2.2.二项分布及其应用
2-2.2.1二项式分布的应用——条件概率
栏目导引
1.条件概率的概念.(难点) 2.条件概率的求法及应用.(重点)
工具
第二章 随机变量及其分布
栏目导引
工具
第二章 随机变量及其分布
栏目导引
在一次英语口试中,共有10道题可选择.从中随机地抽取5
道题供考生回答,答对其中3道题即可及格.假设作为考生的你,
只会答10道题中的6道题. 那么,你及格的概率是多少?在抽到的第一题不会答的情 况下你及格的概率又是多少?
工具
第二章 随机变量及其分布
栏目导引
(2)利用缩小样本空间的观点计算 在这种观点下,原来的样本空间Ω缩小为已知的事件 A,原来的事件B缩小为事件AB,从而可以在缩小的概率空 间上利用古典概型计算概率的公式计算条件概率,即事件B nAB 的条件概率为P(B|A)= . nA
工具
第二章 随机变量及其分布
事件C为“该考生答对了其中4道题,另2道答错”,
事件D为“该考生在这次考试中通过”,
事件E为“该考生在这次考试中获得优秀”,
则A、B、C两两互斥,且D=A∪B∪C,
由古典概型的概率公式及加法公式可知
P(D)=P(A∪B∪C)=P(A)+P(B)+P(C) C106 C105· 101 C104· 102 12 180 C C =C 6+ C 6 + C 6 = C 6 . 20 20 20 20
2 1 答案: (1)π (2)4
工具
第二章 随机变量及其分布
栏目导引
抛掷红、蓝两颗骰子,记事件A为“蓝色骰子的点
数为4或6”,事件B为“两颗骰子的点数之和大于8”,求:
(1)事件A发生的条件下事件B发生的概率; (2)事件B发生的条件下事件A发生的概率.
工具
二项分布及其应用
本例 =0.85,l- =0.15,n =5,
① 至少3人有效的概率
P(X≥3)=P(3)+P(4)+P(5)
=0.138178125+0.391504688+0.443705313 =0.973388126
精选ppt
12
2.1 二项分布的性质:均数和标准差
• 若X~B(n,),则
X n
2 X
n
1
X n 1
精选ppt
13
若均数与标准差不用绝对数而用率表示时
p
p
(1)
n
sp
p(1 p) n
精选ppt
14
2.2 二项分布的性质 :累积概率
• 累计概率(cumulative probability) • 从阳性率为的总体中随机抽取n个个体,则
精选ppt
7
在医学上一些事物,其结局只有两种互相对 立的结果。如:
在毒理试验中,动物的生存与死亡;
在动物诱癌试验中,动物的发癌与不发癌;
在流行病学观察中,接触某危险因素的个体 发病与不发病;
在临床治疗中,病人的治愈与未愈;
理化检验结果的阴性与阳性等等,均表现为 两种互相对立的结果,每个个体的观察结果 只能取其中之一。对这类事物常用二项分布 (binomial distribution)进行描述。
1.000
死亡数 生存数
X
nX
0
3
1
2
2
1
3
0
不同死亡数的概率 0.008 0.096
0.384 0.512 1.000
二项分布及其应用教案定稿
二项分布及其应用教案定稿第一章:引言1.1 教学目标了解二项分布的背景和意义,理解二项分布的概念及其在实际问题中的应用。
1.2 教学内容1.2.1 二项分布的定义通过具体案例引入二项分布的概念,讲解二项分布的基本性质。
1.2.2 二项分布的概率质量函数推导二项分布的概率质量函数,讲解影响二项分布概率的因素。
1.3 教学方法采用案例分析法,通过具体案例引导学生理解二项分布的概念及其应用。
1.4 教学评估通过小组讨论和课堂练习,检查学生对二项分布的理解程度。
第二章:二项分布的概率质量函数2.1 教学目标掌握二项分布的概率质量函数的推导和运用。
2.2 教学内容2.2.1 二项分布的概率质量函数推导讲解二项分布的概率质量函数的推导过程,引导学生理解各个参数的含义。
2.2.2 二项分布的概率质量函数的应用通过具体案例,讲解如何运用二项分布的概率质量函数解决实际问题。
2.3 教学方法采用讲解法,结合具体案例,引导学生理解和运用二项分布的概率质量函数。
2.4 教学评估通过课堂练习和小组讨论,检查学生对二项分布概率质量函数的掌握程度。
第三章:二项分布的期望和方差3.1 教学目标掌握二项分布的期望和方差的计算方法及其应用。
3.2 教学内容3.2.1 二项分布的期望讲解二项分布的期望的计算方法,引导学生理解期望的含义。
3.2.2 二项分布的方差讲解二项分布的方差的计算方法,引导学生理解方差的概念。
