经济数学(二重积分习题及答案)

合集下载

数学分析21.1二重积分的概念(含习题及参考答案)

数学分析21.1二重积分的概念(含习题及参考答案)

第二十一章 重积分 1二重积分的概念一、平面图形的面积引例:若构成平面图形P 的点集是平面上的有界点集, 即存在矩形R ,使P ⊂R ,则称平面图形P 有界. 用某一平行于坐标轴的一组直线网T 分割P(如图),这时直线网T 的网眼——小闭矩形△i 可分为三类: (1)△i 上的点都是P 的内点;(2)△i 上的点都是P 的外点,即△i ∩P=Ø; (3)△i 上含有P 的边界点.将所有属于直线网T 的第(1)类小矩形(图中阴影部分)的面积加起来, 记和数为s p (T),则有s p (T)≤△R (矩形R 的面积);将所有第(1)类与第(3)类小矩形(图中粗线所围部分)的面积加起来, 记作S p (T),则有s p (T)≤S p (T). 由确界存在定理知,对于平面上所有直线网,数集{s p (T)}有上确界,数集{S p (T)}有下确界, 记Tp I sup ={s p (T)} ,Tp I inf ={S p (T)}. 显然有0≤p I ≤p I .p I 称为内面积,p I 称为外面积.定义1:若平面图形P 的内面积p I 等于它的外面积p I , 则称P 为可求面积,并称其共同值I p =p I =p I 为P 的面积.定理21.1:平面有界图形P 可求面积的充要条件是:对任给ε>0, 总存在直线网T ,使得S p (T)-s p (T)< ε.证:[必要性]设P 的面积为I p , 由面积的定义知, I p =p I =p I . ∀ε>0, 由p I 及p I 的定义知,分别存在直线网T 1与T 2,使得 s p (T 1)>I p -2ε, S p (T 2)<I p +2ε, 记T 为由T 1与T 2合并所成的直线网,则 s p (T 1)≤s p (T), S p (T 2)≥S p (T),∴s p (T)>I p -2ε, S p (T)<I p +2ε, 从而S p (T)-s p (T)<ε. [充分性]设对任给的ε>0, 存在某直线网T ,使得S p (T)-s p (T)<ε. 但s p (T)≤p I ≤p I ≤S p (T),∴p I -p I ≤S p (T)-s p (T)<ε. 由ε的任意性知,p I =p I ,∴平面图形P 可求面积.推论:平面有界图形P 的面积为零的充要条件是它的外面积p I =0,即对任给的ε>0, 存在某直线网T ,使得S p (T)<ε,或 平面图形P 能被有限个其面积总和小于ε的小矩形所覆盖.定理21.2:平面有界图形P 可求面积的充要条件是:P 的边界K 的面积为0.证:由定理21.1,P 可求面积的充要条件是:∀ε>0, ∃直线网T , 使得S p (T)-s p (T)<ε. 即有S K (T)=S p (T)-s p (T)<ε, 由推论知,P 的边界K 的面积为0.定理21.3:若曲线K 为定义在[a,b]上的连续函数f(x)的图象,则曲线K 的面积为零.证:∵f(x)在闭区间[a,b]上连续,从而一致连续. ∴∀ε>0, ∃δ>0, 当把区间[a,b]分成n 个小区间[x i-1,x i ] (i=1,2,…,n, x 0=a,x n =b)并满足 max{△x i =x i -x i-1 |i=1,2,…,n }<δ时,可使f(x)在每个小区间[x i-1,x i ]上的振幅都有ωi <ab -ε.把曲线K 按自变量x=x 0,x 1,…,x n 分成n 个小段,则 每一个小段都能被以△x i 为宽, ωi 为高的小矩形所覆盖,又 这n 个小矩形面积的总和为i ni i x ∆∑=1ω<ab -ε∑=∆ni ix1<ε,由定理21.1的推论即得曲线K 的面积为零.推论1:参数方程x=φ(t), y=ψ(t), t ∈[α,β]所表示的光滑曲线K 的面积为零.证:由光滑曲线的定义,φ’(t),ψ’(t)在[α,β]上连续且不同时为0. 对任意t 0∈[α,β],不妨设φ’(t 0)≠0,则存在t ’的某邻域U(t 0), 使得 x=φ(t)在此邻域上严格单调,从而存在反函数t=φ-1(x). 又 由有限覆盖定理,可把[α,β]分成有限段:α=t 0<t 1<…<t n =β, 在每一小区间段上,y=ψ(φ-1(x))或x=ψ(φ-1(y)),由定理21.3知, 每小段的曲线面积为0,∴整条曲线面积为零.推论2:由平面上分段光滑曲线所围成的有界闭区域是可求面积的.注:并非平面中所有的点集都是可求面积的.如D={(x,y)|x,y ∈Q ∩[0,1]}. 易知0=D I ≤D I =1, 所以D 是不可求面积的.二、二重积分的定义及其存在性 引例:求曲顶柱体的体积(如图1).设f(x,y)为定义在可求面积的有界闭区域D 上的非负连续函数. 求以曲面z=f(x,y)为顶,以D 为底的柱体体积V.用一组平行于坐标轴的直线网T 把D 分成n 个小区域σi (i=1,2,…,n). ∵f(x,y)在D 上连续,∴当每个σi 都很小时, f(x,y)在σi 上各点的函数值近似相等; 可在σi 上任取一点(ξi ,ηi ),用以f(ξi ,ηi )为高, σi 为底的小平顶柱体的体积f(ξi ,ηi )△σi 作为V i 的体积△V i ,即△V i ≈f(ξi ,ηi )△σi .把这些小平顶柱体的体积加起来, 就得到曲顶柱体体积V 的近似值: V=∑=∆n i i V 1≈i ni i i f σηξ∆∑=1),(.当直线网T 的网眼越来越细密,即分割T 的细度T =di ni ≤≤1max →0(di 为σi 的直径)时,i ni i i f σηξ∆∑=1),(→V.概念:设D 为xy 平面上可求面积的有界闭区域,f(x,y)为定义在D 上的函数. 用任意的曲线把D 分成n 个可求面积的小区域σ1, σ2,…, σn . 以△σi 表示小区域△σi 的面积,这些小区域构成D 的一个分割T , 以d i 表示小区域△σi 的直径,称T =di ni ≤≤1max 为分割T 的细度.在每个σi 上任取一点(ξi ,ηi ),作和式ini iif σηξ∆∑=1),(,称为函数f(x,y)在D 上属于分割T 的一个积分和.定义2:设f(x,y)是定义在可求面积的有界闭区域D 上的函数. J 是一个确定的数,若对任给的正数ε,总存在某个正数δ,使对于D 的任何分割T ,当它的细度T <δ时,属于T 的所有积分和都有J f ini ii-∆∑=σηξ1),(<ε,则称f(x,y)在D 上可积,数J 称为函数f(x,y)在D上的二重积分,记作:J=⎰⎰Dd y x f σ),(.注:1、函数f(x,y)在有界可求面积区域D 上可积的必要条件是f 在D 上有界.2、设函数f(x,y)在D 上有界,T 为D 的一个分割,把D 分成n 个可求面积的小区域σ1, σ2,…, σn . 令M i =iy x σ∈),(sup f(x,y), m i =iy x σ∈),(inf f(x,y), i=1,2,…,n.作和式S(T)=i n i i M σ∆∑=1, s(T)=i ni i m σ∆∑=1. 它们分别称为函数f(x,y)关于分割T 的上和与下和.定理21.4:f(x,y)在D 上可积的充要条件是:0lim →T S(T)=0lim →T s(T).定理21.5:f(x,y)在D 上可积的充要条件是:对于任给的正数ε,存在D 的某个分割T ,使得S(T)-s(T)<ε.定理21.6:有界闭区域D 上的连续函数必可积.定理21.7:设f(x,y)在有界闭域D 上有界,且不连续点集E 是零面积集,则f(x,y)在D 上可积.证:对任意ε>0, 存在有限个矩形(不含边界)覆盖了E ,而 这些矩形面积之和小于ε. 记这些矩形的并集为K ,则 D\K 是有界闭域(也可能是有限多个不交的有界闭域的并集). 设K ∩D 的面积为△k ,则△k <ε. 由于f(x,y)在D\K 上连续, 由定理21.6和定理21.5,存在D\K 上的分割T 1={σ1, σ2,…, σn }, 使得S(T 1)-s(T 1)<ε. 令T={σ1, σ2,…, σn , K ∩D},则T 是D 的一个分割,且 S(T)-s(T)=S(T 1)-s(T 1)+ωK △k <ε+ωε, 其中ωK 是f(x,y)在K ∩D 上的振幅,ω的是f(x,y)在D 上的振幅. 由定理21.5可知f(x,y)在D 上可积.三、二重积分的性质1、若f(x,y)在区域D 上可积,k 为常数,则kf(x,y)在D 上也可积,且⎰⎰Dd y x kf σ),(=k ⎰⎰Dd y x f σ),(.2、若f(x,y), g(x,y)在D 上都可积,则f(x,y)±g(x,y)在D 上也可积,且[]⎰⎰±Dd y x g d y x f σσ),(),(=⎰⎰Dd y x f σ),(±⎰⎰Dd y x g σ),(.3、若f(x,y)在D 1和D 2上都可积,且D 1与D 2无公共内点,则⎰⎰21),(D D d y x f σ=⎰⎰1),(D d y x f σ+⎰⎰2),(D d y x f σ.4、若f(x,y)与g(x,y)在D 上可积,且f(x,y)≤g(x,y), (x,y)∈D ,则⎰⎰Dd y x f σ),(≤⎰⎰Dd y x g σ),(.5、若f(x,y)在D 上可积,则函数|f(x,y)|在D 上也可积,且⎰⎰Dd y x f σ),(≤⎰⎰Dd y x f σ),(.6、若f(x,y)在D 上都可积,且m ≤f(x,y)≤M, (x,y)∈D ,则 mS D ≤⎰⎰Dd y x f σ),(≤MS D , 其中S D 是积分区域D 的面积.7、(中值定理)若f(x,y)在有界闭区域D 上连续,则存在(ξ,η)∈D , 使得⎰⎰Dd y x f σ),(=f(ξ,η)S D , 其中S D 是积分区域D 的面积.注:中值定理的几何意义:以D 为底,z=f(x,y) (f(x,y)≥0)为曲顶的曲顶柱体体积等于一个同底的平顶柱体的体积,这个平顶柱体的高等于f(x,y)在区域D 中某点(ξ,η)的函数值f(ξ,η).习题1、把重积分⎰⎰Dxydxd σ作为积分和的极限,计算这个积分值,其中D=[0,1]×[0,1],并用直线网x=n i, y=nj , (i,j=1,2,…,n-1)分割D 为许多小正方形,每个小正方形取其右顶点作为其节点.解:⎰⎰Dxydxd σ=2111lim n n j n i nj ni n ⋅⋅∑∑==∞→=21121lim n n j n nj n ⋅⋅+∑=∞→=224)1(lim n n n +∞→=41.2、证明:若函数f(x,y)在有界闭区域D 上可积,则f(x,y)在D 上有界. 证:若f 在D 上可积,但在D 上无界,则对D 的任一分割T={σ1, σ2,…, σn }, f 必在某个小区域σk 上无界. 当i ≠k 时,任取p i ∈σi ,令G=∑≠nki i i p f σ)(, I=⎰⎰Ddxdy y x f ),(.∵f 在σk 上无界,∴存在p k ∈σk ,使得|f(p k )|>kG I σ∆++1, 从而∑=ni iip f 1)(σ=∑≠∆+nki k k i i p f p f σσ)()(≥|f(p k )·△σk |-∑≠nki i i p f σ)(>|I|+1.又f 在D 上可积,∴存在δ>0,对任一D 的分割T={σ1, σ2,…, σn }, 当T <δ时,T 的任一积分和∑=nk k k p f 1)(σ都满足∑=-nk k k I p f 1)(σ<1,即∑=nk k k p f 1)(σ<|I|+1,矛盾!∴f 在D 上可积,则f 在D 上有界.3、证明二重积分中值定理:若f(x,y)在有界闭区域D 上连续,则存在(ξ,η)∈D ,使得⎰⎰Df =f(ξ,η)S D , 其中S D 是积分区域D 的面积.证:∵f 在有界闭区域D 上连续,∴f 在D 上有最大值M 和最小值m, 对D 中一切点有m ≤f ≤M ,∴mS D ≤⎰⎰Df ≤MS D , 即m ≤⎰⎰DDf S 1≤M.由介值性定理知,存在(ξ,η)∈D ,使得⎰⎰Df =f(ξ,η)S D .4、证明:若f(x,y)为有界闭区域D 上的非负连续函数,且在D 上不恒为零,则⎰⎰Dd y x f σ),(>0.证:由题设知存在p 0(x 0,y 0)∈D ,使f(p 0)>0,令δ=f(p 0),由连续函数的局部保号性知:∃η>0使得对一切p ∈D 1(D 1=U(p 0,η)∩D), 有f(p)>2δ. 又f(x,y)≥0且连续,∴⎰⎰Df =⎰⎰1D f +⎰⎰-1D D f ≥2δ·△D 1>0.5、证明:若f(x,y)在有界闭区域D 上连续,且在D 内任一子区域D ’⊂D 上有⎰⎰'D d y x f σ),(=0,则在D 上f(x,y)≡0.证:假设存在p 0(x 0,y 0)∈D ,使得f(p 0)≠0, 不妨设f(p 0)>0. 由连续函数的保号性知,∃η>0使得对一切p ∈D ’(D ’=U(p 0,η)∩D), 有f(p)>0,由第4题知⎰⎰'D f >0,矛盾! ∴在D 上f(x,y)≡0.6、设D=[0,1]×[0,1],证明: 函数f(x,y)=⎩⎨⎧内非有理点为皆为有理数即内有理点为D y x y x D y x ),(,0),(),(,1在D 上不可积.证: 设D 的任一分割T={σ1, σ2,…, σn }, 则每一个小区域σi 内必同时含有D 内有理点和非有理点,从而 M i =iy x σ∈),(sup f(x,y)=1, m i =iy x σ∈),(inf f(x,y)=0, i=1,2,…,n.∴S(T)=i n i i M σ∆∑=1=1, s(T)=i ni i m σ∆∑=1=0,由T 的任意性知:lim →T S(T)=1≠0=0lim →T s(T). ∴f 在D 上不可积.7、证明:若f(x,y)在有界闭区域D 上连续,g(x,y)在D 上可积且不变号,则存在一点(ξ,η)∈D ,使得⎰⎰Dd y x g y x f σ),(),(=f(ξ,η)⎰⎰Dd y x g σ),(.证:不妨设g(x,y)≥0, (x,y)∈D ,则⎰⎰Dd y x g σ),(≥0. 令M,m 分别为f 在D 上的最大、最小值,则 m ⎰⎰Dd y x g σ),(≤⎰⎰Dd y x g y x f σ),(),(≤M ⎰⎰Dd y x g σ),(.若⎰⎰Dd y x g σ),(=0, 则⎰⎰Dd y x g y x f σ),(),(=0,任取(ξ,η)∈D ,得证!若⎰⎰Dd y x g σ),(>0, 则m ≤⎰⎰⎰⎰DDd y x g d y x g y x f σσ),(),(),(≤M. 由介值性定理知,存在一点(ξ,η)∈D ,使得f(ξ,η)=⎰⎰⎰⎰DDd y x g d y x g y x f σσ),(),(),( ,即⎰⎰Dd y x g y x f σ),(),(=f(ξ,η)⎰⎰Dd y x g σ),(.8、应用中值定理估计积分:I=⎰⎰++Dyx d 22cos cos 100σ的值, 其中D={(x,y)||x|+|y|≤10}. 解:∵f(x,y)=yx 22cos cos 1001++ 在D={(x,y)||x|+|y|≤10}上连续,根据中值定理知:存在(ξ,η)∈D ,使得I=ηξ22cos cos 100++∆D, 从而102D ∆≤I ≤100D ∆, △D 为D 的面积,∴51100≤I ≤2.9、证明:若平面曲线x=φ(t), y=ψ(t), α≤t ≤β光滑 (即φ(t),ψ(t)在[α,β]上具有连续导数且φ’2(t)+ψ’2(t)≠0),则 此曲线的面积为0.证法1:该平面曲线L 的长度为l=dt t t ⎰'+'βαψϕ)()(22为有限值.对∀ε>0, 将L 分成n=⎥⎦⎤⎢⎣⎡εl +1段:L 1,L 2,…,L n , 在每段L i 上取一点P i , 使P i 与其一端点的弧长为nl 2,以P i 为中心作边长为的ε正方形△i , 则L i ⊂△i (i=1,2,…,n), 从而L ⊂n i 1= △i ,记△=ni 1= △i ,则△为一多边形.设△的面积W ,则W ≤n ε2=⎪⎭⎫ ⎝⎛+1εlε=(1+ε)ε,∴L 的面积W L ≤W ≤(1+ε)ε. 即此曲线的面积为0.证法2:在曲线上任取参数t 的点M ,∵φ’2(t)+ψ’2(t)≠0, 由隐函数存在定理知,存在σ=(t-δ,t+δ)使曲线上对应的一段可以表示成显式方程.应用有限覆盖定理,[α,β]被开区间集{σ}有限覆盖,得出有限个区间, 使曲线分成有限部分,每一部分可以表示成显式方程y=f(x)或x=g(y), 其中f,g 为连续函数,由定理21.3知光滑曲线的面积为0.。

二重积分(习题)

二重积分(习题)

