辽宁师范大学数学分析2004年考研真题考研试题硕士研究生入学考试试题
2004数学四--考研数学真题详解
B 2004 − 2 A2 =
.
⎛3 0 0 ⎞
【答】
⎜ ⎜
0
3
0
⎟ ⎟
⎜⎝ 0 0 −1⎟⎠
【详解】因为
⎜⎛ −1 A2 = ⎜ 0
0 −1
0 ⎟⎞ 0⎟ ,
B 2004 = P −1 A2004 P .
⎜⎝ 0 0 1⎟⎠
故
B 2004 = P −1 ( A2 )1002 P = P −1EP = E ,
∑ Y
=
1 n
n i =1
Xi
,
则
(A)
D( X 1
+
Y
)
=
n
+ n
2
σ
2
.
(B)
D( X 1
−Y)
=
n
+ n
2
σ2
.
(C)
Cov( X1,Y )
=
σ2 n
.
(D) Cov( X1,Y ) = σ 2 .
【答】 [C]
【详解】 由于随机变量 X1, X 2 ,", X n (n > 1) 独立同分布, 于是可得
由极限的保号性,至少存在一点 x0 ∈ (a,b)
使得
f
(x0 ) x0
− −
f (a) a
>
0 ,即
f
(x0 )
>
f
(a) .
同理,至少存在一点 x0 ∈ (a,b) 使得 f (x0 ) > f (b) .
所以,(A) (B) (C)都正确,故选(D).
(12) 设 n 阶矩阵 A 与 B 等价, 则必须 (A) 当| A |= a(a ≠ 0) 时, | B |= a . (B) 当| A |= a(a ≠ 0) 时, | B |= −a .
2004考研数学一真题及答案解析
2004年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (1)曲线ln y x =上与直线1=+y x 垂直的切线方程为__________ . (2)已知(e )e x x f x -'=,且(1)0f =,则()f x =__________ .(3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-L ydx xdy 2的值为__________.(4)欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为__________ . (5)设矩阵210120001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,矩阵B 满足**2=+ABA BA E ,其中*A 为A 的伴随矩阵,E 是单位矩阵,则B =__________ .(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ .二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===03002sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A)γβα,, (B)βγα,, (C)γαβ,, (D)αγβ,, (8)设函数()f x 连续,且,0)0(>'f 则存在0>δ,使得(A)()f x 在(0,)δ内单调增加 (B)()f x 在)0,(δ-内单调减少 (C)对任意的),0(δ∈x 有()(0)f x f > (D)对任意的)0,(δ-∈x 有()(0)f x f >(9)设∑∞=1n n a 为正项级数,下列结论中正确的是(A)若n n na ∞→lim =0,则级数∑∞=1n n a 收敛(B)若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n n a 发散(C)若级数∑∞=1n n a 收敛,则0lim 2=∞→n n a n (D)若级数∑∞=1n n a 发散, 则存在非零常数λ,使得λ=∞→n n na lim(10)设()f x 为连续函数,⎰⎰=t ty dx x f dy t F 1)()(,则)2(F '等于 (A)2(2)f (B)(2)f (C)(2)f - (D) 0(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足=AQ C 的可逆矩阵Q 为(A)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010(B)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010 (C)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010(D)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110 (12)设,A B 为满足=AB O 的任意两个非零矩阵,则必有 (A)A 的列向量组线性相关,B 的行向量组线性相关 (B)A 的列向量组线性相关,B 的列向量组线性相关 (C)A 的行向量组线性相关,B 的行向量组线性相关 (D)A 的行向量组线性相关,B 的列向量组线性相关(13)设随机变量X 服从正态分布(0,1),N 对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A)2αu (B)21α-u(C)21α-u (D) α-1u(14)设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A)21Cov(,)X Y nσ= (B)21Cov(,)X Y σ=(C)212)(σnn Y X D +=+ (D)211)(σnn Y X D +=-三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤)(15)(本题满分12分) 设2e e a b <<<,证明2224ln ln ()e b a b a ->-.(16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg的飞机,着陆时的水平速度为700km/h 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).k问从着陆点=10⨯0.66算起,飞机滑行的最长距离是多少?(注:kg表示千克,km/h表示千米/小时)(17)(本题满分12分)计算曲面积分,)1(322233dxdy z dzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.(18)(本题满分11分)设有方程10nx nx+-=,其中n为正整数.证明此方程存在惟一正实根n x,并证明当1α>时,级数1nn xα∞=∑收敛.(19)(本题满分12分)设(,)z z x y =是由2226102180x xy y yz z -+--+=确定的函数,求(,)z z x y =的极值点和极值.(20)(本题满分9分)设有齐次线性方程组121212(1)0,2(2)20,(2),()0,nnna x x xx a x xnnx nx n a x++++=⎧⎪++++=⎪≥⎨⎪⎪++++=⎩试问a取何值时,该方程组有非零解,并求出其通解.(21)(本题满分9分)设矩阵12314315a-⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦A的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.(22)(本题满分9分)设,A B 为随机事件,且111(),(|),(|)432P A P B A P A B ===,令;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧= 求:(1)二维随机变量(,)X Y 的概率分布. (2)X 和Y 的相关系数.XY ρ(23)(本题满分9分) 设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x x x F ββ其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(1)β的矩估计量. (2)β的最大似然估计量2004年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为 1-=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标。
2004考研数一真题及解析
2004年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (1)曲线ln y x =上与直线1=+y x 垂直的切线方程为__________ . (2)已知(e )e x x f x -'=,且(1)0f =,则()f x =__________ .(3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-L ydx xdy 2的值为__________.(4)欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为__________ . (5)设矩阵210120001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,矩阵B 满足**2=+ABA BA E ,其中*A 为A 的伴随矩阵,E 是单位矩阵,则B =__________ .(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ .二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===03002sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A)γβα,, (B)βγα,, (C)γαβ,, (D)αγβ,, (8)设函数()f x 连续,且,0)0(>'f 则存在0>δ,使得(A)()f x 在(0,)δ内单调增加 (B)()f x 在)0,(δ-内单调减少 (C)对任意的),0(δ∈x 有()(0)f x f > (D)对任意的)0,(δ-∈x 有()(0)f x f >(9)设∑∞=1n n a 为正项级数,下列结论中正确的是(A)若n n na ∞→lim =0,则级数∑∞=1n n a 收敛(B)若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n n a 发散(C)若级数∑∞=1n n a 收敛,则0lim 2=∞→n n a n (D)若级数∑∞=1n n a 发散, 则存在非零常数λ,使得λ=∞→n n na lim(10)设()f x 为连续函数,⎰⎰=t ty dx x f dy t F 1)()(,则)2(F '等于 (A)2(2)f (B)(2)f (C)(2)f - (D) 0(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足=AQ C 的可逆矩阵Q 为(A)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010(B)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010 (C)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010(D)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110 (12)设,A B 为满足=AB O 的任意两个非零矩阵,则必有 (A)A 的列向量组线性相关,B 的行向量组线性相关 (B)A 的列向量组线性相关,B 的列向量组线性相关 (C)A 的行向量组线性相关,B 的行向量组线性相关 (D)A 的行向量组线性相关,B 的列向量组线性相关(13)设随机变量X 服从正态分布(0,1),N 对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A)2αu (B)21α-u(C)21α-u (D) α-1u(14)设随机变量)1(,,,21>n X X X n Λ独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A)21Cov(,)X Y nσ= (B)21Cov(,)X Y σ=(C)212)(σnn Y X D +=+ (D)211)(σnn Y X D +=-三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤)(15)(本题满分12分) 设2e e a b <<<,证明2224ln ln ()e b a b a ->-.(16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg的飞机,着陆时的水平速度为700km/h 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).k问从着陆点=10⨯0.66算起,飞机滑行的最长距离是多少?(注:kg表示千克,km/h表示千米/小时)(17)(本题满分12分)计算曲面积分,)1(322233dxdy z dzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.(18)(本题满分11分)设有方程10nx nx+-=,其中n为正整数.证明此方程存在惟一正实根n x,并证明当1α>时,级数1nn xα∞=∑收敛.(19)(本题满分12分)设(,)z z x y =是由2226102180x xy y yz z -+--+=确定的函数,求(,)z z x y =的极值点和极值.(20)(本题满分9分)设有齐次线性方程组121212(1)0,2(2)20,(2),()0,nnna x x xx a x xnnx nx n a x++++=⎧⎪++++=⎪≥⎨⎪⎪++++=⎩LLL L L L L LL试问a取何值时,该方程组有非零解,并求出其通解.(21)(本题满分9分)设矩阵12314315a-⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦A的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.(22)(本题满分9分)设,A B 为随机事件,且111(),(|),(|)432P A P B A P A B ===,令;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧= 求:(1)二维随机变量(,)X Y 的概率分布. (2)X 和Y 的相关系数.XY ρ(23)(本题满分9分) 设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x x x F ββ其中未知参数n X X X ,,,,121Λ>β为来自总体X 的简单随机样本,求:(1)β的矩估计量. (2)β的最大似然估计量2004年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为 1-=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标。
New_全国硕士研究生入学统一考试数学四试题及答案.pdf
DX }
1
.
e
【分析】 根据指数分布的分布函数和方差立即得正确答案.
【详解】
由于 DX
1 λ2
,
X 的分布函数为
F
(x)
1
e
λx
,
0,
x 0, x 0.
故
P{X DX } 1 P{X DX } 1 P{X 1} 1 F (1 ) 1 .
(A) 至少存在一点 x0 (a,b) ,使得 f (x0 ) > f (a).
(B) 至少存在一点 x0 (a,b) ,使得 f (x0 ) > f (b).
(C) 至少存在一点 x0 (a,b) ,使得 f (x0 ) 0 .
(D) 至少存在一点 x0 (a,b) ,使得 f (x0 ) = 0.
考查 f (x)在 x = 0 的左、右两侧的二阶导数的符号,判断拐点情况.
【详解】设 0 < < 1,当 x ( , 0) (0 , )时,f (x) > 0,而 f (0) = 0,所以 x = 0 是 f (x)
的极小值点.
