工程材料习题集参考答案(第二章)
工程材料习题集
工程材料习题集绪论1.一铜棒的最大拉应力为70MPa,若要承受2000kgf的载荷,它的直径是多少?2.有一直径15mm的钢棒所能承受的最大载荷为11800kgf,问它的强度是多少。
3.一根2米长的黄铜棒温度升高80℃,伸长量是多少?要使该棒有同样的伸长,问需要作用多少力?(黄铜线膨胀系数为20×10-6/℃,平均弹性模量为110000MPa)4.一根焊接钢轨在35℃时铺设并固定,因此不能发生收缩。
问当温度下降到9℃时,钢轨内产生的应力有多大?(钢的线膨胀系数为12×10-6/℃,弹性模量为206000MPa)5.零件设计时,选取σ0.2(σS)还是选取σb,应以什么情况为依据?6.δ与ψ这两个指标,哪个能更准确地表达材料的塑性?并说明以下符号的意义和单位:σe;σs(σ0.2);σb;δ;ψ;σ-1;ɑk7.常用的测量硬度的方法有几种?其应用范围如何?8.有一碳钢制支架刚性不足,有人要用热处理强化方法;有人要另选合金钢;有人要改变零件的截面形状来解决。
哪种方法合理?为什么?参考答案:1.18.9mm 2.871MPa 3.3.2mm,176MPa 4.64.3MPa第一章金属的结构与结晶1.金属中常见的晶体结构类型有哪几种?α-Fe、γ-Fe、A1、Cu、Ni、Pb、Cr、V、Mg、Zn 各属何种晶体结构?2.单晶体与多晶体有何差别?为什么单晶体具有各向异性,而多晶体材料通常不表现出各向异性?3.简述金属常见的三种晶体结构的基本特点。
4.晶体缺陷有哪些?对材料有哪些影响?对所有的材料都有影响吗?5. 分别说明以下概念:晶格;晶胞;晶格常数;致密度;配位数;晶面;晶向;单晶体;多晶体;晶粒;晶界;各向异性;同素异构。
6.在立方晶格中,如果晶面指数和晶向指数的数值相同,该晶面与晶向间存在着什么关系?7. 何谓过冷度?为什么结晶需要过冷度?它对结晶后晶粒大小有何影响?8. 何谓同素异构转变?纯铁在常压下有哪几种同素异构体?各具有何种晶体结构?1.金属结晶的基本规律是什么?结晶过程是怎样进行的?2.过冷度与冷却速度有何关系?它对金属结晶后的晶粒大小有何影响?3.如果其它条件相同,试比较在下列条件下,铸件晶粒的大小:(1)砂型铸造与金属铸造;(2)厚壁铸件与薄壁铸件;(3)加变质剂与不加变质剂;(4)浇注时振动与不振动。
工程材料第二版习题解答
第一章材料的结构与性能一、材料的性能(一)名词解释弹性变形:去掉外力后,变形立即恢复的变形为弹性变形。
塑性变形:当外力去除后不能够恢复的变形称为塑性变形。
冲击韧性:材料抵抗冲击载荷而不变形的能力称为冲击韧性。
疲劳强度:当应力低于一定值时,式样可经受无限次周期循环而不破坏,此应力值称为材料的疲劳强度。
σ为抗拉强度,材料发生应变后,应力应变曲线中应力达到的最大值。
bσ为屈服强度,材料发生塑性变形时的应力值。
sδ为塑性变形的伸长率,是材料塑性变形的指标之一。
HB:布氏硬度HRC:洛氏硬度,压头为120°金刚石圆锥体。
(二)填空题1 屈服强度、抗拉强度、疲劳强度2 伸长率和断面收缩率,断面收缩率3 摆锤式一次冲击试验和小能量多次冲击试验, U型缺口试样和V型缺口试样4 洛氏硬度,布氏硬度,维氏硬度。
5 铸造、锻造、切削加工、焊接、热处理性能。
(三)选择题1 b2 c3 b4 d f a (四)是非题 1 对 2 对 3错 4错(五)综合题 1 最大载荷为2805.021038.5πσ⨯=F b断面收缩率%10010810010⨯-=-=A A A ϕ 2 此题缺条件,应给出弹性模量为20500MP,并且在弹性变形范围内。
利用虎克定律 320℃时的电阻率为13.0130℃时的电阻率为18.01二、材料的结合方式 (一)名词解释结合键:组成物质的质点(原子、分子或离子)间的相互作用力称为结合键,主要有共价键、离子键、金属键、分子键。
晶体:是指原子在其内部沿三维空间呈周期性重复排列的一类物质。
非晶体:是指原子在其内部沿三维空间呈紊乱、无序排列的一类物质。
近程有序:在很小的范围内(一般为几个原子间距)存在着有序性。
(二)填空题1 四,共价键、离子键、金属键、分子键。
2 共价键和分子键,共价键,分子键。
3 强。
4 强。
(三)选择题1 a2 b3 a(四)是非题1 错2 错3 对4 错(五)综合题1晶体的主要特点:○1结构有序;○2物理性质表现为各向异性;○3有固定的熔点;○4在一定条件下有规则的几何外形。
工程材料课后习题答案 (2)
参考答案第1章机械工程对材料性能的要求思考题与习题P201.3、机械零件在工作条件下可能承受哪些负荷?这些负荷对零件产生什么作用?p4工程构件与机械零件(以下简称零件或构件)在工作条件下可能受到力学负荷、热负荷或环境介质的作用。
有时只受到一种负荷作用,更多的时候将受到两种或三种负荷的同时作用。
在力学负荷作用条件下,零件将产生变形,甚至出现断裂;在热负荷作用下,将产生尺寸和体积的改变,并产生热应力,同时随温度的升高,零件的承载能力下降;环境介质的作用主要表现为环境对零件表面造成的化学腐蚀,电化学腐蚀及摩擦磨损等作用。
1.4 整机性能、机械零件的性能和制造该零件所用材料的力学性能间是什么关系?p7机器的整机性能除与机器构造、加工与制造等因素有关外,主要取决于零部件的结构与性能,尤其是关键件的性能。
在合理而优质的设计与制造的基础上,机器的性能主要由其零部件的强度及其它相关性能来决定。
机械零件的强度是由结构因素、加工工艺因素、材料因素和使用因素等确定的。
在结构因素和加工工艺因素正确合理的条件下,大多数零件的体积、重量、性能和寿命主要由材料因素,即主要由材料的强度及其它力学性能所决定。
在设计机械产品时,主要是根据零件失效的方式正确选择的材料的强度等力学性能判据指标来进行定量计算,以确定产品的结构和零件的尺寸。
1.5常用机械工程材料按化学组成分为几个大类?各自的主要特征是什么?p17机械工程中使用的材料常按化学组成分为四大类:金属材料、高分子材料、陶瓷材料和复合材料。
1.7、常用哪几种硬度试验?如何选用P18?硬度试验的优点何在P11?硬度试验有以下优点:●试验设备简单,操作迅速方便;●试验时一般不破坏成品零件,因而无需加工专门的试样,试验对象可以是各类工程材料和各种尺寸的零件;●硬度作为一种综合的性能参量,与其它力学性能如强度、塑性、耐磨性之间的关系密切,由此可按硬度估算强度而免做复杂的拉伸实验(强韧性要求高时则例外);●材料的硬度还与工艺性能之间有联系,如塑性加工性能、切削加工性能和焊接性能等,因而可作为评定材料工艺性能的参考;●硬度能较敏感地反映材料的成分与组织结构的变化,故可用来检验原材料和控制冷、热加工质量。
工程材料第二版习题(1-2)章答案
塑性变形的的物理本质: 塑性变形的的物理本质: 滑移和孪生共同产生的塑性变形。 滑移和孪生共同产生的塑性变形。 P24 滑移是晶体的一部分相对另一部分做整 体刚性移动。孪生是在切应力的作用下, 体刚性移动。孪生是在切应力的作用下,晶 体的一部分相对另一部分沿着一定的晶面 孪生面) (孪生面)产生一定角度的切变
2-13、晶粒大小对金属性能有何影响?细化 13、晶粒大小对金属性能有何影响? 晶粒方法有哪些? 晶粒方法有哪些? p17 答: 在一般情况下,晶粒愈小,则金属的强度. 在一般情况下,晶粒愈小,则金属的强度.塑 性和韧性愈好. 性和韧性愈好. 细化晶粒是提高金属性能的重要途径之一, 细化晶粒是提高金属性能的重要途径之一, 晶粒愈细,强度和硬度愈高, 晶粒愈细,强度和硬度愈高,同时塑性韧性 愈好。 愈好。 细化晶粒方法有: 细化晶粒方法有: 增大过冷度; 2.变质处理 变质处理; 3.附加振 增大过冷度; 2.变质处理; 3.附加振 动或搅动等方法; 动或搅动等方法;
5、晶粒 p11 晶粒---每个小晶体具有不规则的颗粒状外形。 ---每个小晶体具有不规则的颗粒状外形 晶粒---每个小晶体具有不规则的颗粒状外形。 何谓空间点阵、晶格、晶体结构和晶胞? 2-2、何谓空间点阵、晶格、晶体结构和晶胞? 常用金属的晶体结构是什么?划出其晶胞, 常用金属的晶体结构是什么?划出其晶胞, 并分别计算起原子半径、配位数和致密度? 并分别计算起原子半径、配位数和致密度? 1、空间点阵 p9 空间点阵-----为了便于分析各种晶体中的原子 空间点阵---为了便于分析各种晶体中的原子 排列及几何形状, 排列及几何形状,通常把晶体中的原子假想为 几何结点,并用直线从其中心连接起来,使之 几何结点,并用直线从其中心连接起来, 构成一个空间格子。 构成一个空间格子。
工程材料与热处理 第2章作业题参考答案
6。
配位数为12,原子半径为1/2a。
2实际金属中有哪些晶体缺陷?晶体缺陷对金属的性能有何影响?点缺陷、线缺陷、面缺陷一般晶体缺陷密度增大,强度和硬度提高。
3什么叫过冷现象、过冷度?过冷度与冷却速度有何关系?它对结晶后的晶粒大小有何影响?金属实际结晶温度低于理论结晶温度的现象称为过冷现象。
理论结晶温度与实际结晶温度之差称为过冷度。
金属结晶时的过冷度与冷却速度有关,冷却速度愈大,过冷度愈大,金属的实际结晶温度就愈低。
结晶后的晶粒大小愈小。
4金属的晶粒大小对力学性能有何影响?控制金属晶粒大小的方法有哪些?一般情况下,晶粒愈细小,金属的强度和硬度愈高,塑性和韧性也愈好。
控制金属晶粒大小的方法有:增大过冷度、进行变质处理、采用振动、搅拌处理。
5.如果其他条件相同,试比较下列铸造条件下铸件晶粒的大小:(1)金属型浇注与砂型浇注:(2)浇注温度高与浇注温度低;(3)铸成薄壁件与铸成厚壁件;(4)厚大铸件的表面部分与中心部分(5)浇注时采用振动与不采用振动。
(6)浇注时加变质剂与不加变质剂。
(1)金属型浇注的冷却速度快,晶粒细化,所以金属型浇注的晶粒小;(2)浇注温度低的铸件晶粒较小;(3)铸成薄壁件的晶粒较小;(4)厚大铸件的表面部分晶粒较小;(5)浇注时采用振动的晶粒较小。
(6)浇注时加变质剂晶粒较小。
6.金属铸锭通常由哪几个晶区组成?它们的组织和性能有何特点?(1)表层细等轴晶粒区金属铸锭中的细等轴晶粒区,显微组织比较致密,室温下力学性能最高;(2)柱状晶粒区在铸锭的柱状晶区,平行分布的柱状晶粒间的接触面较为脆弱,并常常聚集有易熔杂质和非金属夹杂物等,使金属铸锭在冷、热压力加工时容易沿这些脆弱面产生开裂现象,降低力学性能。
(3)中心粗等轴晶粒区由于铸锭的中心粗等轴晶粒区在结晶时没有择优取向,不存在脆弱的交界面,不同方向上的晶粒彼此交错,其力学性能比较均匀,虽然其强度和硬度低,但塑性和韧性良好。
7.为什么单晶体具有各向异性,而多晶体在一般情况下不显示各向异性?因为单晶体中的不同晶面和晶向上的原子密度不同,导致了晶体在不同方向上的性能不同的现象,因此其性能呈现各向异性的。
机械工程材料_习题集答案201207013
20120712 习题解答兰州第1章材料的性能一、选择题1.表示金属材料屈服强度的符号是( B) A.σ B。
σs C.σb D.σ-12。
表示金属材料弹性极限的符号是( A)A.σeB。
σs C.σb D。
σ—13.在测量薄片工件的硬度时,常用的硬度测试方法的表示符号是( B)A。