;.第九章 二重积分习题9-1 1、设⎰⎰+=13221)(D d y x I σ, 其中}22,11|),{(1≤≤-≤≤-=y x y x D ;又⎰⎰+=23222)(D d y x I σ, 其中}20,10|),{(2≤≤≤≤=y x y x D ,试利用二重积分的几何意义说明1I 与2I 之间的关系.解:由于二重积分1I 表示的立体关于坐标面0=x 及0=y 对称,且1I 位于第一卦限部分与2I 一致,因此214I I =.2、利用二重积分的几何意义说明:(1)当积分区域D 关于y 轴对称,),(y x f 为x 的奇函数,即),(),(y x f y x f -=-时,有0),(=⎰⎰Dd y x f σ;(2)当积分区域D 关于y 轴对称,),(y x f 为x 的偶函数,即),(),(y x f y x f =-时,有⎰⎰⎰⎰=1),(2),(D Dd y x f d y x f σσ,其中1D 为D 在0≥x 的部分.并由此计算下列积分的值,其中}|),{(222R y x y x D ≤+=.(I)⎰⎰D d xy σ4; (II)⎰⎰--D d y x R y σ222; (III)⎰⎰++Dd y x xy σ2231cos . 解:令⎰⎰=Dd y x f I σ),(,⎰⎰=1),(1D d y x f I σ,其中1D 为D 在0≥x 的部分,;.(1)由于D 关于y 轴对称,),(y x f 为x 的奇函数,那么I 表示的立体关于坐标面0=x 对称,且在0≥x 的部分的体积为1I ,在0<x 的部分的体积为1I -,于是0=I ;(2)由于D 关于y 轴对称,),(y x f 为x 的偶函数,那么I 表示的立体关于坐标面0=x 对称,且在0≥x 的部分的体积为1I ,在0<x 的部分的体积也为1I ,于是12I I =.(I)由于}|),{(222R y x y x D ≤+=关于y 轴对称,且4),(xy y x f =为x 的奇函数, 于是04=⎰⎰Dd xy σ;(II)由于}|),{(222R y x y x D ≤+=关于x轴对称,且222),(y x R y y x f --=为y 的奇函数,于是0222=--⎰⎰Dd y x R y σ;(III)由于}|),{(222R y x y x D ≤+=关于x 轴对称,且2231cos ),(y x xy y x f ++=为y 的奇函数,于是01cos 223=++⎰⎰Dd y x xy σ.3、根据二重积分的性质,比较下列积分的大小: (1)⎰⎰+=Dd y x I σ21)(与⎰⎰+=Dd y x I σ32)(,其中D 是由x 轴、y 轴与直线1=+y x 所围成;解:由于在D 内,10<+<y x ,有23)()(0y x y x +<+<,所以1232)()(I d y x d y x I DD=+<+=⎰⎰⎰⎰σσ.(2)⎰⎰+=Dd y x I σ)ln(1与⎰⎰+=Dd y x I σ22)][ln(, 其中}10,53|),{(≤≤≤≤=y x y x D .;.解:由于在D 内,63<+<<y x e ,有1)ln(>+y x ,2)][ln()ln(y x y x +<+,所以221)][ln()ln(I d y x d y x I DD=+<+=⎰⎰⎰⎰σσ.4、利用二重积分的性质估计下列二重积分的值: (1)⎰⎰++=Dd y x xy I σ)1(,其中}20,10|),{(≤≤≤≤=y x y x D ;解:由于D 的面积为2,且在D 内,8)1(0<++<y x xy ,那么1628)1(200=⨯<++<⨯=⎰⎰Dd y x xy σ.(2)⎰⎰++=Dd y xI σ)94(22,其中}4|),{(22≤+=y x y x D ; 解:由于D 的面积为π4,且在D 内,25313949222≤+≤++≤y y x ,那么ππσππ100425)94(493622=⨯<++<⨯=⎰⎰Dd y x .(3)⎰⎰++=Dy x d I 22cos cos 100σ, 其中}10|||| |),{(≤+=y x y x D ; 解:由于D 的面积为200,且在D 内, 1001cos cos 1001102122≤++≤y x ,那么 2100200cos cos 1001022005110022=<++<⎰⎰D y x d σ=.;.习题9-21、计算下列二重积分: (1)⎰⎰+Dd y x σ)(22,其中D 是矩形区域: 1||,1||≤≤y x ; 解:38)31(2)()(11211112222=+=+=+⎰⎰⎰⎰⎰---dx x dy y x dx d y x Dσ. (2)⎰⎰+Dy xd xye σ22,其中},|),{(d y c b x a y x D ≤≤≤≤=;解:⎰⎰⎰⎰⎰-==++b a x c d badcy x Ddx xe e e dy xye dx d y x 22222)(21)()(22σ.))((412222c d a b e e e e --=. (3)⎰⎰+Dd y x σ)23(,其中D 是由两坐标轴及直线2=+y x 所围成的闭区域;解:320)224()23()23(22220=-+=+=+⎰⎰⎰⎰⎰-dx x x dy y x dx d y x x Dσ. (4)⎰⎰+Dd y x x σ)cos(,其中D 是顶点分别为)0,(),0,0(π和),(ππ的三角形闭区域. 解:πσππ23)sin 2(sin )cos()cos(000-=-=+=+⎰⎰⎰⎰⎰dx x x x dy y x x dx d y x x x D.2、画出积分区域,并计算下列二重积分: (1)⎰⎰Dd y x σ,其中D 是由两条抛物线2,x y x y ==所围成的闭区域;;.解:556)(3210447102=+==⎰⎰⎰⎰⎰dx x x dy y x dx d y xxxDσ.(2)⎰⎰Dd x yσ,其中D 是由直线x y x y 2,==及2,1==x x 所围成的闭区域; 解:492321212===⎰⎰⎰⎰⎰xdx dy x y dx d x y x x Dσ.(3)⎰⎰+Dd y x σ)2(,其中D 是由x y x y 1,==及2=y 所围成的闭区域; 解:619)112()2()2(2122211=--=+=+⎰⎰⎰⎰⎰dy y y dx y x dy d y x y y Dσ.(4)⎰⎰+Dyx d e σ,其中D 是由1||||≤+y x 所确定的闭区域. 解:⎰⎰⎰⎰⎰⎰+--+-+--+++=10110111x x y x x x yx Dyx dy e dx dy edx d eσee e e e e dx e e dx e ex x 1212232)()(101201112-=++-=-+-=⎰⎰---+.a:=0..1;b:=x-1..-x+1; f:=exp(x+y); int(f,y=b);int(int(f,y=b),x=a); simplify(");3、如果二重积分⎰⎰Dd y x f σ),(的被积函数),(y x f 是两个函数)(1x f 及)(2y f 的乘积,即)()(),(21y f x f y x f =,积分区域},|),{(d y c b x a y x D ≤≤≤≤=,证明这个二重积分等于两个单积分的乘积,;.即12(,)()()b da c Df x y d f x dx f y dy σ⎡⎤⎡⎤=⋅⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰.证明:⎰⎰⎰⎰⎰⎰==b adcb ad cDdy y f x f dx dx y x f dx d y x f )()(),(),(21σ1212()()()()b d b da c a c f x f y dy dx f x dx f y dy ⎡⎤⎡⎤⎡⎤==⋅⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎰⎰⎰⎰.4、化二重积分⎰⎰=Dd y x f I σ),(为二次积分(分别列出对两个变量先后次序不同的两个二次积分),其中积分区域D 是:(1)由曲线x y ln =、直线2=x 及x 轴所围成的闭区域;图形>plot([ln(x),0,[[2,0],[2,ln(2)]]],x=0..2,y=0..0.8,color=1); 解:⎰⎰⎰⎰==2ln 0221ln 0),(),(y exdx y x f dy dy y x f dx I .(2)由y 轴及右半圆22y a x -=所围成的闭区域;图形>plot([(1-x^2)^(1/2), -1*(1-x^2)^(1/2)],x=0..1, color=1);;.解:⎰⎰⎰⎰-----==aay a a xa x a dx y x f dy dy y x f dx I 2222220),(),(.(3)由抛物线2x y =与直线32=+y x 所围成的闭区域.图形> plot([x^2, 3-2*x],x=-3..1, color=1);解:319201(,)(,)y yyyI dy f x y dx dy f x y dx ---=+⎰⎰⎰⎰.5、改换下列二次积分的积分顺序: (1)⎰⎰10),(yydx y x f dy ;解:⎰⎰=102),(xx dy y x f dx I .;.(2)⎰⎰10),(ee ydx y x f dy ;解:⎰⎰=exdy y x f dx I 1ln 0),(.(3)⎰⎰-+-11122),(y ydx y x f dy ;解:⎰⎰--=21222),(x x xdy y x f dx I .(4)⎰⎰⎰⎰-+21201),(),(2xx dy y x f dx dy y x f dx ;;.解:⎰⎰-=102),(y ydx y x f dy I .(5)⎰⎰-πsin 2sin),(xx dy y x f dx ;图形> plot([sin(x),-sin(x/2),[[Pi,0],[Pi,-1]]], x=0..Pi,color=1); 解:⎰⎰⎰⎰---+=1arcsin arcsin 01arcsin 2),(),(yyydx y x f dy dx y x f dy I ππ.(6)⎰⎰⎰⎰--+21202022),(),(2xaaxx ax dy y x f dx dy y x f dx .图形> plot([(2*x-x^2)^(1/2),(2*x)^(1/2),[[2,0],[2,2]]], x=0..2,color=1); 解:⎰⎰⎰⎰-+--+=aay a a ay a a aydx y x f dy dx y x f dy I 020222222),(),(⎰⎰+a aaay dx y x f dy 2222),(.6、设平面薄片所占的闭区域D 由直线x y y x ==+,2和x 轴所围成,它的面密度22),(y x y x +=ρ,求该改薄片的质量.图形> plot([2-x,x], x=0..2,y=0..1,color=1); 解:⎰⎰⎰⎰-+==10222)(),(xyDdx y x dy d y x m σρ34)384438(1032=-+-=⎰dy y y y .;.7、求由平面1,1,0,0=+===y x z y x 及y x z ++=1所围成的立体的体积.图形> with(plots):A:=plot3d([x,y,1],x=0..1,y=0..1-x):B:=plot3d([x,1-x,z],x=0..1,z=1..2):F:=plot3d([x,0,z],x=0..1,z=1..1+x):G:=plot3d([0,y,z],y=0..1,z=1..1+y):H:=plot3d([x,y,1+x+y],x=0..1,y=0..1-x): display({A,B,F,G,H},grid=[25,20], axes= BOXED , scaling=CONSTRAINED,style= PATCHCONTOUR); 解:⎰⎰⎰⎰⎰=-=+=-++=-102101031)1(21)(]1)1[(dx x dy y x dx d y x V xDσ.8、为修建高速公路,要在一山坡中辟出一条长m 500,宽m 20的通道,据测量,以出发点一侧为原点,往另一侧方向为x 轴(200≤≤x ),往公路延伸方向为y 轴(5000≤≤y ),且山坡高度为x y z 20sin500sin10ππ+=,试计算所需挖掉的土方量.图形> plot3d(10*sin(Pi*y/500)+ sin(Pi*x/20),y=0..500,x=0..20); 解:)(70028)20sin500sin10(3200500m dy x y dx zd V D=+==⎰⎰⎰⎰ππσ.9、画出积分区域,把积分⎰⎰=Dd y x f I σ),(表示为极坐标形式的二次积分,其中积分区域D 是:(1))0( }0,|),{(222>≥≤+=a x a y x y x D ;图形> plot([(1-x^2)^(1/2),-(1-x^2)^(1/2)], x=0..1,color=1);解:⎰⎰-=220)sin ,cos (ππθθθardr r r f d I .(2)}2|),{(22y y x y x D ≤+=;图形> plot([1+(1-x^2)^(1/2), 1-(1-x^2)^(1/2)], x=-1..1,color=1); 解:y y x 222=+⇔θsin 22r r =⇔θsin 2=r ,于是⎰⎰=πθθθθ0sin 20)sin ,cos (rdr r r f d I .;.(3)}|),{(2222b y x a y x D ≤+≤=,其中b a <<0;图形> plot([(1-x^2)^(1/2),-(1-x^2)^(1/2),(4-x^2)^(1/2),-(4-x^2)^(1/2)], x=-2..2,color=1); 解:⎰⎰=πθθθ20)sin ,cos (bardr r r f d I .(4)}0,10|),{(2x y x y x D ≤≤≤≤=.图形> plot([x^2,[[1,0],[1,1]]], x=0..1,color=1); 解:2x y =⇔θθ22cos sin r r =⇔θθtan sec =r ,1=x ⇔1cos =θr ⇔θsec =r ,于是⎰⎰=40sec tan sec )sin ,cos (πθθθθθθrdr r r f d I .10、化下列二次积分为极坐标形式的二次积分: (1)⎰⎰11),(dy y x f dx ;图形> plot([[0,0],[0,1],[1,1],[1,0],[0,0]],color=1); 解:1=x ⇔1cos =θr ⇔θsec =r ,1=y ⇔1sin =θr ⇔θcsc =r ,于是⎰⎰⎰⎰+=24csc 040sec 0)sin ,cos ()sin ,cos (ππθπθθθθθθθrdr r r f d rdr r r f d I .(2)⎰⎰--+111222)(x xdy y x f dx ;图形> plot([(1-x^2)^(1/2),1-x],x=0..1,color=1); 解:x y -=1⇔θθcos 1sin r r -=⇔θθcos sin 1+=r ,于是⎰⎰+=201cos sin 1)(πθθθrdr r f d I .11、把下列积分为极坐标形式,并计算积分值:;.(1)⎰⎰-+ax ax dy y x dx 2020222)(;图形> plot((2*x-x^2)^(1/2), x=0..2,color=1);解:22x ax y -=⇔θθθ22cos cos 2sin r ar r -=⇔θcos 2a r =, 于是 4204420cos 20343cos 4a a dr r d I a πθθππθ===⎰⎰⎰. (2)⎰⎰+13221xxdy yx dx ;图形> plot([3^(1/2)*x,x], x=0..1,color=1);解:1=x ⇔1cos =θr ⇔θsec =r ,于是2132lnsec 3434sec 0++===⎰⎰⎰ππππθθθθd dr d I .(3)⎰⎰⎰⎰-+++a a x a a x dy y x dx dy y x dx 230222303302222.图形> plot([3^(1/2)*x/3, (1-x^2)^(1/2)],x=0..1,y=0..0.5,color=1); 解:1=x ⇔1cos =θr ⇔θsec =r ,于是3603602183a d a dr r d I aπθθππ===⎰⎰⎰.12、利用极坐标计算下列各题: (1)⎰⎰--D d y x R σ222,其中D 为圆域Rx y x ≤+22(0>R );图形> plot([(x-x^2)^(1/2),-(x-x^2)^(1/2)],x=0..1,color=1); 解:Rx y x =+22⇔θcos 2Rr r =⇔θcos R r =,于是)34(31322cos 022-=-=⎰⎰-πθππθR rdr r R d I R .;.(2)⎰⎰++Dd y x σ)1ln(22,其中D 为圆122=+y x 及坐标轴所围成的在第一象限内的闭区域;图形> plot((1-x^2)^(1/2),x=0..1,color=1);解:)12ln 2(4)1ln(2012-=+=⎰⎰πθπrdr r d I .(3)⎰⎰Dd xyσarctan,其中D 为圆周122=+y x ,422=+y x 及直线x y y ==,0所围成的在第一象限内的闭区域.图形> plot([(1-x^2)^(1/2),-(1-x^2)^(1/2), (4-x^2)^(1/2),-(4-x^2)^(1/2),x],x=-2..2,y=0..2^(1/2),color=1);解:240402164323πθθθθππ===⎰⎰⎰d rdr d I .13、选择适当的坐标计算下列各题: (1)⎰⎰Dd yx σ22,其中D 是直线x y x ==,2及曲线1=xy 所围成的闭区域; 图形> plot([x,1/x,[[2,1/2],[2,2]]],x=0..2,y=0..2,color=1); 解:49)(21321122=-==⎰⎰⎰dx x x dy y x dx I xx. (2)⎰⎰+Dd y x σ22sin ,其中D 是圆环形区域22224ππ≤+≤y x ; 图形> plot([(1-x^2)^(1/2),-(1-x^2)^(1/2),(4-x^2)^(1/2),-(4-x^2)^(1/2)], x=-2..2,color=1); 解:22026sin πθπππ-==⎰⎰rdr r d I .(3)⎰⎰+Dd y x σ)(22,其中D 是由直线a y a y a x y x y 3,,,==+==(0>a )所围成的闭区域;;.图形> plot([[0,1],[1,1],[3,3],[2,3],[0,1]],x=0..3,y=0..3,color=1); 解:4332232214)32()(a dx a y a ay dx y x dy I aaaayay =+-=+=⎰⎰⎰-.(4)⎰⎰--Dd y x σ|1|22,其中D 为圆域422≤+y x . 图形> plot([(1-x^2)^(1/2),-(1-x^2)^(1/2),(4-x^2)^(1/2),-(4-x^2)^(1/2)], x=-2..2,color=1); 解:πππθθππ5292)1()1(2021220102=+=-+-=⎰⎰⎰⎰rdr r d rdr r d I .14、计算以xOy 面上的圆周ax y x =+22围成的闭区域为底,而以曲面22y x z +=为顶的曲顶柱体的体积.图形> plot([(x-x^2)^(1/2),-(x-x^2)^(1/2)],x=0..1,color=1); 解:ax y x =+22⇔θcos 2ar r =⇔θcos a r =,于是4224422cos 0322323cos 4)(a d a dr r d d y x V a Dπθθθσππππθ===+=⎰⎰⎰⎰⎰--.15、某水池呈圆形,半径为5米,以中心为坐标原点,距中心距离为r 处的水深为215r+米,试求该水池的蓄水量. 图形> plot([(x-x^2)^(1/2),-(x-x^2)^(1/2)],x=0..1,color=1);解:29.16)13ln 2(ln 51520502=+=+=⎰⎰πθπrdr rd V (米3).16、讨论并计算下列广义二重积分:(1)⎰⎰Dq p y x d σ,其中}1,1|),{(≥≥=x xy y x D ; 解:))(1(11111011111p q q dx x q dy yx dx I q p q p q x q p --===-====>-+∞+->+∞+∞⎰⎰⎰. 即当1>>q p 时,广义二重积分收敛,且;.))(1(1q p q I --=.(2)⎰⎰+Dp y x d )(22σ,其中}1|),{(22≥+=y x y x D ; 解:1111220112-=====>-+∞-⎰⎰p dr r d I p p πθπ.即当1>p 时,广义二重积分收敛,且1-=p I π.。

二重积分习题及答案

二重积分习题及答案
将D 分成
D1
yx
D2
D1 , D2 两部分
2
D2
( x y )d xd y 2 d xd y
D
o
1 x
2 ( 2 1) 3 2 说明: 若不用对称性, 需分块积分以去掉绝对值符号.
5 计算
2 2 ( x y ) dxdy , D : x y 1 D
分析 积分区域D关于x、y轴均对称, 被积函数
f ( x, y) x y 关于x,y均是偶函数,利用对称性
去掉绝对值符号. 解 采用直角坐标 ( x y )dxdy 4 dx
D
1
1 x 2 0
0
( x y )dy 8 3
【注】在利用对称性计算二重积分时,要同时考虑被积 函数的奇偶性和积分区域的对称性,不能只注意积分区域 关于坐标轴的对称性,而忽视了被积函数应具有相应的奇

x r cos 在极坐标系下 y r sin 所以圆方程为 r 1, 1 直线方程为 r , sin cos
x2 y2 1
x y 1
f ( x, y )dxdy
D

2
0
d
1
1 sin cos
f ( r cos , r sin )rdr .
8
计算 ( x y )dxdy ,其 D 为由圆
2 2 D
x 2 y 2 2 y , x 2 y 2 4 y 及直线 x 3 y 0 , y 3 x 0 所围成的平面闭区域. 解 y 3x 0 2
3
x y 4 y r 4 sin
2 1
4. 计算二重积分

