最新高考数学专题复习立体几何重点题型空间距离空间角(师)

合集下载

新教材高考数学二轮专题复习第一部分专题攻略专题四立体几何第二讲空间位置关系空间角与空间距离课件

新教材高考数学二轮专题复习第一部分专题攻略专题四立体几何第二讲空间位置关系空间角与空间距离课件
AC
10
2.[2022·广东茂名二模]正三棱锥S - ABC的底面边长为4,侧棱长为
2 3 , D 为 棱 AC 的 中 点 , 则 异 面 直 线 SD 与 AB 所 成 角 的 余 弦 值 为
2
________.
4
解析:取BC的中点E,连接SE,DE,则∠SDE(或其补
角)为异面直线SD与AB所成的角,
解决问题;
2.必要时可以借助空间几何模型,如从长方体、四面体等模型中观
察线面位置关系,并结合有关定理来进行判断.
巩固训练1
1.[2022·湖南衡阳二模]设m、n是空间中两条不同的直线,α、β是两
个不同的平面,则下列说法正确的是(
)
A.若m⊥α,n⊥β,m⊥n,则α⊥β
B.若m⊂α,n⊂β,α∥β,则m∥n
面ABCD,且PA=AB,AD=3AB,则PC与底面ABCD所成角的正切值为
(
)
1
A.
B.3
3
C.
10
10
D. 10
答案:C
解析:因为PA⊥底面ABCD,AC⊂底面ABCD,
所以PA⊥AC,则PC与底面ABCD所成角为∠PCA.
设AB=1,则PA=1,AD=3,AC= 10.
所以tan
PA
10
∠PCA= = .
1 ·2
为θ.则sin θ=|cos 〈n1,n2〉|=
.
1 2
3.平面与平面的夹角
若n1,n2分别为平面α,β的法向量,θ为平面α,β的夹角,则cos θ=
1 ·2
|cos 〈n1,n2〉|=
.
1 2
4.点到直线的距离:已知A,B是直线l上任意两点, P是l外一点,

2024高考数学基础知识综合复习第21讲空间角与距离课件

2024高考数学基础知识综合复习第21讲空间角与距离课件
=120°,E 是 BB1 的中点,则异面直线 CE 与 AC1 所成的角的余弦值是( B )
3
A.-4
3
B.4
1
C.8
1
D.-8
解析 如图,取 CC1 中点 M,AC 中点 N,连接 MN,MB1,NB1,NB.
在直三棱柱 ABC-A1B1C1 中,AC=AA1=2,BC=1,所以 AA1⊥平面 A1B1C1.

2-
BM=t,因为△B1C1M∽△CNC1,由相似比得
2
解得
2 2 -2+4
AN=
,由等面积法得
2-
2 -2+4
≥1(当且仅当
3
CG=
2 3
2 -2+4
=
2
4
,CN= ,由余弦定理可

2-
,所以
1
tan∠C1GC=

t=1 时,等号成立),故(cos∠C1GC)max=
求解.
考向3
二面角
典例4直三棱柱ABC-A1B1C1中,各棱长均等于2,M为线段BB1上的动点,则平
面ABC与平面AMC
1所成的二面角为锐角,则该角的余弦值的最大值为
2
___________.
2
解析 延长 C1M 交 CB 于点 N,连接 AN,则平面 AMC1∩平面 ABC=AN,作 CG
⊥AN 于点 G,连接 C1G,∠C1GC 为所求的二面角的平面角.
1.空间角
(1)异面直线所成的角
①定义:已知两条异面直线 a,b 经过空间任一点 O 分别作直线 a'∥a,b'∥b,
我们把直线 a'与 b'所成的角叫做异面直线 a 与 b 所成的角(或夹角).

立体几何(7大题型)(解析版)2024年高考数学立体几何大题突破

立体几何(7大题型)(解析版)2024年高考数学立体几何大题突破

立体几何立体几何是高考数学的必考内容,在大题中一般分两问,第一问考查空间直线与平面的位置关系证明;第二问考查空间角、空间距离等的求解。

考题难度中等,常结合空间向量知识进行考查。

2024年高考有很大可能延续往年的出题方式。

题型一:空间异面直线夹角的求解1(2023·上海长宁·统考一模)如图,在三棱锥A-BCD中,平面ABD⊥平面BCD,AB=AD,O为BD的中点.(1)求证:AO⊥CD;(2)若BD⊥DC,BD=DC,AO=BO,求异面直线BC与AD所成的角的大小.【思路分析】(1)利用面面垂直的性质、线面垂直的性质推理即得.(2)分别取AB,AC的中点M,N,利用几何法求出异面直线BC与AD所成的角.【规范解答】(1)在三棱锥A-BCD中,由AB=AD,O为BD的中点,得AO⊥BD,而平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AO⊂平面ABD,因此AO⊥平面BCD,又CD⊂平面BCD,所以AO⊥CD.(2)分别取AB,AC的中点M,N,连接OM,ON,MN,于是MN⎳BC,OM⎳AD,则∠OMN是异面直线BC与AD所成的角或其补角,由(1)知,AO ⊥BD ,又AO =BO ,AB =AD ,则∠ADB =∠ABD =π4,于是∠BAD =π2,令AB =AD =2,则DC =BD =22,又BD ⊥DC ,则有BC =BD 2+DC 2=4,OC =DC 2+OD 2=10,又AO ⊥平面BCD ,OC ⊂平面BCD ,则AO ⊥OC ,AO =2,AC =AO 2+OC 2=23,由M ,N 分别为AB ,AC 的中点,得MN =12BC =2,OM =12AD =1,ON =12AC =3,显然MN 2=4=OM 2+ON 2,即有∠MON =π2,cos ∠OMN =OM MN =12,则∠OMN =π3,所以异面直线BC 与AD 所成的角的大小π3.1、求异面直线所成角一般步骤:(1)平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线.(2)证明:证明所作的角是异面直线所成的角.(3)寻找:在立体图形中,寻找或作出含有此角的三角形,并解之.(4)取舍:因为异面直线所成角θ的取值范围是0,π2,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2、可通过多种方法平移产生,主要有三种方法:(1)直接平移法(可利用图中已有的平行线);(2)中位线平移法;(3)补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).3、异面直线所成角:若n 1 ,n 2分别为直线l 1,l 2的方向向量,θ为直线l 1,l 2的夹角,则cos θ=cos <n 1 ,n 2 > =n 1 ⋅n 2n 1 n 2.1(2023·江西萍乡·高三统考期中)如图,在正四棱台ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点.(1)证明:EF ⎳平面AB1C 1D ;(2)若AB =2A 1B 1,且正四棱台的侧面积为9,其内切球半径为22,O 为ABCD 的中心,求异面直线OB 1与CC 1所成角的余弦值.【答案】(1)证明见解析;(2)45【分析】(1)根据中位线定理,结合线面平行判定定理以及面面平行判定定理,利用面面平行的性质,可得答案;(2)根据题意,结合正四棱台的几何性质,求得各棱长,利用线线角的定义,可得答案.【解析】(1)取CC 1中点G ,连接GE ,GF ,如下图:在梯形BB 1C 1C 中,E ,G 分别为BB 1,CC 1的中点,则EG ⎳B 1C 1,同理可得FG ⎳C 1D ,因为EG ⊄平面AB 1C 1D ,B 1C 1⊂平面AB 1C 1D ,所以EG ⎳平面AB 1C 1D ,同理可得GF ⎳平面AB 1C 1D ,因为EG ∩FG =G ,EG ,FG ⊆平面EFG ,所以平面EFG ⎳平面AB 1C 1D ,又因为EF ⊆平面EFG ,所以EF ⎳平面AB 1C 1D ;(2)连接AC ,BD ,则AC ∩BD =O ,连接A 1O ,A 1C 1,B 1O ,在平面BB 1C 1C 中,作B 1N ⊥BC 交BC 于N ,在平面BB 1D 1D 中,作B 1M ⊥BD 交BD 于M ,连接MN ,如下图:因为AB =2A 1B 1,则OC =A 1C 1,且OC ⎳A 1C 1,所以A 1C 1CO 为平行四边形,则A 1O ⎳CC 1,且A 1O =CC 1,所以∠A 1OB 1为异面直线OB 1与CC 1所成角或其补角,同理可得:B 1D 1DO 为平行四边形,则B 1O =D 1D ,在正四棱台ABCD -A 1B 1C 1D 1中,易知对角面BB 1D 1D ⊥底面ABCD ,因为平面ABCD ∩平面BB 1D 1D =BD ,且B 1M ⊥BD ,B 1M ⊂平面BB 1D 1D ,所以B 1M ⊥平面ABCD ,由内切球的半径为22,则B 1M =2,在等腰梯形BB 1C 1C 中,BC =2B 1C 1且B 1N ⊥BC ,易知BN =14BC ,同理可得BM =14BD ,在△BCD 中,BN BC=BM BD =14,则MN =14CD ,设正方形ABCD 的边长为4x x >0 ,则正方形A 1B 1C 1D 1的边长为2x ,MN =x ,由正四棱台的侧面积为9,则等腰梯形BB 1C 1C 的面积S =94,因为B 1M ⊥平面ABCD ,MN ⊂平面ABCD ,所以B 1M ⊥MN ,在Rt △B 1MN ,B 1N =B 1M 2+MN 2=2+x 2,可得S =12⋅B 1N ⋅B 1C 1+BC ,则94=12×2+x 2×4x +2x ,解得x =12,所以BC =2,B 1C 1=1,BN =14BC =12,B 1N =32,则A 1B 1=1,在Rt △BB 1N 中,BB 1=B 1N 2+BN 2=102,则CC 1=DD 1=102,所以在△A 1OB 1中,则cos ∠A 1OB 1=A 1O 2+B 1O 2-A 1B 212⋅A 1O ⋅B 1O=1022+102 2-12×102×102=45,所以异面直线OB 1与CC 1所成角的余弦值为45.2(2023·辽宁丹东·统考二模)如图,平行六面体ABCD -A 1B 1C 1D 1的所有棱长都相等,平面CDD 1C 1⊥平面ABCD ,AD ⊥DC ,二面角D 1-AD -C 的大小为120°,E 为棱C 1D 1的中点.(1)证明:CD ⊥AE ;(2)点F 在棱CC 1上,AE ⎳平面BDF ,求直线AE 与DF 所成角的余弦值.【答案】(1)证明见解析;(2)37【分析】(1)根据面面垂直可得线面垂直进而得线线垂直,由二面角定义可得∠D 1DC =120°,进而根据中点得线线垂直即可求;(2)由线面平行的性质可得线线平行,由线线角的几何法可利用三角形的边角关系求解,或者建立空间直角坐标系,利用向量的夹角即可求解.【解析】(1)因为平面CDD 1C 1⊥平面ABCD ,且两平面交线为DC ,AD ⊥DC ,AD ⊂平面ABCD , 所以AD ⊥平面CDD 1C 1,所以AD ⊥D 1D ,AD ⊥DC ,∠D 1DC 是二面角D 1-AD -C 的平面角,故∠D 1DC =120°.连接DE ,E 为棱C 1D 1的中点,则DE ⊥C 1D 1,C 1D 1⎳CD ,从而DE ⊥CD .又AD ⊥CD ,DE ∩AD =D ,DE ,AD ⊂平面AED ,所以CD ⊥平面AED ,ED ⊂平面AED ,因此CD ⊥AE .(2)解法1:设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.连AC 交BD 于点O ,连接CE 交DF 于点G ,连OG .因为AE ⎳平面BDF ,AE ⊂平面AEC ,平面AEC ∩平面BDF =OG ,所以AE ∥OG ,因为O 为AC 中点,所以G 为CE 中点,故OG =12AE =72.且直线OG 与DF 所成角等于直线AE 与DF 所成角.在Rt △EDC 中,DG =12CE =72,因为OD =2,所以cos ∠OGD =722+72 2-(2)22×72×72=37.因此直线AE 与DF 所成角的余弦值为37.解法2;设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.取DC 中点为G ,连接EG 交DF 于点H ,则EG =DD 1=2.连接AG 交BD 于点I ,连HI ,因为AE ⎳平面BDF ,AE ⊂平面AGE ,平面AGE ∩平面BDF =IH ,所以AE ∥IH .HI 与DH 所成角等于直线AE 与DF 所成角.正方形ABCD 中,GI =13AG ,DI =13DB =223,所以GH =13EG ,故HI =13AE =73.在△DHG 中,GH =13EG =23,GD =1,∠EGD =60°,由余弦定理DH =1+49-1×23=73.在△DHI 中,cos ∠DHI =732+73 2-223 22×73×73=37.因此直线AE 与DF 所成角的余弦值为37.解法3:由(1)知DE ⊥平面ABCD ,以D 为坐标原点,DA为x 轴正方向,DA为2个单位长,建立如图所示的空间直角坐标系D -xyz .由(1)知DE =3,得A 2,0,0 ,B 2,2,0 ,C 0,2,0 ,E (0,0,3),C 1(0,1,3).则CC 1=(0,-1,3),DC =(0,2,0),AE =(-2,0,3),DB =(2,2,0).由CF =tCC 1 0≤t ≤1 ,得DF =DC +CF =(0,2-t ,3t ).因为AE ⎳平面BDF ,所以存在唯一的λ,μ∈R ,使得AE =λDB +μDF=λ2,2,0 +μ(0,2-t ,3t )=2λ,2λ+2μ-tμ,3μt ,故2λ=-2,2λ+2μ-tμ=0,3μt =3,解得t =23,从而DF =0,43,233 .所以直线AE 与DF 所成角的余弦值为cos AE ,DF =AE ⋅DF|AE ||DF |=37.题型二:空间直线与平面夹角的求解2(2024·安徽合肥·统考一模)如图,三棱柱ABC -A 1B 1C 1中,四边形ACC 1A 1,BCC 1B 1均为正方形,D ,E 分别是棱AB ,A 1B 1的中点,N 为C 1E 上一点.(1)证明:BN ⎳平面A 1DC ;(2)若AB =AC ,C 1E =3C 1N,求直线DN 与平面A 1DC 所成角的正弦值.【思路分析】(1)连接BE ,BC 1,DE ,则有平面BEC 1⎳平面A 1DC ,可得BN ⎳平面A 1DC ;(2)建立空间直角坐标系,利用空间向量进行计算即可.【规范解答】(1)连接BE ,BC 1,DE .因为AB ⎳A 1B 1,且AB =A 1B 1,又D ,E 分别是棱AB ,A 1B 1的中点,所以BD ⎳A 1E ,且BD =A 1E ,所以四边形BDA 1E 为平行四边形,所以A 1D ⎳EB ,又A 1D ⊂平面A 1DC ,EB ⊄平面A 1DC ,所以EB ⎳平面A 1DC ,因为DE ⎳BB 1⎳CC 1,且DE =BB 1=CC 1,所以四边形DCC 1E 为平行四边形,所以C 1E ⎳CD ,又CD ⊂平面A 1DC ,C 1E ⊄平面A 1DC ,所以C 1E ⎳平面A 1DC ,因为C 1E ∩EB =E ,C 1E ,EB ⊂平面BEC 1,所以平面BEC 1⎳平面A 1DC ,因为BN ⊂平面BEC 1,所以BN ⎳平面A 1DC .(2)四边形ACC 1A 1,BCC 1B 1均为正方形,所以CC 1⊥AC ,CC 1⊥BC ,所以CC 1⊥平面ABC .因为DE ⎳CC 1,所以DE ⊥平面ABC ,从而DE ⊥DB ,DE ⊥DC .又AB =AC ,所以△ABC 为等边三角形.因为D 是棱AB 的中点,所以CD ⊥DB ,即DB ,DC ,DE 两两垂直.以D 为原点,DB ,DC ,DE 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系D -xyz .设AB =23,则D 0,0,0 ,E 0,0,23 ,C 0,3,0 ,C 10,3,23 ,A 1-3,0,23 ,所以DC =0,3,0 ,DA 1=-3,0,23 .设n=x ,y ,z 为平面A 1DC 的法向量,则n ⋅DC=0n ⋅DA 1 =0,即3y =0-3x +23z =0 ,可取n=2,0,1 .因为C 1E =3C 1N ,所以N 0,2,23 ,DN =0,2,23 .设直线DN 与平面A 1DC 所成角为θ,则sin θ=|cos ‹n ,DN ›|=|n ⋅DN ||n |⋅|DN |=235×4=1510,即直线DN 与平面A 1DC 所成角正弦值为1510.1、垂线法求线面角(也称直接法):(1)先确定斜线与平面,找到线面的交点B 为斜足;找线在面外的一点A ,过点A 向平面α做垂线,确定垂足O ;(2)连结斜足与垂足为斜线AB 在面α上的投影;投影BO 与斜线AB 之间的夹角为线面角;(3)把投影BO 与斜线AB 归到一个三角形中进行求解(可能利用余弦定理或者直角三角形)。

高中数学高考复习专题《立体几何》微专题1 空间中的距离

高中数学高考复习专题《立体几何》微专题1  空间中的距离

1.典型例题
题型一、点到直线的距离
例 1 已知正方体 ABCD-A1B1C1D1 的棱长为 2,E 为棱 A1B1 的中点,F 为棱 C1D1 的中点,
则 BF=
,点 A 到直线 BE 的距离为

【答案】3,45 5
【解析】如图 2 所示,连结 B1F,在△BB1F 中可得 BF=3.作 AH⊥BE 于 H,连结 AE,
E
A
F
B
图4
D
C
E O
A
F
B
图5
【答案】(1)2
2;(2)2
1111;(3)2
11. 11
【解析】如图 5 所示,连结 AC 交 BD 于 O.
(1)可证 OC⊥BD,OC⊥PC,又 OC=2 2,∴异面直线 PC、BD 间的距离为
2 2.
(2)法一 可证 BD∥平面 PEF,∴点 O 到平面 PEF 的距离等于点 B 到平面 PEF 的距
(4)两条异面直线间的距离
和两条异面直线分别垂直相交的直线,叫两条异面直线的公垂线;公垂线上夹在两异
面直线间的线段的长度,叫两异面直线间的距离.
如图 1 所示,AA1 与 BC 为异面直线.易知 AB⊥AA1,AB⊥BC,因此异面直线 AA1 与 BC 间的距离为 1.
(5)直线和平面的距离
一条直线和一个平面平行,这条直线上任意一点到这个平面的距离,叫做这条直线和这
D1
C1
A1
B1
D
C
A (2)点到平面的距离
B 图1
从平面外一点引平面的垂线,这个点和垂足间的距离,叫做这个点到这个平面的距离.
如图 1 所示,易知 AA1⊥平面 A1C1,因此点 A 到平面 A1C1 的距离为 1. (3)两条平行直线间的距离

高考数学总复习考点知识专题讲解43---空间角与距离

高考数学总复习考点知识专题讲解43---空间角与距离
(2)设 AC∩BD=O. 因为∠BAD=60°,PA=AB=2, 所以 BO=1, AO=CO= 3.
如图,以 O 为坐标原点,射线 OB,OC 分别为 x 轴,y 轴的正半轴建立空间直角坐标系 O-xyz,
则 P(0,- 3,2),A(0,- 3,0),B(1,0,0),C(0, 3,
0),


|AB·n|
的法向量,则 B 到平面 α 的距离为|BO|=
|n|
.
两个提醒 (1)线面角 θ 的正弦值等于直线的方向向量 a 与平面的法 向量 n 所成角的余弦值的绝对值,即 sinθ=|cos〈a,n〉|,
不要误记为 cosθ=|cos〈a,n〉|.
(2)二面角与法向量的夹角:利用平面的法向量求二面角 的大小时,当求出两半平面 α,β 的法向量 n1,n2 时,要根 据向量坐标在图形中观察法向量的方向,来确定二面角与向 量 n1,n2 的夹角是相等,还是互补.
BB1 为 z 轴,建立空间直角坐标系如图所示,设 AB=BC=AA1
→ =2,则 C1(2,0,2),E(0,1,0),F(0,0,1),∴EF=(0,-1,1),

→→
BC1=(2,0,2),∴EF·BC1=2,
∴cos〈E→F,B→C1〉=
2 2×2
2=12,
则 EF 和 BC1 所成的角是 60°,故选 C.
(2020·大连外国语学校月考)如图所示,在三棱柱 ABC- A1B1C1 中,AA1⊥底面 ABC,AB=BC=AA1,∠ABC=90°, Байду номын сангаас E,F 分别是棱 AB,BB1 的中点,则直线 EF 和 BC1 所成 的角是( C )
A.30° C.60°

2025届高考数学一轮复习讲义立体几何与空间向量之 空间角和空间距离

2025届高考数学一轮复习讲义立体几何与空间向量之 空间角和空间距离

形,则在正四棱柱 ABCD - A 1 B 1 C 1 D 1中,异面直线 AK 和 LM 所成的角的大小为
(
D )
A. 30°
B. 45°
C. 60°
D. 90°
[解析] 根据题意还原正四棱柱的直观图,如图所示,取 AA 1的中点 G ,连接 KG ,
则有 KG ∥ LM ,所以∠ AKG 或其补角为异面直线 AK 和 LM 所成的角.由题知 AG =
A 1 C 1=5, BC 1=4 2 ,所以 cos
52 +52 −(4 2)2
9
1
∠ BA 1 C 1=
= < ,所以60°<
2×5×5
25
2
∠ BA 1 C 1<90°,则过点 D 1作直线 l ,与直线 A 1 B , AC 所成的角均为60°,即过一
点作直线,使之与同一平面上夹角大于60°的锐角的两边所在直线所成的角均成
2 z -1=0的交线,试写出直线 l 的一个方向向量 (2,2,1)
的余弦值为
65
9
.

,直线 l 与平面α所成角
[解析] 由平面α的方程为 x +2 y -2 z +1=0,可得平面α的一个法向量为 n =(1,
⑫ [0, ] ,二面角的
2
n1,n2>|.
范围是⑬

[0,π] .

易错警示
1. 线面角θ与向量夹角< a , n >的关系
π
2
π
2
如图1(1),θ=< a , n >- ;如图1(2),θ= -< a , n >.
图1
2. 二面角θ与两平面法向量夹角< n 1, n 2>的关系
图2(2)(4)中θ=π-< n 1, n 2>;图2(1)(3)中θ=< n 1, n 2>.

