无理数与实数的概念

合集下载

实数的定义及其运算

实数的定义及其运算
17.若∣2a-5∣与 互为相反数,则a=______,b=_____。
18.若∣a∣=6, =3,且ab 0,则a-b=______。
19.数轴上点A,点B分别表示实数 则A、B两点间的距离为______。
20.一个正数x的两个平方根分别是a+2和a-4,则a=_____,x=_____。
三、认真解一解
按整数、分数的关系分类:按正数、负数、零的关系分类:
三、数轴:
1.数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴。
注意:①数轴是一条直线,可以向两端无限延伸;②数轴有三要素:原点、正方向、单位长度三者缺一不可;③原点的位置、正方向的取向、单位长度的大小的选定,都是根据实际需要而定的。
2.数轴的画法:①画一条水平的直线;②在直线的适当位置选取一点作为原点,并用0表示这点;③确定向右为正方向,用箭头表示出来;④选取适当的长度作为单位长度,从原点向右,每隔一个单位长度取一点,依次为1,2,3,…;从原点向左,每隔一个单位长度取一点,依次为-1,-2,-3,…。如图1所示。
五、非负数
若数a≧0,则称a为非负数。
非负数的性质:任何非负数的和仍为非负数;如果几个非负数的和为0,则这几个非负数均为0。
3.点A在数轴上表示的数为 ,点B在数轴上表示的数为 ,则A,B两点的距离为______
解析:在数轴上找到A、B两点,
例题:1、如图,数轴上表示1, 的对应点分别为A,B,点B关于点A的对称点为C,则点C表示的数是().
12. 的算术平方根是_______, =______。
13.____的平方根等于它本身,____的立方根等于它本身,____的算术平方根等于它本身。
14.已知∣x∣的算术平方根是8,那么x的立方根是_____。

实数的概念的定义

实数的概念的定义

实数的概念的定义实数是数学中的一种数,它可以用来表示物理世界中的量。

实数包括整数、有理数和无理数,它们是实数的三个主要子集。

整数是自然数(包括0)和负整数的集合,即{..., -3, -2, -1, 0, 1, 2, 3, ...}。

整数可以用来表示没有小数部分的量,例如计数、排名等。

有理数是可以表示为两个整数的比值的数,即可以写为分数的数。

有理数包括整数、正分数和负分数。

例如,1/2,-3/4,7/8等都是有理数。

有理数可以用来表示所有带有有限小数部分或者循环小数部分的量。

无理数是不能表示为两个整数的比值的数,即无法写成一个分数的数。

无理数是无限不循环小数,它们的小数部分是无法确定的。

无理数包括开平方、立方根、圆周率π等。

例如,√2,π,e(自然对数的底数)都是无理数。

无理数可以用来表示无法用有限小数表示的量,例如勾股定理中的斜边长。

实数的定义可以用不同的方式来描述。

一种常见的定义是基于柯西序列(Cauchy sequence)的构造。

柯西序列是一个数列,其中的元素趋向于零。

对于给定的精度,只要数列中的元素与零的距离足够小,它们就被认为是相等的。

另一种定义是基于戴德金分割(Dedekind cut)的构造。

戴德金分割将实数划分为两个集合,其中一个集合包含所有比给定实数小的数,另一个集合包含所有比给定实数大的数。

通过这种方式,实数可以用一个左集合和一个右集合的形式来表示。

实数满足各种基本运算法则,包括加法、减法、乘法和除法。

实数的加法法则是交换律、结合律和分配律。

减法可以看作是加法的逆运算。

实数的乘法法则也是交换律、结合律和分配律。

除法可以看作是乘法的逆运算,但要注意除数不能为零。

实数还满足阿基米德性质和连续性。

阿基米德性质指的是对于任意两个实数a 和b,总存在一个自然数n,使得na大于b。

连续性指的是实数轴上没有空隙,对于任意两个实数a和b(其中a小于b),总存在一个实数c,使得a小于c 小于b。

实数的概念及其大小比较

实数的概念及其大小比较
b
分析:这是求有特定条件的代数式的值的问题;
故通常从条件出发,寻找条件与所求的切入点.
解:由条件a2+4b2-2a+4b+2
=a2+2a+1+4b2+4b+1=0
有(a-1)2+(2b+1)2=0
因此有a-1=0且2b+1=0.解得a=1,b= 所以4b2- 1 =4-(-2)=6
1 2
b
互为相反数,求8a-4b-
1a与2a的大小。
解:由于a-2a = - a, 所以 当a>0时,- a<0,则 a-2a<0,即a<2a;
当a=0时,- a=0,则 a-2a=0,即a=2a; 当a<0时,- a>0,则 a-2a>0,即a>2a.
例4 已知a,b为实数,且a2+4b2-2a+4b+2=0,求 4a2- 1 的值.
(3)倒数——1除以一个非零数的商叫做这 个数的倒数. 若a,b互为倒数,则ab=1;反之, 若ab=1,则a,b互为倒数.
(4)平方根——如果一个数的平方等于a, 那么这个数叫做a的平方根.即如果x2=a,那么 x就叫做a的平方根.记作x=正负根号a
①正数的平方根有两个,他们互为相反数; ②零的平方根只有一个,仍是零;
③负数没有平方根(因为任何实数的平方不 可能是负数).
3、实数大小的比较
比较任意两个实数的大小,这里主要学习差 比法,即: 如果a - b > 0 , 那么 a > b ; 如果a - b = 0 , 那么 a = b ; 如果a - b < 0 , 那么 a < b .
例1.已知a的倒数是2/3,b的倒数是4/3,c与d

