概率分布列及期望专题

合集下载

概率、分布列、期望、方差、正态分布

概率、分布列、期望、方差、正态分布

概率、分布列、期望、正态分布1.带活动门的小盒子里有采自同一巢的20只工蜂和10只雄蜂,现随机地放出5只做实验,X表示放出的蜂中工蜂的只数,则X=2时的概率是(B)A.C120C410 C530B.C220C310 C530C.C320C210 C530D.C420C110 C530B[X服从超几何分布,P(X=2)=C220C310 C530.]2.(2014·福州模拟)一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,其分布列为P(X),则P(X=4)的值为(C)A.1 220B.27 55C.27 220D.21 25C[由题意取出的3个球必为2个旧球1个新球,故P(X=4)=C23C19C312=27220.]3.设某项试验的成功率为失败率的2倍,用随机变量X去描述1次试验的成功次数,则P(X=0)的值为(C)A.1B.1 2C.13D.15C [设X 的分布列为:即“X =0”表示试验失败,“X =1”表示试验成功,设失败的概率为p ,成功的概率为2p .由p +2p =1,则p =13.]4.离散型随机变量X 的概率分布规律为P (X =n )=an (n +1)(n =1,2,3,4),其中a是常数,则P ⎝ ⎛⎭⎪⎫12<X <52的值为( D ) A.23 B.34 C.45 D.56D [由⎝ ⎛⎭⎪⎫11×2+12×3+13×4+14×5×a =1, 知45a =1,解得a =54.故P ⎝ ⎛⎭⎪⎫12<X <52=P (1)+P (2)=12×54+16×54=56.]5.(2014·广州模拟)设随机变量X ~N (1,52),且P (X ≤0)=P (X ≥a -2),则实数a 的值为( A ) A .4B.6C.8D.10A[由正态分布的性质可知P(X≤0)=P(X≥2),所以a-2=2,故a=4.]6.(2014·湖州模拟)一套重要资料锁在一个保险柜中,现有n把钥匙依次分给n 名学生依次开柜,但其中只有一把真的可以打开柜门,平均来说打开柜门需要试开的次数为(C)A.1B.nC.n+1 2D.n-1 2C[解法一:(特殊值验证法)当n=2时,P(X=1)=P(X=2)=12,E(X)=32,即打开柜门需要的次数为32,只有C符合.解法二:已知每一位学生打开柜门的概率为1 n,所以打开柜门需要试开的次数的平均数(即数学期望)为1×1n+2×1n+…+n×1n=n+12.]7.(2014·上海虹口模拟)已知某一随机变量ξ的概率分布列如下,且E(ξ)=6.3,则a的值为(C)A.5 B .6 C .7 D .8C [由分布列性质知:0.5+0.1+b =1, 解得b =0.4.∴E (ξ)=4×0.5+a ×0.1+9×0.4=6.3. ∴a =7.]8.体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设学生一次发球成功的概率为p (p ≠0),发球次数为X ,若X 的数学期望E (X )>1.75,则p 的取值范围是( C ) A.⎝ ⎛⎭⎪⎫0,712 B.⎝ ⎛⎭⎪⎫712,1 C.⎝ ⎛⎭⎪⎫0,12 D.⎝ ⎛⎭⎪⎫12,1 C [发球次数X 的分布列如下表:所以期望E (X )=p +2(1-p )p +3(1-p )2>1.75, 解得p >52(舍去)或p <12, 又p >0,则0<p <12.]9.(2013·湖北高考)如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体.经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X,则X的均值E(X)=(B)A.126 125B.6 5C.168 125D.7 5B[P(X=0)=27125,P(X=1)=54125,P(X=2)=36125,P(X=3)=8125,E(X)=0×P(X=0)+1×P(X=1)+2×P(X=2)+3×P(X=3)=0×27 125+1×54125+2×36125+3×8125=150125=65,故选B.]10.从4名男生和2名女生中选3人参加演讲比赛,则所选3人中女生人数不超过1人的概率是________.解析设所选女生人数为X,则X服从超几何分布,其中N=6,M=2,n=3,则P(X≤1)=P(X=0)+P(X=1)=C02C34C36+C12C24C36=45.答案4 511.如图所示,A、B两点5条连线并联,它们在单位时间内能通过的最大信息量依次为2,3,4,3,2.现记从中任取三条线且在单位时间内都通过的最大信息总量为X,则P(X≥8)=________.解析由已知,X的取值为7,8,9,10,∵P(X=7)=C22C12C35=15,∴P(X≥8)=1-P(X=7)=4 5.答案4 512.(2014·山东济南)随机变量ξ服从正态分布N(40,σ2),若P(ξ<30)=0.2,则P(30<ξ<50)=________.解析根据正态分布曲线的对称性可得P(30<ξ<50)=1-2P(ξ<30)=0.6.答案0.613.(2014·锦州模拟)某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望E(ξ)=________.(结果用最简分数表示)解析ξ可取0,1,2,因此P(ξ=0)=C25C27=1021,P(ξ=1)=C15C12C27=1021,P(ξ=2)=C22C27=121,E(ξ)=0×1021+1×1021+2×121=47.答案4 714.(2014·福州模拟)某学院为了调查本校学生2011年9月“健康上网”(健康上网是指每天上网不超过两个小时)的天数情况,随机抽取了40名本校学生作为样本,统计他们在该月30天内健康上网的天数,并将所得的数据分成以下六组:[0,5],(5,10],(10,15],…,(25,30],由此画出样本的频率分布直方图,如图所示.(1)根据频率分布直方图,求这40名学生中健康上网天数超过20天的人数; (2)现从这40名学生中任取2名,设Y 为取出的2名学生中健康上网天数超过20天的人数,求Y 的分布列.解析 (1)由图可知,健康上网天数未超过20天的频率为(0.01+0.02+0.03+0.09)×5=0.15×5=0.75,所以健康上网天数超过20天的学生人数是40×(1-0.75)=40×0.25=10. (2)随机变量Y 的所有可能取值为0,1,2.P (Y =0)=C 230C 240=2952;P (Y =1)=C 110C 130C 240=513;P (Y =2)=C 210C 240=352.所以Y 的分布列为:15.在甲、乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起,若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,…,6),求:(1)甲、乙两单位的演出序号至少有一个为奇数的概率; (2)甲、乙两单位之间的演出单位个数X 的分布列与期望E (X ).解析 (1)设A 表示“甲、乙的演出序号至少有一个为奇数”,则A 表示“甲、乙的演出序号均为偶数”,由等可能性事件的概率计算公式,得 P (A )=1-P (A )=1-C 23C 26=1-15=45.(2)X 的所有可能值为0,1,2,3,4,且P (X =0)=5C 26=13;P (X =1)=4C 26=415;P (X =2)=3C 26=15;P (X =3)=2C 26=215;P(X=4)=1C26=115.从而知X的分布列为:所以X的期望E(X)=0×13+1×415+2×15+3×215+4×115=43.16.(2013·天津高考)一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同).(1)求取出的4张卡片中,含有编号为3的卡片的概率;(2)在取出的4张卡片中,红色卡片编号的最大值设为X,求随机变量X的分布列和数学期望.解析(1)设“取出的4张卡片中,含有编号为3的卡片”为事件A,则P(A)=C12C35+C22C25C47=67.所以,取出的4张卡片中,含有编号为3的卡片的概率为6 7.(2)随机变量X的所有可能取值为1,2,3,4.P(X=1)=C33C47=135,P(X=2)=C34C47=435,P(X=3)=C35C47=27,P(X=4)=C36C47=47.所以随机变量X的分布列是随机变量X的数学期望E(X)=1×135+2×435+3×27+4×47=175.17.(2014·湖北省七市联考)2013年2月20日,针对房价过高,国务院常务会议确定五条措施(简称“国五条”).为此,记者对某城市的工薪阶层关于“国五条”态度进行了调查,随机抽取了60人,作出了他们的月收入的频率分布直方图(如图),同时得到了他们的月收入情况与“国五条”赞成人数统计表(如下表):(1)(2)若从月收入(单位:百元)在[15,25),[25,35)的被调查者中各随机选取3人进行追踪调查,记选中的6人中不赞成“国五条”的人数为X,求随机变量X 的分布列及数学期望.解析(1)这60人的月平均收入为(20×0.015+30×0.015+40×0.025+50×0.02+60×0.015+70×0.01)×10=43.5(百元).(2)根据频率分布直方图可知[15,25)的人数为10×0.015×60=9,[25,35)的人数为10×0.015×60=9,X的所有取值可能为0,1,2,3,P(X=0)=C38C39·C37C39=518,P(X=1)=C28C39·C37C39+C38C39·C12C27C39=1736,P(X=2)=C28C39·C12C27C39+C38C39·C22C17C39=29,P(X=3)=C28C39·C17C22C39=136,∴X的分布列为∴EX=0×518+1×1736+2×29+3×136=1.。

8.2.6(2)分布列和数学期望高考题举例

8.2.6(2)分布列和数学期望高考题举例

1.【2015高考四川,理17】某市A,B 两所中学的学生组队参加辩论赛,A 中学推荐3名男生,2名女生,B 中学推荐了3名男生,4名女生,两校推荐的学生一起参加集训,由于集训后队员的水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队(1)求A 中学至少有1名学生入选代表队的概率. (2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X 表示参赛的男生人数,求X 得分布列和数学期望.【解析】(1)由题意,参加集训的男女生各有6名.参赛学生全从B 中抽取(等价于A 中没有学生入选代表队)的概率为333433661100C C C C =. 因此,A 中学至少1名学生入选的概率为1991100100-=. (2)根据题意,X 的可能取值为1,2,3.1333461(1)5C C P X C ===,2233463(2)5C C P X C ===, 3133461(3)5C C P X C ===,所以X 的分布列为:因此,X 的期望为131()1232555E X =⨯+⨯+⨯=.2.(2016年天津高考)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,.现从这10人中随机选出2人作为该组代表参加座谈会.(I )设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率; (II )设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望.【解析】(Ⅰ)设事件A :选2人参加义工活动,次数之和为4()112343210C C C 1C 3P A +== (Ⅱ)随机变量X 可能取值 0,1,2()222334210C C C 40C 15P X ++=== ()11113334210C C C C 71C 15P X +=== ()1134210C C 42C 15P X === 所以,X()7811515E X =+=3.【2015高考福建,理16】某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定. (Ⅰ)求当天小王的该银行卡被锁定的概率;(Ⅱ)设当天小王用该银行卡尝试密码次数为X ,求X 的分布列和数学期望.【解析】(Ⅰ)设“当天小王的该银行卡被锁定”的事件为A ,则5431(A)=6542P(Ⅱ)依题意得,X 所有可能的取值是1,2,3 又1511542(X=1),(X=2),(X=3)1=.6656653P P P 所以X 的分布列为所以1125E(X)1236632.4.(2016年山东高考)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是43,乙每轮猜对的概率是32;每轮活动中甲、乙猜对与否互不影响,各轮结果也互不影响.假设“星队”参加两轮活动,求:(Ⅰ) “星队”至少猜对3个成语的概率;(Ⅱ) “星队”两轮得分之和X 的分布列和数学期望EX .【解析】(Ⅰ) “至少猜对3个成语”包括“恰好猜对3个成语”和“猜对4个成语”.设“至少猜对3个成语”为事件A ;“恰好猜对3个成语”和“猜对4个成语”分别为事件C B ,,则1253232414331324343)(1212=⋅⋅⋅⋅+⋅⋅⋅⋅=C C B P ; 4132324343)(=⋅⋅⋅=C P .所以3241125)()()(=+=+=C P B P A P . (Ⅱ) “星队”两轮得分之和X 的所有可能取值为0,1,2,3,4,6 于是144131413141)0(=⋅⋅⋅==X P ;725144103143314131413241)1(1212==⋅⋅⋅+⋅⋅⋅==C C X P ;14425313243413131434332324141)2(12=⋅⋅⋅+⋅⋅⋅+⋅⋅⋅==C X P ; 1211441231413243)3(12==⋅⋅⋅==C X P ; 12514460)31433241(3243)4(12==⋅+⋅⋅⋅==C X P ; 411443632433243)6(==⋅⋅⋅==X P ;X 的分布列为:X 的数学期望62314455264141253121214425172501441==⨯+⨯+⨯+⨯+⨯+⨯=EX .作业【2015高考重庆,理17】 端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个。

概率分布列及期望的十类创新问题

概率分布列及期望的十类创新问题

8(体育赛事中的决策问题)甲、乙两人进行五次比赛,如果甲或乙无论谁胜了三次,比 赛宣告结束。假定甲获胜的概率是
胜 1 败而结束的概率; (II)比赛以乙 3 胜 2 败而结束的概率; (III)设甲先胜 3 次的概率为 a,乙先胜 3 次的概率为 b,求 a:b 的值。 简析:理解比赛的意义,注意分类和分布完成过程的探讨。 (I)以甲 3 胜 1 败而结束比赛,甲只能在 1、2、3 次中失败 1 次,因此所求概率为:
5 解: (1)从 10 道题中抽取 5 道题,共 C10 种方法,其中抽到 3 道历史题和 2 道地理题的方
3 2 C6 C4 10 (2) 甲答对 5 C10 21
3 2 法种数为 C6 C4 所以学生甲抽到 3 道历史题和 2 道地理题的概率为
4 道题,记作事件 U,答对 3 道历史题和 1 道地理题,记作事件 A,答对 2 道历史题和 2 道 地理题,记作事件 C∵ P( A) C2 0.8 0.2 0.9
8 8 16 8 8 16 64 、 、 ,于是, a , 27 27 81 27 27 81 81
乙获胜概率
b 1
64 17 81 81 17 a:b 64
9(表格中的学生成绩问题)右表为某班英语及数学成绩的分布.学生共有 50 人,成绩分 1~5 五个档次.例如表中所示英语成绩为 4 分、数学成绩为 2 分的学生为 5 人.将 全班学生的姓名卡片混在一起,任取一枚,该卡片 同学的英语成绩为 x ,数学成绩为 y .设 x, y 为随 机变量(注:没有相同姓名的学生) . (1) x 1 的概率为多少? 1 0 0 1 1 3
P
1 1 3 1 1 5 C5 2 2 64 2 2