3.3 教学方法采用讲解法,结合具体案例,引导学生理解和运用二项分布的期望和方差。
3.4 教学评估通过课堂练习和小组讨论,检查学生对二项分布的期望和方差的掌握程度。
第四章:二项分布的应用4.1 教学目标了解二项分布在不同领域的应用,提高学生解决实际问题的能力。
4.2 教学内容4.2.1 生物学领域的应用讲解二项分布在生物学领域的应用,如基因遗传等。
4.2.2 医学领域的应用讲解二项分布在医学领域的应用,如药物疗效等。
4.2.3 社会科学领域的应用讲解二项分布在社会科学领域的应用,如民意调查等。
高中数学选修2-3《2.2二项分布及其应用》测试卷解析版
高中数学选修2-3《2.2二项分布及其应用》测试卷解析版一.选择题(共6小题)1.三个元件T1,T2,T3正常工作的概率分别为且是互相独立的,按图种方式接入电路,电路正常工作的概率是()A.B.C.D.【分析】电路正常工作的条件是T1必须正常工作,T2,T3至少有一个正常工作,由此利用相互独立事件乘法公式和对立事件概率公式能求出电路正常工作的概率.【解答】解:∵三个元件T1,T2,T3正常工作的概率分别为且是互相独立的,图种方式接入电路,∴电路正常工作的条件是T1必须正常工作,T2,T3至少有一个正常工作,∴电路正常工作的概率:P=(1﹣)=.故选:C.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意相互独立事件乘法公式和对立事件概率计算公式的合理运用.2.抛掷3枚质地均匀的硬币,A={既有正面向上又有反面向上},B={至多有一个反面向上},则A与B关系是()A.互斥事件B.对立事件C.相互独立事件D.不相互独立事件【分析】由于A中的事件发生与否对于B中的事件是否发生不产生影响,故A与B是相互独立的,从而得出结论.【解答】解:由于A中的事件发生与否对于B中的事件是否发生不产生影响,故A与B 是相互独立的,故选:C.【点评】本题主要考查相互独立事件的定义,属于基础题.3.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45【分析】设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,由此解得p的值.【解答】解:设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,解得p=0.8,故选:A.【点评】本题主要考查相互独立事件的概率乘法公式的应用,属于基础题.4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648B.0.432C.0.36D.0.312【分析】判断该同学投篮投中是独立重复试验,然后求解概率即可.【解答】解:由题意可知:同学3次测试满足X∽B(3,0.6),该同学通过测试的概率为=0.648.故选:A.【点评】本题考查独立重复试验概率的求法,基本知识的考查.5.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()A.C32()2×()B.C32()2×()C.()2×()D.()2×()【分析】根据题意,P(ε=3)即第3次首次取到正品的概率,若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,由相互独立事件的概率计算可得答案.【解答】解:根据题意,P(ε=3)即第3次首次取到正品的概率;若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,则P(ε=3)=()2×();故选:C.【点评】本题考查相互独立事件的概率计算,解题的关键在于正确理解P(ε=3)的意义.6.已知P(B|A)=,P(A)=,则P(AB)=()A.B.C.D.【分析】根据条件概率的公式,整理出求事件AB同时发生的概率的表示式,代入所给的条件概率和事件A的概率求出结果.【解答】解:∵P(B/A)=,P(A)=,∴P(AB)=P(B/A)•P(A)==,故选:D.【点评】本题考查条件概率与独立事件,本题解题的关键是记住并且会利用条件概率的公式,要正确运算数据,本题是一个基础题.二.填空题(共1小题)7.为了考察某校各班参加课外小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据,已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为10.