显然,x = 0 是 f (x)的不可导点. 当 x ( , 0)时,f (x) = x(1 x), f (x) 2 0 ,
【详解】因为 x A1b , 而且 A aij 33 是实正交矩阵, 于是 AT A1 , A 的每一个行
(列)向量均为单位向量, 所以
x
A1b
AT b
a11 a12
1 0
.
a13 0
(6) 设随机变量 X 服从参数为 λ 的指数分布, 则 P{X
2004考研数学一真题及答案解析
2004年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线y lnx上与直线x y 1垂直的切线方程为.(2)已知 f (e x) xe x,且f(1) 0,则f(x)=.(3)设L为正向圆周x2 y2 2在第一象限中的部分,则曲线积分Lxdy 2ydx的值为.(4)欧拉方程x2嗅4xdy 2y 0(x 0)的通解为^dx2dx -------------2 1 0(5)设矩阵A 1 2 0,矩阵B满足ABA* 2BA* E ,其中A*为A的伴随矩阵,E 0 0 1是单位矩阵,则|B =.(6)设随机变量X服从参数为的指数分布,则P{ X JDX} =.二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中只有一个符合题目要求,把所选项前的字母填在题后的括号内)x o x2- ■ x(7)把x 0时的无力小重cost出,tandtdt, sin t dt ,使排在后面的0 0 0是前一个的高阶无穷小,则正确的排列次序是(A),,(C),,(8)设函数f (x)连续,且f⑼0,则存在(A)他)在(0,)内单调增加(C)对任意的x (0,)有f(x) f(0) (B),,(D),,0,使得(B)“刈在(,0)内单调减少(D)对任意的x ( ,0)有f(x) f(0)(9)设 a n 为正项级数,下列结论中正确的是 n 1 (A)若 limna n =0, 则级数 a n 收敛ndn 1(B)若存在非零常数,使得lim na n,则级数 a n 发散ndn 1(C)若级数 a n 收敛,则n imn 2a n 0n 1n(D)若级数 a n 发散,则存在非零常数,使得lim na n n 1 n(10)设 f(x)为连续函数,F(t) 1t dy : f (x)dx ,则 F (2)等于(B) f(2)(C) f ⑵(D) 0(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足AQ C 的可逆矩阵Q 为0 1 0(B) 1 0 10 0 1 0 1 1(D) 1 0 00 0 1(12)设A,B 为满足AB O 的任意两个非零矩阵,则必有(13)设随机变量X 服从正态分布N(0,1),对给定的(01),数u 满足P{X u} ,若 P{X x} ,则 x 等于(A) 2 f (2) 0 1 0(A) 1 0 01 0 1 0 1 0(C) 1 0 00 1 1(A) A 的列向量组线性相关 (B) A 的列向量组线性相关 (C) A 的行向量组线性相关(D) A 的行向量组线性相关 ,B 的行向量组线性相关 ,B 的列向量组线性相关 ,B 的行向量组线性相关,B 的列向量组线性相关(A) u(B) u1 _22(C) u 二 (D) U 1n(14)设随机变重X i ,X 2,,X n (n 1)独立同分布,且其万差为20.令Y - X i , n i 1(A) Cov(X 1,Y)一n三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算 步骤)(15)(本题满分12分)设 e a b e 2,证明 ln 2b ln 2a --2- (b a). e(16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速 伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h 经测试,减速伞打 开后,飞机所受的总阻力与飞机的速度成正比 (比例系数为k 6.0 106).问从着陆点 算起,飞机滑行的最长距离是多少?(注:kg 表示千克,km/h 表示千米/小时)(17)(本题满分12分)计算曲面积分 I2x 3dydz 2y 3dzdx 3(z 2 1)dxdy,其中 是曲面 z 1 x 2 y 2(z 0)(18)(本题满分11分)设有方程x n nx 1 0,其中n 为正整数.证明此方程存在惟一正实根 x n ,并证明当 1时,级数X n 收敛.n 1(B) Cov(X 1,Y) (C) D(X 1 Y)42n(D) D(X 1 Y)— n(19)(本题满分12分)设z z(x,y)是由x2 6xy 10y2 2yz z2 18 0确定的函数,求z z(x,y)的极值点和极值.(20)(本题满分9分)(1 a)x1 x2 L x n 0,设有齐次线性方程组2x1 (2 a)x2 L 2x n 0, (n 2),L L L L L Ln% n” L (n a)x n 0,试问a取何值时,该方程组有非零解,并求出其通解.(21)(本题满分9分)1 2 3设矩阵A 1 4 3的特征方程有一个二重根,求a的值,并讨论A是否可相似1 a 5对角化.(22)(本题满分9分)设A,B 为随机事件,且P(A) 1,P(B|A) 1,P(A|B) L 令 4 32X 1, A发生,Y 1, B发生,0,A不发生;0,B不发生.求:(1)二维随机变量(X,Y)的概率分布.(2) X 和Y 的相关系数(23)(本题满分9分)设总体X 的分布函数为其中未知参数 1,X 1,X 2, ,X n 为来自总体X 的简单随机样本,求:(1) 的矩估计量.(2) 的最大似然估计量2004年数学一试题分析、详解和评注填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线y=lnx 上与直线x y 1垂直的切线方程为y x 1.【分析】本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标。
2004年考研数学试题详解及评分参考
(C) b ,a ,g . (D) b ,g ,a .
【答】 应选 (B).
【解】 由a ¢ = cos x2 , b ¢ = 2x tan x : 2x2, g ¢ = 1 sin( 2x
x )3
:
1 2
x
(
x
®
0+
),可见
lim b = lim b ¢ = 0 , lim g = lim g ¢ = 0 ,即 b 比g 高阶,g 比 b 高阶. 故选 (B).
证明 ln 2 b - ln 2
a
>
4 e2
(b - a) .
证法1:设j(x)
=
ln2
x-
4 e2
x ,则j¢(x)
=
2
ln x x
-
4 e2
,j¢¢(x)
=
2
1
- ln x2
x
,
……5
分
所以当 x > e 时,j ¢¢(x) < 0, 故j ¢(x) 单调减少,
从而当 e < x < e2 时,j ¢(x) > j ¢(e2 ) =
xdy - 2 ydx - xdy - 2 ydx - xdy - 2 ydx = 3dxdy - 0 - 0 = 3p / 2 .
L+ L1 + L2
L1
L2
D
【解法二】
易见
L
的参数方程为
ïì x
í ïî
y
= =
2 cos t 2 sin t
,
(其中 t 从 0
到p 2
),代入被积函数,有
p
p
ò ò ò xdy - 2 ydx = 2 (2 cos2 t + 4sin2 t)dt = 2 2 (1+ sin2 t)dt = 3p / 2 .
2004考研数学一真题及答案解析
2004年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (1)曲线ln y x =上与直线1=+y x 垂直的切线方程为__________ . (2)已知(e )e x x f x -'=,且(1)0f =,则()f x =__________ .(3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-L ydx xdy 2的值为__________.(4)欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为__________ . (5)设矩阵210120001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,矩阵B 满足**2=+ABA BA E ,其中*A 为A 的伴随矩阵,E 是单位矩阵,则B =__________ .(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ .二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===03002sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A)γβα,, (B)βγα,, (C)γαβ,, (D)αγβ,, (8)设函数()f x 连续,且,0)0(>'f 则存在0>δ,使得(A)()f x 在(0,)δ内单调增加 (B)()f x 在)0,(δ-内单调减少 (C)对任意的),0(δ∈x 有()(0)f x f > (D)对任意的)0,(δ-∈x 有()(0)f x f >(9)设∑∞=1n n a 为正项级数,下列结论中正确的是(A)若n n na ∞→lim =0,则级数∑∞=1n n a 收敛(B)若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n n a 发散(C)若级数∑∞=1n n a 收敛,则0lim 2=∞→n n a n (D)若级数∑∞=1n n a 发散, 则存在非零常数λ,使得λ=∞→n n na lim(10)设()f x 为连续函数,⎰⎰=t ty dx x f dy t F 1)()(,则)2(F '等于 (A)2(2)f (B)(2)f (C)(2)f - (D) 0(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足=AQ C 的可逆矩阵Q 为(A)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010(B)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010 (C)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010(D)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110 (12)设,A B 为满足=AB O 的任意两个非零矩阵,则必有 (A)A 的列向量组线性相关,B 的行向量组线性相关 (B)A 的列向量组线性相关,B 的列向量组线性相关 (C)A 的行向量组线性相关,B 的行向量组线性相关 (D)A 的行向量组线性相关,B 的列向量组线性相关(13)设随机变量X 服从正态分布(0,1),N 对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A)2αu (B)21α-u(C)21α-u (D) α-1u(14)设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A)21Cov(,)X Y nσ= (B)21Cov(,)X Y σ=(C)212)(σnn Y X D +=+ (D)211)(σnn Y X D +=-三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤)(15)(本题满分12分) 设2e e a b <<<,证明2224ln ln ()e b a b a ->-.(16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg的飞机,着陆时的水平速度为700km/h 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).k问从着陆点=10⨯0.66算起,飞机滑行的最长距离是多少?(注:kg表示千克,km/h表示千米/小时)(17)(本题满分12分)计算曲面积分,)1(322233dxdy z dzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.(18)(本题满分11分)设有方程10nx nx+-=,其中n为正整数.证明此方程存在惟一正实根n x,并证明当1α>时,级数1nn xα∞=∑收敛.(19)(本题满分12分)设(,)z z x y =是由2226102180x xy y yz z -+--+=确定的函数,求(,)z z x y =的极值点和极值.(20)(本题满分9分)设有齐次线性方程组121212(1)0,2(2)20,(2),()0,nnna x x xx a x xnnx nx n a x++++=⎧⎪++++=⎪≥⎨⎪⎪++++=⎩试问a取何值时,该方程组有非零解,并求出其通解.(21)(本题满分9分)设矩阵12314315a-⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦A的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.(22)(本题满分9分)设,A B 为随机事件,且111(),(|),(|)432P A P B A P A B ===,令;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧= 求:(1)二维随机变量(,)X Y 的概率分布. (2)X 和Y 的相关系数.XY ρ(23)(本题满分9分) 设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x x x F ββ其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(1)β的矩估计量. (2)β的最大似然估计量2004年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为 1-=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标。
2004年考研数学(二)试题及解析