概率论分布列期望方差习题及答案

概率论分布列期望方差习题及答案

概率论分布列期望方差习题及答案The following text is amended on 12 November 2020.圆梦教育 离散型随机变量的分布列、期望、方差专题姓名:__________班级:__________学号:__________1.红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A ,乙对B ,丙对C 各一盘,已知甲胜A ,乙胜B ,丙胜C 的概率分别为,,,假设各盘比赛结果相互独立。

(Ⅰ)求红队至少两名队员获胜的概率;(Ⅱ)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E ξ.2.已知某种从太空带回的植物种子每粒成功发芽的概率都为13,某植物研究所分两个小组分别独立开展该种子的发芽实验,每次实验种一粒种子,假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的. (1) 第一小组做了三次实验,求实验成功的平均次数;(2) 第二小组连续进行实验,求实验首次成功时所需的实验次数的期望; (3)两个小组分别进行2次试验,求至少有2次实验成功的概率.3.一种电脑屏幕保护画面,只有符号“○”和“×”随机地反复出现,每秒钟变化一次,每次变化只出现“○”和“×”之一,其中出现“○”的概率为p ,出现“×”的概率为q .若第k 次出现“○”,则a k =1;出现“×”,则a k =1-.令S n =a 1+a 2+…+a n ()n N *∈.(1)当12p q ==时,求S 6≠2的概率;(2)当p =31,q =32时,求S 8=2且S i ≥0(i =1,2,3,4)的概率.4.在一个有奖问答的电视节目中,参赛选手顺序回答123A A A 、、三个问题,答对各个问题所获奖金(单位:元)对应如下表:当一个问题回答正确后,选手可选择继续回答下一个问题,也可选择放弃.若选择放弃,选手将获得答对问题的累计奖金,答题结束;若有任何一个问题回答错误,则全部奖金归零,答题结束.设一名选手能正确回答123A A A 、、的概率分别为421534、、,正确回答一个问题后,选择继续回答下一个问题的概率均为12,且各个问题回答正确与否互不影响.(Ⅰ)按照答题规则,求该选手1A 回答正确但所得奖金为零的概率;(Ⅱ)设该选手所获奖金总数为ξ,求ξ的分布列与数学期望.5.某装置由两套系统M,N 组成,只要有一套系统工作正常,该装置就可以正常工作。

分布列,期望,方差

分布列,期望,方差

第二十六讲 分布列,期望,方差典型例题选读例1.2008年某地区发现禽流感疑似病例共10例,其中有4位禽流感患者,若从10例禽流感疑似病例中任意抽取4例进行分析诊断,并对其中的禽流感患者采用一种新的治疗方案进行治疗,每位禽流感患者被治愈的概率为13。

(1)求4例禽流感疑似病例中恰有2位禽流感患者且只有1位被治愈的概率;(2)设ξ表示4例禽流感疑似病例中被确诊为禽流感患者的人数,求ξ的分布列及数学期望。

解:(1)投4例禽流感疑似病例中恰有2位禽流感患者的概率为2P ,则2264241037C C P C == 2位禽流感患者中只有1位被治愈的概率为12124339C ⨯⨯= 所以,4例禽流感疑似病例中恰有2位禽流感患者且只有1位被治愈的概率为3477921⨯= ;(2)43166444101018(0),(1)1421C C C P P C C ξξ====== ,221364644441010103411(2),(3),(4)735210C C C C P P P C C C ξξξ========= ∴数学期望0123414217352105E ξ=⨯+⨯+⨯+⨯+⨯=例2.某食品企业一个月内被消费者投诉的次数用ξ表示,据统计,随机变量ξ的概率分别如下:(Ⅰ)求a 的值和ξ(Ⅱ)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率。

解:(Ⅰ)由概率分布的性质得0.1+0.3+2a +a =1,解得a =0.2. ξ∴的概率分布为00.110.3E ξ∴=⨯+⨯+(Ⅱ)设事件A 表示“两个月内共被投拆2次”;事件1A 表示“两个月内有一个月被投诉2次,另外一个月被投诉0次”;事件2A 表示“两个月内每个月均被投诉1次”.则由事件的独立性得:112()(2)(0)20.40.10.08p A C P P ξξ====⨯⨯=.212()()()0.080.090.17P A P A P A =+=+=.故该企业在这两个月内共被消费者投拆2次的概率为0.17.例3 如图所示,质点P 在正方形ABCD 的四个顶点上按逆时针方向前进. 现在投掷一个质地均匀、每个面上标有一个数字的正方体玩具,它的六个面上分别写有两个1、两个2、两个3一共六个数字. 质点P 从A 点出发,规则如下:当正方体上底面出现的数字是1,质点P 前进一步(如由A 到B );当正方体上底面出现的数字是2,质点P 前两步(如由A 到C ),当正方体上底面出现的数字是3,质点P 前进三步(如由A 到D ). 在质点P 转一圈之前连续投掷,若超过一圈,则投掷终止. (I )求点P 恰好返回到A 点的概率;(II )在点P 转一圈恰能返回到A 点的所有结果中,用随机变量ξ表示点P 恰能返回到A 点的投掷次数,求ξ的数学期望. 解:(I )投掷一次正方体玩具,上底面每个数字的出现都是等可能的, 其概率为31621==P ,因为只投掷一次不可能返回到A 点,若投掷两次点P 就恰好能返回到A 点,则上底面出现的两个数字应依次为:(1,3)、(3,1)、(2,2)三种结果,其概率为313)31(22=⋅=P ;若投掷三次点P 恰能返回到A 点,则上底面出现的三个数字应依为:(1,1,2)、(1,2,1)、(2,1,1)三种结果,其概率为913)31(33=⋅=P ;若投掷四次点P 恰能返回到A 点,则上底面出现的四个数字应依次为:(1,1,1,1),其概率为811)31(44==P 。

概率分布列及期望专题

概率分布列及期望专题

概率分布列及期望专题类型一、独立重复试验例1、某一中学生心理咨询中心服务电话接通率为43,某班3名同学商定明天分别就同一问题询问该服务中心.且每人只拨打一次,求他们中成功咨询的人数ξ的分布列及其期望.练习:根据以往统计资料,某地车主购买甲种保险的概率为,购买乙种保险但不购买甲种保险的概率为,设各车主购买保险相互独立.(I)求该地1位车主至少购买甲、乙两种保险中的l 种的概率;(Ⅱ)X 表示该地的l00位车主中,甲、乙两种保险都不购买的车主数.求X 的期望.类型二、超几何分布例2、研究性学习小组要从6名(其中男生4人,女生2人)成员中任意选派3人去参加某次社会调查.(1)在男生甲被选中的情况下,求女生乙也被选中的概率;(2)设所选3人中女生人数为ξ,求ξ的分布列及数学期望.类型三、耗用子弹数型例3、某射手有3发子弹,射击一次命中概率为,如果命中就停止射击,否则一直到子弹用尽,求耗用子弹数ξ的分布列.练习、某次篮球联赛的总决赛在甲队与乙队之间角逐,采用七局四胜制,即若有一队先胜四场,则此队获胜,比赛就此结束.由于天气原因场地最多使用6次,因甲、乙两队实力相当,每场比赛获胜的可能性相等,问需要比赛的次数ξ的分布列及期望。

类型四、取得合格品以前已取出的不合格品数的分布列例4、一批零件中有3个合格品与3个不合格品.安装机器时,从这批零件中任取一个.如果每次取出的不合格品不再放回去,求在取得合格品以前已取出的不合格品数的分布列.练习、在医学生物试验中,经常以果蝇作为试验对象.一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔.若用ξ表示剩余果蝇的数量,求ξ的分布列与期望.类型五、古典概型求概率例5、某市公租房房屋位于三个地区,设每位申请人只申请其中一个片区的房屋,且申请其中任一个片区的房屋是等可能的,求该市的任4位申请人中:(Ⅰ)若有2人申请A片区房屋的概率;(Ⅱ)申请的房屋在片区的个数的ξ分布列与期望。

高考数学复习:概率与分布列题型

高考数学复习:概率与分布列题型

高考数学复习:概率与分布列题型1.已知随机变量且1211211P X P X P X μμμμ-<+-≥++≤<+=,则()A.1-B.0C.1D.22.已知随机变量ξ服从正态分布()2,N μσ,若函数()(2)f x P x x ξ=≤≤+是偶函数,则实数μ=()A.0B.12C.1D.23.随机变量ξ服从正态分布()3,4N ,且()()322P a P a ξξ-≥=≤,则=a ()A.12B.1C.43D.34.设X~N (1,σ2),其正态分布密度曲线如图所示,且P (X ≥3)=0.0228,那么向正方形OABC 中随机投掷20000个点,则落入阴影部分的点的个数的估计值为()[附:随机变量ξ服从正态分布N (1,σ2),则P (μ-σ<ξ<μ+σ)=0.6826,P (μ-2σ<ξ<μ+2σ)=0.9544]A.12076B.13174C.14056D.7539题型二:二项分布型求参二项分布:若在一次实验中事件发生的概率为p ()01p <<,则在n 次独立重复实验中恰好发生k 次概率()=p k ξ=()1n kk k n C p p --()0,1,2,,k n =⋯,称ξ服从参数为,n p 的二项分布,记作ξ~(),B n p ,E ξ=npi =D npq .1.在n 次独立重复试验(伯努利试验)中,若每次试验中事件A 发生的概率为p ,则事件A 发生的次数X 服从二项分布(),B n p ,事实上,在伯努利试验中,另一个随机变量的实际应用也很广泛,即事件A 首次发生时试验进行的次数Y ,显然1()(1)k P Y k p p -==-,1k =,2,3,…,我们称Y 服从“几何分布”,经计算得1EY p =.据此,若随机变量X 服从二项分布1,6B n ⎛⎫⎪⎝⎭时,且相应的“几何分布”的数学期望EY EX <,则n的最小值为()A.6B.18C.36D.372.已知随机变量X 服从二项分布(,)B n p ,且()9E X =,9()4D X =,则n =()A.3B.6C.9D.123.设随机变量ξ服从二项分布(),B n p ,若() 1.2E ξ=,()0.96D ξ=,则实数n 的值为__________.题型三:二项分布与正态分布综合离散型随机变量分布列、期望、方差及其性质(1)离散型随机变量ξ的分布列ξ1ξ2ξ3ξ…n ξP1p 2p 3p np ①()11,i p i n i N θ*≤≤≤≤∈;②121n p p p ++= .(2)E ξ表示ξ的期望:1122=+n n p p p E ξξξξ++…,反应随机变量的平均水平,若随机变量ξη,满足=a b ηξ+,则E aE b ηξ=+.(3)D ξ表示ξ的方差:()()()2221122=---n n E p E p E p D ξξξξξξξ+++ ,反映随机变量ξ取值的波动性。

离散型随机变量的分布列及其期望与方差

离散型随机变量的分布列及其期望与方差

离散型随机变量的分布列及其期望与方差题组一:1、已知随机变量X 的分布列为P (X=i )=a i 2(i=1,2,3),则P (X=2)= .2、设离散型随机变量X 的概率分布为求:(1)2X+1的概率分布;(2)|X-1|的概率分布.3、设ξ是一个离散型随机变量,其概率分布为则q 的值为 .4、设离散型随机变量ξ的分布列P (ξ=5k )=ak ,k=1,2,3,4,5. (1)求常数a 的值;(2)求P (ξ≥53);(3)求P (101<ξ<107).题组二:1、若某一射手射击所得环数X 的概率分布如下:则此射手“射击一次命中环数X≥7”的概率是 .2、一批产品共50件,其中5件次品,45件合格品,从这批产品中任意抽两件,其中出现次品的概率是 .3、某人共有5发子弹,他射击一次命中目标的概率为,击中目标就停止射击,则此人射击次数为5的概率为 .4、设随机变量X~B(6,21),则P(X=3)= .5、某同学有2盒笔芯,每盒有25支,使用时从任意一盒中取出一支。

