上停留2分钟即可.【解答】解:(1)由图象可知,花园半径为100米,小明速度为100÷2=50米/分,半圆弧长为100π=300米,则a=2+=8故答案为:100,50,8.(2)①由已知,第11分时小明继续前进,则行进时间为9分钟,路程为450米全程长100+300+100=500米,则小明离出发点距离为50米;②小明返回起点O的时间为分【点评】本题为动点问题的函数图象探究题,考查了通过函数图象探究图象代表的实际意义,运用数形结合的数学思想.21.如图①所示,在△ABC中,AD是三角形的高,且AD=6cm,E是一个动点,由B向C移动,其速度与时间的变化关系如图②所示,已知BC=8cm(1)由图②,E点运动的时间为 2 s,速度为 3 cm/s(2)求当E点在运动过程中△ABE的面积y与运动时间x之间的关系式;(3)当E点停止后,求△ABE的面积.【分析】(1)根据图象解答即可;(2)根据三角形的面积公式,可得答案;(3)根据三角形的面积公式,可得答案.【解答】解:(1)根据题意和图象,可得E点运动的时间为2s,速度为3cm/s.故答案为:2;3;(2)根据题意得y=×BE×AD==9x,即y=9x(0<x≤2);(3)当x=2时,y=9×2=18.故△ABE的面积为18cm2.【点评】本题主要考查了动点问题的函数图象,涉及求函数解析式,求函数值问题,能读懂函数图象是解决问题的关键.22.已知动点P以2cm/s的速度沿图1所示的边框从B﹣C﹣D﹣E﹣F﹣A的路径运动,记△ABP的面积为S (cm2),S与运动时间t(s)的关系如图2所示,若AB=6cm,请回答下列问题:(1)图1中BC= 8 cm,CD= 4 cm,DE= 6 cm(2)求出图1中边框所围成图形的面积;(3)求图2中m、n的值;(4)分别求出当点P在线段BC和DE上运动时S与t的关系式,并写出t的取值范围.【分析】(1)因为点P速度为2,所以根据右侧的时间可以求出线段BC,CD和DE的长度.(2)对多边形采取切割的方法求面积,将多边形切割为两个长方形即可.(3)m代表的是点P在C时对应图形面积,n代表的是点P运动到A时对应的时间,由图象都可以求出.(4)表示出点P到AB的水平距离作为高,以AB为底求出面积.【解答】解:(1)由右侧图象可知,点P在BC线段运动4秒,BC=8,点P在CD线段运动2秒,CD =4cm,点P在DE线段运动3秒,DE=6cm,(2)∵AB=6cm,CD=4cm,∴EF=2cm,∴图形的面积可以看作是两个长方形面积之和6×8+6×2=60(cm2)(3)当点P到C时,△ABP的面积为24(cm2)∴m=24BC+CD+DE+EF+AF=34cm∴n=34×=17cm(4)当点P在BC上运动时0≤t≤4S==6t(cm2)当点P在DE上运动时6≤t≤9S==6t﹣12(cm2)【点评】本题考查了数形结合的数学思维,通过图象找出对应图形的线段长度,很好的考查了学生分析问题和看图的能力.八.一次函数的定义(共2小题)23.已知函数y=(m+1)x2﹣|m|+4,y是x的一次函数,则m的值是( )A.1B.﹣1C.1或﹣1D.任意实数【分析】根据一次函数的定义:形如y=kx+b(k,b为常数且k≠0),可得2﹣|m|=1且m+1≠0,然后进行计算即可解答.【解答】解:由题意得:2﹣|m|=1且m+1≠0,∴m=±1且m≠﹣1,∴m=1,故选:A.【点评】本题考查了一次函数的定义,熟练掌握一次函数的定义是解题的关键.24.已知函数y=(m﹣2)+1是一次函数,则m的值为( )A.±B.C.±2D.﹣2【分析】根据一次函数的定义,自变量的次数为1列方程求出m的值,再根据比例系数k≠0求解得到m ≠2,从而得解.【解答】解:由题意得,m2﹣3=1且m﹣2≠0,解得m=±2且m≠2,所以m=﹣2.故选:D.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.九.正比例函数的定义(共2小题)25.若y关于x的函数y=(a﹣2)x+b是正比例函数,则a,b应满足的条件是( )A.a≠2B.b=0C.a=2且b=0D.a≠2且b=0【分析】直接利用正比例函数的定义分析求出答案.【解答】解:∵y=(a﹣2)x+b是y关于x的正比例函数,∴b=0,a﹣2≠0,解得:b=0,a≠2.故选:D.【点评】此题主要考查了正比例函数的定义,正确把握正比例函数一般形式是解题关键.26.若函数y=(k﹣2)x+2k+1是正比例函数,则k的值是( )A.k≠2B.k=2C.k=﹣D.k=﹣2【分析】根据正比例函数的定义得出k﹣2≠0且2k+1=0,再求出k即可.【解答】解:∵函数y=(k﹣2)x+2k+1是正比例函数,∴k﹣2≠0且2k+1=0,解得:k=﹣,故选:C.【点评】本题考查了正比例函数的定义,能熟记正比例函数的定义是解此题的关键,注意:形如y=kx+b (k、b为常数,k≠0)的函数,叫一次函数,当b=0时,函数y=kx+b叫正比例函数.一十.一次函数的图象(共3小题)27.在平面直角坐标系中,已知m为常数,且m≠2,m≠3,则关于x的一次函数y=(m﹣3)x+4﹣2m 与y=(4﹣2m)x+m﹣3的图象可能是( )A.B.C.D.【分析】根据一次函数的图象和性质判断即可.【解答】解:当m﹣3>0,4﹣2m<0时,一次函数y=(m﹣3)x+4﹣2m图象都过第一、三、四象限,y=(4﹣2m)x+m﹣3的图象过第一、二、四象限,无选项符合题意;当m﹣3<0,4﹣2m<0时,一次函数y=(m﹣3)x+4﹣2m与y=(4﹣2m)x+m﹣3的图象都过第二、三、四象限,选项D符合题意;当m﹣3<0,4﹣2m>0时,一次函数y=(m﹣3)x+4﹣2m图象都过第一、二、四象限,y=(4﹣2m)x+m﹣3的图象过第一、三、四象限,无选项符合题意.故选:D.【点评】本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).28.在同一平面直角坐标系中,一次函数y=kx+b(k≠0)与y=bx﹣k(b≠0)的大致图象可以是( )A.B.C.D.【分析】根据一次函数经过的象限与系数的关系进行求解即可.【解答】解;当k>0,b>0时,一次函数y=kx+b经过第一、二、三象限,一次函数y=bx﹣k经过第一、三、四象限;当k>0,b<0时,一次函数y=kx+b经过第一、三、四象限,一次函数y=bx﹣k经过第二、三、四象限;当k<0,b>0时,一次函数y=kx+b经过第一、二、四象限,一次函数y=bx﹣k经过第一、二、三象限;当k<0,b<0时,一次函数y=kx+b经过第二、三、四象限,一次函数y=bx﹣k经过第一、二、四象限;∴四个选项只有C符合题意.故选:C.【点评】本题主要考查了一次函数图象与系数的关系,熟知对于一次函数y=kx+b,当k>0,b>0时,一次函数y=kx+b经过第一、二、三象限,当k>0,b<0时,一次函数y=kx+b经过第一、三、四象限,当k<0,b>0时,一次函数y=kx+b经过第一、二、四象限,当k<0,b<0时,一次函数y=kx+b经过第二、三、四象限是解题的关键.29.在同一平面直角坐标系中,一次函数y=ax+a2与y=a2x+a的图象可能是( )A.B.C.D.【分析】利用一次函数的性质进行判断.【解答】解:∵y=ax+a2与y=a2x+a,∴x=1时,两函数的值都是a2+a,∴两直线的交点的横坐标为1,若a>0,则一次函数y=ax+a2与y=a2x+a都是增函数,且都交y轴的正半轴,图象都经过第一、二、三象限;若a<0,则一次函数y=ax+a2经过第一、二、四象限,y=a2x+a经过第一、三、四象限,且两直线的交点的横坐标为1;故选:D.【点评】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0时,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0时,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.一十一.一次函数的性质(共4小题)30.若一次函数y=(a﹣2)x﹣b的图象中y值随x值的增大而增大,则a的值可以是( )A.4B.2C.﹣2D.﹣6【分析】由一次函数y=(a﹣2)x﹣b的图象中y值随x值的增大而增大,可得出a﹣2>0,解之即可得出a的取值范围,再对照四个选项即可得出结论.【解答】解:∵一次函数y=(a﹣2)x﹣b的图象中y值随x值的增大而增大,∴a﹣2>0,∴a>2.故选:A.【点评】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.31.若点A(﹣3,a)和点B(4,b)都在直线y=﹣2x+m上,则a与b的大小关系是( )A.a>b B.a<bC.a=b D.与m的值有关【分析】由k=﹣2<0,利用一次函数的性质可得出y随x的增大而减小,结合﹣3<4,即可求出a>b.【解答】解:∵k=﹣2<0,∴y随x的增大而减小,又∵点A(﹣3,a)和点B(4,b)都在直线y=﹣2x+m上,且﹣3<4,∴a>b.故选:A.【点评】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.32.直线y=﹣3x+2图象不经过下列哪个象限( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.【解答】解:∵解析式y=﹣3x+2中,k=﹣3<0,b=2>0,∴图象过第一、二、四象限,∴图象不经过第三象限.故选:C.【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,函数图象经过第二、四象限,当b>0时,函数图象与y轴相交于正半轴.33.若a、b为实数,且,则直线y=ax+b不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】依据,即可得到a=,b=﹣5,进而得到直线y=x﹣5不经过的象限.【解答】解:∵,∴,解得a=,∴b=﹣5,∴直线y=x﹣5经过第一,三,四象限,∴不经过的象限是第二象限,故选:B.【点评】本题主要考查了一次函数的性质,解决问题的关键是掌握二次根式中被开方数的取值范围:二次根式中的被开方数是非负数.一十二.一次函数图象与系数的关系(共2小题)34.已知正比例函数y=(2m+1)x,y随x的增大而减小,则m的取值范围是( )A.m>﹣B.m C.m D.m【分析】根据正比例函数图象与系数的关系列出关于m的不等式2m+1<0,然后解不等式即可.【解答】解:∵正比例函数y=(2m+1)x中,y的值随自变量x的值增大而减小,∴2m+1<0,解得m<﹣,故选:B.【点评】本题主要考查正比例函数图象在坐标平面内的位置与k的关系.解答本题注意理解:直线y=kx 所在的位置与k的符号有直接的关系.k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x的增大而减小.35.两条直线y=ax+b与y=bx+a在同一直角坐标系中的图象位置可能是( )A.B.C.D.【分析】根据一次函数的图象与系数的关系,逐一判断即可解答.【解答】解:A、当经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,∴直线y=bx+a应该经过第一、二、三象限,故A不符合题意;B、当经过第一、三、四象限的直线为y=ax+b,则a>0,b<0,∴直线y=bx+a应该经过第一、二、四象限,故B符合题意;C、当经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,∴直线y=bx+a应该经过第一、二、三象限,故C不符合题意;D、当经过第一、三、四象限的直线为y=ax+b,则a>0,b<0,∴直线y=bx+a应该经过第一、二、四象限,故D不符合题意;故选:B.【点评】本题考查了一次函数的图象与系数,熟练掌握一次函数的图象与系数的关系是解题的关键.一十三.一次函数图象上点的坐标特征(共2小题)36.一次函数y=2x+3的图象与y轴的交点是( )A.(2,3)B.(0,2)C.(0,3)D.(﹣,0)【分析】代入x=0,求出y值,进而可得出一次函数y=2x+3的图象与y轴的交点坐标.【解答】解:当x=0时,y=2×0+3=3,∴一次函数y=2x+3的图象与y轴的交点是(0,3).故选:C.【点评】本题考查了一次函数图象上点的坐标特征,牢记“直线上任意一点的坐标都满足函数关系式y=kx+b”是解题的关键.37.若点(﹣3,y1)、(2,y2)都在函数y=﹣4x+b的图象上,则y1与y2的大小关系( )。
函数期末复习1
求函数解析式 的方法
求函数解析式的方法 分别求下列条件下的f(x)
()已知 ( x x ) x x , 1 f 求f ( x ) 配凑法
2
1
2
(2)若 f ( x 1) x 2 x , 求f (x).
1 x (3)若 f ( 2) , 求f (x). x 1 x 换元法
一、已知 f ( x) 的定义域,求 f g ( x) 的定义域
其解法是:若 f ( x) 的定义域为 a ≤ x ≤ b ,则在
f g ( x) 中, a ≤ g ( x ) ≤ b ,从中解得 x 的取值范围即为 f g ( x) 的定义域.
5 例1 已知函数 f ( x) 的定义域为 1, ,求 f (3 x 5) 的
七、利用函数的单调性
主要适用于 (1) y=ax+b+ cx+d (ac>0)形式的函数; (2)利用 k 基本不等式不能求得 y=x+ x (k>0)的最值(等号不成立)时. 例7 求下列函数的值域: (1)y= 1-2x - x ; [- 1 , +∞) 2 4 [5, +∞) (2)y=x+ x (0<x≤1); (3)y= x+3 - x . (0, 3 ]
评注: 把 f(x), f( xx1 ), f( 11x ) 都看作“未知数”, 把已知条 1 件化为方程组的形式解得 f(x). 又如: 已知 af(x)+bf( )=cx, 其 x 中, |a|≠|b|, 求 f(x). c f(x)= 2 2 (ax- b ). x a -b 四、递推求和法
定义域.