HB B.HRC C.HV D。
HS 4。
金属材料在载荷作用下抵抗变形和破坏的能力叫(A ) A。
强度B。
硬度C.塑性 D.弹性二、填空1.金属材料的机械性能是指在载荷作用下其抵抗(变形 )或(破坏)的能力。
2。
金属塑性的指标主要有(伸长率)和(断面收缩率)两种。
3。
低碳钢拉伸试验的过程可以分为弹性变形、(塑性变形)和(断裂)三个阶段。
4.常用测定硬度的方法有(布氏硬度测试法)、(洛氏硬度测试法)和维氏硬度测试法。
5.疲劳强度是表示材料经(无数次应力循环)作用而(不发生断裂时)的最大应力值。
三、是非题1。
用布氏硬度测量硬度时,压头为钢球,用符号HBS表示。
是2.用布氏硬度测量硬度时,压头为硬质合金球,用符号HBW表示。
是3。
金属材料的机械性能可以理解为金属材料的失效抗力。
四、改正题1. 疲劳强度是表示在冲击载荷作用下而不致引起断裂的最大应力。
将冲击载荷改成交变载荷2。
渗碳件经淬火处理后用HB硬度计测量表层硬度。
将HB改成HR3. 受冲击载荷作用的工件,考虑机械性能的指标主要是疲劳强度。
将疲劳强度改成冲击韧性4。
衡量材料的塑性的指标主要有伸长率和冲击韧性.将冲击韧性改成断面收缩率5. 冲击韧性是指金属材料在载荷作用下抵抗破坏的能力。
将载荷改成冲击载荷五、简答题1.说明下列机械性能指标符合所表示的意思:σs、σ0.2、HRC、σ—1、σb、δ5、HBS。
σs:屈服强度σ0。
2:条件屈服强度HRC:洛氏硬度(压头为金刚石圆锥)σ—1:疲劳极限σb: 抗拉强度σ5:l0=5d0时的伸长率(l0=5。
65s01/2)HBS:布氏硬度(压头为钢球)第2章材料的结构一、选择题1. 每个体心立方晶胞中包含有(B)个原子A。
工程材料第二章固体结构作业答案
所以 Cr 的晶体结构为体心立方结构(bcc) 8. 铁在 912℃时由 α–Fe(体心立方)变为 γ–Fe(面心立方) ,已知碳存在于铁 的间隙中,试解释为什么碳在γ–Fe 中的溶解度(最高可达 wc2.11%)比在α–Fe 中的溶解度(最高只有 wc 0.0218% )大?(已知γ–Fe、α–Fe 和碳的原子半径分 别为 0.129nm、0.125nm 和 0.077nm) 解: 实验证明, 碳原子无论是溶入α-Fe 还是γ-Fe 所处的间隙位置都是八面体间隙 现计算两种间隙的大小。 对γ-Fe,如课本面心立方晶体的八面体间隙图所示,以(100)晶面上碳原
因此 c/a=√8/3=1.633 6. Ni 的晶体结构为面心立方结构,其原子半径为 r =0.1243nm,试求 Ni 的晶格 常数和密度。
解:晶格常数 a Ni 的密度
4r 4 0.1243 0.3516(nm) 2 2
4A r 4 58.69 8.967(g/cm3 ) 3 8 3 23 a N A (3.516 10 ) 6.02 10
3
=4.308(g / cm3 )
4 3 4 3 4 rCs+ rCl (0.1673 0.1813 ) 3 K3 =3 0.683 3 3 2rCs+ +2rCl- 2(0.167 0.181) 3 3
4. 立方晶系的各{111}晶面构成一个八面体,试作图画出该八面体,并注出这些 具体晶面的指数。
(111) (111) (111) (111) (111) (111) (111)
(111)
5. 试证明理想密排六方结构的轴比 c/a=1.633。 证明:理想密排六方晶格配位数为 12,即晶胞上底面中心原子与其下面的 3 个 位于晶胞内的原子相切,成正四面体,如图所示
《材料科学与工程基础》-第二章-课后习题答案.pdf
材料科学与工程基础第二章课后习题答案1. 介绍材料科学和工程学的基本概念和发展历程材料科学和工程学是研究材料的组成、结构、性质以及应用的学科。
它涉及了从原子、分子层面到宏观的材料特性的研究和工程应用。
材料科学和工程学的发展历程可以追溯到古代人类使用石器和金属制造工具的时代。
随着时间的推移,人类不断发现并创造出新的材料,例如陶瓷、玻璃和合金等。
工业革命的到来加速了材料科学和工程学的发展,使得煤炭、钢铁和电子材料等新材料得以广泛应用。
2. 分析材料的结构和性能之间的关系材料的结构和性能之间存在着密切的关系。
材料的结构包括原子、晶体和晶界等方面的组成和排列方式。
而材料的性能则反映了材料在特定条件下的机械、热学、电学、光学等方面的性质。
材料的结构直接决定了材料的性能。
例如,金属的结晶结构决定了金属的塑性和导电性。
硬度和导电性等机械和电学性能取决于晶格中原子的排列方式和原子之间的相互作用。
因此,通过对材料的结构进行了解,可以预测和改变材料的性能。
3. 论述材料的性能与应用之间的关系材料的性能决定了材料的应用范围。
不同的材料具有不同的性能特点,在特定的应用领域中会有优势和局限。
例如,金属材料具有良好的导电性和导热性,适用于制造电子器件和散热器件。
聚合物材料具有良好的绝缘性和韧性,适用于制造电线和塑料制品等。
陶瓷材料具有良好的耐高温性和耐腐蚀性,适用于制造航空发动机和化学设备等。
因此,在材料科学和工程学中,对材料性能的研究是为了确定材料的应用和优化材料的性能。
4. 解释与定义材料的特性及其测量方法材料的特性是指材料所具有的特定性质或行为。
它包括了物理、化学、力学、热学、电学等方面的特性。
测量材料的特性需要使用特定的实验方法和设备。
例如,材料的硬度通常可以通过洛氏硬度试验仪或布氏硬度试验仪进行测量。
材料的强度可以通过拉伸试验或压缩试验来测量。
材料的导电性可以通过四探针法或霍尔效应进行测量。
通过测量材料的特性,可以对材料的性能进行评估和比较,并为材料的应用提供参考。
机械工程材料(第二版)课后习题答案
2-1常见的金属晶体结构有哪几种?它们的原子排列和晶格常数有什么特点?-Fe、-Fe、Al、Cu、Ni、Cr、V、Mg、Zn各属何种结构?答:常见晶体结构有3种:⑴体心立方:-Fe、Cr、V⑵面心立方:-Fe、Al、Cu、Ni⑶密排六方:Mg、Zn2---7为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性?答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。
第三章作业3-2 如果其它条件相同,试比较在下列铸造条件下,所得铸件晶粒的大小;⑴金属模浇注与砂模浇注;⑵高温浇注与低温浇注;⑶铸成薄壁件与铸成厚壁件;⑷浇注时采用振动与不采用振动;⑸厚大铸件的表面部分与中心部分。
答:晶粒大小:⑴金属模浇注的晶粒小⑵低温浇注的晶粒小⑶铸成薄壁件的晶粒小⑷采用振动的晶粒小⑸厚大铸件表面部分的晶粒小第四章作业4-4 在常温下为什么细晶粒金属强度高,且塑性、韧性也好?试用多晶体塑性变形的特点予以解释。
答:晶粒细小而均匀,不仅常温下强度较高,而且塑性和韧性也较好,即强韧性好。
原因是:(1)强度高:Hall-Petch公式。
晶界越多,越难滑移。
(2)塑性好:晶粒越多,变形均匀而分散,减少应力集中。
(3)韧性好:晶粒越细,晶界越曲折,裂纹越不易传播。
4-6 生产中加工长的精密细杠(或轴)时,常在半精加工后,将将丝杠吊挂起来并用木锤沿全长轻击几遍在吊挂7~15天,然后再精加工。
试解释这样做的目的及其原因?答:这叫时效处理一般是在工件热处理之后进行原因用木锤轻击是为了尽快消除工件内部应力减少成品形变应力吊起来,是细长工件的一种存放形式吊个7天,让工件释放应力的时间,轴越粗放的时间越长。
4-8 钨在1000℃变形加工,锡在室温下变形加工,请说明它们是热加工还是冷加工(钨熔点是3410℃,锡熔点是232℃)?答:W、Sn的最低再结晶温度分别为:TR(W) =(0.4~0.5)×(3410+273)-273 =(1200~1568)(℃)>1000℃TR(Sn) =(0.4~0.5)×(232+273)-273 =(-71~-20)(℃) <25℃所以W在1000℃时为冷加工,Sn在室温下为热加工4-9 用下列三种方法制造齿轮,哪一种比较理想?为什么?(1)用厚钢板切出圆饼,再加工成齿轮;(2)由粗钢棒切下圆饼,再加工成齿轮;(3)由圆棒锻成圆饼,再加工成齿轮。
《工程材料》习题集参考答案
1、细化晶粒虽能提高金属的强度,但增大了金属的脆性。
(为2、结构钢的淬透性,随钢中碳含量的增大而增大。
(为3、普通低合金结构钢不能通过热化处理进行强化。
(“4、置换固溶体必是无限固溶体。
(为5、单晶体必有各向异性。
(“6、普通钢和优质钢是按其强度等级来区分的。
(为7、过热钢经去应力退火后能显著细化晶粒。
(为&表面淬火主要用于高碳钢。
(为9、马氏体的晶体结构和铁素体的相同。
(为10、面心立方金属的塑性比体心立方金属的好。
(动11、铁素体是置换固溶体。
(为12、晶界是金属晶体的常见缺陷。
(“13、渗碳体是钢中常见的固溶体相。
(为14、金属的塑性变形主要通过位错的滑移进行。
(“15、金属的晶粒越细小,其强度越高,其塑性越好。
(“16、比重偏析不能通过热处理来消除。
(“17、上贝氏体的韧性比下贝氏体好。
(为18、对过共析钢工件进行完全退火可消除渗碳体网。
(为19、对低碳低合金钢进行正火处理可提高其硬度。
(必20、淬火获得马氏体的必要条件之一是其淬火冷却速度必须小于Vk°(为21、氮化件的变形远比渗碳件的小。
(“22、x x转变是非扩散性转变。
(“23、高锰钢在各种条件下均能表现出良好的耐磨性。
(为24、无限固溶体必是置换固溶体。
(“25、金属的晶粒越细小,其强度越高,但韧性变差。
(为26、所谓临界冷却速度就是指钢能获得完全马氏体组织的最小冷却速度。
(“27、钢进行分级淬火的目的是为了得到下贝氏体组织。
(为28、对奥氏体不锈钢进行固溶处理的目的是为了提高其强度。
(为29、弹簧钢的最终热处理应是淬火+低温回火。
(为30、凡单相固溶体均能进行形变强化。
(“31、x x转变是非扩散性转变。
(为32、可锻铸铁只能通过可锻化退火而得到。
(“33、凡间隙固溶体必是有限固溶体。
(“34、珠光体的片层间距越小,其强度越高,其塑性越差。
(为35、钢的临界冷却速度Vk越大,则其淬透性越好。
(为36、过共析钢的正常淬火一般均为不完全淬火。
机械工程材料_习题集答案
作业01 力学性能 参考答案一、下列情况分别是因为哪一个力学性能指标达不到要求?1. 紧固螺栓使用后发生塑性变形。
( 屈服强度 )2. 齿轮正常负荷条件下工作中发生断裂。
( 疲劳强度 )3. 汽车紧急刹车时,发动机曲轴发生断裂。
( 冲击韧度 )4. 不锈钢圆板冲压加工成圆柱杯的过程中发生裂纹。
( 塑性 )5. 齿轮工作在寿命期内发生严重磨损。
( 硬度 )二、下列现象与哪一个力学性能有关?1. 铜比低碳钢容易被锯割。
( 硬度 )2. 锯条易被折断,而铁丝不易折断。
( 塑性 )p151-4 甲、乙、丙、丁四种材料的硬度分别为45HRC 、90HRB 、800HV 、240HBS ,试比较这四种材料硬度的高低。
答: 45HRC →HV : 90HRB →HB : 183901307300HRB 1307300HB ≈-=-=所以,800HV >45HRC >240HBS >90HRB作业02a 金属结构与结晶 参考答案一、判断题( × )1. 凡是由液体凝固成固体的过程都是结晶过程。