经过一段时间后,发现一盒已经用完了,则另一盒恰好剩下5只的概率是 .6、甲、乙两人各进行一次射击,如果两人击中目标的概率都是,计算:(1)两人都击中目标的概率;(2)其中恰有一人击中目标的概率;(3)至少有一人击中目标的概率.7、已知P(AB)=103,P(A)=53,则P (B|A)= .8、市场上供应的灯泡中,甲厂产品占70%,乙厂占30%,甲厂产品的合格率是95%,乙厂产品的合格率是80%,则从市场上买到一个是甲厂生产的合格灯泡的概率是 . 9、1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问:(1)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少(2)从2号箱取出红球的概率是多少10、甲、乙两人参加一次考试,已知在备选的10道试题中,甲能答对其中6题,乙能答对其中8题.若规定每次考试分别都从这10题中随机抽出3题进行测试,至少答对2题算合格.(1)分别求甲、乙两人考试合格的概率;(2)求甲、乙两人至少有一人合格的概率.11、有甲、乙、丙、丁四名网球运动员,通过对过去战绩的统计,在一场比赛中,甲对乙、丙、丁取胜的概率分别为,,.(1)若甲乙之间进行三场比赛,求甲恰好胜两场的概率;(2)若四名运动员每两人之间进行一场比赛,求甲恰好胜两场的概率;(3)若四名运动员每两人之间进行一场比赛,设甲获胜场次为ξ,求随机变量ξ的概率分布.12、已知某种从太空飞船中带回的植物种子每粒成功发芽的概率都为31,某植物研究所分两个小组分别独立开展该种子的发芽试验,每次试验种一粒种子,假定某次试验种子发芽,则称该次试验是成功的,如果种子没有发芽,则称该次试验是失败的.(1)第一个小组做三次试验,求至少两次试验成功的概率;(2)第二个小组进行试验,到成功了4次为止,求在第四次成功之前共有三次失败,且恰有两次连续失败的概率.13、甲、乙两人进行投篮比赛,两人各投3球,谁投进的球数多谁获胜,已知每次投篮甲投进的概率为54,乙投进的概率为21,求:(1)甲投进2球且乙投进1球的概率;(2)在甲第一次投篮未投进的条件下甲最终获胜的概率.题组三:1、一袋中装有编号为1,2,3,4,5,6的6个大小相同的球,现从中随机取出3个球,以X 表示取出的最大号码.(1)求X 的概率分布;(2)求X >4的概率.2、袋中有3个白球,3个红球和5个黑球.从中抽取3个球,若取得1个白球得1分,取得1个红球扣1分,取得1个黑球得0分.求所得分数ξ的概率分布.3、从装有6个白球、4个黑球和2个黄球的箱中随机地取出两个球,规定每取出一个黑球赢2元,而每取出一个白球输1元,取出黄球无输赢,以X表示赢得的钱数,则随机变量X可以取哪些值求X的概率分布.4、甲、乙两人轮流投篮直至某人投中为止,已知甲投篮每次投中的概率为,乙每次投篮投中的概率为,各次投篮互不影响.设甲投篮的次数为ξ,若乙先投,且两人投篮次数之和不超过4次,求ξ的概率分布.5、某校高三年级某班的数学课外活动小组中有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X表示其中的男生人数,求X的概率分布.6、一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是31.(1)设X为这名学生在途中遇到红灯的次数,求X的分布列;(2)设Y为这名学生在首次停车前经过的路口数,求Y的概率分布;(3)求这名学生在途中至少遇到一次红灯的概率.题组四:1、设一随机试验的结果只有A和A,且P(A)=p,令随机变量X=⎩⎨⎧不出现出现AA1,则D(X)= .2、设ξ~B(n,p),若有E(ξ)=12,D(ξ)=4,则n、p的值分别为 .3、已知ξ的分布列为ξ=-1,0,1,对应P=21,61,31,且设η=2ξ+1,则η的期望是 .4、随机变量ξ的概率分布如下:其中a,b,c成等差数列.若E(ξ)=31,则D(ξ)的值是 .5、设15000件产品中有1000件次品,从中抽取150件检查则查得次品数的数学期望为 .6、有10张卡片,其中8张标有数字2,2张标有数字5,从中任意抽取3张卡片,则这3张卡片上的数学这和的数学期望为 .7、编号1,2,3的三位学生随意入座编号为1,2,3的三个座位,每位学生坐一个座位,设与座位编号相同的学生的个数是X.(1)求随机变量X的概率分布;(2)求随机变量X的数学期望和方差.8、某商场举行抽奖促销活动,抽奖规则是:从装有9个白球、1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球可获得奖金10元;摸出两个红球可获得奖金50元.现有甲、乙两位顾客,规定:甲摸一次,乙摸两次,令X表示甲、乙两人摸球后获得的奖金总额.求:(1)X的概率分布;(2)X的均值.9、甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为21与p,且乙投球2次均未命中的概率为161.(1)求乙投球的命中率p;(2)若甲投球1次,乙投球2次,两人共命中的次数记为ξ,求ξ的概率分布和数学期望.10、某地区的一个季节下雨天的概率是,气象台预报天气的准确率为.某厂生产的产品当天怕雨,若下雨而不做处理,每天会损失 3 000元,若对当天产品作防雨处理,可使产品不受损失,费用是每天500元.(1)若该厂任其自然不作防雨处理,写出每天损失ξ的概率分布,并求其平均值;(2)若该厂完全按气象预报作防雨处理,以η表示每天的损失,写出η的概率分布.计算η的平均值,并说明按气象预报作防雨处理是否是正确的选择11、有甲、乙两个建材厂,都想投标参加某重点建设项目,为了对重点建设项目负责,政府到两建材厂抽样检查,他们从中各取等量的样品检查它们的抗拉强度指数如下:其中ξ和η分别表示甲、乙两厂材料的抗拉强度,在使用时要求抗拉强度不低于120的条件下,比较甲、乙两厂材料哪一种稳定性较好.。

高考数学 题型通关21讲第7讲 分布列与数学期望(解析版)

高考数学 题型通关21讲第7讲 分布列与数学期望(解析版)

