八年级数学经典练习题附答案
初二数学经典题练习及答案
A PC DBF 初二数学经典题型练习1.已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150.求证:△PBC 是正三角形.证明如下。
首先,PA=PD ,∠PAD=∠PDA=(180°-150°)÷2=15°,∠PAB=90°-15°=75°。
在正方形ABCD 之外以AD 为底边作正三角形ADQ , 连接PQ , 则∠PDQ=60°+15°=75°,同样∠PAQ=75°,又AQ=DQ,,PA=PD ,所以△PAQ ≌△PDQ , 那么∠PQA=∠PQD=60°÷2=30°,在△PQA 中,∠APQ=180°-30°-75°=75°=∠PAQ=∠PAB ,于是PQ=AQ=AB , 显然△PAQ ≌△PAB ,得∠PBA=∠PQA=30°,PB=PQ=AB=BC ,∠PBC=90°-30°=60°,所以△PBC 是正三角形。
2.已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .证明:连接AC,并取AC 的中点G,连接GF,GM. 又点N 为CD 的中点,则GN=AD/2;GN ∥AD,∠GNM=∠DEM;(1) 同理:GM=BC/2;GM ∥BC,∠GMN=∠CFN;(2) 又AD=BC,则:GN=GM,∠GNM=∠GMN.故:∠DEM=∠CFN.3、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.证明:分别过E 、C 、F 作直线AB 的垂线,垂足分别为M 、O 、N , 在梯形MEFN 中,WE 平行NF因为P 为EF 中点,PQ 平行于两底 所以PQ 为梯形MEFN 中位线,所以PQ =(ME +NF )/2又因为,角0CB +角OBC =90°=角NBF +角CBO所以角OCB=角NBF 而角C0B =角Rt =角BNFCB=BF所以△OCB 全等于△NBF △MEA 全等于△OAC (同理) 所以EM =AO ,0B =NF 所以PQ=AB/2.4、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA .求证:∠PAB =∠PCB .过点P 作DA 的平行线,过点A 作DP 的平行线,两者相交于点E ;连接BE因为DP//AE ,AD//PE所以,四边形AEPD 为平行四边形 所以,∠PDA=∠AEP 已知,∠PDA=∠PBA 所以,∠PBA=∠AEP所以,A 、E 、B 、P 四点共圆 所以,∠PAB=∠PEB因为四边形AEPD 为平行四边形,所以:PE//AD ,且PE=AD 而,四边形ABCD 为平行四边形,所以:AD//BC ,且AD=BC 所以,PE//BC ,且PE=BC即,四边形EBCP 也是平行四边形 所以,∠PEB=∠PCB 所以,∠PAB=∠PCB5.P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC=3a 正方形的边长.解:将△BAP 绕B 点旋转90°使BA 与BC 重合,P 点旋转后到Q 点,连接PQ 因为△BAP ≌△BCQ所以AP =CQ ,BP =BQ ,∠ABP =∠CBQ ,∠BPA =∠BQC 因为四边形DCBA 是正方形 所以∠CBA =90°,所以∠ABP +∠CBP =90°,所以∠CBQ +∠CBP =90°即∠PBQ =90°,所以△BPQ 是等腰直角三角形所以PQ =√2*BP,∠BQP =45 因为PA=a ,PB=2a ,PC=3a所以PQ =2√2a,CQ =a ,所以CP^2=9a^2,PQ^2+CQ^2=8a^2+a^2=9a^2 所以CP^2=PQ^2+CQ^2,所以△CPQ 是直角三角形且∠CQA =90° 所以∠BQC =90°+45°=135°,所以∠BPA =∠BQC =135° 作BM ⊥PQ则△BPM 是等腰直角三角形所以PM =BM =PB/√2=2a/√2=√2a 所以根据勾股定理得: AB^2=AM^2+BM^2=(√2a+a)^2+(√2a)^2 =[5+2√2]a^2所以AB =[√(5+2√2)]a6.一个圆柱形容器的容积为V 立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水。
八年级数学《一次函数》经典练习题含答案
八年级数学《一次函数》经典练习题一、选择题(1)当自变量x增大时,下列函数值反而减小的是()A.B.C.D.(2)对于正比例函数,下列结论正确的是()A.B.y随x的增大而增大C.D.y随x的增大而减小(3)如果函数的图像经过(-1,8)、(2,-1)两点,那么它也必经过点()A.(1,-2)B.(3,4)C.(1,2)D.(-3,4)(4)对于一次函数,若,则函数图像不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限(5)直线与y轴交点在x轴下方,则b的取值为()A.B. C. D.(6)如图所示,函数的图像可能是()(7)已知一次函数的图像经过点,且与两坐标轴围成的三角形面积是8,则这个函数的解析式是()A.B.C.或D.或(8)已知直线如图所示,要使y的值为正,自变量x必须满足()A. B. C. D.(9)下列图像中(如图所示),不可能是关于x的一次函数的图像的是()(10)对于直线,若b减少一个单位,则它的位置将()A.向左平移一个单位B.向右平移一个单位C.向下平移一个单位D.向上平移一个单位二、填空题(1)一次函数中,k、b都是_______,且,自变量x的取值范围是_________,当,b__________时,它是正比例函数.(2)若,当时,,则.(3)直线与x轴的交点是_________,与y轴的交点是__________.(4)若函数的图像过第一、二、三象限,则,这时,y随x 的增大而________.(5)直线与x轴、y轴交于A、B两点,则的面积为_________.(6)直线若经过原点,则,若直线与x轴交于点(-1,0),则.(7)直线与直线的交点为__________.(8)已知一次函数的图像如图所示,则这个一次函数的解析式为_________.(9)已知函数,当时,有.(10)已知直线上两点和,且,当时,与的大小关系式为___________.三、解答题1.已知与成正比例(其中a、b都是常数).(1)试说明y是x的一次函数;(2)如果时,;时,,求这个一次函数的解析式.2.已知三点.试判断这三点是否在同一条直线上,并说明理由.四、应用题(1)1.将长为30cm,宽为10cm的长方形的白纸,按图所示方法粘合起来,粘合部分的宽为3cm.求5张白纸粘合后的长度;(2)设x张白纸粘合后的总长度为y cm,写出y与x之间的函数关系式,并求时,y的值.2.对于气温,有的地方用摄氏温度表示,有的地方用华氏温度表示,摄氏温度与华氏温度之间存在着某种函数关系.从温度计的刻度上可以看出,摄氏(℃)温度x与华氏(℉)温度y 有如下的对应关系:x(℃)…-10 0 10 20 30 …y(℉)…14 32 50 68 86 …(1)通过①描点连线;②猜测y与x之间的函数关系;③求解;④验证等几个步骤,试确定y与x之间的函数关系式;(2)某天,A市的最高气温是8℃,澳大利亚悉尼的最高气温是91℉,问这一天悉尼的最高气温比A市的最高气温高多少摄氏度(结果保留整数)?3.某同学将父母给的零用钱按每月相等的数额存放在储蓄盒内,准备捐给希望工程,盒内原有60元,2个月后盒内有钱80元.(1)求盒内钱数y(元)与存钱月数x之间的函数关系式;(2)按上述方法,该同学几个月能存够300元?参考答案一、(1)C (2)D (3)C (4)C (5)C(6)D (7)C (8)C (9)C (10)C二、(1)常数,,全体实数,,;(2)-4;(3),(0,-2);(4),增大;(5);(6);(7);(8);(9);(10).三、1.(1)因为与成正比例,所以(k是不等于0的常数),即.因为k是不等于0的常数,a、b都是常数,所以也是常数,所以y是x的一次函数;(2)因为时,;时,,所以有解得所以这个一次函数的解析式为.2.在同一条直线上,理由如下:设经过A、B两点的直线为,由,得解得所以经过A、B两点的直线为.当时,.所以在这条直线上.所以三点在同一条直线上.1.(1)5张白纸粘合后的长度为(cm);(2)(x为大于1的整数).当时,(cm).2.(1)①描点连线(略)②通过观察可猜测y是x的一次函数,③设,现将两对数值分别代入,得解得所以.④验证:将其余三对数值分别代入,得;;.结果等式均成立.所以y与x的函数关系式为:.(2)当时,,所以.而(℃),所以这一天悉尼的最高气温比A市的最高气温约高25℃.3.(1)设.因为当时,;当时,,所以解得所以;(2)当时,,所以.所以该同学24个月能存够300元.。
八年级数学经典练习题附答案(因式分解)
八年级数学经典练习题附答案(因式分解)因式分解练习题一、填空题:2.(a-3)(3-2a)=_______(3-a)(3-2a);12.若m2-3m+2=(m+a)(m+b),则a=______,b=______;15.当m=______时,x2+2(m-3)x+25是完全平方式.二、选择题:1.下列各式的因式分解结果中,正确的是( )A.a2b+7ab-b=b(a2+7a) B.3x2y-3xy-6y=3y(x-2)(x+1)C.8xyz-6x2y2=2xyz(4-3xy) D.-2a2+4ab-6ac=-2a(a+2b-3c)2.多项式m(n-2)-m2(2-n)分解因式等于( )A.(n-2)(m+m2) B.(n-2)(m-m2) C.m(n-2)(m+1) D.m(n-2)(m-1) 3.在下列等式中,属于因式分解的是( )A.a(x-y)+b(m+n)=ax+bm-ay+bn B.a2-2ab+b2+1=(a-b)2+1C.-4a2+9b2=(-2a+3b)(2a+3b) D.x2-7x-8=x(x-7)-84.下列各式中,能用平方差公式分解因式的是( )A.a2+b2 B.-a2+b2 C.-a2-b2 D.-(-a2)+b25.若9x2+mxy+16y2是一个完全平方式,那么m的值是( )A.-12 B.±24C.12 D.±126.把多项式a n+4-a n+1分解得( )A.a n(a4-a) B.a n-1(a3-1) C.a n+1(a-1)(a2-a+1) D.a n+1(a-1)(a2+a+1) 7.若a2+a=-1,则a4+2a3-3a2-4a+3的值为( )A.8 B.7 C.10 D.128.已知x2+y2+2x-6y+10=0,那么x,y的值分别为( )A.x=1,y=3 B.x=1,y=-3 C.x=-1,y=3 D.x=1,y=-39.把(m2+3m)4-8(m2+3m)2+16分解因式得( )A.(m+1)4(m+2)2 B.(m-1)2(m-2)2(m2+3m-2)C.(m+4)2(m-1)2 D.(m+1)2(m+2)2(m2+3m-2)210.把x2-7x-60分解因式,得( )A.(x-10)(x+6) B.(x+5)(x-12) C.(x+3)(x-20) D.(x-5)(x+12) 11.把3x2-2xy-8y2分解因式,得( )A.(3x+4)(x-2) B.(3x-4)(x+2) C.(3x+4y)(x-2y) D.(3x-4y)(x+2y) 12.把a2+8ab-33b2分解因式,得( )A.(a+11)(a-3) B.(a-11b)(a-3b) C.(a+11b)(a-3b) D.(a-11b)(a+3b)13.把x4-3x2+2分解因式,得( )A.(x2-2)(x2-1) B.(x2-2)(x+1)(x-1)C.(x2+2)(x2+1) D.(x2+2)(x+1)(x-1)14.多项式x2-ax-bx+ab可分解因式为( )A.-(x+a)(x+b) B.(x-a)(x+b) C.(x-a)(x-b) D.(x+a)(x+b)15.一个关于x的二次三项式,其x2项的系数是1,常数项是-12,且能分解因式,这样的二次三项式是( )A.x2-11x-12或x2+11x-12 B.x2-x-12或x2+x-12C.x2-4x-12或x2+4x-12 D.以上都可以16.下列各式x3-x2-x+1,x2+y-xy-x,x2-2x-y2+1,(x2+3x)2-(2x+1)2中,不含有(x-1)因式的有( )A.1个 B.2个C.3个D.4个17.把9-x2+12xy-36y2分解因式为( )A.(x-6y+3)(x-6x-3) B.-(x-6y+3)(x-6y-3)C.-(x-6y+3)(x+6y-3) D.-(x-6y+3)(x-6y+3)18.下列因式分解错误的是( )A.a2-bc+ac-ab=(a-b)(a+c) B.ab-5a+3b-15=(b-5)(a+3)C.x2+3xy-2x-6y=(x+3y)(x-2) D.x2-6xy-1+9y2=(x+3y+1)(x+3y-1)19.已知a2x2±2x+b2是完全平方式,且a,b都不为零,则a与b的关系为( )A.互为倒数或互为负倒数 B.互为相反数C.相等的数 D.任意有理数20.对x4+4进行因式分解,所得的正确结论是( )A.不能分解因式B.有因式x2+2x+2 C.(xy+2)(xy-8) D.(xy-2)(xy-8)21.把a4+2a2b2+b4-a2b2分解因式为( )A.(a2+b2+ab)2 B.(a2+b2+ab)(a2+b2-ab)C.(a2-b2+ab)(a2-b2-ab) D.(a2+b2-ab)222.-(3x-1)(x+2y)是下列哪个多项式的分解结果( )A.3x2+6xy-x-2y B.3x2-6xy+x-2y C.x+2y+3x2+6xy D.x+2y-3x2-6xy 23.64a8-b2因式分解为( )A.(64a4-b)(a4+b) B.(16a2-b)(4a2+b) C.(8a4-b)(8a4+b) D.(8a2-b)(8a4+b) 24.9(x-y)2+12(x2-y2)+4(x+y)2因式分解为( )A.(5x-y)2 B.(5x+y)2 C.(3x-2y)(3x+2y) D.(5x-2y)2 25.(2y-3x)2-2(3x-2y)+1因式分解为( )A.(3x-2y-1)2 B.(3x+2y+1)2C.(3x-2y+1)2 D.(2y-3x-1)226.把(a+b)2-4(a2-b2)+4(a-b)2分解因式为( )A.(3a-b)2 B.(3b+a)2 C.(3b-a)2 D.(3a+b)227.把a2(b+c)2-2ab(a-c)(b+c)+b2(a-c)2分解因式为( )A.c(a+b)2 B.c(a-b)2 C.c2(a+b)2 D.c2(a-b)28.若4xy-4x2-y2-k有一个因式为(1-2x+y),则k的值为( ) A.0 B.1 C.-1 D.429.分解因式3a2x-4b2y-3b2x+4a2y,正确的是( )A.-(a2+b2)(3x+4y) B.(a-b)(a+b)(3x+4y) C.(a2+b2)(3x-4y) D.(a-b)(a+b)(3x-4y) 30.分解因式2a2+4ab+2b2-8c2,正确的是( )A.2(a+b-2c) B.2(a+b+c)(a+b-c) C.(2a+b+4c)(2a+b-4c) D.2(a+b+2c)(a+b-2c) 三、因式分解:1.m2(p-q)-p+q;2.a(ab+bc+ac)-abc;3.x4-2y4-2x3y+xy3;4.abc(a2+b2+c2)-a3bc+2ab2c2;5.a2(b-c)+b2(c-a)+c2(a-b);6.(x2-2x)2+2x(x-2)+1;7.(x-y)2+12(y-x)z+36z2;8.x2-4ax+8ab-4b2;9.(ax+by)2+(ay-bx)2+2(ax+by)(ay-bx);10.(1-a2)(1-b2)-(a2-1)2(b2-1)2;11.(x+1)2-9(x-1)2;12.4a2b2-(a2+b2-c2)2;13.ab2-ac2+4ac-4a;14.x3n+y3n;15.(x+y)3+125;16.(3m-2n)3+(3m+2n)3;17.x6(x2-y2)+y6(y2-x2);18.8(x+y)3+1;19.(a+b+c)3-a3-b3-c3;20.x2+4xy+3y2;21.x2+18x-144;22.x4+2x2-8;23.-m4+18m2-17;24.x5-2x3-8x;25.x8+19x5-216x2;26.(x2-7x)2+10(x2-7x)-24;27.5+7(a+1)-6(a+1)2;28.(x2+x)(x2+x-1)-2;29.x2+y2-x2y2-4xy-1;30.(x-1)(x-2)(x-3)(x-4)-48;四、证明(求值):1.已知a+b=0,求a3-2b3+a2b-2ab2的值.2.求证:四个连续自然数的积再加上1,一定是一个完全平方数.3.证明:(ac-bd)2+(bc+ad)2=(a2+b2)(c2+d2).4.已知a=k+3,b=2k+2,c=3k-1,求a2+b2+c2+2ab-2bc-2ac的值.5.若x2+mx+n=(x-3)(x+4),求(m+n)2的值.6.当a为何值时,多项式x2+7xy+ay2-5x+43y-24可以分解为两个一次因式的乘积.7.若x,y为任意有理数,比较6xy与x2+9y2的大小.8.两个连续偶数的平方差是4的倍数.参考答案:一、填空题:7.9,(3a-1)10.x-5y,x-5y,x-5y,2a-b11.+5,-212.-1,-2(或-2,-1)14.bc+ac,a+b,a-c15.8或-2二、选择题:1.B 2.C 3.C 4.B 5.B 6.D 7.A 8.C 9.D 10.B 11.C 12.C 13.B 14.C 15.D 16.B 17.B 18.D 19.A 20.B 21.B 22.D 23.C 24.A 25.A 26.C 27.C 28.C 29.D 30.D三、因式分解:1.(p-q)(m-1)(m+1).8.(x-2b)(x-4a+2b).11.4(2x-1)(2-x).20.(x+3y)(x+y).21.(x-6)(x+24).27.(3+2a)(2-3a).四、证明(求值):2.提示:设四个连续自然数为n,n+1,n+2,n+3..6.提示:a=-18.∴a=-18.。