二、已知 f g ( x) 的定义域,求 f ( x) 的定义域 其解法是:若 f g ( x) 的定义域为 m ≤ x ≤ n ,则
第16讲、期末复习3:一次函数 S版
()()()321000.0k ⎪⎩⎪⎨⎧<=><b b b ()()()32100.0k ⎪⎩⎪⎨⎧<=>>b b b 一次函数一、知识框架二、知识概念1.一次函数:若两个变量x,y 间的关系式可以表示成y=kx+b(k≠0)的形式,则称y 是x 的一次函数(x 为自变量,y 为因变量)。
特别地,当b=0时,称y 是x 的正比例函数。
2.正比例函数一般式:y=kx (k≠0),其图象是经过原点(0,0)的一条直线。
当k>0时,直线y=kx 经过第一、三象限,y 随x 的增大而增大,当k<0时,直线y=kx 经过第二、四象限,y 随x 的增大而减小,在一次函数y=kx+b 中:当k>0时,y 随x 的增大而增大;当k<0时,y 随x 的增大而减小。
3.已知两点坐标求函数解析式的方法叫待定系数法(1)(2)(3)(1)(3)(2)三、考点1.小明和小华是同班同学,也是邻居,某日早晨,小明7:00先出发去学校,走了一段后,在途中停下吃了早晨,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s(米)和小明所用时间t(分钟)的关系图.则下列说法中正确的个数是()①小明吃早晨用时5分钟;②小华到学校的平均速度是240米/分;③小明跑步的平均速度是100米/分;④小华到学校的时间是7:05.A.1B.2C.3D.42.一次函数y=kx﹣k,若y随着x的增大而减小,则该函数的图象经过()A.一、二、三B.一、二、四C.二、三、四D.一、三、四3.如图1,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C停止,它们运动的速度都是1cm/s.设P、Q出发ts时,△BPQ 的面积为ycm2,已知y与t的函数关系如图2所示(其中曲线OM为抛物线的一部分,其余各部分均为线段)当点P在ED上运动时,连接QD,若QD平分∠PQC,则t的值为.4.若一次函数y=(1﹣2m)x+m的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时,y1<y2,且与y轴相交于正半轴,则m的取值范围是.5.如图,已知函数y=2x+b与函数y=kx﹣6的图象交于点P,则不等式kx﹣6<2x+b的解集是.6.已知直线y=﹣3x+b与直线y=﹣kx+1在同一坐标系中交于点 t, t ,则关于x的方程﹣3x+b=﹣kx+1的解为x=.7.已知y﹣2与x成正比例,当x=1时,y=6,求y与x的函数表达式.8.已知一次函数的图象经过A(﹣1,4),B(1,﹣2)两点.(1)求该一次函数的解析式;(2)直接写出函数图象与两坐标轴的交点坐标.9.已知一次函数y1=﹣2x+4,完成下列问题:(1)画出此函数的图象;(2)将函数y1的图象向下平移2个单位,得到函数y2的图象,直接写出函数y2的表达式;(3)当x时,y2>0.10.在坐标系中作出函数y=2x+6的图象,利用图象解答下列问题:(1)求方程2x+6=0的解;(2)求不等式2x+6>4的解集;(3)若﹣2≤y≤2,求x的取值范围.11.在如图所示的平面直角坐标系中,已知一次函数y=x+3的图象与x轴交于点A,与y轴交于点B.(1)写出A点和B点的坐标;(2)在平面直角坐标系中画出一次函数=x+3的图象;(3)若C点的坐标为C(3,0),判断△ABC的形状,并说明理由.12.如图,函数 t t h的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M 的横坐标为2,在x轴上有一点P(a,0)(a>2),过点P作x轴的垂线,分别交函数 t t h 和y=x的图象于点C、D.(1)求点A的坐标;(2)若OB=CD,求a的值;(3)直接写出不等式组 t h< 的解集.13.某教学网站策划了A,B两种上网学习的月收费方式收费方式月使用费/元月包时上网时间/h月超时费/(元/h)A7250.6B10503设每月的上网时间为xh(Ι)根据题意,填写下表:收费方式月使用费/元月上网时间/h月超时费/元月总费用/元A745B1045(Ⅱ)设A,B两种方式的收费金额分别为y1元和y2元,分别写出y1,y2与x的函数解析式;(Ⅲ)当x>60时,你认为哪种收费方式省钱?请说明理由.14.在一条笔直的公路上依次有A、B、C三地,自行车爱好者甲、乙两人分别从A、B两地同时出发,沿直线匀速骑向C地.已知甲的速度为20km/h,如图所示,甲、乙两人与A地的距离y(km)与行驶时间x(h)的函数图象分别为线段OD、EF.(1)A、B两地的距离为km.(2)求线段EF所在直线对应的函数关系式.(3)若两人在出发时都配备了通话距离为3km的对讲机,求甲、乙两人均在骑行过程中可以用对讲机通话的时间段.15.无锡阳山盛产水蜜桃,上市期间,一外地运销客户安排15辆汽车装运A、B、C三种不同品种的水蜜桃120吨到外地销售,按计划15辆汽车都要装满且每辆汽车只能装同一种品种的水蜜桃,每种水蜜桃所用车辆都不少于3辆.(1)设装运A种水蜜桃的车辆数为x辆,装运B种水蜜桃的车辆数为y辆,根据如表提供的信息,求出y与x之间的函数关系式;水蜜桃品种A B C每辆汽车运载量(吨)1086每吨水蜜桃获利(元)80012001000(2)在(1)条件下,求出该函数自变量x的取值范围,车辆的安排方案共有几种?请写出每种安排方案;(3)为了减少水蜜桃积压,无锡市制定出台了促进水蜜桃销售的优惠政策,在外地运销客户原有获利不变的情况下,政府对其中A、C两种水蜜桃按每吨m元(200≤m≤500)的标准实行运费补贴.若要使该外地运销客户所获利润W(元)最大,应采用哪种车辆安排方案?16.甲、乙两个工程队共同开凿一条隧道,甲队按一定的工作效率先施工,一段时间后,乙队从隧道的另一端按一定的工作效率加入施工,中途乙队调离一部分工人去完成其他任务,工作效率降低.当隧道气打通时,甲队工作了40天,设甲,乙两队各自开凿隧道的长度为y(米),甲队的工作时间为x(天),y与x之间的函数图象如图所示.(1)求甲队的工作效率.(2)求乙队调离一部分工人后y与x之间的函数关系式(3)求这条隧道的总长度.17.如图1,在某条公路上有A、B、C三个车站,一辆汽车从A站以速度v1匀速驶向B站,到达B站后不停留,又以速度v2匀速驶向C站,汽车行驶路程y(千米)与行驶时间x(小时)之间的函数图象如图2所示.(1)当汽车在A、B两站之间匀速行驶时,求y与x之间的函数关系式及自变量的取值范围;(2)当汽车的行驶路程为360千米时,求此时的行驶时间x的值;(3)若汽车在某一段路程内行驶了90千米用时50分钟,求行驶完这段路程时x的值.18.某省A,B两市遭受严重洪涝灾害,2万人被迫转移,邻近县市C,D获知A,B两市分别急需救灾物资250吨和350吨的消息后,决定调运物资支援灾区,已知C市有救灾物资280吨,D市有救灾物资320吨,现将这些救灾物资全部调往A,B两市.已知从C市运往A,B两市的费用分别为每吨20元和25元,从D市运往A,B两市的费用分别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)请填写下表.A市(吨)B市(吨)合计(吨)C市280D市x320总计(吨)250350600(2)设C,D两市的总运费为y元,求y与x之间的函数表达式,并写出自变量x的取值范围.(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少a元(a>0),其余路线运费不变.若C,D两市的总运费的最小值不小于12360元,求a的取值范围.19.甲骑电动车、乙骑摩托车都从M地出发,沿一条笔直的公路匀速前往N地,甲先出发一段时间后乙再出发,甲、乙两人到达N地后均停止骑行.已知M、N两地相距 地相t km,设甲行驶的时间为x(h),甲、乙两人之间的距离为y(km),表示y与x函数关系的部分图象如图所示.请你解决以下问题:(1)求线段BC所在直线的函数表达式;(2)求点A的坐标,并说明点A的实际意义;(3)根据题目信息补全函数图象.(须标明相关数据)20.小王准备给家中长为3米的正方形ABCD电视墙铺设大理石,按图中所示的方案分成9块区域分别铺设甲,乙,丙三种大理石(正方形EFGH是由四块全等的直角三角形围成),(1)已知甲大理石的单价为150元/m2,乙大理石的单价为200元/m2,丙大理石的单价为300元/m2,整个电视墙大理石总价为1700元.①当铺设甲,乙大理石区域面积相等时,求铺设丙大理石区域的面积.②设铺设甲,乙大理石区域面积分别为xm2,ym2,当丙的面积不低于1m2时,求出y关于x的函数关系式,并写出y的最大值.(2)若要求AE:AF=1:2,EQ:FQ=1:3,甲,乙大理石单价之和为300元/m2,丙大理石的单价不低于300元/m2,铺设三种大理石总价为1620元,求甲的单价取值范围.21.请你用学习“一次函数”时积累的经验和方法研究函数y=|x|的图象和性质,并解决问题.(1)完成下列步骤,画出函数y=|x|的图象;①列表、填空;x…﹣3﹣2﹣10123…y…31123…②描点:③连线(2)观察图象,当x时,y随x的增大而增大;(3)结合图象,不等式|x|<x+2的解集为.22.在平面直角坐标系xOy中有一点,过该点分别作x轴和y轴的垂线,垂足分别是A、B,若由该点、原点O以及两个垂足所组成的长方形的周长与面积的数值相等,则我们把该点叫做平面直角坐标系中的平衡点.(1)请判断下列各点中是平面直角坐标系中的平衡点的是;(填序号)①A(1,2)②B(﹣4,4)(2)若在第一象限中有一个平衡点N(4,m)恰好在一次函数y=﹣x+b(b为常数)的图象上.①求m、b的值;②一次函数y=﹣x+b(b为常数)与y轴交于点C,问:在这函数图象上,是否存在点M.使S△OMC,若存在,请直接写出点M的坐标;若不存在,请说明理由.=3S△ONC(3)经过点P(0,﹣2),且平行于x轴的直线上有平衡点吗?若有,请求出平衡点的坐标;若没有,说明理由.23.如图,正方形ABCD的边长为6cm,动点P从A点出发,在正方形的边上由A→B→C→D运动,设运动的时间为t(s),△APD的面积为S(cm2),S与t的函数图象如图所示(1)求点P在BC上运动的时间范围;(2)当t为何值时,△APD的面积为10cm2.24.如图1,在直角梯形ABCD中,动点P从B点出发,沿B→C→D→A匀速运动,设点P运动的路程为x,△ABP的面积为y,图象如图2所示.(1)在这个变化中,自变量、因变量分别是、;(2)当点P运动的路程x=4时,△ABP的面积为y=;(3)求AB的长和梯形ABCD的面积.25.如图,在平面直角坐标系中,边长为2的正方形ABCD在第一象限内,AD∥y轴,点A的坐标为(5,3),已知直线l:y t x﹣2.(1)将直线l向上平移m个单位,使平移后的直线恰好经过点A,求m的值;(2)在(1)的条件下,平移后的直线与正方形的边长BC交于点E,求△ABE的面积.26.如图,正方形ABCD中,点A在x轴上,点D在y轴正半轴上,点B和点C都在第一象限,已知点A 的坐标为(3,0),正方形ABCD的面积为25.(1)填空:点D的坐标为,点B的坐标为,点C的坐标为;(2)连接OB、OC,求△OBC的面积;(3)已知直线y=kx﹣(k+1)(k≠0).①若该直线将正方形ABCD分成面积相等的两部分,求k的值;②若点P是该直线上的任意一点,且 ,求此直线解析式.27.点O为平面直角坐标系的坐标原点,直线y t t x+2与x轴相交于点A,与y轴相交于点B.(1)求点A,点B的坐标;(2)若∠BAO=∠AOC,求直线OC的函数表达式;(3)点D是直线x=2上的一点,把线段BD绕点D旋转90°,点B的对应点为点E.若点E恰好落在直线AB上,则称这样的点D为“好点”,求出所有“好点”D的坐标.28.如图,直线y t x+3与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.(1)求直线BC的函数表达式;(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q,连接BM.①若∠MBC=90°,求点P的坐标;②若△PQB的面积为 ,请直接写出点M的坐标.29.如图,直线y=kx+b与x轴,y轴分别交于A,B两点,且经过点(4,b+3).(1)求k的值;(2)若AB=OB+2,①求b的值;②点M为x轴上一动点,点N为坐标平面内另一点.若以A,B,M,N为顶点的四边形是菱形,请直接写出所有符合条件的点N的坐标.30.如图,在平面直角坐标系中,过点A(0,6)的直线AB与直线OC相交于点C(2,4)动点P沿路线O→C→B运动.(1)求直线AB的解析式;(2)当△OPB的面积是△OBC的面积的 时,求出这时点P的坐标;(3)是否存在点P,使△OBP是直角三角形?若存在,直接写出点P的坐标,若不存在,请说明理由.。
高等数学期末复习题
一、 选择题1. 函数112-=x y 的定义域是( ) A .(-1,1)B .[-1,1]C .(,1][1,)-∞-⋃+∞D .(,1)(1,)-∞-⋃+∞ 2. 函数1()ln(2)f x x =-的定义域是( ) A.(2,)+∞ B.(3,)+∞ C.(2,3)(3,)+∞ D.(,2)(2,)-∞+∞3.函数13lg(2)y x x =+++的定义域是( ) A.(3,2)(1,)--⋃-+∞ B.(2,1)(1,)--⋃-+∞C. (3,1)(1,)--⋃-+∞D.(2,)-+∞4.设⎪⎪⎩⎪⎪⎨⎧>≤≤---<+=1,011,11,21)(2x x x x x x f ,则)2(-f = ( )A .23- B .3- C .0 D .25 5. 若0lim x x → f (x )存在, 则f (x )在点x 0是( ) A . 一定有定义 B .一定没有定义C .可以有定义, 也可以没有定义D .以上都不对6. 极限223712lim 43x x x x x →-+-+=( )。