初中数学无理数与实数

初中数学无理数与实数

无理数与实数【知识要点】1.无理数:定义:无限不循环小数叫做无理数,如π=3.14159261.414213 ,-1.010010001…,都是无理数。

注意:①既是无限小数,又是不循环小数,这两点必须同时满足;②无限不循环小数与有限小数、无限循环小数的本质区别是:前者不能化成分数,而后两者都可以化成分数;2.实数:有理数和无理数统称为实数。

⎧⎧⎫⎪⎪⎪⎨⎬⎪⎪⎪⎪⎨⎩⎭⎪⎧⎫⎪⎨⎬⎪⎩⎭⎩正有理数有理数零有限小数或无限循环小数负有理数实数正无理数无理数无限不循环小数负无理数 3.实数的几个有关概念:①相反数:a 与-a 互为相反数,0的相反数是0。

a+b=0⇔a 、b 互为相反数。

②倒 数:若0a ≠,则1a称为a 的倒数,0没有倒数。

1ab a =⇔、b 互为倒数。

③绝对值:一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0。

即()()()0000a a a a a a >⎧⎪==⎨⎪-<⎩【典型例题】例1 在实数3.14,25,3.33330.412⋅⋅,0.10110111011110…,π, 中,哪些是有理数,哪些是无理数?例2 (1)下列说法中,正确的是( )A .带根号的数是无理数B .无理数都是开不尽方的数C .无限小数都是无理数D .无限不循环小数是无理数(2)下列说法正确的是( )A .若a 为实数,则a 大于-aB .实数m 的倒数一定是1mC .若实数x 、y ,有x y =,则x =yD .任何负数的倒数都小于它的相反数例3的相反数之和的倒数的平方为 。

例4 设a 、b 互为相反数,但不为0,c 、d 互为倒数,m 的倒数等于它本身,化简111c m m m d a b ⎛⎫÷++- ⎪⎝⎭的结果是 。

例5 试比较下列各组数的大小;①和②,1π-,310-例6 (1)实数a 、b 、c 在数轴上的位置如下图,化简a b b c c a -+---(2)当01x <<时,2x 、x 、1x的大小顺序是( ) A .21x x x << B .21x x x << C .21x x x << D .21x x x <<例7 (1)已知a 、b 为实数,且224250a b a b +--+=(2)若210x -+=,求20012002x y +的值。

第二讲 无理数与实数

第二讲 无理数与实数

第二讲 无理数与实数【基础知识精讲】一、实数有关概念1.有理数:整数和分数统称有理数。

有理数都可以化为有限小数或无限循环小数;反过来,任何有限小数或无限循环小数也都是有理数。

2.无理数:无限不循环小数叫做无理数(eg:π)。

无理数必须满足三个条件:①小数;②是无限小数;③不循环,三者缺一不可。

3.有理数和无理数统称为实数. 4.实数的分类 :⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧无限不循环小数负无理数正无理数无理数小数数有限小数或无限循环小正分数、负分数分数正整数、零、负整数整数有理数实数)()()( 例1:将下列各数填在相应括号内:35,3.14,⋅⋅12.0,38-,32-,3333+-,π有理数集合{ }; 整数集合 { }; 正数集合 { }; 分数集合 { }; 实数集合 { }。

变式:下列各数中,哪些是正数?负数?有理数?无理数?.343555,3.1416,,27,0.64,0.4,,0.38,16,0.12112111211112,.47π----正数集合:{ } 负数集合:{ } 有理数集合:{ } 无理数集合:{ } 例2:判断正误(1)有理数包括整数、分数和零 ( ) (2)无理数都是开方开不尽的数 ( ) (3)不带根号的数都是有理数 ( ) (4)带根号的数都是无理数 ( ) (5)无理数都是无限小数 ( ) (6)无限小数都是无理数( )变式:在数0.222;-∙∙24.1;2.525252…;π-3;-43;1.1351335…;3.1416;32;(-1)2;-1.424224222…其中无理数的个数为( ). A .1个 B.2个C.3个D.4个二、与实数有关的概念5.实数和数轴上点的对应关系:每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。

即实数和数轴上的点是一一对应的关系. 6.实数的几个概念. (1)相反数;(2)倒数;(3)绝对值都和有理数范围内的概念相同.例3:32-的相反数是________________;绝对值是_________________。