八年级数学测试题及答案
八年级数学测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是等腰三角形的性质?A. 三条边相等B. 两条边相等C. 三个角相等D. 两个角相等答案:B2. 一个数的平方根是4,那么这个数是:A. 16B. 8C. 4D. 2答案:A3. 一个圆的半径是5,那么它的周长是:A. 10πB. 20πC. 25πD. 50π答案:B4. 下列哪个选项表示的是一次函数?A. y = 2x + 3B. y = x^2 + 1C. y = 3x^3D. y = 1/x答案:A5. 一个等差数列的首项是2,公差是3,那么第5项是:A. 14B. 17C. 20D. 23答案:A6. 如果一个三角形的两边长分别是3和4,那么第三边的长x满足:A. 1 < x < 7B. 0 < x < 7C. 1 < x < 7D. 0 < x < 7答案:A7. 一个正数的倒数是1/4,那么这个数是:A. 4B. 1/4C. 1/2D. 2答案:A8. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 0答案:C9. 下列哪个选项是二次函数的图像?A. 一条直线B. 一个点C. 一个抛物线D. 一个圆答案:C10. 一个数的立方根是2,那么这个数是:A. 8B. 6C. 2D. 4答案:A二、填空题(每题4分,共20分)1. 一个数的平方是25,那么这个数是____。
答案:±52. 一个等腰三角形的底边长是6,两腰长是5,那么它的周长是____。
答案:163. 一个圆的直径是10,那么它的半径是____。
答案:54. 一个数列的前三项是2,4,8,那么第四项是____。
答案:165. 如果一个三角形的两边长分别是5和12,那么第三边的长x满足的条件是____。
答案:7 < x < 17三、解答题(每题10分,共50分)1. 已知一个等差数列的前三项分别是2,5,8,求第10项的值。
初二数学题库及答案
初二数学题库及答案一、整数运算1. 计算下列各式的值:a) 18 + (-7) = ?b) (-15) - (-3) = ?c) (-9) × 5 = ?d) 36 ÷ (-6) = ?2. 按要求简化下列各式:a) (-2) + 5 - 3 + (-5) = ?b) (-8) - (-3) + 6 - (-2) = ?c) 15 + 4 × (-2) - 3 × (-5) = ?d) (-7) × 3 + 5 × (-2) + 4 × (-3) = ?二、分数运算1. 将下列分数化为带分数形式:a) 21/4 = ?b) 15/2 = ?c) 7/3 = ?2. 计算下列各式的值,用最简形式表示:a) 1/2 + 3/4 = ?b) 7/8 - 3/4 = ?c) 5/6 × 2/3 = ?d) 3/5 ÷ 4/7 = ?三、数轴和坐标1. 在数轴上标出下列各点的坐标:a) A(3)b) B(-2)c) C(1/2)2. 在数轴上表示下列各个数的位置,并写出它们的坐标:a) 7b) -3/4c) -5d) 2/3四、代数式及求值1. 将下列词语转化为代数式:a) 两个数的和b) 一个数与4的积c) 一个数减去5的结果d) 一个数的三倍2. 计算下列各式的值:a) 3x + 5 - 2x, 当 x = 4 时b) 2y + 3y - 6, 当 y = -2 时c) m - 2 × 5, 当 m = 7 时d) 6n ÷ 3 + 4, 当 n = 2 时五、几何基础1. 下列图形中,哪些是多边形?哪些不是?说明原因。
2. 已知一个正方形的边长为8cm,请计算它的周长和面积。
3. 若一个三角形的底边长为6cm,高为4cm,请计算它的面积。
六、图表和数据处理1. 根据下图,回答问题:(表格描述某班的考试成绩)| 学生姓名 | 语文成绩 | 数学成绩 ||---------|---------|---------|| 张三 | 92 | 78 || 李四 | 85 | 92 || 王五 | 78 | 84 || 赵六 | 90 | 88 |a) 谁的数学成绩最好?b) 谁的语文成绩最差?c) 谁的语文和数学成绩之和最高?2. 对于以下数据,回答问题:(描述某商店每天的销售额)| 日期 | 销售额(元) ||-----|-------------|| 1号 | 1500 || 2号 | 1800 || 3号 | 2100 || 4号 | 1650 || 5号 | 1950 || 6号 | 2200 || 7号 | 2400 |a) 这些天中哪一天的销售额最低?b) 这些天中总销售额是多少?c) 这些天中销售额的平均值是多少?七、概率和统计1. 已知一副扑克牌共有52张牌,其中红桃牌有13张。
八年级数学《菱形》练习题含答案
八年级数学《菱形》练习题随堂演练一、填空题1.菱形的对角线长为24和10,则菱形的边长为 ,周长为 .2.菱形的一边与两条对角线构成的二角之比为5:4,则菱形的各内角为 , , , .3.菱形的两条对角线分别为3和7,则菱形的面积为 .4.已知在菱形ABCD 中,E ,F 是BC ,CD 上的点,且AE =EF =AF =AB ,则∠B= .5.已知菱形两邻角的比是1:2,周长为40cm ,则较短对角线的长是 .6.已知菱形的面积等于80cm 2,高等于8cm ,则菱形的周长为 .7.已知菱形ABCD 中AE ⊥BC ,垂足E ,F 分别为BC ,CD 的中点,那么∠EAF 的度数为 .8.顺次连结菱形各边的中点,所得的四边形为 形.二、选择题1.能够判定一个四边形是菱形的条件是( )A .对角线相等且互相平分B .对角线相等且对角相等C .对角线互相垂直D .两组对角分别相等且一条对角线平分一组对角2.菱形ABCD ,若∠A:∠B =2:1,∠CAD 的平分线AE 和边CD 之间的关系是( )A .相等B .互相垂直且不平分C .互相平分且不垂直D .垂直且平分3.已知菱形ABCD 的周长为40cm ,BD=34AC ,则菱形的面积为( ) A .96cm 2 B .94cm 2 C .92cm 2 D .90cm 24.菱形的周长等于高的8倍,则这个菱形较大内角是( )A .60°B .90°C .120°D .150°5.菱形具有而矩形不具有的性质是( )A .对角线互相平分B .对角线互相垂直C .对角线相等D .对边平行且相等6.下列说法正确的是( )A .对角线相等且互相垂直的四边形是菱形B .对角线相等的四边形是矩形C .对角线互相垂直平分的四边形是菱形D .邻边相等的四边形为菱形7.矩形具有而菱形不具有的性质是( )A .对角相等且互补B .对角线互相平分C .一组对边平行,另一组对边相等D .对角线互相垂直8.菱形的对角线把它分成全等的直角三角形的个数是( )A .4个B .3个C .2个D .1个三、解答题1.如图,在菱形ABCD中,延长AD到E,连结BE交CD于H,交AC于F,且BF=DE,求证:DH=HF.2.如图,在菱形ABCD中,E是AD的中点,EF⊥AC交CB的延长于F,交AC于M,求证:AB与EF互相平分.3.已知菱形的面积为24cm2,边长为5cm,求该菱形中一组对边之间的距离.4.已知:如图,在菱形ABCD中,BD是对角线,过D作DE⊥BA交BA延长线于点E,若BD=2DE,AB=4,求菱形的面积。
初二数学练习题加答案
初二数学练习题加答案
一、选择题:
1. 下列各数中哪个数是负数?
A. 3
B. -5
C. 2
D. 0
答案:B
2. 2的平方根是多少?
A. 2
B. 4
C. -2
D. 0
答案:A
3. 下列各组数中,哪组数中所有数字的和都是负数?
A. -1, -2, -3
B. 2, -4, -5
C. 1, 2, -3
D. -2, 3, -4
答案:D
二、填空题:
1. 已知 x + 5 = 10,那么 x 的值是___。
答案:5
2. 一根铁丝长12cm,要铸成一个长方形的边长比为2:3的铁块,则该铁块的较小边长为___cm。
答案:4
3. 一个数的2倍加3等于15,这个数是___。
答案:6
三、计算题:
1. (5 + 2) × (3 - 1) = ___。
答案:14
2. 350 ÷ (2 + 3) = ___。
答案:70
3. 如果 x = 3,那么 2x - 5 的值是___。
答案:1
四、解答题:
1. 请列举出两个互为负数的例子。
答案:-2 和 2 是互为负数的例子,因为它们的积是负数。
2. 在数轴上,-3 和 5 的位置关系是什么?请用不等式表示。
答案:-3 < 5
3. 请用运算符号填空,使得等式成立:4 ___ 2 = 8。
答案:×(乘法)。
初二数学全套试题及答案
初二数学全套试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的相反数是它本身,那么这个数是:A. 0B. 1C. -1D. 23. 计算下列表达式的结果:\[ (-3) \times (-2) \]A. 6B. -6C. 3D. -34. 一个数的绝对值是它本身,这个数可能是:A. 正数B. 负数C. 0D. 正数或05. 一个三角形的三个内角的和是:A. 180度B. 360度C. 90度D. 270度6. 下列哪个选项是二次根式?A. \(\sqrt{4}\)B. \(\sqrt{-4}\)C. \(\sqrt{2x}\)D. \(\sqrt{x^2}\)7. 一个数的立方是它本身,这个数可能是:A. 1B. -1C. 0D. 1或-1或08. 一个数的平方是它本身,这个数可能是:A. 1B. -1C. 0D. 1或09. 计算下列表达式的结果:\[ \frac{1}{2} + \frac{1}{3} \]A. \(\frac{1}{6}\)B. \(\frac{5}{6}\)C. \(\frac{3}{4}\)D. \(\frac{7}{6}\)10. 一个数的倒数是它本身,这个数是:A. 1B. -1C. 0D. 1或-1二、填空题(每题4分,共20分)1. 一个数的平方是25,这个数是______。
2. 一个数的立方是27,这个数是______。
3. 一个数的绝对值是5,这个数可以是______或______。
4. 一个数的相反数是-5,这个数是______。
5. 一个三角形的两个内角分别是45度和45度,第三个内角是______度。
三、解答题(每题10分,共50分)1. 计算下列表达式,并简化结果:\[ \frac{3}{4} + \frac{5}{6} - \frac{1}{3} \]2. 一个数的平方减去这个数的两倍再加上1等于0,求这个数。
初二数学题练习题含答案
初二数学题练习题含答案第一题:求下列各式的值:1. 32 × 25 + 12 × 172. 48 ÷ (3 × 4) + 25解答:1. 32 × 25 + 12 × 17 = 800 + 204 = 10042. 48 ÷ (3 × 4) + 25 = 48 ÷ 12 + 25 = 4 + 25 = 29第二题:将下列分数化为小数形式:1. 3/42. 7/8解答:1. 3/4 = 0.752. 7/8 = 0.875第三题:计算下列各式的结果,并写出计算过程:1. 1/3 + 1/52. 2/5 - 1/4解答:1. 1/3 + 1/5 = (5/15) + (3/15) = 8/152. 2/5 - 1/4 = (8/20) - (5/20) = 3/20第四题:解方程:1. 2x + 5 = 172. 3(x - 4) = 9解答:1. 2x + 5 = 172x = 17 - 52x = 12x = 62. 3(x - 4) = 93x - 12 = 93x = 9 + 123x = 21x = 7第五题:计算以下各式的值:1. 4² + 3³ ÷ 9 - 42. (3 + 4) × (6 - 2) + 12解答:1. 4² + 3³ ÷ 9 - 4 = 16 + 27 ÷ 9 - 4 = 16 + 3 - 4 = 152. (3 + 4) × (6 - 2) + 12 = 7 × 4 + 12 = 28 + 12 = 40第六题:求下列各组数的中位数:1. 3, 5, 6, 9, 122. 6, 7, 10, 12, 15, 20解答:1. 3, 5, 6, 9, 12 的中位数为 62. 6, 7, 10, 12, 15, 20 的中位数为 (10 + 12) / 2 = 11第七题:计算正方形的周长和面积,如果其中一边长为5cm。
初二数学试题精选及答案
初二数学试题精选及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是实数集R的子集?A. 整数集ZB. 有理数集QC. 无理数集D. 复数集C2. 如果一个三角形的两边长分别为3和4,第三边长为整数,那么第三边长可能是:A. 1B. 2C. 3D. 43. 一个数的立方根是它本身的数是:A. 0B. 1C. -1D. 以上都是4. 在直角坐标系中,点(2, -3)关于y轴的对称点的坐标是:A. (-2, -3)B. (-2, 3)C. (2, 3)D. (-2, 3)5. 一个数的绝对值是它本身,那么这个数:A. 一定是正数B. 一定是负数C. 可以是正数或0D. 可以是负数或06. 一次函数y=2x+3的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 一个数的相反数是它本身,那么这个数是:A. 正数B. 负数C. 0D. 以上都不是8. 以下哪个选项是方程2x-3=7的解?A. x=-1B. x=2C. x=5D. x=39. 一个数的平方是它本身,那么这个数是:A. 1或-1B. 0或1C. 0或-1D. 以上都不是10. 一个等腰三角形的两个底角相等,那么这个三角形的顶角可能是:A. 30°B. 45°C. 60°D. 90°二、填空题(每题3分,共30分)1. 一个数的绝对值是5,这个数可能是______。
2. 如果一个三角形的两个内角分别为30°和60°,那么第三个内角是______。
3. 一个数的立方是27,这个数是______。
4. 一个数的相反数是-8,这个数是______。
5. 一个数的平方是25,这个数是______。
6. 一次函数y=3x-2与y轴的交点坐标是______。
7. 一个等腰三角形的顶角是100°,那么它的底角是______。
8. 一个数的平方根是4,这个数是______。
八年级数学题100道(含答案)