第7讲 分布列与数学期望高考预测一:求概率及随机变量的分布列的基本类型 类型一:利用古典概型求概率1.10月1日,某品牌的两款最新手机(记为W 型号,T 型号)同时投放市场,手机厂商为了解这两款手机的销售情况,在10月1日当天,随机调查了5个手机店中这两款手机的销量(单位:部),得到如表(Ⅰ)若在10月1日当天,从A ,B 这两个手机店售出的新款手机中分别随机抽取1部,求抽取的2部手机中至少有1部为W 型号手机的概率;(Ⅱ)现从这5个手机店中任选3个举行促销活动,用X 表示其中W 型号手机销量超过T 型号手机销量的手机店的个数,求随机变量X 的分布列和数学期望;(Ⅲ)经测算,W 型号手机的销售成本η(百元)与销量ξ(部)满足关系34ηξ=+.若表中W 型号手机销量的方差20(0)S m m =>,试给出表中5个手机店的W 型号手机销售成本的方差2S 的值.(用m 表示,结论不要求证明)【解析】解:()I 设事件1M 为从A 店售出的手机中随机抽取1部手机,抽取的手机为W 型号手机, 设事件2M 为从A 店售出的手机中随机抽取1部手机,抽取的手机为W 型号手机, 则事件1M ,2M 相互独立,且161()6123P M ==+,262()695P M ==+, ∴抽取的2部手机中至少有1部为W 型号手机的概率为13221233535355P =⨯+⨯+⨯=.()II 由表格可知W 型号手机销售量超过T 型号手机的店有2个,故X 的可能取值有0,1,2.且33351(0)10C P X C ===,1223353(1)5C C P X C ===,2123353(2)10C C P X C ===. X ∴的分布列为:数学期望为1336()012105105E X =⨯+⨯+⨯=.20()()III D s m ξ==,34ηξ=+,2()9()9S D D m ηξ∴===.2.为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x 和y 的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者.(1)从服药的50名患者中随机选出一人,求此人指标y 的值小于60的概率;(2)从图中A ,B ,C ,D 四人中随机选出两人,记ξ为选出的两人中指标x 的值大于1.7的人数,求ξ的分布列和数学期望()E ξ;(3)试判断这100名患者中服药者指标y 数据的方差与未服药者指标y 数据的方差的大小.(只需写出结论)【解析】解:(1)由图知:在50名服药患者中,有15名患者指标y 的值小于60, 答:从服药的50名患者中随机选出一人,此人指标小于60的概率为:1535010p ==. (2)由图知:A 、C 两人指标x 的值大于1.7,而B 、D 两人则小于1.7,可知在四人中随机选项出的2人中指标x 的值大于1.7的人数ξ的可能取值为0,1,2, 2411(0)6P C ξ===, 1122242(1)3C C P C ξ===,2411(2)6P C ξ===, ξ∴的分布列如下:答:121()0121636E ξ=⨯+⨯+⨯=.(3)答:由图知100名患者中服药者指标y 数据的方差比未服药者指标y 数据的方差大.3.已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束. (1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的分布列和数学期望.【解析】解:(1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A ,则P (A )1123252332010A A A ⨯===; (2)X 的可能取值为200,300,400,222521(200)2010A P X A ====,311232323562323(300)6010A C C A P X A ++⨯⨯====, 133(400)1(200)(300)110105P X P X P X ==-=-==--=; 所以X的分布列为:数学期望为13320030040035010105EX =⨯+⨯+⨯=. 类型二:利用相互独立事件的概率乘法公式和互斥事件概率加法公式求概率 4.电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值. 假设所有电影是否获得好评相互独立.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等.用“1k ξ=”表示第k 类电影得到人们喜欢.“0k ξ=”表示第k 类电影没有得到人们喜欢(1k =,2,3,4,5,6).写出方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系.【解析】解:(Ⅰ)设事件A 表示“从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影”,总的电影部数为140503002008005102000+++++=部, 第四类电影中获得好评的电影有:2000.2550⨯=部,∴从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的频率为:P (A )500.0252000==. (Ⅱ)设事件B 表示“从第四类电影和第五类电影中各随机选取1部,恰有1部获得好评”, 第四类获得好评的有:2000.2550⨯=部, 第五类获得好评的有:8000.2160⨯=部,则从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率:P (B )50(800160)(20050)1600.35200800⨯-+-⨯==⨯.(Ⅲ)由题意知,定义随机变量如下:0,1,k k k ξ⎧=⎨⎩第类电影没有得到人们喜欢第类电影得到人们喜欢,则k ξ服从两点分布,则六类电影的分布列及方差计算如下: 第一类电影:1()10.400.60.4E ξ=⨯+⨯=,221()(10.4)0.4(00.4)0.60.24D ξ=-⨯+-⨯=.第二类电影:2()10.200.80.2E ξ=⨯+⨯=,222()(10.2)0.2(00.2)0.80.16D ξ=-⨯+-⨯=.第三类电影:3()10.1500.850.15E ξ=⨯+⨯=,223()(10.15)0.15(00.15)0.850.1275D ξ=-⨯+-⨯=.第四类电影:4()10.2500.750.25E ξ=⨯+⨯=,224()(10.25)0.25(00.25)0.750.1875D ξ=-⨯+-⨯=.第五类电影:5()10.200.80.2E ξ=⨯+⨯=,225()(10.2)0.2(00.2)0.80.16D ξ=-⨯+-⨯=.第六类电影:6()10.100.90.1E ξ=⨯+⨯=,225()(10.1)0.1(00.1)0.90.09D ξ=-⨯+-⨯=.∴方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系为:632541D D D D D D ξξξξξξ<<=<<.5.设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)设甲同学上学期间的三天中7:30之前到校的天数为X ,求0X =,1X =,2X =,3X =时的概率(0)P X =,(1)P X =,(2)P X =,(3)P X =.(2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.【解析】解:(1)321(0)(1)327P X ==-=,123222(1)(1)339P X C ==-=, 223224(2)()(1)339P X C ==-=,33328(3)()327P X C ===. (2)设乙同学上学期间的三天中在7:30之前到校的天数为Y , 则1(0)(0)27P Y P X ====,2(1)(1)9P Y P X ====, 4(2)(2)9P Y P X ====,8(3)(3)27P Y P X ====, 418220()(2)(0)(3)(1)927279243P M P X P Y P X P Y ∴===+===⨯+⨯=. 类型三:利用条件概率公式求概率6.如图所示,质点P 在正方形ABCD 的四个顶点上按逆时针方向前进.现在投掷一个质地均匀、每个面上标有一个数字的正方体玩具,它的六个面上分别写有两个1、两个2、两个3一共六个数字.质点P 从A 点出发,规则如下:当正方体上底面出现的数字是1,质点P 前进一步(如由A 到)B ;当正方体上底面出现的数字是2,质点P 前两步(如由A 到)C ,当正方体上底面出现的数字是3,质点P 前进三步(如由A 到)D .在质点P 转一圈之前连续投掷,若超过一圈,则投掷终止.(1)求点P 恰好返回到A 点的概率;(2)在点P 转一圈恰能返回到A 点的所有结果中,用随机变量ξ表示点P 恰能返回到A 点的投掷次数,求ξ的分布列及数学期望.【解析】解:(1)投掷一次正方体玩具,因每个数字在上底面出现是等可能的,故其概率12163P ==. 易知只投掷一次不可能返回到A 点.①若投掷两次质点P 就恰好能返回到A 点,则上底面出现的两个数字,应依次为:(1,3)、(3,1)、(2,2)三种结果,其概率为2211()333P =⨯=.②若投掷三次质点P 恰能返回到A 点,则上底面出现的三个数字,应依次为:(1,1,2)、(1,2,1)、(2,1,1)三种结果,其概率为3311()339P =⨯=. ③若投掷四次质点P 恰能返回到A 点,则上底面出现的四个数字应依次为:(1,1,1,1),其概率为4411()381P ==.所以,质点P 恰好返回到A 点的概率为:23411137398181P P P P =++=++=.(2)由(1)知,质点P 转一圈恰能返回到A 点的所有结果共有以上问题中的7种情况, 且ξ的可能取值为2,3,4.则1273(2)373781P ξ===,199(3)373781P ξ===,1181(4)373781P ξ===,故ξ的分布列为:所以,27918523437373737E ξ=⨯+⨯+⨯=.7.根据以往的经验,某工程施工期间的降水量X (单位:)mm 对工期的影响如下表:300700X <700900X <9002610历年气象资料表明,该工程施工期间降水量X 小于300,700,900的概率分别为0.3,0.7,0.9,求: ()I 工期延误天数Y 的均值与方差;(Ⅱ)在降水量X 至少是300的条件下,工期延误不超过6天的概率.【解析】()I 由题意,(300)0.3P X <=,(300700)(700)(300)0.70.30.4P X P X P X <=<-<=-=,(700900)(900)(700)0.90.70.2P X P X P X <=<-<=-=,(900)10.90.1P X =-=Y 的分布列为()00.320.460.2100.13E Y ∴=⨯+⨯+⨯+⨯=2222()(03)0.3(23)0.4(63)0.2(103)0.19.8D Y =-⨯+-⨯+-⨯+-⨯=∴工期延误天数Y 的均值为3,方差为9.8;(Ⅱ)(300)1(300)0.7P X P X =-<=,(300900)(900)(300)0.90.30.6P X P X P X <=<-<=-= 由条件概率可得(300900)0.66(6|300)(300)0.77P X P Y X P X <===.类型四:利用统计图表中的数据求概率8.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:C)︒有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率. (1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值?【解析】解:(1)由题意知X 的可能取值为200,300,500,216(200)0.290P X +===,36(300)0.490P X ===, 2574(500)0.490P X ++===, X ∴的分布列为:(2)由题意知这种酸奶一天的需求量至多为500瓶,至少为200瓶,∴只需考虑200500n ,当300500n 时,若最高气温不低于25,则642Y n n n =-=;若最高气温位于区间[20,25),则63002(300)412002Y n n n =⨯+--=-; 若最高气温低于20,则62002(200)48002Y n n n =⨯+--=-, 20.4(12002)0.4(8002)0.26400.4EY n n n n ∴=⨯+-⨯+-⨯=-,当200300n 时,若最高气温不低于20,则642Y n n n =-=,若最高气温低于20,则62002(200)48002Y n n n =⨯+--=-, 2(0.40.4)(8002)0.2160 1.2EY n n n ∴=⨯++-⨯=+.300n ∴=时,Y 的数学期望达到最大值,最大值为520元.9.某贫困地区共有1500户居民,其中平原地区1050户,山区450户.为调查该地区2017年家庭收入情况,从而更好地实施“精准扶贫”,采用分层抽样的方法,收集了150户家庭2017年年收入的样本数据(单位:万元).(1)应收集多少户山区家庭的样本数据?(2)根据这150个样本数据,得到2017年家庭收入的频率分布直方图(如图所示),其中样本数据分组区间为(0,0.5],(0.5,1],(1,1.5],(1.5,2],(2,2.5],(2.5,3].如果将频率视为概率,估计该地区2017年家庭收入超过1.5万元的概率;(3)样本数据中,有5户山区家庭的年收入超过2万元,请完成2017年家庭收入与地区的列联表,并判断是否有90%的把握认为“该地区2017年家庭年收入与地区有关”?附:2() n ad bcK-=++++2)k【解析】解:(1)由已知可得每户居民被抽取的概率为0.1,故应收集手机4500.145⨯=户山区家庭的样本数据.(2)由直方图可知该地区2017年家庭年收入超过1.5万元的概率约为(0.5000.3000.100)0.50.45++⨯=.(3)样本数据中,年收入超过2万元的户数为(0.3000.100)0.515030+⨯⨯=户.而样本数据中,有5户山区家庭的年收入超过2万元,故列联表如下:所以2150(2540580)2003.175 2.706 301201054563K⨯-⨯==≈>⨯⨯⨯,∴有90%的把握认为“该地区2017年家庭年收入与地区有关”.高考预测二:超几何分布和二项分布类型一:超几何分布10.已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(Ⅰ)应从甲、乙、丙三个部门的员工中分别抽取多少人?(Ⅱ)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查. ()i 用X 表示抽取的3人中睡眠不足的员工人数,求随机变量X 的分布列与数学期望;()ii 设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率.【解析】解:(Ⅰ)单位甲、乙、丙三个部门的员工人数分别为24,16,16.人数比为:3:2:2, 从中抽取7人现,应从甲、乙、丙三个部门的员工中分别抽取3,2,2人.(Ⅱ)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查. ()i 用X 表示抽取的3人中睡眠不足的员工人数,随机变量X 的取值为:0,1,2,3,34337()k kC C P X k C -⋅==,0k =,1,2,3. 所以随机变量的分布列为:随机变量X 的数学期望11218412()0123353535357E X =⨯+⨯+⨯+⨯=; ()ii 设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,设事件B 为:抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人,事件C 为抽取的3人中, 睡眠充足的员工有2人,睡眠不足的员工有1人, 则:A BC =,且P (B )(2)P X ==,P (C )(1)P X ==,故P (A )6()(2)(1)7P B C P X P X ===+==. 所以事件A 发生的概率:67. 11. 2.5PM 是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物. 2.5PM 日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.石景山古城地区2013年2月6日至15日每天的 2.5PM 监测数据如茎叶图所示.(1)小陈在此期间的某天曾经来此地旅游,求当天 2.5PM 日均监测数据未超标的概率;(2)从所给10天的数据中任意抽取三天数据,记ξ表示抽到 2.5PM 监测数据超标的天数,求ξ的分布列及期望.【解析】解:(1)记“当天 2.5PM 日均监测数据未超标”为事件A , 因为有24+天 2.5PM 日均值在75微克/立方米以下, 故P (A )243105+==. (2)ξ的可能值为0,1,2,3.由茎叶图可知:空气质量为一级的有2天,空气质量为二级的有4天,只有这6天空气质量不超标,而其余4天都超标.363101(0)6C P C ξ===,21643101(1)2C C P C ξ===,12643103(2)10C C P C ξ===,343101(3)30C P C ξ===.ξ的分布列如下表:1131601236210305E ξ∴=⨯+⨯+⨯+⨯=.类型二:二项分布12.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出一个球,在摸出的2个球中,若都是红球,则获得一等奖;若只有1个红球,则获得二等奖;若没有红球,则不获奖. (1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中或一等奖的次数为X ,求X 的分布列、数学期望和方差.【解析】解:(1)设顾客抽奖1次能中奖的概率为P .116511101037111010C C P C C =-=-=,(2)设该顾客在一次抽奖中获一等奖的概率为1P ,1145112101015C C P C C ==, 故而1?(3,)5X B .3464(0)()5125P X ∴===,1231448(1)()55125P X C ===, 2231412(2)()55125P X C ===,311(3)()5125P X ===. 故X 的分布列为数学期望13()355E X ==,方差1412()35525D X ==. 13.近年来,空气质量成为人们越来越关注的话题,空气质量指数(,)AirQualityIndex AQI 是定量描述空气质量状况的指数,空气质量按照AQI 大小分为六级,0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;大于300为严重污染.环保部门记录了2017年某月哈尔滨市10天的AQI 的茎叶图如下:(1)利用该样本估计该地本月空气质量优良(100)AQI 的天数;(按这个月总共30天计算) (2)现工作人员从这10天中空气质量为优良的日子里随机抽取2天进行某项研究,求抽取的2天中至少有一天空气质量是优的概率;(3)将频率视为概率,从本月中随机抽取3天,记空气质量优良的天数为ξ,求ξ的概率分布列和数学期望.【解析】解:(1)从茎叶图中可发现该样本中空气质量优的天数为2,空气质量良的天数为4,故该样本中空气质量优良的频率为63105=,从而估计该月空气质量优良的天数为330185⨯=(2)现工作人员从这10天中空气质量为优良的日子里随机抽取2天进行某项研究, 基本事件总数2615n C ==,抽取的2天中至少有一天空气质量是优的对立事件是抽取的2天中至少有一天空气质量都不是优,∴抽取的2天中至少有一天空气质量是优的概率:2426315C p C =-=.(3)由(1)估计某天空气质量优良的概率为35,ξ∴的所有可能取值为0,1,2,3,且3~(3,)5B ξ,328(0)()5125P ξ===, 1233236(1)()55125P C ξ===, 2233254(2)()55125P C ξ===, 3327(3)()5125P ξ===, 故ξ的分布列为:3~(3,)5B ξ,33 1.85E ξ=⨯=.高考预测三:概率与其他知识点交汇 类型一:以其他知识为载体14.已知正四棱锥PABCD 的侧棱和底面边长相等,在这个正四棱锥的8条棱中任取两条,按下列方式定义随机变量ξ的值:若这两条棱所在的直线相交,则ξ的值是这两条棱所在直线的夹角大小(弧度制); 若这两条棱所在的直线平行,则0ξ=;若这两条棱所在的直线异面,则ξ的值是这两条棱所在直线所成角的大小(弧度制). (1)求(0)P ξ=的值;(2)求随机变量ξ的分布列及数学期望()E ξ.【解析】解:(1)根据题意,该四棱锥的四个侧面均为等边三角形,底面为正方形,PAC ∆,PBD ∆为等腰直角三角形.ξ的可能取值为:0,3π,2π, 在这个正四棱锥的8条棱中任取两条基本事件总数2828n C ==种情况, 当0ξ=时有2种,当3πξ=时有342420⨯+⨯=种,当2πξ=时有246+=种.21(0)2814P ξ∴===. (2)21(0)2814P ξ===. 205()3287P πξ===, 63()22814P πξ===.随机变量ξ的分布列如下表:15329()0143721484E πππξ=⨯+⨯+⨯=. 15.从集合{1M =,2,3,4,5,6,7,8,9}中抽取三个不同的元素构成子集1{a ,2a ,3}a . (1)求对任意的i 和(1j i =,2,3,1j =,2,3,)i j ≠满足||2i j a a -的概率;(2)若1a ,2a ,3a 成等差数列,设其公差为(0)ξξ>,求随机变量ξ的分布列与数学期望()E ξ.【解析】解:(1)由题意知基本事件数为3984C =,而满足条件||2i j a a -,即取出的元素不相邻,则用插空法有3735C =种,故所求事件的概率为3558412P ==; (2)分析1a ,2a ,3a 成等差数列的情况:1ξ=的情况有7种:{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8},{7,8,9}, 2ξ=的情况有5种:{1,3,5},{2,4,6},{3,5,7},{4,6,8},{5,7,9}. 3ξ=的情况有3种:{1,4,7},{2,5,8},{3,6,9}.4ξ=的情况有1种:{1,5,9}.故ξ的分布列如下:所以753115()1234161615168E ξ=⨯+⨯+⨯+⨯=. 类型二:构造递推关系求概率问题16.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0i p i =,1,⋯,8)表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11(1i i i i p ap bp cp i -+=++=,2,⋯,7),其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=. ()i 证明:1{}(0i i p p i +-=,1,2,⋯,7)为等比数列; ()ii 求4p ,并根据4p 的值解释这种试验方案的合理性.【解析】(1)解:X 的所有可能取值为1-,0,1.(1)(1)P X αβ=-=-,(0)(1)(1)P X αβαβ==+--,(1)(1)P X αβ==-,X ∴的分布列为:(2)()i 证明:0.5α=,0.8β=,∴由(1)得,0.4a =,0.5b =,0.1c =.因此110.40.50.1(1i i i i p p p p i -+=++=,2,⋯,7),故110.1()0.4()i i i i p p p p +--=-,即11()4()i i i i p p p p +--=-,又1010p p p -=≠,1{}(0i i p p i +∴-=,1,2,⋯,7)为公比为4,首项为1p 的等比数列;()ii 解:由()i 可得,881887761001(14)41()()()143p p p p p p p p p p --=-+-+⋯+-+==-,81p =,18341p ∴=-, 444332*********()()()()3257p p p p p p p p p p p -∴=-+-+-+-+==. 4p 表示最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为410.0039257p =≈,此时得出错误结论的概率非常小,说明这种试验方案合理. 17.从原点出发的某质点M ,按向量(0,1)a =移动的概率为23,按向量(0,2)b =移动的概率为13,设M 可到达点(0,)(1n n =,2,3,)⋯的概率为n P . (1)求1P 和2P 的值;(2)求证:2111()3n n n n P P P P +++-=--;(3)求n P 的表达式.【解析】解:(1)123P =,22217()339P =+= (2)证明:M 点到达点(0,2)n +有两种情况 ①从点(0,1)n +按向量(0,1)a =移动 ②从点(0,)n 按向量(0,2)b =移动∴212133n n n P P P ++=+ ∴2111()3n n n n P P P P +++-=-- 问题得证.(3)数列1{}n n P P +-是以21P P -为首项,13-为公比的等比数列 1111211111()()()()3933n n n n n P P P P --++-=--=-=- 11()3n n n P P -∴-=-又因为111221()()()n n n n n P P P P P P P P ----=-+-+⋯+-12111()()()333n n -=-+-+⋯+-111[1()]123n -=-- 11n n P P P P ∴=-+∴113()434n n P =⨯-+. 类型三:利用导数研究概率问题18.某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为(01)p p <<,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为()f p ,求()()f p f p 的最大值点0p (即()f p 取最大值时对应的p 的值).(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值,已知每件产品的检验费用为3元,若有不合格品进入用户手中,则工厂要对每件不合格品支付28元的赔偿费用 ()i 若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用之和记为X 求()E X ; ()ii 以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【解析】解:(1)记20件产品中恰有2件不合格品的概率为()f p ,则221820()(1)f p C p p =-,2182172172020()[2(1)18(1)]2(1)(110)f p C p p p p C p p p ∴'=---=--,令()0f p '=,得0.1p =, 当(0,0.1)p ∈时,()0f p '>, 当(0.1,1)p ∈时,()0f p '<, f ∴()p 的最大值点00.1p =.(2)()i 由(1)知0.1p =,令Y 表示余下的180件产品中的不合格品数,依题意知~(180,0.1)Y B ,20328X Y =⨯+,即6028X Y =+,()(6028)6028()60281800.1564E X E Y E Y ∴=+=+=+⨯⨯=. ()ii 如果对余下的产品作检验,由这一箱产品所需要的检验费为600元, ()564600E X =<,∴应该对余下的产品不进行检验.19.某有机水果种植基地试验种植的某水果在售卖前要成箱包装,每箱80个,每一箱水果在交付顾客之前要按约定标准对水果作检测,如检测出不合格品,则更换为合格品.检测时,先从这一箱水果中任取10个作检测,再根据检测结果决定是否对余下的所有水果作检测.设每个水果为不合格品的概率都为(01)p p <<,且各个水果是否为不合格品相互独立.(Ⅰ)记10个水果中恰有2个不合格品的概率为()f p ,求()f p 取最大值时p 的值0p ;(Ⅱ)现对一箱水果检验了10个,结果恰有2个不合格,以(Ⅰ)中确定的0p 作为p 的值.已知每个水果的检测费用为1.5元,若有不合格水果进入顾客手中,则种植基地要对每个不合格水果支付a 元的赔偿费用(*)a N ∈.(ⅰ)若不对该箱余下的水果作检验,这一箱水果的检验费用与赔偿费用的和记为X ,求EX ; (ⅱ)以检验费用与赔偿费用和的期望值为决策依据,当种植基地要对每个不合格水果支付的赔偿费用至少为多少元时,将促使种植基地对这箱余下的所有水果作检验?【解析】解:(Ⅰ)记10个水果中恰有2个不合格的概率为()f p ,则22810()(1)f p C p p =-,282710()[2(1)8(1)]f p C p p p p ∴'=---,由()0f p '=,得0.2p =.且当(0,0.2)p ∈时()0f p '>,当(0.2,1)p ∈时,()0f p '<,()f p ∴的最大值点00.2p =.(Ⅱ)由(Ⅰ)知00.2p =.(ⅰ)令Y 表示余下的70个水果中的不合格数,依题意~(70,0.2)Y B ,10 1.515X aY aY =⨯+=+. ()(15)15()15700.21514E X E aY aE Y a a ∴=+=+=+⨯⨯=+.(ⅱ)如果对余下的水果作检验,则这箱水果的检验费为120元, 由1514120a +>,得1057.514a >=,且*a N ∈, ∴当种植基地要对每个不合格水果支付的赔偿费用至少为8元时,将促使种植基地对这箱余下的所有水果作检验.高考预测三:决策问题20.某公司计划购买2台机器,该种机器使用三年后即被淘汰,机器有一易损零件,在购买机器时,可以额外购买这种零件作为备件,每个300元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得到下面柱状图.以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数.(1)求X 的分布列;(2)若要求()0.5P X n ,试确定n 的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个?【解析】解:(1)每台机器更换的易损零件数为8,9,10,11,记事件1A 为第一台机器3年内换掉7i +个零件(1i =,2,3,4),记事件1B 为第二台机器3年内换掉7i +个零件(1i =,2,3,4),由题知134134()()()()()()0.2P A P A P A P B P B P B ======,22()()0.4P A P B ==,则X 的可能的取值为16,17,18,19,20,21,22,11(16)()()0.20.20.04P X P A P B ===⨯=;1221(17)()()()()0.20.40.40.20.16P X P A P B P A P B ==+=⨯+⨯=;132231(18)()()()()()()0.20.20.20.20.40.40.24P X P A P B P A P B P A P B ==++=⨯+⨯+⨯=;14233241(19)()()()()()()()()0.20.20.20.20.40.20.20.40.24P X P A P B P A P B P A P B P A P B ==+++=⨯+⨯+⨯+⨯=;243342(20)()()()()()()0.40.20.20.40.20.20.2P X P A P B P A P B P A P B ==++=⨯+⨯+⨯=;3443(21)()()()()0.20.20.20.20.08P X P A P B P A P B ==+=⨯+⨯=;44(22)()()0.20.20.04P X P A P B ===⨯=.从而X 的分布列为(2)要()0.5P x n ,0.040.160.240.5++<,0.040.160.240.240.5+++,则n 的最小值为19;(3)购买零件所需费用含两部分,一部分为购买机器时购买零件的费用,另一部分为备件不足时额外购买的费用,当19n =时,费用的期望为193005000.210000.0815000.045940⨯+⨯+⨯+⨯=元,当20n =时,费用的期望为203005000.0810000.046080⨯+⨯+⨯=元,若要费用最少,所以应选用19n =.高考预测四:正态分布21.为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:)cm .根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.0410.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95 经计算得16119.9716i i x x ===∑,0.212s =≈,其中i x 为抽取的第i 个零件的尺寸,1i =,2,⋯,16. 用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01). 附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.9974P Z μσμσ-<<+=,160.99740.9592≈,0.09.【解析】解:(1)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974,从而零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,故~(16,0.0026)X B .因此,16(1)1(0)10.99740.0408P X P X =-==-≈;(2)由9.97,0.212x s =≈,得μ的估计值为ˆ9.97μ=,σ的估计值为ˆ0.212σ=, 由样本数据可以看出有一个零件的尺寸在ˆˆˆˆ(3,3)μσμσ-+之外, 因此需对当天的生产过程进行检查,剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22, 剩下数据的平均数为1(169.979.22)10.0215⨯-=, 因此μ的估计值为10.02,162221160.212169.971591.134i i x ==⨯+⨯≈∑,剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22, 剩下数据的样本方差为221(1591.1349.221510.02)0.00815--⨯≈. 因此σ0.09.22.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如图频率分布直方图:(1)求这500件产品质量指标值的样本平均值x 和样本方差2s (同一组的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标Z 服从正态分布2(,)N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s①利用该正态分布,求(187.8212.2)P Z <<②某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用 ①的结果,求EX 附:6 2.44≈,若2~(,)z n μσ,则()0.6826p Z μσμσ-<<+=,(22)0.9544p Z μσμσ-<<+=.【解析】解:(1)抽取产品的质量指标值的样本平均数为:1700.021800.091900.222000.332100.242200.082300.02200x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=,样本方差2s 分别为:2222222(30)0.02(20)0.09(10)0.2200.33100.24200.08300.02150s =-⨯+-⨯+-⨯+⨯+⨯+⨯+⨯=. (Ⅱ)()i 由(Ⅰ)知~(200,150)Z N ,从而(187.8212.2)(20012.220012.2)0.6826P Z P Z <<=-<<+=;()ii 由()i 知一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826,依题意知~(100,0.6826)X B ,所以1000.682668.26EX =⨯=.。