2004年考研数学(二)试题一、填空题(本题共6小题,每小题4分,满分24分,把答案填在题中横线上)(1)__________)(,1)1(lim)(2=+-=∞→x x f nx xn x f n 的间断点为则设.______________)(,1313)()2(33取值范围为向上凸的则曲线确定由参数方程函数设x x y y t t y t t x x y =⎩⎨⎧+-=++=._____1d )3(12=-⎰∞+x x x.______3,2e ),()4(32=∂∂+∂∂+==-yz x z y z y x z z z x 则确定由方程设函数 .________560d 2d )()5(13的特解为满足微分方程==-+=x y y x x x y_____||,*,*2*,100021012)6(=+=⎪⎪⎪⎭⎫ ⎝⎛=B E A A E BA ABA B A 矩阵,则是单位的伴随矩阵为其中满足矩阵设矩阵二. 选择题(本题共8小题,每小题4分,满分32分,在每小题给出的四个选项中,只有一个是符合要求的,把所有选项前的字母填在题后的括号内.)αγβγαββγαγβαγβα,,)D (,,)C (,,)B (,,)A (,,d sin ,d tan ,d cos 0)7(03022则正确的排列次序是的高阶无穷小使排在后面的是前一个排列起来时的无穷小量把⎰⎰⎰===→+x xx t t t t t t x 的拐点也不是曲线的极值点不是的拐点是曲线且的极值点是的拐点是曲线但的极值点不是的拐点不是曲线但的极值点是则设)()0,0(,)(0)D ()()0,0(,)(0)C ()()0,0(,)(0)B ()()0,0(,)(0)A (|,)1(|)()8(x f y x f x x f y x f x x f y x f x x f y x f x x x x f ========-=⎰⎰⎰⎰+++++∞→2122121212222d )1(ln )D (d )1ln(2)C (d ln 2)B (d ln )A ()1()21()11(ln lim )9(xx xx xx xx n nn n n n 等于)0()()0,()D ()0()(),0()C ()0,()()B (),0()()A (,0,0)(',)()10(f x f x f x f x x f x f x f x f >-∈>∈->>有对任意的有对任意的内单调减少在内单调增加在使得且存在且连续设函数δδδδδxA c bx ax y x A c bx ax y xB x A x c bx ax y x B x A x c bx ax y x x y y cos *)D (sin *)C ()cos sin (*)B ()cos sin (*)A (sin 1'')11(22222+++=+++=++++=++++=++=+的特解形式可设为微分方程{}⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰-----≤+=θπθπθθθθθθsin 2020sin 202202111122d )cos sin (d )D (d )cos sin (d )C (d )(d 2)B (.d )(d )A (.d d )(,2|),(,)()12(222rr r f rr f xxy f y y xy f x y x xy f y y x y x D u f y y x x D等于则区域连续设函数⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=100001110)D (110001010)C (100101010)B (101001010)A (,32,21,3)13(为的可逆矩阵则满足列得列加到第的第再把列交换得列与第的第将阶方阵是设Q C AQ C B B A A 的列向量组线性相关的行向量组线性相关的行向量组线性相关的行向量组线性相关的列向量组线性相关的列向量组线性相关的行向量组线性相关的列向量组线性相关则必有的任意两个非零矩阵为满足设B A B A B A B A AB B A ,)D (,)C (,)B (,)A (,0,)14(=.1)3cos 2(1lim)10()15(.),,94,9(3⎥⎦⎤⎢⎣⎡-+→x x x x 求极限分本题满分证明过程或演算布骤解答应写出文字说明分满分小题本题共三、解答题[][].0)(,)II (;0,2)()I (.),2()(),4()(2,0,),()()10)(16(2处可导在为何值时问上的表达式在区间写出为常数其中都满足若对任意的上,在区间上有定义在设函数分本题满分=-+=-=+∞-∞x x f k x f k x kf x f x x x x f x f .)()2(.)()1(,d |sin |)()11)(17(2的值域求为周期的周期函数是以证明设分本题满分x f x f t t x f x xππ⎰+=.)()(lim )2(.)()()1().(),(),(,,0)0(,02e e )12)(18(-t F t S t V t S t F t x t S t V x y t t x x y t xx +∞→==>==+=计算极限的值求处的底面积为在侧面积为其体积为轴旋转一周得一旋转体绕该曲边梯形围成一曲边梯形及与直线曲线分本题满分).(e 4ln ln ,e e )12()19(2222a b a b b a ->-<<<证明设分本题满分 .//,).100.6(,./700,9000.,,,,,)11)(20(6小时表示千米表示千克注离是多少起,飞机滑行的最长距问从着陆点算比例系数为飞机的速度成正比后飞机所受的总阻力与减速伞打开经测试着陆的水平速度为的飞机现有一质量为使飞机迅速减速并停下以增大阻力伞飞机尾部张开减速在触地的瞬间为了减少滑行距离某种飞机在机场降落时分本题满分h km kg k h km kg ⨯=.,,),e ,()10)(21(222yx z y z x z f y x f z xy∂∂∂∂∂∂∂-=求具有连续二阶偏导数,其中设分本题满分.)4(44403)3(33022)2(20)1()9)(22(4321432143214321非零解,并求出其通解取何值时,该方程组有试问设有齐次线性方程分本题满分a x a x x x x x a x x x x x a x x x x x a ⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++=++++ .,,51341321)9()23(可相似对角化是否并讨论的值求根的特征方程有一个二重设矩阵分本题满分A a a A ⎪⎪⎪⎭⎫⎝⎛---=2004年考研数学(二)试题解析一. 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上. )(1)设2(1)()lim1n n xf x nx →∞-=+, 则()f x 的间断点为x = 0 .【分析】本题属于确定由极限定义的函数的连续性与间断点.对不同的x ,先用求极限的方法得出()f x 的表达式, 再讨论()f x 的间断点.【详解】显然当0x =时,()0f x =;当0x ≠时, 2221(1)(1)1()lim lim 11n n xn x x n f x nx x x x n →∞→∞--====++, 所以 ()f x 0,01,0x x x =⎧⎪=⎨≠⎪⎩,因为 001lim ()lim(0)x x f x f x→→==∞≠ 故 0x =为()f x 的间断点.(2)设函数()y x 由参数方程 333131x t t y t t ⎧=++⎪⎨=-+⎪⎩ 确定, 则曲线()y y x =向上凸的x 取值范围为1-∞∞(,)(或(-,1]).【分析】判别由参数方程定义的曲线的凹凸性,先用由 ()()x x t y y t =⎧⎨=⎩定义的 223()()()()(())d y y t x t x t y t dx x t ''''''-=' 求出二阶导数,再由 220d ydx< 确定x 的取值范围. 【详解】 22222331213311dydy t t dt dx dx t t t dt--====-+++,222223214113(1)3(1)d y d dy dt tdt dx dx dx t t t '⎛⎫⎛⎫==-⋅= ⎪ ⎪+++⎝⎭⎝⎭, 令 220d ydx< ⇒ 0t <.又 331x t t =++ 单调增, 在 0t <时, (,1)x ∈-∞。
全国硕士研究报告生入学统一考试
2004年全国硕士研究生入学统一考试数学<一)试卷答案和评分参考一、填空题<本题共6小题,每小题4分,满分24分.把答案填写在题中横线上.)<1)曲线上与直线垂直的切线方程为y = x―1 .<2)已知,且,则.<3)设为正向圆周在第一象限的部分,则曲线积分的值为.<4)欧拉方程的通解为.<5)设矩阵,矩阵满足,其中为的伴随矩阵,是单位矩阵,则.<6)设随机变量服从参数为的指数分布,则.二、选择题<本题共8小题,每小题4分,满分32分,在每小题给出的四个选项中,只有一个是符合题目要求的,把所选项前的字母填在题后面的括号内.)<7)把的无穷小量排列起来,使排在后面的是前一个的高阶无穷小,则正确的排列次序是<A). <B). <C). <D). 【B 】<8)设函数连续,且,则存在,使得<A)在内单调增加.<B)在内单调减小.<C)对任意的有.<D)对任意的有. 【C】<9)设为正项级数,下列结论中正确的是<A)若,则级数收敛.<B)若存在非零常数,使得,则级数发散.<C)若级数收敛,则.<D)若级数发散,则存在非零常数,使得. 【B】<10)设为连续函数,,则等于<A). <B). <C). <D). 【B】<11)设是阶方阵,将的第列与第列交换得,再把的第列加到第列得,则满足的可逆矩阵为<A).<B).<C).<D). 【D】<12)设为满足的任意两个非零矩阵,则必有<A)的列向量组线性相关,的行向量线性相关.<B)的列向量组线性相关,的列向量线性相关.<C)的行向量组线性相关,的行向量线性相关.<D)的行向量组线性相关,的列向量线性相关. 【A】<13)设随机变量服从正态分布,对给定的,数满足.若,则等于<A). <B). <C). <D). 【C】<14)设随机变量独立分布,且其方差为.令,则<A). <B).<C). <D). 【A】三、解答题<本题共9小题,满分94分.解答题应写出文字说明、证明过程或演算步骤.)(15>(本题满分12分>设,证明.证法1设,则,,……5分所以当时,,故单调减少,从而当时,,……9分即当时,单调增加.因此当时,.即,故. ……12分证法2对函数在上应用拉格朗日中值定理,得……3分设,则,当时,,所以单调减少. ……9分从而,即,故. ……12分(16>(本题满分11分>某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg的飞机,着陆时的水平速度为700km/h.经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比<比例系数为).问从着陆点算起,飞机滑行的最长距离是多少?注:kg表示千克,km/h表示千M/小时.解由题设,飞机的质量kg,着陆时的水平速度=700km/h.从飞机接触跑道开始计时,设时刻飞机的滑行距离为,速度为.法1根据牛顿第二定律,得. ……4分又,由以上二式得,……7分积分得.由于,,故得,从而.当时,<km)……11分所以,飞机滑行的最长距离为1.05km.法2根据牛顿第二定律,得……4分所以.两端积分得通解,代入初始条件解得,故. ……7分飞机滑行的最长距离为<km). ……11分法3 根据牛顿第二定律,得,……4分其特征方程为,解之得故. ……7分由,,得于是.当时,<km). ……11分所以,飞机滑行的最长距离为1.05km.<17)<本题满分12分)计算曲面积分,其中是曲面的上侧.解取为平面上被圆所围部分的下侧,记为由与围成的空间闭区域,则. ……3分由高斯公式知……6分……9分而,因此. ……12分<18)<本题满分11分)设有方程,其中为正整数.证明此方程存在唯一正实根,并证明当时,级数收敛.证记.当时,,故在,上单调增加. ……3分而,由连续函数的介值定理知存在惟一正实根. ……6分由与知……9分故当时,而正项级数收敛,所以当时,级数收敛. ……11分<19)<本题满分12分)设,是由确定的函数,求的极值点和极点.解因为,所以,……2分令得将上式代入,可得或……5分由于,, ……8分所以,故,又,从而点<9,3)是是极小值点,极小值为.类似地,由可知,又,所以点<-9,-3)是是极大值点,极大值为. ……12分<20)<本题满分9分)设有齐次线性方程组试问取何值时,该方程组有非零解,并求出其通解解法1对方程组系数矩阵作初等行变换,有.当的时,,故方程组有非零解,其同解方程组为,由此得基础解系为于是方程组的通解为其中为任意常数, ……4分当时,对矩阵作初等行变换,有……6分可知时,,故方程组也有非零解,其同解方程组为由此得基础解系为于是方程组的通解为,其中为任意常数. ……9分解法2方程组的系数行列式为. ……3分当,即,方程组有非零解.当,对系数矩阵作初等行变换,有,故方程组的同解方程组为,由此得基础解系为于是方程组的通解为其中为任意常数. ……6分当对系数矩阵作初等行变换,有,故方程组的同解方程组为由此得基础解系为于是方程组的通解为,其中为任意常数. ……9分<21)<本题满分9分)设矩阵的特征方程有一个二重根,求的值,并讨论是否可相似对角化.解的特征多项式为……2分若是特征方程的二重根,则有,解得. ……4分当时,是特征值为2,2,6,矩阵的秩为1,故对应的线性无关的特征向量有两个,从而可相似对角化. ……6分若不是特征方程的二重根,则有为完全平方,从而,解得.当时,是特征值为2,4,4,矩阵的秩为2,故对应的线性无关的特征向量只有一个,从而不可相似对角化. ……9分<22)<本题满分9分)设为随机事件,且,令求:<I)二维随机变量的概率分布;<II)与的相关系数.解 <I)由于……2分所以<或),故的概率分布为……6分<II)的概率分布分别为,.则故从而. ……9分<23)<本题满分9分)设总体的分布函数为其中未知参数为来自总体的简单随机样本,求:<I)的矩估计量;<II)的最大似然估计量.解的概率密度为……1分<I)由于……2分令,解得,所以参数的矩估计量为.……4分<II)似然函数为. ……6分当时,,取对数得两边对求导,得故的最大似然估计量为……9分。
2004考研数学一真题及答案解析(统编)