八年级数学题100道带答案1) 66x+17y=396725x+y=1200答案:x=48 y=47(2) 18x+23y=230374x-y=1998答案:x=27 y=79(3) 44x+90y=779644x+y=3476答案:x=79 y=48(4) 76x-66y=408230x-y=2940答案:x=98 y=51(5) 67x+54y=854671x-y=5680答案:x=80 y=59(6) 42x-95y=-141021x-y=1575答案:x=75 y=48(7) 47x-40y=85334x-y=2006答案:x=59 y=48(8) 19x-32y=-1786 75x+y=4950答案:x=66 y=95 (9) 97x+24y=7202 58x-y=2900答案:x=50 y=98 (10) 42x+85y=6362 63x-y=1638答案:x=26 y=62 (11) 85x-92y=-2518 27x-y=486答案:x=18 y=44 (12) 79x+40y=2419 56x-y=1176答案:x=21 y=19 (13) 80x-87y=2156 22x-y=880答案:x=40 y=12 (14) 32x+62y=5134 57x+y=2850答案:x=50 y=57 (15) 83x-49y=8259x+y=2183答案:x=37 y=61 (16) 91x+70y=5845 95x-y=4275答案:x=45 y=25 (17) 29x+44y=5281 88x-y=3608答案:x=41 y=93 (18) 25x-95y=-4355 40x-y=2000答案:x=50 y=59 (19) 54x+68y=3284 78x+y=1404答案:x=18 y=34 (20) 70x+13y=3520 52x+y=2132答案:x=41 y=50 (21) 48x-54y=-3186 24x+y=1080答案:x=45 y=99 (22) 36x+77y=7619 47x-y=799答案:x=17 y=91 (23) 13x-42y=-2717 31x-y=1333答案:x=43 y=78 (24) 28x+28y=3332 52x-y=4628答案:x=89 y=30 (25) 62x-98y=-2564 46x-y=2024答案:x=44 y=54 (26) 79x-76y=-4388 26x-y=832答案:x=32 y=91 (27) 63x-40y=-821 42x-y=546答案:x=13 y=41 (28) 69x-96y=-1209 42x+y=3822答案:x=91 y=78 (29) 85x+67y=7338 11x+y=308答案:x=28 y=74(30) 78x+74y=12928 14x+y=1218答案:x=87 y=83 (31) 39x+42y=5331 59x-y=5841答案:x=99 y=35 (32) 29x+18y=1916 58x+y=2320答案:x=40 y=42 (33) 40x+31y=6043 45x-y=3555答案:x=79 y=93 (34) 47x+50y=8598 45x+y=3780答案:x=84 y=93 (35) 45x-30y=-1455 29x-y=725答案:x=25 y=86 (36) 11x-43y=-1361 47x+y=799答案:x=17 y=36 (37) 33x+59y=325494x+y=1034答案:x=11 y=49 (38) 89x-74y=-2735 68x+y=1020答案:x=15 y=55 (39) 94x+71y=7517 78x+y=3822答案:x=49 y=41 (40) 28x-62y=-4934 46x+y=552答案:x=12 y=85 (41) 75x+43y=8472 17x-y=1394答案:x=82 y=54 (42) 41x-38y=-1180 29x+y=1450答案:x=50 y=85 (43) 22x-59y=824 63x+y=4725答案:x=75 y=14 (44) 95x-56y=-401 90x+y=1530(45) 93x-52y=-852 29x+y=464答案:x=16 y=45 (46) 93x+12y=8823 54x+y=4914答案:x=91 y=30 (47) 21x-63y=84 20x+y=1880答案:x=94 y=30 (48) 48x+93y=9756 38x-y=950答案:x=25 y=92 (49) 99x-67y=4011 75x-y=5475答案:x=73 y=48 (50) 83x+64y=9291 90x-y=3690答案:x=41 y=92(51) 17x+62y=3216 75x-y=7350(52) 77x+67y=2739 14x-y=364答案:x=26 y=11 (53) 20x-68y=-4596 14x-y=924答案:x=66 y=87 (54) 23x+87y=4110 83x-y=5727答案:x=69 y=29 (55) 22x-38y=804 86x+y=6708答案:x=78 y=24 (56) 20x-45y=-3520 56x+y=728答案:x=13 y=84 (57) 46x+37y=7085 61x-y=4636答案:x=76 y=97 (58) 17x+61y=4088 71x+y=5609答案:x=79 y=45(59) 51x-61y=-1907 89x-y=2314答案:x=26 y=53 (60) 69x-98y=-2404 21x+y=1386答案:x=66 y=71 (61) 15x-41y=754 74x-y=6956答案:x=94 y=16 (62) 78x-55y=656 89x+y=5518答案:x=62 y=76 (63) 29x+21y=1633 31x-y=713答案:x=23 y=46 (64) 58x-28y=2724 35x+y=3080答案:x=88 y=85 (65) 28x-63y=-2254 88x-y=2024答案:x=23 y=46 (66) 43x+50y=706485x+y=8330答案:x=98 y=57 (67) 58x-77y=1170 38x-y=2280答案:x=60 y=30 (68) 92x+83y=11586 43x+y=3010答案:x=70 y=62 (69) 99x+82y=6055 52x-y=1716答案:x=33 y=34 (70) 15x+26y=1729 94x+y=8554答案:x=91 y=14 (71) 64x+32y=3552 56x-y=2296答案:x=41 y=29 (72) 94x+66y=10524 84x-y=7812答案:x=93 y=27 (73) 65x-79y=-5815 89x+y=2314答案:x=26 y=95 (74) 96x+54y=6216 63x-y=1953答案:x=31 y=60 (75) 60x-44y=-352 33x-y=1452答案:x=44 y=68 (76) 79x-45y=510 14x-y=840答案:x=60 y=94 (77) 29x-35y=-218 59x-y=4897答案:x=83 y=75 (78) 33x-24y=1905 30x+y=2670答案:x=89 y=43 (79) 61x+94y=11800 93x+y=5952答案:x=64 y=84 (80) 61x+90y=5001 48x+y=2448答案:x=51 y=21(81) 93x-19y=286x-y=1548答案:x=18 y=88 (82) 19x-96y=-5910 30x-y=2340答案:x=78 y=77 (83) 80x+74y=8088 96x-y=8640答案:x=90 y=12 (84) 53x-94y=1946 45x+y=2610答案:x=58 y=12 (85) 93x+12y=9117 28x-y=2492答案:x=89 y=70 (86) 66x-71y=-1673 99x-y=7821答案:x=79 y=97 (87) 43x-52y=-1742 76x+y=1976答案:x=26 y=55 (88) 70x+35y=829540x+y=2920答案:x=73 y=91 (89) 43x+82y=4757 11x+y=231答案:x=21 y=47 (90) 12x-19y=236 95x-y=7885答案:x=83 y=40 (91) 51x+99y=8031 71x-y=2911答案:x=41 y=60 (92) 37x+74y=4403 69x-y=6003答案:x=87 y=16 (93) 46x+34y=4820 71x-y=5183答案:x=73 y=43 (94) 47x+98y=5861 55x-y=4565答案:x=83 y=20 (95) 30x-17y=239 28x+y=1064答案:x=38 y=53 (96) 55x-12y=4112 79x-y=7268答案:x=92 y=79 (97) 27x-24y=-450 67x-y=3886答案:x=58 y=84 (98) 97x+23y=8119 14x+y=966答案:x=69 y=62 (99) 84x+53y=11275 70x+y=6790答案:x=97 y=59 (100) 51x-97y=297 19x-y=1520答案:x=80 y=39。
八年级数学一次函数32道典型题(含答案和解析)
八年级数学一次函数32道典型题(含答案和解析)1、下列函数中:① y=2πx ;② y=-2x+6;③ y=34x ;④ y=x2+3;⑤ y=32x ;⑥ y=√x ,其中是一次函数的有( )个.A.1B.2C.3D.4 答案: C .解析: ①②③满足自变量次数为1,系数不为零,且自变量不在分母上,故为一次函数.④自变量次数不为1,故不是一次函数. ⑤自变量在分母上,不是一次函数. ⑥自变量次数为12,不是一次函数.考点:函数——一次函数——一次函数的基础.2、 当m= 时,y=(m -4)x 2m+1-4x -5 是一次函数. 答案: 4或0.解析:y=(m -4)x 2m+1-4x -5是一次函数.则 m -4=0或2m+1=1. 解得 m=4或m=0.考点:函数——一次函数——一次函数的基础.3、一次函数y=kx+b 的图象不经过第二象限,则k ,b 的取值范围是( ).A. k <0,b≥0B. k >0,b≤0C. k <0,b <0D. k >0,b >0 答案: B .解析: ① k >0时,直线必经过一、三象限,故k >0.② 再由图象过三、四象限或者原点,所以b≤0 .考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.4、一次函数y=kx -k 的图象一定经过( ).A. 一、二象限B. 二、三象限C. 三、四象限D. 一、四象限 答案: D . 解析: 解法一:当k >0时,函数为增函数,且与y 轴交点在x 轴下方,此时函数经过一、三、四象限.当k <0时,函数为减函数,且与y 轴交点在x 轴上方,此时函数经过一、二、四象限.∴一次函数y=kx -k 的图象一定经过一、四象限. 解法二:一次函数y=kx -k=k (x -1)的图象一定过(1,0),即该图象一定经过一、四象限.考点:函数——一次函数——一次函数的图象——一次函数的性质.5、如果ab >0,ac <0,则直线y=−ab x+cb 不通过( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 答案: A .解析:ab >0 ,ac <0.则a ,b 同号;a ,c 异号;b ,c 异号. ∴−ab <0,cb <0.∴直线y=−abx+cb 过第二、三、四象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.6、如图,一次函数y=kx+b 和正比例函数y=kbx 在同一坐标系内的大致图象是( ).解析:A 、∵一次函数的图象经过一、三、四象限.∴k>0,b<0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项错误.B、∵一次函数的图象经过一、二、四象限.∴k<0,b>0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项正确.C、∵一次函数的图象经过二、三、四象限.∴k<0,b<0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.D、∵一次函数的图象经过一、二、三象限.∴k>0,b>0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.故选B.考点:函数——一次函数——正比例函数的图象——一次函数的图象.7、下列图象中,不可能是关于的一次函数y=mx-(m-3)的图象的是().解析:将解析式变为y=mx+(3-m)较易判断.考点:函数——一次函数——一次函数的图象.8、若一次函数y=-2x+3的图象经过点P1(-5,m)和点P2(1,n),则m n.(用“>”、“<”或“=”填空).答案:>.解析:在y=-2x+3中,k=-2<0.∴在一次函数y=-2x+3中,y随x的增大而减小.∵-5<1.∴m>n.考点:函数——一次函数——一次函数的性质.9、一次函数y=kx+b中,y随着x的增大而减小,b<0,则这个函数的图象不经过().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:A.解析:∵一次函数y=kx+b中,y随着x的增大而减小.∴k<0.又∵b<0.∴这个函数的图象不经过第一象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k、b的关系.10、已知一次函数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为().A. k>1,b<0B. k>1,b>0C. k>0,b>0D. k>0,b<0答案:A.解析:一次函数y=kx+b-x即为y=(k-1)x+b.∵函数值y随x的增大而增大.∴k-1>0,解得k>1.∵图象与x轴的正半轴相交,∴b <0.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.11、已知一次函数y=kx+2k+3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所有可能取得的整数值为 . 答案:-1.解析: 由已知得:{ 2k +3>0k <0.解得:−32<k <0. ∵k 为整数. ∴k=-1.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.12、在直角坐标系x0y 中,一次函数y=kx+6的图象经过点A (2,2). (1) 求一次函数的表达式.(2) 求一次函数图象与x 轴、y 轴交点的坐标.答案:(1) 一次函数的表达式为:y=-2x+6.(2) 一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6). 解析:(1) ∵一次函数y=kx+6的图象经过点A (2,2).∴2=2k+6. ∴k=-2.∴一次函数的表达式为:y=-2x+6.(2) 在y=-2x+6中,令x=0,则y=6,令y=0,则x=3.∴一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.13、设一次函数y=kx+b 的图象经过点P (1,2),它与x 轴,y 轴的正半轴分别交于A ,B 两点,坐标原点为O ,若OA+OB=6,则此函数的解析式是 或 . 答案: 1.y=-x+3.2.y=-2x+4.解析:因为一次函数y=kx+b的图象经过点P(1,2).所以k+b=2,即k=2-b.令y=0,则x=−bk =bb−2.所以点A(bb−2,0),点B(0,b).又因为A,B位于x轴,y轴的正半轴,并且OA+OB=6.所以bb−2+b=6,其中b>2.解得b=3或b=4.此时k=-1或-2.所以函数的解析式是y=-x+3或y=-2x+4.考点:函数——一次函数——一次函数综合题.14、一次函数y=(m2-1)x+(1-m)和y=(m+2)x+(2m-3)的图象分别与y轴交于点P和Q,这两点关于x轴对称,则m的值是().A. 2B.2或-1C. 1或-1D.