二重积分练习题

二重积分练习题

二重积分【1】自测题(一)选择题1.设D 是由直线0=x ,0=y ,3=+y x ,5=+y x 所围成的闭区域,记:⎰⎰σ+=Dd y x I )ln(1,⎰⎰σ+=Dd y x I )(ln 22,则( )A .21I I <B .21I I >C .122I I =D .无法比较2.设D 是由x 轴和∈=x x y (sin [0,π])所围成,则积分⎰⎰=σDyd ( )A .6πB .4πC .3πD .2π3.设积分区域D 由2x y =和2+=x y 围成,则=σ⎰⎰Dd y x f ),(( )A .⎰⎰-+2122),(x xdyy x f dx B .⎰⎰-212),(dyy x f dx C .⎰⎰-+1222),(x xdyy x f dx D .⎰⎰+1022),(x x dyy x f dx4.设),(y x f 是连续函数,则累次积分⎰⎰=42),(x xdy y x f dx ( )A .⎰⎰4412),(y y dxy x f dy B .⎰⎰-4412),(y ydxy x f dyC .⎰⎰441),(ydxy x f dy D .⎰⎰40212),(yy dxy x f dy5.累次积分⎰⎰=-222xy dy e dx ( )A .)1(212--eB .)1(314--eC .)1(214--eD .)1(312--e6.设D 由14122≤+≤y x 确定,若⎰⎰σ+=D d y x I 2211,⎰⎰σ+=D d y x I )(222,⎰⎰σ+=Dd y x I )ln(223,则1I ,2I ,3I 之间的大小顺序为( )A .321I I I << B .231I I I << C .132I I I << D .123I I I <<7.设D 由1||≤x ,1||≤y 确定,则=⎰⎰Dxyxydxdy xesin cos ( )A .0B .eC .2D .2-e8.若积分区域D 由1≤+y x ,0≥x ,0≥y 确定,且⎰⎰=11)()(xdxx xf dx x f ,则⎰⎰=Ddxdy x f )(( )A .2B .0C .21D .19.若⎰⎰⎰⎰⎰⎰-+-=+011010101)()(21),(),(),(xxy x y x dxy x f dy dy y x f dx dy y x f dx ,则( )A .1)(1-=y y x ,0)(2=y xB .1)(1-=y y x ,y y x -=1)(2C .y y x -=1)(1,1)(2-=y y xD .0)(1=y x ,1)(2-=y y x (二)填空题1.设D 是由直线x y =,x y 21=,2=y 所围成的区域,则⎰⎰=D dxdy .2.已知D 是由b x a ≤≤,10≤≤y 所围成的区域,且⎰⎰=Ddxdy x yf 1)(,则⎰=badx x f )(.3.若D 是由1=+y x 和两坐标轴围成的区域,且⎰⎰⎰ϕ=D dxx dxdy x f 1)()(,那么=ϕ)(x .4.交换积分次序:⎰⎰-+=2122),(y ydx y x f dy .5.设D 由1422≤+y x 确定,则=⎰⎰D dxdy .6.交换积分次序:⎰⎰π=sin 0),(xdy y x f dx .7.交换积分次序:dyy x f dx xx ⎰⎰2),(10=.8. 交换积分次序⎰⎰yy dxy x f dy 222),(= .(三)计算题1.选择适当的坐标系和积分次序求下列二重积分(1)⎰⎰D ydxdyxcos 2, 其中D 由21≤≤x ,20π≤≤y 确定,(2)⎰⎰+Ddxdyy x )(, 其中D 由x y x 222≤+确定, (3)⎰⎰+Ddxdyy x 22,其中D 是圆环形闭区域:4122≤+≤y x(4)⎰⎰Dxydxdy,其中D是由抛物线2y x=及y=x所围成的闭区域.2.计算下列积分(1)⎰⎰ππ66cosydxxxdy,(2)⎰⎰313ln1ydxxydy,。

经济数学练习题答案

经济数学练习题答案

经济数学练习题答案1. 计算下列极限:- \(\lim_{x \to 0} \frac{\sin(x)}{x}\)- \(\lim_{x \to \infty} \frac{1}{x}\)- \(\lim_{x \to 1} (x^2 - 1)\)2. 求下列函数的导数:- \(y = x^3 - 2x^2 + 3x - 4\)- \(y = e^x \ln(x)\)- \(y = \sin^2(x)\)3. 求下列函数的不定积分:- \(\int (3x^2 - 2x + 1) \, dx\)- \(\int \frac{1}{x^2 + 1} \, dx\)- \(\int e^x \cos(x) \, dx\)4. 解下列微分方程:- \(y' + 2y = e^{-x}\)- \(y'' - 4y' + 4y = 0\)- \(y' + y^2 = x\)5. 计算下列二重积分:- \(\iint_D (x^2 + y^2) \, dA\),其中 \(D\) 是由 \(x^2 + y^2 \leq 1\) 定义的圆盘。

- \(\iint_D (xy) \, dA\),其中 \(D\) 是由 \(0 \leq x \leq 1\) 和 \(0 \leq y \leq 1\) 定义的矩形区域。

6. 求下列级数的和:- \(\sum_{n=1}^{\infty} \frac{1}{n^2}\)- \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}\)- \(\sum_{n=0}^{\infty} \frac{x^n}{n!}\),对于 \(|x| < 1\)7. 确定下列函数的连续性和可导性:- \(f(x) = \begin{cases}x & \text{if } x \geq 0 \\-x & \text{if } x < 0\end{cases}\)- \(g(x) = x^{\frac{1}{3}}\)- \(h(x) = \sin(x) / x\),对于 \(x \neq 0\) 且 \(h(0) = 1\)8. 计算下列矩阵的行列式:- \(A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\)- \(B = \begin{bmatrix} 5 & 0 & 1 \\ 0 & 6 & 0 \\ 7 & 0 &8 \end{bmatrix}\)- \(C = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 &6 \end{bmatrix}\)9. 解下列线性方程组:- \(\begin{cases}x + y = 1 \\2x - y = 0\end{cases}\)- \(\begin{cases}3x + 2y - z = 1 \\x - y + 2z = -1 \\2x + y + z = 2\end{cases}\)10. 求下列函数的最大值和最小值:- \(f(x) = x^3 - 3x^2 + 2\) - \(g(x) = -x^2 + 4x - 3\) - \(h(x) = e^x - x^2\)。