高考数学复习考点题型专题讲解15 空间角、距离的计算(几何法、向量法)

高考数学复习考点题型专题讲解15 空间角、距离的计算(几何法、向量法)

高考数学复习考点题型专题讲解专题15 空间角、距离的计算(几何法、向量法) 高考定位 1.以空间几何体为载体考查空间角(以线面角为主)是高考命题的重点,常与空间线面位置关系的证明相结合,热点为空间角的求解,常以解答题的形式进行考查.高考注重利用向量方法解决空间角问题,但也可利用几何法来求解;2.空间距离(特别是点到面的距离)也是高考题中的常见题型,多以解答题的形式出现,难度中等.1.(多选)(2022·新高考Ⅰ卷)已知正方体ABCD-A1B1C1D1,则( )A.直线BC1与DA1所成的角为90°B.直线BC1与CA1所成的角为90°C.直线BC1与平面BB1D1D所成的角为45°D.直线BC1与平面ABCD所成的角为45°答案ABD解析如图,连接AD1,在正方形A1ADD1中,AD1⊥DA1,因为AD1∥BC1,所以BC1⊥DA1,所以直线BC1与DA1所成的角为90°,故A正确;在正方体ABCD-A1B1C1D1中,CD⊥平面BCC1B1,又BC1⊂平面BCC1B1,所以CD⊥BC1.连接B1C,则B1C⊥BC1.因为CD∩B1C=C,CD,B1C⊂平面DCB1A1,所以BC1⊥平面DCB1A1,又CA1⊂平面DCB1A1,所以BC1⊥CA1,所以直线BC1与CA1所成的角为90°,故B正确;连接A1C1,交B1D1于点O,则易得OC1⊥平面BB1D1D,连接OB. 因为OB⊂平面BB1D1D,所以OC1⊥OB,∠OBC1为直线BC1与平面BB1D1D所成的角.设正方体的棱长为a,则易得BC1=2a,OC1=2a 2,所以在Rt△BOC1中,OC1=12BC1,所以∠OBC1=30°,故C错误;因为C1C⊥平面ABCD,所以∠CBC1为直线BC1与平面ABCD所成的角,易得∠CBC1=45°,故D正确.故选ABD.2.(2019·全国Ⅰ卷)已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为3,那么P到平面ABC的距离为________.答案 2解析如图,过点P作PO⊥平面ABC于O,则PO为P到平面ABC的距离.再过O作OE⊥AC于E,OF⊥BC于F,连接OC,PE,PF,则PE⊥AC,PF⊥BC.所以PE=PF=3,所以OE=OF,所以CO为∠ACB的平分线,即∠ACO=45°.在Rt△PEC中,PC=2,PE=3,所以CE=1,所以OE=1,所以PO=PE2-OE2=(3)2-12= 2.3.(2022·新高考Ⅱ卷)如图,PO是三棱锥P-ABC的高,PA=PB,AB⊥AC,E为PB的中点.(1)证明:OE∥平面PAC;(2)若∠ABO=∠CBO=30°,PO=3,PA=5,求二面角C-AE-B的正弦值.(1)证明如图,取AB的中点D,连接DP,DO,DE.因为AP=PB,所以PD⊥AB.因为PO为三棱锥P-ABC的高,所以PO⊥平面ABC.因为AB⊂平面ABC,所以PO⊥AB.又PO,PD⊂平面POD,且PO∩PD=P,所以AB⊥平面POD.因为OD⊂平面POD,所以AB⊥OD,又AB⊥AC,AB,OD,AC⊂平面ABC,所以OD∥AC.因为OD⊄平面PAC,AC⊂平面PAC,所以OD∥平面PAC.因为D,E分别为BA,BP的中点,所以DE∥PA.因为DE⊄平面PAC,PA⊂平面PAC,所以DE∥平面PAC.又OD,DE⊂平面ODE,OD∩DE=D,所以平面ODE∥平面PAC.又OE⊂平面ODE,所以OE∥平面PAC.(2)解连接OA,因为PO⊥平面ABC,OA,OB⊂平面ABC,所以PO⊥OA,PO⊥OB,所以OA=OB=PA2-PO2=52-32=4.易得在△AOB中,∠OAB=∠ABO=30°,所以OD=OA sin 30°=4×12=2,AB=2AD=2OA cos 30°=2×4×32=4 3.又∠ABC=∠ABO+∠CBO=60°,所以在Rt△ABC 中,AC =AB tan 60°=43×3=12.以A 为坐标原点,AB ,AC 所在直线分别为x ,y 轴,以过A 且垂直于平面ABC 的直线为z 轴建立空间直角坐标系,如图所示,则A (0,0,0),B (43,0,0),C (0,12,0), P (23,2,3),E ⎝⎛⎭⎪⎫33,1,32,所以AE →=⎝ ⎛⎭⎪⎫33,1,32,AB →=(43,0,0),AC →=(0,12,0).设平面AEC 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AE →=0,n ·AC →=0,即⎩⎨⎧33x +y +32z =0,12y =0,令z =23,则n =(-1,0,23).设平面AEB 的一个法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ·AE →=0,m ·AB →=0,即⎩⎨⎧33x 1+y 1+32z 1=0,43x 1=0,令z 1=2,则m =(0,-3,2),所以|cos 〈n ,m 〉|=⎪⎪⎪⎪⎪⎪n ·m |n |·|m |=4313.设二面角C -AE -B 的大小为θ,则sin θ=1-⎝⎛⎭⎪⎫43132=1113.4.(2021·浙江卷)如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠ABC=120°,AB=1,BC=4,PA=15,M,N分别为BC,PC的中点,PD⊥DC,PM⊥MD.(1)证明:AB⊥PM;(2)求直线AN与平面PDM所成角的正弦值.(1)证明因为底面ABCD是平行四边形,∠ABC=120°,BC=4,AB=1,且M为BC的中点,所以CM=2,CD=1,∠DCM=60°,易得CD⊥DM.又PD⊥DC,且PD∩DM=D,PD,DM⊂平面PDM,所以CD⊥平面PDM.因为AB∥CD,所以AB⊥平面PDM.又PM⊂平面PDM,所以AB⊥PM.(2)解法一由(1)知AB⊥平面PDM,所以∠NAB为直线AN与平面PDM所成角的余角.连接AM,因为PM⊥MD,由(1)知PM⊥DC,又MD,DC⊂平面ABCD,MD∩DC=D,所以PM⊥平面ABCD,又AM⊂平面ABCD,所以PM⊥AM.因为∠ABC=120°,AB=1,BM=2,所以由余弦定理得AM=7,又PA=15,所以PM=22,所以PB=PC=2 3.连接BN,结合余弦定理得BN=11.连接AC,则由余弦定理得AC=21,在△PAC中,结合余弦定理得PA2+AC2=2AN2+2PN2,所以AN=15.所以在△ABN中,cos∠BAN=AB2+AN2-BN22AB·AN=1+15-11215=156.设直线AN与平面PDM所成的角为θ,则sin θ=cos ∠BAN=15 6.故直线AN与平面PDM所成角的正弦值为15 6.法二因为PM⊥MD,由(1)知PM⊥DC,又MD,DC⊂平面ABCD,MD∩DC=D,所以PM ⊥平面ABCD . 连接AM ,则PM ⊥AM .因为∠ABC =120°,AB =1,BM =2, 所以AM =7,又PA =15,所以PM =2 2. 由(1)知CD ⊥DM ,过点M 作ME ∥CD 交AD 于点E , 则ME ⊥MD.故可以以M 为坐标原点,MD ,ME ,MP 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则A (-3,2,0),P (0,0,22),C (3,-1,0), 所以N ⎝ ⎛⎭⎪⎫32,-12,2,所以AN →=⎝ ⎛⎭⎪⎫332,-52,2.易知平面PDM 的一个法向量为n =(0,1,0). 设直线AN 与平面PDM 所成的角为θ,则sin θ=|cos 〈AN →,n 〉|=|AN →·n ||AN →|·|n |=5215=156.故直线AN 与平面PDM 所成角的正弦值为156.热点一 异面直线所成的角求异面直线所成角的方法方法一:综合法.步骤为:①利用定义构造角,可固定一条直线,平移另一条直线,或将两条直线同时平移到某个特殊的位置;②证明找到(或作出)的角即为所求角;③通过解三角形来求角.方法二:空间向量法.步骤为:①求出直线a ,b 的方向向量,分别记为m ,n ;②计算cos 〈m ,n 〉=m ·n |m ||n |;③利用cos θ=|cos 〈m ,n 〉|,以及θ∈⎝⎛⎦⎥⎤0,π2,求出角θ.例1 在正方体ABCD -A 1B 1C 1D 1中,P 为B 1D 1的中点,则直线PB 与AD 1所成的角为( ) A.π2B.π3C.π4D.π6 答案 D解析 法一 如图,连接C 1P ,因为ABCD -A 1B 1C 1D 1是正方体,且P 为B 1D 1的中点,所以C 1P ⊥B 1D 1,又C 1P ⊥BB 1,B 1D 1∩BB 1=B 1,B 1D 1,BB 1⊂平面B 1BP , 所以C 1P ⊥平面B 1BP . 又BP ⊂平面B 1BP , 所以有C 1P ⊥BP .连接BC 1, 则AD 1∥BC 1,所以∠PBC 1为直线PB 与AD 1所成的角. 设正方体ABCD -A 1B 1C 1D 1的棱长为2,则在Rt△C 1PB 中,C 1P =12B 1D 1=2,BC 1=22,sin ∠PBC 1=PC 1BC 1=12,所以∠PBC 1=π6,故选D. 法二 如图,以A 为坐标原点,AB ,AD ,AA 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体ABCD -A 1B 1C 1D 1的棱长为2,则A (0,0,0),B (2,0,0),P (1,1,2),D 1(0,2,2),PB →=(1,-1,-2),AD →1=(0,2,2). 设直线PB 与AD 1所成的角为θ, 则cos θ=⎪⎪⎪⎪⎪⎪⎪⎪PB →·AD →1|PB →||AD →1|=|-6|6×8=32. 因为θ∈⎝⎛⎦⎥⎤0,π2,所以θ=π6,故选D.法三如图,连接BC1,A1B,A1P,PC1,则易知AD1∥BC1,所以直线PB与AD1所成的角等于直线PB与BC1所成的角.由P为正方形A1B1C1D1的对角线B1D1的中点,知A1,P,C1三点共线,且P为A1C1的中点.易知A1B=BC1=A1C1,所以△A1BC1为等边三角形,所以∠A1BC1=π3,又P为A1C1的中点,所以可得∠PBC1=12∠A1BC1=π6,故直线PB与AD1所成的角为π6,故选D.易错提醒 1.利用几何法求异面直线所成的角时,通过平移直线所得的角不一定就是两异面直线所成的角,也可能是其补角.2.用向量法时,要注意向量夹角与异面直线所成角的范围不同.训练1 (1)(2022·湖州质检)在长方体ABCD-A1B1C1D1中,BB1=2AB=2BC,P,Q分别为B 1C1,BC的中点,则异面直线AQ与BP所成角的余弦值是( )A.55B.21717C.8585D.28585 答案 C解析法一 不妨设AB =2,则BC =2,BB 1=4,连接A 1P ,A 1B (图略),则A 1P ∥AQ , ∴∠A 1PB (或其补角)为异面直线AQ 与BP 所成的角.由勾股定理得BP =17,A 1P =5,A 1B =25,在△A 1BP 中,由余弦定理的推论得,cos∠A 1PB =(17)2+(5)2-(25)22×17×5=8585.故选C.法二 如图建立空间直角坐标系, 设直线AQ 与BP 所成的角为θ, 不妨设AB =2, 则BC =2,BB 1=4.故B (2,0,0),P (2,1,4),Q (2,1,0), 所以BP →=(0,1,4),AQ →=(2,1,0),所以cos θ=|cos 〈BP →,AQ →〉|=⎪⎪⎪⎪⎪⎪117×5=8585. (2)(2022·河南顶尖名校联考)如图,圆锥的底面直径AB =2,其侧面展开图为半圆,底面圆的弦AD =3,则异面直线AD 与BC 所成的角的余弦值为( )A.0B.3 3C.34D.22答案 C解析法一如图,延长DO交圆于E,连接BE,CE,易知AD=BE=3,AD∥BE,∴∠EBC(或其补角)为异面直线AD与BC所成的角.由圆锥侧面展开图为半圆,易得BC=2,在△BEC中,BC=CE=2,BE=3,∴cos∠EBC=22+(3)2-222×2×3=34.法二由圆锥侧面展开图为半圆,易得BC=2,又BO=1,所以CO=3,在△AOD中,AO=DO=1,AD=3,由余弦定理得cos∠AOD=12+12-(3)22×1×1=-12,则∠AOD=2π3,以O 为坐标原点,OB 所在直线为y 轴,OC 所在直线为z 轴,建立空间直角坐标系如图,则A (0,-1,0),D ⎝ ⎛⎭⎪⎫32,12,0,B (0,1,0),C (0,0,3),所以AD →=⎝ ⎛⎭⎪⎫32,32,0,BC →=(0,-1,3),故cos 〈AD →,BC →〉=-323×2=-34,又异面直线所成角的范围是⎝ ⎛⎦⎥⎤0,π2,故直线AD 与BC 所成角的余弦值为34. 热点二 直线与平面所成的角求直线与平面所成角的方法方法一:几何法.步骤为:①找出直线l 在平面α上的射影;②证明所找的角就是所求的角;③把这个角置于一个三角形中,通过解三角形来求角.方法二:空间向量法.步骤为:①求出平面α的法向量n 与直线AB 的方向向量AB →;②计算cos 〈AB →,n 〉=AB →·n |AB →||n |;③利用sin θ=|cos 〈AB →,n 〉|,以及θ∈⎣⎢⎡⎦⎥⎤0,π2,求出角θ.例2(2022·南京模拟)如图,在三棱柱ABC-A1B1C1中,AA1=13,AB=8,BC=6,AB⊥BC,AB=B1C,D为AC的中点,平面AB1C⊥平面ABC.1(1)求证:B1D⊥平面ABC;(2)求直线C1D与平面AB1C所成角的正弦值.(1)证明因为AB1=B1C,D为AC的中点,所以B1D⊥AC.又平面AB1C⊥平面ABC,平面AB1C∩平面ABC=AC,B1D⊂平面AB1C,所以B1D⊥平面ABC.(2)解法一在平面ABC内,过点D作BC的平行线,交AB于点E,过点D作AB的平行线,交BC于点F,连接DE,DF,BD.由(1)知B 1D ⊥平面ABC , 所以B 1D ⊥AC ,B 1D ⊥BD . 因为AB ⊥BC ,所以DE ⊥DF ,故以{DE →,DF →,DB 1→}为基底建立如图所示的空间直角坐标系D -xyz .因为AB =8,BC =6,AB ⊥BC ,所以AC =AB 2+BC 2=10,BD =12AC =5.又AA 1=BB 1=13,AB ⊥BC , 所以B 1D =BB 21-BD 2=12.易得D (0,0,0),A (3,-4,0),B (3,4,0),C (-3,4,0),B 1(0,0,12), 则AC →=(-6,8,0),BC →=(-6,0,0),B 1C →=(-3,4,-12). 设点C 1(x ,y ,z ), 则B 1C 1→=(x ,y ,z -12), 由BC →=B 1C 1→,得(-6,0,0)=(x ,y ,z -12),所以⎩⎨⎧x =-6,y =0,z =12,即C 1(-6,0,12),所以C 1D →=(6,0,-12).设平面AB 1C 的法向量为n =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n ·AC →=-6x 1+8y 1=0,n ·B 1C →=-3x 1+4y 1-12z 1=0,得3x 1=4y 1,z 1=0.不妨取x 1=4,则y 1=3,得平面AB 1C 的一个法向量为n =(4,3,0). 设直线C 1D 与平面AB 1C 所成的角为θ, 则sin θ=|cos 〈n ,C 1D →〉|=|n ·C 1D →||n |·|C 1D →|=|4×6+3×0+0×(-12)|42+32+02×62+02+(-12)2=4525. 所以直线C 1D 与平面AB 1C 所成角的正弦值为4525. 法二 连接BC 1,交B 1C 于点M ,易知BM =MC 1,所以点C 1到平面AB 1C 的距离d 和点B 到平面AB 1C 的距离相等.过点B 作BH ⊥AC ,垂足为H .又平面AB 1C ⊥平面ABC ,平面AB 1C ∩平面ABC =AC ,BH ⊂平面ABC , 所以BH ⊥平面AB 1C ,则BH 为点B 到平面AB 1C 的距离. 在Rt△ABC 中,因为AB =8,BC =6,AB ⊥BC , 所以AC =10,则BH =6×810=245, 所以d =BH =245.由(1)知B 1D ⊥平面ABC , 又BC ⊂平面ABC ,所以B 1D ⊥BC . 又B 1C 1∥BC ,所以B 1D ⊥B 1C 1, 则△DB 1C 1为直角三角形. 连接BD ,则B 1D ⊥BD .因为D 为AC 的中点,所以BD =12AC =5.又AA 1=BB 1=13,所以B 1D =12. 又B 1C 1=BC =6,所以C 1D =6 5. 设直线C 1D 与平面AB 1C 所成的角为θ,则sin θ=d C 1D =24565=4525. 所以直线C 1D 与平面AB 1C 所成角的正弦值为4525. 规律方法 1.几何法求线面角的关键是找出线面角(重点是找垂线与射影),然后在三角形中应用余弦定理(勾股定理)求解;2.向量法求线面角时要注意:线面角θ与直线的方向向量a 和平面的法向量n 所成的角〈a ,n 〉的关系是〈a ,n 〉+θ=π2或〈a ,n 〉-θ=π2,所以应用向量法求的是线面角的正弦值,而不是余弦值.训练2(2022·湖北十校联考)如图,在四棱锥A-BCDE中,CD∥BE,CD=12EB=1,CB⊥BE,AE=AB=BC=2,AD=3,O是AE的中点.(1)求证:DO∥平面ABC;(2)求DA与平面ABC所成角的正弦值. (1)证明取AB的中点为F,连接CF,OF,因为O,F分别为AE,AB的中点,所以OF∥BE,且OF=12 BE.又CD∥BE,CD=12 EB,所以OF∥CD,且OF=CD,所以四边形OFCD为平行四边形,所以DO∥CF,又CF⊂平面ABC,DO⊄平面ABC,所以DO∥平面ABC.(2)解法一取EB的中点为G,连接AG,DG,易得DG綊BC.因为AE=AB=2,BE=2,所以AE2+AB2=BE2,所以AB⊥AE,△ABE为等腰直角三角形,所以AG⊥BE,AG=1,又AD=3,DG=BC=2,所以AG2+DG2=AD2,所以DG⊥AG.又BE⊥AG,BE∩DG=G,BE,DG⊂平面BCDE,所以AG⊥平面BCDE. 记h为点D到平面ABC的距离,连接BD,则V D-ABC=V A-BCD,即13S△ABC·h=13S△BCD·AG,因为BC⊂平面BCDE,所以BC⊥AG,又CB⊥BE,BE∩AG=G,BE,AG⊂平面ABE,所以BC⊥平面ABE,又AB⊂平面ABE,所以BC⊥AB,所以S△ABC=12×AB×BC=12×2×2=1,又S△BCD=12×BC×CD=12×2×1=22,所以h=2 2,设DA与平面ABC所成的角为θ,则sin θ=h AD =223=66.所以DA 与平面ABC 所成角的正弦值为66. 法二 如图,取EB 的中点为G ,连接AG ,OG ,DG ,由(2)法一可知AG ⊥BE ,AB ⊥AE ,BC ⊥平面ABE ,BC ∥DG ,所以DG ⊥平面ABE .以G 为坐标原点,以GA →,GB →,GD →的方向分别为x 轴,y 轴,z 轴正方向建立空间直角坐标系,则G (0,0,0),A (1,0,0),D (0,0,2),E (0,-1,0),AD →=(-1,0,2). 因为AE ⊂平面ABE ,所以BC ⊥AE ,又AB ⊥AE ,BC ∩AB =B ,BC ,AB ⊂平面ABC ,所以AE ⊥平面ABC , 故平面ABC 的一个法向量为AE →=(-1,-1,0). 设DA 与平面ABC 所成角为θ,则sin θ=|cos 〈AD →,AE →〉|=|AD →·AE →||AD →|·|AE →|=16=66.所以DA 与平面ABC 所成角的正弦值为66.热点三平面与平面的夹角求平面与平面的夹角方法方法一:几何法.步骤为:①找出二面角的平面角(以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角就是二面角的平面角);②证明所找的角就是要求的角;③把这个平面角置于一个三角形中,通过解三角形来求角.求二面角的平面角的口诀:点在棱上,边在面内,垂直于棱,大小确定.方法二:空间向量法.步骤为:①求两个平面α,β的法向量m,n;②计算cos〈m,n〉=m·n|m|·|n|;③设两个平面的夹角为θ,则cos θ=|cos〈m,n〉|.例3(2022·济南质测)如图,在三棱锥D-ABC中,DA⊥底面ABC,AC=BC=DA=1,AB =2,E是CD的中点,点F在DB上,且EF⊥DB.(1)证明:DB⊥平面AEF;(2)求平面ADB与平面DBC夹角的大小.法一(1)证明∵DA⊥平面ABC,且BC⊂平面ABC,∴DA⊥BC.∵AC=BC=1,AB=2,∴AC2+BC2=AB2,∴AC⊥BC.∵DA∩AC=A,DA,AC⊂平面DAC,∴BC ⊥平面DAC , 又AE ⊂平面DAC , ∴BC ⊥AE .∵DA =AC ,E 是CD 的中点, ∴DC ⊥AE ,又BC ∩DC =C ,BC ,DC ⊂平面DBC , ∴AE ⊥平面DBC ,又DB ⊂平面DBC ,∴DB ⊥AE , 又EF ⊥DB ,EF ∩AE =E ,EF ,AE ⊂平面AEF , ∴DB ⊥平面AEF .(2)解∵EF ⊥DB ,由(1)得DB ⊥AF , ∴∠AFE 为平面ADB 与平面DBC 的夹角. ∵DA ⊥平面ABC , ∴DA ⊥AC ,DA ⊥AB ,又AC =DA =1,E 为CD 的中点, ∴AE =12DC =22.∵AB =2,∴S △DAB =12×DA ×AB =12×DB ×AF ,∴AF =DA ×AB DB =1×212+(2)2=63. 由(1)知,AE ⊥平面DBC ,∵EF ⊂平面DBC ,∴AE ⊥EF ,∴sin∠AFE =AE AF =2263=32. ∵∠AFE 为锐角,∴∠AFE =π3, ∴平面ADB 与平面DBC 夹角的大小为π3.法二 (1)证明∵DA ⊥平面ABC ,且BC ⊂平面ABC ,∴DA ⊥BC . ∵AC =BC =1,AB =2, ∴AC 2+BC 2=AB 2, ∴AC ⊥BC .∴DA ∩AC =A ,DA ,AC ⊂平面DAC , ∴BC ⊥平面DAC , 如图,过点A 作AG ∥BC , 则AG ⊥平面DAC .以A 为坐标原点,分别以向量AC →,AG →,AD →的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系A -xyz ,则A (0,0,0),B (1,1,0),D (0,0,1),E ⎝ ⎛⎭⎪⎫12,0,12,∴DB →=(1,1,-1),AE →=⎝ ⎛⎭⎪⎫12,0,12.∵DB →·AE →=1×12+1×0+(-1)×12=0,∴DB →⊥AE →,∴DB ⊥AE .又DB ⊥EF ,且AE ∩EF =E ,AE ,EF ⊂平面AEF , ∴DB ⊥平面AEF .(2)解 由(1)知AD →=(0,0,1),BD →=(-1,-1,1),CD →=(-1,0,1). 设平面ADB 的法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ·AD →=0,m ·BD →=0,∴⎩⎨⎧z 1=0,-x 1-y 1+z 1=0,令y 1=1,则m =(-1,1,0).设平面DBC 的法向量为n =(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n ·CD →=0,n ·BD →=0,∴⎩⎨⎧-x 2+z 2=0,-x 2-y 2+z 2=0, 令x 2=1,则n =(1,0,1). 设平面ADB 与平面DBC 的夹角为θ, 则cos θ=|cos 〈m ,n 〉|=|-1|2×2=12.所以θ=π3,即平面ADB 与平面DBC 夹角的大小为π3.规律方法 (1)用几何法求解二面角的关键是:先找(或作)出二面角的平面角,再在三角形中求解此角.(2)利用法向量的依据是两个半平面的法向量所成的角和二面角的平面角相等或互补,在求二面角的大小时,一定要判断出二面角的平面角是锐角还是钝角,否则解法是不严谨的.训练3(2022·沈阳质检)如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,四边形ABCD 是直角梯形,BC ∥AD ,AB ⊥AD ,PA =AB =2,AD =2BC =2 2.(1)求证:BD ⊥平面PAC ;(2)求平面BPC 与平面PCD 夹角的余弦值.(1)证明法一 由题意得,四边形ABCD 是直角梯形,BC ∥AD ,AB ⊥AD ,PA =AB =2,AD =2BC =22,所以tan ∠ACB =tan∠DBA =2, 可知∠ACB =∠DBA ,所以∠DBC +∠ACB =90°,则AC ⊥BD . 又PA ⊥平面ABCD ,BD ⊂平面ABCD , 所以PA ⊥BD ,又AC∩PA=A,PA,AC⊂平面PAC,故BD⊥平面PAC.法二由题意PA⊥平面ABCD,AB⊥AD,分别以AB→,AD→,AP→的方向为x轴,y轴,z轴正方向建立空间直角坐标系A-xyz,如图所示,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,22,0),P(0,0,2),BD→=(-2,22,0),AP→=(0,0,2),BD→·AP→=0,即BD⊥AP,AC→=(2,2,0),BD→·AC→=-4+4=0,即BD⊥AC,又AC∩AP=A,AC,AP⊂平面PAC,故BD⊥平面PAC.(2)解由题意PA⊥平面ABCD,AB⊥AD,分别以AB→,AD→,AP→的方向为x轴,y轴,z轴正方向建立空间直角坐标系A-xyz,如图所示,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,22,0),P(0,0,2),在平面PBC中,BC→=(0,2,0),BP→=(-2,0,2),设平面PBC的法向量为n=(x1,y1,z1),则⎩⎪⎨⎪⎧n ·BC →=2y 1=0,n ·BP →=-2x 1+2z 1=0,所以y 1=0,令x 1=1,则z 1=1, 所以n =(1,0,1).在平面PCD 中,CD →=(-2,2,0), CP →=(-2,-2,2),设平面PCD 的法向量为m =(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧m ·CD →=-2x 2+2y 2=0,m ·CP →=-2x 2-2y 2+2z 2=0,令x 2=1,则y 2=2,z 2=2, 所以m =(1,2,2).设平面BPC 与平面PCD 夹角的大小为θ, 则cos θ=|cos 〈m ,n 〉|=|1+0+2|2×7=31414,所以平面BPC 与平面PCD 夹角的余弦值为31414. 热点四 距离问题1.空间中点、线、面距离的相互转化关系2.空间距离的求解方法有:(1)作垂线段;(2)等体积法;(3)等价转化;(4)空间向量法.例4 在直三棱柱ABC-A1B1C1中,AB=AC=AA1=2,∠BAC=90°,M为BB1的中点,N为BC的中点.(1)求点M到直线AC1的距离;(2)求点N到平面MA1C1的距离.解法一(1)如图,连接AM,MC1,AC1,易知MC1=MB21+A1B21+A1C21=22+22+12=3,AC1=22,MA=5,在△MAC1中,由余弦定理得cos ∠MAC1=5+8-92×5×22=1010,则sin ∠MAC1=310 10,所以M到直线AC1的距离为MA·sin ∠MAC1=5×31010=322.(2)如图,S△MNC1=S矩形B1BCC1-S△B1MC1-S△BMN-S△NCC1=42-2-22-2=322,设点N到平面MA1C1的距离为h,由V N-MA1C1=V A1-MNC1,得1 3×12×2×5×h=13×322×2,得h =355,即N 到平面MA 1C 1的距离为355. 法二 (1)建立如图所示的空间直角坐标系,则A (0,0,0),A 1(0,0,2),M (2,0,1),C 1(0,2,2),直线AC 1的一个单位方向向量为s 0=⎝⎛⎭⎪⎫0,22,22,AM →=(2,0,1),故点M 到直线AC 1的距离d =|AM →|2-|AM →·s 0|2=5-12=322. (2)设平面MA 1C 1的法向量为n =(x ,y ,z ), 因为A 1C 1→=(0,2,0),A 1M →=(2,0,-1), 则⎩⎪⎨⎪⎧n ·A 1C 1→=0,n ·A 1M →=0,即⎩⎨⎧2y =0,2x -z =0,取x =1,得z =2,故n =(1,0,2)为平面MA 1C 1的一个法向量, 因为N (1,1,0),所以MN →=(-1,1,-1), 故N 到平面MA 1C 1的距离d =|MN →·n ||n |=35=355.规律方法 1.在解题过程中要对“点线距离”、“点面距离”、“线面距离”与“面面距离”进行适当转化,从而把所求距离转化为点与点的距离进而解决问题. 2.解决点线距问题注意应用等面积法,解决点面距问题注意应用等体积法.训练4 在四棱柱ABCD-A1B1C1D1中,A1A⊥平面ABCD,AA1=3,底面是边长为4的菱形,且∠DAB=60°,AC∩BD=O,A1C1∩B1D1=O1,E是O1A的中点,则点E到平面O1BC的距离为( )A.2B.1C.32D.3答案 C解析法一如图,连接OO1,则OO1⊥平面ABCD,OO1=AA1=3,∵四边形ABCD是边长为4的菱形,且∠DAB=60°,∴OB=2,OC=23,AC=2OC=43,OB⊥AC.∴O1B=13,O1C=21,又BC=4,∴cos∠BO1C=913×21,sin∠BO1C=8313×21,故S△BO1C=12×13×21×8313×21=4 3.设A到平面O1BC的距离为h,则由V A-BO1C=V O1-ABC得13×43×h=13×12×43×2×3,解得h =3,又∵E 是O 1A 的中点, ∴E 到平面O 1BC 的距离为32.法二 易得OO 1⊥平面ABCD ,所以OO 1⊥OA ,OO 1⊥OB . 又OA ⊥OB ,所以建立如图所示的空间直角坐标系Oxyz . 因为底面ABCD 是边长为4的菱形,∠DAB =60°, 所以OA =23,OB =2,则A (23,0,0),B (0,2,0),C (-23,0,0),O 1(0,0,3), 所以O 1B →=(0,2,-3),O 1C →=(-23,0,-3). 设平面O 1BC 的法向量为n =(x ,y ,z ). 则⎩⎪⎨⎪⎧n ·O 1B →=0,n ·O 1C →=0,所以⎩⎨⎧2y -3z =0,-23x -3z =0,取z =2,则x =-3,y =3,则n =(-3,3,2)是平面O 1BC 的一个法向量. 设点E 到平面O 1BC 的距离为d .因为E 是O 1A 的中点,所以E ⎝⎛⎭⎪⎫3,0,32,EO 1→=⎝⎛⎭⎪⎫-3,0,32, 则d =|EO 1→·n ||n |=⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫-3,0,32·(-3,3,2)(-3)2+32+22=32, 所以点E 到平面O 1BC 的距离为32.一、基本技能练1.如图,四棱锥P -ABCD 中,∠ABC =∠BAD =90°,BC =2AD ,△PAB 和△PAD 都是边长为2的等边三角形.(1)证明:PB ⊥CD ;(2)求点A 到平面PCD 的距离.(1)证明 取BC 的中点E ,连接DE ,则ABED 为正方形.过P 作PO ⊥平面ABCD ,垂足为O . 连接OA ,OB ,OD ,OE .由△PAB 和△PAD 都是等边三角形知PA =PB =PD ,所以OA =OB =OD ,即点O 为正方形ABED 对角线的交点, 故OE ⊥BD ,从而PB ⊥OE .因为O 是BD 的中点,E 是BC 的中点, 所以OE ∥CD .因此PB ⊥CD . (2)解 取PD 的中点F ,连接OF , 则OF ∥PB .由(1)知,PB ⊥CD ,故OF ⊥CD .又OD =12BD =2,OP =PD 2-OD 2=2,故△POD 为等腰三角形,因此OF ⊥PD . 又PD ∩CD =D ,PD ,CD ⊂平面PCD , 所以OF ⊥平面PCD .因为AE ∥CD ,CD ⊂平面PCD ,AE ⊄平面PCD ,所以AE ∥平面PCD .因此O 到平面PCD 的距离OF 就是A 到平面PCD 的距离,而 OF =12PB =1,所以A 到平面PCD 的距离为1.2.(2022·广州调研)如图,在三棱锥P -ABC 中,BC ⊥平面PAC ,AD ⊥BP ,AB =2,BC =1,PD =3BD =3.(1)求证:PA ⊥AC ;(2)求平面PAC与平面ACD夹角的余弦值.(1)证明法一由AB=2,BD=1,AD⊥BP,得AD= 3. 由PD=3,AD=3,AD⊥BP,得PA=2 3.由BC⊥平面PAC,AC,PC⊂平面PAC,得BC⊥AC,BC⊥PC.所以AC=AB2-BC2=3,PC=PB2-BC2=15.因为AC2+PA2=15=PC2,所以PA⊥AC.法二由AB=2,BD=1,AD⊥BP,得AD= 3.由PD=3,AD=3,AD⊥BP,得PA=2 3.因为PB=4,所以PB2=AB2+PA2,所以PA⊥AB.由BC⊥平面PAC,PA⊂平面PAC,得BC⊥PA.又BC,AB⊂平面ABC,BC∩AB=B,故PA⊥平面ABC.因为AC⊂平面ABC,所以PA⊥AC.(2)解法一如图,过点D作DE∥BC交PC于点E,因为BC⊥平面PAC,所以DE⊥平面PAC.因为AC⊂平面PAC,所以DE⊥AC.过点E作EF⊥AC交AC于点F,连接DF,又DE∩EF=E,DE,EF⊂平面DEF,所以AC⊥平面DEF.因为DF⊂平面DEF,所以AC⊥DF.则∠DFE为平面PAC与平面ACD的夹角.由PD=3BD=3,DE∥BC,得DE=3 4,由EF⊥AC,PA⊥AC,且EF,PA⊂平面PAC,得EF∥PA,且EFPA=CECP=BDBP=14,得EF=3 2.易知DE⊥EF,则DF=DE2+EF2=21 4.所以cos∠DFE =EF DF =277.所以平面PAC 与平面ACD 夹角的余弦值为277. 法二 如图,作AQ ∥CB ,以AQ ,AC ,AP 所在直线分别为x ,y ,z 轴,建立空间直角坐标系.因为AB =2,BC =1,BD =1,BP =4, 所以AC =3,AP =2 3.故A (0,0,0),B (1,3,0),C (0,3,0),P (0,0,23). 由BD →=14BP →,得D ⎝ ⎛⎭⎪⎫34,334,32,则AD →=⎝ ⎛⎭⎪⎫34,334,32,AC →=(0,3,0).设平面ACD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD →=0,即⎩⎨⎧3y =0,34x +334y +32z =0,令x =2,则z =-3,y =0,所以n =(2,0,-3)为平面ACD 的一个法向量. 由于BC ⊥平面PAC ,因此CB →=(1,0,0)为平面PAC 的一个法向量. 设平面PAC 与平面ACD 夹角的大小为θ,则cos θ=|cos 〈CB →,n 〉|=|CB →·n ||CB →||n |=27=277.所以平面PAC 与平面ACD 夹角的余弦值为277. 3.(2022·泉州质检)在三棱锥A -BCD 中,已知CB =CD =5,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足BF =14BC ,设平面FDE 与平面DEC 夹角的大小为θ,求sin θ的值.解 (1)如图,连接OC ,因为CB =CD ,O 为BD 的中点,所以CO ⊥BD .又AO ⊥平面BCD ,OB ,OC ⊂平面BCD ,所以AO ⊥OB ,AO ⊥OC .以{OB →,OC →,OA →}为基底,建立空间直角坐标系O -xyz .因为BD =2,CB =CD =5,AO =2,所以B (1,0,0),D (-1,0,0),C (0,2,0),A (0,0,2). 因为E 为AC 的中点,所以E (0,1,1), 所以AB →=(1,0,-2),DE →=(1,1,1),所以|cos 〈AB →,DE →〉|=|AB →·DE →||AB →|·|DE →|=|1+0-2|5×3=1515.因此,直线AB 与DE 所成角的余弦值为1515. (2)因为点F 在BC 上,BF =14BC ,BC →=(-1,2,0),所以BF →=14BC →=⎝ ⎛⎭⎪⎫-14,12,0.又DB →=(2,0,0), 故DF →=DB →+BF →=⎝ ⎛⎭⎪⎫74,12,0.设平面DEF 的法向量为n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧DE →·n 1=0,DF →·n 1=0,即⎩⎨⎧x 1+y 1+z 1=0,74x 1+12y 1=0, 取x 1=2,得y 1=-7,z 1=5,所以n 1=(2,-7,5)为平面DEF 的一个法向量.设平面DEC 的法向量为n 2=(x 2,y 2,z 2),又DC →=(1,2,0), 则⎩⎪⎨⎪⎧DE →·n 2=0,DC →·n 2=0,即⎩⎨⎧x 2+y 2+z 2=0,x 2+2y 2=0, 取x 2=2,得y 2=-1,z 2=-1,所以n 2=(2,-1,-1)为平面DEC 的一个法向量. 故|cos θ|=|n 1·n 2||n 1|·|n 2|=|4+7-5|78×6=1313.所以sin θ=1-cos 2θ=23913.二、创新拓展练4.如图,三棱柱ABC -A 1B 1C 1中,侧面BCC 1B 1为矩形,若平面BCC 1B 1⊥平面ABB 1A 1,平面BCC 1B 1⊥平面ABC 1.(1)求证:AB ⊥BB 1;(2)记平面ABC 1与平面A 1B 1C 1的夹角为α,直线AC 1与平面BCC 1B 1所成的角为β,异面直线AC 1与BC 所成的角为φ,当α,β满足:cos α·cos β=m (0<m <1,m 为常数)时,求sin φ的值.(1)证明∵四边形BCC 1B 1是矩形,∴BC ⊥BB 1,图1 又平面ABB1A1⊥平面BCC1B1,平面ABB1A1∩平面BCC1B1=BB1,BC⊂平面BCC1B1,∴BC⊥平面ABB1A1,又AB⊂平面ABB1A1,∴AB⊥BC.如图1,过C作CO⊥BC1,∵平面BCC1B1⊥平面ABC1,平面BCC1B1∩平面ABC1=BC1,CO⊂平面BCC1B1,∴CO⊥平面ABC1,又AB⊂平面ABC1,∴AB⊥CO,又AB⊥BC,CO∩BC=C,CO,BC⊂平面BCC1B1,∴AB⊥平面BCC1B1,又BB1⊂平面BCC1B1,∴AB⊥BB1.(2)解由题意知AB∥A1B1,又AB⊥平面BCC1B1,∴A1B1⊥平面BCC1B1.以B 1为原点,B 1A 1,B 1B ,B 1C 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,如图2,图2不妨设B 1A 1=a ,B 1B =b ,B 1C 1=c ,则B 1(0,0,0),A 1(a ,0,0),B (0,b ,0),C 1(0,0,c ),A (a ,b ,0), BA →=B 1A 1→=(a ,0,0),BC →=B 1C 1→=(0,0,c ),BC1→=(0,-b ,c ). 设n 1=(x 1,y 1,z 1)为平面ABC 1的法向量,则⎩⎪⎨⎪⎧n 1·BA →=ax 1=0,n 1·BC 1→=-by 1+cz 1=0,∴x 1=0,令y 1=c ,则z 1=b , ∴n 1=(0,c ,b ).取平面A 1B 1C 1的一个法向量n =(0,1,0), 由图知,α为锐角, 则cos α=|cos 〈n 1,n 〉|=c b 2+c 2.取平面BCC 1B 1的一个法向量n 2=(1,0,0), 由C 1A →=(a ,b ,-c ), 得sin β=|cos 〈C 1A →,n 2〉|=aa 2+b 2+c2. 又β∈⎣⎢⎡⎦⎥⎤0,π2,∴cos β=b 2+c 2a 2+b 2+c 2, 则cos αcos β=ca 2+b 2+c2. |cos 〈C 1A →,BC →〉|=cos φ=|(a ,b ,-c )·(0,0,c )|c a 2+b 2+(-c )2=c a 2+b 2+c 2,∴cos φ=cos αcos β.∵cos αcos β=m 且m ∈(0,1),φ∈⎝ ⎛⎦⎥⎤0,π2,∴sin φ=1-cos 2φ=1-m 2.。