【分析】本题可运用平均数公式求出平均数,再运用方差的公式列出方差表达式,再讨论样本数据中的最大值的情况,即可解决问题.【解答】解:设样本数据为:x1,x2,x3,x4,x5,平均数=(x1+x2+x3+x4+x5)÷5=7;方差s2=[(x1﹣7)2+(x2﹣7)2+(x3﹣7)2+(x4﹣7)2+(x5﹣7)2]÷5=4.从而有x1+x2+x3+x4+x5=35,①(x1﹣7)2+(x2﹣7)2+(x3﹣7)2+(x4﹣7)2+(x5﹣7)2=20.②若样本数据中的最大值为11,不妨设x5=11,则②式变为:(x1﹣7)2+(x2﹣7)2+(x3﹣7)2+(x4﹣7)2=4,由于样本数据互不相同,这是不可能成立的;若样本数据为4,6,7,8,10,代入验证知①②式均成立,此时样本数据中的最大值为10.故答案为:10.【点评】本题考查的是平均数和方差的求法.计算方差的步骤是:①计算数据的平均数;②计算偏差,即每个数据与平均数的差;③计算偏差的平方和;④偏差的平方和除以数据个数.三.解答题(共9小题)8.某商场一号电梯从1层出发后可以在2、3、4层停靠.已知该电梯在1层载有4位乘客,假设每位乘客在2、3、4层下电梯是等可能的.(Ⅰ)求这4位乘客中至少有一名乘客在第2层下电梯的概率;(Ⅱ)用X表示4名乘客在第4层下电梯的人数,求X的分布列和数学期望.【分析】(I)根据题意知每位乘客在第2层下电梯的概率都是,至少有一名乘客在第2层下电梯的对立事件是没有人在第二层下电梯,根据对立事件和相互独立事件的概率公式得到结果.(II)由题意知X的可能取值为0,1,2,3,4,由题意可得每个人在第4层下电梯的概率均为,且每个人下电梯互不影响,得到变量符合二项分布,根据二项分布的公式写出分布列和期望.【解答】解:(Ⅰ)设4位乘客中至少有一名乘客在第2层下电梯的事件为A,…(1分)由题意可得每位乘客在第2层下电梯的概率都是,…(3分)则.…(6分)(Ⅱ)X的可能取值为0,1,2,3,4,…(7分)由题意可得每个人在第4层下电梯的概率均为,且每个人下电梯互不影响,所以,.…(9分)X01234P…(11分).…(13分)【点评】本题看出离散型随机变量的分布列和期望,本题解题的关键是看出变量符合二项分布的特点,后面用公式就使得运算更加简单9.为了了解某年段1000名学生的百米成绩情况,随机抽取了若干学生的百米成绩,成绩全部介于13秒与18秒之间,将成绩按如下方式分成五组:第一组[13,14);第二组[14,15);…;第五组[17,18].按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前3个组的频率之比为3:8:19,且第二组的频数为8.(Ⅰ)将频率当作概率,请估计该年段学生中百米成绩在[16,17)内的人数;(Ⅱ)求调查中随机抽取了多少个学生的百米成绩;(Ⅲ)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1秒的概率.【分析】(1)根据频率分步直方图中小正方形的面积是这组数据的频率,用长乘以宽得到面积,即为频率.(II)根据所有的频率之和是1,列出关于x的方程,解出x的值做出样本容量的值,即调查中随机抽取了50个学生的百米成绩.(III)本题是一个古典概型,试验发生所包含的事件是从第一、五组中随机取出两个成绩,满足条件的事件是成绩的差的绝对值大于1秒,列举出事件数,根据古典概型概率公式得到结果.【解答】解:(Ⅰ)百米成绩在[16,17)内的频率为0.32×1=0.32,则共有1000×0.32=320人;(Ⅱ)设图中从左到右前3个组的频率分别为3x,8x,19x依题意,得3x+8x+19x+0.32+0.08=1,∴x=0.02设调查中随机抽取了n个学生的百米成绩,∴n=50∴调查中随机抽取了50个学生的百米成绩.(Ⅲ)百米成绩在第一组的学生数有3×0.02×1×50=3,记他们的成绩为a,b,c 百米成绩在第五组的学生数有0.08×1×50=4,记他们的成绩为m,n,p,q.