2004年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (1)曲线ln y x =上与直线1=+y x 垂直的切线方程为__________ . (2)已知(e )e x x f x -'=,且(1)0f =,则()f x =__________ .(3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-L ydx xdy 2的值为__________.(4)欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为__________ . (5)设矩阵210120001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,矩阵B 满足**2=+ABA BA E ,其中*A 为A 的伴随矩阵,E 是单位矩阵,则B =__________ .(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ .二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===03002sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A)γβα,, (B)βγα,, (C)γαβ,, (D)αγβ,, (8)设函数()f x 连续,且,0)0(>'f 则存在0>δ,使得(A)()f x 在(0,)δ内单调增加 (B)()f x 在)0,(δ-内单调减少 (C)对任意的),0(δ∈x 有()(0)f x f > (D)对任意的)0,(δ-∈x 有()(0)f x f >(9)设∑∞=1n n a 为正项级数,下列结论中正确的是(A)若n n na ∞→lim =0,则级数∑∞=1n n a 收敛(B)若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n n a 发散(C)若级数∑∞=1n n a 收敛,则0lim 2=∞→n n a n (D)若级数∑∞=1n n a 发散, 则存在非零常数λ,使得λ=∞→n n na lim(10)设()f x 为连续函数,⎰⎰=t ty dx x f dy t F 1)()(,则)2(F '等于 (A)2(2)f (B)(2)f (C)(2)f - (D) 0(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足=AQ C 的可逆矩阵Q 为(A)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010(B)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010 (C)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010(D)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110 (12)设,A B 为满足=AB O 的任意两个非零矩阵,则必有 (A)A 的列向量组线性相关,B 的行向量组线性相关 (B)A 的列向量组线性相关,B 的列向量组线性相关 (C)A 的行向量组线性相关,B 的行向量组线性相关 (D)A 的行向量组线性相关,B 的列向量组线性相关(13)设随机变量X 服从正态分布(0,1),N 对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A)2αu (B)21α-u(C)21α-u (D) α-1u(14)设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A)21Cov(,)X Y nσ=(B)21Cov(,)X Y σ=(C)212)(σnn Y X D +=+ (D)211)(σnn Y X D +=-三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤)(15)(本题满分12分) 设2e e a b <<<,证明2224ln ln ()eb a b a ->-.(16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?(注:kg 表示千克,km/h 表示千米/小时)(17)(本题满分12分)计算曲面积分,)1(322233dxdy z dzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.(18)(本题满分11分)设有方程10nx nx+-=,其中n为正整数.证明此方程存在惟一正实根n x,并证明当1α>时,级数1nn xα∞=∑收敛.(19)(本题满分12分)设(,)z z x y =是由2226102180x xy y yz z -+--+=确定的函数,求(,)z z x y =的极值点和极值.(20)(本题满分9分)设有齐次线性方程组121212(1)0,2(2)20,(2),()0,nnna x x xx a x xnnx nx n a x++++=⎧⎪++++=⎪≥⎨⎪⎪++++=⎩试问a取何值时,该方程组有非零解,并求出其通解.(21)(本题满分9分)设矩阵12314315a-⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦A的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.(22)(本题满分9分)设,A B 为随机事件,且111(),(|),(|)432P A P B A P A B ===,令;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧= 求:(1)二维随机变量(,)X Y 的概率分布. (2)X 和Y 的相关系数.XY ρ(23)(本题满分9分) 设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x x x F ββ其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(1)β的矩估计量. (2)β的最大似然估计量2004年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为 1-=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标。
2004年全国硕士研究生入学统一考试数学一真题及答案
2004年全国硕士研究生入学统一考试数学一试题答案一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上.) (1)曲线ln y x =上与直线1x y +=垂直的切线方程为 . 【答案】1y x =- 【考点】导数的几何意义 【难易度】★ 【详解】解析:由11)(ln =='='xx y ,得1x =, 可见切点为)0,1(,于是所求的切线方程为 )1(10-⋅=-x y , 即 1-=x y .(2)已知()x x f e xe -'=,且(1)0f =,则()f x = . 【答案】21ln 2x 【考点】不定积分的换元法 【难易度】★★ 【详解】解析:令t e x=,则t x ln =,于是有t t t f ln )(=', 即 .ln )(xxx f =' 积分得2ln 1()ln (ln )ln 2x f x dx xd x x C x ===+⎰⎰. 利用初始条件(1)0f =, 得0C =,故所求函数为()f x = 21ln 2x .(3)设L 为正向圆周222x y +=在第一象限中的部分,则曲线积分x y y x Ld 2d -⎰的值为 . 【答案】π23 【考点】第二类曲线积分的计算;格林公式 【难易度】★★★ 【详解】解析:正向圆周222=+y x 在第一象限中的部分,可表示为.20:,sin 2,cos 2πθθθ→⎩⎨⎧==y x于是θθθθθπd ydx xdy L]sin 2sin 22cos 2cos 2[220⋅+⋅=-⎰⎰=.23sin 2202πθθππ=+⎰d (4)欧拉方程)0(02d d 4d d 222>=++x y xyx x y x 的通解为 . 【答案】221x C x C y+=,其中12,C C 为任意常数【考点】欧拉方程【难易度】★★ 【详解】解析:令te x =,则dtdy x dt dy e dx dt dt dy dx dy t 1==⋅=-,][11122222222dtdy dt y d x dx dt dt y d x dt dy x dx y d -=⋅+-=, 代入原方程,整理得02322=++y dt dydty d , 解此方程,得通解为 .221221xc x c e c ec y t t+=+=-- (5)设矩阵210120001A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,矩阵B 满足**2ABA BA E =+,其中*A 为A 的伴随矩阵,E 是单位矩阵,则B = . 【答案】19【考点】抽象型行列式的计算;伴随矩阵 【难易度】★★ 【详解】解析:方法1:已知等式两边同时右乘A ,得A A BA A ABA +=**2, 而3=A ,于是有A B AB +=63, 即 A B E A =-)63(,再两边取行列式,有363==-A B E A ,而 2763=-E A ,故所求行列式为.91=B 方法2:由题设条件**2ABA BA E =+ 得 *(2)A E B A E-=两边取行列式,得*21A E B A E -==其中 2101203001A ==, 312A A A -*===9 0102100001A E -==1故1192B A E A*==- (6)设随机变量X 服从参数为λ的指数分布,则{}P X DX >= .【答案】e1【考点】指数分布 【难易度】★★ 【详解】解析:由题设,知21λ=DX ,于是}{DX X P >=dx e X P x ⎰+∞-=>λλλλ1}1{=.11ee x=-∞+-λλ 二、选择题(本题共8小题,每小题4分,满分32分.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.) (7)把0x +→时的无穷小量t t t t t t xxx d sin ,d tan ,d cos 3022⎰⎰⎰===γβα排列起来,使排在后面的是前一个的高阶无穷小,则正确的排列次序是( ) (A ),,αβγ (B ),,αγβ (C ),,βαγ (D ),,βγα 【答案】(B )【考点】无穷小量的比较 【难易度】★★ 【详解】解析:方法1:0cos 2tan lim cos tan limlim 22002=⋅==+++→→→⎰⎰xxx dtt dt t x xx x x αβ,可排除(C),(D)选项, 又 xx x x dtt dtt x xxx x tan 221sin lim tan sin limlim 2300302⋅==+++→→→⎰⎰βγ=∞=+→20lim 41x x x ,可见γ是比β低阶的无穷小量,故应选(B). 方法2:221000cos cos lim limlim ,x kkk x x x t dt t x x kxα+++-→→→=⎰洛欲使上式极限存在但不为0,应取1k =,0lim 1x xα+→=,所以(当+→0x 时)α与x 同阶.2120000tan tan 22tan lim limlim lim ,x kkk k x x x x tdt x x xx x kx kx β++++--→→→→⋅==⎰洛欲使上式极限存在但不为0,应取3k =,有302lim 3x x β+→=,所以(当+→0x 时)β与3x 同阶. 31322120000sin sin lim lim lim lim ,22xk k k k x x x x t dtx x xx x kx kx γ++++---→→→→==⎰洛欲使上式极限存在但不为0,应取2k =,有201lim 4x x γ+→=,所以(当+→0x 时)γ与2x 同阶.因此,后面一个是前面一个的高阶小的次序是,,αγβ,选(B ).(8)设函数()f x 连续,且(0)0f '>,则存在0δ>,使得( ) (A )()f x 在(0,)δ内单调增加. (B )()f x 在(,0)δ-内单调减少. (C )对任意的(0,)x δ∈有()(0)f x f >. (D )对任意的(,0)x δ∈-有()(0)f x f >. 【答案】(C )【考点】函数极限的局部保号性;导数的概念 【难易度】★★ 【详解】解析:由导数的定义,知,0)0()(lim)0(0>-='→xf x f f x根据极限的保号性,知存在0>δ,当),0()0,(δδ -∈x 时,有0)0()(>-xf x f即当)0,(δ-∈x 时,()(0)f x f <; 而当),0(δ∈x 时,有()(0)f x f >. 故应选(C).(9)设n n a∑∞=1为正项级数,下列结论中正确的是( )(A )若0lim =∞→n n na ,则级数n n a∑∞=1收敛.(B )若存在非零常数λ ,使得λna nn =∞→lim ,则级数n n a ∑∞=1发散.(C )若级数n n a∑∞=1收敛,则0lim 2=∞→n n a n .(D )若级数n n a∑∞=1发散,则存在非零常数λ ,使得λna n n =∞→lim .【答案】(B )【考点】比较审敛法的极限形式 【难易度】★★ 【详解】解析:方法1:排斥法:取n n a n ln 1=,则n n na ∞→lim =0,但∑∑∞=∞==11ln 1n n n nn a 发散,排除(A),(D);又取nn a n 1=,则级数∑∞=1n na收敛,但∞=∞→n n a n 2lim ,排除(C), 故应选(B).方法2:证明(B)正确. lim n n na λ→∞=,即lim 1n n a nλ→∞=.因为11n n∞=∑发散,由比较判别法的极限形式知,1nn a∞=∑发散.(10)设()f x 为连续函数,1()d ()d t tyF t yf x x =⎰⎰,则(2)F '=( )(A )2(2)f (B )(2)f (C )(2)f - (D )0 【答案】(B )【考点】积分上限的函数及其导数 【难易度】★★★ 【详解】解析:方法1:交换积分次序,得⎰⎰=tt ydx x f dy t F 1)()(=⎰⎰⎰-=t x tdx x x f dx dy x f 111)1)((])([于是,)1)(()(-='t t f t F ,从而有 )2()2(f F =',故应选(B). 方法2:设()()x f x Φ=111()()[()()]()(1)()t t t tyF t dy f x dx t y dy t t y dy ==Φ-Φ=Φ--Φ⎰⎰⎰⎰()()(1)()()()(1),F t t t t t f t t ''=Φ-+Φ-Φ=- (2)(2)F f '=,选(B).(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足AQ C =的可逆矩阵Q 为( )(A )010100101⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦. (B )⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010. (C )⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010. (D )⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110.