专题11 立体几何 11.4空间角与空间距离 题型归纳讲义-2022届高三数学一轮复习(原卷版)

专题11 立体几何 11.4空间角与空间距离 题型归纳讲义-2022届高三数学一轮复习(原卷版)

专题十一《立体几何》讲义11.4空间角与空间距离知识梳理.空间角1.异面直线的定义:不同在任何一个平面的两条直线叫做异面直线(1)异面直线所成的角的范围:.(2)求法:平移→⎧⎪⇒−−−→⎨⎪⎩转化直接平移中点平移“三维”“二维”补形平移2.直线和平面所成角的求法:如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|e ·n ||e ||n |.0°≤φ≤90°3.求二面角的大小(1)如图1,AB 、CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB ,CD 〉.(2)如图2、3,12,n n 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小12,n n θ=<>(或12,n n π-<>).题型一.点到面的距离1.如图,点P为矩形ABCD所在平面外一点,PA⊥平面ABCD,Q为线段AP的中点,AB =3,BC=4,PA=2,则P到平面BQD的距离为.2.正三棱柱ABC﹣A1B1C1中,若AB=2,AA1=1,若则点A到平面A1BC的距离为()A.34B.32C.334D.33.如图,四棱锥P﹣ABCD中,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD 是菱形,且∠ABC=60°,M为PC的中点.(Ⅰ)在棱PB上是否存在一点Q,使用A,Q,M,D四点共面?若存在,指出点Q的位置并证明;若不存在,请说明理由.(Ⅱ)求点D到平面PAM的距离.4.如图,在三棱锥P﹣ABC中,D,E分别为AB,PB的中点,EB=EA,且PA⊥AC,PC ⊥BC.(Ⅰ)求证:BC⊥平面PAC;(Ⅱ)若PA=2BC且AB=EA,三棱锥P﹣ABC.体积为1,求点B到平面DCE的距离.题型二.异面直线所成的角1.已知P是平行四边形ABCD所在平面外的一点,M、N分别是AB、PC的中点,若MN =BC=4,PA=43,则异面直线PA与MN所成角的大小是()A.30°B.45°C.60°D.90°2.如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,O为底面ABCD的中心,E为CC1的中点,那么异面直线OE与AD1所成角的余弦值等于.3.如图所示,直三棱柱ABC﹣A1B1C1中,∠BCA=60°,M,N分别是A1C1,CC1的中点,BC=CA=CC1,则BN与AM所成角的余弦值为()A.35B.45C.23D.344.如图,在四棱锥P﹣ABCD中,四边形ABCD是菱形,其中∠BAD=60°,平面PAD⊥平面ABCD,其中△PAD为等边三角形,AB=4,M为棱PD的中点.(Ⅰ)求证:PB⊥AD;(Ⅱ)求异面直线PB与AM所成角的余弦值.1.如图,在三棱柱ABC﹣A′B′C′中,底面ABC是正三角形,AA′⊥底面ABC,且AB =1,AA′=2,则直线BC′与平面ABB′A′所成角的正弦值为.2.如图所示,在直三棱柱ABO﹣A′B′O′中,OO′=4,OA=4,OB=3,∠AOB=90°,D是线段A′B′的中点,P是侧棱BB′上的一点,若OP⊥BD,求OP与底面AOB所成角的正切值.3.如图,在四棱锥P﹣ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.(Ⅰ)求异面直线AP与BC所成角的余弦值;(Ⅱ)求证:PD⊥平面PBC;(Ⅲ)求直线AB与平面PBC所成角的正弦值.4.在四棱锥P﹣ABCD中,PA⊥平面ABCD,AD∥BC,BC=2AD=4,A=C=10.(Ⅰ)证明:BD⊥平面PAC;(Ⅱ)若A=6,求BC与平面PBD所成角的正弦值.1.已知三棱锥D﹣ABC的三个侧面与底面全等,且AB=AC=5,BC=2,则二面角D﹣BC﹣A的大小()A.30°B.45°C.60°D.90°2.已知正三棱锥S﹣ABC的所有棱长均为2,则侧面与底面所成二面角的余弦为()A.223B.−C.13D.−133.如图,三棱柱ABC﹣A1B1C1的底面是边长为2的正三角形且侧棱垂直于底面,侧棱长是3,D是AC的中点.(1)求证:B1C∥平面A1BD;(2)求二面角A1﹣BD﹣A的大小;(3)求直线AB1与平面A1BD所成的角的正弦值.4.在四棱锥P﹣ABCD中,底面ABCD是正方形,AB=PD=a,PA=PC=2a.(Ⅰ)求证:PD⊥平面ABCD;(Ⅱ)求异面直线PB与AC所成的角;(Ⅲ)求二面角A﹣PB﹣D的大小.题型五.存在性问题、折叠问题1.如图,在底面是菱形的四棱柱ABCD﹣A1B1C1D1中,∠ABC=60°,AA1=AC=2,A1B =A1D=22,点E在A1D上.(1)求证:AA1⊥平面ABCD;(2)当E为线段A1D的中点时,求点A1到平面EAC的距离.2.已知:如图,等腰直角三角形ABC的直角边AC=BC=2,沿其中位线DE将平面ADE 折起,使平面ADE⊥平面BCDE,得到四棱锥A﹣BCDE,设CD、BE、AE、AD的中点分别为M、N、P、Q.(1)求证:M、N、P、Q四点共面;(2)求证:平面ABC⊥平面ACD;(3)求异面直线BE与MQ所成的角.3.如图,在矩形ABCD中,AB=4,AD=3,点E,F分别是线段DC,BC的中点,分别将△DAE沿AE折起,△CEF沿EF折起,使得D,C重合于点G,连结AF.(Ⅰ)求证:平面GEF⊥平面GAF;(Ⅱ)求直线GF与平面GAE所成角的正弦值.4.已知正方形ABCD的边长为2,AC∩BD=O.将正方形ABCD沿对角线BD折起,使AC =a,得到三棱锥A﹣BCD,如图所示.(1)当a=2时,求证:AO⊥平面BCD;(2)当二面角A﹣BD﹣C的大小为120°时,求二面角A﹣BC﹣D的正切值.课后作业.空间角与空间距离1.(2019•新课标Ⅰ)如图,直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.2.如图,在四棱锥P﹣ABCD中,PC=AD=CD=12AB=2,AB∥DC,AD⊥CD,PC⊥平面ABCD.(1)求证:BC⊥平面PAC;(2)若M为线段PA的中点,且过C,D,M三点的平面与线段PB交于点N,确定点N 的位置,说明理由;并求AN与平面ABCD所成的角的正切值.3.(2018•新课标Ⅲ)如图,边长为2的正方形ABCD所在的平面与半圆弧C 所在平面垂直,M是C 上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)当三棱锥M﹣ABC体积最大时,求面MAB与面MCD所成二面角的正弦值.4.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,∠ABC=60°,PA=22,E是线段PC上的动点.(1)若E是线段PC中点时,证明:PA∥平面EBD;(2)若直线PC与底面ABCD所成角的正弦值为63,且三棱锥E﹣PAB的体积为269,请确定E点的位置,并说明理由.。