实数的概念及性质

实数的概念及性质

实数实数无理数的概念:无限不循环小数叫做无理数.注意:(1)所有开方开不尽的方根都是无理数,不是所有带根号的数都是无理数.(2)圆周率及一些含的数是无理数.(3)不循环的无限小数是无理数.(4)有理数可化为分数,而无理数则不能化为分数.无理数的性质:设a 为有理数,b 为无理数,则a+b ,a-b 是无理数;实数的概念:有理数和无理数统称为实数.实数的分类:0正整数整数负整数有理数有限小数或无限循环小数正分数实数分数负分数正无理数无理数无限不循环小数负无理数实数的性质:(1)任何实数a ,都有一个相反数-a .(2)任何非0实数a ,都有倒数1a.(3)正实数的绝对值是它本身,负实数的绝对值是它的相反数,0的绝对值是0.(4)正实数大于0,负实数小于0;两个正实数,绝对值大的数大,两个负实数,绝对值大的反而小.实数与数轴上的点一一对应:即数轴上的每一个点都可以用一个实数来表示,反过来,每个实数都可以在数轴上找到表示它的点.无理数大小的比较方法:(1)比较两个数的平方的大小:a >0,b >0,若2()a >2()b ,则a b ;若2()a<2()b,则a b;若2()a=2()b>,则a b.(2)比较被开方数的大小:a>0,b>0,若a>b,则a b;若a<b,则a b;若a=b,则a b.(3)作差法:若a-b>0,则a>b;若a-b=0,则a=b;若a-b<0,则a<b.(4)作商法:a>0,b>0,若ab>1,则a>b;若ab=1,则a=b;若ab<1,则a<b.注意:(1)没有最小的实数,0是绝对值最小的实数;(2)带根号的数不一定是无理数(3)一个实数的立方根只有一个;负数没有平方根.考点一对实数定义的考查【例1】.判断正误.(1)实数是由正实数和负实数组成.()(2)0属于正实数.()(3)数轴上的点和实数是一一对应的.()(4)如果一个数的立方等于它本身,那么这个数是1.()(5)若2x则2x.()【巩固1】下列说法错误的是()A.实数都可以表示在数轴上B.数轴上的点不全是有理数C.坐标系中的点的坐标都是实数对D.2是近似值,无法在数轴上表示准确【巩固2】下列说法正确的是()A.无理数都是无限不循环小数B.无限小数都是无理数C.有理数都是有限小数D.带根号的数都是无理数【巩固3】下列实数317,,3.14159,8,327,21,0.101101110……中无理数有().A.个B.个C.个D.个2345【例2】.有下列说法:(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示.其中正确的说法的个数是()A . 1B .2C . 3D .4考点二对实数性质的考查【例1】.3的相反数是________;15的倒数是________;35的绝对值是________.【例2】.3.141=______;|2332|______.【例3】.若3||3x ,则x =______;若||31x ,则x =______.【例4】.若直径为2个单位长度的圆上的点A 从表示5的点沿数轴向右滚动两周,圆上这一点到达另一点B ,则B 点表示的实数是()A .52B .45C .52D .54【例5】.如图,数轴上A 、B 两点对应的实数分别为a ,b ,则下列结论不正确....的是()A .0ab B .0abC .0a bD .||||0a b 【巩固1】如图,数轴上A ,B 两点表示的数分别为1和3,点B 关于点A 的对称点为C ,则点C 所表示的数为( ) A .23B .13C .23D .13【巩固1】325的相反数是.【巩固2】23的倒数是.【巩固3】52的绝对值是.【巩固4】256的相反数是;倒数是;绝对值是.1 1 2B A CA OB考点三实数的分类【例1】.把下列各数填入相应的集合:-1、4、5、π、 3.14、12、32、12、7.0、0、38.(1)有理数集合{};(2)无理数集合{};(3)整数集合{};(4)正实数集合{};(5)负实数集合{}.【例2】.把下列各数按照由大到小的顺序,用不等号连接起来.4,4,153,1.414,,0.6,3,34,【巩固1】下列各数:23,722,327,414.1,3,12122.3,9,9641.3中,无理数有个,有理数有个,负数有个,整数有个.【巩固2】下列实数1907,3,0,49,21,31,1.1010010001…(每两个1之间的0的个数逐次加1)中,设有m 个有理数,n 个无理数,则nm =考点四比较大小【例3】.估计77的大小应在()A .7~8之间B .8.0~8.5之间C .8.5~9.0之间D .9~10之间【巩固1】估计29的值在()A .在4.5和5.0之间B .在5.0和5.5之间C .在5.5和6.0之间D .在6.0和6.5之间【巩固2】实数2.6,7和22的大小关系是()A .2.6227B .2.6722C .72.622D .7222.6【例4】.一个正方体水晶砖,体积为1002cm ,它的棱长大约在()A .4~5cm 之间B .5~6cm 之间C .6~7cm 之间D .7~8cm 之间【例5】.(1)若实数a<b<0,则|a| |b|;大于17小于35的整数是;(2)比较大小:633411253【例6】.若01x ,则1x 、x 、2x 的大小关系是【例7】.如果a 是15的整数部分,b 是15的小数部分,a b =__________.【例8】.已知a b ,为两个连续整数,且10ab ,则ab_______.【例9】.414、226、15三个数的大小关系是()A. 41415226B. 22615414C.41422615D.22641415考点五对计算的考查【例1】.计算题(1)32716949(2)233)32(1000216【例2】.化简:(1)2551(2)103104(3)12233420112012【巩固3】已知等腰三角形一边长为a ,一边长b ,且22(2)90ab b.求它的周长.考点六综合运用【例3】.写出符合条件的数.(1)小于25的所有正整数;(2)绝对值小于22的所有整数.【例4】.一个底为正方形的水池的容积是3150m 3,池深14m ,求这个水底的底边长.【例5】.已知a 是11的整数部分,b 是它的小数部分,求32()(3)a b的值.【例6】.若31.8158481.22,则31815848_____.【例7】.已知2a 的平方根是2,27ab的立方根是3,求22a b 的算数平方根.【巩固4】已知3m nAnm 是3nm的算术平方根,237m n Bm n 是7m n 的立方根,求B+A 的平方根.【巩固5】已知3xa ,2y b (0y ),且2(4)8a b (4b a ),33()18a b ,求xy 的值.【巩固6】若1211ab ac ,求23abc 的值.【巩固7】设a 、b 是有理数,并且a 、b 满足等式2522b b a ,求a+b 的平方根习题133的相反数是,|33|= 57的相反数是,21的绝对值=习题2设3对应数轴上的点A ,5对应数轴上的点B ,则A 、B 间的距离为习题3下列说法中,正确的是()A.实数包括有理数,0和无理数B.无限小数是无理数C.有理数是有限小数D.数轴上的点表示实数.习题4下列命题中,错误的命题个数是()(1)2a 没有平方根;(2)100的算术平方根是10,记作10100(3)数轴上的点不是表示有理数,就是表示无理数;(4)2是最小的无理数.A .1个B .2个C .3个D .4个.课后巩固习题5设a 是实数,则|a|-a 的值()A .可以是负数B .不可能是负数C .必是正数D .可以是整数也可以是负数习题6数轴上,有一个半径为1个单位长度的圆上的一点A 与原点重合,该圆从原点向正方向滚动一周,这时点A 与数轴上一点重合,这点表示的实数是.习题7设m 是13的整数部分,n 是13的小数部分,求m-n 的值.习题8如图,数轴上两点表示的数分别为和,点B 关于点A 的对称点为C ,则点C 所表示的数为()A .B .C .D .习题9已知实数a 在数轴上的位置如图所示,则化简2|1|a a 的结果为()A .1B .1C .12aD .21a 习题10实数a b ,在数轴上对应点的位置如图所示,则必有()A .0a bB .0a bC .0ab D .a b习题11若a 为217的整数部分,1b 是9的平方根,且a bb a||,求b a的算术平方根.A B ,132313231311aCA OB(第8题图)a110b (第10题图)。