( × )2. 室温下,金属晶粒越细,则强度越高、塑性越低。
二、选择题( b )1. 金属结晶时,冷却速度越快,其实际结晶温度将:a. 越高b. 越低c. 越接近理论结晶温度( b )2. 为细化晶粒,可采用:a. 快速浇注b. 加变质剂c. 以砂型代金属型(c )3. 晶体中的位错属于:a. 体缺陷b. 面缺陷c. 线缺陷d. 点缺陷三、填空题1. 晶体与非晶体结构上的最根本的区别是,晶体内原子排列是:(有规则、周期性的)。
2. γ-Fe的一个晶胞原子数=(4 )。
3. α-Fe、Al、Cu、Ni、V、Mg、Zn各属何种晶体结构:体心立方:(α-Fe、V );面心立方:(Al、Cu、Ni );密排六方:(Mg、Zn )4. 实际金属晶体中存在:(点、线、面)三种缺陷,引起晶格(畸变)。
5. 结晶过程是靠两个密切联系的基本过程来实现的,它们是:(形核)和(晶核长大)。
工程材料基础知识课后习题答案
⼯程材料基础知识课后习题答案第⼀章⼯程材料基础知识参考答案1.⾦属材料的⼒学性能指标有哪些?各⽤什么符号表⽰?它们的物理意义是什么?答:常⽤的⼒学性能包括:强度、塑性、硬度、冲击韧性、疲劳强度等。
强度是指⾦属材料在静荷作⽤下抵抗破坏(过量塑性变形或断裂)的性能。
强度常⽤材料单位⾯积所能承受载荷的最⼤能⼒(即应⼒σ,单位为Mpa)表⽰。
塑性是指⾦属材料在载荷作⽤下,产⽣塑性变形(永久变形)⽽不被破坏的能⼒。
⾦属塑性常⽤伸长率δ和断⾯收缩率ψ来表⽰:硬度是指材料抵抗局部变形,特别是塑性变形、压痕或划痕的能⼒,是衡量材料软硬程度的指标,是⼀个综合的物理量。
常⽤的硬度指标有布⽒硬度(HBS、HBW)、洛⽒硬度(HRA、HRB、HRC等)和维⽒硬度(HV)。
以很⼤速度作⽤于机件上的载荷称为冲击载荷,⾦属在冲击载荷作⽤下抵抗破坏的能⼒叫做冲击韧性。
冲击韧性的常⽤指标为冲击韧度,⽤符号αk表⽰。
疲劳强度是指⾦属材料在⽆限多次交变载荷作⽤下⽽不破坏的最⼤应⼒称为疲劳强度或疲劳极限。
疲劳强度⽤σ–1表⽰,单位为MPa。
2.对某零件有⼒学性能要求时,⼀般可在其设计图上提出硬度技术要求⽽不是强度或塑性要求,这是为什么?答:这是由它们的定义、性质和测量⽅法决定的。
硬度是⼀个表征材料性能的综合性指标,表⽰材料表⾯局部区域内抵抗变形和破坏的能⼒,同时硬度的测量操作简单,不破坏零件,⽽强度和塑性的测量操作复杂且破坏零件,所以实际⽣产中,在零件设计图或⼯艺卡上⼀般提出硬度技术要求⽽不提强度或塑性值。
3.⽐较布⽒、洛⽒、维⽒硬度的测量原理及应⽤范围。
答:(1)布⽒硬度测量原理:采⽤直径为D的球形压头,以相应的试验⼒F压⼊材料的表⾯,经规定保持时间后卸除试验⼒,⽤读数显微镜测量残余压痕平均直径d,⽤球冠形压痕单位表⾯积上所受的压⼒表⽰硬度值。
实际测量可通过测出d值后查表获得硬度值。
布⽒硬度测量范围:⽤于原材料与半成品硬度测量,可⽤于测量铸铁;⾮铁⾦属(有⾊⾦属)、硬度较低的钢(如退⽕、正⽕、调质处理的钢)(2)洛⽒硬度测量原理:⽤⾦刚⽯圆锥或淬⽕钢球压头,在试验压⼒F 的作⽤下,将压头压⼊材料表⾯,保持规定时间后,去除主试验⼒,保持初始试验⼒,⽤残余压痕深度增量计算硬度值,实际测量时,可通过试验机的表盘直接读出洛⽒硬度的数值。
工程材料及机械制造基础习题及答案
第一章材料的种类与性能1.强度:强度是指在外力作用下,材料抵抗变形和断裂的能力。
2.屈服强度:材料在外力作用下开始发生塑性变形的最低应力值。
3.弹性极限:产生的变形是可以恢复的变形的点对应的弹性变形阶段最大应力称为弹性极限。
4.弹性模量:材料在弹性变形范围内的应力与应变的比值称为弹性模量。
5.抗拉强度:抗拉强度是试样拉断前所能承受的最大应力值。
6.塑性:断裂前材料产生的塑性变形的能力称为塑性。
7.硬度:硬度是材料抵抗硬物压入其表面的能力。
8.冲击韧度:冲击韧度是材料抵抗冲击载荷的能力。
9.断裂韧度:断裂韧度是材料抵抗裂纹扩展的能力。
10.疲劳强度:疲劳强度是用来表征材料抵抗疲劳的能力。
11.黏着磨损:黏着磨损又称咬合磨损,其实质是接触面在接触压力作用下局部发生黏着,在相对运动时黏着处又分离,使接触面上有小颗粒被拉拽出来,反复进行造成黏着磨损。
12.磨粒磨损:磨粒磨损是当摩擦副一方的硬度比另一方大的多时,或者在接触面之间存在着硬质粒子是所产生的磨损。
13.腐蚀磨损:腐蚀磨损是由于外界环境引起金属表面的腐蚀物剥落,与金属表面之间的机械磨损相结合而出现的磨损。
14.功能材料:是具有某种特殊的物理性能,化学性能,生物性能以及某些功能之间可以相互转化的材料。
15.使用性能:是指在正常使用条件下能保证安全可靠工作所必备的性能,包括材料的力学性能,物理性能,化学性能等。
16.工艺性能:是指材料的可加工性,包括可锻性,铸造性能,焊接性,热处理性能及切削加工性。
17.交变载荷:大小,方向随时间呈周期性变化的载荷作用。
18.疲劳:是机械零件在循环或交变载荷作用下,经过较长时间的工作而发生断裂的现象。
20.蠕变:固体材料在保持应力不变的条件下,应变随时间延长而增加的现象。
21.脆断:在拉应力状态下没有出现塑性变形而突然发生脆性断裂的现象。
22.应力松弛:是指承受弹性应变的零件在工作过程中总变形量保持不变,但随时间的延长,工作应力自行逐渐衰减的现象。
工程材料课后习题答案
《工程材料及机械制造基础》习题参考答案第一章材料的种类与性能(P7)1、金属材料的使用性能包括哪些?力学性能、物理性能、化学性能等。
2、什么是金属的力学性能?它包括那些主要力学指标?金属材料的力学性能:金属材料在外力作用下所表现出来的与弹性和非弹性反应相关或涉及力与应变关系的性能。
主要包括:弹性、塑性、强度、硬度、冲击韧性等。
3、一根直径10mm的钢棒,在拉伸断裂时直径变为8.5mm,此钢的抗拉强度为450Mpa,问此棒能承受的最大载荷为多少?断面收缩率是多少?F=35325N ψ=27.75%4、简述洛氏硬度的测试原理。
以压头压入金属材料的压痕深度来表征材料的硬度。
5、什么是蠕变和应力松弛?蠕变:金属在长时间恒温、恒应力作用下,发生缓慢塑性变形的现象。
应力松弛:承受弹性变形的零件,在工作过程中总变形量不变,但随时间的延长,工作应力逐渐衰减的现象。
6、金属腐蚀的方式主要有哪几种?金属防腐的方法有哪些?主要有化学腐蚀和电化学腐蚀。
防腐方法:1)改变金属的化学成分;2)通过覆盖法将金属同腐蚀介质隔离;3)改善腐蚀环境;4)阴极保护法。
第二章材料的组织结构(P26)1、简述金属三种典型结构的特点。
体心立方晶格:晶格属于立方晶系,在晶胞的中心和每个顶角各有一个原子。
每个体心立方晶格的原子数为:2个。
塑性较好。
面心立方晶格:晶格属于立方晶系,在晶胞的8个顶角和6个面的中心各有一个原子。
每个面心立方晶格的原子数为:4个。
塑性优于体心立方晶格的金属。
密排六方晶格:晶格属于六方棱柱体,在六棱柱晶胞的12个项角上各有一个原子,两个端面的中心各有一个原子,晶胞内部有三个原子。
每个密排六方晶胞原子数为:6个,较脆2、金属的实际晶体中存在哪些晶体缺陷?它们对性能有什么影响?存在点缺陷、线缺陷和面缺陷。
使金属抵抗塑性变形的能力提高,从而使金属强度、硬度提高,但防腐蚀能力下降。
3、合金元素在金属中存在的形式有哪几种?各具备什么特性?存在的形式有固溶体和金属化合物两种。
土木工程材料课后习题与答案
土木工程材料习题集与参考答案第一章土木工程材料的基本性质1. 试述材料成分、结构和构造对材料性质的影响?参考答案:材料的成分对性质的影响:材料的组成及其相对含量的变化,不仅会影响材料的化学性质,还会影响材料的物理力学性质。
材料的成分不同,其物理力学性质有明显的差异。
值得注意的是,材料中某些成分的改变,可能会对某项性质引起较大的改变,而对其他性质的影响不明显。
材料的结构对性质的影响:材料的结构是决定材料物理性能的重要因素。
可分为微观结构和细观结构。
材料在微观结构上的差异影响到材料的强度、硬度、熔点、变形、导热性等性质,可以说材料的微观结构决定着材料的物理力学性能。
材料的构造对性质的影响:材料的构造主要是指材料的孔隙和相同或不同材料间的搭配。
不同材料适当搭配形成的复合材料,其综合性能优于各个单一材料。
材料的内部孔隙会影响材料的强度、导热性、水渗透性、抗冻性等。
总之,材料的组成、结构与构造决定了材料的性质。
材料的组成、结构与构造的变化带来了材料世界的千变万化。
2.试述材料密度、表观密度、孔隙率的定义、测定方法及相互关系。
密度与视密度的区别何在?参考答案:密度:是指材料在密实状态下单位体积的质量。
测定方法:将材料磨细成粒径小于0.25mm的粉末,再用排液法测得其密实体积。
用此法得到的密度又称“真密度”。
表观密度:是指材料在自然状态下单位体积的质量。
测定方法:对于外形规则的块体材料,测其外观尺寸就可得到自然体积。
对于外观不规则的块体材料,将其加工成规则的块体再测其外观尺寸,或者采用蜡封排液法。
孔隙率:材料中的孔隙体积与总体积的百分比。
相互关系:密度与视密度区别:某些散粒材料比较密实,其内部仅含少量微小、封闭的孔隙,从工程使用角度来说,不需磨细也可用排液法测其近似的密实体积,这样测得的密度称为“视密度”。
3.孔隙率及孔隙特征对材料的表观密度、强度、吸水性、抗渗性、抗冻性、导热性等性质有何影响?参考答案:对表观密度的影响:材料孔隙率大,在相同体积下,它的表观密度就小。
工程材料习题集参考答案(第二章)汇编
习题集部分参考答案2金属的晶体结构思考题1.晶体和非晶体的主要区别是什么?答:晶体和非晶体的区别在于内部原子的排列方式。
晶体内部的原子(或分子)在三维空间按一定规律作周期性排列,而非晶体内部的原子(或分子)则是杂乱分布的,至多有些局部的短程规律排列。
因为排列方式的不同,性能上也有所差异。
晶体有固定的熔点,非晶体没有,晶体具有各向异性,而非晶体则是各向同性。
2.何为各向异性?答:各向异性是指晶体的某些物理性能和力学性能在不同方向上具有不同的数值。
3.为什么单晶体呈各向异性,而多晶体通常呈各向同性?答:单晶体是原子排列方位完全一致的一个晶粒,由于在不同晶向上原子密度不同,原子间的结合力不同,因而导致在单晶体中的各个方向上性能差异。
对于多晶体中的任意一个晶粒来看,基本满足单晶体的特征,呈现各向异性,但是在多晶体系统中,单一晶粒的各向异性已经被周围其他位向的晶粒所“干扰”或“抵消”,整个多晶系统呈现其各向同性。
4.什么叫晶体缺陷?晶体中可能有哪些晶体缺陷?他们的存在有何实际意义?答:晶体缺陷是指金属晶体中原子排列的不完整性。
常见的晶体缺陷有点缺陷、线缺陷和面缺陷三类,它们都会造成材料的晶格畸变。
点缺陷是指呈点状分布的缺陷,包含有空位、间隙原子和置换原子等,它对材料中的原子扩散、固态相变,以及材料的物理性能(电阻、体积、密度)等都会产生重大影响。
过饱和的点缺陷还可以提高材料的强度。
线缺陷是各种类型的位错。
对材料的变形、扩散以及相变起着非常大的作用。