则从第一、五组中随机取出两个成绩包含的基本事件有{a,b},{a,c},{a,m},{a,n},{a,p},{a,q},{b,c},{b,m},{b,n},{b,p},{b,q},{c,m},{c,n},{c,p},{c,q},{m,n},{m,p},{m,q},{n,p},{n,q},{p,q},共21个其中满足成绩的差的绝对值大于1秒所包含的基本事件有{a,m},{a,n},{a,p},{a,q},{b,m},{b,n},{b,p},{b,q},{c,m},{c,n},{c,p},{c,q},共12个,∴P=【点评】本题考查样本估计总体,考查古典概型的概率公式,考查频率分布直方图等知识,考查数据处理能力和分析问题、解决问题的能力.10.某校高二年级某班的数学课外活动小组有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X表示其中男生的人数,(1)请列出X的分布列;(2)根据你所列的分布列求选出的4人中至少有3名男生的概率.【分析】(1)本题是一个超几何分步,用X表示其中男生的人数,X可能取的值为0,1,2,3,4.结合变量对应的事件和超几何分布的概率公式,写出变量的分布列和数学期望.(2)选出的4人中至少有3名男生,表示男生有3个人,或者男生有4人,根据第一问做出的概率值,根据互斥事件的概率公式得到结果.【解答】解:(1)依题意得,随机变量X服从超几何分布,随机变量X表示其中男生的人数,X可能取的值为0,1,2,3,4..∴所以X的分布列为:X01234P(2)由分布列可知至少选3名男生,即P(X≥3)=P(X=3)+P(X=4)=+=.【点评】本小题考查离散型随机变量分布列和数学期望,考查超几何分步,考查互斥事件的概率,考查运用概率知识解决实际问题的能力.11.某批产品共10件,已知从该批产品中任取1件,则取到的是次品的概率为P=0.2.若从该批产品中任意抽取3件,(1)求取出的3件产品中恰好有一件次品的概率;(2)求取出的3件产品中次品的件数X的概率分布列与期望.【分析】设该批产品中次品有x件,由已知,可求次品的件数(1)设取出的3件产品中次品的件数为X,3件产品中恰好有一件次品的概率为;(2)取出的3件产品中次品的件数X可能为0,1,2,求出相应的概率,从而可得概率分布列与期望.【解答】解:设该批产品中次品有x件,由已知,∴x=2…(2分)(1)设取出的3件产品中次品的件数为X,3件产品中恰好有一件次品的概率为…(4分)(2)∵X可能为0,1,2∴…(10分)∴X的分布为:X012P则…(13分)【点评】本题以实际问题为载体,考查等可能事件的概率,考查随机变量的期望与分布列,难度不大.12.某班组织知识竞赛,已知题目共有10道,随机抽取3道让某人回答,规定至少要答对其中2道才能通过初试,他只能答对其中6道,试求:(1)抽到他能答对题目数的分布列;(2)他能通过初试的概率.【分析】(1)设随机抽出的三道题目某人能答对的道数为X,且X=0、1、2、3,X服从超几何分布,根据超几何分步的概率公式写出概率和分布列.(2)要答对其中2道才能通过初试,则可以通过初试包括两种情况,即答对两道和答对三道,这两种情况是互斥的,根据上一问的计算可以得到.【解答】解:(1)设随机抽出的三道题目某人能答对的道数为X,且X=0、1、2、3,X 服从超几何分布,分布列如下:X0123P即X0123P(2)要答对其中2道才能通过初试,则可以通过初试包括两种情况,这两种情况是互斥的,根据上一问的计算可以得到【点评】本题考查超几何分布,本题解题的关键是看出变量符合超几何分布,这样可以利用公式直接写出结果.13.甲有一个箱子,里面放有x个红球,y个白球(x,y≥0,且x+y=4);乙有一个箱子,里面放有2个红球,1个白球,1个黄球.现在甲从箱子任取2个球,乙从箱子里再取1个球,若取出的3个球颜色全不相同,则甲获胜.(1)试问甲如何安排箱子里两种颜色的个数,才能使自己获胜的概率最大?(2)在(1)的条件下,求取出的3个球中红球个数的数学期望.【分析】(1)根据甲从箱子任取2个球,乙从箱子里在取1个球,若取出的3个球颜色全不相同,则甲获胜,可得甲获胜的概率,再利用基本不等式,可得x,y的值;(2)由题意知取出的3个球中红球个数ξ的取值为1,2,3,4,分别求出其发生的概率,进而求出次数ξ的数学期望【解答】解:(1)由题意,;∴,当且仅当x=y=2时“=”成立所以当红球与白球各2个时甲获胜的概率最大(2)取出的3个球中红球个数ξ=0,1,2,3,所以【点评】本题以摸球为素材,考查等可能事件的概率,考查离散型随机变量的期望,考查基本不等式的运用,解题的关键是理解题意,搞清变量的所有取值.14.甲乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错不答都得0分,已知甲队3人每人答对的概率分别为,,,乙队每人答对的概率都是.