A .1 B . 12- C .12D .1- 7. 极限2201lim 22x x x x x →-++-= ( )A. 21B. 1C.0D. 12- 8. 311lim 1x x x →-=-( ) A.1 B.2 C.3 D.49.极限=-++-→221lim 221x x x x x ( ) A. 21B. 1 C .0D .∞ 10.函数11)(2--=x x x f ,当1→x 时的极是( )A.2-B. 2C. ∞D.极限不存在 11.函数21()1x f x x -=+,当1x →-时的极限( )A .2B . 2-C . ∞D .012.下列各式中,运算正确的是( ) A.0lim 0sin x xx →= B.sin lim 1x xx →∞= C.lim 0sin x xx →∞= D.0lim 1sin x xx →=13. 下列各式中正确的是( )A .0sin lim 0=→x xx B .1sin lim =∞→x xxC .0sin lim 1=→x xx D .1sin lim 0=→x xx14. 设0sin lim 7x axx →= 时,则a 的值是( )A. 17 B.1 C.5 D.715.函数x xx x f sin )(+=,当∞→x 时的极限( )A .0B . ∞C . -1D .116.函数22x+1x<0f(x)=x +a x 0⎧⎨≥⎩在x=0处连续,则a 的值是( ) A .3 B .2 C .1 D .017.函数22x+3x<0f(x)=3x +a x 0⎧⎨≥⎩在x=0处连续,则a 的值是( ) A. 3 B. 2 C. 1 D. 018. 函数y=ln (2 - x - x 2)的连续区间为( )A .(-1,2)B .(-2,1)C .(- ∞,1)∪(- ∞,1)D .(- ∞,-2)∪(1,+∞)19.下列导数计算正确的是( )A.x x e e 22sin sin )(='B.()2112ln ln -='-x x C .22211(arcsin )()x x '=- D .x x 2sin )(sin 2='20.下列导数计算正确的是( )A.sin sin ()x x e e '=B.21(2log )2ln 2ln 2x x x x '+=+C.1()1x x x '+=+D.211)2ln (ln +='+x x 21.设ln y x x =+,则dy dx=( ) A.1x x + B.1x x + C.1x x +- D.1x x-+ 22. 设y =x -2,则='y ( )A .x -2ln2B . x 12--xC .-x 12--xD .-x -2ln223设()y f x =-,则y '=( )A.()f x 'B.()f x '-C.()f x '-D.()f x '--24.设2()43f x x =-,则()1f '等于( )A.0B.-6C.-3D.325. 设函数在点x 0可导, 且f '(x 0) >0, 则曲线y = f (x )在点(x 0, f (x 0))处的切线的倾斜角是( )A .00B .锐角C .900D .钝角26.设函数在点0x 可导,且0()f x '<0,则曲线()y f x =在点00(,())x f x 处的切线的倾斜角是( )A .0B .锐角C .钝角D .9027. 设函数在点0x 可导,且3)(0-='x f ,则曲线)(x f y =在点0x x =处的切线的倾斜角是( ).A .0°B .90°C .锐角D .钝角28.曲线32y x x =+-在点(1,0)处的切线方程为( )A.2(1)y x =-B.4(1)y x =-C.41y x =-D.3(1)y x =-29.曲线y = ln x 上某点的切线平行于直线y = 2x -3, 该点的坐标是 ( )A .(2, ln21) B .(2,-ln 21) C .(21,-ln2) D .(21,ln2) 30.下列说法错误的是( ) A .可导一定连续 B .不可导的点不一定没有切线C .不可导的点一定不连续D .不连续的点一定不可导31.函数f (x )在点 x 0连续是函数在该点可导的( )A .充分条件但不是必要条件B .必要条件但不是充分条件C .充分必要条件D .既不是充分条件, 也不是必要条件32.||x y =在0x =处( )A.连续不可导B.可导不连续C.可导且连续D.既不连续也不可导33.2(1)y x =-在1x =处( )A.连续B.不连续C.不可导D.既不连续也不可导34.已知函数f (x )=,0,10,12⎩⎨⎧>+≤-x x x x 则在x =0处( ) A .间断 B .连续 C .f '(0) =-1 D .f '(0) =135. 设f (x )可微,则d(e f (x ) ) =( )A .f '(x )d xB .e f (x )d xC .f '(x ) e f (x )d xD .f '(x ) d(e f (x ) )36.半径为R 的金属圆片,加热后半径伸长了dR ,则面积S 的微分dS 是( )A .RdR πB .RdR π2C .dR πD .dR π237. 函数)1ln()(x x x f +-=的单调减少区间是( )A.),0(+∞B.)0,(-∞C.(0,1)D.(-1,0)38. 函数x x x f -+=)1ln()(的单调减少区间是( )A .),0(+∞B .)0,(-∞C .(0,1)D .(-1,0)39.函数()y f x =在0x x =处连续,且取得极值,则有( )A.0()0f x '=B.0()0f x ''<C.00()0()f x f x ''=或者不存在D.0()f x '不存在40. 若()00f x '=,则0x 是函数()f x 的( )A.极值点B.最值点C.驻点D.非极值点41. 函数()y f x =在0x x =处取得极值,则有( )A .0()0f x '=B .00()0()f x f x ''=或者不存在C .0()0f x ''<D .0()f x '不存在42. 函数x e x x f -=)(的极值是( )A . 0B . 1C . -1D . 243.若曲线弧位于其上任一点切线的下方,则该曲线弧是( )A.单调增加B.单调减少C.凹弧D.凸弧44. 曲线3(1)y x =-的拐点是( )A.(1,8)-B.(1,0)C.(0,1)-D.(2,1)45. 点 x = 0是函数y = x 2 的( )A .驻点但非极值点B .拐点C .驻点且是拐点D .驻点且是极值点46. 点0x =是函数3y x =的( )A .极值点但不是驻点B .驻点但不是极值点C .驻点且是极值点D .极值点且是拐点47.下列说法正确的是( )A.驻点一定是极值点B. 极值点一定是驻点或导数不存在的点C.极值点一定是拐点D. 拐点一定是极值点48.若在(,)a b 内,函数()f x 的一阶导数()f x '<0,二阶导数()f x ''>0,则函数()f x 在此区间内( ) A.单调减少,曲线是凹的 B.单调减少,曲线是凸的C.单调增加,曲线是凹的D.单调增加,曲线是凸的49.函数y = x 2e -x 及其图形在区间(1, 2)内是( )A .单调增加且是凸的B . 单调减少且是凸的C .单调增加且是凹的D .单调减少且是凹的50. 曲线()y f x =在区间[,]a b 上单调减少且为凸的,则( )A .()f x '>0或()0f x ''>B .()f x '>0或()0f x ''<C .()f x '<0且()0f x ''>D .()f x '<0且()0f x ''<51. 曲线()y f x =在区间[,]a b 上单调增加且为凹的,则( )A .()f x '>0,()0f x ''>B .()f x '<0,()0f x ''<C .()f x '>0,()0f x ''<D .()f x '<0,()0f x ''>52.若()(),F x f x '=则()f x dx ⎰=( )A.()f xB.()F xC.()F x C +D.()f x C + 53. 若()(),F x f x '=则()dF x ⎰=( )A.()f xB.()F xC.()F x C +D. ()f x C +54.导数等于21sin2x 的函数是( ) A .21sin 2x B .41cos2x C .21cos 2x D .1-21cos2x 55.⎰=dx x xf dxd )( ( ) A.)(21x f B.dx x f )(21 C .)(x xf D .dx x xf )( 56. 若c x x dx x f ++=⎰cos sin )(,则,=)(x f ( ) A.x x cos sin + B.x x cos sin - C.x x sin cos - D.x x cos sin -- 57.()23sin x e x dx -⎰=( )A. 23cos x e x c ++B. 23cos x e x +C. 23cos x e x -D. 158. 设⎰dx x f )(= 2cos2x + C ,则f (x ) =( ) A .sin2x B .-sin 2x C .sin 2x + C D .-2sin 2x 59.dxd 52x xe dx ⎰= ( ) A .42x x e B .52x x e dx C .42x x e dx D .52x x e60.dx xx f 211⎰⎪⎭⎫ ⎝⎛'= ( ) A .)1(x f -+ C B .-)1(x f -+ C C .)1(x f + C D .-)1(xf + C 61. 若: 10(2)2x k dx +=⎰,则k =( ) A .0 B .1- C . 1 D .1262. 若: 12 0(3)2x k dx +=⎰,则k =( ) A . 1- B . 0C .12 D . 1 63. 若 10(2)1x k dx +=⎰,则k =( ) A.0 B.-1 C.1 D.12 64. 已知 10()1x a x dx -=⎰,则常数a =( ) A.83 B.13 C.34 D.23 65.下列积分正确的是( ) A. 1211 11||02x dx x --==⎰ B. 22 02sin 2sin 2xdx xdx πππ-==⎰⎰ C. 22sin 0x dx ππ-=⎰ D. 1 122 1 04(1)2(1)3x dx x dx --=-=⎰⎰ 66. 曲线2,2y x y x ==+所围成的区域面积表成定积分为( )A . 22 1(2)x x dx ---⎰B . 12 2(2)x x dx --+⎰ C . 22 1(2)x x dx -+-⎰ D . 12 2(2)x x dx -+-⎰ 67.曲线ln y x =与直线x e =及0y =所围成的区域面积A=( )A .1B .-e 1C .e1 D .e 68. 曲线y =e x , y =e -x 与直线x =1所围成的区域面积A=( )A .e +1-eB .e -1-e -2C .e -1-eD .e + 1-e -2二、填空题1. 函数x y arcsin =的定义域为 .2.函数2112++-=x x y 的定义域为 . 3. 函数y =22x -+ arcsin x 的定义域为____________.5. 函数y=lnx 定义域为 .6.函数2211x y x-=+的奇偶性为 . 7.函数)1)(1(-+=x x x y 的奇偶性为 .8.设u y arcsin =,2v u =,1+=x v ,则复合函数=y .9.设arcsin y u =,v u a =,v x =,则复合函数y =____________.10. 可以将复合函数分解arcsin 2x y =为 .11. 函数2(arcsin3)y x =的复合过程是 .12. 设复合函数)(2sin 2-=x y ,则它的复合过程是 .13. 设复合函数2arcsin 1y x =(+),则它的复合过程是 . 14. =++→4-32-lim 220x x x x x . 15. 2323lim 54x x x x →-=-+ . 16.极限sin limx x x→+∞的值为____________. 17.极限x x x 1sin lim 0→的值为____________. 18.=∞→x x x arctan lim . 19.0sin lim x x x→= , sin lim x x x →∞= .20. 函数y=2x x -连续区间为 ..21.设()2xf x -=,当x → 时为无穷小量.22.设y =x 1-1,则当x →_____时,y 是无穷大量;当x →_____时,y 是无穷小量.23.设x y xe =,则y '= .24.已知)34cos(x y -=,求y '= ,=''y .25. 已知函数f (x )=x sin x , 则f '(π)=__________________.26. 已知函数x xe y -=,则y '= .27. 已知函数y = x x e -,则y '' =____________________.28. 设y = arctan x , 则y '=____________, y ''=____________.29曲线x y e =在点(0,1)处的切线方程为 .30. 若曲线y = ax 3+2在点x =1 处的切线与直线y =2x +1垂直,则a =__________.31. 曲线y = x 2-x 上过M (1,0)点的切线方程是__________________.32. 曲线x x +cos 2y =在点(0,2)处的切线方程为 .33. 函数在点x 0处可微的充要条件是___________________.34. d ( )= xdx . 35. ()21d x -=________________.d ( )=x e dx -.36. d ( )=dx , x de-= . 37.d =xdx sin , d =211dx x -. 38. ( )sin d xdx =; =-x de .39. 函数f (x )=sin x -x 在定义域内单调___________.40.函数22ln y x x =-的单调递增区间是 .41.f (x )=x 3-3x 2+7的极大值为________,极小值为__________.42. 函数)1ln()(2x x f +=在[-1,2]上的最大值为 ,最小值为 .43. 函数1)1()(32+-=x x f 在]1,2[-上的最大值是 ,最小值是 .44.函1)1()(32+-=x x f 数在]1,2[-上的最大值是 ,最小值是 .45.曲线f (x )=xe x 的拐点的坐标为____ ______.46.若2()x f x dx e C =+⎰,则()f x = . 47.dxd dx x xf ⎰)(2= ____ ______. 48. ⎰=xdx 2sin ;cos3x dx =⎰ . 49. xdx ⎰= ;⎰dx = . 50. 3x dx =⎰ .51.232 2sin x xdx -=⎰ . 52.b a dx =⎰ , 14 1sin x xdx -⎰= . 53. 13 1cos x xdx -=⎰ ; 132 1sin x xdx -=⎰ . 54. 