《实数的概念》课件

《实数的概念》课件
实数的除法运算可以通过乘法转换为乘法运算,即a/b=(a*1/数运算的基本性质
详细描述
实数的指数运算满足a^m*a^n=a^(m+n)和(a^m)^n=a^(mn)等基本性质。
03
实数与数轴
数轴的定义
实数轴
一条无限延伸的直线,每个点对应一个实数,实数轴上 的点是连续且稠密的。
在科学研究、工业生产和日常生活中,物理量的测量和计算都发挥着至关重要的作用。实数使 得这些测量和计算具有可靠性和准确性。
金融和统计数据的表示
金融和统计数据涉及到大量的数值计 算和表示,实数在其中扮演着重要的 角色。例如,股票价格、经济增长率 、人口数量等都是以实数表示的。
实数的精确性和可靠性使得金融和统 计数据的表示和分析更加准确,有助 于做出正确的决策和预测。
减法运算
总结词
减法运算的基本性质
详细描述
实数的减法运算可以通过加法转换为加法运算, 即a-b=a+(-b)。
乘法运算
总结词
乘法运算的基本性质
详细描述
实数的乘法运算满足交换律、结合律和分配律,即ab=ba,(ab)c=a(bc),a(b+c)=ab+ac。
除法运算
总结词
除法运算的基本性质
详细描述
定义方式
通常采用代数定义,即通过有理数和无理数来定义实数 。
数轴上的点与实数的关系
对应关系
每个实数都可以在数轴上找到一 个唯一的点与之对应,反之亦然 。
顺序关系
实数在数轴上按照大小关系排列 ,从小到大或从大到小。
数轴上的连续性和稠密性
连续性
实数轴上的点是连续不断的,没有间 断或空隙。
稠密性
在任意两个不同的实数之间,总可以 找到一个新的实数。

人教版数学七年级下册《无理数、实数概念》教案1

人教版数学七年级下册《无理数、实数概念》教案1

人教版数学七年级下册《无理数、实数概念》教案1一. 教材分析人教版数学七年级下册《无理数、实数概念》这部分内容,主要让学生了解无理数和实数的概念,理解无理数和实数在数轴上的位置关系,以及它们在数学中的应用。

这部分内容是初中的重要知识,也是高中数学的基础。

二. 学情分析初中的学生已经有了一定的数学基础,但是对于无理数和实数这样的抽象概念,可能还比较难以理解。

因此,在教学过程中,需要引导学生从实际问题中抽象出无理数和实数的概念,并通过具体的例子,让学生感受无理数和实数在生活中的应用。

三. 教学目标1.让学生了解无理数和实数的概念,理解它们在数轴上的位置关系。

2.让学生能够运用无理数和实数的知识,解决实际问题。

3.培养学生抽象思维的能力,提高学生解决问题的能力。

四. 教学重难点1.重难点:无理数和实数的概念,无理数和实数在数轴上的位置关系。

2.难点:无理数和实数在实际问题中的应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中抽象出无理数和实数的概念。