特别它很好地解释了塑性变形的微观机理,使我们了解到滑移是借助于位错的运动来实现的。
当位错密度不高的情况下,位错支持了滑移,材料的塑性很好,但是当位错密度达到了较高的水平时,位错间的相互作用会造成位错的彼此“纠缠”,使滑移运动受阻,这时表现出材料的塑性变形的抗力提高,材料的强度提高。
金属晶体中面缺陷主要有晶界、亚晶界、孪晶界和相界等。
比如:晶界处原子的平均能量比晶内高,在高温时,晶粒容易长大。
工程材料习题册打印答案
第一章 金属的性能一、填空将正确答案填在横线上;下同1、金属材料的性能一般分为两类;一类是使用性能,它包括物理性能、化学性能和力学性能等;另一类是工艺性能,它包括铸造性能、锻造性能、焊接性能和切削加工性能等;2、大小不变或变化很慢的载荷称为静载荷,在短时间内以较高速度作用于零件上的载荷称为冲击载荷,大小和方向随时间发生周期变化的载荷称为交变载荷;3、变形一般分为弹性变形和塑性变形两种;不能随载荷的去除而消失的变形称为塑性变形;4、强度是指金属材料在静载荷作用下,抵抗塑性变形或断裂的能力;5、强度的常用衡量指标有抗拉强度和屈服强度,分别用符号σb 和σs 表示;6、如果零件工作时所受的应力低于材料的σb 或σ,则不会产生过量的塑性变形;7、有一钢试样其截面积为100mm 2,已知钢试样的MPa S 314=σ MPa b 530=σ ;拉伸试验时,当受到拉力为—————— 试样出现屈服现象,当受到拉力为—————— 时,试样出现缩颈;8、断裂前金属材料产生永久变形的能力称为塑性;金属材料的延伸率和断面收缩率的数值越大,表示材料的塑性越好;9、一拉伸试样的原标距长度为50mm,直径为10mm 拉断后试样的标距长度为79mm,缩颈处的最小直径为 mm,此材料的伸长率为—————,断面收缩率为——————;10.金属材料抵抗冲击载荷作用而不破坏能力;称为冲击韧性;11.填出下列力学性能指标的符号:屈服点σs,抗拉强度σb ,洛氏硬度C 标尺HRC,伸长率δ,断面收缩率ψ,冲击韧度αk,疲劳极限σ-1;二、判断正确打√,错误打×;下同1、弹性变形能随载荷的去除而消失;√2、所有金属材料在拉伸试验时都会出现显着的屈服现象;×3、材料的屈服点越低,则允许的工作应力越高;×4、洛氏硬度值无单位;√5、做布氏硬度试验时,当试验条件相同时,其压痕直径越小,材料的硬度越低;×6、材料对小能量多次冲击抗力的大小主要取决于材料的强度和塑性; ×7、布氏硬度测量法不宜于测量成品及较薄零件; √8、洛氏硬度值是根据压头压入被测定材料的压痕深度得出的;√9、铸铁的铸造性能比钢好,故常用来铸造形状复杂的工件;√三.选择把正确答案填入括号内;下同1、拉伸试验时,试样拉断前所能承受的最大应力称为材料的B ;A.屈服点B.抗拉强度C.弹性极限2、做疲劳试验时,试样承受的载荷为CA.静载荷B.冲击载荷 C 交变载荷3、洛氏硬度C 标尺所用的压头是 BA..淬硬钢球B.金刚石圆锥体C.硬质合金球4.金属材料抵抗塑性变形或断裂的能力称为CA..塑性B.硬度C.强度5.用拉伸试验可测定材料的A 性能指标;A..强度B.硬度C.韧性四.名词解释1.弹性变形与塑性变形2.疲劳极限与抗拉强度五.简述1.画出低碳钢力—伸长曲线,并简述拉伸变形的几个阶段;2.什么是塑性塑性对材料的使用有什么实用意义第二章金属的结构与结晶一、填空1.原子呈无序堆积状况的物体叫非晶体;原子呈有序有规则排列的物体称为晶体;一般固态金属都属于晶体;2.在晶体中由一系列原子组成的平面,称为晶面;通过两个或两个以上原子中心的直线,可代表晶格空间排列的一定晶向的直线,称为晶向;3.常见的金属晶格类型有体心立方、面心立方和密排六方三种;铬属于体心立方晶格,铜属于面心立方晶格,锌属于密排六方晶格;4.金属晶体结构的缺陷主要有点缺陷、线缺陷、面缺陷;晶体缺陷的存在都会造成晶格畸变,使塑性变形抗力增大,从而使金属的强度提高;提高;7.理论结晶温度与实际结晶温度之差称为过冷度;过冷度的大小与冷却速度有关,冷却速度越快,金属的实际结晶温度越低,过冷度也就越大;8.金属的结晶过程是由晶核的形成和长大两个基本过程组成的;9.金属在固态下,随温度的改变,由一种晶格转变为另一种晶格的现象称为同素异构转变;二、判断正确打√,错误打×;下同2.非晶体具有各向同性的特点;√3.体心立方晶格的原子位于立方体的八个顶角及立方体六个平面的中心;×4.金属的实际结晶温度均低于理论结晶温度;√5.金属结晶时过冷度越大;结晶后晶粒越粗; ×6.一般说,晶粒越细小,金属材料的力学性能越好;√8.单晶体具有各向异性的特点; √9.在任何情况下,铁及其合金都是体心立方晶格;×10.同素异构转变过程也遵循晶核形成与晶核长大的规律;√11.金属发生同素异构转变时要放出热量,转变是在恒温下进行的;√三、选择1.α—Fe是具有 A晶格的铁;A.体心立方 B. 面心立方 C.密排六方2.纯铁在1450℃时为 A晶格,在1000℃时为B 晶格,在600℃时为A 晶格;A.体心立方 B.面心立方 C.密排六方3.纯铁在700℃时称为A ,在1000℃时称为B ,在1500℃时称为 C;A.α—Fe B.γ—Fe C.δ—Fe五.简述3.如果其他条件相同,试比较下列铸造条件下铸铁晶粒的大小;1金属模浇注与砂型浇注金属模浇注晶粒小2铸成薄件与铸成厚件铸成薄件晶粒小3浇注时采用振动与不采用振动浇注时采用振动晶粒小4.写出纯铁的同素异构转变式;第三章金属的塑性变形与再结晶一、填空1.金属材料经压力加工变形后,不仅改变了外形尺寸,而且改变了内部组织和性能;2.弹性变形的本质是外力克服原子间的作用力,使原子间距发生发生改变;3.多晶体内晶界对塑性变形有较大的阻碍作用,这是因为晶界处原子排列比较紊乱,阻碍了为错的移动,所以晶界越多,多晶体的变形抗力越大;4.实践证明,再结晶温度与金属变形的程度有关,金属的变形程度越大,再结晶温度越 ;5.从金属学观点来说,凡在再结晶温度以下进行的加工称为冷加工在再结晶温度以上进行的加工称为热加工;二、判断正确打√,错误打×;下同1.一般来说,晶体内滑移面和滑移方向越多,则金属的塑性越好;√2.实际上滑移是借助于位错的移动来实现的,故晶界处滑移阻力最小;×3.塑性变形只改变金属的力学性能; ×4.回复时,金属的显微组织没有明显变化; √5.金属铸件可以用再结晶退火来细化晶粒;×6.为保持冷变形金属的强度和硬度,应采用再结晶退火; ×7.在高温状态下进行的变形加工称加工×8.热加工过程实际上是加工硬化和再结晶这两个过程的交替进行;√三、选择1.钨的再结晶温度为1200℃,对钨来说在1100℃的高温下进行的加工属于A A.冷加工 B. 热加工2.冷热加工的区别在于加工后是否存在AA.加工硬化 B. 晶格改变 C. 纤维组织3.钢在热加工后形成纤维组织,使钢的性能发生变化,即沿纤维的方向具有较高的A 沿垂直于纤维的方向具有较高的C ;A.抗拉强度 B. 抗弯强度 C. 抗剪强度四、简述1.为什么晶粒越细,金属的强度越高,塑性,韧性就越好1.什么是加工硬化现象试举生产或生活中的实例来说明加工硬化现象的利弊;2.什么是再结晶退火再结晶退火的温度与再结晶温度有何关系3.热加工对金属的组织和性能有何影响第四章铁碳合金一、填空1.合金是一种金属元素与其他金属元素或非金属元素通过熔炼或其他方法结合而成的具有金属特性的物质;2.合金中成分、结构及性能相同的组成部分称为相;3.根据合金中各组元之间的相互作用不同,合金的组织可分为固溶体、金属化合物和机械混合物三种类型;4.根据溶质原子在溶剂晶格中所处的位置不同,固溶体可分为间隙固溶体和置换固溶体两种; 5.合金组元之间发生相互作用而形成的一种具有金属特性的物质称为金属化合物;其性能特点是熔点高,硬度高,脆性大 ;奥氏体、渗碳体、珠光体、莱氏体;6.铁碳合金的基本组织有五种,它们是铁素体、奥氏体、和渗碳体;7.铁碳合金的基本相是铁素体、8.在铁碳合金基本组织中属于固溶体的有铁素体和奥氏体;9.碳在奥氏体中溶解度随温度的不同而变化,在1148℃时碳的溶解度可达%在727℃时碳的溶解度为%;10.铁碳合金相图是表示在缓慢冷却或加热条件下,不同成分的铁碳合金的状态或组织随温度变化的图形;11.分别填出下列铁碳合金组织的符号:;奥氏体A、γ,铁素体F、α,渗碳体Fe3C,珠光体P,高温莱氏体Ld,低温莱氏体Ld’;的铁碳合金称为钢;根据室温组织不同,钢又分为三类:亚共析钢,其室温组织为P 12.含碳量%%、和F共析钢钢,其室温组织为P、过共析钢钢钢,其室温组织为P和Fe3C;、13.铁素体的性能特点是具有良好的塑性和韧性,而强度和硬度很低.14.共析钢冷却到S点时,会发生共析转变,从奥氏体中同时析出铁素体和渗碳体的混合物,称为珠光体;15..莱氏体是奥氏体和渗碳体的混合物.当温度低于727℃时,莱氏体中的奥氏体转变为珠光体,所以室温下的莱氏体是由珠光体和渗碳体组成,又称为低温莱氏体Ld’;二.判断正确打√,错误打×;下同1.固溶体的晶格类型与溶剂的晶体类型相同;√2.金属化合物的晶格类型完全不同于任一组元的晶格类型. √3.金属化合物一般具有复杂的晶体结构;√4.碳在γ—Fe中的溶解度比在α—Fe中的溶解度小; ×5.奥氏体的强度、硬度不高,但具有良好的塑性; √6.渗碳体是铁与碳的混合物; ×7.过共晶白口铸铁的室温组织是低温莱氏体加一次渗碳体. √8.碳在奥氏体中的溶解度随温度的升高而减小; ×9.渗碳体的性能特点是硬度高、脆性大; √10.奥氏体向铁素体的转变是铁发生同素异构转变的结果;√11.含碳量为%和%的钢属于亚共析钢,在室温下的组织均由珠光体和铁素体组成,所以它们的力学性能相同;×12.莱氏体的平均含碳量为%;×三.选择1.组成合金的最基本的独立物质称为 BA.相B.组元C.组织2.合金固溶强化的主要原因是CA.晶格类型发生了变化B.晶粒细化C.晶格发生了畸变3.铁素体为B 晶格,奥氏体为A 晶格.A.面必立方B.体心立方C.密排六方4.渗碳体的含碳量为C %5.珠光体的平均含碳量为A %6.共晶白口铁的含碳量为B %7.铁碳合金共晶转变的温度是B ℃8.含碳量为%的铁碳合金,在室温下的组织为CA.珠光体B.珠光体加铁素体C.. 珠光体加二次渗碳体9.铁碳合金相图上的ES线,其代号用C 表示..PSK线用代号A 表示,GS线用代号 B.表示A,A110.铁碳合金相图上的共析线是C .A..ECF11.从奥氏体中析出的渗碳体称为 B,从液体中结晶出的渗碳体称为A ;A.一次渗碳体 B.二次渗碳体 C.三次渗碳体12.将含碳量为%的铁碳合金加热到650℃时,其组织为C ,加热到1100℃时其组织为B. ;A珠光体 B.奥氏体 C.珠光体加渗碳体 D.奥氏体加渗碳体13.亚共析钢冷却到GS线时要从奥氏体中析出A ;A.铁素体 B.渗碳体 C.珠光体15.亚共析钢冷却到PSK线时,要发生共析转变,奥氏体转变成B ;A.珠光体加铁素体 B.珠光体 C.铁素体四、名词解释1.钢与白口铸铁2.铁素体与奥氏体3.珠光体与莱氏体4.共晶转变与共析转变5.固溶强化与加工硬化五、简述C相图.1.绘出简化后的Fe—Fe33.简述含碳量为%,%的铁碳合金从液态冷至室温时的组织转变过程,并画出室温组织示意图.4.