-1答案:A.解析:一次函数y=(m2-1)x+(1-m)的图象与y轴的交点P为(0,1-m).一次函数y=(m+2)x+(2m-3)的图象与y轴的交点Q为(0,2m-3).因为P和Q关于x轴对称.所以1-m+2m-3=0.解得m=2.考点:函数——一次函数——一次函数的图象——一次函数图象与几何变换.15、已知直线y=2x-1.(1)求此直线与x轴的交点坐标.(2)若直线y=k1x+b1与已知直线平行,且过原点,求k1、b1的值.(3)若直线y=k2x+b2与已知直线关于y轴对称,求k2、b2的值.答案:(1)(12,0).(2)k1=2,b1=0.(3)k2=-2,b2=-1.解析:(1)令y=0,则0=2x-1.∴x=12.∴与x轴的交点坐标为(12,0).(2)∵y=k1x+b1与y=2x-1平行.∴k1=2.又∵y=k1x+b1过原点.∴b1=0.(3)在直线y=2x-1上任取一点(1,1).则(1,1)关于y轴的对称点为(-1,1).又∵y=k2x+b2与已知直线关于y轴对称.则b2=-1.点(-1,1)在直线y=k2x-1上.∴1=-k2-1.∴k2=-2.考点:函数——一次函数——一次函数与坐标轴交点——一次函数图象与几何变换——两条直线相交或平行问题.16、如图所示,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值.(2)解关于x,y的方程组{y=x+1y=mx+n,请你直接写出它的解.(3)直线l3:y=nx+m是否也经过点P?请说明理由.答案:(1)b=2.(2){x=1y=2.(3)直线l3:y=nx+m经过点P.解析:(1)将P(1,b)代入y=x+1,得b=1+1=2.(2)由于P点坐标为(1,2),所以{x=1y=2.(3)将P(1,2)代入解析式y=mx+n得,m+n=2.将x=1代入y=nx+m得y=m+n.由于m+n=2.所以y=2.故P(1,2)也在y=nx+m上.考点:函数——一次函数——求一次函数解析式——一次函数与二元一次方程.17、如图,直线y=kx+b经过A(-1,1)和B(-√7,0)两点,则关于x的不等式组0<kx+b<-x的解集为.答案:-√7<x<-1.解析:∵直线y=kx+b经过B(-√7,0)点.∴0<kx+b,就是y>0,y>0的范围在x轴的上方.此时:-√7<x.∵直线y=-x经过A(-1,1).那么就是A点左侧kx+b<-x.得:x<-1.故解集为:-√7<x<-1.考点:函数——一次函数——一次函数与一元一次不等式.18、阅读理解:在数轴上,x=1表示一个点,在平面直角坐标系中,x=1表示一条直线(如图(a)所示),在数轴上,x≥1表示一条射线;在平面直角坐标系中,x≥1表示的是直线x=1右侧的区域;在平面直角坐标系中,x+y-2=0表示经过(2,0),(0,2)两点的一条直线,在平面直角坐标系中,x+y-2≤0表示的是直线x+y-2=0及其下方的区域(如图(b)所示),如果x,y满足{x+2y−2≥03x+2y−6≤0x≥0y≥0,请在图(c)中用阴影描出点(x,y)所在的区域.答案:解析:略.考点:函数——一次函数——一次函数与一元一次不等式.19、甲、乙两人从顺义少年宫出发,沿相同的线路跑向顺义公园,甲先跑一段路程后,乙开始出发,当乙超过甲150米时,乙停在此地等候甲,两人相遇后,乙和甲一起以甲原来的速度跑向顺义公园,如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象,请根据题意解答下列问题.(1)在跑步的全过程中,甲共跑了米,甲的速度为米/秒.(2)求乙跑步的速度及乙在途中等候甲的时间.(3)求乙出发多长时间第一次与甲相遇?答案:(1)1.900.2.1.5.(2)乙在途中等候甲的时间是100秒.(3)乙出发150秒时第一次与甲相遇.解析:(1)解:根据图象可以得到:甲共跑了900米,用了600秒.∴甲的速度为900÷600=1.5米/秒.(2)甲跑500秒的路程是500×1.5=750米.甲跑600米的时间是(750-150)÷1.5=400秒.乙跑步的速度是750÷(400-100)=2.5米/秒.乙在途中等候甲的时间是500-400=100秒.(3)∵D(600,900),A(100,0),B(400,750).∴OD的函数关系式为y=1.5x,AB的函数关系式为y=2.5x-250.根据题意得{y=1.5xy=2.5x−250.解得x=250.∴乙出发150秒时第一次与甲相遇.考点:函数——一次函数——一次函数的应用.20、如图1是某公共汽车线路收支差额y(单位:万元)(票价总收人减去运营成本)与乘客量x(单位:万人)的函数图象.目前这条线路亏损,为了扭亏,有关部门举行提高票价的听证会.乘客代表认为:公交公司应节约能源,改善管理,降低运营成本,以此举实现扭亏.公交公司认为:运营成本难以下降,公司己尽力,提高票价才能扭亏.根据这两种意见,可以把图1分别改画成图2和图3.(1)说明图1中点A和点B的实际意义.(2)你认为图2和图3两个图象中,反映乘客意见的是,反映公交公司意见的是.(3)如果公交公司采用适当提高票价又减少成本的办法实现扭亏为赢,请你在图4 中画出符合这种办法的y与x的大致函数关系图象.答案:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)1.图3.2.图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.解析:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)反映乘客意见的是图3.反映公交公司意见的是图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.考点:函数——一次函数——一次函数的图象——一次函数的应用.x+b的图象经过点A(2,3),AB⊥x轴于点B,连接OA.21、如图,已知一次函数y=−12(1) 求一次函数的解析式.(2) 设点P 为y=−12x+b 上的一点,且在第一象限内,经过点P 作x 轴的垂线,垂足为Q .若△POQ 的面积等于54倍的△AOB 的面积,求点P 的坐标.答案:(1) y=−12x+4.(2) (3,52)或(5,32).解析:(1) ∵一次函数y=−12x+b 的图象经过点A (2,3).∴3=(−12)×2+b .解得b=4.故此一次函数的解析式为:y=−12x+4.(2) 设P (p ,d ),p >0.∵点P 在直线y=−12x+4的图象上.∴ d=−12p+4①.∵ S △POQ =54S △AOB =54×12×2×3. ∴ 12pd=154②.①②联立得,{ d =−12p +412pd =154.解得{ p =3d =52或{p =5d =32.∴ 点坐标为:(3,52)或(5,32).考点:函数——一次函数——求一次函数解析式——一次函数的应用.22、已知:一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).(1) 求a 的值及正比例函数y=kx 的解析式.(2) 点P 在坐标轴上(不与原点O 重合),若PA=OA ,直接写出P 点的坐标.(3) 直线x=m (m <0且m≠-4 )与一次函数的图象交于点B ,与正比例函数图象交于点C ,若△ABC 的面积为S ,求S 关于m 的函数关系式.答案:(1) a=-4,正比例函数的解析式为y=−14x . (2) P 1(-8,0)或P 2(0,2).(3) S △ABC=38m2+3m+6(m≠-4).解析:(1) ∵一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).∴ 12a+3=1. 解得a=-4. ∴ A (-4,1). ∴ 1=K×(-4). 解得k=−14.∴正比例函数的解析式为y=−14x .(2) 如图1,P 1(-8,0)或P 2(0,2).(3) 依题意得,点B 坐标为(m ,12m+3),点C 的坐标为(m ,−m4).作AH ⊥BC 于点H ,H 的坐标为(m ,1). 分两种情况: ① 当m <-4时.BC=−14m -(12m+3)=−34m -3.AH=-4-m .则S △ABC =12BC×AH=12(−34m -3)(-4-m )=38m 2+3m+6.② 当m >-4时.BC=(12m+3)+m 4=34m+3.AH=m+4.则S △ABC =12BC×AH=12(34m+3)(m+4)=38m 2+3m+6.综上所述,S △ABC=38m2+3m+6(m≠-4).考点:函数——平面直角坐标系——坐标与距离——坐标与面积.一次函数——一次函数图象上点的坐标特征——两条直线相交或平行问题——一次函数综合题.三角形——三角形基础——三角形面积及等积变换.23、已知y 1=x+1,y 2=-2x+4,当-5≤x≤5时,点A (x ,y 1)与点B (x ,y 2)之间距离的最大值是 . 答案:18.解析: 当x=5时,y 1=6,y 2=-6.当x=-5时,y 1=-4,y 2=14.∴ A (5,6),B (5,-6)或A (-5,-4),B (-5,14). ∴ AB=6-(-6)=12或AB=14-(-4)=18. ∴ 线段AB 的最大值是18.考点:函数——一次函数——一次函数的性质.24、如图,在平面直角坐标系xOy中,直线y=−4x+8与x轴,y轴分别交于点A,点B,点3D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C 处.(1)求AB的长和点C的坐标.(2)求直线CD的解析式.答案: (1)AB=√62+82=10,点C的坐标为C(16,0).(2)直线CD的解析式为y=3x-12.4解析:(1)根据题意得A(6,0),B(0,8).在RT△OAB中,∠AOB=90°,OA=6,OB=8.∴AB=√62+82=10.∵△DAB沿直线AD折叠后的对应三角形为△DAC.∴AC=AB=10.∴OC=OA+AC=OA+AB=16.∵点C在x轴的正半轴上.∴点C的坐标为C(16,0).(2)设点D的坐标为D(0,y)(y<0).由题意可知CD=BD,CD2=BD2.由勾股定理得162+y2=(8-y)2.解得y=-12.∴点D的坐标为D(0,-12).可设直线CD的解析式为y=kx-12(k≠0).∵点C(16,0)在直线y=kx-12上.∴16k-12=0..解得k=34∴直线CD的解析式为y=3x-12.4考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.25、直线AB:y=-x+b分别与x、y轴交于A、B两点,点A的坐标为(3,0),过点B的直线交x轴负半轴于点C,且OB:OC=3:1.(1)求点B的坐标及直线BC的解析式.(2)在x轴上方存在点D,使以点A、B、C为顶点的三角形与△ABC全等,画出△ABD,并请直接写出点D的坐标.(3)在线段OB上存在点P,使点P到点B,C的距离相等,求出点P的坐标.答案:(1)B(0,3),直线BC的解析式为y=3x+3.(2)画图见解析,D1(4,3),D2(3,4).(3)证明见解析.解析:(1)把A(3,0)代入y=-x+b,得b=3.∴B(0,3).∴OB=3.∵OB:OC=3:1.∴OC=1.∵点C在x轴负半轴上.∴C(-1,0).设直线BC 的解析式为y=mx+n . 把B (0,3)及C (-1,0)代入,得{n =3−m +n =0.解得{m =3n =3.∴直线BC 的解析式为:y=3x+3.(2) 如图所示,D 1(4,3),D 2(3,4).(3) 由题意,PB=PC .设PB=PC=X ,则OP=3-x . 在RT △POC 中,∠POC=90°. ∴ OP 2+OC 2=PC 2. ∴ (3-x )2+12=x 2. 解得,x=53.∴ OP=3-x=43.∴点P 的坐标(0,43).考点:函数——平面直角坐标系——特殊点的坐标.一次函数——求一次函数解析式.三角形——全等三角形——全等三角形的性质.26、一次函数y=kx+b (k≠0),当x=-4时,y=6,且此函数的图象经过点(0,3). (1) 求此函数的解析式.(2) 若函数的图象与x 轴y 轴分别相交于点A 、B ,求△AOB 的面积.(3) 若点P 为x 轴正半轴上的点,△ABP 是等腰三角形,直接写出点P 的坐标.答案:(1)y=−34x+3.(2)6.(3)(78,0)或(9,0).解析:(1)当x=-4时,y=6,且此函数的图象经过点(0,3).代入y=kx+b 有,{−4k +b =6b =3,解得:{k =−34b =3.∴此函数的解析式为y=−34x+3.(2)当y=0时,x=4.∴点A (4,0),B (0,3). ∴ S △AOB=12×3×4=6.(3)AB=√42+32=5.当点P 为P 1时,BP 1=AP 1.∴在RT △OBP 1中,32+OP 12=(4-OP 1)2. 解得:OP 1=78. ∴ P1(78,0).当点P 为P 2时,AB=AP 2,∴P 2(9,0). 故点P 的坐标为(78,0)或(9,0).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.三角形——三角形基础——三角形面积及等积变换. 等腰三角形——等腰三角形的性质.27、已知点A (-4,0),B (2,0).若点C 在一次函数y=12x+2的图象上,且△ABC 是直角三角形,则点C 的个数是( ).A.1B. 2C. 3D.4 答案: B .解析: 如图所示,当AB 为直角边时,存在C 1满足要求.当AB 为斜边时,存在C 2满足要求.故点C的个数是2.考点:函数——一次函数——一次函数综合题.28、在平面直角坐标系xOy中,点A(-3,2),点B是x轴正半轴上一动点,连结AB,以AB为腰在x轴的上方作等腰直角△ABC,使AB=BC.(1)请你画出△ABC.(2)若点C(x,y),求y与x的函数关系式.答案:(1)画图见解析.(2)y=x+1.解析:(1)(2)作AE⊥x轴于E,CF⊥x轴于F.∴∠AEB=∠BFC=90°.∵A(-3,2).∴ AE=2,EO=3. ∵ AB=BC ,∠ABC=90°. ∴ ∠ABE+∠CBF=90°. ∵ ∠BCF+∠CBF=90°. ∴ ∠ABE=∠BCF. ∴ △ABE ≌△BCF . ∴ EB=CF ,AE=BF. ∵ OF=x ,CF=y . ∴ EB=y=3+(x+2). ∴ y=x+1.考点:函数——一次函数——一次函数综合题.三角形——直角三角形——等腰直角三角形.29、如图,直线l 1:y=12x 与直线l 2:y=-x+6交于点A ,直线l 2与x 轴、y 轴分别交于点B 、C ,点E 是线段OA 上一动点(E 不与O 、A 重合),过点E 作 EF ∥x 轴,交直线l 2于点F .(1) 求点A 的坐标.(2) 设点E 的横坐标为t ,线段EF 的长为d ,求d 与t 的函数关系式,并写出自变量t 的取值范围.(3) 在x 轴上是否存在一点P ,使△PEF 为等腰直角三角形?若存在,求出P 点坐标;若不存在,请你说明理由.答案:(1) (4,2).(2) d=6-32t ,其中0<t <4.(3) 存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形.解析:(1)联立{ y =12y =−x +6,解得{x =4y =2.∴点A 的坐标为(4,2).(2)点E 在直线l 1:y=12x .∵点E 的横坐标为t . ∴点E 的纵坐标为12t .∵ EF ∥x 轴,点F 在直线l 2:y=-x+6上. ∴点F 的纵坐标为12t .由12t=-x+6,得点F 的横坐标为6-12t .∴ EF 的长d=6−12t -t=6−32t . ∵ 点E 在线段OA 上. ∴ 0<t <4.(3) 若∠PEF=90°,PE=EF .则6−32t=t2,解得t=3.∵ 0<t <4.∴ P 点坐标为(3,0). 若∠PFE=90°,PF=EF . 则6−32t=t2,解得t=3. ∵ 0<t <4.∴ P 点坐标为(92,0).若 ∠EPF=90°. ∴6−32t=2×t2,解得t=125. 此时点P 的坐标为(185,0).综上,存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形. 