【答案】(D )【考点】矩阵的初等变换 【难易度】★★ 【详解】解析:由题设,有B A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001010, 100010100011011100011100.001001001001B A A AQ ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦故011100001Q ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,应选(D). (12)设A ,B 为满足0AB =的任意两个非零矩阵,则必有( )(A ) A 的列向量组线性相关,B 的行向量组线性相关. (B ) A 的列向量组线性相关,B 的列向量组线性相关. (C ) A 的行向量组线性相关,B 的行向量组线性相关. (D ) A 的行向量组线性相关,B 的列向量组线性相关. 【答案】(A )【考点】向量组线性相关的判别法 【难易度】★★ 【详解】解析:方法1:设A 为n m ⨯矩阵,B 为s n ⨯矩阵,则由0AB =知,n B r A r <+)()(,其中n 是矩阵A 的列数,也是B 的行数又,A B 为非零矩阵,必有()0,()0r A r B >>. 可见(),()r A n r B n <<, 即A 的列向量组线性相关,B 的行向量组线性相关,故应选(A).方法2:由0AB =知,B 的每一列均为0Ax =的解,而B 为非零矩阵,即0Ax =存在非零解,可见A 的列向量组线性相关.同理,由0AB =知,O A B TT =,于是有T B 的列向量组线性相关,从而B 的行向量组线性相关,故应选(A).方法3:设 (),i j l m A a ⨯=()i j m n B b ⨯=, 记 ()12m A A A A =0AB =⇒()11121212221212n n m m m mn b b b b b b A A A bb b ⎛⎫⎪⎪⎪⋅⋅⋅ ⎪⎪⎝⎭()1111110mmn m n m b A b A b A b A =++++=(1) 由于0B ≠, 所以至少有一 0i j b ≠(1,1i m j n ≤≤≤≤), 从而由(1)知, 112210j j i j i m m b A b A b A b A +++++= , 于是 12,,,m A A A 线性相关.又记 12m B B B B ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭ ,则0AB =⇒11121121222212m m l l l m m a a a B a a a B a a a B ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⋅⋅⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 1111221211222211220m m m m l l l m m a B a B a B a B a B a B a B a B a B +++⎛⎫⎪+++ ⎪== ⎪ ⎪ ⎪+++⎝⎭ 由于0A ≠,则至少存在一 0i j a ≠(1,1i l j m ≤≤≤≤),使 11220i i i j j im m a B a B a B a B ++++= , 从而 12,,,m B B B 线性相关,故应选(A ).(13)设随机变量X 服从正态分布(0,1)N ,对给定的(01)αα<<,数u α满足{}P X u αα>=.若{}P X x α<= ,则x 等于( )(A )2u α. (B )21α-u. (C )21αu -. (D )u 1-α .【答案】(C )【考点】标准正态分布;分位数的概念【难易度】★★★ 【详解】解析:由标准正态分布概率密度函数的对称性知,αα=-<}{u X P ,于是}{2}{}{}{}{11x X P x X P x X P x X P x X P ≥=-≤+≥=≥=<-=-α即有21}{α-=≥x X P ,可见根据定义有21α-=u x ,故应选(C ). (14)设随机变量12,,,(1)n X X X n > 独立同分布,且其方差为20σ>.令i ni X n Y ∑==11,则( ) (A )n Y X 21),(Cov σ=. (B )21),(Cov σ=Y X . (C )212)(σn n Y X D +=+. (D )211)(σnn Y X D +=-. 【答案】(A )【考点】随机变量的方差的性质;协方差的性质 【难易度】★★ 【详解】解析:先计算1(,)Cov X Y ,因为11ni i Y X n ==∑,故1111112111(,)(,)(,)(,)n ni i i i Cov X Y Cov X X Cov X X Cov X X n n n ====+∑∑=.1121σnDX n = 三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分12分)设2e a b e <<<,证明 )(e 4ln ln 222a b a b ->-. 【考点】拉格朗日中值定理;函数单调性的判别 【难易度】★★★ 【详解】解析:方法1:对函数x 2ln 在[,]a b 上应用拉格朗日中值定理,得.),(ln 2ln ln 22b a a b a b <<-=-ξξξ设t t t ln )(=ϕ,则2ln 1)(t tt -='ϕ, 当t e >时, ,0)(<'t ϕ 所以)(t ϕ单调减少,从而)()(2e ϕξϕ>,即2222ln ln ee e =>ξξ,故 )(4ln ln 222a b e a b ->-. 方法2: 设x e x x 224ln )(-=ϕ,则 24ln 2)(e x x x -='ϕ, 2ln 12)(xx x -=''ϕ, 所以当x e >时,,0)(<''x ϕ 故)(x ϕ'单调减少,从而当2e x e <<时, 044)()(222=-='>'e e e x ϕϕ, 即当2e x e <<时,)(x ϕ单调增加.因此当2e x e <<时,)()(a b ϕϕ>,即 a ea b e b 22224ln 4ln ->-, 故 )(4ln ln 222a b e a b ->-. 方法3:设2224()ln ln ()x x a x a e ϕ=---, 则 2ln 4()2x x x e ϕ'=-21l n ()2xx xϕ-''=,∴x e >时, ()0x ϕ''<()x ϕ'⇒ , 从而当2e x e <<时,22244()()0x e e eϕϕ''>=-=, 2e x e ⇒<<时, ()x ϕ单调增加.2e a b e ⇒<<<时, ()()0x a ϕϕ>=。
2004年数学考研真题及解析
,可见根据定义有 x
=
u1−α
2
,故应选(C).
ϕ ( x)
ϕ ( x)
α
α
(1 − α ) / 2
0 uα
0
u1−α x
2
∑ (14)设随机变量 X1, X 2 ,
, X n (n > 1) 独立同分布,且其方差为σ 2
> 0.
令Y
=
1 n
n i =1
Xi
,
则
(A)
Cov(
X1,Y
)
=
σ2 n
.
ϕ ′′( x)
=
2
1 − ln x2
x
,
所以当 x > e 时,ϕ ′′(x) < 0, 故ϕ ′(x) 单调减少,从而当 e < x < e2 时,
ϕ′(x) > ϕ′(e2 ) = 4 − 4 = 0 e2 e2
即当 e < x < e2 时,ϕ(x) 单调增加.
因此当 e < x < e2 时,ϕ(b) > ϕ(a) ,即
(A) f ( x) 在(0,δ ) 内单调增加.
(B) f ( x) 在 (−δ ,0) 内单调减少.
(C) 对任意的 x ∈ (0,δ ) 有 f ( x) > f (0). (D) 对任意的 x ∈ (−δ ,0) 有 f ( x) > f (0).
【答】 应选(C).
【详解】 由导数的定义,知
2004 年全国硕士研究生入学统一考试 理工数学一试题详解及评析
一、 填空题
(1)曲线 y = ln x 与直线 x + y = 1 垂直的切线方程为 .
2004年全国硕士研究生入学统一考试数学(三)试卷答案和评分参考
2004年全国硕士研究生入学统一考试数学(三)试卷答案和评分参考2004年全国硕士研究生入学统一考试数学(三)试卷答案和评分参考一、填空题(本题共6小题,每小题4分,满分24分.把答案填写在题中横线上.)(1)若0sin lim(cos )5xx x x b e a→-=-,则a = 1 ,b = -4 .(2)函数(,)f u v 由关系式[(),]()f xg y y x g y =+确定,其中函数()g y 可微,且()0g y ≠,则2f u v=??2()[()]g v g v '-.(3)设21,2,()21,2,x xe x f x x ?-≤-≥?则212(1)f x dx -=?12-.(4)二次型222123122313(,,)()()()f x x x x x x x x x =++-++的秩为 2 . (5)设随机变量X 服从参数为λ的指数分布,则{P X >=1e.(6)设总体X 服从正态分布21(,)N μσ,总体Y 从正态分布2 2(,)N μσ,112,,,n X X X 和212,,,n Y Y Y 分别是来自总体X 和Y 的简单随机样本,则12221112()()2n n i j i j X X Y Y E n n ==??-+-??+-∑∑= 2σ . 二、选择题(本题共8小题,每小题4分,满分32分,在每小题给出的四个选项中,只有一个是符合题目要求的,把所选项前的字母填在题后面的括号内.)(7)函数2sin(2)()(1)(2)x x f x x x x -=--在下列哪个区间内有界.(A)(1,0)-. (B)(0,1). (C)(1,2). (D)(2,3). 【 A 】(8)设()f x 在(,)-∞+∞内有定义,且lim ()x f x a →+∞=,1(),0,()0,0,f xg x xx ?≠?=??=?则(A)0x =必是()g x 的第一类间断点. (B )0x =必是()g x 的第二类间断点. (C )0x =必是()g x 的连续点.(D )()g x 在点0x =处的连续性与a 的取值有关. 【 D 】(9)设()(1),f x x x =-则(A)0x =是()f x 的极值点,但(0,0)不是曲线()y f x =的拐点. (B)0x =不是()f x 的极值点,但(0,0)是曲线()y f x =的拐点. (C)0x =是()f x 的极值点,且(0,0)是曲线()y f x =的拐点.(D)0x =不是()f x 的极值点,(0,0)也不是曲线()y f x =的拐点. 【 C 】(10)设有以下命题:①若()2121n n n u u ∞-=+∑收敛,则1n n u ∞=∑收敛.②若1n n u ∞=∑收敛,则10001n n u ∞+=∑收敛.③若1lim1n n nu u +→+∞>收敛,则1n n u ∞=∑发散.④若()1n n n u v ∞=+∑收敛,则11,n n n n u v ∞∞==∑∑都收敛. 【 B 】(11)设()f x '在[,]a b 上连续,且()0,()0f a f b ''><,则下列结论中错误..的是 (A)至少存在一点0(,)x a b ∈,使得0()()f x f a >. (B)至少存在一点0(,)x a b ∈,使得0()()f x f b >. (C)至少存在一点0(,)x a b ∈,使得0()0f x '=.(D)至少存在一点0(,)x a b ∈,使得0()0f x = 【 D 】(12)设n 阶矩阵A 与B 等价,则必有(A)当(0)A a a =≠时,B a =.(B)当(0)A a a =≠时,B a =-. (C)当0A ≠时,0B =.(D)当0A =时,0B =. 【 D 】 (13)设n 阶矩阵A 的伴随矩阵*0A ≠,若1234,,,ξξξξ是非齐次线性方程组Ax b =的互不相等的解,则对应的齐次线性方程0Ax =的基础解系(A)不存在. (B)仅含一个非零解向量.(C)含有两个线性无关的解向量. (D)含有三个线性无关的解向量. 【 B 】 (14)设随机变量X 服从正态分布(0,1)N ,对给定的(01)αα<<,数a u 满足{}a P X u α>=.若{}P X x α<=,则x 等于(A )2a u . (B )12-. (C )12a u -. (D )1a u - 【 C 】三、解答题(本题共9小题,满分94分,解答题应写出文字说明、证明过程或演算步骤.)(15)(本题满分8分)求 22201cos lim sin x x x x →??-解 22201cos lim sin x x x x →??-22222sin cos limsin x x x xx x→-=22401sin 24limx x xx→-= ……2分01sin 44lim2x x xx→-= ……4分 201cos 4lim 6x x x→-= ……6分0sin 4lim 3x x x →= 4 3= ……8分 (16)(本题满分8分) 求)Dy d σ??,其中D 是由圆224x y +=和22 (1)1x y ++=所围成的平面区域(如图).解法1)))DD D y d y d y d σσσ=-大圆小圆……2分)D y d σ+??大圆D D yd σσ=+大大(根据对称性)2220d r dr πθ=+?=163π ……4分)D y d σ+??小圆D D yd σσ=+小小32cos 2220d r dr πθπθ-=+??329=,……7分所以)16(32)9Dy d σπ=-??……8分解法 2 由积分区域对称性和被积函数的奇偶性0Dyd σ=?? ……1分原式0Dσ=+??12D D σσ??=+上上2……2分22222002cos 22d r dr d r dr πππθθθ-??=+……5分4462()339ππ??=+- 16(32)9π=- ……8分[注]:1D σ??上定限1分,计算1分.D σ??上2定限1分,计算1分.(17)(本题满分8分)设(),()f x g x 在[,]a b 上连续,且满足()(),[,)x x a a f t dt g t dt x a b ≥∈??, ()(),b b a af t dtg t dt =证明:()().bb a axf x dx xg x dx ≤证令()()(),()(),x aF x f x g xG x F t dt =-=?由题设知()0,[,]G x x a b ≥∈()()0,()(),G a G b G x F x '=== ……2分从而()(),b b aaxF x dx xdG x =()(),b baaxG x G x dx =-(),baG x dx =-? ……4分由于()0,[,]G x x a b ≥∈,故有()0,ba G x dx -≤? ……6分即 ()0baxF x dx ≤?.因此 ()()bb aaxf x dx xg x dx ≤……8分(18)(本题满分9分)设某商品的需求函数为1005Q P =-,其中价格(0,20)P ∈,Q 为需求量. (I )求需求量对价格的弹性(0);d d E E > (II )推导(1)d dR Q E dP=-(其中R 为收益),并用弹性d E 说明价格在何范围内变化时,降低价格反而使收益增加.