立体几何之夹角、距离问题(典型例题+跟踪训练)【解答题抢分专题】备战2023年高考数学(新高考通用)

立体几何之夹角、距离问题(典型例题+跟踪训练)【解答题抢分专题】备战2023年高考数学(新高考通用)

【解答题抢分专题】备战2023年高考数学解答题典型例题+跟踪训练(新高考通用)专题21立体几何之夹角、距离问题目录一览一、典型例题讲解二、梳理必备知识三、基础知识过关四、解题技巧实战五、跟踪训练达标(1)面面夹角(2)线面夹角(3)点到线的距离(4)点到面的距离六、高考真题衔接1.空间中的角(1)异面直线所成角公式:设 a , b 分别为异面直线1l ,2l 上的方向向量,θ为异面直线所成角的大小,则cos cos ,⋅== a b a b a bθ.(2)线面角公式:设l 为平面α的斜线, a 为l 的方向向量, n 为平面α的法向量,θ为二、梳理必备知识l 与α所成角的大小,则sin cos ,⋅== a n a n a nθ.(3)二面角公式:设1n ,2n 分别为平面α,β的法向量,二面角的大小为θ,则12,= n n θ或12,- n n π(需要根据具体情况判断相等或互补),其中1212cos ⋅= n n n n θ.2.空间中的距离求解空间中的距离(1)异面直线间的距离:两条异面直线间的距离也不必寻找公垂线段,只需利用向量的正射影性质直接计算.如图,设两条异面直线,a b 的公垂线的方向向量为 n ,这时分别在,a b 上任取,A B 两点,则向量在 n 上的正射影长就是两条异面直线,a b 的距离.则||||||||⋅=⋅= n AB n d AB n n 即两异面直线间的距离,等于两异面直线上分别任取两点的向量和公垂线方向向量的数量积的绝对值与公垂线的方向向量模的比值.(2)点到平面的距离A 为平面α外一点(如图), n 为平面α的法向量,过A 作平面α的斜线AB 及垂线AH .|n ||n |||||sin |||cos ,|=||n n ⋅⋅=⋅=⋅<>=⋅ AB AB AH AB AB AB n AB AB θ,||||⋅= AB n d n 三、解题技巧实战1.如图,在四棱锥P -ABCD 中,AB CD ∥,AB ⊥BC ,122BC CD PA PD AB =====,PC =E 为AB 的中点.(1)证明:BD ⊥平面APD ;(2)求平面APD 和平面CEP 的夹角的余弦值.在△CDO 中,易得222OC CD DO =+-又23PC =,∴222OC PO PC +=,∴PO则D (0,0,0),()22,0,0A ,(0,22,0B ∴()22,2,2CP =- ,()22,0,0CE = ,∵BD ⊥平面APD ,∴平面APD 的一个法向量为则2200n CP n CE ⎧⋅=⎪⎨⋅=⎪⎩ ,得22220220x y z x ⎧-+=⎪⎨=⎪⎩,取∴1212cos ,212n n ==⨯ ,∴平面APD 和平面CEP 的夹角的余弦值为【点睛】方法点拨利用向量法求二面角的方法主要有两种:(平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的范围;两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.2.如图,已知多面体111ABC A B C -中,111,,A A B B C C 均垂直于平面ABC ,120ABC ∠= ,14A A =,111,2C C AB BC B B ====.请用空间向量的方法解答下列问题:求直线1AC 与平面1ABB 所成的角的正弦值.由题意知()(0,3,0,1,0,0A B -设直线1AC 与平面1ABB 所成的角为可知()(10,23,1,1,AC AB == 设平面1ABB 的法向量(,n x = 则10,0,n AB n BB ⎧⋅=⎪⎨⋅=⎪⎩ 即30,20,x y z ⎧+=⎪⎨=⎪⎩令1y =,则3,0x z =-=,可得平面111sin cos ,AC AC n AC θ⋅∴==⋅ ∴直线1AC 与平面1ABB 所成的角的正弦值是3.在直三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=2,∠BAC =90°,M 为BB 1的中点,N 为BC 的中点.(1)求点M 到直线AC 1的距离;(2)求点N 到平面MA 1C 1的距离.则A(0,0,0),A1(0,0,(1)直线AC1的一个单位方向向量为故点M 到直线AC1的距离(2)设平面MA1C1的法向量为则1111·0·0n A C n A M ⎧=⎪⎨=⎪⎩ ,即202y x z =⎧⎨-=⎩不妨取x =1,得z =2,故因为N(1,1,0),所以MN 故N 到平面MA1C1的距离222102102MN n d n -+-==++ 四、跟踪训练达标面面夹角1.(2023·全国·浮梁县第一中学校联考模拟预测)如图,在四棱锥P ABCD -中,E 为棱AD 上一点,,PE AD PA PC ⊥⊥,四边形BCDE 为矩形,且13,,//4BC PE BE PF PC PA ==== 平面BEF .(1)求证:PA ⊥平面PCD ;(2)求二面角F AB D --的大小.因为//PA 平面BEF ,平面PAC 又//BE CD ,所以AF AF DE BC GC ==则(1,0,0),(0,3,0),(3,0,0),A B D F -设平面ABF 的一个法向量为(m = 则7330444030AF m x y AB m x y ⎧⎧⋅=-++⎪⎪⇒⎨⎨⋅=⎪⎪⎩-+=⎩又平面ABD 的一个法向量为(0,0,1)n = 故二面角F AB D --的大小为π4.2.(2023·辽宁大连·校联考模拟预测)已知多面体ABCDEF 中,AD BC EF ∥∥,且4AD CD DE ===,2BC EF ==,π3BCD FED ∠∠==(1)证明:AD BF ⊥;(2)若BF =C AF B --的余弦值.在BCD △中,4DC =,2BC =2222cos BD BC DC BC DC =+-⋅⋅同时AD ∥BC ,可得DB AD ⊥因为BD AD ⊥,DF AD ⊥,且所以AD ⊥平面BDF ;又因为BF ⊂平面BDF ,所以AD (2)在BDF V 中,2BD FD ==即222BD FD BF +=,所以BD ⊥以D 为原点,,,DA DB DF 的方向分别为建立空间直角坐标系如图.其中(4,0,0),(0,23,0),(0,0,23),(2,23,0)A B F C -,所以()()()4,23,0,4,0,23,6,23,0AB AF AC =-=-=- 设向量(,,)n x y z = 为平面ABF 的法向量,满足0423004230n AB x y n AF x z ⎧⎧⋅=-+=⎪⎪∴⎨⎨⋅=-+=⎪⎪⎩⎩ ,不妨令3x =,则2y z ==,故(3,2,2)n = ,设向量(,,)m p q r =为平面ACF 的法向量,满足0423006230m AF p r m AC p q ⎧⎧⋅=-+=⎪⎪∴⎨⎨⋅=-+=⎪⎪⎩⎩ 不妨令3p =,则2,3r q ==,故(3,3,2)m = 131311cos ,||||44114m n m n m n ⋅〈〉===⨯ 由图可知二面角为锐角,所以二面角C AF B --的余弦值为131144.3.(2023·云南昆明·统考一模)如图,直四棱柱1111ABCD A B C D -中,ABC 是等边三角形,AB AD ⊥(1)从三个条件:①AC BD ⊥;②120ADC ∠=︒;③2BD AD =中任选一个作为已知条件,证明:1BC DC ⊥;(2)在(1)的前提下,若13AB AA =,P 是棱1BB 的中点,求平面1PDC 与平面1PDD 所成角的余弦值.【答案】(1)证明见详解(2)710对②:∵180ADC ABC ∠+∠=又∵AB AD ⊥,即90BAD ∠=可得90BCD ∠=︒,即BC CD ⊥又∵1CC ⊥平面ABCD ,BC ∴1BC CC ⊥,且1CD CC =I 故BC ⊥平面11CDD C ,注意到1DC ⊂平面11CDD C ,故对③:∵AB AD ⊥,即BAD ∠在Rt BAD 中,则sin ABD ∠故30,ABD CBD AB ∠=∠=︒=故90BCD BAD ∠=∠=︒,即BC 又∵1CC ⊥平面ABCD ,BC4.(2023·辽宁·鞍山一中校联考模拟预测)刍甍(chúméng)是中国古代数学书中提到的一种几何体,《九章算术》中对其有记载:“下有袤有广,而上有袤无广”,可翻译为:“底面有长有宽为矩形,顶部只有长没有宽为一条棱.”,如图,在刍甍ABCDEF中,四边形ABCD是正方形,平面BAE和平面CDE交于EF.(1)求证://AB EF ;(2)若平面CDE ⊥平面ABCD ,4AB =,2EF =,ED FC =,AF =,求平面ADE 和平面BAE 所成角余弦值的绝对值.5.(2023·山西·校联考模拟预测)如图,直三棱柱111ABC A B C -的所有棱长均相等,D 为1AA 的中点.(1)证明:11B D BC ⊥;(2)设,M N 分别是棱,AC BC 上的点,若点1,,,B D M N 在同一平面上,且ABC 的面积是CMN 的面积的3倍,求二面角1A B M N --的正弦值.【答案】(1)证明见解析(2)217【分析】(1)方法一:延长B 11B C BC ⊥可证得1BC ⊥平面方法二:结合垂直关系可以C 得结论;AB 设2AB = ,则()3,1,1D ,(0,2,0B ()13,1,1DB ∴=- ,(10,2,2BC =- 方法三:1AA ⊥ 平面ABC ,AB 10AA AB ∴⋅= ,10AA AC ⋅= ;则()3,1,0A ,232,,033M ⎛⎫ ⎪ ⎪⎝⎭,31,,033MA ⎛⎫∴= ⎪ ⎪⎝⎭ ,12MB ⎛=- ⎝ 设平面1AMB 的法向量(1,m x y = 则11111131033234233MA m x y MB m x y z ⎧⋅=+=⎪⎪⎨⎪⋅=-++⎪⎩设平面1B MN 的法向量(2,x n y =,线面夹角6.(2023·北京·校考模拟预测)如图,在三棱柱111ABC A B C-中,D,E,G分别为11,,AA AC BB的中点,11A C 与平面1EBB交于点F,AB BC==,12AC AA==,1C C BE⊥.(1)求证:F为11A C的中点;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线FG与平面BCD所成角的正弦值.条件①:平面ABC⊥平面1EBB;条件②:13BC=.注:如果选择条件①和条件②分别解答,按第一个解答计分.由题意得()()(0,2,0,1,0,0,1,0,1B C D -()()2,0,1,1,2,0CD CB ∴== .设平面BCD 的法向量(),,n a b c = ,020,200n CD a c a b n CB ⎧⋅=+=⎧⎪∴∴⎨⎨+=⋅=⎩⎪⎩ ,2a =,则1,4b c =-=-,∴平面BCD 的法向量(2,1,4)n =-- 又()0,2,1FG =- ,设直线FG 与平面BCD 所成的角为则2105sin cos ,105n FG θ== ,所以直线FG 与平面BCD 所成角的正弦值为选条件②,因为5AB BC ==,AC由题意得()()(0,2,0,1,0,0,1,0,1B C D -()()2,0,1,1,2,0CD CB ∴== .设平面BCD 的法向量(),,n a b c = ,020,200n CD a c a b n CB ⎧⋅=+=⎧⎪∴∴⎨⎨+=⋅=⎩⎪⎩,2a =,则1,4b c =-=-,∴平面BCD 的法向量(2,1,4)n =-- 又()0,2,1FG =- ,设直线FG 与平面BCD 所成的角为则2105sin cos ,105n FG θ== ,所以直线FG 与平面BCD 所成角的正弦值为7.(2023·全国·模拟预测)如图,在几何体ABCDEF 中,四边形CDEF 是边长为2的正方形,AD DE ⊥,AB CD ∥,6AE =,1AB BD ==.(2)求直线BC与平面BEF所成角的正弦值.则()0,0,0D ,()1,0,0B ,E所以()0,2,0= EF ,(1,0,BE =- 设平面BEF 的法向量为n = 取1z =,得2x =,所以可取设直线BC 与平面BEF 所成的角为则sin cos ,BC BC n BC θ⋅== 所以直线BC 与平面BEF 所成角的正弦值为8.(2023春·甘肃张掖·高三高台县第一中学校考阶段练习)如图,在四棱锥P ABCD -中,PAD 为等边三角形,四边形ABCD 为平行四边形,PAB PDC ∠=∠.(1)证明:四边形ABCD 为矩形;(2)若2PA AB ==,当四棱锥P ABCD -的体积最大时,求直线PB 与平面PDC 所成角的正弦值.【答案】(1)证明见解析(2)64【分析】(1)取AD 的中点线面垂直,再证得线线垂直即可建立空间直角坐标系,利用空间向量法求(2)由题意知,当平面PAD ⊥平面(1)知AB AD ⊥,所以以O 为原点,空间直角坐标系,因为2PA AB ==,则()0,0,0O ,B 设平面PDC 的法向量为(,,n x y z = 令3x =,则()3,0,1n =- .又()1,2,3PB =- ,设直线PB 与平面则sin cos ,23n PB n PB n PBθ⋅=== 所以直线PB 与平面PDC 所成角的正弦值为9.(2023·四川凉山·二模)如图,在直三棱柱111ABC A B C -中,点E ,F 分别是BC ,11A C 中点,平面11ABB A平面AEF l =.(1)证明:l EF ∥;(2)若AB AC ==,平面11ACC A ⊥平面11ABB A ,且1AB EF ⊥,求直线l 与平面11A B E 所成角的余弦值.∵E ,G 分别是BC ,AB 又∵1A F AC ∥且112A F AC =∴四边形1EGA F 为平行四边形,∴又EF ⊄平面11ABB A ,1AG ∵EF ⊂平面AEF ,平面(2)由三棱柱为直棱柱,∴平面设1AA a =,则1(0,22,0)B ,F 所以1(0,22,)AB a =- ,(0,EF = 又1AB EF ⊥,则10AB EF ⋅= ,解得所以(2,2,2)E ,(0,0,2)A ,则设平面11A B E 法向量为(,,n x y = 所以11100n A B n A F ⎧⋅=⎪⎨⋅=⎪⎩ ,即2222x ⎧⎪⎨+⎪⎩由(1)知直线EF l ∥,则l 方向向量为设直线l 与平面11BCC B 所成角为则sin cos ,n EF n EF n EF α⋅===⋅ 所以直线l 与平面11BCC B 所成角的余弦值为10.(2023·江苏·统考一模)在三棱柱111ABC A B C -中,平面11A B BA ⊥平面ABC ,侧面11A B BA 为菱形,1π3ABB ∠=,1AB AC ⊥,2AB AC ==,E 是AC 的中点.(1)求证:1A B⊥平面1AB C;(2)点P在线段1A E上(异于点1A,E),AP与平面1A BE所成角为π4,求1EPEA的值.点到线的距离11.(2022·全国·高三专题练习)如图,在四棱锥P −ABCD 中,AD BC ,190 1.2ADC PAB BC CD AD ∠=∠==== ,E 为棱AD 的中点,异面直线PA 与CD 所成的角为90︒.(1)在平面PAB 内是否存在一点M ,使得直线CM 平面PBE ,如果存在,请确定点M 的位置,如果不存在,请说明理由;(2)若二面角P −CD −A 的大小为45︒,求P 到直线CE 的距离.点E 为AD 的中点,AE ED ∴=1,2BC CD AD ED BC ==∴= ,AD BC ∥ ,即ED BC ∥,∴四边形BCDE 为平行四边形,即,,AB CD M M CD CM ⋂=∴∈∴ BE ⊂ 平面,PBE CM ⊂平面PBE CM ∴ 平面PBE ,,M AB AB ∈⊂ 平面PAB ,M ∴∈平面PAB ,故在平面PAB 内可以找到一点M (2)如图所示,ADC PAB ∠∠= 且异面直线PA 与CD 所成的角为又,,AB CD M AB CD ⋂=⊂平面AD ⊂ 平面,ABCD PA AD ∴⊥,又,,AD CD PA CD AD PA ⊥⊥⋂=CD \^平面PAD ,PD ⊂ 平面,PAD CD PD ∴⊥.因此PDA ∠是二面角P CD A --PA AD ∴=.因为112BC CD AD ===.以A 为坐标原点,平行于CD 的直线为⎫⎪⎭12.(2023·全国·高三专题练习)如图,已知三棱柱111ABC A B C -的棱长均为2,160A AC ∠=︒,1A B =(1)证明:平面11A ACC ⊥平面ABC ;(2)设M 为侧棱1CC 上的点,若平面1A BM 与平面ABCM 到直线11A B 距离.轴,建立空间直角坐标系,-中,底面四边形ABCD 13.(2022秋·天津河东·高三天津市第七中学校考阶段练习)如图,在四棱锥P ABCD为菱形,E为棱PD的中点,O为边AB的中点.(1)求证:AE //平面POC ;(2)若侧面PAB ⊥底面ABCD ,且3ABC PAB π∠∠==,24AB PA ==;①求PD 与平面POC 所成的角;②在棱PD 上是否存在点F ,使点F 到直线OD 的距离为21,若存在,求DF DP 的值;若不存在,说明理由.(2)①在平面PAB 内过点O 作Oz 菱形ABCD 中3ABC π∠=,则OC ⊥以O 为原点,分别以,,OB OC Oz 所在直线为()()(1,0,3,0,23,0,4,23,0P C D --(1,0,3)OP =- ,(0,23,0)OC = ,设平面POC 的一个法向量为(,n x y = 则30230n OP x z n OC y ⎧⋅=-+=⎪⎨⋅==⎪⎩ ,取=3x ,得设直线PD 与平面POC 所成的平面角为n PD ⋅ 4②设[],0,1DF DP λλ=∈14.(2022秋·山东青岛·高三统考期中)如图,已知长方体1111ABCD A B C D -的体积为4,点A 到平面1BC D 的.(1)求1BC D 的面积;(2)若2AB BC ==,动点E 在线段1DD 上移动,求1AEC 面积的取值范围.则(2,0,0)A ,1(0,2,1)C 设(0,0,)(01)E t t ≤≤,则(2,0,EA = 则直线1AC 的单位方向向量为u =r 则点E 到直线1AC 的距离为d EA = 所以1AEC 的面积1112AEC S AC =⋅△所以1AEC 面积的取值范围为32⎡⎢⎣15.(2022·全国·高三专题练习)在滨海文化中心有天津滨海科技馆,其建筑有鲜明的后工业风格,如图所示,截取其中一部分抽象出长方体和圆台组合,如图所示,长方体1111ABCD A B C D -中,14,2AB AD AA ===,圆台下底圆心O 为AB 的中点,直径为2,圆与直线AB 交于,E F ,圆台上底的圆心1O 在11A B 上,直径为1.(1)求1AC 与平面1A ED 所成角的正弦值;(2)求二面角1E A D F --的余弦值;(3)圆台上底圆周上是否存在一点P 使得1FP AC ⊥,若存在,求点P 到直线11A B 的距离,若不存在则说明理由.则1(2A ,0,2),(0C ,4,0),(2E ,1,所以11(2,4,2),(2,0,2),(2,1,0)A C DA DE =--==设平面1A ED 的法向量为(,,)n x y z = ,则有100n DA n DE ⎧⋅=⎨⋅=⎩,即22020x z x y +=⎧⎨+=⎩,令1x =,则=2y -,1z =-,故(1,n =- 所以111||2|cos ,|3||||A C n A C n A C n ⋅<>== ,故1AC 与平面1A ED 所成角的正弦值为23点到面的距离16.(2022秋·四川·高三四川省岳池中学校考阶段练习)如图,在三棱锥-P ABC 中,PA ⊥平面,120,3,ABC AB BC ABC PA D ∠==== 为线段PC 上一点,且BC BD ⊥.(1)在线段AC 上求一点M ,使得平面BPC ⊥平面BDM ,并证明;(2)求点C 到平面ABD 的距离.则33(0,,0),(,0,0),(0,22A B C -设PD PC λ= ,其中01λ≤≤,则BD BP PD BP PC λ=+=+ 因为BC BD ⊥,所以BC BD ⋅ 设平面BPC 的法向量为m = 则33022330m BC x y m PC y z ⎧⋅=-+=⎪⎨⎪⋅=-=⎩ 设33(0,,0),22M b b -≤≤,MB17.(2023春·广东揭阳·高三校联考阶段练习)如图所示的四棱锥P ABCD -中,底面ABCD 为直角梯形,AB CD ,AD AB ⊥,22DC AD a ===,PA PD =,二面角P AD B --的大小为135︒,点P 到底面ABCD 的距离为2a .(1)过点P 是否存在直线l ,使直线l ∥平面ABCD ,若存在,作出该直线,并写出作法与理由;若不存在,请说明理由;(2)若2PM MC = ,求点M 到平面PAD 的距离.平面,建立空间直角坐标系,由条件(2)取线段AD 的中点为O ,线段连接,OE OP ,因为ABCD 为直角梯形,AB CD 所以//OE AB ,又AD AB ⊥,所以AD OE ⊥,因为PA PD =,所以PO AD ⊥,又PO OE O = ,,PO OE ⊂平面POE 所以AD ⊥平面POE ,过点O 在平面POE 内作直线ON ⊥则直线,,OA OE ON 两两垂直,以O 为原点,,,OA OE ON 为,,x y z 过点P 作//PF NO ,交直线OE 于点因为,ON OA ON OE ⊥⊥,,OA OE 所以ON ⊥平面ABCD ,故PF ⊥平面又点P 到底面ABCD 的距离为2a ,所以因为OE AD ⊥,OP AD ⊥,18.(2023·云南红河·统考二模)如图,在几何体ABCDEF中,菱形ABCD所在的平面与矩形BDEF所在的平面互相垂直.(1)若M 为线段BF 上的一个动点,证明:CM ∥平面ADE(2)若60BAD ∠=︒,2AB =,直线CF 与平面BCE F 到平面BCE 的距离.()3,1,0B ,()0,2,0C ,(0,0,E a19.(2023·北京·北京市八一中学校考模拟预测)如图,多面体ABCDEF 中,四边形ABCD 为矩形,二面角A CD E --为60°,DE CF ∥,CD DE ⊥,2AD =,3DE DC ==,6CF =.(1)求证:CD AE ⊥;(2)求直线DE 与平面AEF 所成角的正弦值.(3)直接写出λ的值,使得CG CF λ=,且三棱锥B ACG -【答案】(1)证明见解析CD AD ⊥ ,CD DE ⊥,ADE ∴∠即为二面角A CD F --的平面角,即∴(0,1,3)A ,(0,0,0),(0,3,0),(3,6,0)D E F ∴(0,2,3),(3,5,3),AE AF DE =-=-设平面AEF 的法向量为(,,)n x y z =,230,3530.n AE y z n AF x y z ⎧⋅=-=⎪⎨⋅=+-=⎪⎩ 令2z =,则所以(3,3,2)n =-,∴3330cos ,10310DE n DE n DE n ⋅===20.(2023·江西九江·统考二模)如图,在三棱柱111ABC A B C -中,AC ⊥平面11AA B B ,13ABB ∠=,1AB =,12AC AA ==,D 为棱1BB 的中点.(1)求证:AD ⊥平面11AC D ;(2)若E 为棱BC 的中点,求三棱锥1E AC D -的体积.则()0,0,0A ,1,1,02E ⎛⎫⎪⎝⎭,1,0,2D ⎛ ⎝所以1,1,02AE ⎛⎫= ⎪⎝⎭ ,1,0,2AD ⎛= ⎝ 设(),,n x y z =r为平面1AC D 的一个法向量,则10n AD n AC ⎧⋅=⎪⎨⋅=⎪⎩ ,即1302223x z x y ⎧+=⎪⎨⎪-++⎩所以点E 到平面1AC D 的距离d =则三棱锥1E AC D -的体积13S V =1.(2022·天津·统考高考真题)直三棱柱111ABC A B C -中,112,,AA AB AC AA AB AC AB ===⊥⊥,D 为11A B 五、高考真题衔接的中点,E 为1AA 的中点,F 为CD 的中点.(1)求证://EF 平面ABC ;(2)求直线BE 与平面1CC D 所成角的正弦值;(3)求平面1ACD 与平面1CC D 所成二面角的余弦值.则()2,0,0A 、()2,2,0B 、(2,0,2C 则10,,12EF ⎛⎫= ⎪⎝⎭,易知平面ABC 的一个法向量为EF ⊄ 平面ABC ,故//EF 平面2.(2022·全国·统考高考真题)如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.由(1)得2AE =,所以12AA AB ==,1A B =则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以AC 则()1,1,1BD = ,()()0,2,0,2,0,0BA BC ==,设平面ABD 的一个法向量(),,m x y z = ,则m BD m BA ⎧⋅⎨⋅⎩ 可取()1,0,1m =-,3.(2021·天津·统考高考真题)如图,在棱长为2的正方体1111ABCD A B C D -中,E 为棱BC 的中点,F 为棱CD 的中点.(I )求证:1//D F 平面11A EC ;(II )求直线1AC 与平面11A EC 所成角的正弦值.(III )求二面角11A A C E --的正弦值.4.(2021·全国·统考高考真题)如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.。