根据Fe—FeC合金相图,说明下列现象的原因.3(1)含碳量为1%的铁碳合金比含碳量%的铁碳合金的硬度高.(2)一般要把钢材加热到1000~1250℃高温下进行锻轧加工.(3)靠近共晶成分的铁碳合金的铸造性能好.第五章碳素钢一.填空1.碳素钢是含碳量小于%的铁碳合金;2.碳素钢中除铁、碳外还常有Si,Mn,S,P,等元素;其中Si,Mn是有益元素,是S,P有害元素; 3.含碳量小于%的钢为低碳钢,含碳量为%~%的钢为中碳钢,含碳量大于%的钢为高碳钢;4.45钢按用途分类属于碳素结构钢,按质量分类属于钢,按含碳量分类属于亚共析钢;5.T12A钢按用途分类属于碳素工具钢,按含碳量分类属于高碳钢,按质量分类属于高级优质碳素钢;二,判断正确打√,错误打×;下同1.T10钢的含碳量为10%; ×2.锰、硅在碳钢中都是有益元素,适当地增加其含量,能提高钢的强度;√3.硫是钢中的有益元素,它能使钢的脆性下降;×4.碳素工具钢都是优质或高级优质钢; √5.碳素工具钢的含碳量一般都大于%√6.铸钢可用于铸造形状复杂而力学性能要求较高的零件;√7.碳素弹簧钢的含碳量一般在%以下; ×三、选择1.08F钢中的平均含碳量为AA.0.08% %2.普通、优质和高级优质钢是按钢的B 进行划分;A.力学性能的高低 ,P含量的多少 ,Si含量的多少3.在下列牌号中属于优质碳素结构钢的有BA.T8A —A·F4.在下列牌号中属于工具钢的有CA.20 Mn5.选择制造下列零件的材料:冷冲压件 A;齿轮 B;小弹簧C ;A.08F C. 65Mn6.选择制造下列工具所采用的材料:錾子A ;锉刀C ;手工锯条B ;A.T8 B. T10四、名词解释1.08F2.453.65Mn4.T12A5.ZG340—6406.Q235—A·F五、简述1.硫、磷元素的含量为什么在碳钢中要严格控制,而在易切削钢中又要适当提高2.碳素工具钢的含碳量对力学性能有何影响如何选用第六章钢的热处理一、填空1.根据工艺的不同,钢的热处理方法可分为退火、正火、淬火、回火、及表面热处理五种2.共析钢的等温转娈曲线中,在A1—550℃温度范围内转变产物为珠光体、索氏体和屈氏体、;在550℃~Ms温度范围内,转变产物为上贝氏体和下贝氏体;3.常用的退火方法有完全退火、球化退火和去应力退火等;4.工厂里常用的淬火方法有单液淬火、双液淬火、分级淬火和等温淬火等;5.感应加热表面淬火法,按电流频率不同可分为高频、中频和工频三种;6.化学热处理是通过分解、吸收和扩散三个基本过程完成的;7.要求表面具有高的硬度而心部需要足够的韧性的零件应进行表面热处理;8.根据回火温度的不同,回火可分为低温回火、中温回火和高温回火三类,回火后得到的组织分别是M回、T回和S回;二、判断正确打√,错误打×;下同1.实际加热时的临界点总是低于相图上的临界点;×2.珠光体向奥氏体转变也是通过形核及晶核长大的过程进行的;√3.珠光体、索氏体、屈氏体都是片层状的铁素体和渗碳体混合物,所以它们的力学性能相同;×5.钢在实际加热条件下的临界点分别用Ar1, Ar3,Arcm表示;×8.在去应力退火过程中,钢的组织不发生变化;√9.由于正火较退火冷却速度快,过冷度大,转变温度较低,获得组织较细,因此同一种钢,正火要比退火的强度和硬度高;√10.钢的最高淬火硬度,主要取决于钢中奥氏体的含碳量;×11.淬透性好的钢,淬火后硬度一定很高;×16.同类钢在相同加热条件下,水淬比油淬的淬透性好;×三、选择8.调质处理的组织是B ;A.回火马氏体 B.回火索氏体 C.回火屈氏体10.化学热处理与其他热处理方法的主要区别是C.A.加热温度 B.组织变化 C.改变表面化学成分11.零件渗碳后一般须经A 处理,才能达到表面硬而耐磨的目的;A.淬火+低温回火 B.正火 C.调质12.用15钢制造的齿轮,要求齿轮表面硬度高而心部具有良好的韧性,应采用 C热处理;若改用45钢制造这一齿轮,则采用B 热处理;A.淬火+低温回火 B.表面淬火+低温回火 C.渗碳淬火+低温回火14.用65Mn钢做弹簧,淬火后应进行B ;用T10A钢做锯片,淬火后应进行C ;A.高温回火 B.中温回火 C.低温回火四、名词解释4.淬透性与淬硬性五.简述3.什么是退火退火的目的有哪些5.什么是正火正火有哪些应用6.什么是淬火淬火的主要目的是什么9.什么是临界冷却速度它与钢的淬透性有何关系第七章合金钢一、填空1..合金元素在钢中的主要作用有强化铁素体、形成合金化合物、细化晶粒—和提高钢的淬透性和提高回火稳定性;2.合金钢按主要用途分类,可分为合金结构钢、合金工具钢、及特殊性能钢三大类;3.常用的不锈钢有马氏体型和奥氏体型两种二、判断正确打√,错误打×;下同2.大部分合金钢的淬透性都比碳钢好;√8.合金工具钢都是高碳钢;×10.GCr15钢是滚动轴承钢,但又可制造量具、刀具和冷冲模具等;√12.Cr12W8V是不锈钢;×三、选择1.GCr15钢的平均含铬量为B %A.2.将下列合金钢牌号归类:合金结构钢有A、B、C ;合金工具负钢有D、E ;特殊性能有F ;合金调质钢有A ;合金弹簧钢有B、C ;合金模具钢有D、E ;不锈钢有F ;A.40Cr3.正确选用下列零件材料:机床主轴 B;板弹簧 E;坦克履带F ;轴承流动体;贮酸槽A ;汽车、拖拉机变速齿轮 D;B. 40Cr E. 60Si2Mn4.合金调质钢的含碳量一般是B ;A.<% C.>%四.名词解释20CrMnTi50CrVA9SiCrCrWMnW18Cr4V1Cr134Cr14Ni14W2MoZGMn13第八章铸铁一填空1.铸铁是含碳量大于%的铁碳合金,根据铸铁中石墨的存在形状不同,铸铁可分为灰铸铁、可锻铸铁、球墨铸铁和蠕墨铸铁等;2.铸铁成分中含碳硅锰硫磷等元素,其中C和Si元素的含量越高,越有利于石墨化进行,而Mn和S 元素是强烈阻碍石墨化的元素;3.灰铸铁中,由于石墨的存在降低了铸铁的力学性能,但使铸铁获得了良好的铸造性能、切削性能、耐磨性、减振性能及低的缺口敏感性;4.可锻铸铁是由白口铸铁通过石墨化退火处理,使白口铸铁中渗碳体分解为团絮状状石墨的铸铁.5.灰铸铁经孕育处理后,可使石墨片及基体组织得到细化,使其塑性、韧性有很大的提高.6.球墨铸铁是在浇注前往铁水中加入适量的球化剂和孕育剂,浇注后获球状石墨的铸铁;7.白口铸铁中的碳主要以渗碳体形式存在,而灰口铸铁中的碳主要以片状石墨形式存在;二、判断正确打√,错误打×;下同2.可锻铸铁比灰铸铁的塑性好,因此可以进行锻压加工. ×3.厚铸铁件的表面硬度总比内部高. √5.灰铸铁的强度、塑性和韧性远不如钢. √8.灰铸铁是目前应用最广泛的一种铸铁. √9.白口铸铁的硬度适中,易于切削加工. ×10.铸铁中的石墨数量越多,尺寸越大,铸件的强度就越高,塑性,韧性就越好. ×三、选择1.为提高灰铸铁的表面硬度和耐磨性,采用A 热处理效果较好.A.渗碳后淬火+低温回火B.电加热表面淬火等温淬火3.选择下列零件的材料:机床床身A ;汽车后桥外壳B;柴油机曲轴C .—10 —054.铸铁中的碳以石墨形态析出的过程称为A .A.石墨化B.变质处理C.球化处理四、名词解释HT250KTH350—10KTZ500—04QT600—02五、简述1.简述影响石墨化的主要因素.第九章有色金属及硬质合金一、填空2.普通黄铜是由Cu、Zn组成的二元合金,在普通黄铜中加入其他合金元素时称特殊黄铜.4.工业纯铝具有密度小、导电性好、抗腐蚀能力强、强度低、塑性好等特点.5.变形铝合金根据其主要性能特点不同可分为:LF铝、LY铝、LC铝和LD铝等.6.铸造铝合金包括Al-Si、Al-Cu、Al-Mg、Al-Zn等系列合金.二、判断正确打√,错误打×;下同5.工业纯铝中具有较高的强度,常用作工程结构材料. ×6.变形铝合金都不能用热处理强化. ×三.选择,它是 B..1.某一材料的牌号为T4A.含碳量为%的碳素工具钢号工业纯铜 C. 4号工业纯钛2.将相应的牌号填在括号里:普通黄铜A ;铸造黄铜 D;锡青铜B ;铍青铜C .—33.将相应的牌号填在括号里:硬铝B ;防锈铝A ;超硬铝D ;铸造铝C 合金;锻铝. E按工艺特点来分属于B 铝合金,它是热处理C 的铝合金.A.铸造B.变形C.不能强化D.强化四、名词解释T2H68HPb59—1L4LC4。
(完整版)工程材料课后习题参考答案
工程材料第一章金属的晶体结构与结晶1.解释以下名词点缺陷:原子排列不规那么的区域在空间三个方向尺寸都很小,主要指空位间隙原子、置换原子等.线缺陷:原子排列的不规那么区域在空间一个方向上的尺寸很大,而在其余两个方向上的尺寸很小.如位错.面缺陷:原子排列不规那么的区域在空间两个方向上的尺寸很大,而另一方向上的尺寸很小.如晶界和亚晶界.亚晶粒:在多晶体的每一个晶粒内,晶格位向也并非完全一致,而是存在着许多尺寸很小、位向差很小的小晶块,它们相互镶嵌而成晶粒,称亚晶粒.亚晶界:两相邻亚晶粒间的边界称为亚晶界.刃型位错:位错可认为是晶格中一局部晶体相对于另一局部晶体的局部滑移而造成.滑移局部与未滑移局部的交界线即为位错线.如果相对滑移的结果上半局部多出一半原子面,多余半原子面的边缘好似插入晶体中的一把刀的刃口,故称“刃型位错〞.单晶体:如果一块晶体,其内部的晶格位向完全一致,那么称这块晶体为单晶体.多晶体:由多种晶粒组成的晶体结构称为“多晶体〞.过冷度:实际结晶温度与理论结晶温度之差称为过冷度.自发形核:在一定条件下,从液态金属中直接产生,原子呈规那么排列的结晶核心.非自发形核:是液态金属依附在一些未溶颗粒外表所形成的晶核.变质处理:在液态金属结晶前,特意参加某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提升了形核率,细化晶粒,这种处理方法即为变质处理.变质剂:在浇注前所参加的难熔杂质称为变质剂.2.常见的金属晶体结构有哪几种a -Fe、丫- Fe、Al、Cu、Ni、Pb、Cr、V、Mg、Zn各属何种晶体结构答:常见金属晶体结构:体心立方晶格、面心立方晶格、密排六方晶格;a— Fe、Cr、V属于体心立方晶格;丫一Fe、Al、Cu、Ni、Pb属于面心立方晶格;Mg、Zn属于密排六方晶格;3.配位数和致密度可以用来说明哪些问题答:用来说明晶体中原子排列的紧密程度.晶体中配位数和致密度越大,那么晶体中原子排列越紧密.4.晶面指数和晶向指数有什么不同答:晶向是指晶格中各种原子列的位向,用晶向指数来表示,形式为uvw ;晶面是指晶格中不同方位上的原子面,用晶面指数来表示,形式为hkl.5.实际晶体中的点缺陷,线缺陷和面缺陷对金属性能有何影响答:如果金属中无晶体缺陷时,通过理论计算具有极高的强度,随着晶体中缺陷的增加,金属的强度迅速下降,当缺陷增加到一定值后,金属的强度又随晶体缺陷的增加而增加.因此,无论点缺陷,线缺陷和面缺陷都会造成晶格崎变,从而使晶体强度增加.同时晶体缺陷的存在还会增加金属的电阻,降低金属的抗腐蚀性能.6.为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性答:由于单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性.7.