考点:函数——一次函数——两条直线相交或平行问题——一次函数的应用——一次函数综合题.三角形——直角三角形——等腰直角三角形.30、规定:把一次函数y=kx+b 的一次项系数和常数项互换得y=bx+k ,我们称y=kx+b 和y=bx+k (其中k.b≠0,且|k|≠|b |)为互助一次函数,例如y=−23x+2和y=2x −23就是互助一次函数.如图,一次函数y=kx+b 和它的互助一次函数的图象l 1,l 2交于P 点,l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点.(1) 如图(1),当k=-1,b=3时. ① 直接写出P 点坐标 .② Q 是射线CP 上一点(与C 点不重合),其横坐标为m ,求四边形OCQB 的面积S 与m 之间的函数关系式,并求当△BCQ 与△ACP 面积相等时m 的值.(2) 如图(2),已知点M (-1,2),N (-2,0).试探究随着k ,b 值的变化,MP+NP 的值是否发生变化?若不变,求出MP+NP 的值;若变化,求出使MP+NP 取最小值时的P 点坐标.答案: (1)① (1,2).② S=2m −16(m >13),m=53.(2)随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化.使MP+NP 取最小值时的P 点坐标为(1,65).解析:(1)① P (1,2).② 如图,连接OQ .∵ y=-X+3与y=3x -1的图象l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点. ∴ A (3,0),B (0,3),C (13,0),D (0,-1).∵ Q (m ,3m -1)(m >13).∴ S=S △OBQ +S △OCQ =12×3×m+12×13×(3m -1)=2m −16(m >13).∴ S △BCQ =S -S △BOC =2m −16−12×3×13=2m −23. 而S △ACP =12×(3−13)×2=83.由S △BCQ=S △ACP ,得2m −23=83,解得m=53.(2) 由{ y =kx +b y =bx +k,解得{ x =1y =k +b ,即P (1,k+b ).∴随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化. 如图,作点N (-2,0)关于直线x=1的对称点N(4,0),连接MN 交直线x=1于点P ,则此时MP+NP 取得最小值.设直线MN 的解析式为y=cx+d ,依题意{−c +d =24c +d =0.解得{c =−25y =85.∴直线MN 的解析式为y=−25x+85.令x=1,则y=65,∴P (1,65).即使MP+NP 取最小值时的P 点坐标为(1,65).考点:函数——函数基础知识——函数过定点问题.一次函数——一次函数与二元一次方程——一次函数综合题. 几何初步——直线、射线、线段——线段的性质:两点之间线段最短. 三角形——三角形基础——三角形面积及等积变换.31、新定义:对于关于x 的一次函数y=kx+b (k≠0),我们称函数{y =kx +b (x ≤m )y =−kx −b (x >m )为一次函数y=kx+b (k≠0)的m 变函数(其中m 为常数).例如:对于关于x 的一次函数y=x+4的3变函数为{y =x +4(x ≤3)y =−x −4(x >3).(1) 关于x 的一次函数y=-x+1的2变函数为y ,则当x=4时,y=__________. (2) 关于x 的一次函数y=x+2的1变函数为y 1,关于x 的一次函数y=−12x -2的-1变函数为y 2,求函数y 1和函数y 2的交点坐标.(3) 关于x 的一次函数y=2x+2的1变函数为y 1,关于x 的一次函数y=−12x -1的m变函数为y 2.① 当-3≤x≤3时,函数y 1的取值范围是__________(直接写出答案).② 若函数y 1和函数y 2有且仅有两个交点,则m 的取值范围是__________(直接写出答案).答案: (1)3.(2)(−83,−23)和(0,2).(3)①-8≤y 1≤4.②−65≤m <−23.解析: (1) 根据m 变函数定义,关于x 的一次函数y=-x+1的2变函数为: {y =−x +1(x ≤2)y =x −1(x >2).∴ x=4时,y 1=4-1=3.∴ y 1=3.(2) 根据定义得:y 1={y =x +2(x ≤1)y =−x −2(x >1),y 2={y =−12x −2(x ≤−1)y =12x +2(x >−1). 求交点坐标:① {y =x +2(x ≤1)y =−12x −2(x ≤−1) ,解得{x =−83y =−23. ② {y =x +2(x ≤1)y =12x +2(x >−1) ,解得{x =0y =2. ③ {y =−x −2(x >1)y =−12x −2(x ≤−1),无解. ④ {y =−x −2(x >1)y =12x +2(x >−1),无解. 综上所述函数y 1和函数y 2的交点坐标为(−83,−23)和(0,2).(3)略.考点:函数——一次函数——一次函数的性质——一次函数图象上点的坐标特征——一次函数与二元一次方程——一次函数综合题.32、在平面直角坐标系xOy 中,对于点M (m ,n )和点N (m ,n’,给出如下定义:若n’={n (m ≥2)−n (m <2),则称点N 为点M 的变换点.例如:点(2,4)的变换点的坐标是(2,4),点(-1,3)的变换点的坐标是(-1,-3).(1) 回答下列问题:① 点(√5,1)的变换点的坐标是 .② 在点A (-1,2),B (4,-8)中有一个点是函数y=2x 图象上某一点的变换点,这个点是 (填“A”或“B”).(2) 若点M 在函数y=x+2(-4≤x≤3)的图象上,其变换点N 的纵坐标n’的取值范围是 .(3) 若点M 在函数y=-x+4(-1≤x≤a ,a >-1)的图象上,其变换点N 的纵坐标n’的取值范围是-5≤n’≤2,则a 的取值范围是 .答案: (1)①(√5,1).② A.(2)-4<n’≤2或4≤n’≤5.(3)6≤a≤9.解析:(1)① 由定义可知,由于√5>2,所以点(√5,1)的变换点的坐标是(√5,1).②若点A(-1,2)是变换点,则变换前的点为(-1,-2),-2=-1×2,在函数y=2x上.若点B(4,-8)是变换点,则变换前的点为(4,-8),-8≠4×2,不在函数y=2x上.所以这个点是A.(2)若点M在函数y=x+2(-4≤x≤3)的图象上,设M(x,x+2).当2≤x≤3时,4≤n’=x+2≤5.当-4≤x<2时,-4<n’=-(x+2)≤2.综上,纵坐标n’的取值范围是-4<n’≤2或4≤n’≤5.(3)当a>2时,2≤x<a时,4-a≤n’=-x+4≤2.-1≤x<2时,-5≤n’=-(-x+4)≤—2.∴只需-5≤4-a≤-2,此时6≤a≤9.当a<2时,-1≤x≤a,-5≤n’=-(-x+4)≤a-4.此时不满足-5≤n’≤2,故舍去.综上,的取值范围是6≤a≤9.考点:式——探究规律——定义新运算.函数——平面直角坐标系——点的位置与坐标.一次函数——一次函数图象上点的坐标特征.。
初中数学八年级下期末经典练习(含答案解析)
一、选择题1.(0分)[ID :10228]如图,有一个水池,其底面是边长为16尺的正方形,一根芦苇AB 生长在它的正中央,高出水面部分BC 的长为2尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B′,则这根芦苇AB 的长是( )A .15尺B .16尺C .17尺D .18尺2.(0分)[ID :10224]直角三角形两直角边长为a ,b ,斜边上高为h ,则下列各式总能成立的是( ) A .ab=h 2B .a 2+b 2=2h 2C .111a b h+= D .222111a b h+= 3.(0分)[ID :10220]顺次连接对角线互相垂直且相等的四边形各边中点所围成的四边形是( ) A .矩形B .菱形C .正方形D .平行四边形4.(0分)[ID :10217]已知M 、N 是线段AB 上的两点,AM =MN =2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC ,BC ,则△ABC 一定是( ) A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形5.(0分)[ID :10214]要使函数y =(m ﹣2)x n ﹣1+n 是一次函数,应满足( ) A .m ≠2,n ≠2B .m =2,n =2C .m ≠2,n =2D .m =2,n =06.(0分)[ID :10208]下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形 ③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有( )个. A .4B .3C .2D .17.(0分)[ID :10204]如图,在平行四边形ABCD 中,ABC ∠和BCD ∠的平分线交于AD 边上一点E ,且4BE =,3CE =,则AB 的长是( )A.3B.4C.5D.2.58.(0分)[ID:10202]如图,平行四边形ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则ABCD的面积是()A.30B.36C.54D.72BC BD为折痕,则9.(0分)[ID:10199]将一张长方形纸片按如图所示的方式折叠,,∠的度数为()CBDA.60︒B.75︒C.90︒D.95︒10.(0分)[ID:10187]某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是()A.参加本次植树活动共有30人B.每人植树量的众数是4棵C.每人植树量的中位数是5棵D.每人植树量的平均数是5棵11.(0分)[ID:10176]如图(1),四边形ABCD中,AB∥CD,∠ADC=90°,P从A 点出发,以每秒1个单位长度的速度,按A→B→C→D的顺序在边上匀速运动,设P点的运动时间为t秒,△PAD的面积为S,S关于t的函数图象如图(2)所示,当P运动到BC 中点时,△APD的面积为()A.4B.5C.6D.712.(0分)[ID:10173]如图,长方形纸片ABCD中,AB=4,BC=6,点E在AB边上,将纸片沿CE折叠,点B落在点F处,EF,CF分别交AD于点G,H,且EG=GH,则AE的长为( )A.23B.1C.32D.213.(0分)[ID:10170]如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法不一定成立的是()A.∠ABC=90°B.AC=BD C.OA=OB D.OA=AD14.(0分)[ID:10168]无论m为任何实数,关于x的一次函数y=x+2m与y=-x+4的图象的交点一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限15.(0分)[ID:10148]如图,四边形ABCD是菱形,∠ABC=120°,BD=4,则BC的长是()A.4B.5C.6D.3二、填空题16.(0分)[ID:10322]24的结果是__________.17.(0分)[ID :10316]45与最简二次根式321a -是同类二次根式,则a =_____. 18.(0分)[ID :10308]如图,直线l 1:y =x +n –2与直线l 2:y =mx +n 相交于点P (1,2).则不等式mx +n <x +n –2的解集为______.19.(0分)[ID :10294]如图,矩形ABCD 的对角线AC 、BD 相交于点O ,∠AOB=120°,CE//BD ,DE//AC ,若AD=5,则四边形CODE 的周长______.20.(0分)[ID :10289]在平面直角坐标系中,已知一次函数21y x =-+的图象经过()()111222P x y P x y ,,,两点.若12x x <,则1y ______2y (填“>”“<”或“=”).21.(0分)[ID :10267]如图,如果正方形ABCD 的面积为5,正方形BEFG 的面积为7,则ACE △的面积_________.22.(0分)[ID :10249]如图,矩形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是-1,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则这个点E 表示的实数是_______23.(0分)[ID :10240]已知一组数据1,2,3,4,5的方差为2,则另一组数据11,12,13,14,15的方差为___.24.(0分)[ID :10236]已知3a b +=,2ab =a bb a的值为_________. 25.(0分)[ID :10235]将正比例函数y =﹣3x 的图象向上平移5个单位,得到函数_____的图象.三、解答题26.(0分)[ID :10390]为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y (元)与种植面积()2x m 之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0300x ≤≤和300x >时,y 与x 的函数关系式;(2)广场上甲、乙两种花卉的种植面积共21200m ,若甲种花卉的种植面积不少于2200m ,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?27.(0分)[ID :10375]甲乙两位同学参加数学综合素质测试,各项成绩如下表:(单位:分)数与代数 空间与图形 统计与概率 综合与实践 学生甲 93 93 89 90 学生乙94929486(1)分别计算甲、乙同学成绩的中位数;(2)如果数与代数,空间与图形,统计与概率,综合与实践的成绩按4:3:1:2计算,那么甲、乙同学的数学综合素质成绩分别为多少分?28.(0分)[ID :10367]甲、乙两车分别从相距480km 的A 、B 两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C 地,甲车到达C 地停留1小时,因有事按原路原速返回A 地.乙车从B 地直达A 地,两车同时到达A 地.甲、乙两车距各自出发地的路程y (千米)与甲车出发所用的时间x (小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是 千米/时,t = 小时;(2)求甲车距它出发地的路程y 与它出发的时间x 的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.29.(0分)[ID:10354]如图,在△ABC中,已知AB=6,AC=10,AD平分∠BAC,BD⊥AD 于点D,点E为BC的中点,求DE的长.30.(0分)[ID:10425]某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中m的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为2.0kg的约有多少只?【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.D3.C4.B5.C6.C7.D8.D9.C10.D11.B12.B13.D14.C15.A二、填空题16.4【解析】【分析】根据二次根式的性质直接化简即可【详解】故答案为:4【点睛】此题主要考查了运用二次根式的性质进行化简注意:17.3【解析】【分析】先将化成最简二次根式然后根据同类二次根式得到被开方数相同可得出关于的方程解出即可【详解】解:∵与最简二次根式是同类二次根式∴解得:故答案为:【点睛】本题考查了最简二次根式的化简以及18.>1【解析】∵直线l1:y=x+n-2与直线l2:y=mx+n相交于点P(12)∴关于x的不等式mx+n<x+n-2的解集为x>1故答案为x>119.20【解析】【分析】通过矩形的性质可得再根据∠AOB=120°可证△AOD是等边三角形即可求出OD的长度再通过证明四边形CODE是菱形即可求解四边形CODE的周长【详解】∵四边形ABCD是矩形∴∵∠20.