曲线x y s i n =在[]0,π上和x 轴围成图形的面积用定积分表示为A= .55.178 1cos x xdx -⎰=___________________. 56.b a dx =⎰ . 57.=⎰xdx x sin 22-2 . 58.14 1sin x xdx -⎰= .三、计算题1. 求极限132123lim 22+---∞→x x x x x2. 求极限222372lim x x x x --+∞→3.求极限)1311(lim 31x x x ---→4.求极限x x x 5sin sin3lim 0→5. x x x x -→20sin lim6.求极限2cot 0lim(1tan )x x x →+ 7.求极限∞→x lim x x x ⎪⎭⎫ ⎝⎛+-31 8. 求极限x e x x 1lim 0-→ 9.已知arcsin y x =,求dy dx10.已知x x y 2sin 2=,求y ' 11.已知2ln 1y x =+ 求y ' 12.已知y =6sin 1322π+-⋅x x x ,求dx dy 13.已知y =(ln2x )cos3x ,求dx dy 14. 已知1010x y x +=,求y '' 15.已知x y arctan =,求dy 16.已知2ln(21)y x =- 求dy17. y=ln(5+3x ),求dy 18.已知22x y x e =,求dy 19. 求函数y =21ln x -的微分20.已知y =cos(3)x e x --,求dy 21. 求不定积分dx x x )2(-⎰22. 求不定积分dx x x x ⎰⎪⎭⎫ ⎝⎛+-3312 23.求不定积分⎰+dx x x cos 1sin 2 24.求定积分⎰+dx x x 1 25.求不定积分tan xdx ⎰ 26. 求不定积分211x dx x ++⎰27.求不定积分221x dx x +⎰ 28.求不定积分求tan xdx ⎰ 29.求定积分 20cos sin x xdx π⎰ 30. 求定积分 12 01x x dx -⎰ 31. 求定积分dx x x ⎰-1 021 32.求定积分dx x x ⎰+1 0 21arctan 33.求定积分 11||x dx -⎰ 34. 求定积分 21|1|x dx --⎰ 四、应用题1. 设有函数2sin y x x =+,求点(0,0)处的切线方程和法线方程.2.求函数x e x x f -+=)2()(在(0,2)点切线和法线方程.3.半径为15cm 的球,半径伸长2mm ,球的体积增加约多大?4.求函数y =x -ln(1+x )的极值.5. 求函数x e x x f -+=1)()(的极值.6.求曲线y =x 3-3x -2的单调区间,凹凸区间,拐点及极值.7.. 求曲线3231y x x =-+的单调区间,凹凸区间及极值.8.把一根半径为R 的圆木锯成矩形条木,问矩形的长和宽多大时,条木的截面积最大?9.某车间靠墙壁要盖一间长方形小屋,现有存砖只够砌20米长的墙壁,问应围成怎样的长方形才能使这间小屋的面积最大?10.要制造一个圆柱形有盖的油桶,若油桶的容积V 是常数,问底面半径r 和高h 之比等于多少时,才能使用料最省?11.欲做一个无盖圆柱形容器,其容积为V ,问当容器的底面半径为多少时,用料最少?12.曲线上任一点),(y x 切线的斜率为23x ,并且曲线经过)0,0(点,求此曲线方程13.计算由抛物线24y x =-和x 轴所围成图形的面积.14.求由直线23y x =+与曲线2y x =所围成平面图形的面积.15. 求由曲线12-=x y 与y=x+1所围成的平面图形面积. 16.求抛物线2x y =和直线x y =围成的平面图形的面积及该平面绕x 轴旋转而成的旋转体的体积.17. 求平面曲线2x y =、3x y =围成的平面图形绕x 轴旋转所生成的旋转体的体积.18.求由y =x 2与直线x+ y = 2轴所围成的平面图形绕x 轴旋转所形成的旋转体的体积.19.求由曲线x y =,x y =所围成的平面图形绕x 轴旋转所得的旋转体的体积.20.求由抛物线y =x 2与y 2 = x 所围成的平面图形绕x 轴旋转所形成的旋转体的体积.。
期末复习卷——函数定义域、值域、解析式
嘉兴一中2012学年高一数学期末复习(二)——函数的定义域、值域、解析式组题人:吴献超 审题人:胡刚知识梳理: 【考试说明】1.了解函数、映射的概念,会求一些简单的函数定义域和值域. 2.理解函数的三种表示法:解析法、图象法和列表法. 3.了解简单的分段函数,并能简单应用. 【概念梳理】函数定义:一般地,我们有:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的 一个数x ,在集合B 中都有 确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function ).记作: y =f (x ),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域(domain );与x 的值相对应的y 值叫做函数值, 叫做函数的值域(range ).、 与 统称为函数的三要素.映射定义:一般地,我们有:设A 、B 是非空的集合,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个映射(mapping ).区间的概念:设,a b 是两个实数,而且.a b <我们规定:(1)满足不等式a x b ≤≤的实数x 的集合叫做闭区间,表示为 (2)满足不等式a x b <<的实数x 的集合叫做开区间,表示为 (3)满足不等式a x b ≤<或a x b <≤的实数x 的集合叫做半开半闭区间,分别表示为这里的实数a 与b 都叫做相应区间的端点,其中实数a 叫做区间的左端点,实数b 叫做区间的右端点,b a -叫做区间的长度. 区间意义与使用规则:区间是集合的另外一种表示方法,在用区间表示集合时应注意区的使用规则: (1)区间的左端点必须小于其右端点;(2)区间中的元素都表示数轴上的点,可以用数字表示出来; (3)任何区间均可在数轴上表示出来;(4)以“-∞”或“+∞”为区间的一端点时,这一端必须是小括号.函数的表示方法: 、 、分段函数: 已知函数定义域被分成有限个区间,若在各个区间上表示对应规则的数学表达式一样,但单独定义各个区间公共端点处的函数值;或者在各个区间上表示对应规则的数学表达式不完全一样,则称这样的函数为分段函数. 分段函数是一个函数,而不是几个函数;分段函数的解析式不能写成几个不同的方程,而应将几种不同的表达式用一个左大括号括起来,并分别注明各部分的自变量的取值情况. 【题型与方法】1.求函数定义域的常用方法(在研究函数问题时要树立定义域优先的原则):定义域是自变量x 的取值范围,它是函数的一个不可缺少的组成部分,定义域不同而解析式相同的函数,应看作是两个不同的函数.如果没有特别说明,函数的定义域就是指能使这个式子有意义的所有实数x 的集合.在实际问题中,还必须考虑自变量所代表的具体的量的允许取值范围问题.忽视函数的定义域,我们将“寸步难行”,由此,我们也往往将函数的定义域称之为函数的“灵魂”.函数的定义域,就是使给出的解析式有意义的自变量的取值集合,具体来说有以下几种情况:(1)若()f x 是整式,则其定义域为全体实数集R ;(2)若()f x 是分式,则其定义域是使分母不为零的全体实数组成的集合;(3)若()f x 是偶次根式,则其定义域是使被开方数非负(即不小于零)的实数的取值集合; (4)如果函数是由一些基本初等函数通过四则运算结合而成的,那么它的定义域是各基本初等函数定义域的交集; (5)复合函数定义域求法:①若()f x 定义域为[,]a b ,复合函数[()]f g x 定义域由()a g x b ≤≤解出; ②若[()]f g x 定义域为[,]a b ,则()f x 定义域相当于[,]x a b ∈时()g x 的值域. (6)由实际问题列出的函数式的定义域问题,由自变量的实际意义给出.(7)分段函数定义域是各段函数定义域的并集,对数函数底数大于零不等1,真数大于零. 2.相等函数的判断:两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数),而与表示自变量和函数值的字母无关. 3.求函数值域的常用方法函数的值域是由其对应法则和定义域共同决定的.具体方法: (1)直接法:利用常见函数的值域来求一次函数y =ax +b (a ≠0)的定义域为R ,值域为R ; 反比例函数)0(≠=k xky 的定义域为 ,值域为 ; 二次函数)0()(2≠++=a c bx ax x f 的定义域为 , 当a >0时,值域为 ;当a <0时,值域为 .(2)配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:),(,)(2n m x c bx ax x f ∈++=的形式;(3)分式转化法(或改为“分离常数法”),如求函数3243x y x +=-的值域(4)换元法(特别注意新元的范围):通过变量代换转化为能求值域的函数,化归思想;如y ax b =+±a 、b 、c 、d 均为常数,且0a ≠)的函数常用此法求解.(5)判别式法(可转化为双钩函数形式)如求函数22122+-+=x x x y 的值域 (6)单调性法(7)数形结合:根据函数的几何图形,利用数型结合的方法来求值域. (8)分段函数的值域是各段函数值域的并集. 3.求函数解析式的常用方法⑴待定系数法(已知所求函数的类型);⑵代换(配凑)法;⑶方程的思想----对已知等式进行赋值,从而得到关于()f x 及另外一个函数的方程组; (4)已知函数的奇偶性和部分解析式,求函数的完整解析式;(5)赋值法(抽象函数)基础练习:1.下列对应关系是集合P 上的函数是有 .(1)*,PZ Q N ==,对应关系:f “对集合P 中的元素取绝对值与集合Q 中的元素相对应”; (2){1,1,2,2},{1,4}P Q =--=,对应关系::f x →2,,y x x P y Q =∈∈;(3){P=三角形},{|0}Q x x =>,对应关系:f “对P 中三角形求面积与集合Q 中元素对应.” 2.下列说法中正确的有 .A.()y f x =与()y f t =表示同一个函数 B. ()y f x =与(1)y f x =+不可能是同一函数 C.()1f x =与0()f x x =表示同一函数 D.定义域和值域都相同的两个函数是同一个函数3. (1)函数y =16-4x 的值域是 .(2)设函数g (x )=x 2-2(x ∈R),f (x )=⎩⎪⎨⎪⎧g (x )+x +4,x <g (x ),g (x )-x ,x ≥g (x ).则f (x )的值域是 .4.函数lg 3y x =-____________5. 设函数()f x 与()g x 的定义域是x R ∈且1x ≠±,()f x 是偶函数, ()g x 是奇函数,且()1()1f xg x x +=-,则()f x =____________,()g x = . 典型例题例1.(1)已知f (x )=e(x ∈R),则f (e 2)等于( )A .e 2B .e C. eD .不确定(2) 如下图(1)(2)(3)(4)四个图象各表示两个变量,x y 的对应关系,其中表示y 是x 的函数关系的有 .(3)函数)2()21()1(22)(2≥<<--≤⎪⎩⎪⎨⎧+=x x x x x x x f ,则3()____2f -=,若21)(<a f ,则实数a 的取值范围是____ 例2.(1)若3311()f x x xx +=+,则()f x = .(2)若2(1)lg f x x+=,则()f x = . (3)若()f x 满足12()()3f x f x x+=,则()f x = .(4)已知二次函数()f x 同时满足条件:①(1)(1)f x f x +=-; ②()f x 的最大值为15;③()0f x =的两根的立方和等于17.求函数()f x 的解析式.例3. (1)求函数f (x )=12-|x |+x 2-1+(x -4)0的定义域. (2)若函数y =f (x )的定义域是[0,4],求函数g (x )=f (12x )x -1的定义域.例4.求下列函数的值域:⑴函数22211xx y +-= ⑵函数3log 3log 2x y x =++ ⑶xx y +-=112⑷y x =嘉兴一中2012学年高一数学期末练习(二)——函数的定义域、值域、解析式组题人:吴献超 审题人:胡刚班级:___________ 姓名:__________ 学号:____________一、选择题1.判断下列各组中的两个函数是同一函数的为( )⑴ 3)5)(3()(+-+=x x x x f ,5)(-=x x g ;⑵ 11)(-+=x x x f ,)1)(1()(-+=x x x g ;⑶ x x f =)(,2)(x x g =; ⑷0)(x x f =,xx x g =)(; ⑸ 2)52()(-=x x f ,52)(-=x x gA. ⑴、⑵B. ⑵、⑶ C . ⑷ D. ⑶、⑸ 2.函数2()lg(31)f x x =+的定义域是( )A. 1(,)3-∞-B.11(,)33- C .1(,1)3- D.1(,)3-+∞3.若函数[)[]⎪⎩⎪⎨⎧∈-∈=1,0,40,1,41)(x x x f x x)(,则=)3(log 4f ( ) A.31 B. 3 C. 41D. 4 4.如果函数|)|1()1()(x x x f -⋅+=的图象在x 轴上方,那么此函数的定义域为( )A. ()1,1- B. ()(),11,-∞-⋃+∞ C . ()(),11,1-∞-⋃- D. ()()1,11,-⋃+∞ 5.函数}3,2,1{}3,2,1{:→f 满足)())((x f x f f =,则这样的函数个数共有( )A. 1个B.4个 C .8个 D.10个 6.函数344)(23++-=ax ax x x f 的定义域为R ,那么实数a 的取值范围是( )A. (-∞,+∞)B. (0,43) C .(-43,+∞) D.)43,0[ 7.设函数2()272f x x x =-+-,对于实数(03)m m <<,若()f x 的定义域和值域分别为[,3]m 和[1,3],则m 的值为( )A. 1B.5/2 C .611 D.8118.函数()31log f x x =+的定义域是(]1,9,则函数()()()22g x f x f x =+的值域是( ) A .(]2,14 B.[)2,-+∞ C .(]2,7 D.[]2,79.