解 (I) 20d P P E Q Q P'==-. ……2分(II )由,R PQ =得dR Q P Q dP'=+(1)P Q Q Q'=+(1)d Q E =-. ……4分又由 120d P E P==-,得10P =. ……5分当1020P <<时,1d E >,于是0dR dP<. ……7分故当1020P <<时,降低价格反而使收益增加. ……9分(19)(本题满分9分)设级数468()242462468xxxx +++-∞<<+∞的和函数为()S x .求:(I )()S x 所满足的一阶微分方程;(II )()S x 的表达式. 解(I ) 468(),242462468xxxS x =+++易见(0)0.S = ……1分357()224246xxS x '=+++246224246x x xx ??=+++……2分 2().2x x S x ??=+……4分因此()S x 是初值问题3,(0)02xy xy y '=+=的解. ……4分(II )方程32xy xy '=+的通解为32xdx xdx x y e e dx c -=+222xxC e=--+, ……7分由初始条件(0)0y =,求的1C =. ……8分故22212xxy e=-+-,因此和函数222()12xxS x e=-+- ……9分(20)(本题满分13分)设123(1,2,0),(1,2,3),(1,2,2),(1,3,3)TTTTa ab a b αααβ==+-=---+=-. 试讨论当,a b 为何值时,(I )β不能够由123,,ααα线性表示;(II )β可由123,,ααα惟一线性表示,并求出表示式;(III )β可由123,,ααα惟一线性表示,但表示式不惟一,并求出表达式. 解设有数123,,k k k ,使得112233k k k αααβ++= (*)……1分记123(,,)A ααα=.对矩阵()A β施以初等行变换,有111122230323A a b aa b β?-?+-- ? ?-+-?()=010001a b ?→- ? ?-?……3分(I )当0a b =,为任意常数时,有111101000A a b a b β?-?→- ? ?-?()可知()()r A r A β≠,故方程组(*)无解,β不能由123,,ααα线性表示.……5分(II )当0,a ≠且a b ≠时,()()3r A r A β==,故方程组(*)有惟一解123111,,0k k k a a=-==,则β可由123,,ααα惟一地线性表示,其表示式为12111a aβαα?=-+ ……7分(III )当0a b =≠时,对A β()施以初等行变换,有110011011000a A a β??-→- ?(). ……9分可知()()2r A r A β==,故方程组(*)有无穷多解,其全部解为123111,,k k c k c a a ??=-=+=,其中c 为任意常数. β可由123,,ααα线性表示,但表示式不惟一,其表示式为……11分123111c c a a βααα?=-+++ ? ??. ……13分(21)(本题满分13分)设n 阶矩阵11b b A b b= ? ? ??(I )求A 的特征值和特征向量;(II )求可逆矩阵P ,使得1P AP -为对角矩阵. 解(I )1? 当0b ≠时,111bb b b E A bbλλλλ-------=---1[1(1)][(1)]n n b b λλ-=----- ……3分故A 的特征值为121(1),1.n n b b λλλ=+-===-对于11(1)n b λ=+-,设A 的属于特征值1λ的一个特征向量为1ξ,则1111[1(1)]1b b b bn b b bξξ?? ? ?=+- ? ? ??解得 1(1,1,,1)Tξ= ,所以全部特征向量为1(1,1,,1)Tk k ξ= (k 为任意非零常数)……5分对于21n b λλ===- ,解齐次线性方程组[(1)]0b E A x --=,由111000(1)000b b b b b b b E A b bb ----- ?--=→ ? ? ? ? ? ?---?,解得基础解系2(1,1,0,,0)Tξ=-3(1,0,1,,0)Tξ=-2(1,0,0,,1)Tξ=-故全部特征向量为2233n n k k k ξξξ+++ (2,,n k k 是不全为零的常数). ......7分2?当0b =时,特征11n λλ=== ,任意非零列向量均为特征向量. (9)分(II )1?当0b ≠时,A 有n 个线性无关的特征向量,令12(,,,)n P ξξξ= ,则{}11(1),1,,1.P AP diag n b b b -=+--- ……11分2?当0b =时,A E =,对任意可逆矩阵P ,均有1P AP E -= ……13分[注]: 1(1,1,,1)Tξ= 也可由求解齐次线性方程组1()0E A x λ-=得出.(22)(本题满分13分)设A B 、为两个随机事件,且111432PP P (A)=,(B A)=,(A B)=,令1,0,A X A ?=?发生,不发生; 1,0,B Y B ?=??,发生不发生. 求:(I )二维随机变量(,)X Y 的概率分布;(II )X 与Y 的相关系数X Y ρ;(III )22Z X Y =+的概率分布.解(I )()()()1,12P A B P A P B A ==()()()1,6P A B P B P B A == ……2分则{}(){}()()(){}()()(){}()11,1,1211,0,610,1,120,0P X Y P A B P X Y P A B P A P A B P X Y P AB P B P A B P X Y P A B========-=====-====()()()()211[]3P A B P A P B P AB =-=-+-= ,(或{}11120,01126123P X Y ===---=),……6分即 (,)X Y 的概率分布为(II )方法 1111(),(),(),4612EX P A EY P B E XY =====则1(,)()24C ov X Y E X Y E X E Y =-= 22222211(),4635(),(),1636E X P A E YP B D X E X E X D Y E Y E Y == ===-==-=(,)1XY C ov X Y ρ==……9分方法 2 ,X Y 的概率分布分别为X 01,Y 01.P3414P 5616则 111,,(),4612E X E Y E X Y ==而故 1(,)(),24C ov X Y E XY EX EY =-= 22222211,,4635(),(),1636E XE YD XE X E X D Y E Y E Y ===-==-=XY ρ==……9分(III )Z 的可能取值为012,,,{}{}{}{}{}200,0,3110,11,04P Z P X Y P Z P X Y P X Y =========+===,{}{}121,1,12P Z P X Y =====……13分即Z 的概率分布为Z 012.P2314112(23)(本题满分13分)设总体X 的分布函数为1,(;;)0,x F x x x βαααβα->? ?=≤?其中参数0,1,αβ>>设12,,,n X X X 为来自总体X 的简单随机样本.(I )当1α=时,求未知参数β的矩估计量;(II )当1α=时,求未知参数β的最大似然估计量;(III )当2β=时,求未知参数α的最大似然估计量. 解当1α=时,X 的概率密度为111,1,(;)0,1,x F x xx ββ+?->?=??≤?……1分(I )由于11(;),1EX xf x dx x dx xβββββ+∞+∞+-∞===-?……2分令1X ββ=-,解得1X X β=-,所以参数β的矩估计量为1X X β=- ……4分(II )对于总体X 的样本值12,,,n x x x ,似然函数为1121,1(1,2,,)()(;)()0,nni n i x i n L f x x x x βββα+=?>=?==??∏其他……6分当1(1,2,,)i x i n >= 时,()L β>0,取对数得1ln ()ln (1)ln ,ni i L n x βββ==-+∑两边对β求导,得1ln ()ln ,nii d L nx d βββ==-∑1ln ()0,ln nid xβββ===∑令,解得故β的最大似然估计量为1.ln nii nXβ==∑ ……9分(III )当2β=时,X 的概率密度为232,(;)0,x f x x x αααα>?=??≤?对于总体X 的样本值12,,,n x x x ,似然函数为31212,(1,2,,)()(;)()0,n nni n i x i n L f x x x x αααα=?>=?==??∏,……11分当(1,2,,)i x i n α>= 时,α越大,()L α越大,因而的最大似然估计值为{}12m in ,,,n x x x α= 则的最大似然估计量为{}12m in ,,,n X X X α= ……13分。
2004年全国硕士研究生入学统一考试数学试题及答案
2004年全国硕士研究生入学统一考试数学(二)试题及答案一. 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上. )(1)设2(1)()lim1n n xf x nx →∞-=+, 则()f x 的间断点为x = 0 .【分析】本题属于确定由极限定义的函数的连续性与间断点.对不同的x ,先用求极限的方法得出()f x 的表达式, 再讨论()f x 的间断点.【详解】显然当0x =时,()0f x =;当0x ≠时, 2221(1)(1)1()lim lim 11n n xn x x n f x nx x x x n →∞→∞--====++, 所以 ()f x 0,01,0x x x =⎧⎪=⎨≠⎪⎩,因为 001lim ()lim(0)x x f x f x→→==∞≠ 故 0x =为()f x 的间断点.(2)设函数()y x 由参数方程 333131x t t y t t ⎧=++⎪⎨=-+⎪⎩ 确定, 则曲线()y y x =向上凸的x 取值范围为1-∞∞(,)(或(-,1]).【分析】判别由参数方程定义的曲线的凹凸性,先用由 ()()x x t y y t =⎧⎨=⎩定义的 223()()()()(())d y y t x t x t y t dx x t ''''''-=' 求出二阶导数,再由 220d ydx< 确定x 的取值范围. 【详解】 22222331213311dydy t t dt dx dx t t t dt--====-+++,222223214113(1)3(1)d y d dy dt tdt dx dx dx t t t '⎛⎫⎛⎫==-⋅= ⎪ ⎪+++⎝⎭⎝⎭, 令 220d ydx< ⇒ 0t <.又 331x t t =++ 单调增, 在 0t <时, (,1)x ∈-∞。
2004年全国硕士研究生入学统一考试数学(三)试题及答案 .doc
2004年全国硕士研究生入学统一考试数学(三)试题及答案一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1) 若5)(cos sin lim0=--→b x ae xx x ,则a =1,b =4-.【分析】本题属于已知极限求参数的反问题. 【详解】因为5)(cos sin lim0=--→b x a e xx x ,且0)(cos sin lim 0=-⋅→b x x x ,所以 0)(lim 0=-→a e x x ,得a = 1. 极限化为51)(cos lim )(cos sin lim00=-=-=--→→b b x x xb x a e x x x x ,得b = -4.因此,a = 1,b = -4.(2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0,则)()(22v g v g vu f'-=∂∂∂.【分析】令u = xg (y ),v = y ,可得到f (u , v )的表达式,再求偏导数即可. 【详解】令u = xg (y ),v = y ,则f (u , v ) =)()(v g v g u+,所以,)(1v g u f =∂∂,)()(22v g v g v u f '-=∂∂∂. (3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则21)1(221-=-⎰dx x f .【分析】本题属于求分段函数的定积分,先换元:x - 1 = t ,再利用对称区间上奇偶函数 的积分性质即可.【详解】令x - 1 = t ,⎰⎰⎰--==-121121221)()()1(dt x f dt t f dx x f=21)21(0)1(12121212-=-+=-+⎰⎰-dx dx xe x .(4) 二次型2132********)()()(),,(x x x x x x x x x f ++-++=的秩为 2 .【分析】二次型的秩即对应的矩阵的秩, 亦即标准型中平方项的项数, 于是利用初等变换 或配方法均可得到答案.【详解一】因为2132********)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++=于是二次型的矩阵为 ⎪⎪⎪⎭⎫ ⎝⎛--=211121112A ,由初等变换得 ⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---→000330211330330211A ,从而 2)(=A r , 即二次型的秩为2.【详解二】因为2132********)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++= 2322321)(23)2121(2x x x x x -+++= 2221232y y +=,其中 ,21213211x x x y ++= 322x x y -=.所以二次型的秩为2.(5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X Pe1. 【分析】 根据指数分布的分布函数和方差立即得正确答案. 【详解】 由于21λDX =, X 的分布函数为 ⎩⎨⎧≤>-=-.0,0,0,1)(x x e x F x λ故=>}{DX X P =≤-}{1DX X P =≤-}1{1λX P )1(1λF -e1=.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n X X X 和 2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则22121212)()(21σn n Y Y X X En j j n i i =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+-+-∑∑==.【分析】利用正态总体下常用统计量的数字特征即可得答案.【详解】因为 2121])(11[1σX X n E n i i =--∑=, 2122])(11[2σY Y n E n j j =--∑=, 故应填 2σ.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. (A) (-1 , 0).