大于【解析】【分析】根据一次函数的性质当k<0时y随x的增大而减小【详解】∵一次函数y=−2x+1中k=−2<0∴y随x的增大而减小∵x1<x2∴y1>y2故答案为>【点睛】此题主要考查了一次函数的21.【解析】【分析】根据正方形的面积分别求出BCBE的长继而可得CE的长再利用三角形面积公式进行求解即可【详解】∵正方形的面积为正方形的面积为∴BC=AB=BE=∴CE=BE-BC=-∴S△ACE==故22.—1【解析】【分析】首先根据勾股定理计算出AC的长进而得到AE的长再根据A点表示-1可得E点表示的数【详解】∵AD长为2AB长为1∴AC=∵A点表示-1∴E点表示的数为:-1故答案为-1【点睛】本题23.2【解析】试题分析:根据方差的性质当一组数据同时加减一个数时方差不变进而得出答案∵一组数据12345的方差为2∴则另一组数据1112131415的方差为2故答案为2考点:方差24.【解析】【分析】先把二次根式进行化简然后把代入计算即可得到答案【详解】解:=∵∴原式=;故答案为:【点睛】本题考查了二次根式的混合运算以及二次根式的化简求值解题的关键是熟练掌握二次根式的混合运算的运25.y=-3x+5【解析】【分析】平移时k的值不变只有b发生变化【详解】解:原直线的k=-3b=0;向上平移5个单位得到了新直线那么新直线的k=-3b=0+5=5∴新直线的解析式为y=-3x+5故答案为三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题 1.C 解析:C 【解析】 【分析】我们可以将其转化为数学几何图形,如图所示,根据题意,可知EB'的长为16尺,则B'C=8尺,设出AB=AB'=x 尺,表示出水深AC ,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长. 【详解】解:依题意画出图形,设芦苇长AB=AB′=x 尺,则水深AC=(x-2)尺, 因为B'E=16尺,所以B'C=8尺 在Rt △AB'C 中,82+(x-2)2=x 2, 解之得:x=17, 即芦苇长17尺. 故选C . 【点睛】本题主要考查勾股定理的应用,熟悉数形结合的解题思想是解题关键.2.D解析:D 【解析】 【分析】 【详解】解:根据直角三角形的面积可以导出:斜边c=ab h. 再结合勾股定理:a 2+b 2=c 2.进行等量代换,得a 2+b 2=222a b h,两边同除以a 2b 2, 得222111a b h +=. 故选D .3.C解析:C 【解析】 【分析】根据三角形中位线定理得到所得四边形的对边都平行且相等,那么其为平行四边形,再根据邻边互相垂直且相等,可得四边形是正方形. 【详解】解:∵E 、F 、G 、H 分别是AB 、BC 、CD 、AD 的中点,∴EH//FG//BD ,EF//AC//HG ,EH =FG =12BD ,EF =HG =12AC ,∴四边形EFGH 是平行四边形, ∵AC ⊥BD ,AC =BD , ∴EF ⊥FG ,FE =FG , ∴四边形EFGH 是正方形, 故选:C . 【点睛】本题考查的是三角形中位线定理以及正方形的判定,解题的关键是构造三角形利用三角形的中位线定理解答.4.B解析:B 【解析】 【分析】依据作图即可得到AC =AN =4,BC =BM =3,AB =2+2+1=5,进而得到AC 2+BC 2=AB 2,即可得出△ABC 是直角三角形. 【详解】如图所示,AC =AN =4,BC =BM =3,AB =2+2+1=5, ∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形,且∠ACB =90°, 故选B .【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.5.C解析:C【解析】【分析】根据y=kx+b(k、b是常数,k≠0)是一次函数,可得m-2≠0,n-1=1,求解即可得答案.【详解】解:∵y=(m﹣2)x n﹣1+n是一次函数,∴m﹣2≠0,n﹣1=1,∴m≠2,n=2,故选C.【点睛】本题考查了一次函数,y=kx+b,k、b是常数,k≠0,x的次数等于1是解题关键.6.C解析:C【解析】【分析】【详解】∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有2个,故选C.考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.7.D解析:D【解析】由▱ABCD 中,∠ABC 和∠BCD 的平分线交于AD 边上一点E ,易证得△ABE ,△CDE 是等腰三角形,△BEC 是直角三角形,则可求得BC 的长,继而求得答案.【详解】∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB=CD ,AD=BC ,∴∠AEB=∠CBE ,∠DEC=∠BCE ,∠ABC+∠DCB=90°,∵BE ,CE 分别是∠ABC 和∠BCD 的平分线,∴∠ABE=∠CBE=12∠ABC ,∠DCE=∠BCE=12∠DCB , ∴∠ABE=∠AEB ,∠DCE=∠DEC ,∠EBC+∠ECB=90°,∴AB=AE ,CD=DE ,∴AD=BC=2AB ,∵BE=4,CE=3, ∴BC=2222345BE CE =+=+,∴AB=12BC=2.5. 故选D .【点睛】 此题考查了平行四边形的性质、等腰三角形的判定与性质以及直角三角形的性质.注意证得△ABE ,△CDE 是等腰三角形,△BEC 是直角三角形是关键.8.D解析:D【解析】【分析】求▱ABCD 的面积,就需求出BC 边上的高,可过D 作DE ∥AM ,交BC 的延长线于E ,那么四边形ADEM 也是平行四边形,则AM=DE ;在△BDE 中,三角形的三边长正好符合勾股定理的逆定理,因此△BDE 是直角三角形;可过D 作DF ⊥BC 于F ,根据三角形面积的不同表示方法,可求出DF 的长,也就求出了BC 边上的高,由此可求出四边形ABCD 的面积.【详解】作DE ∥AM ,交BC 的延长线于E ,则ADEM 是平行四边形,∴DE=AM=9,ME=AD=10,又由题意可得,BM=12BC=12AD=5,在△BDE 中,∵BD 2+DE 2=144+81=225=BE 2,∴△BDE 是直角三角形,且∠BDE=90°,过D 作DF ⊥BE 于F ,则DF=365BD DE BE ⋅=, ∴S ▱ABCD =BC•FD=10×365=72. 故选D .【点睛】此题主要考查平行四边形的性质和勾股定理的逆定理,正确地作出辅助线,构造直角三角形是解题的关键.9.C解析:C【解析】【分析】根据图形,利用折叠的性质,折叠前后形成的图形全等,对应角相等,利用平角定义ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°,再通过等量代换可以求出CBD ∠. 【详解】解:∵长方形纸片按如图所示的方式折叠,,BC BD 为折痕∴A BC ABC '∠=∠,E BD EBD '∠=∠∵ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°(平角定义)∴A BC '∠+A BC '∠+E BD '∠+E BD '∠=180°(等量代换)A BC '∠+E BD '∠=90°即CBD ∠=90°故选:C .【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.10.D解析:D【解析】试题解析:A 、∵4+10+8+6+2=30(人),∴参加本次植树活动共有30人,结论A正确;B、∵10>8>6>4>2,∴每人植树量的众数是4棵,结论B正确;C、∵共有30个数,第15、16个数为5,∴每人植树量的中位数是5棵,结论C正确;D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),∴每人植树量的平均数约是4.73棵,结论D不正确.故选D.考点:1.条形统计图;2.加权平均数;3.中位数;4.众数.11.B解析:B【解析】【分析】根据函数图象和三角形面积得出AB+BC=6,CD=4,AD=4,AB=1,当P运动到BC中点时,梯形ABCD的中位线也是△APD的高,求出梯形ABCD的中位线长,再代入三角形面积公式即可得出结果.【详解】解:根据题意得:四边形ABCD是梯形,AB+BC=6,CD=10-6=4,∵12AD×CD=8,∴AD=4,又∵12AD×AB=2,∴AB=1,当P运动到BC中点时,梯形ABCD的中位线也是△APD的高,∵梯形ABCD的中位线长=12(AB+CD)=52,∴△PAD的面积1545 22;=⨯⨯=故选B.【点睛】本题考查了动点问题的函数图象、三角形面积公式、梯形中位线定理等知识;看懂函数图象是解决问题的关键.12.B解析:B【解析】【分析】根据折叠的性质得到∠F=∠B=∠A=90°,BE=EF,根据全等三角形的性质得到FH=AE,GF=AG,得到AH=BE=EF,设AE=x,则AH=BE=EF=4-x,根据勾股定理即可得到结论.∵将△CBE 沿CE 翻折至△CFE ,∴∠F=∠B=∠A=90°,BE=EF ,在△AGE 与△FGH 中,A F AGE FGH EG GH ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AGE ≌△FGH (AAS ),∴FH=AE ,GF=AG ,∴AH=BE=EF ,设AE=x ,则AH=BE=EF=4-x∴DH=x+2,CH=6-x ,∵CD 2+DH 2=CH 2,∴42+(2+x )2=(6-x )2,∴x=1,∴AE=1,故选B .【点睛】考查了翻折变换,矩形的性质,全等三角形的判定和性质,熟练掌握折叠的性质是解题的关键.13.D解析:D【解析】【分析】根据矩形性质可判定选项A 、B 、C 正确,选项D 错误.【详解】∵四边形ABCD 为矩形,∴∠ABC=90°,AC=BD ,OA=OB ,故选D【点睛】本题考查了矩形的性质,熟练运用矩形的性质是解决问题的关键.14.C解析:C【解析】由于直线y=-x+4的图象不经过第三象限.因此无论m 取何值,直线y=x+2m 与y=-x+4的交点不可能在第三象限.故选C .15.A解析:A【分析】根据菱形的性质可知对角线平分对角,从而可知∠ABD=∠CBD=60°,从而可知△BCD是等边三角形,进而可知答案.【详解】∵∠ABC=120°,四边形ABCD是菱形∴∠CBD=60°,BC=CD∴△BCD是等边三角形∵BD=4∴BC=4故答案选A.【点睛】本题考查的是菱形的性质,能够掌握菱形的性质是解题的关键.二、填空题16.4【解析】【分析】根据二次根式的性质直接化简即可【详解】故答案为:4【点睛】此题主要考查了运用二次根式的性质进行化简注意:解析:4【解析】【分析】根据二次根式的性质直接化简即可.【详解】|4|4=.故答案为:4.【点睛】(0)||0 (0)(0)a aa aa a⎧⎪===⎨⎪-⎩><.17.3【解析】【分析】先将化成最简二次根式然后根据同类二次根式得到被开方数相同可得出关于的方程解出即可【详解】解:∵与最简二次根式是同类二次根式∴解得:故答案为:【点睛】本题考查了最简二次根式的化简以及解析:3【解析】【分析】化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于a的方程,解出即可.【详解】=与最简二次根式∴215a -=,解得:3a =故答案为:3【点睛】本题考查了最简二次根式的化简以及同类二次根式等知识点,能够正确得到关于a 的方程是解题的关键.18.>1【解析】∵直线l1:y =x +n -2与直线l2:y =mx +n 相交于点P(12)∴关于x 的不等式mx +n <x +n -2的解集为x>1故答案为x>1 解析:x >1【解析】∵直线l 1:y =x +n -2与直线l 2:y =mx +n 相交于点P(1,2),∴关于x 的不等式mx +n <x +n -2的解集为x>1,故答案为x>1.19.20【解析】【分析】通过矩形的性质可得再根据∠AOB=120°可证△AOD 是等边三角形即可求出OD 的长度再通过证明四边形CODE 是菱形即可求解四边形C ODE 的周长【详解】∵四边形ABCD 是矩形∴∵∠解析:20【解析】【分析】通过矩形的性质可得OD OA OB OC ===,再根据∠AOB=120°,可证△AOD 是等边三角形,即可求出OD 的长度,再通过证明四边形CODE 是菱形,即可求解四边形CODE 的周长.【详解】∵四边形ABCD 是矩形∴OD OA OB OC ===∵∠AOB=120°∴18060AOD AOB =︒-=︒∠∠∴△AOD 是等边三角形∵5AD =∴5OD OA ==∴5OD OC ==∵CE//BD ,DE//AC∴四边形CODE 是平行四边形∵5OD OC ==∴四边形CODE 是菱形∴5OD OC DE CE ====∴四边形CODE 的周长20OD OC DE CE =+++=故答案为:20.【点睛】本题考查了四边形的周长问题,掌握矩形的性质、等边三角形的性质、菱形的性质以及判定定理是解题的关键.20.大于【解析】【分析】根据一次函数的性质当k <0时y 随x 的增大而减小【详解】∵一次函数y =−2x +1中k =−2<0∴y 随x 的增大而减小∵x1<x2∴y1>y2故答案为>【点睛】此题主要考查了一次函数的解析:大于【解析】【分析】根据一次函数的性质,当k <0时,y 随x 的增大而减小.【详解】∵一次函数y =−2x +1中k =−2<0,∴y 随x 的增大而减小,∵x 1<x 2,∴y 1>y 2.故答案为>.【点睛】此题主要考查了一次函数的性质,关键是掌握一次函数y =kx +b ,当k >0时,y 随x 的增大而增大,当k <0时,y 随x 的增大而减小.21.【解析】【分析】根据正方形的面积分别求出BCBE 的长继而可得CE 的长再利用三角形面积公式进行求解即可【详解】∵正方形的面积为正方形的面积为∴BC=AB=BE=∴CE=BE -BC=-∴S△ACE==故解析:52 【解析】【分析】根据正方形的面积分别求出BC 、BE 的长,继而可得CE 的长,再利用三角形面积公式进行求解即可.【详解】∵正方形ABCD 的面积为5,正方形BEFG 的面积为7,∴,∴∴S △ACE =1122CE AB =⨯,故答案为:52. 【点睛】本题考查了算术平方根的应用,三角形面积,二次根式的混合运算等,熟练掌握并灵活运用相关知识是解题的关键.22.—1【解析】【分析】首先根据勾股定理计算出AC 的长进而得到AE 的长再根据A 点表示-1可得E 点表示的数【详解】∵AD 长为2AB 长为1∴AC=∵A 点表示-1∴E 点表示的数为:-1故答案为-1【点睛】本题1【解析】【分析】首先根据勾股定理计算出AC 的长,进而得到AE 的长,再根据A 点表示-1,可得E 点表示的数.【详解】∵AD 长为2,AB 长为1,∴,∵A 点表示-1,∴E -1,【点睛】本题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方和一定等于斜边长的平方.23.2【解析】试题分析:根据方差的性质当一组数据同时加减一个数时方差不变进而得出答案∵一组数据12345的方差为2∴则另一组数据1112131415的方差为2故答案为2考点:方差解析:2【解析】试题分析:根据方差的性质,当一组数据同时加减一个数时方差不变,进而得出答案. ∵一组数据1,2,3,4,5的方差为2,∴则另一组数据11,12,13,14,15的方差为2.故答案为2考点:方差24.【解析】【分析】先把二次根式进行化简然后把代入计算即可得到答案【详解】解:=∵∴原式=;故答案为:【点睛】本题考查了二次根式的混合运算以及二次根式的化简求值解题的关键是熟练掌握二次根式的混合运算的运解析:2【解析】【分析】先把二次根式进行化简,然后把3a b +=,2ab =,代入计算,即可得到答案.【详解】b a=+=(a b ab+, ∵3a b +=,2ab =,∴原式=3=22;故答案为:2. 