经济数学微积分习题八答案 最新版

经济数学微积分习题八答案 最新版

第八章 二重积分习题解答(A )1. 将二重积分(),Df x y dxdy ⎰⎰按两种次序化为累次积分,积分区域D 是由下列曲线或直线围成的:(1)(){},1,1D x y x y =≤≤;(2)D 是由y 轴,1y =,y x =围成的区域; (3)D 是由x 轴,ln y x =,x e =围成的区域; (4)D 是由3y x =,1y =,1x =-围成的区域;(5)()22,149x y D x y ⎧⎫⎪⎪=+≤⎨⎬⎪⎪⎩⎭; (6)D 是由2y x =,24y x =-围成的区域;(7)D 是由x 轴,圆2220x y x +-=在第一象限的部分及直线2x y +=围成的区域;(8)D 是由x 轴,圆2240x y y +-=在第一象限的部分及抛物线24y x =-在第二象限的部分围成的区域.解(1)积分区域D 的图形如图8-1所示.由图8-1可知()()()11111111,,,Df x y dxdy dx f x y dy dy f x y dx ----==⎰⎰⎰⎰⎰⎰(2)积分区域D 的图形如图8-2所示.由图8-2可知()()()1110,,,yxDf x y dxdy dx f x y dy dy f x y dx ==⎰⎰⎰⎰⎰⎰图8-1 图8-2(3)积分区域D 的图形如图8-3所示.由图8-3可知()()()ln 11,,,y e xeeDf x y dxdy dx f x y dy dy f x y dx ==⎰⎰⎰⎰⎰⎰(4)积分区域D 的图形如图8-4所示.由图8-4可知()()()33111111,,,yxDf x y dxdy dx f x y dy dy f x y dx ---==⎰⎰⎰⎰⎰⎰图8-3 图8-4(5)积分区域D 的图形如图8-5所示.由图8-5可知()()()22223224392332234923,,,x y x y Df x y dxdy dx f x y dy dy f x y dx -------==⎰⎰⎰⎰(6)积分区域D 的图形如图8-1所示.由图8-1可知()()22242,,x xDf x y dxdy f x y dy -=⎰⎰⎰()()244024,,yyyydy f x y dx dy f x y dx ----=+⎰⎰⎰⎰图8-5 图8-6 (7)积分区域D 的图形如图8-7所示.由图8-7可知()()()2122201,,,x x xDf x y dxdy dx f x y dy dx f x y dy --=+⎰⎰⎰⎰⎰⎰()212011,yy dy f x y dx ---=⎰⎰(8)积分区域D 的图形如图8-8所示.由图8-8可知()()()2224224224,,,x x x Df x y dxdy dx f x y dy dx f x y dy -+----=+⎰⎰⎰⎰⎰⎰()24404,y y ydy f x y dx ---=⎰⎰图8-7 图8-8 2.交换下列累次积分的积分顺序: (1)()10,ydy f x y dx ⎰⎰;(2)()10,yydy f x y dx ⎰⎰; (3)()21100,x dx f x y dy -⎰⎰;(4)()21,xx dx f x y dx ⎰⎰;(5)()221111,x x dx f x y dy ----⎰⎰;(6)()220,xxdx f x y dy ⎰⎰; (7)()()2111011ln ,,ex xdx f x y dy dx f x y dy -+⎰⎰⎰⎰; (8)()()312201,,yydy f x y dx dy f x y dx -+⎰⎰⎰⎰;解(1)积分区域D 的图形如图8-9所示.由图8-9可知原式()11,xdx f x y dy =⎰⎰(2)积分区域D 的图形如图8-10所示.由图8-10可知原式()21,xxdx f x y dy =⎰⎰图8-9 图8-10(3)积分区域D 的图形如图8-11所示.由图8-11可知原式()2110,y dy f x y dx -=⎰(4)积分区域D 的图形如图8-12所示.由图8-12可知原式()21,yydy f x y dx =⎰⎰图8-11 图8-12(5)积分区域D 的图形如图8-13所示.由图8-13可知原式()()221111101,,y yy ydy f x y dx dy f x y dx -------=+⎰⎰⎰⎰(6)积分区域D 的图形如图8-14所示.由图8-14可知原式()()242222,,yy y dy f x y dx dy f x y dx =+⎰⎰⎰⎰图8-13 图8-14(7)积分区域D 的图形如图8-15所示.由图8-15可知原式()101,y e ydy f x y dx -=⎰⎰(8)积分区域D 的图形如图8-16所示.由图8-16可知原式()3120,xx dx f x y dy -=⎰⎰图8-15 图8-163.计算下列二重积分:(1)()22D xy dxdy +⎰⎰,其中(){},01,12D x y x y =≤≤≤≤;(2)Dxydxdy ⎰⎰,其中D 是由直线,3,1,2y x y x x x ====围成的;(3)()23334D xx y dxdy +⎰⎰,其中D 是由曲线32,y x y x ==围成的;(4)xy Dye dxdy ⎰⎰,其中D 是由直线ln 2,ln3,2,4y y x x ====围成的;(5)()24sin Dy xy dxdy ⎰⎰,其中D 是由直线,,02y y x x π===围成的;(6)()32221Dydxdy xy++⎰⎰,其中(){},01,01D x y x y =≤≤≤≤;(7)()6Dx y dxdy +⎰⎰,其中D 是由直线,5,1y x y x x ===围成的;(8)()22Dxy dxdy +⎰⎰,其中D 是由直线,,,y x y x a y a ==+=()30y a a =>围成的;(9)221Dy x y dxdy +-⎰⎰,其中D 是由直线,1,1y x x y ==-=围成的; (10)Dxydxdy ⎰⎰,其中D 是由直线2y x =及直线2y x =-围成的; 解(1)区域D 如图8-17所示原式()21221dy x y dx =+⎰⎰()12321022231113118333x xy dy y dy y y ⎧⎫⎪⎪⎛⎫=+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭⎛⎫=+=+= ⎪⎝⎭⎰⎰(2)原式()2322223111115324xxxdx ydy x x x dx x dx ==-==⎰⎰⎰⎰图8-17 图8-18(3)区域D 如图8-18所示原式)31233034xxdx x x y dy =+⎰(312340176162036111557316336x x x y x y dyx x x =+⎛⎫=--=⎪⎝⎭⎰(4)原式ln34ln 22xy dy ye dx =⎰⎰()ln342ln2xye dy=⎰()ln3ln34242ln 2ln 21155424y y y y e e dy e e ⎛⎫=-=-= ⎪⎝⎭⎰ (5)原式()2204sin yy xy dx π=⎰()(20221cos 22sin 2y y dyy yπ=-=-=-(6)原式()11302221ydx dy x y =++⎰⎰()()()()((221130222111222001100110111212ln ln lnd x y dx x y x y dx x x -++=++⎡⎤=⎢⋅-⋅++⎥⎢⎥⎣⎦==+-+=⎰⎰⎰⎰⎰(7)区域D 如图8-19所示原式()1506xxdx x y dy =+⎰⎰12076763x dx ==⎰ (8)区域D 如图8-20所示原式()322aya y ady xy dx -=+⎰⎰33213yaay ax xy dy -⎛⎫=+ ⎪⎝⎭⎰3223123a a ay a y a dy ⎛⎫=-+ ⎪⎝⎭⎰ 33223421114323aaay a y a y a ⎡⎤=-+=⎢⎥⎣⎦图8-19 图8-20(9)原式()()1112222211112xdx x y d x y -=-+-+-⎰⎰()()13122211311212312133x x y dxx dx --⎧⎫⎪⎪=-+-⎨⎬⎪⎪⎩⎭=--=⎰⎰ (10)区域D 如图8-21所示原式2221y ydy xydx +-=⎰⎰()2222125321121454428y y x y dy y y y y dy +--⎧⎫⎪⎪⎛⎫=⎨⎬ ⎪⎝⎭⎪⎪⎩⎭=-+++=⎰⎰图8-214.计算下列二重积分(1)2D y dxdy x ⎛⎫⎪⎝⎭⎰⎰,其中D是由曲线y =,0y x y ==所围成的第一象限部分;(2)Dyarctandxdy x⎰⎰,其中(){22,14,D x y xy =≤+≤0,x ≥}0y ≥;(3)()4Dx y dxdy --⎰⎰,其中(){}22,2D x y x y y =+≤; (4)D,其中D 是圆域222x y ax +≤的上半部分;(5)()22ln 1Dx y dxdy ++⎰⎰,其中D 是圆域221x y +≤的第一象限部分; (6)D,其中(){}2222,D x y ax y b =≤+≤;(7)Dxdxdy ⎰⎰,其中D是由曲线x =y x =所围成的区域; (8)Dydxdy ⎰⎰,其中D是由曲线x =0,y =2,2y x ==-所围成的区域;解(1)如图8-22所示原式1240tan d rdr πθθ=⋅⎰⎰()()1224024040tan 21sec 1211tan 228r d d πππθθθθπθθ⎛⎫= ⎪⎝⎭=-=-=-⎰⎰(2)原式()2222011134122216d rdr ππθθπ⎛⎫=⋅=⋅-= ⎪⎝⎭⎰⎰图8-22 图8-23(3)如图8-23所示原式()2cos 04cos sin d r r rdr πθθθθ=--⋅⎰⎰2cos 332002cos sin 33r rr d θπθθθ⎛⎫=-- ⎪⎝⎭⎰2430888cos cos cos sin 33d πθθθθθ⎛⎫=-- ⎪⎝⎭⎰ ()()23040002841cos 21cos 2cos sin 331sin 4sin 22244sin 2cos 2323214333d ππππθθθθθθθθθθθθππππ⎡⎤=+-+-⎢⎥⎣⎦⎛⎫+ ⎪⎛⎫=+-+++ ⎪ ⎪⎝⎭⎪⎝⎭=--=⎰(4)如图8-24所示原式2cos 22204a d a r rdr πθθ=-⎰⎰()()()2cos 22202cos 22222002cos 322220033320414421242314481sin 333a a a d a r rdrd a r d a r a r d a d a πθπθθππθθθθθπ=-⋅=---⎧⎫⎪⎪=-⋅-⎨⎬⎪⎪⎩⎭⎛⎫=-=- ⎪⎝⎭⎰⎰⎰⎰⎰⎰ (5)如图8-25所示原式()12200ln 1d r rdr πθ=+⋅⎰⎰()()()()()()()1220112222001ln 11221ln 11141ln 414r d r r r r dr r πππ=⋅++⎡⎤⎢⎥=+⋅+-+⋅+⎢⎥⎣⎦=-⎰⎰图8-24 图8-25(6)如图8-26所示原式()3233202233bbaar d r dr b a πθππ===-⎰⎰ (7)如图8-27所示原式2sin 240cos d r dr πθθθ=⎰⎰2sin 3400cos 3r d θπθθ⎛⎫ ⎪= ⎪⎝⎭⎰()3408sin sin 3d πθθ=⎰4440818121sin 343426πθ⎛⎫=⋅=⋅⋅= ⎪ ⎪⎝⎭图8-26 图8-27(8)如图8-28所示原式22202y y dy ydx --=⎰⎰()22022y y y dy =--⎰()22202222411ydy y y dyy dy=--=---⎰⎰⎰设1sin ,y t -=有cos dy tdt =.当0y =时,2t π=-;当2y =时,2t π=.()()222202111sin cos y y dy t tdt ππ---=+⋅⎰⎰2222222cos cos sin 1cos 22022tdt t tdtt dt ππππππ--=++=+=⎰⎰⎰所以42Dydxdy π=-⎰⎰图8-285.计算下列累次积分 (1)2312y xxdx e dy ⎰; (2)1xxydx dy y⎰; (3)5511ln ydy dx y x⎰⎰; (4)32211sin x dx y dy -⎰⎰;(5)221150y xx dx e dy -⎰⎰;解(1)积分区域D 的图形如图8-29所示.由图8-29可知原式2312y yye dy dx =⎰⎰()222222221320113220211222001121222200022232y y y y y y y y ey y dye ydy e y dyy e d y de y e y e e d e =-=-=-⎡⎤⎢⎥=--=-⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰图8-29 图8-30(2)积分区域D 的图形如图8-30所示.由图8-30可知原式2111000sin sin sin 1sin1y y ydy dx ydy y ydy y ==-=-⎰⎰⎰⎰ (3)积分区域D 的图形如图8-31所示.由图8-31可知原式55111114ln x dx dy dx x y===⎰⎰⎰图8-31 图8-32(4)积分区域D 的图形如图8-32所示.由图8-32可知原式21201sin y y dy dx +=⎰⎰222220111sin sin cos 4222y y dy y dy ===-⎰⎰ (5)积分区域D 的图形如图8-33所示.由图8-33可知原式2150yy e dy x dx -=⎰⎰()22222115300011122200016111621211126yy y y y y e dy x dx e y dy y de y e e d y e-----==⋅⎛⎫⎡⎤=-=-+- ⎪⎢⎥⎣⎦⎝⎭=-⎰⎰⎰⎰⎰图8-336.计算下列曲面所围成的体积(1)1,0,0,0,1z x y z x y x y =++===+=; (2)222,0,,1z x y z y x y =+===; (3)231,0,0,0x y z x y z ++====; (4)221,3,0x y x y z z +=++==; (5)222,,0,12y x x y z z y x ====+-. 解(1) 各曲面围成的立体是以曲面1z x y =++为顶,以区域(){},0,0,1D x y x y x y =≥≥+≤为底,母线平行于oz 轴的曲顶柱体,故所求体积()1DV x y dxdy =++⎰⎰()1111200001122300112313115222266xxdx x y dy y xy y dx x x dx x x x --⎛⎫=++=++⎪⎝⎭⎛⎫⎛⎫=--=--= ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰(2) 各曲面围成的立体是以曲面22z x y =+为顶,以区域(){}2,,1D x y y x y =≥≤为底,母线平行于oz 轴的曲顶柱体,故所求体积 ()22DV x y dxdy =+⎰⎰()()()2111222222022xDD x y dxdy x y dxdy dx x y dy =+=+=+⎰⎰⎰⎰⎰⎰2111236420011122333x x y y dx x x x dx ⎡⎤⎛⎫⎛⎫=+=--++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦⎰⎰17530111188221533105x x x x ⎛⎫=--++= ⎪⎝⎭(3) 各曲面围成的立体是以曲面231x y z ++=,为顶,以区域(){},0,0,21D x y x y x y =≥≥+≤为底,母线平行于oz 轴的曲顶柱体,故所求体积123Dx yV dxdy --=⎰⎰()()()()1111222000021130********1111113412336xxdx x y dy x y y dx x dx x --⎡⎤=--=--⎣⎦-==-⋅-=⎰⎰⎰⎰(4) 各曲面围成的立体是以曲面3z x y =--为顶,以区域(){}22,1D x y xy =+=为底,母线平行于oz 轴的曲顶柱体,故所求体积()3D V x y dxdy =--⎰⎰()()()()21122300102203cos sin 31cos sin 2331cos sin 2331sin cos 323d r r rdrr r d d ππππθθθθθθθθθθθθπ=--⋅⎡⎤=-+⎢⎥⎣⎦⎡⎤=-+⎢⎥⎣⎦=--=⎰⎰⎰⎰(5) 各曲面围成的立体是以曲面212z y x =+-为顶,以区域(){}22,,D x y y x x y =≥≥为底,母线平行于oz 轴的曲顶柱体,故所求体积()212DV y x dxdy =+-⎰⎰)212012xdx y x dy =+-⎰1512222011121222x x x x x dx ⎛⎫=-++- ⎪⎝⎭⎰ 13732522011298444107140x x x x x ⎛⎫=-++-= ⎪⎝⎭7.计算下列二重积分:(1)()x y Dedxdy -+⎰⎰,其中(){},0,0D x y y x y =≤<+∞≤≤;(2)222212x y De dxdy π⎛⎫-+ ⎪ ⎪⎝⎭⎰⎰,其中(){,0,D x y y =≤<+∞}0x ≤<+∞;(3)11221x y De dxdy x y ⎛⎫+ ⎪⎝⎭⎰⎰,其中(){},1,1D x y y x =≤<+∞≤<+∞;(4)()2221Ddxdy xy+⎰⎰,其中(){}22,1D x y xy =+≥;解(1)原式()limlimy ayayxyxa a e dy e dx ee dy ----→+∞→+∞==-⎰⎰⎰()20021lim 1lim 2111lim 1222aay y y y a a a a a e e dy e e e e ----→+∞→+∞--→+∞⎛⎫=-+=- ⎪⎝⎭⎛⎫=--+= ⎪⎝⎭⎰(2)原式2221lim2r R R d erdr πθπ-→+∞=⋅⎰⎰2222202201lim 222111lim lim 1444r R R Rr R R R r e d e e ππ-→+∞--→+∞→+∞⎛⎫⎛⎫=-- ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫=-=-= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎰(3)原式11221111limaa y xa e dx e dy xy →+∞=⎰⎰()111121211limlim 1aa y xa aa e d e d x y e e e →+∞→+∞⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭⎛⎫=-=- ⎪⎝⎭⎰⎰(4)原式2213300011limRR d dr d dr r rππθθ→+∞=-⎰⎰⎰⎰ 211lim 221220R R ππππ-→+∞⎛⎫⎛⎫=-⋅⋅--⋅⋅ ⎪ ⎪⎝⎭⎝⎭=+=8.计算下列二重积分:(1)设(),2,02,,2,02x y x y x f x y xy y x y +≤≤≤≤⎧=⎨≤≤≤≤⎩,计算(),Df x y dxdy ⎰⎰;(2)D,其中(){},11,02D x y x y =-≤≤≤≤;(3)221D x y dxdy +-⎰⎰,其中(){},01,01D x y x y =≤≤≤≤;(4){}22max ,x y De dxdy ⎰⎰,其中(){},01,01D x y x y =≤≤≤≤;解 (1)()()()2220,xxDf x y dxdy dx x y dy dx xy dy =++⎰⎰⎰⎰⎰⎰2222200022230011223122622xx xy y dx xy dx x x dx x dx ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭⎛⎫=+-+= ⎪⎝⎭⎰⎰⎰⎰ (2)如图8-34所示22222,,DDDy x dxdy y x y x dxdy x ydxdy y x⎧-≥⎪⎪-=⎨-<⎪⎪⎩⎰⎰⎰⎰⎰⎰如图所示,由对称性可知221212220002xxDy x dxdy dx y x dy dx x ydy ⎡⎤-=-+-⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰()31123200222233x dx x dx ⎡⎤=-+⎢⎥⎣⎦⎰⎰其中,()31220223x dx -⎰利用第二换元法可知()31234200222222cos 2cos 3343x dx t tdt ππ-=⋅=+⎰⎰ 故,原式523π=+图8-34(3)如图8-35所示()()22222222221,111,1D DDx y dxdy x y x y dxdy x y dxdy x y ⎧+-+≥⎪+-=⎨-++<⎪⎩⎰⎰⎰⎰⎰⎰221Dx y dxdy +-⎰⎰()()()()()2211122220111241230103122203124220011112243221833121211cos 83383343x x d r rdr dx xy dyr r x y y dxx x dx x dx tdt ππθπππππ--=-++-⎛⎫⎡⎤=⋅-+-+ ⎪⎢⎥⎣⎦⎝⎭⎡⎤=+-+-⎢⎥⎣⎦=-+-=-+=-⎰⎰⎰⎰⎰⎰⎰⎰图8-35 图8-36 (4)如图8-36所示{}2222max ,,,y x y Dx D De dxdy x y e dxdy e dxdy x y⎧≤⎪⎪=⎨>⎪⎪⎩⎰⎰⎰⎰⎰⎰ {}222211max ,0xyx y x y Dedxdy dx e dy dy e dx =+⎰⎰⎰⎰⎰⎰22111x y e xdx e ydy e =⋅+⋅=-⎰⎰(B )1. 计算Dydxdy ⎰⎰,其中D ()10,0,x ya b a b+=>> 0,0x y ==围成的.解22000122ba b x aaDbydxdy dx ydy b x dxa+-⎛==+-⎝⎰⎰⎰⎰⎰22222221244230a b b b b xb x x b x dxa a a a aab⎛⎫⎫=++-++⎪⎪⎪⎭⎝⎭=⎰2.计算()()2222sinx yDe x y dxdyπ-+-+⎰⎰,(){}22,D x y x yπ=+≤. 解()()()222222200sin sinx y rDe x y dxdy d r rdrπππθ-+---+=⋅⋅⎰⎰⎰()222sinr r rdrππ--=⋅⋅事实上,()22sinr r rdrπ--⋅⋅()221cos2r d rπ--=-()()()()()()()()()2222222222221cos22111sin22111sin sin22211sin2r rrr rre r r e rdre d re e r r rdre r rdrπππππππππ------------⎡⎤⎛=-+⋅⎢⎥⎝⎢⎥⎣⎦=+-⎡⎤⎛=+-⋅+⋅⋅⎢⎥⎝⎢⎥⎣⎦=+-⋅⋅故()()221sin14r r rdr eππ--⋅⋅=+,()22sinr r rdrπ--⋅⋅()()121142e eππππ=⋅+=+3. 计算()22Dx y y dxdy ++⎰⎰,其中D 是由224,x y +=和()2211x y ++=围成的.解 如图8-37所示()22Dx y y dxdy ++⎰⎰()()2222D D x y y dxdy x y y dxdy =++-++⎰⎰⎰⎰大圆小圆其中,()2222D D D x y y dxdy x y dxdy ydxdy ++=++⎰⎰⎰⎰⎰⎰大圆大圆大圆22201603d r dr πθπ=+=⎰⎰ ()2222D D D x y y dxdy x y dxdy ydxdy ++=++⎰⎰⎰⎰⎰⎰小圆小圆小圆(根据对称性)32cos 2223209rd r dr ππθ-=+=⎰⎰所以,原式()16329π=-.图8-37 图8-38 4. 计算22224Dx y x y +--⎰⎰,其中D 是由211,y x y x =--=-围成的.解 如图8-38所示202sin 04Dd θπθ--=⎰⎰令2sin ,2cos ;0,0;2sin ,r t dr tdt r t r t θθ=====-=-原式2044sin 2cos 2cos td tdt tθπθ--=⎰⎰()00421cos 2d t dt θπθ--=-⎰⎰()042sin 2t t d θπθ--=-⎰22411cos 22162ππθθ-⎛⎫=--=- ⎪⎝⎭5. 计算D,其中D 是由221x y +=的上半圆和222x y y +=的下半圆围成的.解 如图8-39所示12DD D =+2sin 620062d rdr d rdr ππθπθθ⎡⎤=+⎢⎥⎣⎦⎰⎰⎰⎰()()()()112sin 122226220001124444223d r d r r d r πθπθ⎡⎤=----⋅--⎢⎥⎣⎦⎰⎰⎰ ()()2sin 133226220001222442363r d r θππθ⎡⎤=⎢-⋅--⋅-⎥⎢⎥⎣⎦⎰ ()3601828cos 839d πθθπ⎡⎤=--⎢⎥⎣⎦⎰()260418281sin sin 939d ππθθπ⎡⎤=---+⎢⎥⎣⎦⎰366001238812sin sin 9333312341823222933939ππππθθπππ⎡⎤=--+⋅⎢⎥⎣⎦⎡⎤-=--+=-⎢⎥⎣⎦图8-39 6. 计算()1100,xyf x y dxdy ''⎰⎰,其中(),f x y 具有二阶连续偏导数. 解()()11110000,,xy xf x y dxdy f x y dx '''=⎡⎤⎣⎦⎰⎰⎰ ()()()()()()()()101100,1,0,1,01,10,00,11,0xx f x f x dx f x f x f f f f ''=-⎡⎤⎣⎦=-=+--⎰7. 设函数()f x 在[]0,a 上连续,求证()()()2002a a ax f x dx f y dy f x dx ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰. 证明()()()()0aa a yxf x dx f y dy f y dy f x dx =⎰⎰⎰⎰()()0a xf x dx f y dy =⎰⎰()()02a a x f x dx f y dy ⎡⎤⎢⎥⎣⎦⎰⎰ ()()()()0a a a xxf x dx f y dy f x dx f y dy =+⎰⎰⎰⎰()()()()0020aa xx af x dx f y dy f y dy f x dx ⎡⎤=+⎢⎥⎣⎦⎡⎤=⎢⎥⎣⎦⎰⎰⎰⎰8.计算2222yRy x y x dy edx dy dx ----+⎰.解222200yRy x y x dy edx dy dx ----+⎰()()222222200441211248RR r r R r R d e rdr d e d r ee ππππθθππ----==--=-⋅⋅=-⎰⎰⎰⎰9. 求证:()()()222a aDf x y dxdy a t f t dt -+=-⎰⎰⎰,其中(){},,D x y x a y a =≤≤.证明()()aaaaDf x y dxdy dx f x y dy --+=+⎰⎰⎰⎰令x y t +=,y t x =-,因为a y a -≤≤,故x a t x a -≤≤+()()aa a x aaaax adx f x y dy dx f t dt +----+=⎰⎰⎰⎰交换累次积分次序得()()()0220t aaaaat aDf x y dxdy f t dt dx f t dt dx +---+=+⎰⎰⎰⎰⎰⎰()()()()()()022022222aa aat a f t dt a t f t dta t f t dt--=++-=-⎰⎰⎰10. 计算广义二重积分()22x y x y edxdy +∞+∞-+-∞-∞-⎰⎰.解 如图8-40所示()()()()()222222,,x y x y x y x y e dxdy x yx y e dxdy y x e dxdy y x +∞+∞-++∞+∞-+-∞-∞+∞+∞-∞-∞-+-∞-∞⎧-≥⎪-=⎨⎪-≥⎩⎰⎰⎰⎰⎰⎰()()()()()2222225224430044544300444304lim cos sin sin cos 11lim cos sin sin cos 2211lim sin cos 22R R r r R R R r r R R r r R d e r dr d e r dr d rde d rde r e e ππππππππππθθθθθθθθθθθθθθ--→+∞---→+∞---→+∞-⎡⎤=-+-⎢⎥⎣⎦⎡⎤⎛⎫⎛⎫=--+--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦=+⋅-⋅+⎰⎰⎰⎰⎰⎰⎰⎰()2205400411sin cos 224242R R R r r dr r e e dr ππθθππ--⎡⎛⎫⎢ ⎪⎝⎭⎣⎤⎛⎫-+⋅-⋅+⎥ ⎪⎝⎭⎦=⨯=⎰⎰图8-40四、自测题及答案1. 累次积分()cos 20cos ,sin d f r r rdr πθθθθ⎰⎰可以写成( )(A )()1,dx f x y dy ⎰ (B )()10,dx f x y dy ⎰ (C )()1,dy f x y dx ⎰ (D )()10,dy f x y dx ⎰2. 设()()010a y x f x g x ≤-≤⎧==⎨⎩其他 ()0a >,区域D 表示全平面,则()()Df xg y x dxdy -=⎰⎰( ).(A )22a (B )2a (C )21a - (D )21a +3. 设. 区域D 是xy 平面上以()()()1,1,1,1,1,1A B C ---为顶点的三角形区域,1D 是D 在第一象限的部分,则()cos sin Dxy x y dxdy +=⎰⎰( )(A )0(B )12D xydxdy ⎰⎰(C )12cos sin D x ydxdy ⎰⎰ (D )()14cos sin D xy x y dxdy +⎰⎰4. 计算()2331216Dxx y dxdy +⎰⎰,其中D 是由1x =、3y x =、y =.5. 交换累次积分次序()2,ydy f x y dx ⎰.6.交换累次积分次序22202d (,)d (,)d x I x f x y y x f x y y =+⎰⎰⎰7. 交换累次积分次序()()228812,,x xxdx f x y dy dx f x y dy +⎰⎰⎰⎰.8. 计算cos Dy x dxdy -⎰⎰,其中(),,0122D x y x y ππ⎧⎫=-≤≤≤≤⎨⎬⎩⎭;9. 利用二重积分计算由曲线sin ,cos ,0y x y x x ===所围成区域的面积1. (A )2. (B )3. (C )4.421845. ()222,xx dx f x y dy ⎰⎰6.2(,)d dy f x y x ⎰7.()()48142,,y ydy f x y dx dy f x y dx +⎰⎰⎰8.2π- 1。

二重积分习题答案

二重积分习题答案

第八章二重积分习题答案练习题1.设D :0y ≤,0x a ≤≤,由二重积分的几何意义计算d Dx y解:d Dx y =200rd πθ⎰⎰=22201()2r d a r πθ=--⎰⎰2. 设二重积分的积分区域为2214x y ≤+≤,则2dxdy =⎰⎰ 解:2dxdy =⎰⎰22126d rdr πθπ=⎰⎰练习题1.2d Dx σ⎰⎰其中D 是两个圆,y x 122=+与,y x 422=+围成的环型区域.解:2d Dx σ⎰⎰=22222301001515cos [cos2]84d r dr d d πππθθθθθπ=+=⎰⎰⎰⎰ 2计算二重积分σd yx D)341(--⎰⎰,其中D 是由直线2,,2=-=x x ;1,1=-=y y 围成的矩形; 解:σd yx D)341(--⎰⎰= 221211212(1)[(1)]4346x y x y dx dy y dx ------=--⎰⎰⎰ =222(1)84xdx --=⎰3. 应用二重积分,求在xy 平面上由曲线224x x y x y -==与所围成的区域D 的面积.解:22242202320(42)28(2)|33x x xDA dxdy dx dy x x x x -===-=-=⎰⎰⎰⎰⎰4. 求旋转抛物面224z x y =--与xy 平面所围成的立体体积解: 222222(4)(4)48DV x y d d r rdr d ππσθθπ=--=-==⎰⎰⎰⎰⎰习 题 八一.判断题1.d Dσ⎰⎰等于平面区域D 的面积.√2.二重积分 100f(x,y)d ydy x ⎰⎰交换积分次序后为11f(x,y)d xdx x ⎰⎰ ×二.填空题1.二重积分的积分区域为2214x y ≤+≤,则4dxdy =⎰⎰12π12π.2.二重积分d d Dxy x y ⎰⎰的值为112,其中2:0D y x ≤≤,01x ≤≤.1123.二重积分10(,)ydy f x y dx ⎰⎰交换积分次序后为11(,)xdx f x y dy⎰⎰. 11(,)xdx f x y dy ⎰⎰4.设区域D 为1x ≤,1y ≤,则⎰⎰sin x x -d d x y =0.05.交换积分次序1d (,)y f x y dx ⎰=211(,)(,)x dx f x y dy f x y dy +⎰⎰.211(,)(,)x dx f x y dy f x y dy +⎰⎰6.设D 是由221x y +≤所确定的区域;则221D dxdyx y++⎰⎰=_ln 2πln2π三. 选择题1.设1ln DI =⎰⎰x y +d d x y ,2DI =⎰⎰x y+2d d x y ,3DI =⎰⎰x y +d d x y ,其中D 是由直线0x =,0y =,12x y +=,1x y +=所围成的区域,则1I ,2I ,3I 的大小顺序为 B . 2.设 1 12 0 d sin d y I y x x =⎰⎰,则I 等于 A .A )1cos 1(21- B 1cos 1- C 1sin 1+ D 积不出来3.设Df ⎰⎰x ,y 1 1 0 0d d d xx y x f -=⎰⎰x ,y d y ,则改变其积分次序后应为 D .A 1 10 0d x y f -⎰⎰x ,y d xB 1 1 0 0d xy f -⎰⎰x ,y d xC 1 1d y f ⎰⎰x ,y d xD . 1 1 0 0d yy f -⎰⎰x ,y d x4.设D 是由22x y a +≤所确定的区域,当a = B时Dπ=A 1 BCD四 计算二重积分1.计算二重积分2D dxdy ⎰⎰,其中D 是由2214x y ≤+≤围成.解:2dxdy =⎰⎰22126d rdr πθπ=⎰⎰2.计算二重积分(6)Dx y dxdy +⎰⎰,其中D 是由,5,1y x y x x ===所围成的区域;解:150(6)(6)xxDx y dxdy dx x y dy +=+⎰⎰⎰⎰12310076767633x dx x ===⎰解: 1203dy xy dx ⎰123033()22y y dy =-⎰34103111()2348y y =-= 4.()Dx y d σ+⎰⎰计算二重积分,2,1,D y x x x ==其中由曲线轴围成. 解:21()()x oDx y d dx x y dy σ+=+⎰⎰⎰⎰13445101117()()241020x x dx x x =+=+=⎰ 解: 110xyxyoDxe d dx xe dy σ=⎰⎰⎰⎰1100(1)()2x x e dx e x e =-=-=-⎰6.x yDe dxdy +⎰⎰其中区域 D 是由 0,1,0,1x x y y ==== 围成的矩形; 解:2101)1(-==⎰⎰⎰⎰+e dy e dx e dxdy e oy x Dy x解: 22240x x xDxdxdy dx xdy -=⎰⎰⎰⎰2233420418(43)()323x x dx x x =-=-=⎰ 8. ()Dx y d σ+⎰⎰计算二重积分,1,1D y x ≤≤其中由曲线围成.解:1111()()Dx y dxdy dx x y dy --+=+⎰⎰⎰⎰1211120xdx x --===⎰解:1222xDx ydxdy dx x ydy =⎰⎰⎰⎰1451022255x dx x ===⎰ 10.2,Dxy dxdy ⎰⎰计算二重积分()202py x x p =>其中D 为=2p 与所围成的区域。