2014最新高考数学专题复习立体几何重点题型空间距离空间角(师)资料

2014最新高考数学专题复习立体几何重点题型空间距离空间角(师)资料

立体几何题型【考点透视】(A)版.掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握二面角、二面角的平面角、两个平行平面间的距离的概念. (B)版.①理解空间向量的概念,掌握空间向量的加法、减法和数乘.②了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算. ③掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式. ④理解直线的方向向量、平面的法向量,向量在平面内的射影等概念. ⑤了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念. ⑥掌握棱柱、棱锥、球的性质,掌握球的表面积、体积公式. ⑦会画直棱柱、正棱锥的直观图.空间距离和角是高考考查的重点:特别是以两点间距离,点到平面的距离,两异面直线的距离,直线与平面的距离以及两异面直线所成的角,直线与平面所成的角,二面角等作为命题的重点内容,高考试题中常将上述内容综合在一起放在解答题中进行考查,分为多个小问题,也可能作为客观题进行单独考查.考查空间距离和角的试题一般作为整套试卷的中档题,但也可能在最后一问中设置有难度的问题.不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成,即寓证明于运算之中,正是本专题的一大特色.求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。

【例题解析】考点1 点到平面的距离求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用. 典型例题例1如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离.考查目的:本小题主要考查直线与平面的位置关系,二面角的A BC D1A 1C1B大小,点到平面的距离等知识,考查空间想象能力、逻辑思维 能力和运算能力.解答过程:解法一:(Ⅰ)取BC 中点O ,连结AO .ABC △为正三角形,AO BC ∴⊥.正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,AO ∴⊥平面11BCC B .连结1BO,在正方形11BB C C 中,O D ,分别为 1BC CC ,的中点, 1B O BD ∴⊥, 1AB BD ∴⊥.在正方形11ABB A 中,11AB A B ⊥, 1AB ∴⊥平面1A BD .(Ⅱ)设1AB 与1A B 交于点G ,在平面1A BD 中,作1GF A D ⊥于F ,连结AF ,由(Ⅰ)得1AB ⊥平面1A BD .1AF A D ∴⊥, AFG ∴∠为二面角1A A D B --的平面角.在1AA D △中,由等面积法可求得455AF =,又1122AG AB ==,210sin 4455AG AFG AF ∴===∠.所以二面角1A A D B --的大小为10arcsin4.(Ⅲ)1A BD △中,1115226A BD BD A D AB S ===∴=△,,,1BCD S =△.在正三棱柱中,1A 到平面11BCC B 的距离为3. 设点C 到平面1A BD 的距离为d . 由11A BCDC A BDV V --=,得111333BCDA BD S S d =△△,1322BCD A BD S d S ∴==△△.∴点C 到平面1A BD 的距离为22.解法二:(Ⅰ)取BC 中点O ,连结AO .ABC △为正三角形,AO BC ∴⊥.在正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,AD ∴⊥平面11BCC B .ABC D1A1C1BO F取11B C 中点1O ,以O 为原点,OB ,1OO ,OA 的方向为x y z ,,轴的正方向建立空间直角坐标系,则(100)B ,,,(110)D -,,,1(023)A ,,,(003)A ,,,1(120)B ,,, 1(123)AB ∴=-,,,(210)BD =-,,,1(123)BA =-,,. 12200AB BD =-++=,111430AB BA =-+-=, 1AB BD ∴⊥,11AB BA ⊥.1AB ∴⊥平面1A BD .(Ⅱ)设平面1A AD 的法向量为()x y z =,,n . (113)AD =--,,,1(020)AA =,,. AD ⊥n ,1AA ⊥n ,100AD AA ⎧=⎪∴⎨=⎪⎩,,n n 3020x y z y ⎧-+-=⎪∴⎨=⎪⎩,,03y x z =⎧⎪∴⎨=-⎪⎩,.令1z =得(301)=-,,n 为平面1A AD 的一个法向量. 由(Ⅰ)知1AB ⊥平面1A BD , 1AB ∴为平面1A BD 的法向量.cos <n ,1113364222AB AB AB -->===-n n .∴二面角1A A D B --的大小为6arccos4.(Ⅲ)由(Ⅱ),1AB 为平面1A BD 法向量, 1(200)(123)BC AB =-=-,,,,,.∴点C 到平面1A BD 的距离1122222BC AB d AB -===.小结:本例中(Ⅲ)采用了两种方法求点到平面的距离.解法二采用了平面向量的计算方法,把不易直接求的B 点到平面1AMB 的距离转化为容易求的点K 到平面1AMB 的距离的计算方法,这是数学解题中常用的方法;解法一采用了等体积法,这种方法可以避免复杂的几何作图,显得更简单些,因此可优先考虑使用这一种方法.例2.如图,已知两个正四棱锥P-ABCD 与Q-ABCD 的高分别为1和2,AB=4. (Ⅰ)证明PQ ⊥平面ABCD ;(Ⅱ)求异面直线AQ 与PB 所成的角; (Ⅲ)求点P 到平面QAD 的距离.命题目的:本题主要考查直线与平面的位置关系、异面直线所成的角以及点到平面的距离xz AB C D1A1C1BO Fy基本知识,考查空间想象能力、逻辑思维能力和运算能力.过程指引:方法一关键是用恰当的方法找到所求的空间距离和角;方法二关键是掌握利用空间向量求空间距离和角的一般方法. 解答过程:方法一 (Ⅰ)取AD 的中点,连结PM ,QM. 因为P -ABCD 与Q -ABCD 都是正四棱锥, 所以AD ⊥PM ,AD ⊥QM. 从而AD ⊥平面PQM. 又⊂PQ 平面PQM ,所以PQ ⊥AD.同理PQ ⊥AB ,所以PQ ⊥平面ABCD.(Ⅱ)连结AC 、BD 设O BD AC = ,由PQ ⊥平面ABCD 及正四棱锥的性质可知O 在PQ 上,从而P 、A 、Q 、C 四点共面.取OC 的中点N ,连接PN.因为21,21===OC NO OA NO OQ PO ,所以OA NOOQ PO =, 从而AQ ∥PN ,∠BPN (或其补角)是异面直线AQ 与PB 所成的角. 因为2222(22)13PB OB OP =+=+=,222(2)1 3.PN ON OP =+=+=10)2()22(2222=+==ON OB BN所以9333210392cos 222=⨯⨯-+=⋅-∠PN PB BN PN PB BPN +=. 从而异面直线AQ 与PB 所成的角是93arccos.(Ⅲ)连结OM ,则112.22OM AB OQ ===所以∠MQP =45°.由(Ⅰ)知AD ⊥平面PMQ ,所以平面PMQ ⊥平面QAD. 过P 作PH ⊥QM 于H ,PH ⊥平面QAD.从而PH 的长是点P 到平面QAD 的距离.又0323,sin 45.2PQ PO QO PH PQ =+=∴==.即点P 到平面QAD 的距离是322.方法二(Ⅰ)连结AC 、BD ,设O BD AC = .BCP Dz OQBCPADOM由P -ABCD 与Q -ABCD 都是正四棱锥,所以PO ⊥平面ABCD ,QO ⊥平面ABCD. 从而P 、O 、Q 三点在一条直线上,所以PQ ⊥平面ABCD. (Ⅱ)由题设知,ABCD 是正方形,所以AC ⊥BD.由(Ⅰ),QO ⊥平面ABCD. 故可分别以直线CA 、DB 、QP 为x 轴、y 轴、z 轴建立空间直角坐标系(如图),由题条件,相关各点的坐标分别是P (0,0,1),A (22,0,0),Q (0,0,-2),B (0,22,0). 所以)2,0,22(--=AQ(0,22,1)PB =-于是93,cos =〉〈PB AQ .(Ⅲ)由(Ⅱ),点D 的坐标是(0,-22,0),)0,22,22(--=AD ,(0,0,3)PQ =-,设),,(z y x n =是平面QAD 的一个法向量,由⎪⎩⎪⎨⎧=⋅=⋅00AD n AQ n 得⎪⎩⎪⎨⎧=+=+002y x z x .取x=1,得)2,1,1(--=n .所以点P 到平面QAD 的距离322PQ n d n⋅==.考点2 异面直线的距离此类题目主要考查异面直线的距离的概念及其求法,考纲只要求掌握已给出公垂线段的异面直线的距离. 典型例题例3 已知三棱锥ABC S -,底面是边长为24的正三角形,棱SC 的长为2,且垂直于底面.D E 、分别为AB BC 、的中点,求CD 与SE 间的距离. 思路启迪:由于异面直线CD 与SE 的公垂线不易寻找,所以设法将所求异面直线的距离,转化成求直线与平面的距离,再进一步转化成求点到平面的距离. 解答过程:如图所示,取BD 的中点F ,连结EF ,SF ,CF ,EF ∴为BCD ∆的中位线,EF ∴∥CD CD ∴,∥面SEF ,CD ∴到平面SEF 的距离即为两异面直线间的距离.又 线面之间的距离可转化为线CD 上一点C 到平面SEF 的距离,设其为h ,由题意知,24=BC ,D 、E 、F 分别是 AB 、BC 、BD 的中点,2,2,621,62=====∴SC DF CD EF CD33222621312131=⋅⋅⋅⋅=⋅⋅⋅⋅=∴-SC DF EF V CEF S在Rt SCE ∆中,3222=+=CE SC SE 在Rt SCF ∆中,30224422=++=+=CF SC SF又3,6=∴=∆SEF S EF由于h S V V SEF CEF S SEF C ⋅⋅==∆--31,即332331=⋅⋅h ,解得332=h 故CD 与SE 间的距离为332.小结:通过本例我们可以看到求空间距离的过程,就是一个不断转化的过程. 考点3 直线到平面的距离此类题目再加上平行平面间的距离,主要考查点面、线面、面面距离间的转化. 典型例题例4. 如图,在棱长为2的正方体1AC 中,G 是1AA 的中点,求BD 到平面11D GB 的距离.思路启迪:把线面距离转化为点面距离,再用点到平面距离的方法求解. 解答过程:解析一 BD ∥平面11D GB ,BD ∴上任意一点到平面11D GB 的距离皆为所求,以下求点O 平面11D GB 的距离,1111C A D B ⊥ ,A A D B 111⊥,⊥∴11D B 平面11ACC A ,又⊂11D B 平面11D GB∴平面1111D GB ACC A ⊥,两个平面的交线是G O 1,BACDOGH 1A 1C 1D1B 1O作G O OH 1⊥于H ,则有⊥OH 平面11D GB ,即OH 是O 点到平面11D GB 的距离. 在OG O 1∆中,222212111=⋅⋅=⋅⋅=∆AO O O S OG O .又362,23212111=∴=⋅⋅=⋅⋅=∆OH OH G O OH S OG O .即BD 到平面11D GB 的距离等于362.解析二 BD ∥平面11D GB ,BD ∴上任意一点到平面11D GB 的距离皆为所求,以下求点B 平面11D GB 的距离.设点B 到平面11D GB 的距离为h ,将它视为三棱锥11D GB B -的高,则,由于632221,111111=⨯⨯==∆--D GB GBB D D GB B S V V34222213111=⨯⨯⨯⨯=-GBB D V , ,36264==∴h即BD 到平面11D GB 的距离等于362.小结:当直线与平面平行时,直线上的每一点到平面的距离都相等,都是线面距离.所以求线面距离关键是选准恰当的点,转化为点面距离.本例解析一是根据选出的点直接作出距离;解析二是等体积法求出点面距离. 考点4 异面直线所成的角此类题目一般是按定义作出异面直线所成的角,然后通过解三角形来求角.异面直线所成的角是高考考查的重点. 典型例题 例5如图,在Rt AOB △中,π6OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点. (I )求证:平面COD ⊥平面AOB ; (II )求异面直线AO 与CD 所成角的大小.思路启迪:(II )的关键是通过平移把异面直线转化到一个三角形内. 解答过程:解法1:(I )由题意,CO AO ⊥,BO AO ⊥,ADEBOC ∴∠是二面角B AO C --是直二面角, CO BO ∴⊥,又AOBO O =,CO ∴⊥平面AOB ,又CO ⊂平面COD .∴平面COD ⊥平面AOB .(II )作DE OB ⊥,垂足为E ,连结CE (如图),则DE AO ∥,CDE ∴∠是异面直线AO 与CD 所成的角.在Rt COE △中,2CO BO ==,112OE BO ==,225CE CO OE ∴=+=.又132DE AO ==.∴在Rt CDE △中,515tan 33CE CDE DE ===. ∴异面直线AO 与CD 所成角的大小为15arctan3.解法2:(I )同解法1.(II )建立空间直角坐标系O xyz -,如图,则(000)O ,,,(0023)A ,,,(200)C ,,,(013)D ,,, (0023)OA ∴=,,,(213)CD =-,,, cos OA CDOACD OA CD ∴<>=,6642322==.∴异面直线AO 与CD 所成角的大小为6arccos4.小结: 求异面直线所成的角常常先作出所成角的平面图形,作法有:①平移法:在异面直线中的一条直线上选择“特殊点”,作另一条直线的平行线,如解析一,或利用中位线,如解析二;②补形法:把空间图形补成熟悉的几何体,其目的在于容易发现两条异面直线间的关系,如解析三.一般来说,平移法是最常用的,应作为求异面直线所成的角的首选方法.同时要特别注意异面直线所成的角的范围:⎥⎦⎤⎝⎛2,0π.例6.如图所示,AF 、DE 分别是⊙O 、⊙O1的直径.AD 与两圆所在的平面均垂直,AD =8,BC 是⊙O 的直径,AB =AC =6,OE//AD. (Ⅰ)求二面角B —AD —F 的大小;OCADB x yz(Ⅱ)求直线BD 与EF 所成的角.命题目的:本题主要考查二面角以及异面直线所成的角等基本知识,考查空间想象能力、逻辑思维能力和运算能力.过程指引:关键是用恰当的方法找到所求的空间距离和角并掌握利用空间向量求空间距离和角的一般方法.解答过程: (Ⅰ)∵AD 与两圆所在的平面均垂直,∴AD ⊥AB, AD ⊥AF,故∠BAF 是二面角B —AD —F 的平面角.是矩形的直径,是圆、ABFC O BC AF ∴ ,是正方形,又ABFC AC AB ∴==6由于ABFC 是正方形,所以∠BAF =450. 即二面角B —AD —F 的大小为450;(Ⅱ)以O 为原点,BC 、AF 、OE 所在直线为坐标轴,建立空间直角坐标系(如图所示),则O (0,0,0),A (0,23-,0),B (23,0,0),D (0,23-,8),E (0,0,8),F (0,23,0)所以,)8,23,0(),8,23,23(-=--=FE BD0186482cos ,.10||||10082BD FE BD FE BD FE ⋅++<>===⨯设异面直线BD 与EF 所成角为α,则.82cos cos ,.10BD FE α=<>=故直线BD 与EF 所成的角为1082arccos.考点 5 直线和平面所成的角此类题主要考查直线与平面所成的角的作法、证明以及计算. 线面角在空间角中占有重要地位,是高考的常考内容. 典型例题 例7.四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =∠,2AB =,22BC =,3SA SB ==.(Ⅰ)证明SA BC ⊥;(Ⅱ)求直线SD 与平面SAB 所成角的大小.考查目的:本小题主要考查直线与直线,直线与平面的位置关系, 二面角的大小,点到平面的距离等知识,考查空间想象能力、逻辑思维能力和运算能力.DBCAS解答过程:解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD , 得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥, 由三垂线定理,得SA BC ⊥.(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设AD BC ∥,故SA AD ⊥,由22AD BC ==,3SA =,2AO =,得1SO =,11SD =.SAB △的面积22111222S ABSA AB ⎛⎫=-= ⎪⎝⎭.连结DB ,得DAB △的面积21sin13522S AB AD ==设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得121133h S SO S =,解得2h =.设SD 与平面SAB 所成角为α,则222sin 1111h SD α===.所以,直线SD 与平面SBC 所成的我为22arcsin11.解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥. 如图,以O 为坐标原点,OA 为x 轴正向,建立直角坐标系O xyz -,(200)A ,,,(020)B ,,,(020)C -,,,(001)S ,,,(201)SA =-,,,(0220)CB =,,,0SA CB =,所以SA BC ⊥.(Ⅱ)取AB 中点E ,22022E ⎛⎫⎪ ⎪⎝⎭,,, 连结SE ,取SE 中点G,连结OG ,221442G ⎛⎫⎪ ⎪⎝⎭,,. DBCASOEGyxzODBCAS221442OG ⎛⎫= ⎪ ⎪⎝⎭,,,22122SE ⎛⎫= ⎪ ⎪⎝⎭,,,(220)AB =-,,.0SE OG =,0AB OG =,OG 与平面SAB 内两条相交直线SE ,AB 垂直.所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余.(2220)D ,,,(2221)DS =-,,.22cos 11OG DS OG DSα==,22sin 11β=,所以,直线SD 与平面SAB 所成的角为22arcsin11.小结:求直线与平面所成的角时,应注意的问题是(1)先判断直线和平面的位置关系;(2)当直线和平面斜交时,常用以下步骤:①构造——作出斜线与射影所成的角,②证明——论证作出的角为所求的角,③计算——常用解三角形的方法求角,④结论——点明直线和平面所成的角的值. 考点6 二面角此类题主要是如何确定二面角的平面角,并将二面角的平面角转化为线线角放到一个合适的三角形中进行求解.二面角是高考的热点,应重视. 典型例题例8.如图,已知直二面角PQ αβ--,A PQ ∈,B α∈,C β∈,CA CB =,45BAP ∠=,直线CA 和平面α所成的角为30.(I )证明BC PQ ⊥; (II )求二面角B AC P --的大小.命题目的:本题主要考查直线与平面垂直、二面角等基本知识,考查空间想象能力、逻辑思维能力和运算能力.过程指引:(I )在平面β内过点C 作CO PQ ⊥于点O ,连结OB . 因为αβ⊥,PQ αβ=,所以CO α⊥,又因为CA CB =,所以OA OB =.而45BAO ∠=,所以45ABO ∠=,90AOB ∠=, 从而BO PQ ⊥,又CO PQ ⊥,ABCQα β P AB CQαβ POH所以PQ ⊥平面OBC .因为BC ⊂平面OBC ,故PQ BC ⊥. (II )解法一:由(I )知,BO PQ ⊥,又αβ⊥,PQ αβ=,BO α⊂,所以BO β⊥.过点O 作OH AC ⊥于点H ,连结BH ,由三垂线定理知,BH AC ⊥. 故BHO ∠是二面角B AC P --的平面角.由(I )知,CO α⊥,所以CAO ∠是CA 和平面α所成的角,则30CAO ∠=,不妨设2AC =,则3AO =,3sin 302OH AO ==.在Rt OAB △中,45ABO BAO ∠=∠=,所以3BO AO ==,于是在Rt BOH △中,3tan 232BOBHO OH∠===.故二面角B AC P --的大小为arctan 2.解法二:由(I )知,OC OA ⊥,OC OB ⊥,OA OB ⊥,故可以O 为原点,分别以直线OB OA OC ,,为x 轴,y 轴,z 轴建立空间直角坐标系(如图).因为CO a ⊥,所以CAO ∠是CA 和平面α所成的角,则30CAO ∠=.不妨设2AC =,则3AO =,1CO =. 在Rt OAB △中,45ABO BAO ∠=∠=, 所以3BO AO ==. 则相关各点的坐标分别是(000)O ,,,(300)B ,,,(030)A ,,,(001)C ,,. 所以(330)AB =-,,,(031)AC =-,,. 设1n {}x y z =,,是平面ABC 的一个法向量,由1100n AB n AC ⎧=⎪⎨=⎪⎩,得33030x y y z ⎧-=⎪⎨-+=⎪⎩,取1x =,得1(113)n =,,.易知2(100)n =,,是平面β的一个法向量.设二面角B AC P --的平面角为θ,由图可知,12n n θ=<>,.ABC Qαβ POxyz所以121215cos 5||||51n n n n θ===⨯.故二面角B AC P --的大小为5arccos5.小结:本题是一个无棱二面角的求解问题.解法一是确定二面角的棱,进而找出二面角的平面角.无棱二面角棱的确定有以下三种途径:①由二面角两个面内的两条相交直线确定棱,②由二面角两个平面内的两条平行直线找出棱,③补形构造几何体发现棱;解法二则是利用平面向量计算的方法,这也是解决无棱二面角的一种常用方法,即当二面角的平面角不易作出时,可由平面向量计算的方法求出二面角的大小.例9.( 2006年重庆卷)如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD,∠DAB 为直角,AB ‖CD ,AD=CD=2AB, E 、F 分别为PC 、CD 的中点. (Ⅰ)试证:CD ⊥平面BEF ;(Ⅱ)设PA =k ·AB,且二面角E-BD-C 的平面角大于︒30,求k 的取值范围.命题目的:本题主要考查直线与平面垂直、二面角等基本知识,考查空间想象能力、逻辑思维能力和运算能力.过程指引:方法一关键是用恰当的方法找到所求的空间距离和角;方法二关键是掌握利用空间向量求空间距离和角的一般方法. 解答过程:解法一:(Ⅰ)证:由已知DF //=AB 且∠DAD 为直角,故ABFD 是矩形,从而CD ⊥BF. 又PA ⊥底面ABCD,CD ⊥AD ,故由三垂线定理知CD ⊥PD.在△PDC 中,E 、F 分别PC 、CD 的中点,故EF ∥PD,从而CD ⊥EF,由此得CD ⊥面BEF. (Ⅱ)连结AC 交BF 于G.易知G 为AC 的中点.连接EG,则在△PAC 中易知EG ∥PA.又因PA ⊥底面ABCD,故EG ⊥底面ABCD.在底面ABCD 中,过G 作GH ⊥BD,垂足为H,连接EH.由三垂线定理知EH ⊥BD.从而∠EHG为二面角E-BD-C的平面角. 设AB=a,则在△PAC 中,有EG=21PA=21ka.以下计算GH ,考察底面的平面图.连结GD.因S △GBD=21BD ·GH=21GB ·DF.故GH=BD DFGB ⋅.在△ABD 中,因为AB =a,AD=2a,得BD=5a.而GB=21FB=21AD=a ,DF=AB,从而得GH=BD AB GB ⋅= a a a 5⋅=.55a因此tan ∠EHG=GH EG =.255521k aka=由k >0知EHG ∠是锐角,故要使EHG ∠>︒30,必须k 25>tan ︒30=,33解之得,k 的取值范围为k >.15152解法二:(Ⅰ)如图,以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴建立空间直角坐标系,设AB=a,则易知点A,B,C,D,F 的坐标分别为 A(0,0,0),B(a,0,0),C(2a,2a,0),D(0,2a,0), F(a,2a,0). 从而DC =(2a,0,0), BF =(0,2a,0),DC ·BF =0,故DC ⊥BF .设PA=b,则P(0,0,b),而E 为PC 中点.故 E ⎪⎭⎫ ⎝⎛2,,b a a . 从而BE =⎪⎭⎫ ⎝⎛2,,0b a ,DC ·BE =0,故DC ⊥BE . 由此得CD ⊥面BEF.(Ⅱ)设E 在xOy 平面上的投影为G ,过G 作GH ⊥BD 垂足为H,由三垂线定理知EH ⊥BD. 从而∠EHG 为二面角E-BD-C 的平面角.由PA =k ·AB 得P(0,0,ka),E ⎪⎭⎫ ⎝⎛2,,ka a a ,G(a,a,0). 设H(x,y,0),则GH =(x-a,y-a,0), BD =(-a,2a,0), 由GH ·BD =0得-a(x-a)+2a(y-a)=0,即 x-2y=-a ①又因BH =(x-a,y,0),且BH 与BD 的方向相同,故a a x --=a y2,即2x+y=2a ②由①②解得x=53a,y=54a,从而GH =⎪⎭⎫ ⎝⎛--0,51,52a a ,|GH |=55a. tan ∠EHG= EGGH=a ka552=k 25.由k >0知,∠EHG 是锐角,由∠EHG >,30︒得tan ∠EHG >tan ,30︒即k 25>.33故k 的取值范围为k >15152.考点7 利用空间向量求空间距离和角众所周知,利用空间向量求空间距离和角的套路与格式固定.当掌握了用向量的方法解决立体几何问题这套强有力的工具时,不仅会降低题目的难度,而且使得作题具有很强的操作性. 典型例题 例10. 如图,已知1111ABCD A B C D -是棱长为3的正方体,点E 在1AA 上,点F 在1CC 上,且11AE FC ==.(1)求证:1E B F D ,,,四点共面;(2)若点G 在BC 上,23BG =,点M 在1BB 上,GM BF ⊥,垂足为H ,求证:EM ⊥平面11BCC B ;(3)用θ表示截面1EBFD 和侧面11BCC B 所成的锐二面角的大小,求tan θ.CBAG HMDEF1B1A1D1C命题意图:本小题主要考查平面的基本性质、线线平行、线面垂直、二面角等基础知识和基本运算,考查空间想象能力、逻辑推理能力和运算能力. 过程指引:解法一:(1)如图,在1DD 上取点N ,使1DN =,连结EN ,CN ,则1AE DN ==,12CF ND ==.因为AE DN ∥,1ND CF ∥,所以四边形ADNE ,1CFD N 都为平行四边形. 从而EN AD∥,1FD CN ∥.又因为AD BC ∥,所以EN BC∥,故四边形BCNE 是平行四边形,由此推知CN BE ∥,从而1FD BE ∥.因此,1E B F D ,,,四点共面.(2)如图,GM BF ⊥,又BM BC ⊥,所以BGM CFB =∠∠,tan tan BM BG BGM BG CFB==∠∠23132BC BGCF ==⨯=.因为AE BM∥,所以ABME 为平行四边形,从而AB EM ∥.又AB ⊥平面11BCC B ,所以EM ⊥平面11BCC B .(3)如图,连结EH .因为MH BF ⊥,EM BF ⊥,所以BF ⊥平面EMH ,得EH BF ⊥. 于是EHM ∠是所求的二面角的平面角,即EHM θ=∠.因为MBH CFB =∠∠,所以sin sin MH BM MBH BM CFB ==∠∠22223311332BC BMBC CF ==⨯=++, tan 13EMMH θ==.解法二:(1)建立如图所示的坐标系,则(301)BE =,,,(032)BF =,,,1(333)BD =,,, 所以1BD BE BF =+,故1BD ,BE ,BF 共面.又它们有公共点B ,所以1E B F D ,,,四点共面.(2)如图,设(00)M z ,,,则203GM z ⎛⎫=- ⎪⎝⎭,,, CBAG HMDEF 1B1A1D1CNAH MDEF1B1A 1D1Czx而(032)BF =,,,由题设得23203GM BF z =-+=,得1z =.因为(001)M ,,,(301)E ,,,有(300)ME =,,, 又1(003)BB =,,,(030)BC =,,,所以10ME BB =,0ME BC =,从而1ME BB ⊥,ME BC ⊥.故ME ⊥平面11BCC B .(3)设向量(3)BP x y =,,⊥截面1EBFD ,于是BP BE ⊥,BP BF ⊥.而(301)BE =,,,(032)BF =,,,得330BP BE x =+=,360BP BF y =+=,解得1x =-,2y =-,所以(123)BP =--,,. 又(300)BA =,,⊥平面11BCC B ,所以BP 和BA 的夹角等于θ或πθ-(θ为锐角).于是1cos 14BP BA BP BAθ==.故tan 13θ=.小结:向量法求二面角的大小关键是确定两个平面的法向量的坐标,再用公式求夹角;点面距离一般转化为AB 在面BDF 的法向量n 上的投影的绝对值.例11.如图,l1、l2是互相垂直的两条异面直线,MN 是它们的公垂线段,点A 、B 在l1上,C 在l2上,AM=MB=MN (I )证明AC ⊥NB ;(II )若︒=∠60ACB ,求NB 与平面ABC 所成角的余弦值. 命题目的:本题主要考查异面直线垂直、直线与平面所成角的有关 知识,考查空间想象能力、逻辑思维能力和运算能力. 过程指引:方法一关键是用恰当的方法找到所求的空间角; 方法二关键是掌握利用空间向量求空间角的一般方法. 解答过程:解法一: (Ⅰ)由已知l2⊥MN, l2⊥l1 , MN ∩l1 =M, 可得 l2⊥平面ABN. 由已知MN ⊥l1 , AM=MB=MN,可知AN=NBN MHCANMCBA且AN ⊥NB. 又AN 为AC 在平面ABN 内的射影. ∴AC ⊥NB(Ⅱ)∵Rt △CAN ≌Rt △CNB, ∴AC=BC,又已知∠ACB=60°,因此△ABC 为正三角形. ∵Rt △ANB ≌Rt △CNB, ∴NC=NA=NB,因此N 在平面ABC 内的射影H 是正三角形ABC 的中心,连结BH,∠NBH 为NB 与平面ABC 所成的角. 在Rt △NHB 中,cos ∠NBH= HB NB = 33AB 22AB = 63.解法二: 如图,建立空间直角坐标系M -xyz. 令MN=1, 则有A(-1,0,0),B(1,0,0),N(0,1,0),(Ⅰ)∵MN 是 l1、l2的公垂线, l1⊥l2, ∴l2⊥平面ABN. l2平行于z 轴. 故可设C(0,1,m). 于是 =(1,1,m), =(1,-1,0). ∴·=1+(-1)+0=0 ∴AC ⊥NB.(Ⅱ)∵ =(1,1,m), =(-1,1,m), ∴||=||, 又已知∠ACB=60°,∴△ABC 为正三角形,AC=BC=AB=2. 在Rt △CNB 中,NB=2, 可得NC=2,故C(0,1, 2). 连结MC,作NH ⊥MC 于H,设H(0,λ, 2λ) (λ>0). ∴=(0,1-λ,-2λ), =(0,1, 2) ∵ · = 1-λ-2λ=0, ∴λ= 13,∴H(0, 13, 23), 可得=(0,23, - 23), 连结BH, 则=(-1,13, 23),∵·=0+29 - 29 =0, ∴⊥, 又MC ∩BH=H, ∴HN ⊥平面ABC, ∠NBH 为NB 与平面ABC所成的角. 又=(-1,1,0),∴cos ∠NBH= =4323×2 = 63.考点8 简单多面体的有关概念及应用,主要考查多面体的概念、性质,主要以填空、选择题为主,通常结合多面体的定义、性质进行判断. 典型例题例12 . 如图(1),将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器,当这个正六棱柱容器的底面边长为 时容积最大.[思路启迪]设四边形一边AD ,然后写出六棱柱体积,利用均值不等式,求出体积取最值时AD 长度即可.NMHxCBozy解答过程:如图(2)设AD =a ,易知∠ABC =60°,且∠ABD =30°⇒AB =3a . BD =2a ⇒正六棱柱体积为V .V =a a 360sin 212162⋅︒⋅⋅⋅)-(=a a ⋅22129)-( =aa a 4)21)(21(89--≤33289)(⋅ .当且仅当 1-2a =4a ⇒ a =61时,体积最大, 此时底面边长为1-2a =1-2×61=32. ∴ 答案为61.例13 .如图左,在正三角形ABC 中,D 、E 、F 分别为各边的中点,G 、H 、I 、J 分别为AF 、AD 、BE 、DE 的中点,将△ABC 沿DE 、EF 、DF 折成三棱锥后,GH 与IJ 所成角的度数为( )A 、90°B 、60°C 、45°D 、0°[思路启迪] 画出折叠后的图形,可看出GH ,IJ 是一对异面直线,即求异面直线所成角. 过点D 分别作IJ 和GH 的平行线,即AD 与DF ,所以 ∠ADF 即为所求. 因此GH 与IJ 所成角为60°,答案:B 例14.长方体ABCD -A1B1C1D1中,设对角线D1B 与自D1出发的三条棱分别成α、β、γ角 求证:cos2α+cos2β+cos2γ=1设D1B 与自D1出发的三个面成α、β、γ角,求证: cos2α+cos2β+cos2γ=2[思路启迪] ①因为三个角有一个公共边即D1B ,在构造 的直角三角形中,角的邻边分别是从长方体一个顶点出 发的三条棱,在解题中注意使用对角线长与棱长的关系 利用长方体性质,先找出α,β,γ,然后利用各边BA CDEF G HIJ(A 、B 、C)DE F GHIJABCADA1 B1C1D1所构成的直角三角形来解.解答过程:①连接BC1,设∠BD1C1=α,长方体三条棱 长分别为a ,b ,c ,设D1B =l则cos2α=22l a 同理cos2β=22l b ,cos2γ=22l c ∴cos2α+cos2β+cos2γ=2222l +c +b a =1②连接D1C ,∵ BC ⊥平面DCC1D1∴ ∠BD1C 即是D1B 与平面DCC1D1所成的角,不妨设∠BD1C =α,则cos2α=222+l b a同理:cos2β=222l +c b ,cos2γ=222l a c +.又∵l 2=a2+b2+c2.∴cos2α+cos2β+cos2γ=2222)2l +c +b (a =2.考点9.简单多面体的侧面积及体积和球的计算棱柱侧面积转化成求矩形或平行四边形面积,棱柱侧面积转化成求三角形的面积. 直棱柱体积V 等于底面积与高的乘积.棱锥体积V 等于31Sh 其中S 是底面积,h 是棱锥的高.典型例题例15. 如图,在三棱柱ABC -A1B1C1中,AB =2a ,BC =CA =AA1=a , A1在底面△ABC 上的射影O 在AC 上 求AB 与侧面AC1所成角;若O 恰好是AC 的中点,求此三棱柱的侧面积. [思路启迪] ①找出AB 与侧面AC1所成角即是∠CAB ;②三棱锥侧面积转化成三个侧面面积之和,侧面BCC1B1是正方形,侧面ACC1A1和侧面ABB1A1是平行四边形,分别求其面积即可. 解答过程:①点A1在底面ABC 的射影在AC 上, ∴ 平面ACC1A1⊥平面ABC.在△ABC 中,由BC =AC =a ,AB =2a. ∴ ∠ACB =90°,∴ BC ⊥AC.AB1C1ABCDO∴ BC ⊥平面ACC1A1.即 ∠CAB 为AB 与侧面AC1所成的角在Rt △ABC 中,∠CAB =45°. ∴ AB 与侧面AC1所成角是45°.② ∵ O 是AC 中点,在Rt △AA1O 中,AA1=a ,AO =21a.∴ AO1=23a.∴ 侧面ACC1A1面积S1=2123a =AO AC ⋅.又BC ⊥平面ACC1A1 , ∴ BC ⊥CC1.又BB1=BC =a ,∴ 侧面BCC1B1是正方形,面积S2=a2. 过O 作OD ⊥AB 于D ,∵ A1O ⊥平面ABC , ∴A1D ⊥AB.在Rt △AOD 中,AO =21a ,∠CAD =45°∴ OD =42a在Rt △A1OD 中,A1D =222122342)+()(=a a O +A OD =a 87. ∴ 侧面ABB1A1面积S3=a a D =A AB 8721⋅⋅=227a .∴ 三棱柱侧面积 S =S1+S2+S3=273221a )++(.例16. 等边三角形ABC 的边长为4,M 、N 分别为AB 、AC 的中点,沿MN 将△AMN 折起,使得面AMN 与面MNCB 所成的二面角为30°,则四棱锥A —MNCB 的体积为 ( )A 、23B 、23C 、3D 、3[思路启迪]先找出二面角平面角,即∠AKL ,再在△AKL 中求出棱锥的高h ,再利用V =31Sh 即可.解答过程:在平面图中,过A 作AL ⊥BC ,交MN 于K ,交BC 于L.ABCMNKLACMNKL则AK ⊥MN ,KL ⊥MN. ∴ ∠AKL =30°.则四棱锥A —MNCB 的高h =︒⋅30sin AK =23. KL ⋅242S MNCB +==33⋅.∴233331V MNCB A ⋅⋅=-=23. ∴ 答案 A例17.如图,四棱锥P —ABCD 中,底面是一个矩形,AB =3,AD =1,又PA ⊥AB ,PA =4,∠PAD =60° 求四棱锥的体积;求二面角P -BC -D 的大小.思路启迪①找棱锥高线是关键,由题中条件可设△PAD 的高PH 即是棱锥的高.②找出二面角平面角∠PEH ,在Rt △PHE 中即可求出此角. 解答过程:①∵ PA ⊥AB ,AD ⊥AB. ∴ AB ⊥面PAD .又AB ⊂面ABCD. ∴ 面PAD ⊥面ABCD.在面PAD 内,作PH ⊥AD 交AD 延长线于H. 则PH ⊥面ABCD ,即PH 就是四棱锥的高.又∠PAD =60°,∴ PH =3223460sin ==⋅︒⋅PA .∴ 32321331S 31V ABCD ABCD P ===-⋅⨯⋅⋅⋅PH .② 过H 作HE ⊥BC 交BC 延长线于E ,连接PE , 则HE =AB =3.∵ PH ⊥面ABCD , ∴ PE ⊥BC. ∴ ∠PEH 为二面角P -BC -D 的平面角.∴ tan ∠PEH =332=HE PH . 即二面角的大小为 arctan 332.PAH EDBC例18 .(2006年全国卷Ⅱ)已知圆O1是半径为R 的球O 的一个小圆,且圆O1的面积与球O 的表面积的比值为92,则线段OO1与R 的比值为 .命题目的:①球截面的性质;②球表面积公式.过程指引:依面积之比可求得R r,再在Rt △OO1A 中即得解答过程:设小圆半径为r ,球半径为R则92422=R r ππ ⇒ 92422=R r ⇒322=R r ∴ cos ∠OAO1=322=Rr 而 31981sin 1=-==αROO ,故填31Rr AO1O。