2.使用多媒体教学,通过动画、图片等形式,让学生更直观地理解无理数和实数。

3.采用小组合作学习的方式,让学生在讨论中巩固无理数和实数的知识。

六. 教学准备1.多媒体教学设备。

2.无理数和实数的教学素材。

3.小组合作学习的指导手册。

七. 教学过程1.导入(5分钟)通过一个实际问题,引出无理数和实数的概念。

问题:如果一个正方形的边长是2,那么它的对角线的长度是多少?2.呈现(10分钟)通过多媒体教学,呈现无理数和实数的定义,以及它们在数轴上的位置关系。

3.操练(10分钟)让学生通过小组合作学习的方式,解决一些与无理数和实数有关的问题。

4.巩固(10分钟)让学生回答一些关于无理数和实数的问题,以巩固他们刚刚学到的知识。

5.拓展(10分钟)让学生通过一些实际的例子,了解无理数和实数在生活中的应用。

6.小结(5分钟)对本节课的内容进行小结,让学生了解他们今天学到了什么。

《实数概念理解》 讲义

《实数概念理解》 讲义

《实数概念理解》讲义一、实数的定义实数,这个在数学中经常出现的名词,到底是什么呢?简单来说,实数是有理数和无理数的总称。

有理数,大家应该都比较熟悉,像整数(正整数、0、负整数)和分数(正分数、负分数),它们都可以表示为两个整数的比值。

而无理数,则是那些无限不循环小数,比如圆周率π、根号 2 等等。

二、实数的分类为了更好地理解实数,我们可以对其进行分类。

实数可以分为正实数、零和负实数。

正实数包括正有理数和正无理数。

正有理数像 1、2、3 这样的正整数,以及像 1/2、2/3 这样的正分数。

正无理数比如π、根号 3 等等。

零,是一个特殊的实数,它既不是正数也不是负数。

负实数则包括负有理数和负无理数。

负有理数像-1、-2、-3 这样的负整数,以及像-1/2、-2/3 这样的负分数。

负无理数比如π、根号 2 等等。

三、有理数有理数是实数中比较有规律的一部分。

整数很好理解,像 0、1、-1 等等。

而分数,其实就是把一个整数分成若干等份的表示形式。

比如3/4 ,表示把一个整体平均分成 4 份,取其中的 3 份。

有理数有很多特性。

它们可以写成有限小数或者无限循环小数。

比如 1/2 可以写成 05 , 1/3 可以写成 0333(无限循环)。

四、无理数无理数相对来说比较神秘和难以捉摸。

它们不能表示为两个整数的比值,并且其小数部分是无限不循环的。

例如,圆周率π约等于 31415926,它的小数位是无穷无尽且没有循环规律的。

还有像根号 2 约等于 141421356,也是无限不循环小数。

无理数的发现对于数学的发展有着重要的意义,它们让我们对数字的世界有了更深入和全面的认识。

五、实数的性质实数具有很多重要的性质。

首先是有序性,任意两个实数都可以比较大小。

比如 2 大于 1 ,-3 小于 0 。

其次是稠密性,也就是说在任意两个不同的实数之间,都存在着无穷多个实数。

比如在 1 和 2 之间,有 15 、 125 、 11 等等。

2无理数与实数

2无理数与实数

第二讲 无理数与实数【知识要点】1.无理数(1)无理数的概念无限不循环小数叫做无理数.学习无理数应把握住无理数的三个特征:①无理数是小数;②无理数是无限小数;③无理数是不循环小数.判断一个数是否是无理数对照这三个特征一个也不能少.(2)有理数与无理数的区别事实上,有理数总可以用有限小数或无限循环小数来表示;反过来,任何有限小数或无限循环小数也都是有理数.如3可看做3.0这样的有限小数,也可以化为31这样的分数形式;无限循环小数都可以化为分数,如:3.14可化为3750.有理数与无理数的主要区别:①无理数是无限不循环小数,有理数是有限小数或无限循环小数;②任何一个有理数都可以化为分数的形式,而无理数不能.【例1】 下列各数中,哪些是有理数?哪些是无理数?3.141 592 6,-43,2.5·8·,6.751 755 175 551 7…(相邻7,1之间5的个数逐次加1),0,227,-5.23·,-π2. 分析:有理数指有限小数或无限循环小数,整数和分数都是有理数,无理数指无限不循环小数.解:有理数有:3.141 592 6,-43,2.5·8·,0,227,-5.23·;无理数有:6.751 755 175 551 7…(相邻7,1之间5的个数逐次加1),-π2.2.无理数近似值的估算方法 要估算无理数的近似值,第一步应确定被估算无理数的整数取值范围;第二步以较小整数逐步开始加0.1(或以较大整数逐步开始减0.1),并求其平方,确定被估算数的十分位;…;如此继续下去,可以求出无理数的近似值.【例2】 面积为7的正方形的边长为x ,请你回答下列问题. (1)x 的整数部分是多少?(2)把x 的值精确到十分位是多少?精确到百分位呢? (3)x 是有理数吗?请简要说明理由.解:令正方形的面积为S ,则S =x 2=7,当2<x <3时,4<x 2<9,当2.6<x <2.7时,6.76<x 2<7.29;当2.64<x <2.65时,6.969 6<x 2<7.022 5;当2.645<x <2.646时,6.996 025<x 2<7.001 316; … 则有:(1)x 的整数部分为2.(2)精确到十分位时,x ≈2.6,精确到百分位时,x ≈2.65. (3)x 不是有理数.因为没有一个整数的平方等于7,也没有一个分数的平方等于7,另由计算可知,x 是无限不循环小数. 释疑点 如何四舍五入利用四舍五入法取近似值时要比精确到的位数多考查一位.3.无理数的常见类型 判断一个数是不是无理数,关键就是看它能不能写成无限不循环的小数,无理数常见的形式主要有三种:(1)一般的无限不循环小数,如1.414 213 56…是无理数.看似循环而实质不循环的小数,如0.101 001 000 1…(相邻两个1之间0的个数逐次增加1)是无理数.(2)圆周率π以及含π的数,如π,2π,π+5,都是无理数. (3)开方开不尽的数(下一节学到).【例3】 下列各数,哪些是有理数?哪些是无理数?0,π2,-4,0.12··,-117,1.112 111 211…(相邻两个2之间1的个数逐次加1),3.141592 7.分析:1.112 111 211…(相邻两个2之间1的个数逐次加1)为无限不循环小数,π2为含π的数,两者都为无理数.0,-4为整数,是有理数;0.12··,-34,3.141 592 7为分数或可化为分数,是有理数.解:有理数为0,-4,0.12··,-117,3.141 592 7;无理数为π2,1.112 111 211…(相邻两个2之间1的个数逐次加1).辨误区 π与3.141 592 7的区别3.141 592 7属于有限小数,不是π,要注意区分. 4.实数的概念及分类(1)有理数和无理数统称实数. (2)实数的分类:我们所学习的实数范围大、类别多,按照不同的标准就有不同的分类方法,总体来说有两种情况:①按定义来分类②按正、负数来分类实数⎩⎪⎨⎪⎧正实数⎩⎪⎨⎪⎧ 正有理数正无理数0负实数⎩⎪⎨⎪⎧负有理数负无理数分类是一个重要的数学思想,对实数分类时要做到按同一标准,既不重复,又不遗漏. 对啊! 还要注意:0既不是正数,也不是负数,它是一个中性数,它在实数里扮演着重要角色. 