设每人回答正确与否相互之间没有影响,用ξ表示甲队总得分.(Ⅰ)求随机变量ξ的分布列及其数学期望E(ξ);(Ⅱ)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率.【分析】(Ⅰ)由题设知ξ的可能取值为0,1,2,3,分别求出P(ξ=0),P(ξ=1),P (ξ=2),P(ξ=3),由此能求出随机变量ξ的分布列和数学期望E(ξ).(Ⅱ)设“甲队和乙队得分之和为4”为事件A,“甲队比乙队得分高”为事件B,分别求出P(A),P(AB),再由P(B/A)=,能求出结果.【解答】解:(Ⅰ)由题设知ξ的可能取值为0,1,2,3,P(ξ=0)=(1﹣)(1﹣)(1﹣)=,P(ξ=1)=(1﹣)(1﹣)+(1﹣)××(1﹣)+(1﹣)(1﹣)×=,P(ξ=2)=++=,P(ξ=3)==,∴随机变量ξ的分布列为:ξ01 2 3P数学期望E(ξ)=0×+1×+2×+3×=.(Ⅱ)设“甲队和乙队得分之和为4”为事件A,“甲队比乙队得分高”为事件B,则P(A)=++=,P(AB)==,P(B|A)===.【点评】本题考查离散型随机变量的期分布列和数学期望,考查条件概率的求法,是历年高考的必考题型之一,解题时要注意排列组合知识的合理运用.15.如图,李先生家住H小区,他工作在C科技园区,从家开车到公司上班路上有L1、L2两条路线,L1路线上有A1、A2、A3三个路口,各路口遇到红灯的概率均为;L2路线上有B1、B2两个路口,各路口遇到红灯的概率依次为,.(1)若走L1路线,求最多遇到1次红灯的概率;(2)若走L2路线,求遇到红灯次数X的数学期望;(3)按照“平均遇到红灯次数最少”的要求,请你帮助李先生从上述两条路线中选择一条最好的上班路线,并说明理由.【分析】(1)利用二项分布即可得出;(2)利用相互独立事件的概率计算公式及离散型随机变量的期望计算公式即可得出;(3)由于走路线L1时服从二项分布即可得出期望,比较走两条路的数学期望的大小即可得出要选择的路线.【解答】解:(1)设“走L1路线最多遇到1次红灯”为事件A,包括没有遇到红灯和只遇到红灯一次两种情况.则,所以走L1路线,最多遇到1次红灯的概率为.(2)依题意,X的可能取值为0,1,2.,,.随机变量X的分布列为:X012P所以.(3)设选择L1路线遇到红灯次数为Y,随机变量Y服从二项分布Y~,所以.因为EX<EY,所以选择L2路线上班最好.【点评】熟练掌握二项分布列、相互独立事件的概率计算公式及离散型随机变量的期望计算公式及其意义是解题的关键.16.某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负,设这支篮球队与其他篮球队比赛中获胜的事件是独立的,并且获胜的概率均为.(1)求这支篮球队首次获胜前已经负了两场的概率;(2)求这支篮球队在6场比赛中恰好获胜3场的概率;(3)求这支篮球队在6场比赛中获胜场数的期望.【分析】(1)首次获胜前已经负了两场说明已经比赛三场,前两场输,第三场嬴,用乘法公式即可求得概率;(2)6场比赛中恰好获胜3场的情况有C63,比赛六场胜三场,故用乘法公式即可.(3)由于X服从二项分布,即X~B(6,),由公式即可得出篮球队在6场比赛中获胜场数的期望.【解答】解:(1)这支篮球队首次获胜前已经负了两场的概率为P==(2)6场比赛中恰好获胜3场的情况有C63,故概率为C63×=20××=(3)由于X服从二项分布,即X~B(6,),∴EX=6×=2【点评】本题考查二项分布与n次独立重复试验的模型,考查根据所给的事件类型选择概率模型的方法,以及用概率模型求概率与期望的能力。
(完整)2.2.3 独立重复试验与二项分布
C32
3 5
(1
3
5 )2
5
54 125
5
5
125
(4)刚好在第二、第三两次击中目标。
(1 3) 3 3 18 5 5 5 125
11 [普通高中课程数学选修课2-3堂] 练2.2习二项分布及其应用
1、每次试验的成功率为P(0<P<1),重复进行10次 试验,其中前七次未成功后三次成功的概率( C )
C
n n
pn
注: P( X k ) cnk pkqnk是( p q)n展开式中的第 k 1 项.
8 [普通高中课程数学选修2-3] 2.2 二项分布及其应用
二项分布与两点分布、超几何分布有什么区别和联系? 1.两点分布是特殊的二项分布 (1 p)
2.一个袋中放有 M 个红球,( N M )个白球,依次从袋中 取 n 个球,记下红球的个数 .