过冷度与冷却速度有何关系它对金属结晶过程有何影响对铸件晶粒大小有何影响答:①冷却速度越大,那么过冷度也越大.②随着冷却速度的增大,那么晶体内形核率和长大速度都加快, 加速结晶过程的进行,但当冷速到达一定值以后那么结晶过程将减慢,由于这时原子的扩散水平减弱.③过冷度增大,A F大,结晶驱动力大,形核率和长大速度都大,且N的增加比G增加得快,提高了N与G的比值,晶粒变细,但过冷度过大,对晶粒细化不利,结晶发生困难.8.金属结晶的根本规律是什么晶核的形成率和成长率受到哪些因素的影响答:①金属结晶的根本规律是形核和核长大.②受到过冷度的影响,随着过冷度的增大,晶核的形成率和成长率都增大,但形成率的增长比成长率的增长快;同时外来难熔杂质以及振动和搅拌的方法也第2页共50页会增大形核率.9.在铸造生产中,采用哪些举措限制晶粒大小在生产中如何应用变质处理答:①采用的方法:变质处理,钢模铸造以及在砂模中加冷铁以加快冷却速度的方法来限制晶粒大小.②变质处理:在液态金属结晶前, 特意参加某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提升了形核率,细化晶粒.③机械振动、搅拌.第二章金属的塑性变形与再结晶1.解释以下名词:加工硬化、回复、再结晶、热加工、冷加工.答:加工硬化:随着塑性变形的增加,金属的强度、硬度迅速增加;塑性、韧性迅速下降的现象.回复:为了消除金属的加工硬化现象,将变形金属加热到某一温度,以使其组织和性能发生变化.在加热温度较低时,原子的活动水平不大,这时金属的晶粒大小和形状没有明显的变化,只是在晶内发生点缺陷的消失以及位错的迁移等变化,因此,这时金属的强度、硬度和塑性等机械性能变化不大,而只是使内应力及电阻率等性能显著降低.此阶段为回复阶段.再结晶:被加热到较高的温度时,原子也具有较大的活动水平,使晶粒的外形开始变化.从破碎拉长的晶粒变成新的等轴晶粒.和变形前的晶粒形状相似,晶格类型相同,把这一阶段称为“再结晶〞.热加工:将金属加热到再结晶温度以上一定温度进行压力加工.冷加工:在再结晶温度以下进行的压力加工.2.产生加工硬化的原因是什么加工硬化在金属加工中有什么利弊答:①随着变形的增加,晶粒逐渐被拉长,直至破碎,这样使各晶粒都破碎成细碎的亚晶粒,变形愈大, 晶粒破碎的程度愈大, 这样使位错密度显著增加;同时细碎的亚晶粒也随着晶粒的拉长而被拉长.因此,随着变形量的增加,由于晶粒破碎和位错密度的增加,金属的塑性变形抗力将迅速增大,即强度和硬度显著提升,而塑性和韧性下降产生所谓“加工硬化〞现象.②金属的加工硬化现象会给金属的进一步加工带来困难,如钢板在冷轧过程中会越轧越硬,以致最后轧不动.另一方面人们可以利用加工硬化现象,来提升金属强度和硬度,如冷拔高强度钢丝就是利用冷加工变形产生的加工硬化来提升钢丝的强度的.加工硬化也是某些压力加工工艺能够实现的重要因素.如冷拉钢丝拉过模孔的局部,由于发生了加工硬化,不再继续变形而使变形转移到尚未拉过模孔的部分,这样钢丝才可以继续通过模孔而成形.3.划分冷加工和热加工的主要条件是什么答:主要是再结晶温度.在再结晶温度以下进行的压力加工为冷加工,产生加工硬化现象;反之为热加工,产生的加工硬化现象被再结晶所消除.4.与冷加工比拟,热加工给金属件带来的益处有哪些答:(1)通过热加工,可使铸态金属中的气孔焊合,从而使其致密度得以提升.(2)通过热加工,可使铸态金属中的枝晶和柱状晶破碎,从而使晶粒细化,机械性能提升.(3)通过热加工,可使铸态金属中的枝晶偏析和非金属夹杂分布发生改变,使它们沿着变形的方向细碎拉长,形成热压力加工“纤维组织〞(流线),使纵向的强度、塑性和韧性显著大于横向.如果合理利用热加工流线,尽量使流线与零件工作时承受的最大拉应力方向一致,而与外加切应力或冲击力相垂直,可提升零件使用寿命.5.为什么细晶粒钢强度高,塑性,韧性也好答:晶界是阻碍位错运动的,而各晶粒位向不同,互相约束,也阻碍晶粒的变形.因此,金属的晶粒愈细,其晶界总面积愈大,每个晶粒周围不同取向的晶粒数便愈多,对塑性变形的抗力也愈大.因此,金属的晶粒愈细强度愈高.同时晶粒愈细,金属单位体积中的晶粒数便越多,变形时同样的变形量便可分散在更多的晶粒中发生,产生较均匀的变形, 而不致造成局部的应力集中,引起裂纹的过早产生和开展.因此,塑性,韧性也越好.6.金属经冷塑性变形后,组织和性能发生什么变化答:①晶粒沿变形方向拉长,性能趋于各向异性,如纵向的强度和塑性远大于横向等;②晶粒破碎,位错密度增加,产生加工硬化,即随着变形量的增加,强度和硬度显著提升,而塑性和韧性下降;③ 织构现象的产生,即随着变形的发生, 不仅金属中的晶粒会被破碎拉长,而且各晶粒的晶格位向也会沿着变形的方向同时发生转动,转动结果金属中每个晶粒的晶格位向趋于大体一致,产生织构现象;④冷压力加工过程中由于材料各局部的变形不均匀或晶粒内各局部和各晶粒间的变形不均匀,金属内部会形成剩余的内应力,这在一般情况下都是不利的,会引起零件尺寸不稳定.7.分析加工硬化对金属材料的强化作用答:随着塑性变形的进行,位错密度不断增加,因此位错在运动时的相互交割、位错缠结加剧,使位错运动的阻力增大,引起变形抗力的增加.这样,金属的塑性变形就变得困难,要继续变形就必须增大外力,因此提升了金属的强度.8.金属鸨、铁、铅、锡的熔点分别为3380C、1538C、327C、232 C ,试计算这些金属的最低再结晶温度,并分析鸨和铁在1100c下的加工、铅和锡在室温(20C)下的加工各为何种加工答:T 再=0.4T 熔;鸨T 再=[0.4* (3380+273)卜273=1188.2 C ;铁T 再=[0.4* (1538+273) ]-273=451.4 C ;铅T 再=[0.4* (327+273) ]-273=-33 C ;锡T 再=[0.4* (232+273)卜273=-71 C .由于鸨T 再为1188.2 C> 1100C,因此属于热加工;铁T再为451.4CV 1100C,因此属于冷加工;铅T再为-33CV20C,属于冷加工;锡T再为-71V20C,属于冷加工.9.在制造齿轮时,有时采用喷丸法(即将金属丸喷射到零件外表上)使齿面得以强化.试分析强化原因.答:高速金属丸喷射到零件外表上,使工件外表层产生塑性变形,形成一定厚度的加工硬化层,使齿面的强度、硬度升高.第三章合金的结构与二元状态图1.解释以下名词:合金,组元,相,相图;固溶体,金属间化合物,机械混合物;枝晶偏析,比重偏析;固溶强化, 弥散强化.答:合金:通过熔炼,烧结或其它方法,将一种金属元素同一种或几种其它元素结合在一起所形成的具有金属特性的新物质,称为合金.组元:组成合金的最根本的、独立的物质称为组元.相:在金属或合金中,凡成分相同、结构相同并与其它局部有界面分开的均匀组成局部,均称之为相.相图:用来表示合金系中各个合金的结晶过程的简明图解称为相图.固溶体:合金的组元之间以不同的比例混合,混合后形成的固相的晶格结构与组成合金的某一组元的相同,这种相称为固溶体.金属间化合物:合金的组元间发生相互作用形成的一种具有金属性质的新相,称为金属间化合物.它的晶体结构不同于任一组元,用分子式来表示其组成.机械混合物:合金的组织由不同的相以不同的比例机械的混合在一起,称机械混合物.枝晶偏析:实际生产中,合金冷却速度快,原子扩散不充分,使得先结晶出来的固溶体合金含高熔点组元较多,后结晶含低熔点组元较多,这种在晶粒内化学成分不均匀的现象称为枝晶偏析.比重偏析:比重偏析是由组成相与溶液之间的密度差异所引起的.如果先共晶相与溶液之间的密度差异较大,那么在缓慢冷却条件下凝固时,先共晶相便会在液体中上浮或下沉,从而导致结晶后铸件上下局部的化学成分不一致,产生比重偏析.固溶强化:通过溶入某种溶质元素形成固溶体而使金属的强度、硬度升高的现象称为固溶强化.弥散强化:合金中以固溶体为主再有适量的金属间化合物弥散分布,会提升合金的强度、硬度及耐磨性,这种强化方式为弥散强化.2.指出以下名词的主要区别:1〕置换固溶体与间隙固溶体;答:置换固溶体:溶质原子代替溶剂晶格结点上的一局部原子而组成的固溶体称置换固溶体.间隙固溶体:溶质原子填充在溶剂晶格的间隙中形成的固溶体,即间隙固溶体.2〕相组成物与组织组成物;相组成物:合金的根本组成相.组织组成物:合金显微组织中的独立组成局部.3.以下元素在a -Fe中形成哪几种固溶体Si、C、N、Cr、Mn答:Si、Cr、Mn形成置换固溶体;C、N形成间隙固溶体.4.试述固溶强化、加工强化和弥散强化的强化原理,并说明三者的区别.答:固溶强化:溶质原子溶入后,要引起溶剂金属的晶格产生畸变,进而位错运动时受到阻力增大.弥散强化:金属化合物本身有很高的硬度,因此合金中以固溶体为基体再有适量的金属间化合物均匀细小弥散分布时,会提升合金的强度、硬度及耐磨性.这种用金属间化合物来强化合金的方式为弥散强化.加工强化:通过产生塑性变形来增大位错密度,从而增大位错运动阻力, 引起塑性变形抗力的增加, 提升合金的强度和硬度.区别:固溶强化和弥散强化都是利用合金的组成相来强化合金,固溶强化是通过产生晶格畸变,使位错运动阻力增大来强化合金;弥散强化是利用金属化合物本身的高强度和硬度来强化合金;而加工强化是通过力的作用产生塑性变形,增大位错密度以增大位错运动阻力来强化合金;三者相比,通过固溶强化得到的强度、硬度最低,但塑性、韧性最好,加工强化得到的强度、硬度最高,但塑韧性最差,弥散强化介于两者之间.5.固溶体和金属间化合物在结构和性能上有什么主要差异答:在结构上:固溶体的晶体结构与溶剂的结构相同,而金属间化合物的晶体结构不同于组成它的任一组元,它是以分子式来表示其组成.在性能上:形成固溶体和金属间化合物都能强化合金,但固溶体的强度、硬度比金属间化合物低, 塑性、韧性比金属间化合物好,也就是固溶体有更好的综合机械性能.6.何谓共晶反响、包晶反响和共析反响式比拟这三种反响的异同点.答:共晶反响:指一定成分的液体合金,在一定温度下,同时结晶出成分和晶格均不相同的两种晶体的反响.包晶反响:指一定成分的固相与一定成分的液相作用,形成另外一种固相的反响过程.共析反响:由特定成分的单相固态合金,在恒定的温度下,分解成两个新的,具有一定晶体结构的固相的反响.共同点:反响都是在恒温下发生,反响物和产物都是具有特定成分的相,都处于三相平衡状态.不同点:共晶反响是一种液相在恒温下生成两种固相的反响;共析反响是一种固相在恒温下生成两种固相的反响;而包晶反响是一种液相与一种固相在恒温下生成另一种固相的反响.7.二元合金相图表达了合金的哪些关系答:二元合金相图表达了合金的状态与温度和成分之间的关系.8.在二元合金相图中应用杠杆定律可以计算什么答:应用杠杆定律可以计算合金相互平衡两相的成分和相对含量.9.A(熔点600C)与B(500C)在液态无限互溶;在固态300c时A溶于B的最大溶解度为30% ,室温时为10%,但B不溶于A;在300c时,含40% B的液态合金发生共晶反响.现要求:1)作出A-B合金相图;2)分析20% A,45%A,80%A等合金的结晶过程,并确定室温下的组织组成物和相组成物的相对量.