我们通常把正实数和0合称为非负数,把负实数和0合称为非正数.【例4】 把下列各数填入相应的集合内:0,2,15,0.3·,-π,-3-27,1.234 56…,-49. (1)有理数集合:{ …};(2)无理数集合:{ …}; (3)正实数集合:{ …}; (4)负实数集合:{…}.分析:实数按照不同的分类标准有两种分类方法,将实数分类时,属于有理数集合的一定不属于无理数集合,属于正实数集合的一定不属于负实数集合,但是属于有理数集合的数有可能属于正实数集合.解:(1)有理数集合:⎩⎨⎧0,15,0.3·,-3-27,-49,… }.(2)无理数集合:{2,-π,1.234 56…,…}.(3)正实数集合:⎩⎨⎧2,15,0.3·,-3-27,1.234 56…,… }.(4)负实数集合:{-π,-49,…}. 点技巧 实数的有关性质解答本题时要注意以下几点:(1)对于-3-27,虽然有负号,但是最终化为正数,虽然含有根号,但是可以开得尽方,所以它既是正数又是有理数;(2)0既不是正数又不是负数;(3)一切分数都是有理数.5.实数的性质在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样.(1)相反数:实数a 的相反数是-a,0的相反数是0,具体地,若a 与b 互为相反数,则a +b =0;反之,若a +b =0,则a 与b 互为相反数.如:π与-π,3与-3均互为相反数.(2)绝对值:一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0.实数a 的绝对值可表示为|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0.就是说实数a 的绝对值一定是一个非负数,即|a |≥0,并且若|x |=a (a ≥0),则x =±a .例如:|-3|=3,|-π|=π,|3|=3,|2-3|=-(2-3)=3-2,….(3)倒数:乘积为1的两个实数互为倒数,即若a 与b 互为倒数,则ab =1;反之,若ab =1,则a 与b 互为倒数.这里应特别注意的是0没有倒数.(4)实数大小的比较:有理数大小的比较法则在实数范围内仍然成立,所以我们可以得到比较实数大小的法则:①正实数都大于0,负实数都小于0,正数大于一切负数;两个负实数,绝对值大的反而小;②数轴上右边的点表示的实数比左边的点表示的实数大.在进行实数比较大小时,我们会经常用到估算法、乘方法、作商法、求差法等等,由于方法多种多样,所以要根据实际采用适当的方法,亦可分别尝试应用.【例5-1】 解答下列问题:(1)求3-216的绝对值;(2)若某数的绝对值是13,求这个数; (3)已知|x |=26,求实数x ;(4)设a 与b 互为相反数,c 与d 互为倒数,m 的倒数是其本身,化简cdm+(a +b )m -|m |.分析:(1)3-216=-6,-6的绝对值是6;(2)(3)在解决时要考虑到正负两种情形;(4)由a 与b 互为相反数可得a +b =0,由c 与d 互为倒数可得cd =1,由m 的倒数是其本身可得m =±1,然后化简可解.解:(1)|3-216|=|-6|=6.(2)∵|13|=13,|-13|=13,∴绝对值是13的数是±13.(3)∵|x|=26,∴x=±26.(4)由题意,得a+b=0,cd=1,m=±1.当m=1时,原式=1+0×1-1=0;当m=-1时,原式=-1+0×(-1)-|-1|=-1-1=-2.注:(2)(3)两题实质是一样的,只是表达形式不同,解题时要防止丢掉负实数.【例5-2】比较下列各组数的大小:(1)-3.141 5和-π;(2)211和3 5.分析:解:(1)∵|-3.141 5|=3.141 5,|-π|=π=3.141 592…,3.141 5<π,∴-3.141 5>-π.(2)∵(211)2=4×11=44,(35)2=9×5=45,44<55,∴211<3 5.点技巧比较负无理数的大小(1)比较两个负实数大小时,应先比较其绝对值的大小,绝对值大的反而小;(2)因为211和35都是无理数,整数部分很难确定,所以可以利用乘方法,乘方大的这个数就大.6.实数与数轴上点的关系每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.即实数和数轴上的点是一一对应的.因此,数轴正好可以被实数填满.【例6】大家知道,数轴上的点有些表示有理数,有些表示无理数,请你在数轴上画出表示13的点.分析:考虑到(13)2=9+4=32+22,可以利用勾股定理在数轴上作出长为13的线段,从而找到表示13的点.解:作法如下:(1)在数轴上找到一点A,使OA=3;(2)过A作AT垂直于数轴,垂足为A,在AT上截取AB=2;(3)连接OB;(4)以O为圆心,OB为半径作弧,弧与数轴的交点C即为表示13的点.点评:在数轴上作无理数一般是借助勾股定理.7.a与a的算术平方根之区别a与a的算术平方根是代数中两个十分重要的概念,两者有非常密切的联系,但也有所区别,主要表现在以下几方面:(1)a是一种代数式,而a的算术平方根是一种运算.a(a≥0)是一种代数式,一种含有二次根号“”的代数式.而算术平方根是指一种运算,一种与平方互为逆关系的运算.(2)a比a的算术平方根内涵更丰富.a虽然建立在a的算术平方根上,但它比a的算术平方根的含义更丰富.对于a来说,它表示的意义仍然是非负数a的算术平方根.用a的形式表示一个非负数的算术平方根具有形式简洁、含义深刻等优点,通过二次根式探索、表达算术平方根的性质更是如鱼得水、简便之极.(3)算术平方根不一定带根号.如3是9的算术平方根.【例7】 对于题目“化简并求值:1a +1a +a 2-2,其中a =15”,甲、乙二人的解答不同.甲的解答是:1a +1a 2+a 2-2=1a +⎝ ⎛⎭⎪⎫1a -a 2=1a +1a -a =2a -a =495; 乙的解答是:1a +1a2+a 2-2=1a+⎝ ⎛⎭⎪⎫a -1a 2=1a+a -1a =a =15.谁的解答是错误的?为什么? 分析:甲、乙二人的解答区别在于1a2+a 2-2的化简,1a2+a 2-2=⎝ ⎛⎭⎪⎫1a -a 2=⎝ ⎛⎭⎪⎫a -1a 2=⎪⎪⎪⎪⎪⎪a -1a ,其值是非负数.由于a =15,所以结果应是1a-a .解:乙的解答是错误的.理由:∵a =15,则a -1a <0,∴⎝ ⎛⎭⎪⎫a -1a 2=⎪⎪⎪⎪⎪⎪a -1a =1a -a . 注意:|a |与a 2在化简时一定要考虑其值的非负性.8.实数在生活中的应用实数是日常生活、生产中必不可少的数,它们与我们的生活息息相关,因此,与实数相关的问题自然成为中考命题的热点.数学知识生活化是近几年来中考热点之一,实数也不例外,将生活中的实数搬进中考已成为中考的一个亮点.【例8】 教生物的老师想设计一个长方形的实验基地,便于同学们进行实地观察,为了考查一下同学们的计算能力,他把长方形的基地设计成长为8020 m ,宽为345 m ,让学生算出这块实验基地的面积解:实验基地的面积为8020×345=80×3×20×45=240900=240×30=7 200(m 2).答:这块实验基地的面积为7 200 m 2.【素质能力测试】 A 组1. 小数,叫做无理数。