P(B0) P(A1 A2 A3) q3, P(B1) P(A1 A2 A3) P(A1A2 A3) P(A1 A2 A3) 3q2 p, P(B2) P(A1A2 A3) P(A1A2 A3) P(A1 A2 A3) 3qp2,
P(B3 ) P( A1A2 A3 ) p3.
所以,连续掷一枚图钉3次,仅出现1次针尖向上的概率是 3q2 p.
6 [普通高中课程数学选修2-3] 2.2 二项分布及其应用
思考?
上面我们利用掷1次图钉,针尖向上的概率为p,求 出了连续掷3次图钉,仅出现次1针尖向上的概率。类
似地,连续掷3次图钉,出现 k(0 k 3) 次针尖向
上的概率是多少?你能发现其中的规律吗?
(2)在10次射击中,至少8次击中目标的概率为:
二项分布及其应用教案定稿
二项分布及其应用教案定稿第一章:引言1.1 教学目标:了解二项分布的定义及意义。
掌握二项分布的概率质量函数和累积分布函数。
1.2 教学内容:引入二项分布的概念。
讲解二项分布的概率质量函数和累积分布函数的推导过程。
1.3 教学方法:采用讲授法,结合实例进行讲解。
引导学生通过小组讨论,探究二项分布的性质。
1.4 教学准备:PPT课件。
相关实例和练习题。
1.5 教学过程:1. 引入实例,让学生了解二项分布的实际应用背景。
2. 讲解二项分布的定义及数学表达式。
3. 引导学生推导二项分布的概率质量函数和累积分布函数。
4. 通过小组讨论,让学生探究二项分布的性质。
5. 布置练习题,巩固所学知识。
第二章:二项分布的概率质量函数2.1 教学目标:能够运用概率质量函数解决实际问题。
2.2 教学内容:讲解二项分布的概率质量函数的推导过程。
举例说明如何运用概率质量函数解决实际问题。
2.3 教学方法:采用讲授法,结合实例进行讲解。
引导学生通过小组讨论,探究概率质量函数的性质。
2.4 教学准备:PPT课件。
相关实例和练习题。
2.5 教学过程:1. 回顾上一章的内容,让学生复习二项分布的定义。
2. 讲解二项分布的概率质量函数的推导过程。
3. 通过实例,让学生了解如何运用概率质量函数解决实际问题。
4. 引导学生进行小组讨论,探究概率质量函数的性质。
5. 布置练习题,巩固所学知识。
第三章:二项分布的累积分布函数3.1 教学目标:掌握二项分布的累积分布函数的推导过程。
能够运用累积分布函数解决实际问题。
3.2 教学内容:举例说明如何运用累积分布函数解决实际问题。
3.3 教学方法:采用讲授法,结合实例进行讲解。
引导学生通过小组讨论,探究累积分布函数的性质。
3.4 教学准备:PPT课件。
相关实例和练习题。
3.5 教学过程:1. 回顾前两章的内容,让学生复习二项分布的概率质量函数和累积分布函数。
2. 讲解二项分布的累积分布函数的推导过程。
【数学】2.2《 二项分布及其应用课件(新人教A版选修2-3)
独立事件一定不互斥. 独立事件一定不互斥 互斥事件一定不独立. 互斥事件一定不独立 明确事件中的关键词, 明确事件中的关键词,如,“至少有一个发生”“至 至少有一个发生”“至 ”“ 多有一个发生” 恰有一个发生” 多有一个发生”,“恰有一个发生”,“都发 ”“都不发生 都不发生” 不都发生” 生”“都不发生”,“不都发生”。
此时称随机变量X服从二项分布,记作X~B(n,p), 此时称随机变量 服从二项分布,记作 服从二项分布 并称p为成功概率 为成功概率。 并称 为成功概率。
复习回顾
二项分布 3、
在一次试验中某事件发生的概率是p,那么在n次 在一次试验中某事件发生的概率是 ,那么在 次 独立重复试验中这个事件恰发生 恰发生ξ 显然 显然ξ 独立重复试验中这个事件恰发生ξ次,显然ξ是一个随机 变量. 变量. 于是得到随机变量ξ的概率分布如下: 于是得到随机变量 的概率分布如下: 的概率分布如下 ξ p
例 1 考虑恰有三个小孩的家庭 (假定生男生女为 考虑恰有三个小孩的家庭.