高考数学二轮专题复习第14课时空间角与空间距离课件文

高考数学二轮专题复习第14课时空间角与空间距离课件文
14
在RtPOD中,PD2 PO2 OD2,
在RtPDB中,PB2 PD2 BD2,
所以PB2 PO2 OD2 BD2 36,得PB 6.在RtPOA中,
PA2 AO2 OP2 25,得PA 5.
又cosBPA PA2 PB2 AB2 1,从而sinBPA 2 2 .
16
(1)证明:因为AB、BC、CD两两垂直, 所以CD⊥BC,CD⊥AB. 又因为AB、BC为平面ABC内的两条相交直线,所 以CD⊥平面ABC, 而CD⊂平面ACD,所以平面ACD⊥平面ABC. (2)因为AB⊥CD,AB⊥BC,而BC、CD是平面BCD 内的两条相交直线, 所以AB⊥平面BCD. 而BD⊂平面BCD,所以AB⊥BD, 所以∠CBD为二面角C-AB-D的平面角. 又因为BC=CD=1,BC⊥CD,所以∠CBD=45°, 即二面角C-AB-D的平面角为45°.
在RtDCA中,CG CD2 22 4 5 .
AC
22 12
5
45
在RtPCG中,tanCPG CG 5 2 5 , PC 2 5
即直线PC与平面PDE所成的角的正弦值为 2 . 3
22
3由于BF 1 CF,所以可知点B到平面PDE的距离等于
4 点C到平面PDE的距离 1 ,即 1 CH.
24
【变式训练】如图,在四棱锥P-ABCD中,底面 ABCD 是 矩 形 , PA⊥ 平 面 ABCD , PA=AD=4 , AB=2,BM⊥PD,垂足为M,O为BD的中点. (1)求证:PD⊥平面ABM; (2)求点O到平面ABM的距离; (3)求直线OA与平面ABM所成角的正弦值.
25
(1)证明:因为PA⊥平面ABCD, 而AB⊂平面ABCD,所以PA⊥AB, 又因为AB⊥AD,PA、AD为平面PAD内的两条相 交直线, 所以AB⊥平面PAD,所以AB⊥PD, 又因为BM⊥PD,AB、BM为平面ABM内的两条相 交直线,所以PD⊥平面ABM.

高中数学中的立体几何空间角与空间距离计算方法

高中数学中的立体几何空间角与空间距离计算方法

高中数学中的立体几何空间角与空间距离计算方法立体几何是数学中的一个分支,其重点研究的是三维空间中点、线、面和体之间的关系。

在立体几何中,空间角和空间距离是非常关键的概念。

本文将详细探讨高中数学中的立体几何空间角与空间距离计算方法。

一、空间角的概念与计算方法1. 空间角的概念空间角指的是由两个非共面向量所张成的角度,在立体几何中具有重要的意义。

空间角的大小是依据两个向量的夹角计算得来的。

2. 空间角的计算方法在计算空间角时,我们首先需要求出两个向量的点积。

设向量a=(a1,a2,a3)和向量b=(b1,b2,b3),则它们的点积为a*b=a1b1+a2b2+a3b3。

接下来,我们可以利用余弦定理来计算角度,即cosθ=(a*b)/(|a||b|),其中|a|和|b|分别表示向量a和向量b的模长,θ表示向量a和向量b之间的夹角。

二、空间距离的概念与计算方法1. 空间距离的概念空间距离指的是三维空间中两个点之间的距离,也是立体几何中经常涉及到的一个概念。

2. 空间距离的计算方法我们可以借助勾股定理来计算空间距离。

设点A(x1,y1,z1)和点B(x2,y2,z2)是三维空间中的两个点,它们之间的距离为d,则d=sqrt((x2-x1)^2+(y2-y1)^2+(z2-z1)^2)。

三、空间角和空间距离的应用空间角和空间距离在立体几何中的应用非常广泛,例如在计算棱台的侧面积、计算四面体内切圆半径、求解圆锥截面面积等问题中,我们都需要用到空间角和空间距离的知识。

比如,在计算棱台的侧面积时,我们需要首先求出两条棱所在的平面之间的空间角,然后根据棱长和计算出的角度,就可以快速计算出棱台的侧面积。

在计算四面体内切圆半径时,我们需要先计算出四面体各面的法线向量,然后根据法线向量计算面上的角度,最后用勾股定理求出四面体内切圆的半径。

在求解圆锥截面面积时,我们需要用到空间角和空间距离的知识,以找出圆锥截面的边界和计算截面的面积。

高考数学专题—立体几何(空间向量求空间角与空间距离)

高考数学专题—立体几何(空间向量求空间角与空间距离)

高考数学专题——立体几何(空间向量求角与距离)一、空间向量常考形式与计算方法设直线l,m 的方向向量分别为l ⃗,m ⃗⃗⃗⃗,平面α,β的法向量分别为n ⃗⃗1,n 2⃗⃗⃗⃗⃗. (1)线线角:(正负问题):用向量算取绝对值(因为线线角只能是锐角)直线l,m 所成的角为θ,则0≤θ≤π2,计算方法:cos θ=l⃗⋅m ⃗⃗⃗⃗|l⃗|⋅|m ⃗⃗⃗⃗|; (2)线面角:正常考你正弦值,因为算出来的是角的余角的余弦值 非正常考你余弦值,需要再算一步。

直线l 与平面α所成的角为θ,则0≤θ≤π2,计算方法:sin θ=|l ⃗⋅n 1⃗⃗⃗⃗⃗⃗||l⃗|⋅|n ⃗⃗|; (3)二面角:同进同出为补角;一进一出为原角。

注意:考试从图中观察,若为钝角就取负值,若为锐角就取正值。

平面α,β所成的二面角为θ,则0≤θ≤π,如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=⟨AB⃗⃗⃗⃗⃗⃗,CD ⃗⃗⃗⃗⃗⃗⟩.如图②③,n ⃗⃗1,n 2⃗⃗⃗⃗⃗分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|n⃗⃗1⋅n 2⃗⃗⃗⃗⃗⃗|n⃗⃗1|⋅|n2⃗⃗⃗⃗⃗⃗||,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). (4)空间距离额计算:通常包含点到平面距离,异面直线间距离。