【点睛】 本题考查了二次根式的混合运算,以及二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算的运算法则进行解题.25.y=-3x+5【解析】【分析】平移时k 的值不变只有b 发生变化【详解】解:原直线的k=-3b=0;向上平移5个单位得到了新直线那么新直线的k=-3b=0+5=5∴新直线的解析式为y=-3x+5故答案为解析:y=-3x+5【解析】【分析】平移时k 的值不变,只有b 发生变化.【详解】解:原直线的k=-3,b=0;向上平移5个单位得到了新直线,那么新直线的k=-3,b=0+5=5.∴新直线的解析式为y=-3x+5.故答案为y=-3x+5.【点睛】求直线平移后的解析式时要注意平移时k 和b 的值的变化,掌握这点很重要.三、解答题26.(1)()()130,03008015000.300x x y x x ⎧≤≤⎪=⎨+>⎪⎩;(2)应分配甲种花卉种植面积为2800m ,乙种花卉种植面积为2400m ,才能使种植总费用最少,最少总费用为119000元.【解析】分析:(1)由图可知y 与x 的函数关系式是分段函数,待定系数法求解析式即可. (2)设甲种花卉种植为 a m 2,则乙种花卉种植(12000-a )m 2,根据实际意义可以确定a 的范围,结合种植费用y (元)与种植面积x (m 2)之间的函数关系可以分类讨论最少费用为多少.详解:(1)()()130,03008015000.300x x y x x ⎧≤≤⎪=⎨+>⎪⎩(2)设甲种花卉种植面积为2am ,则乙种花卉种植面积为()21200a m -.()200,21200a a a ≥⎧∴⎨≤-⎩200800a ∴≤≤. 当200300a ≤<时,()1130100120030120000W a a a =+-=+.当200a =时,min 126000W =元.当300800a ≤≤时,()2801500010020013500020W a a a =++-=-.当800a =时,min 119000W =元.119000126000<,∴当800a =时,总费用最低,最低为119000元.此时乙种花卉种植面积为21200800400()m -=.答:应分配甲种花卉种植面积为2800m ,乙种花卉种植面积为2400m ,才能使种植总费用最少,最少总费用为119000元.点睛:本题是看图写函数解析式并利用解析式解决问题的题目,考查分段函数的表达和分类讨论的数学思想. 27.(1)甲的中位数91.5,乙的中位数93;(2)甲的数学综合成绩92,乙的数学综合成绩91.8.【解析】【分析】(1)由中位数的定义求解可得;(2)根据加权平均数的定义计算可得.【详解】(1)甲的中位数=9093=91.52+,乙的中位数=9294=932+; (2)甲的数学综合成绩=93×0.4+93×0.3+89×0.1+90×0.2=92,乙的数学综合成绩=94×0.4+92×0.3+94×0.1+86×0.2=91.8.【点睛】此题考查了中位数和加权平均数,用到的知识点是中位数和加权平均数,掌握它们的计算公式是本题的关键.28.(1)60,3;(2)y=120t(0≤t≤3);y=120(3<t≤4);y=-120t+840(4<t≤7);(3)83小时或4小时或6小时.【解析】【分析】(1)首先根据图示,可得乙车的速度是60千米/时,然后根据路程÷速度=时间,用两地之间的距离除以乙车的速度,求出乙车到达A 地用的时间是多少;最后根据路程÷时间=速度,用两地之间的距离除以甲车往返AC 两地用的时间,求出甲车的速度,再用360除以甲车的速度,求出t 的值是多少即可.(2)根据题意,分3种情况:①当0≤x≤3时;②当3<x≤4时;③4<x≤7时;分类讨论,求出甲车距它出发地的路程y 与它出发的时间x 的函数关系式,并写出自变量的取值范围即可.(3)根据题意,分3种情况:①甲乙两车相遇之前相距120千米;②当甲车停留在C 地时;③两车都朝A 地行驶时;然后根据路程÷速度=时间,分类讨论,求出乙车出发多长时间两车相距120千米即可.【详解】解:(1)根据图示,可得乙车的速度是60千米/时,甲车的速度=720÷6=120(千米/小时) ∴t=360÷120=3(小时). 故答案为:60;3;(2)①当0≤x≤3时,设y=k 1x ,把(3,360)代入,可得3k 1=360,解得k 1=120,∴y=120x (0≤x≤3).②当3<x≤4时,y=360.③4<x≤7时,设y=k 2x+b ,把(4,360)和(7,0)代入,可得224360{70k b k b +=+=,解得2120{840k b =-=∴y=﹣120x+840(4<x≤7). (3)①÷+1=300÷180+1=53+1=83(小时) ②当甲车停留在C 地时,÷60=240÷6=4(小时)③两车都朝A 地行驶时,设乙车出发x 小时后两车相距120千米,则60x ﹣[120(x ﹣1)﹣360]=120,所以480﹣60x=120,所以60x=360,解得x=6.综上,可得乙车出发83小时、4小时、6小时后两车相距120千米. 【点睛】本题考查一次函数的应用.29.【解析】试题分析:延长BD 与AC 相交于点F ,根据等腰三角形的性质可得BD=DF ,再利用三角形的中位线平行于第三边并且等于第三边的一半可得DE=12CF ,然后求解即可. 试题解析:如图,延长BD 交AC 于点F ,∵AD 平分∠BAC ,∴∠BAD =∠CAD.∵BD ⊥AD ,∴∠ADB =∠ADF ,又∵AD =AD ,∴△ADB ≌△ADF(ASA ).∴AF =AB =6,BD =FD.∵AC =10,∴CF =AC -AF =10-6=4.∵E 为BC 的中点,∴DE 是△BCF 的中位线.∴DE =12CF =12×4=2. 30.(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)200只.【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m 的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg 的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图,∵ 1.05 1.211 1.514 1.816 2.04 1.5251114164x ⨯+⨯+⨯+⨯+⨯==++++, ∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有1.5 1.5 1.52+=, ∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为2.0kg的数量占8%.∴由样本数据,估计这2500只鸡中,质量为2.0kg的数量约占8%.⨯=.有25008%200∴这2500只鸡中,质量为2.0kg的约有200只.点睛:此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.。
初二数学练习题50道带答案
初二数学练习题50道带答案1. 计算下列各式的值:a) 3 + 5 × 2 = 13b) (4 + 9) × 3 = 39c) 15 ÷ 3 × 4 = 20d) 2 × 3 ÷ 6 = 12. 简化下列各式:a) 3 × (4 + 7) = 33b) 12 + (5 + 3) = 20c) 15 ÷ (3 + 2) = 3d) (8 + 4) ÷ 6 = 23. 求下列各式的值:a) 6 + [(9 - 2) × 4] = 38b) (12 ÷ 3) × (4 + 1) = 20c) [(5 + 3) + 2] × 4 = 40d) (8 - 3) × (6 ÷ 3) = 154. 将下列各式改写为小数形式:a) 1/2 = 0.5b) 3/4 = 0.75c) 2/5 = 0.4d) 7/8 = 0.8755. 求下列各式的值:a) 2 3/4 + 1 1/2 = 4 1/4b) 5 3/8 - 3 1/4 = 2 1/8c) 6 2/3 × 2 1/2 = 16 5/6d) 8 1/2 ÷ 1 1/4 = 6 4/56. Patrick 每天早上步行去上学,一共需要花20分钟。
他步行到学校的时间是上学时间的1/4。
他上学总共需要多少分钟?答案:80分钟7. 一个口径为45 cm的圆形水箱的高度为105 cm. 如果用这个水箱每天给植物浇水6400 cm³的水,那么水箱可以供植物浇水多少天?答案:21天8. 一个矩形花坛的长是10 m,宽是6 m. 如果每平方米可以种植6朵花,那么这个花坛中可以种植多少朵花?答案:360朵花9. 一个长方形底的水池体积是45 m³,长是9 m,高是1.5 m. 水池的宽是多少米?答案:5 m10. 一个包装盒,长是40 cm,宽是30 cm,高是20 cm. 如果将其包装为方形,边长是多少?答案:30 cm11. 某货物原价是800元,打折后的价格是680元。
初二数学练习题与答案
初二数学练习题与答案一、选择题1. 已知直线AB与直线CD相交于点O,∠AOB = 100°,那么∠AOC的度数是:A. 50°B. 100°C. 80°D. 130°答案:C. 80°2. 若一扇形的圆心角是120°,半径为6 cm,则该扇形的弧长是:A. 4π cmB. 6π cmC. 10π cmD. 12π cm答案:D. 12π cm3. 如果二次函数y = ax² + bx + c的图像与x轴有两个交点,且a > 0,那么函数的图像开口朝下。
A. 正确B. 错误答案:B. 错误4. 已知函数 f(x) = x² - 2x + 3,那么 f(1)的值为:A. -2B. 1C. 2D. 3答案:D. 35. 一件商品原价是120元,现在打8折出售,那么折后的价格是:A. 96元B. 108元C. 112元D. 124元答案:C. 112元二、填空题1. 已知20% × 25 = ______。
答案:52. 点A(2, 4)和点B(6, 9)的斜率是 ______。
答案:1.253. 一个几何图形有6个面、12个边和8个顶点,那么该图形的类型是 ______。
答案:六面体4. 2(3 + 4) - 5 × 2的值是 ______。
答案:95. 在等差数列4,7,10,13,...中,第10项的值是 ______。
答案:31三、解答题1. 设直线L1的斜率为2,过点A(-1, 3),求直线L1的方程。
解:直线的一般方程为y = kx + b,其中k为斜率,b为截距。
由已知得,直线L1的斜率为2,过点A(-1, 3),代入方程可得:3 = 2 × (-1) + b3 = -2 + bb = 5因此,直线L1的方程为y = 2x + 5。
2. 某商品原价为x元,现在打6折出售后的价格为60元,请问x的值为多少?解:打6折表示折扣为0.6,原价x元乘以折扣0.6后等于60元,可写成方程:0.6x = 60解这个方程可以得到:x = 60 ÷ 0.6 = 100因此,该商品的原价为100元。
初二年级数学试题及答案
初二年级数学试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是无理数?A. 3.1415926B. √2C. 0.33333D. 1/32. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 83. 一个数的平方根是它本身,这个数可能是:A. 0B. 1C. -1D. 24. 一个多项式减去另一个多项式,结果可能是:A. 一个单项式B. 一个多项式C. 一个常数D. 以上都是5. 下列哪个是二次根式?A. √3xB. √x/2C. √x + 1D. √x^26. 一个数的立方根是它本身,这个数可能是:A. 0B. 1C. -1D. 87. 如果一个二次方程ax^2 + bx + c = 0有两个相等的实根,那么判别式Δ的值是:A. 大于0B. 等于0C. 小于0D. 无法确定8. 下列哪个不是同类项?A. 3x^2 和 5x^2B. 2y 和 3yC. 4ab 和 6abD. 7m^2n 和 5n^2m9. 一个数的绝对值是它本身,这个数可能是:A. 正数B. 0C. 负数D. 以上都是10. 下列哪个是正确的因式分解?A. x^2 - 1 = (x - 1)(x + 1)B. x^2 + 2x + 1 = (x + 1)^2C. x^2 - 4 = (x - 2)(x + 2)D. x^2 + 4x + 4 = (x + 2)^2答案:1. B 2. A 3. A 4. D 5. A 6. A 7. B 8. D 9. A 10. D二、填空题(每题2分,共20分)11. 一个数的相反数是-5,这个数是________。
12. 如果一个数的平方是25,那么这个数是________。
13. 一个数的立方是-8,那么这个数是________。
14. 一个多项式减去另一个多项式,结果可能是一个________。
15. 一个二次方程ax^2 + bx + c = 0有两个不相等的实根,那么判别式Δ的值是________。
初二数学练习题及答案
初二数学练习题及答案一、选择题1. 下列哪个数是无理数?A. -2B. √3C. 0.5D. 2.5答案:B2. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 8D. 10答案:A3. 一个数的平方根是它本身,这个数是:A. 1B. -1C. 0D. 以上都不是答案:C二、填空题4. 一个数的立方等于它本身,这个数可以是______。
答案:1 或 05. 一个数的绝对值是它本身,这个数是______。
答案:非负数6. 如果一个数的相反数是-5,那么这个数是______。
答案:5三、计算题7. 计算下列表达式的值:(1) -3²(2) (-2)³答案:(1) -9(2) -88. 计算下列方程的解:(1) 3x + 5 = 14(2) 2x - 3 = 7答案:(1) x = 3(2) x = 5四、解答题9. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的周长和面积。
答案:周长= 2 × (10 + 5) = 30厘米面积= 10 × 5 = 50平方厘米10. 一个圆的半径是7厘米,求这个圆的周长和面积。
答案:周长= 2 × π × 7 ≈ 43.98厘米(π取3.14)面积= π × 7² ≈ 153.94平方厘米(π取3.14)五、应用题11. 一个班级有40名学生,其中男生占60%,女生占40%,求男生和女生各有多少人?答案:男生人数= 40 × 60% = 24人女生人数= 40 × 40% = 16人12. 一个工厂生产一批零件,合格率为98%,如果这批零件总数为1000个,求不合格的零件有多少个?答案:不合格的零件数= 1000 × (1 - 98%) = 20个本练习题旨在帮助初二学生巩固数学基础知识,提高解题能力。
希望同学们认真完成,遇到问题及时向老师或同学求助。
初二数学八年级各种经典难题例题(含答案)非常经典