等可能) 等可能)
(1)若已知某一家有一个是女孩,求这家另两个是男孩的概率 )若已知某一家有一个是女孩, (2)若已知某一家第一个是女孩,求这家另两个是男孩的概率 )若已知某一家第一个是女孩,
(女、女、女); (女、女、男); (女、男、女);(女、男、男); ( 男、女、女) ; ( 男、女、男) ; ( 男、男、女) ; ( 男、男、男) ;
B
A
复习回顾
1、事件的相互独立性 、 为两个事件, 设A,B为两个事件,如果 P(AB)=P(A)P(B),则称事 , 为两个事件 则称事 与事件B相互独立 件A与事件 相互独立。 与事件 相互独立。 即事件A( 对事件B( 即事件 (或B)是否发生 对事件 (或A)发生的 )是否发生,对事件 ) 概率没有影响,这样两个事件叫做相互独立事件。 概率没有影响,
事件的相互独立性
答案
返回
题型探究
重点突破
题型一 相互独立事件的判断 例1 从一副扑克牌(去掉大、小王)中任抽一张,设A=“抽到K”,B =“抽到红牌”,C=“抽到J”,那么下列每对事件是否相互独立? 是否互斥?是否对立?为什么? (1)A与B;
解析答案
(2)C与A. 解 从一副扑克牌(去掉大、小王)中任取一张,抽到K就不可能抽到J, 抽到J就不可能抽到K, 故事件C与事件A不可能同时发生,A与C互斥, 由于 P(A)=113≠0,P(C)=113≠0,而 P(AC)=0, 所以A与C不是相互独立事件, 又抽不到K不一定抽到J,故A与C并非对立事件.
解析答案
题型二 相互独立事件同时发生的概率 例2 甲、乙两射击运动员分别对一目标射击1次,甲射中的概率为0.8, 乙射中的概率为0.9,求: (1)2人都射中目标的概率; (2)2人中恰有1人射中目标的概率; (3)2人至少有1人射中目标的概率; (4)2人至多有1人射中目标的概率.
反思与感悟
解析答案
解析答案
题型三 相互独立事件概率的综合应用 例3 计算机考试分理论考试与实际操作两部分进行,每部分考试成绩 只记“合格”与“不合格”,两部分考试都“合格”者,则计算机考 试“合格”,并颁发合格证书.甲、乙、丙三人在理论考试中“合格” 的概率依次为 45,34,23,在实际操作考试中“合格”的概率依次为 12, 23,56, 所有考试是否合格相互之间没有影响. (1)假设甲、乙、丙三人同时进行理论与实际操作两项考试,谁获得合 格证书的可能性大?
x1-y1-z=0.08, 则xy1-z=0.12,
1-x1-y1-z=0.12,Leabharlann x=0.4, 解得y=0.6,
z=0.5.
2.2.2二项分布及其应用-事件的相互独立性(高中数学人教A版选修2-3)
练习2、若甲以10发8中,乙以10发7中的命中率打靶, 两人各射击一次,则他们都中靶的概率是( D )
(A)
3 5
(B)
3 4
(C)
12 25
(D)
14 25
如P(B)>0时,有P(AB)=P(A|B)P(B), P(A)>0时,有P(AB)=P(B|A)P(A).
2.P(A|B)与P(AB)的区别
P(A|B) 是在事件 B 发生的条件下,事件 A 发生的概率, P(AB)是事件A与B同时发生的概率,无附加条件. 3.条件概率的性质 (1)0≤P(A|B)≤1.
跟踪练习 1.判断下列各题中给出的事件是否是相互独立事件: (1)甲盒中有6个白球、4个黑球,乙盒中有3个白球、5个 黑球.从甲盒中摸出一个球称为甲试验,从乙盒中摸出一个 球称为乙试验,事件A1表示“从甲盒中取出的是白球”,事 件B1表示“从乙盒中取出的是白球”. (2)盒中有4个白球、3个黑球,从盒中陆续取出两个球, 用A2表示事件“第一次取出的是白球”,把取出的球放回盒 中,事件B2表示事件“第二次取出的是白球”. (3)盒中有4个白球、3个黑球,从盒中陆续取出两个球, 用A3表示“第一次取出的是白球”,取出的球不放回,用B3 表示“第二次取出的是白球”.