(理科)专题训练(二项式定理、分布列、期望与方差)

(理科)专题训练(二项式定理、分布列、期望与方差)

高三数学(理科)专题训练(1)-----概率、二项式定理、分布列、数学期望1.如果一条直线与一个平面平行,那么称此直线与平面构成一个“平面线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是()A.60 B.48 C.36D.242..甲、乙两人进行象棋比赛,甲获胜的概率是0.4,两人下成和棋的概率是0.2,则甲不输的概率是()A.0.6B.0.8C.0.2D.0.43.在第3、6、16路公共汽车的一个停靠站(假定这个车站只能停靠一辆公共汽车),有一位乘客需在5分钟之内乘上公共汽车赶到厂里,他可乘3路或6路公共汽车到厂里,已知3路车、6路车在5分钟之内到此车站的概率分别为0.20和0.60,则该乘客在5分钟内能乘上所需要的车的概率为()A.0.20 B.0.60 C.0.80D.0.124.掷一颗质地均匀的骰子,观察所得的点数a,设事件A:a=3;事件B:a=4;事件C:a为奇数,则下列结论正确的是() A.A与B为互斥事件B.A与B为对立事件C.A与C为对立事件D.A与C为互斥事件5.某家庭电话在家里有人时,打进电话响第一声被接的概率为0.1,响第二声时被接的概率为0.3,响第三声时被接的概率为0.4,响第四声时被接的概率为0.1,那么电话在响前4声内被接的概率是()A.0.622 B.0.9 C.0.659 8 D.0.002 87.袋中装有3个白球,4个黑球,从中任取3个球,则①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球.在上述事件中,是对立事件的为()A.①B.②C.③D.④7.已知(x+ax)6(a>0)的展开式中常数项为240,则(x+a)(x-2a)2的展开式中x2项的系数为________.8.已知a=π2(sin2x2-12)d x,则(ax+12ax)9的展开式中,关于x的一次项的系数为________.9.自“钓鱼岛事件”以来,中日关系日趋紧张并不断升级.为了积极响应“保钓行动”,某学校举办了一场“保钓知识大赛”,共分两组.其中甲组得满分的有1个女生和3个男生,乙组得满分的有2个女生和4个男生.现从得满分的同学中,每组各任选2个同学,作为“保钓行动代言人”.(1)求选出的4个同学中恰有1个女生的概率;(2)设X为选出的4个同学中女生的个数,求X的分布列和数学期望.高三数学(理科)专题训练(2)-----概率、二项式定理、分布列、数学期望1.随机变量X 的分布列如下:其中a ,b ,c 成等差数列,则P (|X |=1)=( ) A.16B.13C.12D.23.2.设随机变量ξ的概率分布列为P (ξ=i )=i a )43(i,i =1,2,3,则a 的值是( )A.64111B.64101C.2764D.37643.设随机变量X 的概率分布列如下表所示:F (x )=P (X ≤x ),则当x 的取值范围是[1,2)时,F (x )=( )A.13B.16C.12D.564.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c ,且a 、b 、c ∈(0,1),已知他投篮一次得分的数学期望为1(不计其他得分情况),则ab 的最大值为________.5..已知⎝⎛⎭⎪⎫x +13x n 的展开式的二项式系数之和比(a +b )2n 的展开式的系数之和小240,求⎝ ⎛⎭⎪⎫x +13x n的展开式中系数最大的项.6.(2014·北京)把5件不同产品摆成一排,若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有________种.7.离散型随机变量X 的概率分布规律为P (X =n )=ann +1(n =1,2,3,4),其中a 是常数,则P ()12<X <52=______.8.已知随机变量ξ只能取三个值:x 1,x 2,x 3,其概率依次成等差数列,则公差d 的取值范围是________.9.(河南省信阳市2015届高中毕业班第二次调研检测数学理试题19).某高中随机抽取部分高一学生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中上学路上所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].(Ⅰ)求直方图中x 的值;(Ⅱ)如果上学路上所需时间不少于1小时的学生可申请在学校住宿,若招生1200名,请估计新生中有多少名学生可以申请住宿; (Ⅲ)从学校的高一学生中任选4名学生,这4名学生中上学路上所需时间少于20分钟的人数记为X,求X的分布列和数学期望.(以直方图中的频率作为概率)X -1 0 1 PabcX 0 1 2 Pa1316【参考答案】高三数学(理科)专题训练-----概率、二项式定理、分布列、数学期望(1)1.【答案】B【解析】长方体的6个表面构成的“平行线面组”有6×6=36个,另含4个顶点的6个面(非表面)构成的“平行线面组”有6×2=12个,共36+12=48个,故选B.2.【答案】A【解析】甲获胜的概率是0.4,两人下成和棋的概率是0.2,所以甲不输的概率为0.4+0.2=0.6.故选A.3.【答案】C【解析】由互斥事件的概率加法公式可得,该乘客在5分钟内能乘上所需的车的概率为0.20+0.60=0.80.故选C.4.【答案】A【解析】依题意,事件A与B不可能同时发生,故A与B是互斥事件,但A与B不是对立事件,显然,A与C既不是对立事件也不是互斥事件.故选A.5.【答案】B【解析】根据互斥事件的概率加法公式,电话在响前4声内被接的概率=电话响第一声被接的概率+响第二声时被接的概率+响第三声时被接的概率+响第四声时被接的概率,故电话在响前4声内被接的概率是0.1+0.3+0.4+0.1=0.9,故选B.6.【答案】B【解析】从7个球中任取3个球的所有可能为:1个白球2个黑球;2个白球1个黑球;3个白球;3个黑球.故①中的两事件互斥,但不对立;②中的两事件对立;③中的两事件中不互斥;④中的两事件不互斥,故选B.7.【答案】-6【解析】(x+ax)6的二项展开式的通项T r+1=C r6x6-r(ax)r=C r6362rax-,令6-3r2=0,得r=4,则其常数项为C46a4=15a4=240,则a4=16,由a>0,故a=2.又(x+a)(x-2a)2的展开式中,x2项为-3ax2,故x2项的系数为(-3)×2=-6.8.【答案】-6316【解析】a=π2⎰(sin2x2-12)d x=π20⎰(1-cos x2-12)d x=π20⎰(-cos x2)d x=-12sin xπ20|=-12.此时二项展开式的通项为T r+1=C r 9(-12x )9-r (-1x )r =C r 9(-12)9-r (-1)r x 9-2r ,令9-2r =1,得r =4,所以关于x 的一次项的系数为C 49(-12)9-4(-1)4=-6316. 9.【解析】(1)设“从甲组内选出的2个同学均是男生;从乙组内选出的2个同学中,1个是男生,1个是女生”为事件A ,“从乙组内选出的2个同学均是男生;从甲组内选出的2个同学中1个是男生,1个是女生”为事件B ,由于事件A ,B 互斥,且P (A )=C 23C 12C 14C 24C 26=415,P (B )=C 13C 24C 24C 26=15.所以选出的4个同学中恰有1个女生的概率为P (A +B )=P (A )+P (B )=415+15=715. (2)由条件知X 的所有可能值为0,1,2,3.;P (X =0)=C 23C 24C 24C 26=15,P (X =1)=C 23C 12C 14+C 13C 24C 24C 26=715,P (X =3)=C 13C 24C 26=130,P (X =2)=1-15-715-130=310.[来源所以X 的分布列为 所以X 的数学期望为E (X )=0×15+1×715+2×310+3×130=76.高三数学(理科)专题训练-----概率、二项式定理、分布列、数学期望(2)1.【答案】D 【解析】因为a ,b ,c 成等差数列,所以2b =a +c .又a +b +c =1,得b =13,所以P (|X |=1)=a +c =23.故选D2.【答案】A 【解析】1=P (ξ=1)+P (ξ=2)+P (ξ=3)=a ⎣⎡⎦⎤34+()342+()343,解得a =64111,选A. 3.【答案】D 【解析】∵a +13+16=1,∴a =12.[来源:学_科_网]∵x ∈[1,2),∴F (x )=P (X ≤x )=12+13=56.选D.4.【答案】124 【解析】由已知3a +2b +0×c =1,∴3a +2b =1,∴ab =16·3a ·2b ≤163a +2b24=124,当且仅当a =16,b =14时等号成立. 5.【解析】由题意,得2n =22n -240,∴22n -2n -240=0,即(2n -16)(2n +15)=0.又∵2n +15>0,∴2n -16=0.∴n =4.∴⎝⎛⎭⎪⎫x +13x n =⎝⎛⎭⎪⎫x +13x 4。