数学无理数与实数

数学无理数与实数

数学无理数与实数数学是一门严谨而深奥的学科,其中包含了许多有趣的概念和理论。

无理数与实数是数学中一对重要的概念,在数学的发展中起到了重要的作用。

本文将着重介绍无理数与实数的定义、性质和应用。

一、无理数与实数的定义1. 无理数的定义无理数是指不能表示为两个整数的比例的实数。

无理数可以用无限不循环小数表示,例如π(pi)、e(自然对数的底数)等。

2. 实数的定义实数包括有理数和无理数,是一切数的集合。

实数可以用有限小数、无限循环小数和无限不循环小数来表示,例如整数、分数和无理数等。

二、无理数与实数的性质1. 无理数的性质(1)无理数的十进制表示是无限不循环小数。

(2)无理数与有理数相加、相乘、相减仍是无理数。

(3)无理数存在无穷多个,且无理数的集合与有理数的集合的交集为空。

2. 实数的性质(1)实数具有稠密性,即对于任意两个实数a和b,存在一个实数c使得a<c<b。

(2)实数的加法和乘法满足交换律、结合律和分配律等基本性质。

(3)实数域是一个有序域,可以进行大小比较。

三、无理数与实数的应用1. 几何学中的应用无理数在几何学中起到了重要的作用,例如π(pi)常用来表示圆周率,e(自然对数的底数)在指数增长和减少的模型中得到了广泛应用。

2. 物理学中的应用无理数与实数在物理学中也有重要应用,例如黄金分割比例、分形理论等。

3. 金融学中的应用实数的无穷性和稠密性在金融学中具有重要意义,例如套利交易、期权定价等。

四、总结无理数与实数是数学领域中重要的概念和理论,对于数学的发展和各个学科的应用都起到了关键作用。

通过研究无理数与实数,我们能够更好地理解数学的本质和规律,并将其应用于实际问题的解决中。

无论是几何学、物理学还是金融学,无理数与实数都扮演着不可忽视的角色。

因此,深入研究和探索无理数与实数的性质和应用,对于我们的数学学习和应用有着重要的意义。

这篇文章介绍了数学中的无理数与实数的定义、性质和应用。

无理数实数概念二

无理数实数概念二
2
(3)|3.14|=______3_.1__4__
(4)绝对值等于 6 的数是 _______6__ (5)1 3 的 绝对值是 ___3_____1_
( 6 ) 比较大小:-7 4 3
谈谈本节课的收获:有什么新发现? 知道了哪些新知识?
课本87页:3, 6
问题2.你能在数轴上表示出 2吗?
实数与数轴上的点一一对应
实数与数轴上的点一一对应
-2
-1
0 A1
2
(数点) 每一个实数都可以用数轴上的一个
点来表示.
(点数)反过来 ,数轴上的每一个点都表示
一个实数.
相反数: 实数 a 的相反数是- a. 若a与b互为相反数,则a+b=0.
绝对值: 实数a的绝对值,记为|a|,它 是一个非负实数.
报道一: 在男子110米栏决赛中,中国选手刘翔 以12.91秒的成绩夺得金牌,这个成绩打破12.96的 奥运会纪录,平了世界纪录,实现了中国男子田径 金牌0的突破.
报道二:在女子柔道52公斤级的冠军争夺赛中, 中国选手冼东妹仅用1.1分钟,就为中国柔道队夺 得首枚金牌.
你没忘吧
?
110, 12.91, 12.96, 0, 52, 1.1,
新课导入
以生命为代价的发现
毕达哥拉斯(Pythagoras)学派
“万物皆为数”(指有理数)
希帕斯(Hippasus)
发现了一种实际存在的量, 毕达哥拉斯 却不能表示为两个整数的比.
毕达哥拉斯有一句名言,叫做“万物皆数”, 他把数的概念神秘化了,错误地认为:宇宙间的 一切现象,都可以归结为整数或者整数的比;除 此之外,就不再有别的什么东西了.
33.0, 30.6, 475.875,