高等数学第八章二重积分试题及答案

高等数学第八章二重积分试题及答案

第八章 多元函数积分学一、二重积分的概念与性质1.定义设()y x f ,是定义在有界闭区域D 上的有界函数,如果对任意分割D 为n 个小区域,,,,21n σσσ∆∆∆ 对小区域()n k k ,,2,1 =∆σ上任意取一点()k k ηξ,都有()k nk k kd f σηξ∆∑=→1,lim存在,(其中k σ∆又表示为小区域k σ∆的面积,k d 为小区域k σ∆的直径,而k nk d d ≤≤=1max ) 则称这个极限值为()y x f ,在区域D 上的二重积分 记以()⎰⎰Dd y x f σ,,这时就称()y x f ,在D 上可积。

如果()y x f ,在D 上是有限片上的连续函数,则()y x f ,在D 上是可积的。

2.几何意义当()y x f ,为闭区域D 上的连续函数,且()0,≥y x f ,则二重积分()⎰⎰Dd y x f σ,表示以曲面()y x f z ,=为顶,侧面以D 的边界曲线为准线,母线平行于z 轴的曲顶柱体的体积。

当封闭曲面S 它在xy 平面上的投影区域为D ,上半曲面方程为()y x f z ,2=,下半曲面方程为()y x f z ,1=,则封闭曲面S 围成空间区域的体积为()()[]σd y x f y x f D⎰⎰-,,123.基本性质 (1)()()⎰⎰⎰⎰=DDd y x f k d y x kf σσ,,(k 为常数)(2)()()[]()()σσσd y x g d y x f d y x g y x f DDD⎰⎰⎰⎰⎰⎰±=±,,,,(3)()()()⎰⎰⎰⎰⎰⎰+=12,,,D D Dd y x f d y x f d y x f σσσ 其中21UDD D =,除公共边界外,1D 与2D 不重叠。

(4)若()()y x g y x f ,,≤,()D y x ∈,,则()()⎰⎰⎰⎰≤DDd y x g d y x f σσ,,(5)若()M y x f m ≤≤,,()D y x ∈,,则()⎰⎰≤≤DMS d y x f mS σ, 其中S 为区域D 的面积。

二重积分习题答案精编WORD版

二重积分习题答案精编WORD版

二重积分习题答案精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】第八章二重积分习题答案练习题8.11.设D :0y ≤,0x a ≤≤,由二重积分的几何意义计算d Dx y解:d Dx y =20d πθ⎰⎰=22201()2r d a r πθ=--⎰⎰2. 设二重积分的积分区域为2214x y ≤+≤,则2dxdy =⎰⎰ 解:2dxdy =⎰⎰22126d rdr πθπ=⎰⎰练习题8.21.2d Dx σ⎰⎰其中D 是两个圆,y x 122=+与,y x 422=+围成的环型区域.解:2d Dx σ⎰⎰=22222301001515cos [cos2]84d r dr d d πππθθθθθπ=+=⎰⎰⎰⎰ 2计算二重积分σd yx D)341(--⎰⎰,其中D 是由直线2,,2=-=x x ;1,1=-=y y 围成的矩形。

解:σd yx D)341(--⎰⎰= 221211212(1)[(1)]4346x y x y dx dy y dx ------=--⎰⎰⎰=222(1)84xdx --=⎰3. 应用二重积分,求在xy 平面上由曲线224x x y x y -==与所围成的区域D 的面积.解:22242202320(42)28(2)|33x x xDA dxdy dx dy x x x x -===-=-=⎰⎰⎰⎰⎰4. 求旋转抛物面224z x y =--与xy 平面所围成的立体体积解: 222222(4)(4)48DV x y d d r rdr d ππσθθπ=--=-==⎰⎰⎰⎰⎰习 题 八一.判断题1.d Dσ⎰⎰等于平面区域D 的面积.(√)2.二重积分 100f(x,y)d ydy x ⎰⎰交换积分次序后为11f(x,y)d xdx x ⎰⎰ (×)二.填空题1.二重积分的积分区域为2214x y ≤+≤,则4dxdy =⎰⎰12π12π.2.二重积分d d Dxy x y ⎰⎰的值为112,其中2:0D y x ≤≤,01x ≤≤.1123.二重积分10(,)ydy f x y dx ⎰⎰交换积分次序后为11(,)xdx f x y dy⎰⎰. 11(,)xdx f x y dy ⎰⎰4.设区域D 为1x ≤,1y ≤,则⎰⎰(sin x x -)d d x y =0.05.交换积分次序1d (,)y f x y dx ⎰=211(,)(,)x dx f x y dy f x y dy+⎰⎰⎰⎰.211(,)(,)x dx f x y dy f x y dy +⎰⎰6.设D 是由221x y +≤所确定的区域。

二重积分习题解答

二重积分习题解答

二重积分习题解答(一) 选择题(在每小题给出的四个选项中,只有一项符合题目要求,选出正确的选项) 1.12200I dy x y dx =⎰,则交换积分次序后得 C 。

(A)1220I dy x y dy =⎰; (B)12203I x y dy =⎰;(C )2112203x I dx x y dx -=⎰⎰; (D )2112203x I dx x y dy +=⎰⎰。

2.设积分域为{(,)|11,11}D x y x y =-≤≤-≤≤,则x yDedxdy +=⎰⎰ D. .(A)2)1(-e , (B)21)(2--e e , (C) 42)1(-e , (D) 21)(--e e ;3. 设积分域D 由直线,2,2y x x y x =+==围成,则(,)D f x y dxdy =⎰⎰ C(A)120(,)xx dx f x y dy -⎰⎰, (B) 21(,)yydyf x y dx -⎰⎰, (C) 212(,)xxdx f x y dy -⎰⎰, (D) 1(,)xdx f x y dy ⎰⎰.;4.22x y DI e dxdy --=⎰⎰,D :221x y +≤,化为极坐标形式是 D 。

(A )221[]r I e dr d πθ-=⎰⎰;(B )2124[]r I e dr d πθ-=⎰⎰;(C )21202[]r I e rdr d πθ-=⎰⎰;(D )221[]r I e rdr d πθ-=⎰⎰。

5. 2DI xy d σ=⎰⎰, 其中22:1D x y +≤的第一象限部分,则 C 。

(A)120I dy dy =⎰; (B )1120I dx xy dy =⎰⎰;(C)12I dx dy =⎰;(D )1232cos sin I d r dr πθθθ=⎰⎰。

填空题1.交换二次积分次序,1(,)xI f x y dy =⎰= 。

故211(,)(,)yxy I dx f x y dy dy f x y dx ==⎰⎰⎰2.设积分域D 由11,22,x y -≤≤-≤≤围成,则3(2)Dx y dxdy +=⎰⎰ 0 3.设积分域为22{(,)|14,}D x y x y y x =≤+≤≥,则积分22()Df xy dxdy +=⎰⎰在极坐标下的二次积分为 。

练习103(二重积分的计算(交换积分次序)) - 答案

练习103(二重积分的计算(交换积分次序)) - 答案

所以
2
dx
2xx2
1
1 1 y2
f x, y dy dy
f x, y dx 。
1
2x
0 2 y
3、交换二次积分
e
dx
ln x f x, ydy 的积分次序。
1
0
解:因为二次积分的积分区域 D x, y 1 x e, 0 y ln x,
画出积分区域 D (如右图所示),
所以积分区域 D x, y 0 y 1, ey x e 。
xy 2d 2
xy 2d 2
2 d
2
r
cos
r2
sin 2
rdr
2
2 cos sin2 d
2 r 4dr
0
0
0
0
D
D1
2 32 5
2 0
sin 2
d sin
64 5
sin 3 3
2 0
64 。 15
所以
3
dx
1
2 sin y2dy
x1
2
dy
1 y sin y2dx
01
2 0
y sin
y 2 dy
1 2
cos
y2
2 0
1 cos 4 2

5、计算二重积分 x5 sin y3 3 d ,其中 D x, y x 1, y 2。
D
解:画出积分区域 D (如右图所示),考虑到被积函数的奇偶性和积分
所以,
D
xy 2d
2
D1
xy 2d
2
2
dy
0
0
4 y2
xy 2dx
2
2 1 0 2

二重积分计算习题

二重积分计算习题
习题解答 习题8-2 P288 1题(1)
1 计算下列二重积分:
(1) ( x2 y2 )d ,其中D {(x, y) x 1, y 1}
D
解 积分区域下图所示
y
( x2 y2 )d
D

1
dx
1 (x2
y2 )dy
1 1
D
x

1 [x2
1
y

1 3
2
习题解答 习题8-2 P288 2题(1)-----作业题 2 画出积分区域,并计算下列二重积分
(1) x yd ,其中D是由两条抛物线y x,
D
y x2所围成的区域
解 积分区域下图所示
x yd
D
D
1
x
dx ydy
0
x2
x

[2 3
y
3 2
]
x x2
dx
(
x

x 3 )dx
1
D
o
2x
[
x2 2

x4 4
]
2 1
9 4
习题解答 习题8-2 P290 11题(4)
(2) x2 y2d ,其中D是圆环形闭区域
D
{(x, y) a2 x2 y2 b2 }
解 D如下图所示:
y
则 x2 y2d
D
2
b
0 d a r rdr
y
e
ln x
1 dx0 f ( x, y)dy
1
e
dy f ( x, y)dx
0
ey
(e ,1)
D
o

二重积分的习题答案

二重积分的习题答案

二重积分的习题答案二重积分的习题答案二重积分是高等数学中的一个重要概念,它在许多领域中都有着广泛的应用。

在学习二重积分的过程中,我们经常会遇到各种各样的习题。

本文将针对一些常见的二重积分习题,给出详细的解答。

1. 计算二重积分∬D(x^2 + y^2)dxdy,其中D为单位圆盘。

解答:首先,我们需要确定积分的区域D。

单位圆盘可以表示为D={(x,y)|x^2+y^2≤1}。

接下来,我们将积分区域D分解为极坐标系下的积分区域。

在极坐标系下,我们可以将x和y表示为x=r*cosθ,y=r*sinθ。

根据极坐标系下的面积元素dA=rdrdθ,我们可以将原积分转化为极坐标下的二重积分。

∬D(x^2 + y^2)dxdy = ∫∫D(r^2)rdrdθ对于极坐标下的积分区域D,r的取值范围为0到1,θ的取值范围为0到2π。

因此,我们可以得到:∫∫D(r^2)rdrdθ = ∫0^1∫0^2π(r^3)drdθ计算这个二重积分,我们可以得到:∫0^1(r^3)dr * ∫0^2πdθ = (1/4) * 2π = π/2因此,二重积分∬D(x^2 + y^2)dxdy的结果为π/2。

2. 计算二重积分∬Dxydxdy,其中D为由y=x^2和y=2x的曲线所围成的区域。

解答:我们可以通过绘制图像来确定积分区域D。

根据题目给出的曲线方程y=x^2和y=2x,我们可以发现它们的交点为(0,0)和(2,4)。

通过计算两条曲线的交点,我们可以确定积分区域D的边界。

在x轴上,积分区域D的边界为x=0和x=2。

在y轴上,积分区域D的边界为y=0和y=4。

因此,积分区域D可以表示为D={(x,y)|0≤x≤2, x^2≤y≤2x}。

接下来,我们可以计算二重积分∬Dxydxdy。

首先,我们需要确定积分的次序。

由于积分区域D可以表示为0≤x≤2和x^2≤y≤2x,因此我们可以选择先对y进行积分,再对x进行积分。

∬Dxydxdy = ∫0^2∫x^2^2xxydydx对于y的积分,我们可以得到:∫x^2^2xxydy = [1/2xy^2]x^2^2x = [1/2x(2x)^2]x^2^2x = 2x^5 - 1/2x^3接下来,我们对x进行积分,得到:∫0^2(2x^5 - 1/2x^3)dx = [1/3x^6 - 1/4x^4]0^2 = (1/3(2)^6 - 1/4(2)^4) -(1/3(0)^6 - 1/4(0)^4)计算这个二重积分,我们可以得到:(1/3(2)^6 - 1/4(2)^4) - (1/3(0)^6 - 1/4(0)^4) = 128/3 - 4/3 = 124/3因此,二重积分∬Dxydxdy的结果为124/3。

练习104(二重积分的计算(极坐标)) - 答案

练习104(二重积分的计算(极坐标)) - 答案

练习册 104 二重积分的计算(极坐标)(答案)1、计算σd y x xy D⎰⎰+++2211,其中(){}0 ,1 ,22≥≤+=x y x y x D 。

解:画出积分区域D (如右图所示),考虑到()221,y x xy y x f ++=关于y 是奇函数,()2211,y x y x f ++=关于y 是偶函数,且积分区域D 关于x 轴对称,设D 在第一象限的部分为1D ,因为1D 可以用不等式表示成: 10,20≤≤≤≤r πθ, 所以,σσσσd y x d y x xy d y x d y x xy DD D D ⎰⎰⎰⎰⎰⎰⎰⎰++=+++++=+++222222********* dr r r d ⎰⎰⋅+=10220112πθ()[]2ln 21ln 21221 02ππ=+⋅⋅=r 。

2、化二次积分()dy y x f dx ⎰⎰1010 , 为极坐标的二次积分。

解:因为二次积分的积分区域(){}10,10 ,≤≤≤≤=y x y x D ,画出积分区域D ,把积分区域分成两部分1D 和2D (如右图所示),显然满足21D D D ⋃=且1D 和2D 的公共面积为0。

令θcos r x =, sin θr y =,所以,直线1=x 在极坐标下的方程是θcos 1r =,即θcos 1=r , 直线1=y 在极坐标下的方程是θsin 1r =,即θsin 1=r , 所以,()⎭⎬⎫⎩⎨⎧≤≤≤≤=θπθcos 10 ,40 ,1r y x D ,()⎭⎬⎫⎩⎨⎧≤≤≤≤=θπθπsin 10 ,24 ,1r y x D 。

()=∴⎰⎰dy y x f dx 1010 , ()+⋅⎰⎰θπθθθcos 1040sin ,cos rdr r r f d ()⎰⎰⋅θππθθθsin 1024sin ,cos rdr r r f d 。

3、化二次积分()dy y x f dx x x ⎰⎰320 , 为极坐标的二次积分。

二重积分练习题答案

二重积分练习题答案
11
8、 ∫∫ x − y dxdy , D : x = 0, y = 0, x = 1, y = 1 y
D
1
解: 原式 = ∫∫ ( y − x)dxdy + ∫∫ ( x − y )dxdy
D1 D2
D1
D2
0
1
x
= ∫ dx
0
1
∫x ( y − x)dy + ∫ dx
1 0
1
∫0 ( x − y) 2 y
f ( x, y )dx
D
.
( -1,-1)
⎞ ⎛ 1 ⎜ - ,-1⎟ ⎝ 2 ⎠
1
高等数学——Copyright©2012 by Samw. All rights reserved.
3、 D : x 2 + y 2 ≥ ax , 2 + y 2 ≤ 2 ax ( a > 0) 将 ∫∫ f ( x, y ) dxdy 设 x
二重积分练习题
一、填空
x2 1、设 D : x = 2, y = x, xy = 1, ∫∫ 3 dxdy = y D
2 x x 2 x2 ∫∫ y3 dxdy = ∫1 dx ∫1x y 3 dy D
13 5
.
(2, 2)
(1,1)
1 (2, ) 2
2、设 D : y = x, y = 2 x, y = −1,将 ∫∫ f ( x, y )dxdy 化为累 次积分 =
D1 D2
0
1
x
= ∫ dθ
4 0
π

sec θ
0
f (r cosθ , r sin θ )rdr f (r cosθ , r sin θ )rdr

数学分析21.1二重积分的概念(含习题及参考答案)

数学分析21.1二重积分的概念(含习题及参考答案)