分布列期望方差知识

分布列期望方差知识

离散型随机变量的分布列、数学期望、方差一. 离散型随机变量:若随机变量可能的取值可以按一定次序一一列出,这样的随机变量叫做离散型随机变量;若随机变量可以取某一区间内的一切值,这样的随机变量叫做连续型随机变量。

二. 离散型随机变量的分布列、数学期望、方差 1. 设离散型随机变量ξ可能的取值为12,,,,i x x x ,ξ取每一个值()1,2,i x i =的概率为i p ,列表如下:叫做随机变量ξ的概率分布,简称分布列。

有如下性质: (1)()011,2,i p i ≤≤=(2)121i p p p ++++=2.数学期望:1122i i E x p x p x p ξ=++++叫做离散型随机变量ξ的数学期望,简称期望。

反映离散型随机变量ξ取值的平均水平。

若a b ηξ=+,则E aE b ηξ=+。

3.方差:()()()2221122i i D x E p x E p x E p ξξξξ=-+-++-+叫做离散型随机变量ξ的方叫做离散型随机变量ξ的标准差,记作σξ 若a b ηξ=+,则2D a D ηξ=。

方差反映随机变量ξ的取值与平均值的离散情况。

即稳定性。

三.几个典型的分布1.二项分布:n 次独立重复试验中,事件A 发生的次数(),B n p ξ,p 是一次试验A 发生的概率,设1q p =-。

则()()()();,0,1,,k k n kn n P k b k n p P k C p q k n ξ-=====2、几何分布:独立重复试验中事件A 第一次发生时的试验次数ξ服从几何分布,p 是一次试验A 发生的概率,设1q p =-。

()()11,2,k P k q p k ξ-===期望1E p ξ=,方差2q D pξ=。

3.两点分布:一次实验中,事件A 发生记为1,不发生记为0,p 是一次试验A 发生的概率,设1q p =-。

则期望E p ξ=,方差D pq ξ=。

练习1.已知随机变量(),B n p ξ,且6,3E D ξξ==,则()1;,b n p = .2.若随机变量ξ的分布列是:()()1,3P m P n a ξξ====.且2E ξ=,则D ξ的最小值是 .3.若随机变量ξ满足()(),P k g k p ξ==,2D ξ=,21ηξ=-,则E η= ,D η= 。

条件概率分布列期望方差

条件概率分布列期望方差

高中数学专题训练--------概率、分布列、期望、方差概率、分布列、期望、方差1、1号箱有2个白球和4个红球,2号箱有5个白球和3个红球,从中随机地从1号箱取出一个球放入2号箱,然后从2号箱随机取一个,问:(1)从1号箱取出红球条件下,从2号箱取出红球的概率是多少?(2)从2号箱取出红球的概率是多少?2、在100件产品中有95件合格品,5件不合格品。

现从中不放回取两次,每次任取一件,试求:(1)第一次取不合格品的概率(2)在一次取到不合格品后,第二次再取到不合格品的概率。

3、甲乙两名跳高运动员一次试跳2米高度成功的概率分别为0.7,0.6且每次试跳成功与否相互之间没有影响,求:(1)甲试跳3次,第3次才成功的的概率。

(2)甲乙两名跳高运动员在第一次试跳中至少有一人成功的概率。

(3)甲乙各试跳2次,甲比乙的成功次数恰好多一次的概率。

4. 某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门。

首次到达此门,系统会随机(即等可能)为你打开一个通道,若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门。

再次到达智能门时,系统会随机打开一个你未到过...的通道,直至走完迷宫为止。

令ξ表示走出迷宫所需的时间。

(1)求ξ的分布列;(2)求ξ的数学期望。

5.因冰雹灾害某柑桔基地果林严重受损,为此有关专家提出一种拯救果树的方案,该方案需分两年实施且互相独立,该方案预计第一年可以使柑桔产量恢复灾前1.0倍,0.9倍,0.8倍的概率分别为0.2,0.4,0.4,第二年可以使柑桔产量恢复灾前1.5倍,1.25倍,1.0倍的概率分别为0.3,0.3,0.4,(1)求两年后柑桔恰好到达灾前产量的概率(2)求两年后桔超过灾前产量的概率.6.在2008年北京奥运会乒乓球男单决赛中马琳以11:9,11:9的成绩在前两局战胜。

已知他们水平相当,规定“7局4胜”即先赢四局为胜,求(1)王皓取胜的概率(2)比赛打满7局的概率(3)设比赛局数为X,求X的分布列及期望7.一次考试出10道选择题,每道题有4个选项可供选择,其中一个正确的,三个错误的。

概率分布列及期望方差专题

概率分布列及期望方差专题

离散型随机变量的概率分布列专题训(中6)编纂人:张宪东审批人:时间:2012、5一、摸球问题:1、袋中有3个黑球,2个红球,从中同时取出2个球,求取出的球中含有红球个数的概率分布列及数学期望?2、袋中有3个黑球,2个红球,从袋中取球,一次一个,不放回得取两次,求取出的球中含有红球个数的概率分布列及数学期望?3、袋中有3个黑球,2个红球,从袋中取球,一次一个,有放回得取两次,求取出的球中含有红球个数的概率分布列及数学期望?4、袋中有4个黑球、3个白球、2个红球,从中任取2个球,每取到一个黑球记零分,每取到一个白球记1分,每取到一个红球及2分,用X表示得分数。

(1)求X的概率分布列及数学期望(2)求所得分数大于等于2的概率。

二、比赛问题:1、甲、乙两选手比赛,假设每局比赛甲胜的概率为0.6,乙胜的概率为0.4,那么采用3局2胜制,求甲胜的概率2、甲、乙两选手比赛,假设每局比赛甲胜的概率为0.6,乙胜的概率为0.4,那么采用5局3胜制,求乙胜的概率。

3、甲、乙两选手比赛,假设每局比赛甲胜的概率为0.6,乙胜的概率为0.4,那么采用3局2胜制,求比赛结束时比赛局数的分布列及数学期望4、甲、乙两选手比赛,假设每局比赛甲胜的概率为32,乙胜的概率为31,那么采用局胜制,求比赛结束时比赛局数的分布列及数学期望?5、红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A、乙对B、丙对C各一盘。

已知甲胜A、乙胜B、丙胜C的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立。

(Ⅰ)求红队至少两名队员获胜的概率;(Ⅱ)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望Eξ。

6、甲、乙两选手比赛,假设每局比赛甲胜的概率为0.6,乙胜的概率为0.4,约定先胜3局者获得这次比赛的胜利,比赛结束。

已知前2局中,甲乙各胜一局。

(1)求在赛2局结束这次比赛的概率。

(2)求甲获得这次比赛胜利的概率三、射击问题:1、某射手有5发子弹,射击一次命中概率为0.9,如果命中就停止射击,否则一直到子弹用尽,求耗用子弹数ξ的分布列.2、甲乙两人各进行3次射击,甲每次击中目标的概率为21,乙每次击中目标的概率为32,(1)记甲击中目标的次数为ξ,求ξ的概率分布列及数学期望 (2)求乙至多击中目标2次的概率(2719)(3)求甲恰好比乙多击中目标2次的概率(241)3、某中学排球队进行发球训练,每人在一论练习中最多最多可发球4次,且规定一旦发球成功即停止该轮练习,否则一直发到4次为止。

高三数学分布列和期望

高三数学分布列和期望

高三数学分布列和期望高考考纲透析:等可能性的事件的概率,互斥事件有一个发生的概率,相互独立事件同时发生的概率,独立重复试验、离散型随机变量的分布列、期望和方差高考风向标:离散型随机变量的分布列、期望和方差热点题型1 n 次独立重复试验的分布列和期望[样题1] 〔2005年高考·全国卷II·理19〕甲、乙两队进行一场排球比赛.根据以往经验,单局比赛甲队胜乙队的概率为0.6.本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛互间没有影响.令为本场比赛的局数,求的概率分布和数学期望.〔精确到0.0001〕本题考查离散型随机变量分布和数学期望等概念,考查运用概率知识解决实际问题的能力.解:单局比赛甲队胜乙队的概率为0.6,乙队胜甲队的概率为1-0.6=0.4比赛3局结束有两种情况:甲队胜3局或乙队胜3局,因而P 〔=3〕=比赛4局结束有两种情况:前3局中甲队胜2局,第4局甲队胜;或前3局中乙队胜2局,第4局乙队胜.因而P 〔=4〕=+比赛5局结束有两种情况:前4局中甲队胜2局、乙队胜2局,第5局甲胜或乙胜.因而 P 〔=5〕=+ 所以的概率分布为ξ的期望=3×P 〔=3〕+4×P 〔=4〕+ 变式新题型1.〔2005年高考·浙江卷·理19〕袋子A 中装有若干个均匀的红球和白球,从A 中摸出一个红球的概率是.〔Ⅰ〕 从A 中有放回地摸球,每次摸出一个,共摸5次,求恰好有3次摸到红球的概率. 〔Ⅱ〕 从A 中有放回地摸球,每次摸出一个,有3次摸到红球即停止. (i) 求恰好摸5次停止的概率;〔ii 〕记5次之内〔含5次〕摸到红球的次数为,求随机变量的分布列及数学期望E . 解:〔Ⅰ〕 〔Ⅱ〕〔i 〕〔ii 〕随机变量的取值为0,1,2,3,; 由n 次独立重复试验概率公式,得()()1n kk kn n P k C p p -=-()505132013243P C ξ⎛⎫==⨯-=⎪⎝⎭; ()41511801133243P C ξ⎛⎫==⨯⨯-=⎪⎝⎭ ()232511802133243P C ξ⎛⎫⎛⎫==⨯⨯-=⎪ ⎪⎝⎭⎝⎭〔或〕随机变量的分布列是ξξ的数学期望是32808017131012324324324324381E ξ=⨯+⨯+⨯+⨯=热点题型2 随机变量的取值范围及分布列ξ[样题2]在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从此10张券中任抽2张,求:〔Ⅰ〕该顾客中奖的概率;〔Ⅱ〕该顾客获得的奖品总价值〔元〕的概率分布列和期望. 解法一:〔Ⅰ〕,即该顾客中奖的概率为.〔Ⅱ〕的所有可能值为:0,10,20,50,60〔元〕..151)60(,152)50(,151)20(,52)10(,31)0(2101311210161121023210161321026===============C C C P C C C P C C P C C C P C C P ξξξξξ且故有分布列:ξ 从而期望.161516015250151205210310=⨯+⨯+⨯+⨯+⨯=ξE解法二: 〔Ⅰ〕〔Ⅱ〕的分布列求法同解法一由于10张券总价值为80元,即每张的平均奖品价值为8元,从而抽2张的平均奖品价值=2×8=16〔元〕.变式新题型2.假设一种机器在一个工作日内发生故障的概率为0 2,若一周5个工作日内无故障,可获利润10万元;仅有一个工作日发生故障可获利润5万元;仅有两个工作日发生故障不获利也不亏损;有三个或三个以上工作日发生故障就要亏损2万元 求:〔Ⅰ〕一周5个工作日内恰有两个工作日发生故障的概率〔保留两位有效数字〕; 〔Ⅱ〕一周5个工作日内利润的期望〔保留两位有效数字〕 解:以表示一周5个工作日内机器发生故障的天数,则~B 〔5,0 2〕).5,4,3,2,1,0(8.02.0)(55=⨯⨯==-k C k P k k k ξ 〔Ⅰ〕〔Ⅱ〕以表示利润,则的所有可能取值为10,5,0,-2.328.08.0)0()10(5≈====ξηP P .410.08.02.0)1()5(4115≈⨯⨯====C P P ξη.205.08.02.0)2()0(3225≈⨯⨯====C P P ξη.057.0)2()1()0(1)3()2(≈=-===-=≥=-=ξξξξηP P P P P 的概率分布为η∴ 利润的期望=10×0 328+5×0 410+0×0 205-2×0 057≈5 2〔万元〕[样题3] 〔2005年高考·江西卷·理19〕A 、B 两位同学各有五张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时A 赢得B 一张卡片,否则B 赢得A 一张卡片.规定掷硬币的次数达9次时,或在此前某人已赢得所有卡片时游戏终止.设表示游戏终止时掷硬币的次数.ξ〔1〕求的取值范围; 〔2〕求的数学期望E.解:〔1〕设正面出现的次数为m ,反面出现的次数为n ,则,可得:.9,7,5:;9,7,22,7;7,6,11,6;5,5,00,5的所有可能取值为所以时或当时或当时或当ξξξξ===============n m n m n m n m n m n m〔2〕.322756455964571615;64556451611)9(=⨯+⨯+⨯==--==ξξE P 变式新题型3.某射手进行射击练习,每射击5发子弹算一组,一旦命中就停止射击,并进行下一组练习,否则一直打完5发子弹后才能进入下一组练习.若该射手在某组练习中射击命中一次,并且他射击一次命中率为0.8,〔1〕求在这一组练习中耗用子弹ξ的分布列.〔2〕求在完成连续两组练习后,恰好共耗用了4发子弹的概率.分析:该组练习耗用的子弹数ξ为随机变量,ξ可取值为1,2,3,4,5ξ=1,表示第一发击中〔练习停止〕,故P 〔ξ=1〕=0.8ξ=2,表示第一发未中,第二发命中,故P 〔ξ=2〕=〔1-0.8〕×0.8=0.16ξ=3,表示第一、二发未中,第三发命中,故P 〔ξ=3〕=〔1-0.8〕2×0.8=0.032以下类推解:〔1〕ξ的分布列为ξ 1 2 3 4 5 P 0.8 0.16 0.032 0.0064 0.0016补充备例:有n 把看上去样子相同的钥匙,其中只有一把能把大门上的锁打开.用它们去试开门上的锁.设抽取钥匙是相互独立且等可能的.每把钥匙试开后不能放回.求试开次数 的数学期望和方差.分析:求 时,由题知前 次没打开,恰第k 次打开.不过,一般我们应从简单的地方入手,如 ,发现规律后,推广到一般.解: 的可能取值为1,2,3,…,n .η 10 5 0 -2 P 0 328 0 410 0 205 0 057;所以的分布列为:1 2 …k…n……;说明:复杂问题的简化处理,即从个数较小的看起,找出规律所在,进而推广到一般,方差的公式正确使用后,涉及一个数列求和问题,合理拆项,转化成熟悉的公式,是解决的关键.。