(B) (0 , 1).(C) (1 , 2).(D) (2 , 3). [ A ]【分析】如f (x )在(a , b )内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数f (x ) 在(a , b )内有界.【详解】当x ≠ 0 , 1 , 2时,f (x )连续,而183sin )(lim1-=+-→x f x ,42sin )(lim 0-=-→x f x ,42sin )(lim 0=+→x f x ,∞=→)(lim 1x f x ,∞=→)(lim 2x f x , 所以,函数f (x )在(-1 , 0)内有界,故选(A).(8) 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x xf xg ,则 (A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ D ] 【分析】考查极限)(lim 0x g x →是否存在,如存在,是否等于g (0)即可,通过换元xu 1=, 可将极限)(lim 0x g x →转化为)(lim x f x ∞→.【详解】因为)(lim )1(lim )(lim 0u f x f x g u x x ∞→→→=== a (令xu 1=),又g (0) = 0,所以,当a = 0时,)0()(lim 0g x g x =→,即g (x )在点x = 0处连续,当a ≠ 0时,)0()(lim 0g x g x ≠→,即x = 0是g (x )的第一类间断点,因此,g (x )在点x = 0处的连续性与a 的取值有关,故选(D). (9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点.(C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ C ] 【分析】由于f (x )在x = 0处的一、二阶导数不存在,可利用定义判断极值情况, 考查f (x )在x = 0的左、右两侧的二阶导数的符号,判断拐点情况.【详解】设0 < δ < 1,当x ∈ (-δ , 0) ⋃ (0 , δ)时,f (x ) > 0,而f (0) = 0,所以x = 0是f (x ) 的极小值点. 显然,x = 0是f (x )的不可导点. 当x ∈ (-δ , 0)时,f (x ) = -x (1 - x ),02)(>=''x f ,当x ∈ (0 , δ)时,f (x ) = x (1 - x ),02)(<-=''x f ,所以(0 , 0)是曲线y = f (x )的拐点.故选(C).(10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim1>+∞→nn n u u ,则∑∞=1n n u 发散. (4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是 (A) (1) (2). (B) (2) (3). (C) (3) (4). (D) (1) (4). [ B ]【分析】可以通过举反例及级数的性质来说明4个命题的正确性. 【详解】(1)是错误的,如令nn u )1(-=,显然,∑∞=1n n u 分散,而∑∞=-+1212)(n n n u u 收敛.(2)是正确的,因为改变、增加或减少级数的有限项,不改变级数的收敛性.(3)是正确的,因为由1lim1>+∞→nn n u u 可得到n u 不趋向于零(n → ∞),所以∑∞=1n n u 发散. (4)是错误的,如令n v n u n n 1,1-==,显然,∑∞=1n n u ,∑∞=1n n v 都发散,而∑∞=+1)(n n n v u 收敛. 故选(B).(11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.[ D ]【分析】利用介值定理与极限的保号性可得到三个正确的选项,由排除法可选出错误选项. 【详解】首先,由已知)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则由介值定理, 至少存在一点),(0b a x ∈,使得0)(0='x f ;另外,0)()(lim)(>--='+→ax a f x f a f a x ,由极限的保号性,至少存在一点),(0b a x ∈使得0)()(00>--ax a f x f ,即)()(0a f x f >. 同理,至少存在一点),(0b a x ∈使得)()(0b f x f >. 所以,(A) (B) (C)都正确,故选(D).(12) 设n 阶矩阵A 与B 等价, 则必有(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||. (C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ D ] 【分析】 利用矩阵A 与B 等价的充要条件: )()(B r A r =立即可得.【详解】因为当0||=A 时, n A r <)(, 又 A 与B 等价, 故n B r <)(, 即0||=B , 故选(D). (13) 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 b Ax =的 互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系 (A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量. [ B ] 【分析】 要确定基础解系含向量的个数, 实际上只要确定未知数的个数和系数矩阵的秩. 【详解】 因为基础解系含向量的个数=)(A r n -, 而且⎪⎩⎪⎨⎧-<-===.1)(,0,1)(,1,)(,)(*n A r n A r n A r n A r根据已知条件,0*≠A 于是)(A r 等于n 或1-n . 又b Ax =有互不相等的解, 即解不惟一, 故1)(-=n A r . 从而基础解系仅含一个解向量, 即选(B).(14) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于 (A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1. [ C ]【分析】 利用标准正态分布密度曲线的对称性和几何意义即得. 【详解】 由αx X P =<}|{|, 以及标准正态分布密度曲线的对称性可得21}{αx X P -=>. 故正确答案为(C).三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分)求)cos sin 1(lim 2220xxx x -→. 【分析】先通分化为“”型极限,再利用等价无穷小与罗必达法则求解即可. 【详解】xx xx x x x x x x 2222202220sin cos sin lim )cos sin 1(lim -=-→→=346)4(21lim 64cos 1lim 44sin 212lim 2sin 41lim 22020304220==-=-=-→→→→x x xx x x x x x x x x x x . (16) (本题满分8分)求⎰⎰++Dd y y x σ)(22,其中D 是由圆422=+y x 和1)1(22=++y x 所围成的平面区域(如图).【分析】首先,将积分区域D 分为大圆}4|),{(221≤+=y x y x D 减去小圆}1)1(|),{(222≤++=y x y x D ,再利用对称性与极坐标计算即可.【详解】令}1)1(|),{(},4|),{(222221≤++=≤+=y x y x D y x y x D ,由对称性,0=⎰⎰Dyd σ.⎰⎰⎰⎰⎰⎰+-+=+21222222D D Dd y x d y x d y x σσσ⎰⎰⎰⎰--=θπππθθcos 20223220220dr r d dr r d .)23(916932316-=-=ππ所以,)23(916)(22-=++⎰⎰πσDd y y x . (17) (本题满分8分) 设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥x axadt t g dt t f )()(,x ∈ [a , b ),⎰⎰=bab adt t g dt t f )()(.证明:⎰⎰≤ba ba dx x xg dx x xf )()(.【分析】令F (x ) = f (x ) - g (x ),⎰=xa dt t F x G )()(,将积分不等式转化为函数不等式即可. 【详解】令F (x ) = f (x ) - g (x ),⎰=x a dt t F x G )()(,由题设G (x ) ≥ 0,x ∈ [a , b ],G (a ) = G (b ) = 0,)()(x F x G ='.从而⎰⎰⎰⎰-=-==bab aba babadx x G dx x G x xG x xdG dx x xF )()()()()(,由于 G (x ) ≥ 0,x ∈ [a , b ],故有 0)(≤-⎰badx x G ,即0)(≤⎰ba dx x xF .因此⎰⎰≤babadx x xg dx x xf )()(.(18) (本题满分9分) 设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量. (I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时, 降低价格反而使收益增加.【分析】由于d E > 0,所以dP dQ Q P E d =;由Q = PQ 及dPdQQ P E d =可推导 )1(d E Q dPdR-=. 【详解】(I) PPdP dQ Q P E d -==20. (II) 由R = PQ ,得)1()1(d E Q dPdQ Q P Q dP dQ P Q dP dR -=+=+=. 又由120=-=PPE d ,得P = 10.当10 < P < 20时,d E > 1,于是0<dPdR,故当10 < P < 20时,降低价格反而使收益增加. (19) (本题满分9分) 设级数)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x x x x 的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式.【分析】对S (x )进行求导,可得到S (x )所满足的一阶微分方程,解方程可得S (x )的表达式.【详解】(I) +⋅⋅⋅+⋅⋅+⋅=864264242)(864x x x x S , 易见 S (0) = 0,+⋅⋅+⋅+='642422)(753x x x x S)642422(642 +⋅⋅+⋅+=x x x x)](2[2x S x x +=.因此S (x )是初值问题0)0(,23=+='y x xy y 的解.(II) 方程23x xy y +='的通解为]2[3C dx e x e y xdx xdx +⎰⎰=⎰- 22212x Ce x +--=,由初始条件y(0) = 0,得C = 1.故12222-+-=x e x y ,因此和函数12)(222-+-=x e x x S .(20)(本题满分13分)设T α)0,2,1(1=, T ααα)3,2,1(2-+=, T b αb α)2,2,1(3+---=, Tβ)3,3,1(-=,试讨论当b a ,为何值时,(Ⅰ) β不能由321,,ααα线性表示;(Ⅱ) β可由321,,ααα唯一地线性表示, 并求出表示式;(Ⅲ) β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式.【分析】将β可否由321,,ααα线性表示的问题转化为线性方程组βαk αk αk =++332211 是否有解的问题即易求解. 【详解】 设有数,,,321k k k 使得βαk αk αk =++332211. (*) 记),,(321αααA =. 对矩阵),(βA 施以初等行变换, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+---+-=323032221111),(b a a b a βA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111b a b a .(Ⅰ) 当0=a 时, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→10001001111),(b βA . 可知),()(βA r A r ≠. 故方程组(*)无解, β不能由321,,ααα线性表示.(Ⅱ) 当0≠a , 且b a ≠时, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111),(b a b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-→0100101011001a a 3),()(==βA r A r , 方程组(*)有唯一解:a k 111-=, ak 12=, 03=k . 此时β可由321,,ααα唯一地线性表示, 其表示式为 211)11(αaαa β+-=. (Ⅲ) 当0≠=b a 时, 对矩阵),(βA 施以初等行变换, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111),(b a b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--→0000111011001a a , 2),()(==βA r A r , 方程组(*)有无穷多解, 其全部解为a k 111-=, c ak +=12, c k =3, 其中c 为任意常数. β 可由321,,ααα线性表示, 但表示式不唯一, 其表示式为321)1()11(αc αc aαa β+++-=. (21) (本题满分13分)设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=111b b b b b b A . (Ⅰ) 求A 的特征值和特征向量;(Ⅱ) 求可逆矩阵P , 使得AP P 1-为对角矩阵.【分析】这是具体矩阵的特征值和特征向量的计算问题, 通常可由求解特征方程0||=-A E λ和齐次线性方程组0)(=-x A E λ来解决.【详解】 (Ⅰ) 1当0≠b 时,111||---------=-λbbb λb b b λA E λ=1)]1(][)1(1[------n b λb n λ ,得A 的特征值为b n λ)1(11-+=,b λλn -===12 . 