第二十一章 重积分 1二重积分的概念一、平面图形的面积引例:若构成平面图形P 的点集是平面上的有界点集, 即存在矩形R ,使P ⊂R ,则称平面图形P 有界. 用某一平行于坐标轴的一组直线网T 分割P(如图),这时直线网T 的网眼——小闭矩形△i 可分为三类: (1)△i 上的点都是P 的内点;(2)△i 上的点都是P 的外点,即△i ∩P=Ø; (3)△i 上含有P 的边界点.将所有属于直线网T 的第(1)类小矩形(图中阴影部分)的面积加起来, 记和数为s p (T),则有s p (T)≤△R (矩形R 的面积);将所有第(1)类与第(3)类小矩形(图中粗线所围部分)的面积加起来, 记作S p (T),则有s p (T)≤S p (T). 由确界存在定理知,对于平面上所有直线网,数集{s p (T)}有上确界,数集{S p (T)}有下确界, 记Tp I sup ={s p (T)} ,Tp I inf ={S p (T)}. 显然有0≤p I ≤p I .p I 称为内面积,p I 称为外面积.定义1:若平面图形P 的内面积p I 等于它的外面积p I , 则称P 为可求面积,并称其共同值I p =p I =p I 为P 的面积.定理21.1:平面有界图形P 可求面积的充要条件是:对任给ε>0, 总存在直线网T ,使得S p (T)-s p (T)< ε.证:[必要性]设P 的面积为I p , 由面积的定义知, I p =p I =p I . ∀ε>0, 由p I 及p I 的定义知,分别存在直线网T 1与T 2,使得 s p (T 1)>I p -2ε, S p (T 2)<I p +2ε, 记T 为由T 1与T 2合并所成的直线网,则 s p (T 1)≤s p (T), S p (T 2)≥S p (T),∴s p (T)>I p -2ε, S p (T)<I p +2ε, 从而S p (T)-s p (T)<ε. [充分性]设对任给的ε>0, 存在某直线网T ,使得S p (T)-s p (T)<ε. 但s p (T)≤p I ≤p I ≤S p (T),∴p I -p I ≤S p (T)-s p (T)<ε. 由ε的任意性知,p I =p I ,∴平面图形P 可求面积.推论:平面有界图形P 的面积为零的充要条件是它的外面积p I =0,即对任给的ε>0, 存在某直线网T ,使得S p (T)<ε,或 平面图形P 能被有限个其面积总和小于ε的小矩形所覆盖.定理21.2:平面有界图形P 可求面积的充要条件是:P 的边界K 的面积为0.证:由定理21.1,P 可求面积的充要条件是:∀ε>0, ∃直线网T , 使得S p (T)-s p (T)<ε. 即有S K (T)=S p (T)-s p (T)<ε, 由推论知,P 的边界K 的面积为0.定理21.3:若曲线K 为定义在[a,b]上的连续函数f(x)的图象,则曲线K 的面积为零.证:∵f(x)在闭区间[a,b]上连续,从而一致连续. ∴∀ε>0, ∃δ>0, 当把区间[a,b]分成n 个小区间[x i-1,x i ] (i=1,2,…,n, x 0=a,x n =b)并满足 max{△x i =x i -x i-1 |i=1,2,…,n }<δ时,可使f(x)在每个小区间[x i-1,x i ]上的振幅都有ωi <ab -ε.把曲线K 按自变量x=x 0,x 1,…,x n 分成n 个小段,则 每一个小段都能被以△x i 为宽, ωi 为高的小矩形所覆盖,又 这n 个小矩形面积的总和为i ni i x ∆∑=1ω<ab -ε∑=∆ni ix1<ε,由定理21.1的推论即得曲线K 的面积为零.推论1:参数方程x=φ(t), y=ψ(t), t ∈[α,β]所表示的光滑曲线K 的面积为零.证:由光滑曲线的定义,φ’(t),ψ’(t)在[α,β]上连续且不同时为0. 对任意t 0∈[α,β],不妨设φ’(t 0)≠0,则存在t ’的某邻域U(t 0), 使得 x=φ(t)在此邻域上严格单调,从而存在反函数t=φ-1(x). 又 由有限覆盖定理,可把[α,β]分成有限段:α=t 0<t 1<…<t n =β, 在每一小区间段上,y=ψ(φ-1(x))或x=ψ(φ-1(y)),由定理21.3知, 每小段的曲线面积为0,∴整条曲线面积为零.推论2:由平面上分段光滑曲线所围成的有界闭区域是可求面积的.注:并非平面中所有的点集都是可求面积的.如D={(x,y)|x,y ∈Q ∩[0,1]}. 易知0=D I ≤D I =1, 所以D 是不可求面积的.二、二重积分的定义及其存在性 引例:求曲顶柱体的体积(如图1).设f(x,y)为定义在可求面积的有界闭区域D 上的非负连续函数. 求以曲面z=f(x,y)为顶,以D 为底的柱体体积V.用一组平行于坐标轴的直线网T 把D 分成n 个小区域σi (i=1,2,…,n). ∵f(x,y)在D 上连续,∴当每个σi 都很小时, f(x,y)在σi 上各点的函数值近似相等; 可在σi 上任取一点(ξi ,ηi ),用以f(ξi ,ηi )为高, σi 为底的小平顶柱体的体积f(ξi ,ηi )△σi 作为V i 的体积△V i ,即△V i ≈f(ξi ,ηi )△σi .把这些小平顶柱体的体积加起来, 就得到曲顶柱体体积V 的近似值: V=∑=∆n i i V 1≈i ni i i f σηξ∆∑=1),(.当直线网T 的网眼越来越细密,即分割T 的细度T =di ni ≤≤1max →0(di 为σi 的直径)时,i ni i i f σηξ∆∑=1),(→V.概念:设D 为xy 平面上可求面积的有界闭区域,f(x,y)为定义在D 上的函数. 用任意的曲线把D 分成n 个可求面积的小区域σ1, σ2,…, σn . 以△σi 表示小区域△σi 的面积,这些小区域构成D 的一个分割T , 以d i 表示小区域△σi 的直径,称T =di ni ≤≤1max 为分割T 的细度.在每个σi 上任取一点(ξi ,ηi ),作和式ini iif σηξ∆∑=1),(,称为函数f(x,y)在D 上属于分割T 的一个积分和.定义2:设f(x,y)是定义在可求面积的有界闭区域D 上的函数. J 是一个确定的数,若对任给的正数ε,总存在某个正数δ,使对于D 的任何分割T ,当它的细度T <δ时,属于T 的所有积分和都有J f ini ii-∆∑=σηξ1),(<ε,则称f(x,y)在D 上可积,数J 称为函数f(x,y)在D上的二重积分,记作:J=⎰⎰Dd y x f σ),(.注:1、函数f(x,y)在有界可求面积区域D 上可积的必要条件是f 在D 上有界.2、设函数f(x,y)在D 上有界,T 为D 的一个分割,把D 分成n 个可求面积的小区域σ1, σ2,…, σn . 令M i =iy x σ∈),(sup f(x,y), m i =iy x σ∈),(inf f(x,y), i=1,2,…,n.作和式S(T)=i n i i M σ∆∑=1, s(T)=i ni i m σ∆∑=1. 它们分别称为函数f(x,y)关于分割T 的上和与下和.定理21.4:f(x,y)在D 上可积的充要条件是:0lim →T S(T)=0lim →T s(T).定理21.5:f(x,y)在D 上可积的充要条件是:对于任给的正数ε,存在D 的某个分割T ,使得S(T)-s(T)<ε.定理21.6:有界闭区域D 上的连续函数必可积.定理21.7:设f(x,y)在有界闭域D 上有界,且不连续点集E 是零面积集,则f(x,y)在D 上可积.证:对任意ε>0, 存在有限个矩形(不含边界)覆盖了E ,而 这些矩形面积之和小于ε. 记这些矩形的并集为K ,则 D\K 是有界闭域(也可能是有限多个不交的有界闭域的并集). 设K ∩D 的面积为△k ,则△k <ε. 由于f(x,y)在D\K 上连续, 由定理21.6和定理21.5,存在D\K 上的分割T 1={σ1, σ2,…, σn }, 使得S(T 1)-s(T 1)<ε. 令T={σ1, σ2,…, σn , K ∩D},则T 是D 的一个分割,且 S(T)-s(T)=S(T 1)-s(T 1)+ωK △k <ε+ωε, 其中ωK 是f(x,y)在K ∩D 上的振幅,ω的是f(x,y)在D 上的振幅. 由定理21.5可知f(x,y)在D 上可积.三、二重积分的性质1、若f(x,y)在区域D 上可积,k 为常数,则kf(x,y)在D 上也可积,且⎰⎰Dd y x kf σ),(=k ⎰⎰Dd y x f σ),(.2、若f(x,y), g(x,y)在D 上都可积,则f(x,y)±g(x,y)在D 上也可积,且[]⎰⎰±Dd y x g d y x f σσ),(),(=⎰⎰Dd y x f σ),(±⎰⎰Dd y x g σ),(.3、若f(x,y)在D 1和D 2上都可积,且D 1与D 2无公共内点,则⎰⎰21),(D D d y x f σ=⎰⎰1),(D d y x f σ+⎰⎰2),(D d y x f σ.4、若f(x,y)与g(x,y)在D 上可积,且f(x,y)≤g(x,y), (x,y)∈D ,则⎰⎰Dd y x f σ),(≤⎰⎰Dd y x g σ),(.5、若f(x,y)在D 上可积,则函数|f(x,y)|在D 上也可积,且⎰⎰Dd y x f σ),(≤⎰⎰Dd y x f σ),(.6、若f(x,y)在D 上都可积,且m ≤f(x,y)≤M, (x,y)∈D ,则 mS D ≤⎰⎰Dd y x f σ),(≤MS D , 其中S D 是积分区域D 的面积.7、(中值定理)若f(x,y)在有界闭区域D 上连续,则存在(ξ,η)∈D , 使得⎰⎰Dd y x f σ),(=f(ξ,η)S D , 其中S D 是积分区域D 的面积.注:中值定理的几何意义:以D 为底,z=f(x,y) (f(x,y)≥0)为曲顶的曲顶柱体体积等于一个同底的平顶柱体的体积,这个平顶柱体的高等于f(x,y)在区域D 中某点(ξ,η)的函数值f(ξ,η).习题1、把重积分⎰⎰Dxydxd σ作为积分和的极限,计算这个积分值,其中D=[0,1]×[0,1],并用直线网x=n i, y=nj , (i,j=1,2,…,n-1)分割D 为许多小正方形,每个小正方形取其右顶点作为其节点.解:⎰⎰Dxydxd σ=2111lim n n j n i nj ni n ⋅⋅∑∑==∞→=21121lim n n j n nj n ⋅⋅+∑=∞→=224)1(lim n n n +∞→=41.2、证明:若函数f(x,y)在有界闭区域D 上可积,则f(x,y)在D 上有界. 证:若f 在D 上可积,但在D 上无界,则对D 的任一分割T={σ1, σ2,…, σn }, f 必在某个小区域σk 上无界. 当i ≠k 时,任取p i ∈σi ,令G=∑≠nki i i p f σ)(, I=⎰⎰Ddxdy y x f ),(.∵f 在σk 上无界,∴存在p k ∈σk ,使得|f(p k )|>kG I σ∆++1, 从而∑=ni iip f 1)(σ=∑≠∆+nki k k i i p f p f σσ)()(≥|f(p k )·△σk |-∑≠nki i i p f σ)(>|I|+1.又f 在D 上可积,∴存在δ>0,对任一D 的分割T={σ1, σ2,…, σn }, 当T <δ时,T 的任一积分和∑=nk k k p f 1)(σ都满足∑=-nk k k I p f 1)(σ<1,即∑=nk k k p f 1)(σ<|I|+1,矛盾!∴f 在D 上可积,则f 在D 上有界.3、证明二重积分中值定理:若f(x,y)在有界闭区域D 上连续,则存在(ξ,η)∈D ,使得⎰⎰Df =f(ξ,η)S D , 其中S D 是积分区域D 的面积.证:∵f 在有界闭区域D 上连续,∴f 在D 上有最大值M 和最小值m, 对D 中一切点有m ≤f ≤M ,∴mS D ≤⎰⎰Df ≤MS D , 即m ≤⎰⎰DDf S 1≤M.由介值性定理知,存在(ξ,η)∈D ,使得⎰⎰Df =f(ξ,η)S D .4、证明:若f(x,y)为有界闭区域D 上的非负连续函数,且在D 上不恒为零,则⎰⎰Dd y x f σ),(>0.证:由题设知存在p 0(x 0,y 0)∈D ,使f(p 0)>0,令δ=f(p 0),由连续函数的局部保号性知:∃η>0使得对一切p ∈D 1(D 1=U(p 0,η)∩D), 有f(p)>2δ. 又f(x,y)≥0且连续,∴⎰⎰Df =⎰⎰1D f +⎰⎰-1D D f ≥2δ·△D 1>0.5、证明:若f(x,y)在有界闭区域D 上连续,且在D 内任一子区域D ’⊂D 上有⎰⎰'D d y x f σ),(=0,则在D 上f(x,y)≡0.证:假设存在p 0(x 0,y 0)∈D ,使得f(p 0)≠0, 不妨设f(p 0)>0. 由连续函数的保号性知,∃η>0使得对一切p ∈D ’(D ’=U(p 0,η)∩D), 有f(p)>0,由第4题知⎰⎰'D f >0,矛盾! ∴在D 上f(x,y)≡0.6、设D=[0,1]×[0,1],证明: 函数f(x,y)=⎩⎨⎧内非有理点为皆为有理数即内有理点为D y x y x D y x ),(,0),(),(,1在D 上不可积.证: 设D 的任一分割T={σ1, σ2,…, σn }, 则每一个小区域σi 内必同时含有D 内有理点和非有理点,从而 M i =iy x σ∈),(sup f(x,y)=1, m i =iy x σ∈),(inf f(x,y)=0, i=1,2,…,n.∴S(T)=i n i i M σ∆∑=1=1, s(T)=i ni i m σ∆∑=1=0,由T 的任意性知:lim →T S(T)=1≠0=0lim →T s(T). ∴f 在D 上不可积.7、证明:若f(x,y)在有界闭区域D 上连续,g(x,y)在D 上可积且不变号,则存在一点(ξ,η)∈D ,使得⎰⎰Dd y x g y x f σ),(),(=f(ξ,η)⎰⎰Dd y x g σ),(.证:不妨设g(x,y)≥0, (x,y)∈D ,则⎰⎰Dd y x g σ),(≥0. 令M,m 分别为f 在D 上的最大、最小值,则 m ⎰⎰Dd y x g σ),(≤⎰⎰Dd y x g y x f σ),(),(≤M ⎰⎰Dd y x g σ),(.若⎰⎰Dd y x g σ),(=0, 则⎰⎰Dd y x g y x f σ),(),(=0,任取(ξ,η)∈D ,得证!若⎰⎰Dd y x g σ),(>0, 则m ≤⎰⎰⎰⎰DDd y x g d y x g y x f σσ),(),(),(≤M. 由介值性定理知,存在一点(ξ,η)∈D ,使得f(ξ,η)=⎰⎰⎰⎰DDd y x g d y x g y x f σσ),(),(),( ,即⎰⎰Dd y x g y x f σ),(),(=f(ξ,η)⎰⎰Dd y x g σ),(.8、应用中值定理估计积分:I=⎰⎰++Dyx d 22cos cos 100σ的值, 其中D={(x,y)||x|+|y|≤10}. 解:∵f(x,y)=yx 22cos cos 1001++ 在D={(x,y)||x|+|y|≤10}上连续,根据中值定理知:存在(ξ,η)∈D ,使得I=ηξ22cos cos 100++∆D, 从而102D ∆≤I ≤100D ∆, △D 为D 的面积,∴51100≤I ≤2.9、证明:若平面曲线x=φ(t), y=ψ(t), α≤t ≤β光滑 (即φ(t),ψ(t)在[α,β]上具有连续导数且φ’2(t)+ψ’2(t)≠0),则 此曲线的面积为0.证法1:该平面曲线L 的长度为l=dt t t ⎰'+'βαψϕ)()(22为有限值.对∀ε>0, 将L 分成n=⎥⎦⎤⎢⎣⎡εl +1段:L 1,L 2,…,L n , 在每段L i 上取一点P i , 使P i 与其一端点的弧长为nl 2,以P i 为中心作边长为的ε正方形△i , 则L i ⊂△i (i=1,2,…,n), 从而L ⊂n i 1= △i ,记△=ni 1= △i ,则△为一多边形.设△的面积W ,则W ≤n ε2=⎪⎭⎫ ⎝⎛+1εlε=(1+ε)ε,∴L 的面积W L ≤W ≤(1+ε)ε. 即此曲线的面积为0.证法2:在曲线上任取参数t 的点M ,∵φ’2(t)+ψ’2(t)≠0, 由隐函数存在定理知,存在σ=(t-δ,t+δ)使曲线上对应的一段可以表示成显式方程.应用有限覆盖定理,[α,β]被开区间集{σ}有限覆盖,得出有限个区间, 使曲线分成有限部分,每一部分可以表示成显式方程y=f(x)或x=g(y), 其中f,g 为连续函数,由定理21.3知光滑曲线的面积为0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章二重积分习题 9-11.设0),(≥y x f ,试阐述二重积分(,)d Df x y σ⎰⎰的几何意义.解 当0),(≥y x f 时,二重积分(,)d D f x y σ⎰⎰表示的是以xy 平面上的有界闭区间为底,以曲面),(y x f z =为顶,母线平行于z 轴,准线为区域D 的边界的一个曲顶柱体的体积.2.试确定下列积分的符号并说明理由:221(1)ln()d d x y x y x y+<+⎰⎰224(2)d x y x y*+≤⎰⎰解 (1) 因1x y +<,则将此式两边平方,得220121x y xy ≤+<-<于是 0)ln(22<+y x 故221ln()d d 0.x y x y x y +<+<⎰⎰(2)因为224d x y x y+≥⎰⎰222222221122343d d d d x y x y x y x y x y x yx y x y+≤<+≤<+≤<+≤=+++⎰⎰⎰⎰⎰⎰⎰⎰当221x y +≤1,且此区域面积为π,则221d x y x y π+≤≤⎰⎰当2212x y <+≤0,且此区域面积为π,则2212d 0xy x y <+≤≤⎰⎰当2223x y <+≤1-,且此区域面积为π,则2223d x y x y π<+≤≤-⎰⎰当2234x y <+≤≤且此区域面积为π,则2243d x y x y <+≤≤⎰⎰故 224d 00x y x y ππ+≤≤+--=<⎰⎰.3.试用二重积分的定义证明:(1) d DDS σ=⎰⎰(其中D S 为D 之面积)(2) (,)d (,)d DDkf x y k f x y σσ=⎰⎰⎰⎰(k 为常数)证 (1) 由二重积分的定义,有.1(,)d lim (,)n i i ii Df x y f λσεησ→==∆∑⎰⎰则当1),(≡y x f 时,上式变为01d lim lim ni D Di DS S λλσσ→→==∆==∑⎰⎰.(2) 由二重积分的定义,有,1,101(,)d lim () lim () lim (,)n i iioi Dni i ioi ni i ii kf x y kf k f k f λλλσξησξησξησ→=→=→==∆=∆=∆∑⎰⎰∑∑ (,)d .Dk f x y σ=⎰⎰4.根据二重积分的性质,比较下列积分的大小.()2(1) d Dx y σ+⎰⎰与3()d Dx y σ+⎰⎰,其中D 由x 轴、y 轴及直线1x y +=围成;()2(2) d Dx y σ+⎰⎰与3()d Dx y σ+⎰⎰,其中D 由圆2(2)x -+ 2(1)2y -=围成.解 (1) 积分区域D 如图9-1 所示. 因在所围区域内有10≤+≤y x ,所以 32)()(y x y x +≥+故 ()23d ()d D D x y x y σσ+≥+⎰⎰⎰⎰. 图9-1 (2) 积分区域D 如图9-2 所示.因圆22(2)(1)2x y -+-=的参数方程为22cos 12sin x y θθ⎧=+⎪⎨=+⎪⎩则32(sin cos )32sin()4x y πθθθ+=++=++图9-2min ()321,1,x y x y +=-=+≥而且于是32)()(y x y x +≤+故 ()23d ()d .D D x y x y σσ+≤+⎰⎰⎰⎰5.利用二重积分的性质,估计下列积分的值.