八年级上册数学第二章实数知识点

八年级上册数学第二章实数知识点

八年级上册数学第二章实数知识点
数学八年级上册第二章实数知识点主要包括以下内容:
1. 实数的概念:实数是指有理数和无理数的统称,包括所有实数。

2. 有理数的概念:有理数包括整数和分数两类,可以用分数表示成两个整数的比,可以是正数、负数或零。

3. 无理数的概念:无理数是指无法表示为两个整数比的实数,如根号2、根号3等。

4. 实数的比较和排序:实数可以通过大小比较进行排序,可以使用相等、大于或小于等符号进行表示。

5. 实数的运算:实数的四则运算包括加法、减法、乘法和除法。

加法和乘法满足交换律、结合律和分配律,减法和除法也有相应的规律。

6. 绝对值的概念和性质:绝对值是一个非负实数,表示一个数到原点的距离,用符号表示为|a|。

7. 实数的相反数和倒数:实数a的相反数是-b,满足a + (-a) = 0;实数a的倒数是1/a,满足a × (1/a) = 1。

8. 有理数的数轴表示和无理数的近似表示:有理数可以用数轴表示,数轴上有0和正负方向,无理数可以通过近似表示,取一定精度的有理数作为其近似值。

9. 实数的绝对值不等式:对于任意实数a,有|a| ≥ 0,且对于任意实数a和b,有|ab| = |a| × |b|。

10. 实数的乘方:实数的乘方运算定义为一个实数自乘若干次,例如a^n表示a自乘n次。

以上是八年级上册数学第二章实数的主要知识点,希望对你有帮助!。

实数的有关概念

实数的有关概念

若几个非负数的和等于0,那么这几个非负数都0.
课前热身
1、(2003年·黄冈市)2003年6月1日9时,举世瞩目的三 峡工程正式下闸蓄水,首批4台组率先发电,预计年内可 发电55 000 000 000度,这个数用科学记数法表示,记 为 5.5×1010 .
2、将2000800保留四个有效数字是 2.001×106 ,用四 舍五入法,把它精确到十万位的近似数用科学记数法表 示为 2.0×106 . 3、(2002年· 厦门)计算:3-1+(2-1)0= 4/3 。
5.绝对值
一个数a的绝对值就是数轴上 表示数a的点与原点的距离。
3 2 -3 –2 –1 0 1 4 2 3 4
1)数a的绝对值记作︱a︱; 若a>0,则︱a︱= a ; 2) 若a<0,则︱a︱= -a ; 若a =0,则︱a︱= 0 ; 3) 对任何有理数a,总有︱a︱≥0.
填空
6.科学记数法、近似数与有效数字
规定了原点、正方向和单位长度的直线. -3 –2 –1 0 1 2 3 4
1)在数轴上表示的两个数, 右边的数总比左边的数大; 2)正数都大于0,负数都小于0; 正数大于一切负数; 3)所有有理数都可以用数轴上 的点表示。
3.相反数
只有符号不同的两个数, 其中一个是另一个的相反数。 1)数a的相反数是-a
3
1 5和 3 互为倒数, 5
| 3 | 3 , | 0 | 0 , | - | .
8、想一想
a 是一个实数,它的相反数为 a ; 绝对值为 | a | .如果 a 0 , 那么它
a 的倒数为 .
1
1、-5的绝对值是 A.5 B. 1/5 C.-1/5
( A ) D.-5 (2003北京市中考试题)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.实数的几个有关概念:①相反数:a与-a互为相反数,0的相反数是0。a+b=0 a、b互为相反数。
②倒数:若 ,则 称为a的倒数,0没有倒数。 、b互为倒数。
③绝对值:一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0。即
例3:(1)求下列各数的相反数和绝对值:2.5,- , ,0, , -3
(2)一个数的绝对值是 ,求这个数。
例4:下列说法正确的是()A.若a为实数,则a大于-a B.实数m的倒数一定是
C.若实数x、y,有 ,则x=yD.任何负数的倒数都小于它的相反数
例5: 的绝对值与 的相反数之和的倒数的平方为。
例6:设a、b互为相反数,但不为0,c、d互为倒数,m的倒数等于它本身,化简 的结果是。
1.无理数:无限不循环小数叫做无理数,如π=3.1415926…, ,-1.010010001…,都是无理数。
例1在实数3.14, , , , ,0.10110111011110…,π, 中,哪些是有理数,哪些是无理数?
注意:①既是无限小数,又是不循环小数,这两点必须同时满足;
②无限不循环小数与有限小数、无限循环小数的本质区别是:前者不能化成分数,而后两者都可以化成分数;
茅塔中学数学实数教案
教师:_______年级:______授课时间:_____年___月___日_____
知道实数的相反数、绝对值的意义,并会求一个实数的相反数和绝对值;会比较两个实数的大小。
二、授课内容及过程:
问题:把下列有理数写成小数的形式,你有什么发现?3, , , , , ,5,0
结论:任何一个有理数都可以写成有限小数或无限循环小数的形式。反过来,任何有限小数或无限循环小数也都是有理数。无限不循环小数又叫无理数, 也是② , ,
例8(1):实数a、b、c在数轴上的位置如下图,化简 (用类比的方法比较有理数的大小)
c b 0 a
(2)当 时, 、 、 的大小顺序是()
A. B. C. D.
例8:(1)已知 、 为实数,且 ,求 的值。
(2)若 ,求 的值。
例9:已知 , ,求a+b的最小值。
六、本次作业及点评:
课后练习
③凡是整数的开不尽的方根都是无理数,如 、 等。
像有理数一样,无理数也有正负之分。例如 , , 是正无理数, , , 是负无理数。
2.实数:有理数和无理数统称为实数。由于非0有理数和无理数都有正负之分,实数也可以这样分类:
(1) (2)
例2下列说法中,正确的是()
A.带根号的数是无理数B.无理数都是开不尽方的数C.无限小数都是无理数D.无限不循环小数是无理数
相关文档
最新文档