二、空间向量基本步骤空间向量求余弦值或正弦值四步法(1)建系:三垂直,尽量多点在轴上;左右下建系,建成墙角系;锥体顶点在轴上;对称面建系。

一定要注明怎样建成的坐标系(2)写点坐标(3)写向量:向量最好在面上或者轴上(可简化计算量) (4)法向量的简化计算直线的方向向量和平面的法向量(1)直线的方向向量就是指和这条直线平行(或共线)的向量,记作,显然一条直线的方向向量可以有无数个.(2)若直线l ⊥α,则该直线的方向向量即为该平面的法向量,平面的法向量记作,有无数多个,任意两个都是共线向量.平面法向量的求法:设平面的法向量为α⃗=(x,y,z ).在平面内找出(或求出)两个不共线的向量a ⃗=(x 1,y 1,z 1),b ⃗⃗=(x 2,y 2,z 2),根据定义建立方程组,得到{α⃗×a ⃗=0α⃗×b ⃗⃗=0,通过赋值,取其中一组解,得到平面的法向量.三、空间向量求距离向量方法求异面直线距离:先求两异面直线的公共法向量,再求两异面直线上任意两点的连结线段在公共法向量上的射影长。

立体几何中的向量方法——求空间角与距离-2023届高考数学一轮复习(新高考)

立体几何中的向量方法——求空间角与距离-2023届高考数学一轮复习(新高考)

考点专练38:立体几何中的向量方法一、选择题1.在三棱锥A-BCD 中,平面ABD 与平面BCD 的法向量分别为n 1,n 2.若〈n 1,n 2〉=π3,则二面角A-BD-C 的大小为( ) A .π3 B .2π3 C .π3或2π3 D .π6或π32.如图,点A ,B ,C 分别在空间直角坐标系Oxyz 的三条坐标轴上,OC →=(0,0,2),平面ABC 的法向量为n =(2, 1, 2),设二面角C-AB-O 的大小为θ,则cos θ等于( )A .43B .53C .23D .-233.如图,在长方体ABCD-A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =13AB ,则DC 1与平面D 1EC 所成角的正弦值为( )A .33535B . 277C .33D .244.在正方体ABCD-A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A .12B .23C .33D .225.在直三棱柱ABC-A 1B 1C 1中,AA 1=2,二面角B-AA 1-C 1的大小为60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,则直线BC 1与直线AB 1所成角的正切值为( )A .7B .6C .5D .26.(多选)设三棱锥V-ABC 的底面是正三角形,侧棱长均相等,P 是棱V A 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P-AC-B的平面角为γ,则α,β,γ大小关系正确的是() A.α>β B.α=βC.γ>β D.γ≥β二、填空题7.如图,在正方形ABCD中,EF∥AB.若沿EF将正方形折成一个二面角后,AE∶ED∶AD=1∶1∶2,则AF与CE所成角的余弦值为________→8.正四棱锥P-ABCD,底面四边形ABCD是边长为2的正方形,PA=5,其内切球为球G,平面α过AD与棱PB,PC分别交于点M,N,且与平面ABCD所成二面角为30°,则平面α截球G所得的图形的面积为___________三、解答题9.(2021·全国甲卷)已知直三棱柱ABC -A1B1C1中,侧面AA1B1B为正方形,AB =BC=2,E,F分别为AC和CC1的中点,D为棱A1B1上的点,BF⊥A1B1.(1)证明:BF⊥DE;(2)当B1D为何值时,平面BB1C1C与平面DFE所成的二面角的正弦值最小?10.如图,在四棱锥P-ABCD中,四边形ABCD是直角梯形,AB⊥AD,AB∥CD,PC⊥底面ABCD,AB=2AD=2CD=4,PC=2a,E是PB的中点.(1)求证:平面EAC⊥平面PBC;(2)若二面角P-AC-E的余弦值为63,求a的值;(3)在(2)的条件下求直线PA与平面EAC所成角的正弦值.11.如图所示,在四棱锥P-ABCD中,四边形ABCD为平行四边形,AB⊥AC,PA⊥平面ABCD,且PA=AB=3,AC=2,点E是PD的中点.(1)求证:PB∥平面AEC.(2)在线段PB上(不含端点)是否存在一点M,使得二面角M-AC-E的余弦值为10 10若存在,确定M的位置;若不存在,请说明理由.12.如图,已知△ABC是以AC为底边的等腰三角形,将△ABC绕AB转动到△PAB位置,使得平面PAB⊥平面ABC,连接PC,E,F分别是PA,CA的中点.(1)证明:EF⊥AB;(2)在①S△ABC=33,②点P到平面ABC的距离为3,③直线PB与平面ABC所成的角为60°这三个条件中选择两个作为已知条件,求二面角E-BF-A的余弦值.13.请从下面三个条件中任选一个,补充在下面的横线上,并作答.①AB⊥BC,②FC与平面ABCD所成的角为π6,③∠ABC=π3.如图,在四棱锥P ABCD中,底面ABCD是菱形,PA⊥平面ABCD,且PA =AB=2,PD的中点为F.(1)在线面AB上是否存在一点G,使得AF∥平面PCG?若存在,指出G在AB 上的位置并给以证明;若不存在,请说明理由.(2)若________,求二面角F-AC-D的余弦值.参考答案:一、选择题1.C2.C3.A4.B5.A6.AC 二、填空题7.答案:45 8.答案:π3 三、解答题9.(1)证明:因为侧面AA 1B 1B 为正方形,所以A 1B 1⊥BB 1.又BF ⊥A 1B 1,而BF ∩BB 1=B ,BF ⊂平面BB 1C 1C ,BB 1⊂平面BB 1C 1C ,所以A 1B 1⊥平面BB 1C 1C .又ABC -A 1B 1C 1是直三棱柱,BC =AB ,所以平面BB 1C 1C 为正方形. 取BC 中点为G ,连接B 1G ,EG . 因为F 为CC 1的中点,所以BF ⊥B 1G . 又BF ⊥A 1B 1,且EG ∥A 1B 1,所以BF ⊥EG .又B 1G ∩EG =G ,B 1G ⊂平面EGB 1D ,EG ⊂平面EGB 1D ,所以BF ⊥平面EGB 1D . 又DE ⊂平面EGB 1D ,所以BF ⊥DE .(2)解:因为侧面AA 1B 1B 是正方形,所以AB ∥A 1B 1,由(1)知,A 1B 1⊥平面BB 1C 1C , 所以AB ⊥平面BB 1C 1C .又BC ⊂平面BB 1C 1C ,所以AB ⊥BC .设B 1D =x ,以B 为原点,BA ,BC ,BB 1所在的直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则E(1,1,0),F(0,2,1),D(x,0,2),所以EF →=(-1,1,1),FD →=(x ,-2,1).易知,平面BB 1C 1C 的一个法向量可为n 1=(1,0,0).设平面DFE 的法向量n 2=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧n 2·EF →=0,n 2·FD →=0,即⎩⎪⎨⎪⎧-x 1+y 1+z 1=0,xx 1-2y 1+z 1=0.不妨取z 1=1,则x 1=32-x ,y 1=x +12-x,即n 2=⎝⎛⎭⎫32-x ,x +12-x ,1.设〈n 1,n 2〉=θ,则cos θ=⎪⎪⎪⎪⎪⎪32-x⎝⎛⎭⎫32-x 2+⎝⎛⎭⎫x +12-x 2+1=11+⎝⎛⎭⎫32-x -12⎝⎛⎭⎫32-x 2+1⎝⎛⎭⎫32-x 2.令32-x=t ,则cos θ=11+(t -1)2t 2+1t2=12t 2-2t+2=12()1t -122+32.当1t =12时,(cos θ)max =23=63,此时(sin θ)min =33. 故当B 1D =12时,平面BB 1C 1C 与平面DFE 所成的二面角的正弦值最小.10.(1)证明:因为PC ⊥平面ABCD ,AC ⊂平面ABCD ,所以AC ⊥PC . 因为AB =4,AD =CD =2,所以AC =22, 取AB 的中点为N ,则可得CN ∥AD ,则CN ⊥AB ,所以BC =CN 2+NB 2=22,所以AC 2+BC 2=AB 2,所以AC ⊥BC . 又BC ∩PC =C ,所以AC ⊥平面PBC .因为AC ⊂平面EAC ,所以平面EAC ⊥平面PBC .(2)解:以点C 为原点,CN →,CD →,CP →分别为x 轴、y轴、z 轴正方向,建立空间直角坐标系,则C(0,0,0),A(2,2,0),B(2,-2,0),设P(0,0,2a)(a>0),则E(1,-1,a),CA →=(2,2,0),CP →=(0,0,2a),CE →=(1,-1,a).设m =(x 0,y 0,z 0)为平面PAC 的法向量,则m ·CA →=m ·CP →=0,即⎩⎪⎨⎪⎧2x 0+2y 0=0,2az 0=0,取m =(1,-1,0).设n =(x ,y ,z)为平面EAC 的法向量,则n ·CA →=n ·CE →=0,即⎩⎪⎨⎪⎧x +y =0,x -y +az =0,取x =a ,y =-a ,z =-2,则n =(a ,-a ,-2). 依题意|cos 〈m ,n 〉|=|m ·n ||m ||n |=a a 2+2=63,则a =2. (3)解:由(2)可得n =(2,-2,-2),PA →=(2,2,-4).设直线PA 与平面EAC 所成角为θ,则sin θ=|〈PA →,n 〉|=|PA →·n ||PA →||n |=23,即直线PA 与平面EAC 所成角的正弦值为23.11.(1)证明:连接BD 交AC 于点F ,连接EF .在△PBD 中,由已知得EF ∥PB . 又EF ⊂平面AEC ,PB ⊄平面AEC ,所以PB ∥平面AEC .(2)解:由题意知,AC ,AB ,AP 两两垂直,所以以A 为坐标原点,AC ,AB ,AP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系Axyz .则C(2,0,0),D(2,-3,0),P(0,0,3),B(0,3,0),E ⎝⎛⎭⎫1,-32,32. 设M(x 0,y 0,z 0),PM →=λ PB →(0<λ<1),则(x 0,y 0,z 0-3)=λ(0,3,-3),得M(0,3λ,3-3λ). 设平面AEC 的法向量为n 1=(x 1,y 1,z 1),由n 1·AE →=0,n 1·AC →=0,AE →=⎝⎛⎭⎫1,-32,32,AC →=(2,0,0),得⎩⎪⎨⎪⎧x 1-32y 1+32z 1=0,2x 1=0,取y 1=1,得n 1=(0,1,1).设平面MAC 的法向量为n 2=(x 2,y 2,z 2).由n 2·AM →=0,n 2·AC →=0,AM →=(0,3λ,3-3λ),AC →=(2,0,0),得⎩⎪⎨⎪⎧3λy 2+(3-3λ)z 2=0,2x 2=0,取z 2=1,得n 2=⎝⎛⎭⎫0,1-1λ,1.设二面角M-AC-E 的大小为θ.因为二面角M-AC-E 的余弦值为1010,所以θ为锐角,则cos θ=|n 1·n 2||n 1||n 2|=2-1λ2·⎝⎛⎭⎫1-1λ2+1=1010, 化简得9λ2-9λ+2=0,解得λ=13或λ=23.易知当λ=23时,θ为钝角,所以λ=13,所以PM →=13PB →.故存在点M ,当PM →=13PB →时,二面角M-AC-E 的余弦值为1010.12.(1)证明:如图(1),过点E 作ED ⊥AB ,垂足为D ,连接DF .由题意知,△PAB ≌△CAB ,易证△EDA ≌△FDA ,所以∠EDA =∠FDA =π2,即FD ⊥AB .因为ED ⊥AB ,ED ∩FD =D ,所以AB ⊥平面EFD . 又因为EF ⊂平面EFD ,所以EF ⊥AB .图(1)(2)解:过点P 作PO ⊥AB ,垂足为O ,连接CO ,则CO ⊥AB .因为平面PAB ⊥平面ABC ,所以PO ⊥平面ABC .以O 为坐标原点,以OA ,OC ,OP 所在直线分别为x 轴、y 轴、z 轴建立如图(2)所示的空间直角坐标系.图(2)设AB =a ,∠ABC =θ,由条件①得S △ABC =12a 2sin θ=33,由条件②得PO =asin θ=3,由条件③得∠PBO =60°,即θ=120°.若选条件①②,可求得a =23,B(3,0,0),A(33,0,0),P(0,0,3),C(0,3,0). 因为E ⎝⎛⎭⎫332,0,32,f ⎝⎛⎭⎫332,32,0,所以BF →=⎝⎛⎭⎫32,32,0,BE →=⎝⎛⎭⎫32,0,32.设平面BEF 的一个法向量m =(x ,y ,z),由⎩⎪⎨⎪⎧m ·BF →=0,m ·BE →=0,得⎩⎨⎧32x +32y =0,32x +32z =0,取m =(-3,1,1),又易知平面BFA 的一个法向量n =(0,0,1), 故cos 〈m ,n 〉=m ·n |m ||n |=15=55,所以二面角E-BF-A 的余弦值为55.若选①③或②③均可求得a =23,下同.13.解:(1)在线段AB 上存在点G ,使得AF ∥平面PCG ,且G 为AB 的中点. 证明如下:设PC 的中点为H ,连接FH ,GH ,如图.易证四边形AGHF 为平行四边形, 则AF ∥GH .又GH ⊂平面PCG ,AF ⊄平面PGC ,所以AF ∥平面PGC . (2)选择①.因为PA ⊥平面ABCD ,所以PA ⊥AB ,PA ⊥AD . 由题意可知,AB ,AD ,AP 两两垂直,故以A 为坐标原点,AB →,AD →,AP →的方向分别为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系.因为PA =AB =2,所以A(0,0,0),C(2,2,0),D(0,2,0),P(0,0,2),F(0,1,1), 所以AF →=(0,1,1),CF →=(-2,-1,1).设平面FAC 的法向量为u =(x ,y ,z),则⎩⎪⎨⎪⎧u ·AF →=0,u ·CF →=0,即⎩⎪⎨⎪⎧y +z =0,-2x -y +z =0.令y =1,则x=-1,z =-1,则u =(-1,1,-1). 易知平面ACD 的一个法向量为v =(0,0,2),设二面角F AC D 的平面角为θ,则cos θ=|u·v ||u||v |=33,即二面角F AC D 的余弦值为33. 选择②.设BC 中点E ,连接AE ,取AD 的中点M ,连接FM ,CM ,则FM ∥PA ,且FM =1. 因为PA ⊥平面ABCD ,所以FM ⊥平面ABCD ,FC 与平面ABCD 所成的角为∠FCM , 故∠FCM =π6.在直角三角形FCM 中,CM =3.又因为CM =AE ,所以AE 2+BE 2=AB 2, 所以BC ⊥AE ,所以AE ,AD ,AP 两两垂直.故以A 为坐标原点,AE →,AD →,AP →的方向分别为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系.因为PA =AB =2,所以A(0,0,0),C(3,1,0),D(0,2,0),P(0,0,2),F(0,1,1),所以AF →=(0,1,1),CF →=(-3,0,1).设平面FAC 的法向量为u =(x ,y ,z),则⎩⎪⎨⎪⎧u ·AF →=0,u ·CF →=0,即⎩⎨⎧y +z =0,-3x +z =0.令x =3,则y =-3,z =3,则u =(3,-3,3).易知平面ACD 的一个法向量为v =(0,0,2). 设二面角F AC D 的平面角为θ,则cos θ=|u·v ||u||v |=217,即二面角FACD 的余弦值为217. 选择③.因为PA ⊥平面ABCD ,所以PA ⊥BC . 取BC 中点E ,连接AE .因为底面ABCD 是菱形,∠ABC =π3,所以△ABC 是正三角形.又E 是BC 的中点,所以BC ⊥AE ,所以AE ,AD ,AP 两两垂直.故以A 为坐标原点,AE →,AD →,AP →的方向分别为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系.因为PA =AB =2,所以A(0,0,0),C(3,1,0),D(0,2,0),P(0,0,2),F(0,1,1),所以AF →=(0,1,1),CF →=(-3,0,1).设平面FAC 的法向量为u =(x ,y ,z),则⎩⎪⎨⎪⎧ u ·AF →=0,u ·CF →=0,即⎩⎨⎧y +z =0,-3x +z =0.令x =3,则y =-3,z =3,则u =(3,-3,3). 易知平面ACD 的一个法向量为v =(0,0,2),设二面角FAC D 的平面角为θ,则cos θ=|u·v ||u||v |=217,即二面角F AC D 的余弦值为217。

必修二高中数学立体几何专题——空间几何角和距离的计算..

必修二高中数学立体几何专题——空间几何角和距离的计算..

立体几何专题:空间角和距离的计算一线线角1.直三棱柱 A 1B 1C1-ABC ,∠ BCA=90 0,点 D1,F1分别是 A 1B1和 A 1C1的中点,若BC=CA=CC 1,求 BD 1与 AF 1所成角的余弦值。

B 1C1D1F1 A1B CA2.在四棱锥P-ABCD 中,底面ABCD 是直角梯形,∠BAD=90 0,AD ∥BC,AB=BC=a ,AD=2a ,且 PA⊥面 ABCD ,PD 与底面成 300角,(1)若 AE ⊥ PD,E 为垂足,求证: BE ⊥PD;(2)若 AE ⊥PD ,求异面直线 AE 与 CD 所成角的大小;PEB CA D二.线面角1.正方体 ABCD-A 1B1C1 D1中, E, F 分别为 BB 1、 CD 的中点,且正方体的棱长为2,( 1)求直线 D1F 和 AB 和所成的角;( 2)求 D 1F 与平面 AED 所成的角。

D1C 1A1 B 1EFD CAB2.在三棱柱 A 1B1C1-ABC 中,四边形 AA 1B1B 是菱形,四边形 BCC 1B 1是矩形, C1B 1⊥ AB ,AB=4 , C1B 1=3,∠ ABB 1=60 0,求 AC 1与平面 BCC 1B 1所成角B 1 的大小。

C 1A1B CA三.二面角1.已知 A1B 1C1-ABC 是正三棱柱, D 是 AC 中点,( 1)证明 AB 1∥平面 DBC 1;( 2)设 AB 1⊥BC 1,求以 BC 1为棱, DBC 1与 CBC 1为面的二面角的大小。

B 1C1A1B CDA2. ABCD 是直角梯形,∠ ABC=90 0, SA ⊥面 ABCD , SA=AB=BC=1 ,AD=0.5 ,( 1)求面SCD 与面 SBA 所成的二面角的大小;( 2)求 SC 与面 ABCD 所成的角。

SADB C3.已知 A 1B1 C1-ABC 是三棱柱,底面是正三角形,∠ A 1AC=60 0,∠ A 1AB=45 0,求二面角 B —AA 1— C 的大小。