期末复习5:概率分布、期望和方差

期末复习5:概率分布、期望和方差

(2) 8个篮球队中有两个强队,现任意将8个队分成两组,每组4个队,则这2个强 队分在同一组的概率为多少?
(3)设集合A={1,2,3,4},B={a,b,c},从A到B的映射满足“B中的每一个 元素都有原象”的概率是多少?
(4)在房间有4个人,至少两个人的生日是同一个月的概率是多少?
(5)某人忘记了电话号码的最后一个数字,因而他不重复的拨号,求:
①第四次接通电话的概率;②拨号不超过四次而接通的概率;
整理ppt
3
二 概率分布列、期望和方差:
1 概率分布列: X x 1 x 2 … x n
P p1 p2 … p n
2 期望(均值) 方差:
(1)定义 E (X ) x 1 p 1 x 2 p 2 x n p n
D ( X ) ( x 1 E ( X ) 2 p 1 ) ( x 2 E ( X ) 2 p 2 ) ( x n E ( X ) 2 p n
两点分布
E1 p0.6 D 1p(1p)0.24
⑵求重复2次投篮时命中次数 2 的期望与方差;
二项分布
E2 np1.2 D 2np(1p)0.48
整理ppt
6
例3
一次智力测试中,有两个相互独立的题目 A 、B ,答题规则 为:被测试者答对问题 A 得分数为 a ,答对问题 B 得分数 为 b ,没有答对不得分。先答哪个题目由被测试者自由选择,
b
c
其中 a , b , c 成等差数列,若E 1 ,则 D 的值是
3
练一练:(2009广东)
已知离散型随机变量 X 的分布列如下表:
X
1
0
1
2
P
a
b
c
1 12

35 高中数学分布列与期望及决策专题训练

35 高中数学分布列与期望及决策专题训练

专题35高中数学分布列与期望及决策专题训练【知识总结】离散型随机变量X 的分布列为则,(1)p i ≥0,i =1,2,…,n .(2)p 1+p 2+…+p n =1.(3)E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n .(4)D (X )= i =1n[x i -E (X )]2p i .(5)若Y =aX +b ,则E (Y )=aE (X )+b ,D (Y )=a 2D (X ).【高考真题】1.(2022·全国甲理) 甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.(1)求甲学校获得冠军的概率;(2)用X 表示乙学校的总得分,求X 的分布列与期望.2.(2022·北京) 在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到9.50m 以上(含9.50m)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,935,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;(2)设X 是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X 的数学期望E (X );(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证)【题型突破】1.某校计划举行以“唱支山歌给党听”为主题的红歌合唱比赛活动,现有高一1,2,3,4班准备从《唱支山歌给党听》《没有共产党就没有新中国》《映山红》《十送红军》《歌唱祖国》5首红歌中选取一首作为比赛歌曲,设每班只选择其中一首红歌,且选择任一首红歌是等可能的.(1)求“恰有2个班级选择《唱支山歌给党听》”的概率;(2)记随机变量X 表示这4个班级共选择红歌的个数(相同的红歌记为1个),求X 的分布列与均值.2.有编号为1,2,3的三个小球和编号为1,2,3,4的四个盒子,将三个小球逐个随机地放入四个盒子中,每个小球的放置相互独立.(1)求三个小球恰在同一个盒子中的概率;(2)求三个小球在三个不同盒子且每个小球编号与所在盒子编号不同的概率;(3)记录所有至少有一个小球的盒子,以X 表示这些盒子编号的最小值,求E (X ).3.某公司年会有幸运抽奖环节,一个箱子里有相同的十个乒乓球,球上分别标0,1,2,…,9这十个自然数,每位员工有放回依次取出三个球.规定:每次取出的球所标数字不小于后面取出的球所标数字即中奖.中奖项:三个数字全部相同中一等奖,奖励10 000元现金;三个数字中有两个数字相同中二等奖,奖励5 000元现金;三个数字各不相同中三等奖,奖励2 000元现金.其他不中奖,没有奖金.(1)求员工A 中二等奖的概率;(2)设员工A 中奖奖金为X ,求X 的分布列;(3)员工B 是优秀员工,有两次抽奖机会,求员工B 中奖奖金的期望.4.目前,新能源汽车尚未全面普及,原因在于技术水平有待提高,国内几家大型汽车生产商的科研团队已经独立开展研究工作.吉利研究所、北汽科研中心、长城攻坚站三个团队两年内各自出成果的概率分别为12,m ,14.若三个团队中只有长城攻坚站出成果的概率为112. (1)求吉利研究所、北汽科研中心两个团队两年内至少有一个出成果的概率及m 的值;(2)三个团队有X 个在两年内出成果,求X 的分布列和均值.5.随着社会的发展,一些企业改变了针对应届毕业生的校园招聘方式,将线下招聘改为线上招聘.某世界五百强企业M 的线上招聘方式分资料初审、笔试、面试这三个环节进行,资料初审通过后才能进行笔试,笔试合格后才能参加面试,面试合格后便正式录取,且这几个环节能否通过相互独立.现有甲、乙、丙三名大学生报名参加了企业M 的线上招聘,并均已通过了资料初审环节.假设甲通过笔试、面试的概率分别为12,13;乙通过笔试、面试的概率分别为23,12;丙通过笔试、面试的概率与乙相同. (1)求甲、乙、丙三人中至少有一人被企业M 正式录取的概率;(2)为鼓励优秀大学生积极参与企业的招聘工作,企业M 决定给报名参加应聘且通过资料初审的大学生一定的补贴,补贴标准如下表:记甲、乙、丙三人获得的所有补贴之和为X 元,求X 的分布列和均值.6.一台设备由三个部件构成,假设在一天的运转中,部件1,2,3需要调整的概率分别为0.1,0.2,0.3,各部件的状态相互独立.(1)求设备在一天的运转中,部件1,2中至少有1个需要调整的概率;(2)记设备在一天的运转中需要调整的部件个数为X ,求X 的分布列及数学期望.7.下象棋既锻炼思维又愉悦身心,有益培养人的耐心和细心,舒缓大脑并让其得到充分休息.现某学校象棋社团为丰富学生的课余生活,举行象棋大赛,要求每班选派一名象棋爱好者参赛.现某班有12位象棋爱好者,经商议决定采取单循环方式进行比赛(规则采用“中国数目法”,没有和棋),即每人进行11轮比赛,最后靠积分选出第一名去参加校级比赛.积分规则如下(每轮比赛采取5局3胜制,比赛结束时,取胜者可能会出现3∶0,3∶1,3∶2三种赛式).9轮过后,积分榜上的前两名分别为甲和乙,甲累计积分26分,乙累计积分22分.第10轮甲和丙比赛,设每局比赛甲取胜的概率均为23,丙获胜的概率为13,各局比赛结果相互独立.(1)①在第10轮比赛中,甲所得积分为X ,求X 的分布列;②求第10轮结束后,甲的累计积分Y 的均值;(2)已知第10轮乙得3分,判断甲能否提前一轮获得累计积分第一,结束比赛(“提前一轮”即比赛进行10轮就结束,最后一轮即第11轮无论乙得分结果如何,甲累计积分最多)?若能,求出相应的概率;若不能,请说明理由.8.一款小游戏的规则如下:每轮游戏都要进行3次,每次游戏都需要从装有大小相同的2个红球、3个白球的袋中随机摸出2个球,若“摸出的两个都是红球”出现3次,则获得200分;若“摸出的两个都是红球”出现1次或2次,则获得20分;若“摸出的两个都是红球”出现0次,则扣除10分(即获得-10分).(1)求一轮游戏中获得20分的概率;(2)很多玩过这款小游戏的人发现,很多轮游戏后,所得的分数与最初的分数相比,不是增加而是减少了,请运用概率统计的相关知识解释这种现象.9.“T2钻石联赛”是世界乒联推出的一种新型乒乓球赛事,其赛制如下:采用七局四胜制,比赛过程中可能出现两种模式:“常规模式”和“FAST5模式”.在前24分钟内进行的常规模式中,每小局比赛均为11分制,率先拿满11分的选手赢得该局;如果两名球员在24分钟内都没有人赢得4局比赛,那么将进入“FAST5”模式,“FAST5”模式为5分制的小局比赛,率先拿满5分的选手赢得该局.24分钟计时后开始的所有小局均采用“FAST5”模式.某位选手率先在7局比赛中拿下4局,比赛结束.现有甲、乙两位选手进行比赛,经统计分析甲、乙之间以往比赛数据发现,24分钟内甲、乙可以完整打满2局或3局,且在11分制比赛中,每局甲获胜的概率为23,乙获胜的概率为13;在“FAST5”模式,每局比赛双方获胜的概率都为12,每局比赛结果相互独立. (1)求4局比赛决出胜负的概率;(2)设在24分钟内,甲、乙比赛了3局,比赛结束时,甲、乙总共进行的局数记为X ,求X 的分布列及数学期望.10.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元).当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值?11.(2021·新高考全国℃)一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X 表示1个微生物个体繁殖下一代的个数,P (X =i )=p i (i =0,1,2,3).(1)已知p 0=0.4,p 1=0.3,p 2=0.2,p 3=0.1,求E (X );(2)设p 表示该种微生物经过多代繁殖后临近灭绝的概率,p 是关于x 的方程:p 0+p 1x +p 2x 2+p 3x 3=x 的一个最小正实根,求证:当E (X )≤1时,p =1,当E (X )>1时,p <1;(3)根据你的理解说明(2)问结论的实际含义.12.为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两组白鼠对药效进行对比试验.对于两组白鼠,当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i-1+bp i+cp i+1(i=1,2,…,7),其中a=P(X=-1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.①求证:{p i+1-p i}(i=0,1,2,…,7)为等比数列;②求p4,并根据p4的值解释这种试验方案的合理性.13.为了预防某种流感扩散,某校医务室采取积极的处理方式,对感染者进行短暂隔离直到康复.假设某班级已知6位同学中有1位同学被感染,需要通过化验血液来确定被感染的同学,血液化验结果呈阳性即被感染,呈阴性即未被感染.下面是两种化验方案.方案甲:逐个化验,直到能确定被感染的同学为止.方案乙:先任取3个同学,将他们的血液混在一起化验,若结果呈阳性则表明被感染同学为这3位中1位,后再逐个化验,直到能确定被感染的同学为止;若结果呈阴性,则在另外3位同学中逐个检测.(1)求方案甲所需化验次数等于方案乙所需化验次数的概率;(2)η表示方案甲所需化验次数,ξ表示方案乙所需化验次数,假设每次化验的费用都相同,请从经济角度考虑哪种化验的方案最佳.14.已知某高中高三年级共有20个班,共1 000人,其中男生600人,女生400人.现在从该校高三学生中抽取10%的学生进行玩游戏时间的调查.设置方案如下:一个罐子中放置了大小、质地相同的20个红球,20个白球,被抽查的同学首先从该罐子中随机抽取一个球,看过颜色后放回,若抽到红球回答问题1,若抽到白球回答问题2,学生只需要对一个问题回答“是”或者“否”即可.问题1:你的性别是否为男生?问题2:你周末打游戏的时长是否在3小时及以上?(1)应该抽取多少学生?若用分层抽样的抽样方法,如何抽取这10%的学生?(2)最终有40张答卷回答“是”,请估计该高中高三年级有多大占比的学生周末打游戏的时长在3小时及以上.15.某公司为了切实保障员工的健康安全,决定在全公司范围内举行一次专门针对某病毒的健康普查,为此需要抽取全公司m人的血样进行化验,由于人数较多,检疫部门制定了下列两种可供选择的方案.方案①:将每个人的血样分别化验,这时需要化验m次.方案②:按k个人一组进行随机分组,把从每组k个人抽来的血样混合在一起进行化验,如果每个人的血样均为阴性,则验出的结果呈阴性,这k个人的血样只需化验一次(这时认为每个人的血样化验1k次);否则,呈阳性,则需对这k 个人的血样再分别进行一次化验,这样,该组k 个人的血样总共需要化验k +1次.假设此次普查中每个人的血样化验呈阳性的概率为p ,且这些人之间的化验结果相互独立.(1)设方案②中,某组k 个人中每个人的血样化验次数为X ,求X 的分布列;(2)设m =1 000,p =0.1,试求方案②中,k 分别取2,3,4时,各需化验的平均总次数,并指出在这三种分组情况下,相比方案①,化验次数最多可以平均减少多少次?(结果保留整数)16.某新型双轴承电动机需要装配两个轴承才能正常工作,且两个轴承互不影响.现计划购置甲、乙两个品牌的轴承,两个品牌轴承的使用寿命及价格情况如下表:已知甲品牌使用7个月或8个月的概率均为12,乙品牌使用3个月或4个月的概率均为12. (1)若从4件甲品牌和2件乙品牌共6件轴承中,任选2件装入电动机内,求电动机可工作时间不少于4个月的概率;(2)现有两种购置方案,方案一:购置2件甲品牌;方案二:购置1件甲品牌和2件乙品牌(甲、乙两品牌轴承搭配使用).试从性价比(即电动机正常工作时间与购置轴承的成本之比)的角度考虑,选择哪一种方案更实惠?17.为了预防某种流感扩散,某校医务室采取积极的处理方式,对感染者进行短暂隔离直到康复.假设某班级已知6位同学中有1位同学被感染,需要通过化验血液来确定被感染的同学,血液化验结果呈阳性即被感染,呈阴性即未被感染.下面是两种化验方案.方案甲:逐个化验,直到能确定被感染的同学为止.方案乙:先任取3个同学,将他们的血液混在一起化验,若结果呈阳性则表明被感染同学为这3位中的1位,后再逐个化验,直到能确定被感染的同学为止;若结果呈阴性,则在另外3位同学中逐个检测.(1)求方案甲所需化验次数等于方案乙所需化验次数的概率;(2)η表示方案甲所需化验次数,ξ表示方案乙所需化验次数,假设每次化验的费用都相同,请从经济角度考虑哪种化验的方案最佳.18.某公司为了切实保障员工的健康安全,决定在全公司范围内举行一次专门针对某病毒的健康普查,为此需要抽取全公司m 人的血样进行化验,由于人数较多,检疫部门制定了下列两种可供选择的方案.方案①:将每个人的血样分别化验,这时需要化验m 次.方案②:按k 个人一组进行随机分组,把从每组k 个人抽来的血样混合在一起进行化验,如果每个人的血样均为阴性,则验出的结果呈阴性,这k 个人的血样只需化验一次(这时认为每个人的血样化验1k次);否则,呈阳性,则需对这k 个人的血样再分别进行一次化验,这样,该组k 个人的血样总共需要化验k +1次.假设此次普查中每个人的血样化验呈阳性的概率为p ,且这些人之间的化验结果相互独立.(1)设方案②中,某组k 个人中每个人的血样化验次数为X ,求X 的分布列;(2)设m =1 000,p =0.1,试求方案②中,k 分别取2,3,4时,各需化验的平均总次数,并指出在这三种分组情况下,相比方案①,化验次数最多可以平均减少多少次?(结果保留整数)19.某工厂购进一批加工设备,由于该设备自动模式运行不稳定,因此一个工作时段内会有14的概率出现自动运行故障.此时需要1名维护人员立刻将设备切换至手动操控模式,并持续人工操作至此工作时段结束,期间该维护人员无法对其他设备进行维护.工厂在每个工作时段开始时将所有设备调至自动模式,若设备的自动模式出现故障而得不到维护人员的维护,则该设备将停止运行,且每台设备运行的状态相互独立.(1)若安排1名维护人员负责维护3台设备,求这3台设备能顺利运行至工作时段结束的概率;(2)设该工厂有甲、乙两个车间.甲车间有6台设备和2名维护人员,将6台设备平均分配给2名维护人员,每名维护人员只负责维护分配给自己的3台设备;乙车间有7台设备和2名维护人员,7台设备由这2名维护人员共同负责维护.若用车间所有设备顺利运行至工作时段结束的概率来衡量生产的稳定性,试比较甲、乙两个车间生产稳定性的高低.20.在一个系统中,每一个设备能正常工作的概率称为设备的可靠度,而系统能正常工作的概率称为系统的可靠度.为了增加系统的可靠度,人们经常使用“备用冗余设备”(即正在使用的设备出故障时才启动的设备).已知某计算机网络服务器系统采用的是“一用两备”(即一台正常设备,两台备用设备)的配置,这三台设备中,只要有一台能正常工作,计算机网络就不会断掉.设三台设备的可靠度均为r (0<r <1),它们之间相互不影响.(1)要使系统的可靠度不低于0.992,求r 的最小值;(2)当r =0.9时,求能正常工作的设备数X 的分布列;(3)已知某高科技产业园当前的计算机网络中每台设备的可靠度是0.7,根据以往经验可知,计算机网络断掉可能给该产业园带来约50万的经济损失.为减少对该产业园带来的经济损失,有以下两种方案:方案1,更换部分设备的硬件,使得每台设备的可靠度维持在0.9,更换设备硬件的总费用为8万元;方案2,对系统的设备进行维护,使得设备可靠度维持在0.8,设备维护的总费用为5万元.请从期望损失最小的角度判断决策部门该如何决策.。