设21()1x x f x x x ⎧⎪=⎨<⎪⎩,≥,,,()g x 是二次函数,若(())f g x 的值域是[)0+,∞,则()g x 的值域是( )A .(][)11--+ ∞,,∞B .(][)10--+ ∞,,∞C .[)0+,∞D .[)1+,∞ 二、填空题10.若()f x 是定义在R 上的函数,(0)1f =,并且对于任意实数,x y ,总有2()()(21),f x f x y x y y+=+++则()f x = . 11.如果函数f (x )=ax -1的定义域为[-21,+)∞,那么实数a 的取值范围是 .12.已知定义在R 上的函数()f x 是奇函数,当0x >时,()(1)1f x x x =-+,则()f x = 13.函数xax y 213-+=的值域为()(),22,-∞-⋃-+∞,则实数a = .14.函数x a a x y -+-=的定义域为 .15.函数)(x f =x 2+x +21的定义域是[n ,n +1](n 是自然数),则此函数值域中的整数的个数为 .16.若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是 三、解答题17.对定义域分别是f D 、g D 的函数()y f x =、()y g x =,规定:函数()()()()()f g f g f gf xg x x D x Dh x f x x D x D g x x D x D ⎧⋅∈∈⎪=∈∉⎨⎪∉∈⎩当且当且当且.(1)若函数1()1f x x =-,2()g x x =,写出函数()h x 的解析式;(2)求问题(1)中函数()h x 的值域.18.求函数3512+-+=x x x y 的值域(至少两种方法).19.已知函数ϕ(x)=f(x)+g(x),其中f(x)是x 的正比例函数,g(x)是x 的反比例函数,且ϕ(31)=16,ϕ(1)=8. (1)求ϕ(x)的解析式,并指出定义域;(2)求ϕ(x)的值域.20.已知函数()2x f x ax b=+(a ,b 为常数)且方程f(x)-x+12=0有两个实根为x 1=3, x 2=4.(1)求函数f(x)的解析式;(2)设k>1,解关于x 的不等式()()12k x k f x x+-<-.21.已知二次函数()2f x ax bx =+ (),0a b a ≠是常数,且满足条件:f (2)=0,且方程f (x )=x 有两个相等实根. (1)求f (x )的解析式;(2)是否存在实数m 、n (m <n ),使f (x )的定义域和值域分别为[m ,n ]和[2m,2n ]?如存在,求出m 、n 的值;如不存在,说明理由.答案:任意,唯一,函数值的集合{f (x )| x ∈A },定义域、值域与对应关系[],;a b (,);a b [,),(,].a b a b解析法、图象法、列表法 {x |x ≠0},{y |y ≠0}; Rab ac y y 4)4(|2-≥,{ ab ac y y 4)4(|2-≤}. 基础练习:1.【研析】由于(1)中集合P 中元素0在集合Q 中没有对应元素,并且(3)中集合P 不是数集,从而知只有(2)正确.2.【研析】A 两个函数是否是同一个函数与所取的字母无关,判断两个函数是否相同,主要看这两个函数的定义域和对应法则是否相同. 2.(]0,3 3.()9,02,4⎛⎤-⋃+∞ ⎥⎝⎦4.[)()()0,22,33,4⋃⋃ 5.221,11xx x -- 典型例题 例1 (1)B(2)【研析】由函数定义可知,任意作一条直线x a =,则与函数的图象至多有一个交点,对于本题而言,当11a -≤≤时,直线x a =与函数的图象仅有一个交点,当1a >或1a <-时,直线x a =与函数的图象没有交点.从而表示y 是x 的函数关系的有(2)(3).(3)12,3(,)(2-∞- 例2 【研析】(1)∵3331111()()3()f x x x x xx x x+=+=+-+, 又1(,2][2,)x x+∈-∞-+∞ ∴3()3f x x x =-(2x ≥或2x ≤-)(2)令21t x +=(1t >),则21x t =-, ∴2()lg 1f t t =-,∴2()lg (1)1f x x x =>-(3)12()()3f x f x x+= ①,把①中的x 换成1x,得132()()ff x x x += ②, ①2⨯-②得33()6f x x x =-,∴1()2f x x x=-(4) 【研析】从所给条件知()f x 的图象关于1x =对称,且最大值为15,故设二次函数的顶点式,利用韦达定理得到关于系数a 的方程.依条件可设2()(1)15(0)f x a x a =-+<,即2()215f x ax ax a =-++,令()0f x =即22150ax ax a -++=,并设12,x x 为该方程的两个根,由韦达定理知:12122151x x x x a +=⎧⎪⎨⋅=+⎪⎩,从而3333121212121590()3()232(1)2.x x x x x x x x a a +=+-⋅+=-⨯⨯+=-90217a∴-=,故 6.a =- 所以函数()f x 的解析式为2()6129.f x x x =-++例3 (1) 解:(1)要使f (x )有意义, 则只需⎩⎪⎨⎪⎧2-|x |≠0,x 2-1≥0,x -4≠0,即⎩⎪⎨⎪⎧x ≠±2,x ≥1或x ≤-1,x ≠4,∴x ≥1且x ≠2且x ≠4或x ≤-1且x ≠-2.故函数的定义域为{x |x <-2或-2<x ≤-1或1≤x <2或2<x <4或x >4}. (2)由⎩⎪⎨⎪⎧0≤12x ≤4,x -1≠0,得⎩⎪⎨⎪⎧0≤x ≤8,x ≠1,∴0≤x ≤8且x ≠1.故定义域为[0,1)∪(1,8]. 例4 (1)1,12⎛⎤-⎥⎝⎦ (2) (][),04,-∞⋃+∞ (3) 110,,22⎛⎫⎛⎫⋃+∞ ⎪ ⎪⎝⎭⎝⎭(4) 5,4⎡⎫-+∞⎪⎢⎣⎭练习卷:1-9:CCBCD DCCC10. ()21, 0421,0x f x x x x=⎧⎪=⎨++≠⎪⎩11.-212. ()221,00, 01,0x x x f x x x x x ⎧+->⎪==⎨⎪-++>⎩13.4 14. {}a 15.2n+1 16. ]310,2[ 17. 解:(1)⎪⎩⎪⎨⎧=+∞⋃-∞∈-=11),1()1,(1)(2x x x x x h(2)当.21111)(,12+-+-=-=≠x x x x x h x 时若,4)(,1≥>x h x 则其中等号当x =2时成立,若,4)(,1≤<x h x 则其中等号当x =0时成立,∴函数),4[}1{]0,()(+∞⋃⋃-∞的值域x h 18. (]1,1,13⎡⎫-∞-⋃-+∞⎪⎢⎣⎭19. 解析: (1)设f(x)=ax ,g(x)=x b ,a 、b 为比例常数,则ϕ(x)=f(x)+g(x)=ax +xb由⎪⎩⎪⎨⎧=+=+⎪⎩⎪⎨⎧==8163318)1(,16)31(b a b a 得ϕϕ,解得⎩⎨⎧==53b a ∴ϕ(x)=3x +x 5,其定义域为(-∞,0)∪(0,+∞) (2)由y =3x +x5, 得3x 2-yx +5=0(x ≠0)∵x ∈R 且x ≠0, ∴Δ=y 2-60≥0,∴y ≥215或y ≤-215[来源:学&科&网] ∴ϕ(x) 的值域为(-∞,-215]∪[215,+∞)20.解析:(1)将得(2)不等式即为即[来源:][来源:学#科#网Z#X#X#K]①当②当③.21. 解:(1)方程f (x )=x ,即ax 2+bx =x , 亦即ax 2+(b -1)x =0,由方程有两个相等实根,得Δ=(b -1)2-4a ×0=0, ∴b =1.① 由f (2)=0,得4a +2b =0②由①、②得,a =-12,b =1,故f (x )=-12x 2+x .(2)假设存在实数m 、n 满足条件,由(1)知, f (x )=-12x 2+x =-12(x -1)2+12≤12,则2n ≤12,即n ≤14.∵f (x )=-12(x -1)2+12的对称轴为x =1,∴当n ≤14时,f (x )在[m ,n ]上为增函数.于是有⎩⎪⎨⎪⎧f (m )=2m ,f (n )=2n ,即⎩⎨⎧-12m 2+m =2m ,-12n 2+n =2n ,∴⎩⎪⎨⎪⎧m =-2或m =0,n =-2或n =0.又m <n ≤14,∴⎩⎪⎨⎪⎧m =-2,n =0..故存在实数m =-2,n =0,使f (x )的定义域为[m ,n ],值域为[2m,2n ].。
高一期末复习1函数练习
期末复习1函数1.若log a 23<1,则a 的取值范围是________. 2.函数f (x )=lg ⎝ ⎛⎭⎪⎫1x 2+1+x 是( ) A .奇函数 B .偶函数 C .既奇又偶函数D .非奇非偶函数3.已知函数f (x )=m ·2x -12x +1为奇函数,则m 的值等于________.4.已知log a 13>log b 13>0,则下列关系正确的是( ) A .0<b <a <1 B .0<a <b <1 C .1<b <aD .1<a <b5.若a =20.2,b =log 4(3.2),c =log 2(0.5),则( ) A .a >b >c B .b >a >c C .c >a >bD .b >c >a6.若f (x )=a ·2x +2a -12x +1为R 上的奇函数,则实数a 的值为________.7.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x ,x ≥2,⎝ ⎛⎭⎪⎫12x-1,x <2满足对任意的实数x 1≠x 2都有f (x 1)-f (x 2)x 1-x 2<0成立,则实数a 的取值范围为( )A .(-∞,2) B.⎝ ⎛⎦⎥⎤-∞,138 C .(-∞,2] D.⎣⎢⎡⎭⎪⎫138,2 8.已知a =5log 23.4,b =5log 43.6,c =⎝ ⎛⎭⎪⎫15log 30.3,则( )A .a >b >cB .b >a >cC .a >c >bD .c >a >b9.函数f (x )=x 12-⎝ ⎛⎭⎪⎫12x的零点个数为( )A .0B .1C .2D .310.(本小题满分12分)已知函数f (x )=⎩⎨⎧log 2x ,x >0,3x ,x ≤0,且关于x 的方程f (x )+x -a =0有且只有一个实根,求实数a 的取值范围.11.设x 0是方程ln x +x =4的根,且x 0∈(k ,k +1),k ∈Z ,则k =________. 12.用二分法求函数f (x )=2x +3x -7在区间[0,4]上的零点近似值,取区间中点2,则下一个存在零点的区间为( )A .(0,1)B .(0,2)C .(2,3)D .(2,4)13.(2018·全国卷Ⅰ)已知函数f (x )=⎩⎨⎧e x ,x ≤0,ln x ,x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值范围是( )A .[-1,0)B .[0,+∞)C .[-1,+∞)D .[1,+∞)14.已知函数f (x )=a -12x +1(x ∈R ). (1)用定义证明:不论a 为何实数,f (x )在R 上为增函数; (2)若f (x )为奇函数,求a 的值;(3)在(2)的条件下,求f (x )在区间[1,5]上的最小值.1.若log a 23<1,则a 的取值范围是________. [原不等式等价于⎩⎪⎨⎪⎧0<a <1,23>a 或⎩⎪⎨⎪⎧a >1,23<a ,解得0<a <23或a >1,故a 的取值范围为⎝ ⎛⎭⎪⎫0,23∪(1,+∞).]2.函数f (x )=lg ⎝ ⎛⎭⎪⎫1x 2+1+x 是( ) A .奇函数 B .偶函数 C .既奇又偶函数D .非奇非偶函数A [f (x )定义域为R ,f (-x )+f (x )=lg ⎝ ⎛⎭⎪⎫1x 2+1-x +lg ⎝ ⎛⎭⎪⎫1x 2+1+x =lg1(x 2+1)-x 2=lg 1=0,∴f (x )为奇函数,故选A.]3.已知函数f (x )=m ·2x -12x +1为奇函数,则m 的值等于________.1 [由题意可知,f (0)=m ·20-120+1=m -12=0,∴m =1.]4.已知log a 13>log b 13>0,则下列关系正确的是( ) A .0<b <a <1 B .0<a <b <1 C .1<b <aD .1<a <bA [由log a 13>0,log b 13>0,可知a ,b ∈(0,1), 又log a 13>log b 13,作出图象如图所示, 结合图象易知a >b ,∴0<b <a <1.]5.若a =20.2,b =log 4(3.2),c =log 2(0.5),则( ) A .a >b >c B .b >a >c C .c >a >bD .b >c >aA [∵a =20.2>1>b =l o g 4(3.2)>0>c =l o g 2(0.5),∴a >b >c .故选A. 6.若f (x )=a ·2x +2a -12x +1为R 上的奇函数,则实数a 的值为________.13 [因为f (x )=a ·2x +2a -12x +1为R 上的奇函数,所以f (0)=0,即a ·20+2a -120+1=0,所以a =13.]7.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x ,x ≥2,⎝ ⎛⎭⎪⎫12x-1,x <2满足对任意的实数x 1≠x 2都有f (x 1)-f (x 2)x 1-x 2<0成立,则实数a 的取值范围为( )A .(-∞,2) B.⎝ ⎛⎦⎥⎤-∞,138 C .(-∞,2]D.⎣⎢⎡⎭⎪⎫138,2 B [由题意知函数f (x )是R 上的减函数,于是有⎩⎪⎨⎪⎧a -2<0,(a -2)×2≤⎝ ⎛⎭⎪⎫122-1,由此解得a ≤138,即实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,138,选B.]8.已知a =5log 23.4,b =5log 43.6,c =⎝ ⎛⎭⎪⎫15log 30.3,则( )A .a >b >cB .b >a >cC .a >c >bD .c >a >bC [c =5log 3103,只需比较log 23.4,log 43.6,log 3103的大小,又0<log 43.6<1,log 23.4>log 33.4>log 3103>1,所以a >c >b .]9.函数f (x )=x 12-⎝ ⎛⎭⎪⎫12x的零点个数为( )A .0B .1C .2D .3B [令f (x )=0,可得x 12=⎝ ⎛⎭⎪⎫12x,在同一平面直角坐标系中分别画出幂函数y=x 12和指数函数y =⎝ ⎛⎭⎪⎫12x的图象,如图所示,可得交点只有一个,所以函数f (x )的零点只有一个.10.