新教材高考数学一轮复习42立体几何中的向量方法_求空间角与距离训练含解析新人教B版

新教材高考数学一轮复习42立体几何中的向量方法_求空间角与距离训练含解析新人教B版

新教材高考数学一轮复习:四十二 立体几何中的向量方法——求空间角与距离(建议用时:45分钟) A 组 全考点巩固练1.设正方体ABCD -A 1B 1C 1D 1的棱长为2,则点D 1到平面A 1BD 的距离是( ) A.32B.22C.223D.233D 解析:如图建立坐标系,则D 1(0,0,2),A 1(2,0,2),B (2,2,0),D 1A 1=(2,0,0),DB →=(2,2,0),DA 1=(2,0,2). 设平面A 1BD 的一个法向量为 n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DA →1=0,n ·DB →=0,所以⎩⎪⎨⎪⎧2x +2z =0,2x +2y =0,令z =1,得n =(-1,1,1).所以点D 1到平面A 1BD 的距离d =|D 1A →1·n ||n |=23=233.2.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为AB ,C 1D 1的中点,则A 1B 1与平面A 1EF 夹角的正弦值为( )A.62 B.63C.64D. 2B 解析:建立如图所示空间直角坐标系.设正方体的棱长为1,则A 1(1,0,1),E ⎝⎛⎭⎫1,12,0,F ⎝⎛⎭⎫0,12,1,B 1(1,1,1),则A 1B 1→=(0,1,0),A 1E →=⎝⎛⎭⎫0,12,-1,A 1F →=⎝⎛⎭⎫-1,12,0. 设平面A 1EF 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·A 1E →=0,n ·A 1F →=0,即⎩⎨⎧12y -z =0,-x +y 2=0.令y =2,可得n =(1,2,1),cos 〈n ,A 1B 1→〉=26=63.设A 1B 1与平面A 1EF 的夹角为θ,则sin θ=cos 〈n ,A 1B 1→〉=63,即所求线面角的正弦值为63.3.如图,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( )A.55B.53C.255D.35A 解析:设CA =2,则C (0,0,0),A (2,0,0),B (0,0,1),C 1(0,2,0),B 1(0,2,1),可得向量AB 1→=(-2,2,1),BC 1→=(0,2,-1).由向量的夹角公式得cos 〈AB 1→,BC 1→〉=-2×0+2×2+1×(-1)4+4+1×0+4+1=15=55.4.(2021·福建四地七校4月联考)在直三棱柱ABC -A 1B 1C 1中,底面是等腰直角三角形,∠ACB =90°,侧棱AA 1=2,D ,E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G ,则A 1B 与平面ABD 所成角的余弦值为( )A.23B.7327B 解析:如图,以C 为坐标原点,CA 所在直线为x 轴,CB 所在直线为y 轴,CC 1所在直线为z 轴建立空间直角坐标系Cxyz ,设CA =CB =a (a >0),则A (a,0,0),B (0,a,0),A 1(a,0,2),D (0,0,1),所以E ⎝⎛⎭⎫a 2,a 2,1,又因为G 为△ABD 的重心, 所以G ⎝⎛⎭⎫a 3,a 3,13.易得GE →=⎝⎛⎭⎫a 6,a 6,23,BD →=(0,-a,1).因为点E 在平面ABD 上的射影是△ABD 的重心G ,所以GE →是平面ABD 的一个法向量. 所以GE →·BD →=0,解得a =2.所以GE →=⎝⎛⎭⎫13,13,23,BA 1→=(2,-2,2). 设A 1B 与平面ABD 所成的角为θ,所以sin θ=|cos 〈GE →,BA 1→〉|=|GE →·BA 1→||GE →||BA 1→|=4363×23=23,所以cos θ=73, 所以A 1B 与平面ABD 所成角的余弦值为73.故选B. 5.如图,在四棱锥P -ABCD 中,四边形ABCD 为平行四边形,且BC ⊥平面P AB ,P A ⊥AB ,M 为PB 的中点,P A =AD =2.若AB =1,则二面角B -AC -M 的余弦值为( )A.66B.3666A 解析:因为BC ⊥平面P AB ,P A ⊂平面P AB ,所以P A ⊥BC .又P A ⊥AB ,且BC ∩AB =B ,所以P A ⊥平面ABCD .以点A 为坐标原点,分别以AB ,AD ,AP 所在直线为x 轴、y 轴、z 轴建立如图所示空间直角坐标系.则A (0,0,0),C (1,2,0),P (0,0,2),B (1,0,0),M ⎝⎛⎭⎫12,0,1, 所以AC →=(1,2,0),AM →=⎝⎛⎭⎫12,0,1, 求得平面AMC 的一个法向量为n =(-2,1,1), 又平面ABC 的一个法向量为AP →=(0,0,2), 所以cos 〈n ,AP →〉=n ·AP →|n ||AP →|=24+1+1×2=16=66.所以二面角B -AC -M 的余弦值为66. 6.在正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于________.23解析:以D 为坐标原点,建立如图所示空间直角坐标系.设AA 1=2AB =2,则D (0,0,0),C (0,1,0),B (1,1,0),C 1(0,1,2),则DC →=(0,1,0),DB →=(1,1,0),DC 1→=(0,1,2).设平面BDC 1的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DB →=0,n ·DC 1→=0,即⎩⎪⎨⎪⎧x +y =0,y +2z =0.令y =-2,所以x =2,z =1,得平面BDC 1的一个法向量为n =(2,-2,1). 设CD 与平面BDC 1所成的角为θ, 则sin θ=|cos 〈n ,DC →〉|=⎪⎪⎪⎪⎪⎪n ·DC →|n ||DC →|=23.7.(2021·汕头模拟)在底面是直角梯形的四棱锥S -ABCD 中,∠ABC =90°,AD ∥BC ,SA ⊥平面ABCD ,SA =AB =BC =1,AD =12,则平面SCD 与平面SAB 所成锐二面角的余弦值是________.63解析:以A 为原点,建立如图所示空间直角坐标系.依题意可知,D ⎝⎛⎭⎫12,0,0,C (1,1,0),S (0,0,1), 可知AD →=⎝⎛⎭⎫12,0,0是平面SAB 的一个法向量. 设平面SCD 的一个法向量为n =(x ,y ,z ), 因为SD →=⎝⎛⎭⎫12,0,-1, DC →=⎝⎛⎭⎫12,1,0,所以⎩⎪⎨⎪⎧n ·SD →=0,n ·DC →=0,即⎩⎨⎧x2-z =0,x 2+y =0.令x =2,则有y =-1,z =1, 所以n =(2,-1,1).设平面SCD 与平面SAB 所成的锐二面角为θ, 则cos θ=|AD →·n ||AD →||n |=12×2+0×(-1)+0×1⎝⎛⎭⎫122×22+(-1)2+12=63.8.(2021·北京模拟)如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 是边长为2的正方形,PD =2,E 是棱PB 的中点,M 是棱PC 上的动点.当直线P A 与直线EM 所成的角为60°时,那么线段PM 的长度是________.524解析:以D 为原点,DA ,DC ,DP 所在直线分别为x 轴、y 轴、z 轴建立如图所示空间直角坐标系.则A (2,0,0),P (0,0,2),B (2,2,0), 所以AP →=(-2,0,2). 因为E 是棱PB 的中点, 所以E (1,1,1).设M (0,2-m ,m ),则EM →=(-1,1-m ,m -1),所以|cos AP →,EM →|=⎪⎪⎪⎪⎪⎪AP →·EM →|AP →||EM →|=|2+2(m -1)|22×1+2(m -1)2=12, 解得m =34,所以M ⎝⎛⎭⎫0,54,34, 所以|PM →|=2516+2516=524. 9.如图,P -ABC 是一个三棱锥,AB 是圆的直径,C 是圆上的点,PC 垂直圆所在的平面,D ,E 分别是棱PB ,PC 的中点.(1)求证:DE ⊥平面P AC ;(2)若二面角A-DE-C是45°,AB=PC=4,求AE与平面ACD所成角的正弦值.(1)证明:因为AB是圆的直径,C是圆上的点,所以BC⊥AC.因为PC垂直圆所在的平面,所以PC⊥BC.又因为AC∩PC=C,AC,PC⊂平面P AC,BC⊄平面P AC,所以BC⊥平面P AC.因为D,E分别是棱PB,PC的中点,所以BC∥DE,所以DE⊥平面P AC.(2)解:由(1)可知,DE⊥AE,DE⊥EC,所以∠AEC为二面角A-DE-C的平面角,从而有∠AEC=45°.由PC垂直圆所在的平面得PC⊥AC,则AC=EC=12PC=2.又BC⊥AC,AB=4,所以BC=2 3.以C为坐标原点,CB→,CA→,CP→方向分别为x轴、y轴、z轴的正方向,建立如图所示的空间直角坐标系,则C (0,0,0),A (0,2,0),E (0,0,2),B (23,0,0),P (0,0,4),D (3,0,2), AE →=(0,-2,2),CA →=(0,2,0),CD →=(3,0,2).设n =(x 0,y 0,z 0)是平面ACD 的一个法向量,则⎩⎪⎨⎪⎧n ·CA →=0,n ·CD →=0,即⎩⎪⎨⎪⎧2y 0=0,3x 0+2z 0=0.令x 0=2,可得n =(2,0,-3). 设直线AE 与平面ACD 所成的角为θ, 则sin θ=|cos 〈n ,AE →〉|=|n ·AE →||n ||AE →|=4214.所以直线AE 与平面ACD 所成角的正弦值为4214. 10.如图,在三棱锥P -ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M -P A -C 为30°,求PC 与平面P AM 所成角的正弦值.(1)证明:因为P A =PC =AC =4, O 为AC 的中点,所以OP ⊥AC ,且OP =2 3. 如图,连接OB .因为AB =BC =22AC ,所以△ABC 为等腰直角三角形, 所以OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知PO ⊥OB .因为OP ⊥OB ,OP ⊥AC ,OB ∩AC =O ,OB ,AC ⊂平面ABC , 所以PO ⊥平面ABC .(2)解:由(1)知OP ,OB ,OC 两两垂直,则以点O 为坐标原点,分别以OB ,OC ,OP 所在的直线为x 轴、y 轴、z 轴建立如图所示空间直角坐标系.由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),AP →=(0,2,23). 由(1)知平面P AC 的一个法向量为OB →=(2,0,0). 设M (a,2-a,0)(0≤a ≤2),则AM →=(a,4-a,0). 设平面P AM 的一个法向量为n =(x ,y ,z ). 由⎩⎪⎨⎪⎧AP →·n =0,AM →·n =0,得⎩⎪⎨⎪⎧2y +23z =0,ax +(4-a )y =0,取y =3a ,可得n =(3(a -4),3a ,-a ), 所以cos 〈OB →,n 〉=23(a -4)23(a -4)2+3a 2+a 2.由已知可得|cos 〈OB →,n 〉|=cos 30°=32,所以23|a -4|23(a -4)2+3a 2+a 2=32, 解得a =-4(舍去)或a =43.所以n =⎝⎛⎭⎫-833,433,-43.又PC →=(0,2,-23),所以cos 〈PC →,n 〉=34.所以PC 与平面P AM 所成角的正弦值为34. B 组 新高考培优练11.(多选题)如图,在四棱锥P -ABCD 中,底面ABCD 为正方形,平面P AD ⊥平面ABCD ,点M 在线段PB 上,PD ∥平面MAC ,P A =PD =6,AB =4,AC ,BD 交于点E ,则( )A .M 为PB 的中点B .二面角B -PD -A 的大小为π3C .若O 为AD 的中点,则OP ⊥OE D .直线MC 与平面BDP 所成的角为π3ABC 解析:如图1,连接ME ,因为PD ∥平面MAC ,平面MAC ∩平面PDB =ME ,所以PD ∥ME .因为四边形ABCD 是正方形,所以E 为BD 的中点,所以M 为PB 的中点.故A 项正确.图1如图2,取AD 的中点O ,连接OP ,OE .因为P A =PD ,所以OP ⊥AD .又因为平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,且OP ⊂平面P AD ,所以OP ⊥平面ABCD .因为OE ⊂平面ABCD ,所以OP ⊥OE .因为四边形ABCD 是正方形,所以OE ⊥AD .故C 项正确.图2如图2,建立空间直角坐标系Oxyz ,则P (0,0,2),D (2,0,0),B (-2,4,0),BD →=(4,-4,0),PD →=(2,0,-2).设平面BDP 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·BD →=0,n ·PD →=0,即⎩⎪⎨⎪⎧4x -4y =0,2x -2z =0.令x =1,则y =1,z =2,此时n =(1,1,2). 因为平面P AD 的一个法向量为p =(0,1,0), 所以cos 〈n ,p 〉=n·p |n||p|=12.由题意知二面角B -PD -A 的平面角为锐角,所以它的大小为π3.故B 项正确.由题意知M ⎝⎛⎭⎫-1,2,22,C (2,4,0),MC →=⎝⎛⎭⎫3,2,-22. 设直线MC 与平面BDP 所成角为α, 则sin α=|cos 〈n ,MC →〉|=|n ·MC →||n ||MC →|=269,所以直线MC 与平面BDP 所成角的正弦值为269.12.如图,点C 在圆锥PO 的底面圆O 上,AB 是直径,AB =8,∠BAC =30°,圆锥的母线与底面成的角为60°,则点A 到平面PBC 的距离为( )A.85 5B.2 6C.8515 D.15C 解析:如图,过点O 作AB 的垂线Ox ,以Ox ,OB ,OP 分别为x ,y ,z 轴建立空间直角坐标系,由题意可得A (0,-4,0),B (0,4,0),C (-23,2,0),P (0,0,43),CB →=(23,2,0),BP →=(0,-4,43).设平面PBC 的一个法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧m ·CB →=0,m ·BP →=0,所以⎩⎪⎨⎪⎧23x +2y =0,-4y +43z =0,令y =3,此时m =(-1,3,1). 因为AP →=(0,4,43),所以d =|AP →·m ||m |=835=8515,所以点A 到平面PBC 的距离为8515.13.如图1,正方形ABCD 的边长为4,AB =AE =BF =12EF ,AB ∥EF ,把四边形ABCD沿AB 折起,使得AD ⊥平面AEFB ,G 是EF 的中点,如图2.则AG 与平面BCE 的位置关系为________,二面角C -AE -F 的余弦值为________.垂直217解析:连接BG ,因为BC ∥AD ,AD ⊥平面AEFB ,所以BC ⊥平面AEFB . 又AG ⊂平面AEFB ,所以BC ⊥AG . 因为AB ∥EG 且AB =EG ,AB =AE ,所以四边形ABGE 为菱形, 所以AG ⊥BE .又BC ∩BE =B ,BE ⊂平面BCE ,BC ⊂平面BCE , 所以AG ⊥平面BCE .由上述知四边形ABGE 为菱形,AG ⊥BE ,AE =EG =BG =AB =4. 设AG ∩BE =O ,所以OE =OB =23,OA =OG =2,以点O 为坐标原点,建立如图所示的空间直角坐标系,则O (0,0,0),A (-2,0,0),E (0,-23,0),F (4,23,0),C (0,23,4),D (-2,0,4), 所以AC →=(2,23,4),AE →=(2,-23,0). 设平面ACE 的一个法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧AC →·n =0,AE →·n =0,即⎩⎪⎨⎪⎧2x +23y +4z =0,2x -23y =0, 令y =1,则x =3,z =-3, 此时n =(3,1,-3),易知平面AEF 的一个法向量为AD →=(0,0,4), 设二面角C -AE -F 的大小为θ, 由图易知θ∈⎝⎛⎭⎫0,π2, 所以cos θ=|n ·AD →||n ||AD →|=437×4=217.14.如图,在直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,AB =AC =AA 1=1,D 是棱CC 1上的一点,P 是AD 的延长线与A 1C 1的延长线的交点,且PB 1∥平面BDA 1.(1)求证:CD =C 1D ;(2)求二面角A -A 1D -B 的平面角的余弦值; (3)求点C 到平面B 1DP 的距离.(1)证明:连接AB 1,交BA 1于点O ,连接OD .因为B 1P ∥平面BDA 1,B 1P ⊂平面AB 1P ,平面AB 1P ∩平面BA 1D =OD , 所以B 1P ∥OD .又因为O 为B 1A 的中点,所以D 为AP 的中点. 因为C 1D ∥AA 1,所以C 1为A 1P 的中点. 所以DC 1=12AA 1=12CC 1,所以C 1D =CD .(2)解:建立如图所示的空间直角坐标系A 1xyz ,则B 1(1,0,0),B (1,0,1),D ⎝⎛⎭⎫0,1,12, 所以A 1B 1→=(1,0,0),A 1B →=(1,0,1),A 1D →=⎝⎛⎭⎫0,1,12. 设平面BA 1D 的一个法向量为n =(x 1,y 1,z 1). 由⎩⎪⎨⎪⎧ A 1B →·n =0,A 1D →·n =0,得⎩⎪⎨⎪⎧x 1+z 1=0,y 1+12z 1=0. 令z 1=2,则x 1=-2,y 1=-1,此时n =(-2,-1,2). 又A 1B 1→=(1,0,0)为平面AA 1D 的一个法向量,所以cos 〈n ,A 1B 1→〉=n ·A 1B 1→|n ||A 1B 1→|=-23×1=-23.由图形可知二面角A -A 1D -B 为锐角, 所以二面角A -A 1D -B 的平面角的余弦值为23.(3)解:因为C (0,1,1),D ⎝⎛⎭⎫0,1,12,B 1(1,0,0),P (0,2,0), 所以CD →=⎝⎛⎭⎫0,0,-12,DB 1→=⎝⎛⎭⎫1,-1,-12,DP →=⎝⎛⎭⎫0,1,-12. 设平面B 1DP 的一个法向量为m =(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧DB 1→·m =0,DP →·m =0,得⎩⎨⎧x 2-y 2-12z 2=0,y 2-12z 2=0.令z 2=2,则x 2=2,y 2=1,此时m =(2,1,2). 所以点C 到平面B 1DP 的距离d =|CD →·m ||m |=13.15.如图,在直三棱柱ABC -A 1B 1C 1中,AA 1=AB =AC =1,AB ⊥AC ,M ,N ,Q 分别是CC 1,BC ,AC 的中点,点P 在线段A 1B 1上运动,且A 1P →=λA 1B 1→(λ∈[0,1]).(1)证明:无论λ取何值,总有AM ⊥平面PNQ ;(2)是否存在点P ,使得平面PMN 与平面ABC 的夹角为60°?若存在,试确定点P 的位置;若不存在,请说明理由.(1)证明:连接A 1Q .因为AA 1=AC =1,M ,Q 分别是CC 1,AC 的中点,所以Rt △AA 1Q ≌Rt △CAM , 所以∠MAC =∠QA 1A ,所以∠MAC +∠AQA 1=∠QA 1A +∠AQA 1=90°, 所以AM ⊥A 1Q .因为N ,Q 分别是BC ,AC 的中点, 所以NQ ∥AB .又AB ⊥AC ,所以NQ ⊥AC .在直三棱柱ABC -A 1B 1C 1中,AA 1⊥底面ABC , 所以NQ ⊥AA 1.又AC ∩AA 1=A ,AC ,AA 1⊂平面ACC 1A 1, 所以NQ ⊥平面ACC 1A 1, 所以NQ ⊥AM .由NQ ∥AB 和AB ∥A 1B 1可得NQ ∥A 1B 1, 所以N ,Q ,A 1,P 四点共面, 所以A 1Q ⊂平面PNQ .因为NQ ∩A 1Q =Q ,NQ ,A 1Q ⊂平面PNQ , 所以AM ⊥平面PNQ ,所以无论λ取何值,总有AM ⊥平面PNQ .(2)解:存在,当AP =7-354时,使得平面PMN 与平面ABC 的夹角为60°.以点A 为坐标原点,AB ,AC ,AA 1所在的直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系.则A 1(0,0,1),B 1(1,0,1),M ⎝⎛⎭⎫0,1,12,N ⎝⎛⎭⎫12,12,0,Q ⎝⎛⎭⎫0,12,0,NM →=⎝⎛⎭⎫-12,12,12,A 1B 1→=(1,0,0). 由A 1P →=λA 1B 1→=λ(1,0,0)=(λ,0,0),可得点P (λ,0,1),所以PN →=⎝⎛⎭⎫12-λ,12,-1. 设n =(x ,y ,z )是平面PMN 的一个法向量, 则⎩⎪⎨⎪⎧n ·NM →=0,n ·PN →=0,即⎩⎨⎧-12x +12y +12z =0,⎝⎛⎭⎫12-λx +12y -z =0,解得⎩⎪⎨⎪⎧y =1+2λ3x ,z =2-2λ3x .令x =3,则y =1+2λ,z =2-2λ,所以n =(3,1+2λ,2-2λ)是平面PMN 的一个法向量. 取平面ABC 的一个法向量为m =(0,0,1). 假设存在符合条件的点P , 则|cos 〈m ,n 〉|=|2-2λ|9+(1+2λ)2+(2-2λ)2=12, 化简得4λ2-14λ+1=0,解得λ=7-354或λ=7+354(舍去).综上,存在点P ,且当A 1P =7-354时,满足平面PMN 与平面ABC 的夹角为60°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,设 是平面QAD的一个法向量,由
得 .
取x=1,得 .
所以点P到平面QAD的距离 .
考点2异面直线的距离
此类题目主要考查异面直线的距离的概念及其求法,考纲只要求掌握已给出公垂线段的异面直线的距离.
典型例题
例3已知三棱锥 ,底面是边长为 的正三角形,棱 的长为2,且垂直于底面. 分别为 的中点,求CD与SE间的距离.
过程指引:方法一关键是用恰当的方法找到所求的空间距离和角;方法二关键是掌握利用空间向量求空间距离和角的一般方法.
解答过程:
方法一 (Ⅰ)取AD的中点,连结PM,QM.
因为P-ABCD与Q-ABCD都是正四棱锥,
所以AD⊥PM,AD⊥QM.从而AD⊥平面PQM.
又 平面PQM,所以PQ⊥AD.
同理PQ⊥AB,所以PQ⊥平面ABCD.
由(Ⅰ)知AD⊥平面PMQ,所以平面PMQ⊥平面QAD.过P作PH⊥QM于H,PH⊥平面QAD.从而PH的长是点P到平面QAD的距离.
又 .
即点P到平面QAD的距离是 .
方法二
(Ⅰ)连结AC、BD,设 .
由P-ABCD与Q-ABCD都是正四棱锥,所以PO⊥平面ABCD,QO⊥平面ABCD.
从而P、O、Q三点在一条直线上,所以PQ⊥平面ABCD.
典型例题
例1如图,正三棱柱 的所有棱长都为 , 为 中点.
(Ⅰ)求证: 平面 ;
(Ⅱ)求二面角 的大小;
(Ⅲ)求点 到平面 的距离.
考查目的:本小题主要考查直线与平面的位置关系,二面角的
大小,点到平面的距离等知识,考查空间想象能力、逻辑思维
能力和运算能力.
解答过程:解法一:(Ⅰ)取 中点 ,连结 .
不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成,即寓证明于运算之中,正是本专题的一大特色.
求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。
【例题解析】
考点1点到平面的距离
求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用.
, .
平面 .
(Ⅱ)设平面 的法向量为 .
, . , ,
令 得 为平面 的一个法向量.
由(Ⅰ)知 平面 ,
为平面 的法向量.
, .
二面角 的大小为 .
(Ⅲ)由(Ⅱ), 为平面 法向量,

点 到平面 的距离 .
小结:本例中(Ⅲ)采用了两种方法求点到平面的距离.解法二采用了平面向量的计算方法,把不易直接求的B点到平面 的距离转化为容易求的点K到平面 的距离的计算方法,这是数学解题中常用的方法;解法一采用了等体积法,这种方法可以避免复杂的几何作图,显得更简单些,因此可优先考虑使用这一种方法.
②了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算.
③掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式.
④理解直线的方向向量、平面的法向量,向量在平面内的射影等概念.
⑤了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念.
⑥掌握棱柱、棱锥、球的性质,掌握球的表面积、体积公式.
例2.如图,已知两个正四棱锥P-ABCD与Q-ABCD的高分别为1和2,AB=4.
(Ⅰ)证明PQ⊥平面ABCD;
(Ⅱ)求异面直线AQ与PB所成的角;
(Ⅲ)求点P到平面QAD的距离.
命题目的:本题主要考查直线与平面的位置关系、异面直线所成的角以及点到平面的距离基本知识,考查空间想象能力、逻辑思维能力和运算能力.
(Ⅱ)连结AC、BD设 ,由PQ⊥平面ABCD及正四棱锥的性质可知O在PQ上,从而P、A、Q、C四点共面.取OC的中点N,连接PN.
因为 ,所以 ,
从而AQ∥PN,∠BPN(或其补角)是异面直线AQ与PB所成的角.
因为 ,
所以 .
从而异面直线AQ与PB所成的角是 .(Ⅲ)连Leabharlann OM,则所以∠MQP=45°.
在正三棱柱中, 到平面 的距离为 .
设点 到平面 的距离为 .
由 ,得 ,

点 到平面 的距离为 .
解法二:(Ⅰ)取 中点 ,连结 .
为正三角形, .
在正三棱柱 中,平面 平面 ,
平面 .
取 中点 ,以 为原点, , , 的方向为 轴的正方向建立空间直角坐标系,则 , , , , ,
, , .
, ,
为正三角形, .
正三棱柱 中,平面 平面 ,
平面 .
连结 ,在正方形 中, 分别为
的中点, , .
在正方形 中, , 平面 .
(Ⅱ)设 与 交于点 ,在平面 中,作 于 ,连结 ,由(Ⅰ)得 平面 .
, 为二面角 的平面角.
在 中,由等面积法可求得 ,
又 , .
所以二面角 的大小为 .
(Ⅲ) 中, , .
立体几何题型
【考点透视】
(A)版.掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握二面角、二面角的平面角、两个平行平面间的距离的概念.
(B)版.
①理解空间向量的概念,掌握空间向量的加法、减法和数乘.
⑦会画直棱柱、正棱锥的直观图.
空间距离和角是高考考查的重点:特别是以两点间距离,点到平面的距离,两异面直线的距离,直线与平面的距离以及两异面直线所成的角,直线与平面所成的角,二面角等作为命题的重点内容,高考试题中常将上述内容综合在一起放在解答题中进行考查,分为多个小问题,也可能作为客观题进行单独考查.考查空间距离和角的试题一般作为整套试卷的中档题,但也可能在最后一问中设置有难度的问题.
思路启迪:由于异面直线CD与SE的公垂线不易寻找,所以设法将所求异面直线的距离,转化成求直线与平面的距离,再进一步转化成求点到平面的距离.
解答过程:
如图所示,取BD的中点F,连结EF,SF,CF,
为 的中位线, ∥ ∥面 ,
到平面 的距离即为两异面直线间的距离.
又 线面之间的距离可转化为线 上一点C到平面
的距离,设其为h,由题意知, ,D、E、F分别是
(Ⅱ)由题设知,ABCD是正方形,所以AC⊥BD.
由(Ⅰ),QO⊥平面ABCD.故可分别以直线CA、DB、QP为x轴、y轴、z轴建立空间直角坐标系(如图),由题条件,相关各点的坐标分别是P(0,0,1),A( ,0,0),Q(0,0,-2),B(0, ,0).
所以
于是 .
(Ⅲ)由(Ⅱ),点D的坐标是(0,- ,0), ,
相关文档
最新文档