最新高考数学专题复习立体几何重点题型空间距离空间角(师)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例2.如图,已知两个正四棱锥P-ABCD与Q-ABCD的高分别为1和2,AB=4.
(Ⅰ)证明PQ⊥平面ABCD;
(Ⅱ)求异面直线AQ与PB所成的角;
(Ⅲ)求点P到平面QAD的距离.
命题目的:本题主要考查直线与平面的位置关系、异面直线所成的角以及点到平面的距离基本知识,考查空间想象能力、逻辑思维能力和运算能力.
(Ⅱ)连结AC、BD设 ,由PQ⊥平面ABCD及正四棱锥的性质可知O在PQ上,从而P、A、Q、C四点共面.取OC的中点N,连接PN.
因为 ,所以 ,
从而AQ∥PN,∠BPN(或其补角)是异面直线AQ与PB所成的角.
因为 ,
所以 .
从而异面直线AQ与PB所成的角是 .
(Ⅲ)连结OM,则
所以∠MQP=45°.
过程指引:方法一关键是用恰当的方法找到所求的空间距离和角;方法二关键是掌握利用空间向量求空间距离和角的一般方法.
解答过程:
方法一 (Ⅰ)取AD的中点,连结PM,QM.
因为P-ABCD与Q-ABCD都是正四棱锥,
所以AD⊥PM,AD⊥QM.从而AD⊥平面PQM.
又 平面PQM,所以PQ⊥AD.
同理PQ⊥AB,所以PQ⊥Βιβλιοθήκη Baidu面ABCD.
②了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算.
③掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式.
④理解直线的方向向量、平面的法向量,向量在平面内的射影等概念.
⑤了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念.
⑥掌握棱柱、棱锥、球的性质,掌握球的表面积、体积公式.
思路启迪:由于异面直线CD与SE的公垂线不易寻找,所以设法将所求异面直线的距离,转化成求直线与平面的距离,再进一步转化成求点到平面的距离.
解答过程:
如图所示,取BD的中点F,连结EF,SF,CF,
为 的中位线, ∥ ∥面 ,
到平面 的距离即为两异面直线间的距离.
又 线面之间的距离可转化为线 上一点C到平面
⑦会画直棱柱、正棱锥的直观图.
空间距离和角是高考考查的重点:特别是以两点间距离,点到平面的距离,两异面直线的距离,直线与平面的距离以及两异面直线所成的角,直线与平面所成的角,二面角等作为命题的重点内容,高考试题中常将上述内容综合在一起放在解答题中进行考查,分为多个小问题,也可能作为客观题进行单独考查.考查空间距离和角的试题一般作为整套试卷的中档题,但也可能在最后一问中设置有难度的问题.
为正三角形, .
正三棱柱 中,平面 平面 ,
平面 .
连结 ,在正方形 中, 分别为
的中点, , .
在正方形 中, , 平面 .
(Ⅱ)设 与 交于点 ,在平面 中,作 于 ,连结 ,由(Ⅰ)得 平面 .
, 为二面角 的平面角.
在 中,由等面积法可求得 ,
又 , .
所以二面角 的大小为 .
(Ⅲ) 中, , .
典型例题
例1如图,正三棱柱 的所有棱长都为 , 为 中点.
(Ⅰ)求证: 平面 ;
(Ⅱ)求二面角 的大小;
(Ⅲ)求点 到平面 的距离.
考查目的:本小题主要考查直线与平面的位置关系,二面角的
大小,点到平面的距离等知识,考查空间想象能力、逻辑思维
能力和运算能力.
解答过程:解法一:(Ⅰ)取 中点 ,连结 .
的距离,设其为h,由题意知, ,D、E、F分别是
立体几何题型
【考点透视】
(A)版.掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握二面角、二面角的平面角、两个平行平面间的距离的概念.
(B)版.
①理解空间向量的概念,掌握空间向量的加法、减法和数乘.
不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成,即寓证明于运算之中,正是本专题的一大特色.
求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。
【例题解析】
考点1点到平面的距离
求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用.
, .
平面 .
(Ⅱ)设平面 的法向量为 .
, . , ,
令 得 为平面 的一个法向量.
由(Ⅰ)知 平面 ,
为平面 的法向量.
, .
二面角 的大小为 .
(Ⅲ)由(Ⅱ), 为平面 法向量,

点 到平面 的距离 .
小结:本例中(Ⅲ)采用了两种方法求点到平面的距离.解法二采用了平面向量的计算方法,把不易直接求的B点到平面 的距离转化为容易求的点K到平面 的距离的计算方法,这是数学解题中常用的方法;解法一采用了等体积法,这种方法可以避免复杂的几何作图,显得更简单些,因此可优先考虑使用这一种方法.
在正三棱柱中, 到平面 的距离为 .
设点 到平面 的距离为 .
由 ,得 ,

点 到平面 的距离为 .
解法二:(Ⅰ)取 中点 ,连结 .
为正三角形, .
在正三棱柱 中,平面 平面 ,
平面 .
取 中点 ,以 为原点, , , 的方向为 轴的正方向建立空间直角坐标系,则 , , , , ,
, , .
, ,
(Ⅱ)由题设知,ABCD是正方形,所以AC⊥BD.
由(Ⅰ),QO⊥平面ABCD.故可分别以直线CA、DB、QP为x轴、y轴、z轴建立空间直角坐标系(如图),由题条件,相关各点的坐标分别是P(0,0,1),A( ,0,0),Q(0,0,-2),B(0, ,0).
所以
于是 .
(Ⅲ)由(Ⅱ),点D的坐标是(0,- ,0), ,
,设 是平面QAD的一个法向量,由
得 .
取x=1,得 .
所以点P到平面QAD的距离 .
考点2异面直线的距离
此类题目主要考查异面直线的距离的概念及其求法,考纲只要求掌握已给出公垂线段的异面直线的距离.
典型例题
例3已知三棱锥 ,底面是边长为 的正三角形,棱 的长为2,且垂直于底面. 分别为 的中点,求CD与SE间的距离.
由(Ⅰ)知AD⊥平面PMQ,所以平面PMQ⊥平面QAD.过P作PH⊥QM于H,PH⊥平面QAD.从而PH的长是点P到平面QAD的距离.
又 .
即点P到平面QAD的距离是 .
方法二
(Ⅰ)连结AC、BD,设 .
由P-ABCD与Q-ABCD都是正四棱锥,所以PO⊥平面ABCD,QO⊥平面ABCD.
从而P、O、Q三点在一条直线上,所以PQ⊥平面ABCD.
相关文档
最新文档