(本小题满分12分)已知函数f (x )=⎩⎨⎧log 2x ,x >0,3x ,x ≤0,且关于x 的方程f (x )+x -a =0有且只有一个实根,求实数a 的取值范围.[解]如图,在同一坐标系中分别作出y =f (x )与y =-x +a 的图象,其中a 表示直线在y 轴上的截距,由图可知,当a >1时,直线y =-x +a 与y =log 2x 只有一个交点.所以实数a 的取值范围是(1,+∞).11.设x 0是方程ln x +x =4的根,且x 0∈(k ,k +1),k ∈Z ,则k =________. 2 [令f (x )=ln x +x -4, 且f (x )在(0,+∞)上递增,∵f (2)=ln 2+2-4<0,f (3)=ln 3-1>0, ∴f (x )在(2,3)内有解,∴k =2.]12.用二分法求函数f (x )=2x +3x -7在区间[0,4]上的零点近似值,取区间中点2,则下一个存在零点的区间为( )A .(0,1)B .(0,2)C .(2,3)D .(2,4)B [因为f (0)=20+0-7=-6<0,f (4)=24+12-7>0,f (2)=22+6-7>0,所以f (0)·f (2)<0,所以零点在区间(0,2)内.] 13.已知函数f (x )=a -12x +1(x ∈R ). (1)用定义证明:不论a 为何实数,f (x )在R 上为增函数; (2)若f (x )为奇函数,求a 的值;(3)在(2)的条件下,求f (x )在区间[1,5]上的最小值.[解] (1)证明:∵f (x )的定义域为R ,任取x 1<x 2,则f (x 1)-f (x 2)=a -12x 1+1-a +12x 2+1=2x 1-2x 2(2x 1+1)(2x 2+1). ∵x 1<x 2,∴2x 1-2x 2<0,(1+2x 1)(1+2x 2)>0, ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴不论a 为何实数,f (x )在R 上为增函数. (2)∵f (x )在x ∈R 上为奇函数, ∴f (0)=0,即a -120+1=0,解得a =12.(3)由(2)知,f (x )=12-12x +1,由(1)知,f (x )为增函数,∴f (x )在区间[1,5]上的最小值为f (1). ∵f (1)=12-13=16,∴f (x )在区间[1,5]上的最小值为16.14.(2018·全国卷Ⅰ)已知函数f (x )=⎩⎨⎧e x ,x ≤0,ln x ,x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值范围是( )A .[-1,0)B .[0,+∞)C .[-1,+∞)D .[1,+∞)C [函数g (x )=f (x )+x +a 存在2个零点,即关于x 的方程f (x )=-x -a 有2个不同的实根,即函数f(x)的图象与直线y=-x-a有2个交点,作出直线y=-x-a与函数f(x)的图象,如图所示,由图可知,-a≤1,解得a≥-1,故选C.]。
期末复习作业:函数定义域值域
A (6,+∞)B(5,+∞)C(0,+∞)D R
7、当 时,函数 的值域是
A [- B [-1,1] C [1, ] D [0,1]
8、若 恒为正值,那么a的取值范围是
A B C a>1 D 或a>1
二、填空题
1、若f(x)的定义域为[0,2],函数 的定义域为。
2、已知函数的f(x)的定义域是[-3,3],则函数 的定义域为。
A [-2,1] B [-5,-2]∪[1,4] C [-5,4] D (-∞,-5 )∪[4, +∞]
4、函数 ,则函数 的定义域为
A {x|x≠–1} B {x|x≠-1,-2} C {x|x≠-2} D {x|x≠–1或x≠-2}
5、函数 的定义域为E,函数 的定义域为F,则
A E∩F = B E=F C E F D F E
翔宇教育集团数学专用作业纸
班级
高一()
姓名
学号
课题
一、选择题
1、函数 的定义域为ห้องสมุดไป่ตู้
A [-1,1] B {-1,1} C (-1,1) D (-∞,-1)∪(1, +∞)
2、函数 的定义域为
A (1,2) B (1, ) ( C (-∞,1)∪(2,+∞) D (2,+∞)
3、函数f(x)的定义域为[1,10],则 的定义域为
5、已知函数 在[0,2]上有最小值y=8,求正数a的值。
6、如果集合A是不等式 解集,函数 定义域为A,求这函数的值域。
已知
(1)求 的反函数 的值域;
(2)求 的值域。
设计一水槽,其横截面为等腰梯形,如图,要求AB+BC+CD=a(常数),∠ABC=1200,写出横截面积y与腰长x之间的关系式,并求出它的定义域和值域。
高等数学期末复习题库
高等数学期末复习题库一、选择题1. 函数f(x)=x^2+3x-2在区间[-5, 4]上的最大值是:A. 0B. 2C. 10D. 162. 曲线y=x^3-6x^2+9x+1在点(2,5)处的切线斜率是:A. 1B. -1C. 3D. -33. 定积分∫(0,1) x^2 dx的值是:A. 1/3B. 1/4C. 1/2D. 14. 幂级数Σ(n=1 to ∞) x^n/n 收敛的区间是:A. (-1, 1)B. (-∞, ∞)C. [1, ∞)D. [0, 1]5. 函数f(x)=sin(x)+cos(x)的周期是:A. πB. 2πC. π/2D. π/4二、填空题6. 函数f(x)=x^3-2x^2+x-3在x=______处取得极小值。
7. 若f(x)=e^x,g(x)=ln(x),则f(g(x))=______。
8. 函数y=x^2-4x+3的图像与x轴的交点坐标是(1, 0)和(______, 0)。
9. 若定积分∫(a,b) f(x) dx = 5,且a=1,f(x)=x^2,则b=______。
10. 利用泰勒公式展开e^x在x=0处的前三项是______。
三、解答题11. 求函数f(x)=x^3-6x^2+11x-6在区间[1, 3]上的最大值和最小值。
12. 证明:对于任意的正整数n,有1^2 + 1/2^2 + 1/3^2 + ... +1/n^2 < 2。
13. 解微分方程dy/dx + 2y = x^2,初始条件为y(0)=1。
14. 求定积分∫(0,π/2) sin(x) dx。
15. 利用傅里叶级数展开函数f(x)=x^2在区间[-π, π]上的周期延拓。
四、证明题16. 证明函数f(x)=x^3在R上是严格递增的。
17. 证明定积分∫(0,1) x ln(x) dx = -1/4。
18. 证明级数Σ(n=1 to ∞) (1/n^2)是收敛的。
五、应用题19. 一个物体从静止开始,以初速度为0,加速度为常数a=2m/s^2,求物体在t=3秒时的位置。
期末复习3+幂指对函数参考答案
2022-2023省常中高一数学期末复习3(幂指对函数)参考答案班级姓名一、单项选择题1.函数()2xx f x x=⋅的图象大致形状是()BABCD 2.已知a >1,b <-1,则函数y =log a (x -b )的图象不经过()DA.第一象限B.第二象限C.第三象限D.第四象限3.函数122x y -+=+的图象可以由函数12xy ⎛⎫= ⎪⎝⎭的图象()CA.先向左平移1个单位长度,再向上平移2个单位长度得到B.先向左平移1个单位长度,再向下平移2个单位长度得到C.先向右平移1个单位长度,再向上平移2个单位长度得到D.先向右平移1个单位长度,再向下平移2个单位长度得到4.牛顿冷却定律描述一个事物在常温环境下的温度变化:如果物体的初始温度为0T ,则经过一定时间t (单位:分钟)后的温度T 满足()012t ha a T T T T ⎛⎫-=- ⎪⎝⎭,其中a T 是环境温度,h 称为半衰期,现有一杯80℃的热水用来泡茶,研究表明,此茶的最佳饮用口感会出现在55℃.经测量室温为25℃,茶水降至75℃大约用时1分钟,那么为了获得最佳饮用口感,从降至75℃开始大约还需要等待()(参考数据:lg30.4771≈,lg 50.6990≈,lg11 1.0414≈)BA.3分钟B.5分钟C.7分钟D.9分钟5.设f (x )是定义域为R 的偶函数,且在区间(0,+∞)上是减函数,则下列关系式正确的是(CA.ff (322-)232-B.f f (232-)322-C.f (322-)>f (232-)>f D.f (232-)>f (322-)>f 6.若存在正数x ,使2x (x -a )<1成立,则a 的取值范围是()AA.(-1,+∞)B.(-2,+∞)C.(0,+∞)D.(-∞,+∞)7.已知函数()22log 042708433x x f x x x x ⎧<≤⎪=⎨-+>⎪⎩,,,若a b c d ,,,互不相同,且满足,()()()()f a f b f c f d ===则abcd 的取值范围是()CA .()3233,B .()3234,C .()3235,D .()3236,二、多项选择题8.下列运算中正确的是()ABDA.353log 83log 2log 5=B.1383272-⎛⎫= ⎪⎝⎭3π=-D.2log 71ln(ln e)72-⎛⎫+= ⎪⎝⎭9.下列命题中正确的是()ACDA.幂函数21(22)m y m m x -=--的图像关于y 轴对称B.函数y =[0,+)∞C.若lg 2a =,lg 3b =,则2log 122b a=+D.若函数()log (2)a f x ax =-在(0,1)上是减函数,则实数a 的范围为(1,2]10.若1a b >>,01c <<,则下列判断正确的是()BCA.c ca b <B.c cab ba >C.log log b a a c b c<D.log log a b c c<11.已知函数f (x )=log a |x -1|在区间(0,1)上是减函数,那么下列结论中正确的是()ADA.f (x )在(1,+∞)上单调递增且无最大值B.f (x )在(1,+∞)上单调递减且无最小值C.f (x )在定义域内是偶函数D.f (x )的图象关于直线x =1对称三、填空题12.已知点1,273⎛⎫ ⎪⎝⎭在幂函数()()2af x t x =-的图象上,则t a +=______.013.已知函数2()log x f x =,实数,a b 满足0a b <<,且()()f a f b =,若()f x 在2,a b ⎡⎤⎣⎦上的最大值为2,则1b a+=________.414.若0x >,0y >,且()71428log log log x y x y ==+,则y x =15.已知()f x 是定义在R 上且周期为6的奇函数,当(0,3)x ∈时,2()lg(2)f x x x m =-+.若函数()f x 在区间[3,3]-上有且仅有5个零点(互不相同),则实数m 的取值范是.19188⎛⎤⎧⎫⋃⎨⎬ ⎥⎝⎦⎩⎭,16.已知函数()2log 421x xy a a =+⋅+-的值域为R .则实数a 的取值范围是__________.1a ≥或1)a ≤-+17.已知实数α,β满足3e e αα=,4(ln 1)e ββ-=,其中e 是自然对数的底数,则αβ=___________.4e 四、解答题18.已知1155(3)(12)a a ---<+,求实数a 的取值范围.1342a a -<<<-或19.已知定义域为R 的函数2()2xx b f x a-=+是奇函数.(1)求a ,b 的值;(2)用定义证明()f x 在R 上为减函数;(3)若对于任意t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求实数k 的取值范围.(1)1,1a b ==(2)证明略(3)13k <-20.已知函数()lg 2a f x x x ⎛⎫=+- ⎪⎝⎭,其中a 是大于0的常数.(1)求函数()f x 的定义域;(2)当a ∈(1,4)时,求函数()f x 在区间[2,+∞)上的最小值;(3)若对任意x ∈[2,+∞)恒有()f x >0,求a 的取值范围.(1)由20a x x +->,得x 2-2x +a >0,当a >1时,x 2-2x +a >0恒成立,定义域为(0,+∞);当a =1时,定义域为{x|x>0且x≠1};当0<a <1时,定义域为{|011x x x <<->+.(2)设g(x)=x+a/x-2,当a∈(1,4),x∈[2,+∞)时,任取2≤x 1<x 2,则g(x 1)-g(x 2)=x 1+a x 1-x 2-a x 2=(x 1-x 2)(1-a /x 1x 2).因为2≤x 1<x 2,a∈(1,4),所以x 1-x 2<0,1-a x 1x 2>0,所以g(x 1)-g(x 2)<0,即g(x 1)<g(x 2),所以g(x)=x+a/x-2在区间[2,+∞)上是增函数,所以()lg 2a f x x x ⎛⎫=+- ⎪⎝⎭在区间[2,+∞)上是增函数,所以()lg 2a f x x x ⎛⎫=+- ⎪⎝⎭在区间[2,+∞)上的最小值为f(2)=lga/2.(3)对任意x∈[2,+∞)恒有f(x)>0,即x+a/x-2>1对任意x∈[2,+∞)恒成立,所以a>3x-x 2对任意x∈[2,+∞)恒成立.令h(x)=3x-x 2,而h(x)=3x-x 2=-(x-3/2)2+9/4在区间[2,+∞)上是减函数,所以h(x)max=h(2)=2,所以a>2,即a 的取值范围为(2,+∞).21.已知函数()()22log 21xf x x =+-.(1)证明:()f x 是偶函数;(2)设函数()()22f x xx g x m +=+⋅,[]20,log 3x ∈,是否存在实数m ,使得()g x 的最小值为0?若存在,求出m 的值;若不存在,请说明理由.(1)证明:对任意的x ∈R ,210x +>,则函数()()22log 21xf x x =+-的定义域为R ,()()2221212log 212log 12log 22x xx x f x x x x-+⎛⎫-=++=++=+ ⎪⎝⎭()()()2222log 212log 22log 21x x x x x f x =+-+=+-=,因此,函数()()22log 21xf x x =+-为偶函数.(2)解:()()()()()222log 2122221212x f x xx x x xg m x m ++=+⋅+=⋅⋅=++-+,因为[]20,log 3x ∈,令[]212,4x t =+∈,设()2h t t mt m =+-,其中[]2,4t ∈.当22m-≤时,即当4m ≥-时,函数()h t 在[]2,4上单调递增,此时()()min 240h t h m ==+=,解得4m =-,合乎题意;当242m <-<时,即当84m -<<-时,()2min 024m m h t h m ⎛⎫=-=--= ⎪⎝⎭,解得4m =-或0,均不合乎题意;当42m-≥时,即当8m ≤-时,函数()h t 在[]2,4上单调递减,此时()()min 41630h t h m ==+=,解得163m =-,不合乎题意.综上所述,4m =-.。