(2)20%A合金如图①:合金在1点以上全部为液相,当冷至1点时,开始从液相中析出“固溶体,至2点结束,2〜3点之间合金全部由a固溶体所组成,但当合金冷到3点以下,由于固溶体a的浓度超过了它的溶解度限度,于是从固溶体a中析出二次相A,因此最终显微组织:a +An相组成物:a +AA= (90-80/90) *100%=11%a =1-A%=89%45%A合金如图②:合金在1点以上全部为液相,冷至1点时开始从液相中析出a固溶体,此时液相线成分沿线BE变化,固相线成分沿BD线变化,当冷至2点时,液相线成分到达E点,发生共晶反响,形成(A+a)共晶体,合金自2点冷至室温过程中,自中析出二次相An,因而合金②室温组织:A n + a +(A+ a )相组成物:A+ a组织:An= (70-55) /70*100%=21% a =1- An =79%A+ a = (70-55) /(70-40) *100%=50%相:A= (90-55) /90*100%=50% a =1-A%=50%80%A合金如图③:合金在1点以上全部为液相, 冷至1点时开始从液相中析出A,此时液相线成分沿AE线变化, 冷至2点时,液相线成分到达点,发生共晶反响,形成(A+ a)共晶体,因而合金③的室温组织:A+ (A+ a ) 相组成物:A+ a组织:A= (40-20) /40*100%=50% A+ a =1-A%=50%相:A= (90-20) /90*100%=78% a =1-A%=22%10.某合金相图如下图.1)试标注①一④空白区域中存在相的名称;2)指出此相图包括哪几种转变类型;3)说明合金I的平衡结晶过程及室温下的显微组织.答:(1)①:L+丫②:丫+ B ③:B+( a + B )④:0 + an(2)匀晶转变;共析转变(3)合金①在1点以上全部为液相,冷至1点时开始从液相中析出丫固溶体至2点结束,2〜3点之间合金全部由T固溶体所组成,3点以下,开始从T固溶体中析出a固溶体,冷至4点时合金全部由a固溶体所组成,4〜5之间全部由a固溶体所组成,冷到5 点以下,由于a 固溶体的浓度超过了它的溶解度限度,从a中析出第二相B固溶体,最终得到室稳下的显微组织:a + B n11.有形状、尺寸相同的两个Cu-Ni合金铸件,一个含90% Ni ,另一个含50% Ni,铸后自然冷却,问哪个铸件的偏析较严重答:含50% Ni的Cu-Ni合金铸件偏析较严重.在实际冷却过程中,由于冷速较快,使得先结晶局部含高熔点组元多,后结晶局部含低熔点组元多,由于含50% Ni的Cu-Ni合金铸件固相线与液相线范围比含90% Ni铸件宽,因此它所造成的化学成分不均匀现象要比含90% Ni 的Cu-Ni合金铸件严重.第四章铁碳合金1.何谓金属的同素异构转变试画出纯铁的结晶冷却曲线和晶体结构变化图答:由于条件〔温度或压力〕变化引起金属晶体结构的转变,称同素异构转变.S4 3210987 654321时间2.为什么丫-Fe和a-Fe的比容不同一块质量一定的铁发生〔丫-Fe - a-Fe 〕转变时, 其体积如何变化答:由于丫-Fe和a-Fe原子排列的紧密程度不同,丫-Fe的致密度为74%,a-Fe的致密度为68%,因此一块质量一定的铁发生〔丫-Fe - a -Fe 〕转变时体积将发生膨胀.3.何谓铁素体〔F〕,奥氏体〔A〕,渗碳体〔FesC〕,珠光体〔P〕,莱氏体〔Ld〕 ?它们的结构、组织形态、性能等各有何特点答:铁素体〔F〕:铁素体是碳在Fe中形成的间隙固溶体,为体心立方晶格.由于碳在Fe中的溶解度、很小,它的性能与纯铁相近.塑性、韧性好,强度、第11页共50页硬度低.它在钢中一般呈块状或片状.奥氏体〔A〕:奥氏体是碳在片中形成的间隙固溶体,面心立方晶格.因其品格间隙尺寸较大,故碳在Fe中的溶解度较大.有很好的塑性.渗碳体〔FesC〕:铁和碳相互作用形成的具有复杂品格的间隙化合物.渗碳体具有很高的硬度,但塑性很差,延伸率接近于零.在钢中以片状存在或网络状存在于晶界.在莱氏体中为连续的基体,有时呈鱼骨状.珠光体〔P〕:由铁素体和渗碳体组成的机械混合物.铁素体和渗碳体呈层片状.珠光体有较高的强度和硬度,但塑性较差.莱氏体〔Ld〕:由奥氏体和渗碳体组成的机械混合物.在莱氏体中,渗碳体是连续分布的相,奥氏体呈颗粒状分布在渗碳体基体上.由于渗碳体很脆,所以莱氏体是塑性很差的组织.4.Fe-FesC合金相图有何作用在生产实践中有何指导意义又有何局限性答:①碳钢和铸铁都是铁碳合金,是使用最广泛的金属材料.铁碳合金相图是研究铁碳合金的重要工具,了解与掌握铁碳合金相图,对于钢铁材料的研究和使用,各种热加工工艺的制订以及工艺废品原因的分析等方面都有重要指导意义.②为选材提供成分依据:F Fe3c相图描述了铁碳合金的组织随含碳量的变化规律, 合金的性能决定于合金的组织,这样根据零件的性能要求来选择不同成分的铁碳合金;为制定热加工工艺提供依据:对铸造,根据相图可以找出不同成分的钢或铸铁的熔点,确定铸造温度;根据相图上液相线和固相线间距离估计铸造性能的好坏. 对于锻造:根据相图可以确定锻造温度.对焊接: 根据相图来分析碳钢焊缝组织,并用适当热处理方法来减轻或消除组织不均匀性;对热处理:F Fe3c相图更为重要,如退火、正火、淬火的加热温度都要参考铁碳相图加以选择.③由于铁碳相图是以无限缓慢加热和冷却的速度得到的,而在实际加热和冷却通常都有不同程度的滞后现象.5.画出Fe-Fe s C 相图,指出图中S、C、E、P、N、G 及GS、SE、PQ、PSK 各点、线的意义,并标出各相区的相组成物和组织组成物V1段.口1 0. Q. b 1. 2.0 2,143.0i. 0 4. 355 自.6. 69+ C的FeSC 1539140012001UQQHDU600C:共晶点1148c 4.30%C,在这一点上发生共晶转变,反响式:Lc A E Fe a C ,当冷到1148c时具有C点成分的液体中同时结晶出具有E点成分的奥氏体和渗碳体的两相混合物——莱氏体Le A E Fe3CE:碳在Fe中的最大溶解度点1148c2.11%CG:Fe Fe同素异构转变点〔A3〕912C 0%CH:碳在Fe中的最大溶解度为1495c 0.09%CJ:包品转变点1495c 0.17%C在这一点上发生包品转变,反响式:L BH A J当冷却到1495c时具有B点成分的液相与具有H点成分的固相6反响生成具有J 点成分的周相AN:FeFe同素异构转变点〔A4〕1394c 0%CP:碳在Fe中的最大溶解度点0.0218%C 727cS:共析点727c 0.77%C在这一点上发生共析转变,反响式:A s F p Fe3C ,当冷却到727c时从具有S点成分的奥氏体中同时析出具有P点成分的铁素体和渗碳体的两相混合物一一珠光体P 〔F p Fe3C〕ES线:碳在奥氏体中的溶解度曲线,又称Acm温度线,随温度的降低,碳在奥化体中的溶解度减少,多余的碳以Fe3c形式析出,所以具有0.77%〜2.11%C的钢冷却到Acm线与PSK线之间时的组织A Fe3C n ,从A中析出的Fe3c称为二次渗碳体.GS线:不同含碳量的奥氏体冷却时析出铁素体的开始线称A3线,GP线那么是铁素体析出的终了线,所以GSP区的显微组织是F AoPQ线:碳在铁素体中的溶解度曲线,随温度的降低,碳在铁素体中的溶解度减少, 多余的碳以Fe3c形式析出,从F中析出的Fe3c称为三次渗碳体Fe s Cw ,由于铁素体含碳很少,析出的FesCw很少,一般忽略,认为从727c冷却到室温的显微组织不变.PSK线:共析转变线,在这条线上发生共析转变A S F P Fe s C ,产物〔P〕珠光体,含碳量在0.02〜6.69%的铁碳合金冷却到727c时都有共析转变发生.6.简述Fe-Fe^C相图中三个根本反响:包晶反响,共晶反响及共析反响,写出反响式,标出含碳量及温度.答:共析反响:冷却到727c时具有S点成分的奥氏体中同时析出具有P点成分的铁素体和渗碳体的两相混合物.Y 0.8 727?F0.02+Fe3c6.69包品反响:冷却到1495c时具有B点成分的液相与具有H点成分的固相6反响生成具有J 点成分的固相Ao L0.5+ 6 0.11495? Y 0.16共晶反响:1148c时具有C点成分的液体中同时结晶出具有E点成分的奥氏体和渗碳体的两相混合物.L4.3 1147?2 2.14+ F63C6.697.何谓碳素钢何谓白口铁两者的成分组织和性能有何差异答:碳素钢:含有0.02%~2.14%C的铁碳合金.白口铁:含大于2.14%C的铁碳合金.碳素钢中亚共析钢的组织由铁素体和珠光体所组成,其中珠光体中的渗碳体以细片状分布在铁素体基体上,随着含碳量的增加,珠光体的含量增加,那么钢的强度、硬度增力口,塑性、韧性降低.当含碳量到达0.8%时就是珠光体的性能.过共析钢组织由珠光体和二次渗碳体所组成,含碳量接近 1.0%时,强度到达最大值,含碳量继续增加,强度下降.由于二次渗碳体在晶界形成连续的网络,导致钢的脆性增加.白口铁中由于其组织中存在大量的渗碳体,具有很高的硬度和脆性,难以切削加工.8.亚共析钢、共析钢和过共析钢的组织有何特点和异同点.答:亚共析钢的组织由铁素体和珠光体所组成.其中铁素体呈块状.珠光体中铁素体与渗碳体呈片状分布.共析钢的组织由珠光体所组成.过共析钢的组织由珠光体和二次渗碳体所组成,其中二次。
《工程材料》习题集参考答案
一.判断题×√1、细化晶粒虽能提高金属的强度,但增大了金属的脆性。
(×)2、结构钢的淬透性,随钢中碳含量的增大而增大。
(×)3、普通低合金结构钢不能通过热化处理进行强化。
(√)4、置换固溶体必是无限固溶体。
(×)5、单晶体必有各向异性。
(√)6、普通钢和优质钢是按其强度等级来区分的。
(×)7、过热钢经去应力退火后能显著细化晶粒。
(×)8、表面淬火主要用于高碳钢。
(×)9、马氏体的晶体结构和铁素体的相同。
(×)10、面心立方金属的塑性比体心立方金属的好。
(√)11、铁素体是置换固溶体。
(×)12、晶界是金属晶体的常见缺陷。
(√)13、渗碳体是钢中常见的固溶体相。
(×)14、金属的塑性变形主要通过位错的滑移进行。
(√)15、金属的晶粒越细小,其强度越高,其塑性越好。
(√)16、比重偏析不能通过热处理来消除。
(√)17、上贝氏体的韧性比下贝氏体好。
(×)18、对过共析钢工件进行完全退火可消除渗碳体网。
(×)19、对低碳低合金钢进行正火处理可提高其硬度。
(√)20、淬火获得马氏体的必要条件之一是其淬火冷却速度必须小于Vk。
(×)21、氮化件的变形远比渗碳件的小。
(√)22、马氏体转变是非扩散性转变。
(√)23、高锰钢在各种条件下均能表现出良好的耐磨性。
(×)24、无限固溶体必是置换固溶体。
(√)25、金属的晶粒越细小,其强度越高,但韧性变差。
(×)26、所谓临界冷却速度就是指钢能获得完全马氏体组织的最小冷却速度。
(√)27、钢进行分级淬火的目的是为了得到下贝氏体组织。
(×)28、对奥氏体不锈钢进行固溶处理的目的是为了提高其强度。
(×)29、弹簧钢的最终热处理应是淬火+低温回火。
(×)30、凡单相固溶体均能进行形变强化。
(√)31、贝氏体转变是非扩散性转变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题集部分参考答案
2金属的晶体结构
思考题
1.晶体和非晶体的主要区别是什么?