第7讲 分布列与数学期望(解析版)

第7讲 分布列与数学期望(解析版)

第7讲分布列与数学期望(解析版)第7讲分布列与数学期望(解析版)在统计学中,分布列与数学期望是常用的分析工具。

它们能够帮助我们理解随机变量的分布和特征。

本文将对分布列与数学期望进行解析,并探讨它们在实际问题中的应用。

一、分布列分布列是用来描述离散型随机变量的概率分布的一种方式。

对于一个具体的随机变量X,其可能取到的数值通常是有限个或可数个。

我们可以列出每个数值对应的概率,形成一张分布列。

分布列通常以表格的形式呈现,其中包括随机变量的取值和对应的概率。

举个例子,假设随机变量X表示投掷一个骰子后的点数。

在这种情况下,X可以取到1、2、3、4、5、6这六个数值。

我们可以计算出每个数值对应的概率,得到如下的分布列:| X | 1 | 2 | 3 | 4 | 5 | 6 ||-------|-------|-------|-------|-------|-------|-------|| P(X) | 1/6 | 1/6 | 1/6 | 1/6 | 1/6 | 1/6 |通过分布列,我们可以清晰地看到每个点数出现的概率是相等的。

除了离散型随机变量外,连续型随机变量也可以通过分布列进行描述。

连续型随机变量的分布列变成了概率密度函数,其中表示为概率的数值变为密度。

二、数学期望数学期望是随机变量的平均值,在概率论中有着重要的意义。

数学期望反映了随机变量取值的中心位置。

对于离散型随机变量X,其数学期望E(X)定义为:E(X) = ∑(x·P(X=x))其中,x表示随机变量X的取值,P(X=x)表示该取值的概率。

以前述的投骰子问题为例,我们可以计算出随机变量X的数学期望:E(X) = (1/6)·1 + (1/6)·2 + (1/6)·3 + (1/6)·4 + (1/6)·5 + (1/6)·6= 3.5可以看出,投骰子问题中,骰子点数的数学期望是3.5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率分布列及期望专题
类型一、独立重复试验
例1、某一中学生心理咨询中心服务电话接通率为4
3,某班3名同学商定明天分别就同一问题询问该服务中心.且每人只拨打一次,求他们中成功咨询的人数ξ的分布列及其期望.
练习:根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立.
(I)求该地1位车主至少购买甲、乙两种保险中的l 种的概率;
(Ⅱ)X 表示该地的l00位车主中,甲、乙两种保险都不购买的车主数.求X 的期望.
类型二、超几何分布
例2、研究性学习小组要从6名(其中男生4人,女生2人)成员中任意选派3人去参加某次社会调查.
(1)在男生甲被选中的情况下,求女生乙也被选中的概率;
(2)设所选3人中女生人数为ξ,求ξ的分布列及数学期望.
类型三、耗用子弹数型
例3、某射手有3发子弹,射击一次命中概率为0.9,如果命中就停止射击,否则一直到子弹用尽,求耗用子弹数ξ的分布列.
练习、某次篮球联赛的总决赛在甲队与乙队之间角逐,采用七局四胜制,即若有一队先胜四场,则此队获胜,比赛就此结束.由于天气原因场地最多使用6次,因甲、乙两队实力相当,每场比赛获胜的可能性相等,问需要比赛的次数ξ的分布列及期望。

类型四、取得合格品以前已取出的不合格品数的分布列
例4、一批零件中有3个合格品与3个不合格品.安装机器时,从这批零件中任取一个.如果每次取出的不合格品不再放回去,求在取得合格品以前已取出的不合格品数的分布列.练习、在医学生物试验中,经常以果蝇作为试验对象.一个关有6只果蝇的笼子里,不慎混
入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔.若用ξ表示剩余果蝇的数量,求ξ的分布列与期望.
类型五、古典概型求概率
例5、某市公租房房屋位于A.B.C三个地区,设每位申请人只申请其中一个片区的房屋,且申请其中任一个片区的房屋是等可能的,求该市的任4位申请人中:(Ⅰ)若有2人申请A 片区房屋的概率;(Ⅱ)申请的房屋在片区的个数的ξ分布列与期望。

练习、单位组织4个部门的职工旅游,规定每个部门只能在韶山,张家界,衡山3个景区中选一个,假设各个部门选择每个景区是等可能的。

(1)求恰好有2个景区有部门选择的概率(2)求被选取景区个数ξ的分布列与期望。

过关训练:
1、随机变量X 的分布列如下:
其中a ,b ,c 2、离散型随机变量X 的概率分布规律为()(1)
a P x n n n ==
+ (n =1,2,3,4),其中a 是常数,则P (12<X <52
)的值为( ) A.23 B.34 C.45 D.56 3、设ξ是服从二项分布B (n ,p )的随机变量,又E (ξ)=15,D (ξ)=454,则n 与p 的值为( ) A .60,34 B .60,14 C .50,34 D .50,14
4、袋中装有10个红球、5个黑球.从中随机抽出3个球.若抽取的红球数用ξ表示,则随机变量ξ的期望为
5、设随机变量ξ服从正态分布N (0,1),若P (ξ>1)=p ,则P (-1<ξ<0)=( )
A.12+p
B.12
-p C .1-2p D .1-p
6、已知X ~N (μ,σ2),P (μ-σ<X ≤μ+σ)=0.68,P (μ-2σ<X ≤μ+2σ)=0.95,某次全市20000人参加的考试,数学成绩大致服从正态分布N (100,100),则本次考试120分以上的学生约有________人.
7、甲、乙两地都位于长江下游,根据天气预报的纪录知,一年中下雨天甲市占20%,乙市占18%,两市同时下雨占12%.则甲市为雨天,乙市也为雨天的概率为( )
A .0.6
B .0.7
C 0.8
D .0.66
8、甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件.则下列结论中正确的是( )
①P (B )=25; ②P (B |A 1)=511
;③事件B 与事件A 1相互独立; ④A 1,A 2,A 3是两两互斥的事件;
A .②④
B .①③
C .②③
D .①④
9、某公园有P ,Q ,R 三只小船,P 船最多可乘3人,Q 船最多可乘2人,R 船只能乘1人,现有3个大人和2个小孩打算同时分乘若干只小船,规定有小孩的船必须有大人,共有不同的乘船方法为( )
A .36种
B .18种
C .27种
D .24种
10、某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于________. 如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档