(1) ()d DI xy x y σ=+⎰⎰, :01,01D x y ≤≤≤≤22(2) sin sin d DI x y σ=⎰⎰, :0,0D x y ππ≤≤≤≤(3) (1)d DI x y σ=++⎰⎰, :01,02D x y ≤≤≤≤22(4) (49)d DI x y σ=++⎰⎰,22:4D x y +≤ 解 (1) 因01,01x y ≤≤⎧⎨≤≤⎩则0102xy x y ≤≤⎧⎨≤+≤⎩故00d 2d 2d 2 2.D DDDI S σσσ=≤≤===⎰⎰⎰⎰⎰⎰(2) 因0,0x y ππ≤≤⎧⎨≤≤⎩则0sin 10sin 1x y ≤≤⎧⎨≤≤⎩于是 220sin sin 1x y ≤≤ 故200d d .D DDI S σσπ=≤≤==⎰⎰⎰⎰(3)因0102x y ≤≤⎧⎨≤≤⎩,则411≤++≤y x故d (1)d 4d DDDx y σσσ≤++≤⎰⎰⎰⎰⎰⎰即 28.I ≤≤(4) 因4022≤+≤y x ,则22229494()925x y x y ≤++≤++≤于是99d 25d 25D DDDS I S σσ=≤≤=⎰⎰⎰⎰而 24D S r ππ== 故 36100.I ππ≤≤习题 9-21.计算下列二重积分:22(1) ()d ,Dx y σ+⎰⎰其中D 是矩形区域:1,1x y ≤≤;22(2) ()d ,Dx y x σ+-⎰⎰其中D 由直线22y y x y x ===、与所围成;2(3) d ,Dxy σ⎰⎰其中D2y x y x ==由抛物线和直线所围成; 2111sin (4) d d .y x y x x -⎰⎰解 (1)积分区域D 如图9-3 所示.11222211()d d ()d Dxy x x y yσ--+=+⎰⎰⎰⎰12128(2)d .33x x -=+=⎰ 图9-3(2)积分区域D 如图9-4所示.22222102 ()d d ()d yyDx y x y x y x xσ+-=+-⎰⎰⎰⎰232019313()2486y y dy =-=⎰图9-4(3)积分区域D 如图9-5所示.2112232001 d d d ()d 3xx D xxy x xy y x y xx σ==⋅⎰⎰⎰⎰⎰ 1470111()d 3340x x x =-=⎰图9-5(4)积分区域D 如图9-6所示.22111110110sin sin d d d d sin d sin1cos1.x y xx y x x yx x x x x +-===-⎰⎰⎰⎰⎰图9-62.积分区域}{(,),D x y a x b c y d =≤≤≤≤,且被积函数为()(),f x g y ⋅求证:()()d d ()d ()d bdacDf xg y x y f x x g y y⋅=⎰⎰⎰⎰.证 积分区域D 如图9-7所示.()()d d d ()()d b dacDf xg y x y x f x g y y=⎰⎰⎰⎰()[()d ]d ()d ()d ()d ()d b dacd bcab dacf xg y y xg y y f x xf x xg y y ==⋅=⋅⋅⎰⎰⎰⎰⎰⎰ 图9-73.设(,)f x y 在D 上连续且D 由y x y a x b b a ===>、与()围成,求证:d (,)d d (,)d .bx b baa a y x f x y y y f x y x =⎰⎰⎰⎰证 积分区域D 如图9-8 所示. 交换等式左边二次积分的积分顺序有d (,)d d (,)d b xb baaayx f x y y y f x y x=⎰⎰⎰⎰图9-84.下列条件下,将(,)d DI f x y σ=⎰⎰按不同积分顺序化为二次积分:2(1) 4D y x y x ==由与所围成;(2) D x 由轴与半圆周()2220x y r y +=≥所围成. 解 (1) 由24y x =和y x =,得交点为(0,0),(4,4). y=x积分区域D 如图9-9 所示. 于是将I 化为先对y 后对x 的二次积分,得420d (,)d xxI x f x y y=⎰⎰将I 化为先对x 后对y 的二次积分,得2414d (,)d .y y I y f x y x =⎰⎰(2)积分区域D 如图9-10 所示. 图9-9将I 化为先对y 后对x 的二次积分,得22d (,)d rr x rI x f x y y--=⎰⎰将I 化为先对x 后对y 的二次积分,得2222d (,)d rr y r y I y f x y x---=⎰⎰图9-105.更换下列二次积分的积分顺序:10(1) d (,)d yy y f x y x⎰⎰10(2) d (,)d yy f x y x⎰⎰1(3) d (,)d e ln xx f x y y⎰⎰221101(4) d (,)d y y y f x y x---⎰⎰2113(3)2001(5) d (,)d d (,)d x x x f x y y x f x y y-+⎰⎰⎰⎰解 (1)因为原积分区域{}(,)01,D x y y y x y=≤≤≤≤为Y 型区域, 其图形如图9-11 所示. 交换积分次序区域D 应视为X 型区域. 故211d (,)d d (,)d .yxyxy f x y x x f x y y =⎰⎰⎰⎰(2) 因为原积分区域{}(,)01,0D x y y x y =≤≤≤≤为Y 型区域, 其图形如图9-12 所示. 交换积分次序区域D 应视为X 型区域. 故111d (,)d d (,)d .yoxy f x y x x f x y y =⎰⎰⎰⎰(3)因为原积分区域{}(,)1,0ln D x y x e y x=≤≤≤≤为X 型区域, 其 图形如图9-13 所示. 交换积分次序区域D 应视为Y 型区域.图9-11 图9-12故ln 11d (,)d d (,)d .xexee xf x y y y f x y x =⎰⎰⎰⎰(4)因为原积分区域{}22(,)01,11D x y y y x y =≤≤≤≤---为Y 型区域, 其图形如图9-14 所示. 交换积分次序区域D 应视为X 型区域.故2221111011d (,)d d (,)d .y x yy f x y x x f x y y -----=⎰⎰⎰⎰图9-13 图9-14(5)因为原积分区域{}2121,(,)01,0D D D D x y x y x =+=≤≤≤≤其中21(,)13,032D x y x y x ⎧⎫=≤≤≤≤⎨⎬⎩⎭(-)为X 型区域, 其图形如图9-15 所示. 交换积分次序区域D 应视为Y 型区域.图9-15 图9-16 2113(3)20011320d (,)d d (,)d d (,)d .故x x y yx f x y y x f x y yy f x y x --+=⎰⎰⎰⎰⎰⎰6.求由平面0011x y x y ====、、、所围成的柱体被平面0z =与2x + 3y + z = 6所截得的立体的体积.解 该曲顶柱体如图9-16所示.习题 9-31.作适当变换,计算下列二重积分:()22(1) ()sin d d Dx y x y x y-+⎰⎰.D 是顶点为(,0)(2,)(,2)πππππ、、、(0,)π的四边形;22(2) d d ,Dx y x y ⎰⎰1240D xy xy y x y x x ====>由、、和所围成且、0y >;(3) d d ,yx yDex y +⎰⎰ D 由x 轴,y 轴和直线1x y +=所围成;()()1100623d d 7d 623d .2DV x y x yx x y y =--=--=⎰⎰⎰⎰2222(4) ()d d ,D y x x y a b +⎰⎰2222:1y x D a b +≤.解 (1) 积分区域D 如图9-17所示.令x y ux y v -=⎧⎨+=⎩,解得()()1212x u v y v u ⎧=+⎪⎪⎨⎪=-⎪⎩ 于是原积分区域D 的边界x y π+=、3x y π+=、x y π-=、x y π-=-与 图9-17新积分区域D’的边界3v π=、v π=、u π=、u π=-相对应. 其积分区域D’的图形如图9-18所示.因为11(,)12211(,)222x x x y u v J y y u v u v ∂∂∂∂∂====∂∂∂-∂∂故()()22sin d d Dx y x y x y -+⎰⎰22'322321sin d d 21d sin d 231sin 2324D u v u vu u v v u v v ππππππππ-=⋅=⎛⎫⎛⎫=⋅- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎰⎰⎰⎰ 图9-183431().3223ππππ=⋅-=(2) 积分区域D 如图9-19所示.令 xy u yv x =⎧⎪⎨=⎪⎩,解得u x v y uv ⎧=⎪⎨⎪=⎩则新积分区域D’由u = 1,u = 2,v = 1,v = 4围成.其积分区域D’的图形如图9-20所示. 图9-19因为(,)(,)x xx y u v J y yu v u v ∂∂∂∂∂==∂∂∂∂∂2111()122222v v u u v u v v v u uvuv⋅-==22'2'1d d d d 211 d d 2DD D u x y x y uv u v v v u u v v =⋅⋅=⎰⎰⎰⎰⎰⎰故 图9-2024211117d d ln 2.23u u v v ==⎰⎰ (3)积分区域D 如图9-21所示.令x y u y v +=⎧⎨=⎩,解得x u vy v =-⎧⎨=⎩则新积分区域D’由u = v 、v = 0和u = 1围成. 图9-21其积分区域D’的图形如图9-22所示.因为11(,)101(,)xxx y u v J y y u v u v∂∂-∂∂∂====∂∂∂∂∂图9-22故 10'd d 1d d d d y v v x yuuuoDD ex y e u v u e v+=⋅⋅=⎰⎰⎰⎰⎰⎰()1011d 2e u e u -=-=⎰.(4)积分区域D 如图9-23所示.令 cos sin x ar y br θθ=⎧⎨=⎩则新积分区域为 (){}',02,01D r r θθπ=≤≤≤≤ 图9-23因为(,)(,)x xx y r J yyr r θθθ∂∂∂∂∂==∂∂∂∂∂cos sin sin cos a ar abrb br θθθθ-==22222'21300 ()d d d d 1d d .2DD y xx y r abr r a bab r r ab πθθπ+===⎰⎰⎰⎰⎰⎰故2.用变量替换,求下列区域D 的面积:(1)334851500.D xy xy xy xy x y ====>>由曲线、、和所围成且、 (2)D 由曲线333344y x y x x y x y ====、、、所围成且00.x y ≥≥、解 (1) 令3u xy v xy =⎧⎨=⎩,解得,u vx u y v u ==则新积分区域D’由 u = 4、u = 8、v = 5、v = 15围成.因为(,)(,)x xx y u vJy yu vu v∂∂∂∂∂==∂∂∂∂∂31221211122u u uv v vvvu u uv-==-81515545'd d111d d d d4ln2ln3.222DDDS x yu v u v vv v====⋅=⎰⎰⎰⎰⎰⎰故图9-24(2) 令33yuxxvy⎧=⎪⎪⎨⎪=⎪⎩,解得838311xu vyuv⎧=⎪⎪⎨⎪=⎪⎩则新积分区域D’由u = 1、u = 4、v = 1和v = 4围成. 其积分区域D’的图形如图9-25所示.因为(,)(,)x xx y u vJy yu vu v∂∂∂∂∂==∂∂∂∂∂图9-25 1113988883293111888831188()81388u v u vuvu v v u-----------==--故d dDDS x y=⎰⎰()33442211342111d d d()d8811d.88Duv u v u uv vu u---====⎰⎰⎰⎰⎰’100D x y x y+===3.设由直线、与所围成,求证:1cos()d d sin1.2Dx yx yx y-=+⎰⎰证积分区域D如图9-26所示.令x y vx y u+=⎧⎨-=⎩,解得()()1212x v uy v u⎧=+⎪⎪⎨⎪=-⎪⎩则新积分区域'D由v = 1,v = -u, 及v = u围成. 图9-26因为11(,)12211(,)222x x x y u v J y yu v u v ∂∂∂∂∂====∂∂∂-∂∂'1cos d d cos d d 2D D x y u x y u vx y v -=⋅+⎰⎰⎰⎰故 图9-27101d cos d 2vv uv uv -=⎰⎰101[sin ]d 21sin1d sin1.2v v u v v v v v =-==⎰⎰4.选取适当变换,求证:()()11d d d , : 1.Df x y x y f u u D x y -+=+≤⎰⎰⎰证 积分区域D 如图9-28所示.令x y ux y v +=⎧⎨-=⎩, 解得()()1212x u v y u v ⎧=+⎪⎪⎨⎪=-⎪⎩则新积分区域'D 由u = 1, u = -1,v = 1及v = -1所围成其积分区域D’的图形如图9-29所示. 图9-28因为 11(,)12211(,)222x x x y u v J y y u v u v ∂∂∂∂∂====-∂∂∂-∂∂ 故'1()d d ()d d 2DD f x y x y f u u v +=-⎰⎰⎰⎰1111111d ()d ()d .2u f u v f u u ---==⎰⎰⎰习题 9-41.画出下列积分区域D 并把积分(),d d Df x y x y⎰⎰化成极坐标形式:()22222(1) 0 (2) 2x y a a x y x +≤>+≤()2222(3) 0 (4) 0101a x y b a b y x x ≤+≤<<≤≤-≤≤且 解 积分区域D 如图9-30所示.(1)令cos sin x r y r θθ=⎧⎨=⎩则积分区域D 被夹在0θ=与2θπ=之间,且远近极点的边界方程分别为0r a r ==与,故 图9-30()20,d d d (cos ,sin )d .aDf x y x y f r r r r πθθθ=⎰⎰⎰⎰(2) 积分区域D 如图9-31所示.令 cos sin x r y r θθ=⎧⎨=⎩则远近极点的边界方程分别为r=2cos θ与r = 0.由r ≥0和2cos 0θ≥得22ππθ-≤≤图9-31 则D 被夹在22ππθθ==-和之间, 故2cos 22(,)d d d (cos ,sin )d Df x y x y f r r r rπθπθθθ-=⎰⎰⎰⎰.(3) 积分区域D 如图9-32所示.令 cos sin x r y r θθ=⎧⎨=⎩则远近极点的边界方程分别为r a r b ==与, 图9-32而D 被夹在02θθπ==与之间, 故20(,)d d d (cos ,sin )d .baDf x y x y f r r r r πθθθ=⎰⎰⎰⎰(4) 积分区域D 如图9-33所示.令 cos sin x r y r θθ=⎧⎨=⎩则远近极点的边界方程分别为图9-331cos sin r θθ=+0r =与,而D 被夹在02πθθ==和之间,故12cos sin 0(,)d d d (cos ,sin )d .Df x y x y f r r r r πθθθθθ+=⎰⎰⎰⎰2.将下列二次积分化为极坐标形式:2222222222001122222000(1) d ()d (2) d d (3) d ()d (4) d ()d aax x axxa a y xx x y y x x y y x x y y yx y x---++++⎰⎰⎰⎰⎰⎰⎰⎰解 (1)积分区域D 如图9-34所示.令 cos sin x r y r θθ=⎧⎨=⎩则22y ax x =-的极坐标方程为2cos ,r a θ=而D 被夹在02πθθ==与之间, 故 图9-342222cos 22320d ()d d d .aax x a x x y y r r πθθ-+=⎰⎰⎰⎰(2) 积分区域D 如图9-35所示.令cos sin x r y r θθ=⎧⎨=⎩ 则0x a x ==与的极坐标方程分别为图9-26cos a r θ=与0;r =0y x y ==与的方程分别为04πθθ==与,故sec 22240d d d d .axa x x y y r r πθθ+=⎰⎰⎰⎰(3) 积分区域D 如图9-36所示.令cos sin x r y r θθ=⎧⎨=⎩则2y x y x ==与的极坐标方程分别为 图9-36 tan sec r θθ=4πθ=与,故211tan sec 2224000d ()d d d .xx x x y y r πθθθ-+=⎰⎰⎰⎰(4) 积分区域D 如图9-37所示.令cos sin x r y r θθ=⎧⎨=⎩则222x y a +=上方程为,r a =而D 被夹在02πθθ==与之间, 故222232000d ()d d d .aa y ay x y x r r πθ-+=⎰⎰⎰⎰ 图9-373.用极坐标计算下列各题:22(1) d ,xy De σ+⎰⎰D 由圆周224x y +=所围成;22(2) d ,Dx y σ+⎰⎰{}2222(,);D x y a x y b =≤+≤(3) arctand ,Dy x σ⎰⎰2222140D x y x y y y x +=+===由、、和所围成的第I 象限部分;222224 d , :.DR x y D x y Rx σ--+≤⎰⎰()解 (1) 积分区域D 如图9-38所示.令 cos sin x r y r θθ=⎧⎨=⎩ {}(,)02,02D r r θθπ=≤≤≤≤则,故222220d d d x y r Dee r r πσθ+=⎰⎰⎰⎰图9-382224012d (1)2re r e ππ==-⎰.(2) 积分区域D 如图9-39所示.令cos sin x r y r θθ=⎧⎨=⎩(){},,02D r a r b θθπ=<<≤≤则,故 图9-39222203333d d d 22().33baDx y r rb a b a πσθππ+=-=⋅=⋅-⎰⎰⎰⎰(3) 积分区域D 如图9-40所示.令cos sin x r y r θθ=⎧⎨=⎩(),12,04D r r πθθ⎧⎫=≤≤≤≤⎨⎬⎩⎭则,故 图9-40 2224401013arctan d d d d d .64D y r r r r x ππσθθθθπ===⎰⎰⎰⎰⎰⎰(4) 积分区域D 如图9-41所示.令cos sin x r y r θθ=⎧⎨=⎩(),0cos ,22D r r R ππθθθ⎧⎫=≤≤-≤≤⎨⎬⎩⎭则, 故 图9-41 ()cos 22222202cos 2220322220 d d d 2d d cos 2 d 03R DR R x y R r r rR r r rR R r πθππθπσθθθθ---=-⋅=-⋅⎡⎤=--⎢⎥⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰33332024 (sin )d ()333R R R πθθπ=--=-⎰.4.选择适当的坐标系,计算下列各题:()22(1) ()d d 30Dx y x y D y x y x a y a y a a +==+==>⎰⎰,由、、、所围成;222(2) d d :,00;Dy x y D x y a x y +=≥≥⎰⎰,、(3) d d 212;Dxy x y D y x y x xy xy ====⎰⎰,由、、与围成()2(4) d d :1,2,,2.Dx xy x y D x y x y y x y x ++=+===⎰⎰,解 (1) 令,y x uy v -=⎧⎨=⎩得变换式x v u y v =-⎧⎨=⎩则新积分区域D’由u = 0、u = a 、v = a 及v = 3a 所围成. D ’如图9-42所示.因为 11(,)101(,)x y J u v -∂===-∂()22222'322032230 ()d d 1d d d (22)d 2(1882)d 14.3DD aaa x y x y v u u u vu v vu u va a u au u u a ⎡⎤+=-+⋅-⎣⎦=-+=-+-=⎰⎰⎰⎰⎰⎰⎰故图9-42(2)积分区域D 如图9-43所示.令cos sin x r y r θθ=⎧⎨=⎩(),0,02D r r a πθθ⎧⎫=≤≤≤≤⎨⎬⎩⎭则,故32d d d sin d .3aDa y x y r r r πθθ==⎰⎰⎰⎰图9-43(3)令y u xxy v ⎧=⎪⎨⎪=⎩. 