1已知一个等腰三角形二内角的度数之比为1:4,则那个等腰三角形顶角的度数为()之阳早格格创做A .20 B .120 C .20或者120 D .36 1.一个凸多边形的每一个内角皆等于150°,则那个凸多边形所有对付角线的条数总同有( )A .42条B .54条C .66条D .78条 3、若曲线11y k x =+与24y k x =-的接面正在x 轴上,那么k k 等于()(竞赛)1 正真数,x y 谦脚1xy =,那么44114x y +的最小值为:( ) (A)12 (B)58 (C)1 (D)2(竞赛)正在△ABC 中,若∠A >∠B ,则边少a 与c 的大小闭系是( )A 、a >cB 、c >aC 、a >1/2cD 、c >1/2a16.如图,曲线y=kx+6与x 轴y 轴分别接于面E ,F.面E 的坐标为(-8,0),面A 的坐标为(-6,0).(1)供k 的值;(2)若面P(x ,y)是第二象限内的曲线上的一个动面,当面P 疏通历程中,试写出△OPA 的里积S 与x的函数闭系式,并写出自变量x的与值范畴;(3)商量:当P 疏通到什么位子时,△OPA 的里积为827,并道明缘由.6、已知,如图,△ABC 中,∠BAC=90°,AB=AC,D 为AC 上一面,且∠BDC=124°,延少BA 到面E ,使AE=AD,BD 的延少线接CE 于面F ,供∠E 的度数.7.正圆形ABCD 的边少为4,将此正圆形置于仄里曲角坐标系中,使AB 边降正在X 轴的正半轴上,且A 面的坐标是(1,0).①曲线y=43x-83通过面C ,且与x 轴接与面E ,供四边形AECD 的里积;②若曲线l 通过面E 且将正圆形ABCD 分成里积相等的二部分供曲线l 的剖析式,③若曲线1l 通过面F ⎪⎭⎫ ⎝⎛-0.23且与曲线y=3x 仄止,将②中曲线l 沿着y 轴进与仄移32个单位接x 轴于面M ,接曲线1l 于面N ,供NMF ∆的里积.(竞赛奥数)如图,正在△ABC 中,已知∠C=60°,AC >BC ,又△ABC′、△BCA′、△CAB′皆是△ABC 形中的等边三角形,而面D 正在AC 上,且BC=DC(1)道明:△C′BD ≌△B′DC ;(2)道明:△AC′D ≌△DB′A ;9.已知如图,曲线343y x =-+x 轴相接于面A ,与曲线3y x=相接于面P .①供面P 的坐标. ②请推断OPA ∆的形状并道明缘由.③动面E 从本面O 出收,以每秒1个单位的速度沿着O→P→A 的门路背面A 匀速疏通(E 没有与面O 、A 沉合),过面E 分别做EF ⊥x 轴于F ,EB ⊥y 轴于B .设疏通t 秒时,矩形EBOF 与△OPA 沉叠部分的里积为S .供: S 与t 之间的函数闭系式.16多边形内角战公式等于(n - 2)×180根据题意即(n - 2)×180=150n,供得n=12, 多边形的对付角线的条数公式等于 n(n-3)/2戴进个多边形所有对付角线的条数同有54条果为二曲线接面正在x 轴上,则k1战k2必定没有为0,且接面处x=-1/k1=4/k2,所以k1:k2=-1:41/x^4+1/4y^4=(y^4+x^4)/x^4y^4果为xy=1所以x^4y^4=1所以本式=y^4+x^4果为(x^2-y^2)^2>0且(x^2-y^2)^2=y^4+x^4-x^2y^2大于或者等于0所以y^4+x^4大于或者等于x^2y^2 即1所以y^4+x^4的最小值为1竞赛解:正在△ABC中,∵∠A>∠B,∴a>b,∵a+b>c,∴2a>a+b>c,∴a>12c.故选C.1、y=kx+6过面E(-8,0)则-8K+6=0K=3/42、果面E(-8,0)则OE=8曲线剖析式Y=3X/4+6当X=0时,Y=6,则面F(0,6)果面A(0,6),则A、F沉合OA=6设面P(X,Y)则面P对付于Y轴的下为|X|当P正在第二象限时,|X|=-XS=OA×|X|/2=-6X/2=-3X3、S=3|X|当S=278时278=±3XX1=278/3,X2=-278/3Y1=3X1/4+6=3/4×278/3+6=151/2Y2=3X2/4+6=-3/4×278/3+6=-127/2面P1(278/3,151/2),P2(-278/3,-127/2)6解:正在△ABD战△ACE中,∵AB=AC,∠DAB=∠CAE=90°AD=AE,∴△ABD≌△ACE(SAS),∴∠E=∠ADB.∵∠ADB=180°-∠BDC=180°-124°=56°,∴∠E=56°.7(1)由题意知边少已经报告,易供四边形的里积;(2)由第一问供出E面的坐标,设出F面,根据曲线l通过面E且将正圆形ABCD分成里积相等的二部分,本来是二个曲角梯形,根据梯形里积公式,可供出F面坐标,进而解出曲线l的剖析式.解:(1)由已知条件正圆形ABCD的边少是4,∴四边形ABCD的里积为:4×4=16;(2)由第一问知曲线y=4/3x-8/3与x轴接于面E,∴E(2,0),设F(m,4),曲线l通过面E且将正圆形ABCD分成里积相等的二部分,由图知是二个曲角梯形,∴S梯形AEFD=S梯形EBCF= 1/2(DF+AE)•AE= 1/2(FC+EB)∴m=4,∵F(4,4),E(2,0),∴曲线l的剖析式为:y=2x-4竞赛奥数(1) 先证△ABC≌△C1BD:∵AB=C1B, ∠ABC=∠C1BD (果为皆是60°+∠ABD), BD=BC. (SAS)(得出:∠C1DB=∠C=60°)再证:△ABC≌△B1DC:∵AC=B1C, ∠C=∠B1CA=60°, BC=DC.(SAS)∴△C1BD≌△B1DC(得出:B1C=C1D)(2) ∵B1C=C1D,B1C=AB1,∴AB1=C1D∠C1DB=60°,∠BDC=60°,∴∠ADC1=60°=∠B1ADAD是公同边∴△AC1D≌△DB1A (SAS)(3) S△B1CA > S△ABC1 > S△ABC > S△BCA1y=-(3^½)x+4*(3^½)与x轴相接于A,即x=4,y=0,则A面坐标为:(4,0)又与y=(3^½)x相接于P,则联列解得:x=2,y=2*(3^½)即P面坐标为:(2,2*(3^½))|OP|={2²+[2*(3^½)]²}^½=4|AP|={(2-4)²+[2*(3^½)]²}^½=4而|OA|=4所以△OAP为等边三角形。
数学测试题及答案八年级
数学测试题及答案八年级一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个数的平方等于它本身,这个数是:A. 0B. 1C. -1D. 0和1答案:D3. 计算下列哪个表达式的结果等于9?A. 3 * 3B. 2 * 4 + 1C. 5 - 4D. 6 / 2答案:A4. 一个等腰三角形的两个底角相等,如果一个底角是40度,那么顶角的度数是:A. 40度B. 100度C. 140度D. 160度答案:B5. 下列哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 梯形D. 所有选项答案:B6. 一个数的绝对值是5,这个数可以是:A. 5B. -5C. 5或-5D. 0答案:C7. 一个圆的半径是5厘米,那么它的直径是:A. 10厘米B. 20厘米C. 25厘米D. 15厘米答案:A8. 一个数的立方等于它本身,这个数是:A. 0B. 1C. -1D. 0、1和-1答案:D9. 计算下列哪个表达式的结果等于-8?A. 2 * (-4)B. (-2) * 4C. -2 * (-4)D. 4 * (-2)答案:A10. 一个直角三角形的两个锐角分别是30度和60度,那么斜边的长度是:A. 2倍的较短直角边B. 3倍的较短直角边C. 4倍的较短直角边D. 5倍的较短直角边答案:A二、填空题(每题4分,共20分)1. 一个数的相反数是-8,那么这个数是______。
答案:82. 如果一个数的平方等于36,那么这个数可以是______。
答案:±63. 一个三角形的内角和等于______度。
答案:1804. 一个数的立方根是2,那么这个数是______。
答案:85. 一个数除以它本身等于______。
答案:1(非零数)三、解答题(每题10分,共50分)1. 解方程:2x - 3 = 5答案:x = 42. 计算:(3x - 2)(x + 4) = 0,求x的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学经典练习题附答案(因式分解)因式分解练习题一、填空题:2.(a-3)(3-2a)=_______(3-a)(3-2a);12.若m-3m+2=(m+a)(m+b),则a=______,b=______;215.当m=______时,x+2(m-3)x+25是完全平方式.2二、选择题:1.下列各式的因式分解结果中,正确的是( )A.ab+7ab-b=b(a+7a) B.3xy-3xy-6y=3y(x-2)(x+1) 222C.8xyz-6xy=2xyz(4-3xy) D.-2a+4ab-6ac=-2a(a+2b-3c) 2222.多项式m(n-2)-m(2-n)分解因式等于( ) 2A.(n-2)(m+m) B.(n-2)(m-m) C.m(n-2)(m+1) D.m(n-2)(m-1) 223.在下列等式中,属于因式分解的是( )A.a(x-y)+b(m+n)=ax+bm-ay+bn B.a-2ab+b+1=(a-b)+1222C.-4a+9b=(-2a+3b)(2a+3b) D.x-7x-8=x(x-7)-8 2224.下列各式中,能用平方差公式分解因式的是( )A.a+bB.-a+bC.-a-bD.-(-a)+b 22 2 22 2 2 2.5.若9x+mxy+16y是一个完全平方式,那么m的值是( ) 22A.-12 B.±24 C.12 D.±126.把多项式a-a分解得( ) n+1n+4A.a(a-a) B.a(a-1) C.a(a-1)(a-a+1) D.a(a-1)(a+a+1) 2n-1n+13n24n+17.若a+a=-1,则a+2a-3a-4a+3的值为( ) 2234A.8 B.7 C.10 D.128.已知x+y+2x-6y+10=0,那么x,y的值分别为( ) 22A.x=1,y=3 B.x=1,y=-3 C.x=-1,y=3 D.x=1,y=-39.把(m+3m)-8(m+3m)+16分解因式得( ) 2242A.(m+1)(m+2)B.(m-1)(m-2)(m+3m-2) 22 4 22C.(m+4)(m-1)D.(m+1)(m+2)(m+3m-2) 2 2222 210.把x-7x-60分解因式,得( ) 2A.(x-10)(x+6) B.(x+5)(x-12) C.(x+3)(x-20) D.(x-5)(x+12)11.把3x-2xy-8y分解因式,得( ) 22A.(3x+4)(x-2) B.(3x-4)(x+2) C.(3x+4y)(x-2y) D.(3x-4y)(x+2y)12.把a+8ab-33b分解因式,得( ) 22A.(a+11)(a-3) B.(a-11b)(a-3b) C.(a+11b)(a-3b) D.(a-11b)(a+3b)13.把x-3x+2分解因式,得( ) 24A.(x-2)(x-1) B.(x-2)(x+1)(x-1) 222C.(x+2)(x+1) D.(x+2)(x+1)(x-1) 22214.多项式x-ax-bx+ab可分解因式为( ) 2A.-(x+a)(x+b) B.(x-a)(x+b) C.(x-a)(x-b) D.(x+a)(x+b)15.一个关于x的二次三项式,其x项的系数是1,常数项是-12,且能分解因式,这样的二2次三项式是( )A.x-11x-12或x+11x-12 B.x-x-12或x+x-12 2222C.x-4x-12或x .以上都可以12 D-4x+22.16.下列各式x-x-x+1,x+y-xy-x,x-2x-y+1,(x+3x)-(2x+1)中,不含22222322有(x-1)因式的有( )A.1个 B.2个 C.3个 D.4个17.把9-x+12xy-36y分解因式为( ) 22A.(x-6y+3)(x-6x-3) B.-(x-6y+3)(x-6y-3)C.-(x-6y+3)(x+6y-3) D.-(x-6y+3)(x-6y+3)18.下列因式分解错误的是( )A.a-bc+ac-ab=(a-b)(a+c) B.ab-5a+3b-15=(b-5)(a+3) 2C.x+3xy-2x-6y=(x+3y)(x-2) D.x-6xy-1+9y=(x+3y+1)(x+3y-1)22219.已知ax±2x+b是完全平方式,且a,b都不为零,则a与b的关系为( )222A.互为倒数或互为负倒数 B.互为相反数C.相等的数 D.任意有理数20.对x+4进行因式分解,所得的正确结论是( ) 4A.不能分解因式 B.有因式x+2x+2 C.(xy+2)(xy-8) D.(xy-2)(xy-8) 221.把a+2ab+b-ab分解因式为( ) 222442A.(a+b+ab)B.(a+b+ab)(a+b-ab) 222222 2 C.(a-b+ab)(a-b-ab) D.(a+b-ab) 222222222.-(3x-1)(x+2y)是下列哪个多项式的分解结果( )A.3x+6xy-x-2y B.3x-6xy+x-2y 22C.x+2y+3x+6xy D.x+2y-3x-6xy 2223.64a-b因式分解为( ) 28A.(64a-b)(a+b) B.(16a-b)(4a+b) 2244C.(8a-b)(8a+b) D.(8a-b)(8a+b) 442424.9(x-y)+12(x-y)+4(x+y)因式分解为( ) 2222A.(5x-y)B.(5x+y)C.(3x-2y)(3x+2y) D.(5x-2y) 22 225.(2y-3x) ( )因式分解为1+2y)-2(3x-2.A.(3x-2y-1)B.(3x+2y+1) 2 2C.(3x-2y+1)D.(2y-3x-1) 2 226.把(a+b)-4(a-b)+4(a-b)分解因式为( ) 2222A.(3a-b)B.(3b+a)C.(3b-a)D.(3a+b) 22 2 227.把a(b+c)-2ab(a-c)(b+c)+b(a-c)分解因式为( ) 2222A.c(a+b)B.c(a-b)C.c(a+b)D.c(a-b) 222 2 228.若4xy-4x-y-k有一个因式为(1-2x+y),则k的值为( ) 22A.0 B.1 C.-1 D.429.分解因式3ax-4by-3bx+4ay,正确的是( ) 2222A.-(a+b)(3x+4y) B.(a-b)(a+b)(3x+4y) 22C.(a+b)(3x-4y) D.(a-b)(a+b)(3x-4y) 2230.分解因式2a+4ab+2b-8c,正确的是( ) 222A.2(a+b-2c) B.2(a+b+c)(a+b-c)C.(2a+b+4c)(2a+b-4c) D.2(a+b+2c)(a+b-2c)三、因式分解:1.m(p-q)-p+q; 2.a(ab+bc+ac)-abc;23.x-2y-2xy+xy; 4.abc(a+b+c)-abc+2abc;24242233235.a(b-c)+b(c-a)+c(a-b); 6.(x-2x)+2x(x-2)+1;22222 7.(x-y)+12(y-x)z+36z; 8.x-4ax+8ab-4b ;2222.9.(ax+by)+(ay-bx)+2(ax+by)(ay-bx);10.(1-a)(1-b)-(a-1)(b -1);2222222211.(x+1)-9(x-1); 12.4ab-(a+b-c);2222222213.ab-ac+4ac-4a; 14.x+y;3n3n22.(3m-2n)+(3m+2n);(x15.+y)+125; 16 333.8(x+y)+1;)-+-x17.(xy)y(yx; 18 3262226.x 20;---c)(a.+b+abc+4xy+3y; 19233332..21xx+2x-8 2214418x+-;;242.m.-23x 24;17--18m+2x ;8x-3524.25.x+19x-216x; 26.(x-7x)+10(x-7x)-24;28225227.5+7(a+1)-6(a+1); 28.(x+x)(x+x-1)-2;22229.x+y-xy-4xy-1; 30.(x-1)(x-2)(x-3)(x-4)-48;2222四、证明(求值):1.已知a+b=0,求a-2b+ab-2ab的值.23232.求证:四个连续自然数的积再加上1,一定是一个完全平方数.3.证明:(ac-bd)+(bc+ad)=(a+b)(c+d).2222224.已知a=k+3,b=2k+2,c=3k-1,求a+b+c+2ab-2bc-2ac的值.2225.若x+mx+n=(x-3)(x+4),求(m+n) 的值.22.6.当a为何值时,多项式x+7xy+ay-5x+43y-24可以分解为两个一次因式的乘积.227.若x,y为任意有理数,比较6xy与x+9y的大小.228.两个连续偶数的平方差是4的倍数.参考答案:一、填空题:7.9,(3a-1)b-2a,5y-x,5y-x,5y-x.10.11.+5,-212.-1,-2(或-2,-1)14.bc+ac,a+b,a-c15.8或-2二、选择题:1.B 2.C 3.C 4.B .B 6.D 7.A 8.C 9.D 10.B 11.C 12.C 5.24A 17C . 15B 13. 14.C .D 16B 23.B 21.A19.B . 18D . 20B . 22D . D. 30D ..C 27.A 25. 26C . 28C 29 三、因式分解: q)(m(p.--.1)1)(m+1-2b)(x-.8(x4a.2b)+.114(2x.-1)(2-x).y)+3y)(x+(x.20.21.(x-6)(x+24).27.(3+2a)(2-3a).四、证明(求值):2.提示:设四个连续自然数为n,n+1,n+2,n+3 6.提示:a=-18.∴a=-18.。