答:晶体和非晶体的区别在于内部原子的排列方式。
晶体内部的原子(或分子)在三维空间按一定规律作周期性排列,而非晶体内部的原子(或分子)则是杂乱分布的,至多有些局部的短程规律排列。
因为排列方式的不同,性能上也有所差异。
晶体有固定的熔点,非晶体没有,晶体具有各向异性,而非晶体则是各向同性。
2.何为各向异性?
答:各向异性是指晶体的某些物理性能和力学性能在不同方向上具有不同的数值。
3.为什么单晶体呈各向异性,而多晶体通常呈各向同性?
答:单晶体是原子排列方位完全一致的一个晶粒,由于在不同晶向上原子密度不同,原子间的结合力不同,因而导致在单晶体中的各个方向上性能差异。
对于多晶体中的任意一个晶粒来看,基本满足单晶体的特征,呈现各向异性,但是在多晶体系统中,单一晶粒的各向异性已经被周围其他位向的晶粒所“干扰”或“抵消”,整个多晶系统呈现其各向同性。
4.什么叫晶体缺陷?晶体中可能有哪些晶体缺陷?他们的存在有何实际意义?
答:晶体缺陷是指金属晶体中原子排列的不完整性。
常见的晶体缺陷有点缺陷、线缺陷和面缺陷三类,它们都会造成材料的晶格畸变。
点缺陷是指呈点状分布的缺陷,包含有空位、间隙原子和置换原子等,它对材料中的原子扩散、固态相变,以及材料的物理性能(电阻、体积、密度)等都会产生重大影响。
过饱和的点缺陷还可以提高材料的强度。
线缺陷是各种类型的位错。
对材料的变形、扩散以及相变起着非常大的作用。
特别它很好地解释了塑性变形的微观机理,使我们了解到滑移是借助于位错的运动来实现的。
当位错密度不高的情况下,位错支持了滑移,材料的塑性很好,但是当位错密度达到了较高的水平时,位错间的相互作用会造成位错的彼此“纠缠”,使滑移运动受阻,这时表现出材料的塑性变形的抗力提高,材料的强度提高。
金属晶体中面缺陷主要有晶界、亚晶界、孪晶界和相界等。
比如:晶界处原子的平均能量比晶内高,在高温时,晶粒容易长大。
晶界和亚晶界均可提高金属的强度。
单位体积中的晶粒数目越多,晶界面积越大,晶格畸变越严重,材料的强度越高,同时材料的塑性也较好(同样的变形量可以分散到更多的晶粒中去进行,说明材料可以承受更大的变形量)。
5.体心立方晶格中原子排列最密的晶面是哪个?原子排列最密的晶向是哪个?而在面心立方晶格中原子排列最密的晶面是哪个?原子排列最密的晶向是哪个?试分别绘出以上原子排列最密晶面和晶向。
答:体心立方晶格中原子排列最密的晶面族是{110},包含的晶面有(110),(101),(011),(10),(01),(01),(10),(10),(01),(0),(0),(0)共十二个晶面。
−
1−
1−
1−
1−
1−
1−1−
1−
1−
1−1−
1体心立方晶格中原子排列最密的晶向族是<111>,包含的晶向有 [111],[11],[11],[11],[1],[1],[1],[]共八个晶向。
−
1−
1−
1−1−
1−
1−
1−1−
1−1−1−
1
体心立方晶格中密度最大的晶面和晶向
面心立方晶格中原子排列最密的晶面族是{111},包含的晶面有(111),(11),(11),(11),(1),(1),(1),()共八个晶面。
−
1−
1−
1−1−
1−
1−
1−1−
1−1−1−
1面心立方晶格中原子排列最密的晶向族是<110>, 包含的晶向有[110],[101],[011],[10],[01],[01],[10],[10),[01],[0],[0],[0]共十二个晶向。
−
1−
1−
1−
1−
1−
1−1−
1−
1−
1−1−
1
面心立方晶格中密度最大的晶面和晶向
(在没有了解晶面族和晶向族知识时或答为:面心立方晶格中原子排列最密的晶面是(111)原子排列最密的晶向是[110]体心立方晶格中原子排列最密的晶面是(110)原子排列最密的晶向是[111]。
)
6.何为金属键?金属键有何特点?
答:金属处于气态时,彼此不存在结合键,当金属原子相互靠近到一定程度而作为液体金属或固体金属时,原子间就形成结合键,使原子紧凑而规则地排列在一起,这种金属原子
间的结合键称为金属键。
金属键的基本特点是“电子公有化”,就是金属原子成晶体时,价电子在整个晶体内运动。
金属键使金属具有导电、正的电阻温度系数、光泽和塑性等特性。
习题
1.名词解释
晶格;晶胞;晶粒;晶界;亚晶粒;亚晶界;晶面;晶向;晶格常数;单晶体;多晶体;致密度。
答:晶格:用以描述晶体中原子排列规律的空间格架。
晶胞:晶格中能完全放映晶格特征的最小几何单元。
晶粒:结晶物质在生长过程中,由于受到外界空间的限制,未能发育成具有规则形态的晶体,而只是结晶成颗粒状,称晶粒。
晶界:晶粒与晶粒之间的接触界面叫晶界。
亚晶粒:在多晶体的每一个小晶粒内,晶格位向也并非完全一致,而是存在着许多尺寸很小,位向差很小的小晶块,它们相互镶嵌形成晶粒,其中的小晶块
叫做“镶嵌块”或称为亚晶粒。
晶面:晶格中由一系列原子所构成的平面。
晶向:能代表晶体中原子在空间的排列位相的任意二原子之间连线所指的方向。
晶格常数:晶体物质的基本结构参数,它与原子间的结合能有直接的关系,晶格常
数的变化反映了晶胞的大小及形状等晶体学体征。
单晶体:晶粒晶格排列方位完全一致的晶体。
多晶体:由晶格位向彼此不同的晶粒组成的晶体。
致密度:单位晶胞体积中原子所占的体积与晶胞体积之比。
2.常见的金属晶格类型有哪些?他们的原子排列和晶格常数有什么特点?
α-Fe、ß-Fe、Al、Cu、Ni、Pb、Cr、V、Mg、Zn各属于何种晶体结构?
答:常见的金属晶格类型有但三种,即体心立方、面心立方和密排六方。
前二种属于立方晶系,后一种属于六方晶系。
α-Fe、、Pb、V属于体心立方结构;ß-Fe、Al、Cu、Ni属于面心立方结构。
Cr、Mg、Zn属于密排六方结构。
3.点缺陷的形式有哪些?位错属于那种缺陷。
答:点缺陷有空位、间隙原子和置换原子三种。
位错属于线缺陷。
4.在立方晶系中划出下列晶面和晶向?(010)与[010];(011)与[011];(111)与[111];(122)与[122];(112)与[112]。
解:
5.已知Cu 的原子直径为2.56,求Cu 的晶格常数,并计算1mm •
A 3中Cu 中的原子数。
(=10•
A -10米)
解:Cu 为面心立方结构。
a=b=c=(2.56×2)/2•
A =3.62
•
A α=β=γ=900
面心立方n=4
1mm 3中Cu 中的原子数为4×1×10-9m 3/(3.62×3.62×3.62×10-30)≈8.43×1019
6.在立方晶系中结构中,一平面通过y=0.5、z=3并平行于X 轴,它的晶面指数
7.体心立方晶格中的晶面族{110}包括几个原子排列相同而空间位相不同的晶面?试绘图表示。
答:晶面族{110}共十二个晶面,独立存在的有6个晶面,它们是:(110)、(11-
0)、(101)、(01-1)、(1-01)、(011)。
8.在面心立方晶格中哪个晶面和晶向的原子密度最大?
答:面心立方晶格中原子排列密度最大的晶面是{111}晶面族中的所有晶面。
{111}晶面族中有8个晶面,独立存在的有4个,它们是:(111)、(1-1-1)、(11-1)、(1-
11)
面心立方晶格中原子排列密度最大的晶向是<110>晶向族中的所有晶向。
(略)
9.已知γ-Fe 的晶格常数大于α-Fe 的晶格常数,但为什么γ-Fe 冷却到9120C 转变为α-Fe 时体积反而增加?
答:因为γ-Fe 为面心立方晶格,一个晶胞含4个原子;γ-Fe 冷却到9120
C 后转变为α-Fe 后,变成体心立方晶格,一个晶胞含2个原子,尽管γ-Fe 的晶格常数大于α-Fe 的晶格常数,但多的体积部分抵不上因原子排列不同γ-Fe 变成α-Fe 体积增大的变化部分。
故γ-Fe 冷却到9120
C 后转变为α-Fe 时体积反而增加。