得变换式v x u y vu ⎧=⎪⎨⎪=⎩则新积分区域D’由u = 1、u = 2、v =1、 v = 2所 围成.D’如图9-44所示.因为()11122(,)1,21122v x y u u vu J u v uv u uv-∂===-∂- 图9-44故'2211113d d d d d d ln 2.224DD v xy x y v u v u v u u =-=⋅=⎰⎰⎰⎰⎰⎰(4)令x y u y v x +=⎧⎪⎨=⎪⎩,得变换式11u x vuv y v ⎧=⎪⎪+⎨⎪=⎪+⎩则新积分区域D’由u = 1、u = 2、v = 1、v =2所 围成. D’如图9-44所示.因为 ()()()()()222111,,111uv v x y uJ v u u v v v v -++∂===∂+++()'22()d d d d 11D D u ux xy x y u u v v v +=⋅⋅++⎰⎰⎰⎰故 ()322233111525d d d .72961u u v u u v ===+⎰⎰⎰5.试求区域D 的面积,其中D 为()()12,.r ϕθϕθαθβ≤≤≤≤解 积分区域D 如图9-45所示.21()()d d d d .D DS x y r r βϕθαϕθθ==⎰⎰⎰⎰图9-45习题 9-51.计算下列广义二重积分:{}()20(1) d d . (,),0 (2)d d x yy Dx yxe x y D x y y x x e x y-+-≤≤=≥≥⎰⎰⎰⎰解 (1)积分区域D 如图9-46所示.220 d d d d 1 d .2y y xDx xe x y x xe yxex +∞+∞--+∞-===⎰⎰⎰⎰⎰故(2)积分区域D 如图9-47所示. 图9-46()()020d d d d 1 d .2x yx y xDx e x y x e ye x +∞+∞-+-++∞-===⎰⎰⎰⎰⎰故2.用极坐标计算下列广义积分:(){}2222()()22221224(1) d d (2) cos()d d d d (3) ,1.()x y x y De x y e x y x y x y D x y xy x y +∞+∞-+-∞-∞+∞+∞-+-∞-∞+=+≤+⎰⎰⎰⎰⎰⎰, 图9-47解 (1)cos sin x r y r θθ=⎧⎨=⎩令 (){},0,02D r r θθπ=≤≤+∞≤≤则,故22222()1d d d d d .2x y re x y e r r ππθθπ+∞+∞+∞-+--∞-∞===⎰⎰⎰⎰⎰(2)cos sin x r y r θθ=⎧⎨=⎩令 (){},0,02D r r θθπ=≤≤+∞≤≤则,故()2222()222200222020cos()d d d cos d 1 sin cos d 041 d .42x y r r e x y x ye r r re r r πππθθπθ+∞+∞-+-∞-∞+∞--+=⋅⎡⎤+∞=-⎢⎥⎣⎦==⎰⎰⎰⎰⎰⎰(3) 积分区域D 如图9-48所示.cos sin x r y r θθ=⎧⎨=⎩令(){},01,02D r r θθπ=≤≤≤≤则,故 图9-48212100224d d 124d d d 33()Dx yr r rx y ππθθπ=⋅==+⎰⎰⎰⎰⎰.3.计算下列广义积分:()()224452(1) d (2)1d x x x ex x x e x+∞+∞-++--∞-∞++⎰⎰解()()22445214(1) d d x x x ex ex+∞+∞-++-+--∞-∞=⎰⎰()2221441d(21)2121d ()212x t e e x t x e e t e +∞-+--∞+∞---∞-=+=+=⎰⎰由普阿松积分 ()222222222212332 (2) 1d d d d d ,d ,d 0.x x x x x x x x x e x x e x xe x e x I x e x I xe x I e x I I +∞+∞+∞+∞-----∞-∞-∞-∞+∞+∞+∞----∞-∞-∞++=++=====⎰⎰⎰⎰⎰⎰⎰令则由普阿松积分可得 由奇函数的性质可得 ()22222222221222224220d d d d d d cos ,sin d sin cos d x x x y x yr I x e x x e xx e x y e y x y ex yx r y r r e r rπθθθθθ+∞+∞---∞-∞+∞+∞---∞-∞+∞+∞-+-∞-∞+∞-======⎰⎰⎰⎰⎰⎰⎰⎰而 2225002201d sin 2d 411 sin 2d 44r e r r ππθθθθπ+∞-==⎰⎰⎰1I ==即()221d 0x x x e x +∞--∞++++⎰综合习题九1.选择填空:(1) 设D由x 轴、ln y x x e ==、围成,则(,)d d ( ).D f x y x y =⎰⎰① ln 1d (,)d exx f x y y⎰⎰②ln 0d (,)d ex x f x y y⎰⎰③1d (,)d ye yf x y x⎰⎰④10d (,)d yee yf x y x⎰⎰(2) 当( )a =时,有221d .xy x y π+≤=⎰⎰① 1 ②③④(3) 下列不等式中,( )是正确的.①||1||1(1)d 0x y x σ<<->⎰⎰ ②22221()d 0x y x y σ+≤-->⎰⎰③ ||1||1(1)d 0x y y σ≤≤->⎰⎰④ ||1||1(1)d 0x y x σ≤≤+>⎰⎰(4) 设3123d d d 444DD Dx y x y x yI I I σσσ+++===⎰⎰⎰⎰⎰⎰,,,22:(1)(1)1,D x y -+-≤ 则有( ).① 123I I I << ② 231I I I <<③ 312I I I << ④ 321I I I << 解 (1) ① ④; (2) ②; (3) ④; (4) ①. 2.计算下列二重积分:.25512100d (1) d (2) d dln y xyxy x ey y x-⎰⎰⎰⎰2222(3) d , :,12D xy D y x x y x y σ≥≤+≤+⎰⎰2222(4) 1()()d d , :()()1Dy y x xx y D a b a b -++≤⎰⎰22222(5) ln()d , :1Dx y D x y σε+≤+≤⎰⎰,并求此二重积分当0ε→时之极限.解 积分区域D 如图9-49所示.交换积分次序,得55511151d d d ln ln d 4.x y yx y dx y x y xx ===⎰⎰⎰⎰⎰故(2) 积分区域D 如图9-50所示. 图9-49 交换积分次序,得2221112200d d d d y y xyx eyy ex--=⎰⎰⎰⎰21220(1)d y ey y-=-⎰22112220d y y edy y ey--=-⎰⎰22222112211122220d d()1d d .0y y y y y ey y eeyyee y e ------=+=+-=⎰⎰⎰⎰图9-50(3) 积分区域D 如图9-51所示. cos sin x r y r θθ=⎧⎨=⎩令 ()5,12,44D r r ππθθ⎧⎫=≤≤≤≤⎨⎬⎩⎭则,故 图9-51522422214544cos sin d d d d 3sin 2d 0.xyr x y r rx y rππππθθθθθ=+==⎰⎰⎰⎰⎰D(4)积分区域D 如图9-52所示. 图9-52cos sin x ar y br θθ=⎧⎨=⎩令{},01,02D r r θθπ≤≤≤≤则=()(如图9-53)因为(,)(,)x xx y r J y yr r θθθ∂∂∂∂∂==∂∂∂∂∂ 图9-53 cos sin sin cos a ar abrb br θθθθ-==212222220021201()()d d d 1cos sin d 2d 1cos 2d .3Dy xx y r r abr ra b ab r r r ab ππθθθθθπ-+=-+=-⋅=⎰⎰⎰⎰⎰⎰故(5) 积分区域D 如图9-54所示. cos sin x r y r θθ=⎧⎨=⎩令(){},1,02D r r θεθπ=≤≤≤≤则,故2122202220222 ln()d d ln d 1 (ln )d 2(ln 1)Dx y r r rπεπσθεεεθπεεε+=⋅-=--=--⎰⎰⎰⎰⎰ 图9-5422ln()d ,DI x y σ=+⎰⎰令则2220220lim lim (ln 1)ln lim 2lim.I εεεεπεεεεπεπππε→→-→→=--=--=-3.改变下列积分次序:2222sin 120sin211221(1) d (,)d (2) d (,)d(3) d (,)d (4) d (,)d d (,)d yx x xx x e y y x f x y y x f x y y y f x y x y f x y x y f x y xπ----+--+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰解 (1)因为积分区域{}2(,)12,22D x y x x y x x =≤≤-≤≤-为X 型区域, 其图形如图9-55 所示. 交换积分次序区域D 应视为Y 型区域. 故22221111202d (,)d d (,)d .x x y x yx f x y y y f x y x -+---=⎰⎰⎰⎰(2)因为积分区域(,)0,sin sin 2x D x y x y x π⎧⎫=≤≤-≤≤⎨⎬⎩⎭为X 型区域, 其图形如图9-56 所示. 交换积分次序区域D 应视为Y 型区域. 故sin 0sin21arcsin 12arcsin 0arcsin d (,)d d (,)d d (,)d .xx yyyx f x y yy f x y x y f x y x πππ----=+⎰⎰⎰⎰⎰⎰图9-55 图9-56(3)因为积分区域{}(,)01,0yD x y y x e =≤≤≤≤为Y 型区域, 其图形如图9-57 所示. 交换积分次序区域D 应视为X 型区域.故11111ln d (,)d d (,)d d (,)d .ye exy f x y x x f x y y x f x y y =+⎰⎰⎰⎰⎰⎰(4)因为积分区域{}121,(,)21,02D D D D x y y x y =+=-≤≤-≤≤+{}22(,)10,0D x y y x y =-≤≤≤≤为Y 型区域, 其图形如图9-58所示. 交换积分次序区域D 应视为X 型区域.故2121212d (,)d d (,)d d (,)d .y y xx y f x y x y f x y x x f x y y -+----+=⎰⎰⎰⎰⎰⎰图9-57 图9-58 4.计算下列二重积分:24212(1) d sin d d sin d 22x x x x x x y x yy y ππ+⎰⎰⎰⎰112111224(2) d d d d y y yyxxyy e x y e x+⎰⎰⎰⎰22222(3) d d ,Dxy x y D x y a x y+≤+⎰⎰是由曲线位于第一象限的部分;22(4) d d ,(1cos )D x y x y D r a θ+=-⎰⎰由曲线所组成;22(5) d d :()() 1.Dy xy x y D a b +≤⎰⎰,()0,0(6) (,)d d (,).0x y D ex y f x y x y f x y -+⎧>>⎪=⎨⎪⎩⎰⎰且其它解 (1)积分区域D 如图9-59所示.24212d sin d d sin d 22x x x x x x y x yy y ππ+⎰⎰⎰⎰2222222221222221222113d sind d sind d sind 222d sind d sind 222d sind (cos)d 224(2).y y yyy y y yy yxxxy x y x y xyyyxxy x y xyyxyy x y yyππππππππππ=++=+==-+=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰(2)积分区域D 如图9-60所示.22112111224212122212112222d d d d d d d d d d yyyyx x yy y y x x x x x x x y e xy e x x e y x e y x e y+=++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2222122122112d d d d d d .82y y xxx x x x yxxx x e yx e ye e x e y =+==-⎰⎰⎰⎰⎰⎰图9-59 图9-60(3)积分区域D 如图9-61所示.cos sin x r y r θθ=⎧⎨=⎩令 (),0,02D r r a πθθ⎧⎫=≤≤≤≤⎨⎬⎩⎭则,故 222222220cos sin d d d d 1 sin 2d .24aDxy r x y r rx yra a ππθθθθθ=+==⎰⎰⎰⎰⎰ 图9-61(4) 积分区域D 如图9-62所示.cos sin x r y r θθ=⎧⎨=⎩令(){},0(1cos ),02D r r a θθθπ=≤≤-≤≤则,故2(1cos )22023330d d d d 15 (1cos )d .33a Dx y x y r r ra a πθπθπθθ-+=⋅=-=⎰⎰⎰⎰⎰图9-62(5)积分区域D 如图9-63所示. cos sin x ar y br θθ=⎧⎨=⎩令因为 (,)(,)xxx y r J yyr r θθθ∂∂∂∂∂==∂∂∂∂∂cos sin sin cos a ar abrb br θθθθ-== 图9-63(){},01,02D r r θθπ=≤≤≤≤则,故222222221(0)1(0)d d d d ()d d Dx y x y y y a b a b y x y y x y y x y+=≥+≤<=+-⎰⎰⎰⎰⎰⎰112d sin d d (sin )d 4.3br abr r br abr rab ππθθθθπ-=⋅+-⋅=⎰⎰⎰⎰()00020(6) (,)d d d d d d (d ) 1.x y Dx y xf x y x y x e y e x e y e x +∞+∞-++∞+∞--+∞-==⋅==⎰⎰⎰⎰⎰⎰⎰5.设(,)f x y 在xoy 平面上连续且(0,0),f a =求22221lim (,)d d .t x y t I f x y x y tπ+→+≤=⎰⎰解222222(,)(,)lim lim x y t t t f x y dxdyf t I tt ξηπππ+++≤→→==⎰⎰222((,)x y t ξη+≤其中为圆域的内点)0(,)(0,0)t ξη→→当圆域半径时,必有,故 (,)0,0)lim (,)(0,0).f f a ξηξη→==(6.设()[0,]f x a 在上连续,求证:202[()d ()d ][()d ].aaaxf x x f y y f x x =⎰⎰⎰证 令21200()d ()d [()d ]a a ax I f x x f y y I f x x ==⎰⎰⎰,I 1的积分区域D 1与交换积分次序后的积分区域D 2如图9-64所示.而102()d ()d ()d ()d aaaaxxI f x x f y y f x x f y y=+⎰⎰⎰⎰()d ()d ()d ()d aaaaxyf x x f y y f y y f x x=+⎰⎰⎰⎰12()()d d ()()d d D D f x f y x y f x f y x y=+⎰⎰⎰⎰12()()d d D D f x f y x y⋃=⎰⎰则20()d ()d a a I f x x f x x=⎰⎰()d ()d d ()()d aaaaf x x f y y x f x f y y==⎰⎰⎰⎰ 图9-64 12()()d d D D f x f y x y⋃=⎰⎰.7.已知()[,]f x a b 在上连续,求证:当0n >时,有11d ()()d ()()d .1byb n n aaa y y x f x xb x f x x n +-=-+⎰⎰⎰证 因为积分区域{}(,),D x y a y b a x y =≤≤≤≤为Y 型区域, 其图形如图9-65所示.交换积分次序区域D 应视为X 型区域.故d ()()d d ()()d bybbnn aaaxy y x f x x x y x f x y-=-⎰⎰⎰⎰111()[()]d 1()[()]d 11()()d .1n ba n ba b n a b y x f x x x n b x f x x n b x f x x n +++-=+-=+=-+⎰⎰⎰8.设()[,]f x a b 在上连续,求证: 图9-6522[()d ]()()d .b baaf x x b a f x x ≤-⎰⎰证 ,()()[,],k R f x g x a b ∀∈若与在上连续则必有2[()()]0f x kg x -≥从而2[()()]d 0baf x kg x x k -≥∆≤⎰关于的0.222()()]4()()bbbaaaf xg x dx f x dx g x dx ∆-≤⎰⎰⎰即=[0故222[()()]()()b b baaaf xg x dx f x dx g x dx≤⎰⎰⎰在上式中令()1,g x ≡则22[()d ]()()d .b baaf x x b a f x x ≤-⎰⎰.9.求证:221(sin cos )d 2.Dx y σ≤+≤⎰⎰其中{}(,)0101.D x y x y =≤≤≤≤,解 积分区域D 如图9-66所示.考虑 22(,)sin cos f x y x y =+在D 内的最值,为此解方程组222cos 2sin x y f x x f y y ⎧'=⎪⎨'=-⎪⎩ 图9-66得驻点(0,0)(0,0) 1.f =且而在该区域内y x =上,有222(,)sin cos 2sin()4f x y x y x π=+=+因23301,1444244x x ππππππ≤≤≤+≤+<+=则 由正弦函数的性质知min 0,0,1;x y f ===当时 max ,, 2.22x y f ππ===当时则 1(,)2f x y ≤≤故22(sin cos )d 2.Dx y σ≤+≤⎰⎰110.已知()[0,1]f x 在上连续,求证:11()()0d d 1.f x f y e x e y -⋅≥⎰⎰证 令()(),f x F x e =则()[0,1]()0.F x F x >在上连续,且 由综合习题六的第9题知2d ()d ()()b b a a x F x x b a F x ≥-⎰⎰即11()2()00d d (10)1f x f x x e x e ⋅≥-=⎰⎰故11()()0d d 1.f x f y e x e y -⋅≥⎰⎰11.求球体22224x y z a ++≤与圆柱体222x y ax +≤的公共部分的体积. 解 由题意所求立体的图形如图9-67所示.上半球面的方程为 2224z a x y =-- 由对称性,得12221 444d d cos ,sin , d d = d d D V V a x y x yx r y r x y r r θθθ==--==⎰⎰令 图9-671(,)0,02cos 2D r r a πθθθ⎧⎫=<<<<⎨⎬⎩⎭则 ,其图形如图9-68所示.11222122 4d d 4d d D D V a x y x ya r r r θ=--=-⋅⎰⎰⎰⎰2cos 2220d 4d a a r r rπθθ=-⋅⎰⎰图9-682cos 2222203222233201 d 4d(4)22cos 1 [(4)]d 031(2)(sin 1)d 3a a r a r a a r a πθππθθθθθ=---=--=--⎰⎰⎰⎰3220233031(2)[(1cos )d cos ]3281[(cos cos )]33282().323a x a a πππθθπθθπ=----=--+-=-⎰312432().69V V a π==-所以。

相关文档
最新文档