对b n λ)1(11-+=,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------=-b n b b b b n b b b b n A E λ)1()1()1(1 →⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------)1(111)1(111)1(n n n→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------0000111111111111 n n n →⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------0000111111111111 n n n →⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---000000001111n n n n n →⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---0000110010101001解得Tξ)1,,1,1,1(1 =,所以A 的属于1λ的全部特征向量为 Tk ξk )1,,1,1,1(1 = (k 为任意不为零的常数). 对b λ-=12,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------=-b b b b b b b b b A E λ 2→⎪⎪⎪⎪⎪⎭⎫⎝⎛000000111 得基础解系为T ξ)0,,0,1,1(2 -=,T ξ)0,,1,0,1(3 -=,T n ξ)1,,0,0,1(,-= .故A 的属于2λ的全部特征向量为n n ξk ξk ξk +++ 3322 (n k k k ,,,32 是不全为零的常数).2 当0=b 时,n λλλλA E λ)1(1010001||-=---=-,特征值为11===n λλ ,任意非零列向量均为特征向量.(Ⅱ)1当0≠b 时,A 有n 个线性无关的特征向量,令),,,(21n ξξξP =,则⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---+=-b b b n AP P 11)1(112 当0=b 时,E A =,对任意可逆矩阵P , 均有 E AP P =-1.(22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=AB P , 21)|(=B A P , 令 ⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y求(Ⅰ) 二维随机变量),(Y X 的概率分布; (Ⅱ) X 与Y 的相关系数 XY ρ; (Ⅲ) 22Y X Z +=的概率分布.【分析】本题的关键是求出),(Y X 的概率分布,于是只要将二维随机变量),(Y X 的各取值对转化为随机事件A 和B 表示即可.【详解】 (Ⅰ) 因为 121)|()()(==A B P A P AB P , 于是 61)|()()(==B A P AB P B P ,则有 121)(}1,1{====AB P Y X P , 61)()()(}0,1{=-====AB P A P B A P Y X P , 121)()()(}1,0{=-====AB P B P B A P Y X P , 32)]()()([1)(1)(}0,0{=-+-=⋃-=⋅===AB P B P A P B A P B A P Y X P , ( 或 32121611211}0,0{=---===Y X P ), 即),(Y X 的概率分布为:(Ⅱ) 方法一:因为 41)(==A P EX ,61)(==B P EY ,121)(=XY E , 41)(2==A P EX ,61)(2==B P EY ,163)(22=-=EX EX DX ,165)(22=-=EY EY DY ,241)(),(=-=EXEY XY E Y X Cov ,所以X 与Y 的相关系数 1515151),(==⋅=DYDX Y X Cov ρXY . 方法二: X, Y 的概率分布分别为X 0 1 Y 0 1P 43 41 P 65 61 则61,41==EY EX ,163=DX ,DY=365, E(XY)=121,故 241)(),(=⋅-=EY EX XY E Y X Cov ,从而.1515),(=⋅=DYDX Y X Cov XY ρ (Ⅲ) Z 的可能取值为:0,1,2 .32}0,0{}0{=====Y X P Z P ,41}1,0{}0,1{}1{===+====Y X P Y X P Z P , 121}1,1{}2{=====Y X P Z P , 即Z 的概率分布为:(23) (本题满分13分)设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,( 其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本, (Ⅰ) 当1=α时, 求未知参数β的矩估计量; (Ⅱ) 当1=α时, 求未知参数β的最大似然估计量; (Ⅲ) 当2=β时, 求未知参数α的最大似然估计量.【分析】本题是一个常规题型, 只要注意求连续型总体未知参数的矩估计和最大似然估计都须已知密度函数, 从而先由分布函数求导得密度函数. 【详解】 当1=α时, X 的概率密度为⎪⎩⎪⎨⎧≤>=+,,,101,),(1x x x ββx f β(Ⅰ) 由于⎰⎰+∞++∞∞--=⋅==11,1);(ββdx x βx dx βx xf EX β 令X ββ=-1, 解得 1-=X X β, 所以, 参数β的矩估计量为 1-=X Xβ. (Ⅱ) 对于总体X 的样本值n x x x ,,,21 , 似然函数为∏=+⎪⎩⎪⎨⎧=>==ni i βnni n i x x x x βαx f βL 1121.,0),,,2,1(1,)();()(其他当),,2,1(1n i x i =>时, 0)(>βL , 取对数得 ∑=+-=ni ixββn βL 1ln )1(ln )(ln ,对β求导数,得∑=-=ni i x βn βd βL d 1ln )]([ln , 令0ln )]([ln 1=-=∑=ni i x βn βd βL d , 解得 ∑==ni ixnβ1ln ,于是β的最大似然估计量为∑==ni ixnβ1ln ˆ.( Ⅲ) 当2=β时, X 的概率密度为⎪⎩⎪⎨⎧≤>=,,,αx αx x αβx f 0,2),(32对于总体X 的样本值n x x x ,,,21 , 似然函数为∏=⎪⎩⎪⎨⎧=>==ni i nnn i n i αx x x x ααx f βL 13212.,0),,,2,1(,)(2);()(其他当),,2,1(n i αx i =>时, α越大,)(αL 越大, 即α的最大似然估计值为},,,m in{ˆ21n x x x α=, 于是α的最大似然估计量为},,,m in{ˆ21n X X X α=.。
2004年全国硕士研究生入学统一考试数学(一)试卷与答案解析
2004年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (1)曲线ln y x =上与直线1=+y x 垂直的切线方程为__________ . (2)已知(e )e x x f x -'=,且(1)0f =,则()f x =__________ .(3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-L ydx xdy 2的值为__________.(4)欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为__________ . (5)设矩阵210120001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,矩阵B 满足**2=+ABA BA E ,其中*A 为A 的伴随矩阵,E 是单位矩阵,则B =__________ .(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ .二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===03002sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A)γβα,, (B)βγα,, (C)γαβ,, (D)αγβ,, (8)设函数()f x 连续,且,0)0(>'f 则存在0>δ,使得(A)()f x 在(0,)δ内单调增加 (B)()f x 在)0,(δ-内单调减少(9)设∑∞=1n n a 为正项级数,下列结论中正确的是(A)若n n na ∞→lim =0,则级数∑∞=1n n a 收敛 (B)若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n n a 发散 (C)若级数∑∞=1n n a 收敛,则0lim 2=∞→n n a n (D)若级数∑∞=1n n a 发散, 则存在非零常数λ,使得λ=∞→n n na lim (10)设()f x 为连续函数,⎰⎰=t ty dx x f dy t F 1)()(,则)2(F '等于 (A)2(2)f (B)(2)f (C)(2)f - (D) 0(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足=AQ C 的可逆矩阵Q 为(A)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010(B)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010 (C)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010(D)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110 (12)设,A B 为满足=AB O 的任意两个非零矩阵,则必有 (A)A 的列向量组线性相关,B 的行向量组线性相关 (B)A 的列向量组线性相关,B 的列向量组线性相关 (C)A 的行向量组线性相关,B 的行向量组线性相关 (D)A 的行向量组线性相关,B 的列向量组线性相关(13)设随机变量X 服从正态分布(0,1),N 对给定的)10(<<αα,数u 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A)2αu (B)21α-u(C)21α-u (D) α-1u(14)设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A)21Cov(,)X Y nσ= (B)21Cov(,)X Y σ=(C)212)(σnn Y X D +=+ (D)211)(σnn Y X D +=-三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤)(15)(本题满分12分) 设2e e a b <<<,证明2224ln ln ()eb a b a ->-.(16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg的飞机,着陆时的水平速度为700km/h 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).k问从着陆点=10⨯0.66算起,飞机滑行的最长距离是多少?(注:kg表示千克,km/h表示千米/小时)(17)(本题满分12分)计算曲面积分,)1(322233dxdy z dzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.(18)(本题满分11分)设有方程10nx nx+-=,其中n为正整数.证明此方程存在惟一正实根n x,并证明当1α>时,级数1nn xα∞=∑收敛.(19)(本题满分12分)设(,)z z x y =是由2226102180x xy y yz z -+--+=确定的函数,求(,)z z x y =的极值点和极值.(20)(本题满分9分)设有齐次线性方程组121212(1)0,2(2)20,(2),()0,nnna x x xx a x xnnx nx n a x++++=⎧⎪++++=⎪≥⎨⎪⎪++++=⎩试问a取何值时,该方程组有非零解,并求出其通解.(21)(本题满分9分)设矩阵12314315a-⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦A的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.(22)(本题满分9分)设,A B 为随机事件,且111(),(|),(|)432P A P B A P A B ===,令;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧= 求:(1)二维随机变量(,)X Y 的概率分布. (2)X 和Y 的相关系数.XY ρ(23)(本题满分9分) 设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x x x F ββ其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(1)β的矩估计量. (2)β的最大似然估计量2004年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为 1-=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标。
2004年全国硕士研究生入学统一考试数学(一)第16、17题的不同解法
2004年全国硕士研究生入学统一考试数学(一)第16、17题
的不同解法
杜瑞芝
【期刊名称】《高等数学研究》
【年(卷),期】2004(7)6
【摘要】@@ 笔者看到今年全国硕士研究生入学统一考试试题后,对数学(一)中第16、17题,经过仔细考虑,得到了几种与考试中心下发的<试卷答案与评分参考>(以下简称<参考>)及<评分执行细则>(以下简称<细则>)不同的解法,现介绍如下,供同仁们参考.
【总页数】2页(P53-54)
【作者】杜瑞芝
【作者单位】辽宁师范大学数学学院,辽宁大连,116029
【正文语种】中文
【相关文献】
1.2013年~2004年全国硕士研究生入学考试英语试题的分析与解剖学教材中英语词汇的学习 [J], 陈杰;彭东;陈禹
2.2004年全国硕士研究生入学统一考试数学(一)试题及答案 [J],
3.2004年全国硕士研究生入学考试英语试题及答案 [J],
4.全国硕士研究生入学考试数学试卷客观题及其解法分析 [J], 余胜春
5.《中日交流标准日本语》教材词汇的计量研究——与《全国硕士研究生入学统一考试日语考试大纲(非日专)》词汇的对照 [J], 杜琴
因版权原因,仅展示原文概要,查看原文内容请购买。