【高一学习指导】高一数学函数的基本性质期末复习要点总结
【高一学习指导】高一数学函数的基本性质期末复习要点总结函数的有关概念1.函数的概念:设a和B是非空的数集。
如果根据一定的对应关系F,集合B中有一个唯一确定的数F(x)对应集合a中的任意数x,则F:AB称为集合a到集合B的函数,记录为:y=F(x),其中,x称为自变量,x的取值范围a称为函数的定义域;与X的值相对应的y值称为函数值,函数值f(X)的集合称为函数的值范围注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;函数的定义域、值域要写成集合或区间的形式.域名补充能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分数的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数公式的真实数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是通过四个操作组合的一些基本函数,那么它的域是一组X值,使每个部分都有意义(6)指数为零底不可以等于零函数的三个元素:定义域、对应关系和值域再注意:(1)构成函数的三个元素是定义域、对应关系和值域,因为值范围由定义域和对应关系决定,如果定义域和两个函数的对应关系完全一致,这两个函数被称为相等(或同一个函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备)范围补充(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域.(2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础.(3).求函数值域的常用方法有:直接法、反函数法、换元法、配方法、均值不等式法、判别式法、单调性法等.3.功能图像知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x),(xa)中的x为横坐标,函数值y为纵坐标的点p(x,y)的集合c,叫做函数y=f(x),(xa)的图象.C上每个点的坐标(x,y)满足函数关系y=f(x)。
高考数学《函数》专题复习
函数一、17届 一模一、填空、选择题1、(宝山区2017届高三上学期期末) 若点(8,4)在函数()1log a f x x =+图像上,则()f x 的反函数为2、(崇明县2017届高三第一次模拟)设函数2log ,0()4,0x x x f x x >⎧⎪=⎨⎪⎩≤,则((1))f f -= .3、(虹口区2017届高三一模)定义{}()f x x =(其中{}x 表示不小于x 的最小整数)为“取上整函数”,例如{}2.13=,{}44=.以下关于“取上整函数”性质的描述,正确的是( ).①(2)2()f x f x =; ②若12()()f x f x =,则121x x -<; ③任意12,x x R ∈,1212()()()f x x f x f x +≤+;④1()()(2)2f x f x f x ++=..A ①② .B ①③ .C ②③ .D ②④4、(黄浦区2017届高三上学期期终调研)已知函数()y f x =是奇函数,且当0x ≥时,2()log (1)f x x =+.若函数()y g x =是()y f x =的反函数,则(3)g -= .5、(静安区2017届向三上学期期质量检测)已知)(x g y =与)(x h y =都是定义在),0()0,(+∞-∞ 上的奇函数,且当0>x 时,⎩⎨⎧>-≤<=.1),1(,10,)(2x x g x x x g ,x k x h 2log )(=(0>x ),若)()(x h x g y -=恰有4个零点,则正实数k 的取值范围是 【 】A .]1,21[;B .]1,21(;C .]2log ,21(3;D .]2log ,21[3.6、(闵行区2017届高三上学期质量调研)函数()1f x =的反函数是_____________.7、(浦东新区2017届高三上学期教学质量检测)已知定义在*N 上的单调递增函数()y f x =,对于任意的*n N ∈,都有()*f n N ∈,且()()3f f n n =恒成立,则()()20171999f f -=____________.8、(普陀区2017届高三上学期质量调研)函数x x f 2log 1)(+=(1≥x )的反函数=-)(1x f .9、(青浦区2017届高三上学期期末质量调研)如图,有一直角墙角,两边的长度足够长,若P 处有一棵树与两墙的距离分别是4m 和(012)am a <<,不考虑树的粗细.现用16m 长的篱笆,借助墙角围成一个矩形花圃ABCD .设此矩形花圃的最大面积为u ,若将这棵树围在矩形花圃内,则函数()u f a =(单位2m )的图像大致是……………………( ).A .B .C .D .10、(松江区2017届高三上学期期末质量监控)已知函数()1xf x a =-的图像经过(1,1)点,则1(3)f -=▲ .11、(徐汇区2017届高三上学期学习能力诊断)若函数22,0(),0xx f x x m x ⎧≤⎪=⎨-+>⎪⎩的值域为(],1-∞,则实数m 的取值范围是____________12、(杨浦区2017届高三上学期期末等级考质量调研)若函数2()log 1x af x x -=+的反函数的图像过点(2,3)-,则a =________.13、(长宁、嘉定区2017届高三上学期期末质量调研)若函数a x x f ++=)1(log )(2的反函数的图像经过点)1,4(,则实数=a __________.14、(崇明县2017届高三第一次模拟)下列函数在其定义域内既是奇函数又是增函数的是A .tan y x =B .3xy =C .13y x =D .lg y x =15、(浦东新区2017届高三上学期教学质量检测)已知函数()y f x =的反函数为()1y f x -=,则函数()y f x =-与()1y f x -=-的图像( ). A .关于y 轴对称 B .关于原点对称C .关于直线0x y +=对称D .关于直线0x y -=对称16、(普陀区2017届高三上学期质量调研)设∈m R ,若函数()11)(32+++=mx x m x f 是偶函数,则)(x f 的单调递增区间是 .17、(普陀区2017届高三上学期质量调研)方程()()23log 259log 22-+=-x x 的解=x .18、(普陀区2017届高三上学期质量调研)已知定义域为R 的函数)(x f y =满足)()2(x f x f =+,且11<≤-x 时,21)(x x f -=;函数⎩⎨⎧=≠=.0,1,0,lg )(x x x x g ,若)()()(x g x f x F -=,则[]10,5-∈x ,函数)(x F 零点的个数是 .19、(奉贤区2017届高三上学期期末)方程1lg )3lg(=+-x x 的解=x ____________ 20、(金山区2017届高三上学期期末)函数()2xf x m =+的反函数为1()y fx -=,且1()y f x -=的图像过点(5,2)Q ,那么m =二、解答题1、(崇明县2017届高三第一次模拟)设12()2x x af x b+-+=+(,a b 为实常数).(1)当1a b ==时,证明:()f x 不是奇函数;(2)若()f x 是奇函数,求a 与b 的值;(3)当()f x 是奇函数时,研究是否存在这样的实数集的子集D ,对任何属于D 的x 、c ,都有2()33f x c c <-+成立?若存在试找出所有这样的D ;若不存在,请说明理由.2、(虹口区2017届高三一模)已知二次函数2()4f x ax x c =-+的值域为[)0,+∞.(1)判断此函数的奇偶性,并说明理由; (2)判断此函数在2,a⎡⎫+∞⎪⎢⎣⎭的单调性,并用单调性的定义证明你的结论;(3)求出()f x 在[1,)+∞上的最小值()g a ,并求()g a 的值域.3、(黄浦区2017届高三上学期期终调研)已知集合M 是满足下列性质的函数()f x 的全体:在定义域内存在实数t ,使得(2)f t +()(2)f t f =+.(1)判断()32f x x =+是否属于集合M ,并说明理由; (2)若2()lg2af x x =+属于集合M ,求实数a 的取值范围;(3)若2()2x f x bx =+,求证:对任意实数b ,都有()f x M ∈.4、(静安区2017届向三上学期期质量检测)设集合|)({x f M a =存在正实数a ,使得定义域内任意x 都有)}()(x f a x f >+.(1) 若22)(x x f x-=,试判断)(x f 是否为1M 中的元素,并说明理由;(2) 若341)(3+-=x x x g ,且a M x g ∈)(,求a 的取值范围; (3) 若),1[),(log )(3+∞∈+=x xkx x h (R ∈k ),且2)(M x h ∈,求)(x h 的最小值.5、(普陀区2017届高三上学期质量调研)已知∈a R ,函数||1)(x a x f += (1)当1=a 时,解不等式x x f 2)(≤;(2)若关于x 的方程02)(=-x x f 在区间[]1,2--上有解,求实数a 的取值范围.6、(青浦区2017届高三上学期期末质量调研)已知函数2()2(0)f x x ax a =->. (1)当2a =时,解关于x 的不等式3()5f x -<<;(2)对于给定的正数a ,有一个最大的正数()M a ,使得在整个区间[0 ()]M a ,上,不等式|()|5f x ≤恒成立. 求出()M a 的解析式;(3)函数()y f x =在[ 2]t t +,的最大值为0,最小值是4-,求实数a 和t 的值.7、(松江区2017届高三上学期期末质量监控)已知函数21()(21x xa f x a ⋅-=+为实数) . (1)根据a 的不同取值,讨论函数)(x f y =的奇偶性,并说明理由; (2)若对任意的1x ≥ ,都有1()3f x ≤≤,求a 的取值范围.8、(徐汇区2017届高三上学期学习能力诊断)某创业团队拟生产A 、B 两种产品,根据市场预测,A 产品的利润与投资额成正比(如图1),B 产品的利润与投资额的算术平方根成正比(如图2).(注:利润与投资额的单位均为万元)(1)分别将A 、B 两种产品的利润()f x 、()g x 表示为投资额x 的函数;(2)该团队已筹集到10万元资金,并打算全部投入A 、B 两种产品的生产,问:当B 产品的投资额为多少万元时,生产A 、B 两种产品能获得最大利润,最大利润为多少?参考答案:一、填空、选择题1、解析:1+log 8a =4,log 8a =3,化为指数:3a =8,所以,a =221log y x =+,即:12y x -=,所以反函数为12x y -=2、-23、C4、-75、C6、()()211(1)fx x x -=-≥ 7、548、【解析】∵x ≥1,∴y=1+2log x ≥1,由y=1+2log x ,解得x=2y ﹣1,故f ﹣1(x )=2x ﹣1(x ≥1).故答案为:2x ﹣1(x ≥1). 9、B 10、211、01m <≤ 12、2a =13、【解析】函数a x x f ++=)1(log )(2的反函数的图象经过点(4,1), 即函数a x x f ++=)1(log )(2的图象经过点(1,4), ∴4=log 2(1+1)+a ∴4=1+a , a=3.故答案为:3. 14、C 15、D16、【解析】由题意:函数()11)(32+++=mx x m x f 是偶函数,则mx=0,故得m=0, 那么:f (x )=23x +1,根据幂函数的性质可知:函数f (x )的单点增区间为(0,+∞). 故答案为:(0,+∞). 17、【解析】由题意可知:方程log 2(9x ﹣5)=2+log 2(3x ﹣2)化为:log 2(9x ﹣5)=log 24(3x ﹣2) 即9x ﹣5=4×3x ﹣8 解得x=0或x=1;x=0时方程无意义,所以方程的解为x=1. 故答案为1. 18、【解析】定义域为R 的函数y=f (x )满足f (x +2)=f (x ), 可得f (x )的周期为2, F (x )=f (x )﹣g (x ),则令F (x )=0,即f (x )=g (x ), 分别作出y=f (x )和y=g (x )的图象, 观察图象在[﹣5,10]的交点个数为14.x =0时,函数值均为1,则函数F (x )零点的个数是15. 故答案为:15.19、5 20、1二、解答题1、解:(1)证明:511212)1(2-=++-=f ,412121)1(=+-=-f ,所以)1()1(f f -≠-,所以)(x f 不是奇函数............................3分(2))(x f 是奇函数时,)()(x f x f -=-,即bab a x x x x ++--=++-++--112222对定义域内任意实数x 都成立即0)2(2)42(2)2(2=-+⋅-+⋅-b a ab b a x x ,对定义域内任意实数x 都成立...........................................5分所以⎩⎨⎧=-=-042,02ab b a 所以⎩⎨⎧-=-=21b a 或⎩⎨⎧==21b a .经检验都符合题意........................................8分(2)当⎩⎨⎧==21b a 时,121212212)(1++-=++-=+x x x x f ,因为02>x ,所以112>+x ,11210<+<x, 所以21)(21<<-x f .......................................10分 而4343)23(3322≥+-=+-c c c 对任何实数c 成立;所以可取D =R 对任何x 、c 属于D ,都有33)(2+-<c c x f 成立........12分当⎩⎨⎧-=-=21b a 时,)0211212212)(1≠-+-=---=+x x f xx x (, 所以当0>x 时,21)(-<x f ;当0<x 时,21)(>x f .............14分1)因此取),0(+∞=D ,对任何x 、c 属于D ,都有33)(2+-<c c x f 成立. 2)当0<c 时,3332>+-c c ,解不等式321121≤-+-x 得:75log 2≤x .所以取]75log ,(2-∞=D ,对任何属于D 的x 、c ,都有33)(2+-<c c x f 成立.....16分2、解:(1)由二次函数2()4f x ax x c =-+的值域为[)0,+∞,得0a >且41604ac a-=,解得4ac =.……………………2分(1)4f a c =+-,(1)4f a c -=++,0a >且0c >,从而(1)(1)f f -≠,(1)(1)f f -≠-,∴此函数是非奇非偶函数.……………………6分(2)函数的单调递增区间是2,a ⎡⎫+∞⎪⎢⎣⎭.设1x 、2x 是满足212x x a >≥的任意两个数,从而有21220x x a a->-≥,∴222122()()x x a a ->-.又0a >,∴222122()()a x a x a a ->-,从而22212424()()a x c a x c a a a a-+->-+-,即22221144ax x c ax x c -+>-+,从而21()()f x f x >,∴函数在2,a ⎡⎫+∞⎪⎢⎣⎭上是单调递增.……………………10分(3)2()4f x ax x c =-+,又0a >,02x a=,[)1,x ∈+∞ 当021x a =≥,即02a <≤时,最小值0()()0g a f x == 当021x a =<,即2a >时,最小值4()(1)44g a f a c a a==+-=+-综上,最小值002()442a g a a a a <≤⎧⎪=⎨+->⎪⎩……………………14分 当02a <≤时,最小值()0g a = 当2a >时,最小值4()4(0,)g a a a=+-∈+∞ 综上()y g a =的值域为[0,)+∞……………………16分3、解:(1)当()32f x x =+时,方程(2)()(2)38310f t f t f t t +=+⇔+=+ ……2分 此方程无解,所以不存在实数t ,使得(2)()(2)f t f t f +=+,故()32f x x =+不属于集合M . ……………………………4分(2)由2()lg2af x x =+属于集合M ,可得 方程22lg lg lg (2)226a a ax x =++++有实解22[(2)2]6(2)a x x ⇔++=+有实解2(6)46(2)0a x ax a ⇔-++-=有实解,………7分若6a =时,上述方程有实解;若6a ≠时,有21624(6)(2)0a a a ∆=---≥,解得1212a -≤+故所求a的取值范围是[1212-+. ……………………………10分 (3)当2()2x f x bx =+时,方程(2)()(2)f x f x f +=+⇔+2222(2)244x x b x bx b ++=+++⇔32440x bx ⨯+-=, ………………12分令()3244x g x bx =⨯+-,则()g x 在R 上的图像是连续的,当0b ≥时,(0)10g =-<,(1)240g b =+>,故()g x 在(0,1)内至少有一个零点;当0b <时,(0)10g =-<,11()320bg b =⨯>,故()g x 在1(,0)b内至少有一个零点;故对任意的实数b ,()g x 在R 上都有零点,即方程(2)()(2)f x f x f +=+总有解, 所以对任意实数b ,都有()f x M ∈. ………………………16分 4、解:(1)∵1)0()1(==f f , ∴1)(M x f ∉. ……………………………4分(2)由0413341)(41)()()(32233>-++=++--+=-+a a x a ax x a x x a x x g a x g …2分 ∴0)41(12934<--=∆a a a a , ……………………………3分 故 1>a . ……………………………1分(3)由0)(log ]2)2[(log )()2(33>+-+++=-+xkx x k x x h x h , ………………1分 即:)(log ]2)2[(log 33xkx x k x +>+++∴ 022>+>+++xkx x k x 对任意),1[+∞∈x 都成立∴ 3113)2(2<<-⇒⎩⎨⎧-><⇒⎩⎨⎧->+<k k k xk x x k ……………………………3分 当01≤<-k 时,)1(log )1()(3min k h x h +==; ……………………………1分 当10<<k 时,)1(log )1()(3min k h x h +==; ……………………………1分 当31<≤k 时,)2(log )()(3min k k h x h ==. ……………………………1分 综上:⎪⎩⎪⎨⎧<≤<<-+=.31),2(log ,11),1(log )(33min k k k k x h ……………………………1分5、【解】(1)当1=a 时,||11)(x x f +=,所以x x f 2)(≤x x 2||11≤+⇔……(*) ①若0>x ,则(*)变为,0)1)(12(≥-+x x x 021<≤-⇔x 或1≥x ,所以1≥x ;②若0<x ,则(*)变为,0122≥+-xx x 0>⇔x ,所以φ∈x 由①②可得,(*)的解集为[)+∞,1。
期末复习(一次函数)
一次函数复习课学案一、考点导航1、结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式。
2、会画一次函数的图像,根据一次函数的图像和解析表达式y=kx+b (k ≠0),探索并理解其性质(k >0或k <0时,图像的变化情况)。
3、理解正比例函数。
4、能根据一次函数的图像求二元一次方程组的近似解,体会一次函数与二元一次方程、二元一次方程组的关系。
5、能用一次函数解决实际问题。
二、知识梳理1、一次函数:一般地,如果两个变量x 、y 之间的关系可以表示成y =__________(k_____,k 、b_________),则y 是x 的一次函数.特别地,当b______时,形如y =______(k_____,k 为常数)的一次函数叫做正比例函数.2、一次函数的图象是________________3、画法确定 个点就可以画一次函数图像。
一次函数与x 轴的交点坐标( ,0),与y 轴的交点坐标(0, ),正比例函数的图象必经过两点分别是(0, )、(1, )。
4、一次函数的图象和性质5、一次函数的应用若11b x k y +=与22b x k y +=平行,则 若11b x k y +=与22b x k y +=垂直,则 三、考点分析考点一:一次函数与正比例函数的定义 1、下列函数中是一次函数的是( )A.122-=x yB.x y 1-=C.31+=x y D.1232-+=x x y2、下列说法正确的是( )A. b kx y +=是一次函数B.2xy -=是正比例函数,但不是一次函数C.一次函数一定是正比例函数D.正比例函数一定是一次函数3、已知函数y=(k-1)x+k 2-1,当k________时,它是一次函数,当k=_______•时,它是正比例函数. 4、已知函数2)3(--=k xm y 是正比例函数,则k_______。
5、已知y-2与x 成正比例,且x=2时,y=4,则y 与x 的函数关系式是_________;当y=3时,x=__________.6、当3=x 时,函数k x y +=与1-=kx y 的函数值相等,则k=_______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
王老师上课讲义
学生姓名:
教师:王老师学科:数学上课时期:年月日
学案主题:期末复习课时:第次,时段:
一:经典例题赏析
考点一:一次函数与全等三角形
如图,点A的坐标为(6,0),点B为y轴的负半轴上的一个动点,分别以OB,AB为直角边在第三、第四象限作等腰Rt△OBF,等腰Rt△ABE,连接EF交y轴于P点,当点B在y轴上移动时,PB的长度为()
思路点播
解答过程
方法归纳:
变式1:如图,直线y=−12x+1交y轴于A点,交x轴于B点,将Rt△AOB绕O点逆时针旋转90∘,得到Rt△COD,直线AB交直线CD于E点。
(1)求直线CD的解析式;
(2)求证:OE平分∠BEC;
(3)在第一象限内,是否存在点F,使以E,O,F为顶点的三角形为等腰直角三角形?若存在,请求出点F的坐标;若不存在,请说明理由。
考点2:一次函数应用题
小聪在学习时看到一侧材料:甲、乙两人去某风景区游玩,约好在飞瀑见面,早上,甲乘景区巴士从古刹出发,沿景区公路(如图1)去飞瀑;同时,乙骑电动自行车从塔林出发,沿景区公路去飞瀑.设两人行驶的时间为t(小时),两人之间相距的路程为s(千米),s与t之间的函数关系如图2所示,小聪观察、思考后发现了图2的部分正确信息:①两人出发1小时后第一次相遇;②线段CD表示甲到达飞瀑后,
乙正在赶往飞瀑途中时s随t的变化情况, ,请你应用相关知识,与小聪一
起解决下列问题.
(1)求乙骑电动自行车的速度;
(2)当甲、乙两人第一次相遇时,他们离飞瀑还有多少千米?
(3)在行驶途中,当甲、乙两人之间相距的路程不超过1千米时,求t的取值范围思路点播
解答过程
方法归纳:
变式1:在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B 港口出发,沿直线匀速驶向C港,最终达到C港.设甲、乙两船行驶x(h)后,
与B港的距离分别为y
1、y
2
(km),y
1
、y
2
与x的函数关系如图所示.
(1)填空:A、C两港口间的距离为()km,a=();
(2)求图中点P的坐标,并解释该点坐标所表示的实际意义;
(
(3)若两船的距离不超过10km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围.
变式2:甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖
掘时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:
(1)乙队开挖到30m时,用了h,开挖6h时甲队比乙队多挖了m.
(2)请你求出:①甲队在0≤x≤6的时段内,y
1
与x之间的函数关系式.
②乙队在2≤x≤6的时段内,y
2
与x之间的函数关系式.
(3)当x为何值时,甲、乙两队在施工过程中所挖河渠的长度相等?
考点3:一此函数类规律探究
正方形A
1B
1
C
1
O,A
2
B
2
C
2
C
1
,A
3
B
3
C
3
C
2
,…按如图所示的方式放置.点A
1
,A
2
,A
3
,…
和点C
1,C
2
,C
3
,…分别在直线y=kx+b(k>0)和x轴上,已知点B
1
(1,1),
B 2(3,2),则B
n
的坐标是______.
思路点播
解答过程
方法归纳:
变式1:
在平面直角坐标系xOy中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=kx+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果
A1(1,1),A2(72,32),那么点An的纵坐标是___.
变式2:
在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,…按这样的规律进行下去,第2012个正方形的面积为()
考点4:坐标与图形性质,,用待定系数法求出一次函数的解析式,直角三角形性质
如图,直线y=kx+b和x轴y轴的交点分别为B.C点C的坐标是(0,3),∠CBA=30∘,另一条直线经过点A,C,点A的坐标是(−,0)
(1)求点B的坐标,并求直线AC所对应的函数表达式;
(2)动点M从B出发沿BC运动,运动的速度为每秒1个单位长度。
当点M运动到C点时停止运动,设M运动t秒时,△ABM的面积为S.
①求S与t的函数关系式;
②当t为何值时,S=0.5S△ABC(注:S△ABC表示△ABC的面积),求出对应的t 值;
③当t=4的时候,在坐标轴上是否存在点P,使得△BMP是以BM为直角边的直角三角形?若存在,请直接写出P点坐标;若不存在,请说明理由。
思路点播
解答过程
方法归纳:
变式1:
如图,平面直角坐标系中,点A、B分别在x、y轴上,点B的坐标为(0,1),∠BAO=30°.
(1)求AB的长度;
(2)以AB为一边作等边△ABE,作OA的垂直平分线MN交AB的垂线AD 于点D.求证:BD=OE;
(3)在(2)的条件下,连接DE交AB于F.求证:F为DE的中点
变式2:如图,直线分别与x轴、y轴交于A、B两点,点C为x轴上任
意一点,直线经过点C,且与直线交于点D,与y轴交于点E,连结AE.
(1)当点C的坐标为时,
①求直线的函数表达式;
②求证:AE平分;
(2)问:是否存在点C,使是以CE为一腰的等腰三角形?若存在,直接写出点C的坐标;若不存在,请说明理由.
二:过关练习:
(1)已知直角坐标平面上等腰三角形ABC,其中两个顶点都在直
线上,第三个顶点C在y轴上点C的坐标是
.
(2)如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC 上),折叠后顶点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为 .
(4)如图点A,B分别是x轴y轴上的两个动点,以AB为边作等边△ABC,
若A B=2设点C到原点O的距离为d则d的取值范围是___.
(5)
(6)如图,在直角坐标系中,点A,B分别在x轴、y轴上,点A的坐标为(-1,0),∠A BO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同
时另一端点Q随之在x轴的非负半轴上运动,.
(1)当点P从点O运动到点B时,点Q的运动路程为_____;
(2)当点P按O→B→A→O运动一周时,点Q运动的总路程为_____.
(7)如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C
是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是()
A.(0,0)B.(0,1)C.(0,2)D.(0,3)。