P(A1· A2……An)=P(A1)· P(A2)……P(An)
互斥事件与独立事件
互斥事件
概 念 不可能同时发生的两个 事件叫做互斥事件
相互独立事件 如果事件A(或B)是否发 生对事件B(或A)发生的 概率没有影响,这样的 两个事件叫做相互独立 事件
相互独立事件A,B同时 发生记作A·B P(A·B)=P(A)·P(B)
【小初高学习】高中数学第二章随机变量及其分布2.2二项分布及其应用2.2.2事件的相互独立性课后导练
2.2.2 事件的相互独立性课后导练基础达标1.若A 与B 相互独立,则下面不相互独立事件有( )A.A 与AB.A 与BC.A 与B D A 与B解析:由定义知,易选A.答案:A2.在某段时间内,甲地不下雨的概率为0.3,乙地不下雨的概率为0.4,假设在这段时间内两地是否下雨相互无影响,则这段时间内两地都下雨的概率是( )A.0.12B.0.88C.0.28D.0.42解析:P=(1-0.3)(1-0.4)=0.42.答案:D3.甲、乙两人独立地解同一问题,甲解决这个问题的概率是P 1,乙解决这个问题的概率是P 2,那么恰好有1人解决这个问题的概率是( )A.P 1P 2B.P 1(1-P 2)+P 2(1-P 1)C.1-P 1P 2D.1-(1-P 1)(1-P 2)解析:恰有一人解决就是甲解决乙没有解决或甲没有解决乙解决,故所求概率是p 1(1-p 2)+p 2(1-p 1).答案:B4.从应届高中生中选出飞行员,已知这批学生体型合格的概率为31,视力合格的概率为61,其他几项标准合格的概率为51,从中任选一学生,则该生三项均合格的概率为(假设三项标准互不影响)( ) A.94 B.901 C.54 D. 95 解析:P=901516131=⨯⨯. 答案:B.5.一道数学竞赛试题,甲生解出它的概率为21,乙生解出它的概率为31,丙生解出它的概率为41,由甲、乙、丙三人独立解答此题只有一人解出的概率为____________. 解析:P=2411413221433121433221=⨯⨯+⨯⨯+⨯⨯. 答案:2411. 综合运用6.一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率都是31,那么这位司机遇到红灯前,已经通过了两个交通岗的概率是_______________.解析:因为这位司机在第一,二个交通岗未遇到红灯,在第三个交通岗遇到红灯,所以P=(1-31)(1-31)×31=274. 答案:274 7.(2006四川高考,18)某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都“合格”则该课程考核“合格”.甲、乙、丙三人在理论考核中合格的概率分别为0.9、0.8、0.7;在实验考核中合格的概率分别为0.8、0.7、0.9.所有考核是否合格相互之间没有影响.(1)求甲、乙、丙三人在理论考核中至少有两人合格的概率;(2)求这三人该课程考核都合格的概率(结果保留三位小数).解析:记“甲理论考核合格”为事件A 1;“乙理论考核合格”为事件A 2;“丙理论考核合格”为事件A 3;记i A 为A i 的对立事件,i=1,2,3;记“甲实验考核合格”为事件B 1;“乙实验考核合格”为事件B 2;“丙实验考核合格”为事件B 3.(1)记“理论考核中至少有两人合格”为事件C ,记C 为C 的对立事件P (C )=P (A 1A 23A +A 12A A 3+1A A 2A 3+A 1A 2A 3)=P(A 1A 23A )+P(A 12A A 3)+P(1A A 2A 3)+P(A 1A 2A 3)=0.9×0.8×0.3+0.9×0.2×0.7+0.1×0.8×0.7+0.9×0.8×0.7=0.902(2)记“三人该课程考核都合格”为事件DP (D )=P[(A 1·B 1)·(A 2·B 2)·(A 3·B 3)]=P (A 1·B 1)·P(A 2·B 2)·P(A 3·B 3)=P (A 1)·P(B 1)·P(A 2)·P(B 2)·P(A 3)·P(B 3)=0.9×0.8×0.7×0.8×0.7×0.90.254 016≈0.254所以,这三人该课程考核都合格的概率为0.2548.外形相同的球分别装在三个不同的盒子中,每个盒子中有10个球.其中第一个盒子中有7个球标有字母A ,3个球标有字母B ;第二个盒子中有红球和白球各5个;第三个盒子中有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A 的球,则在第二个盒子中任取一球;若第一次取得标有字母B 的球,则在第三个盒子中任取一球.如果第二次取得的球是红球,则称试验成功,求试验成功的概率.解析:设事件A :从第一个盒子中取得一个标有字母A 的球;事件B :从第一个盒子中取得一个标有字母B 的球,则A 、B 互斥,且P (A )=107,P (B )=103;事件C :从第二号盒子中取一个红球,事件D :从第三号盒子中取一个红球,则C 、D 互斥,且P (C )=21,P (D )=54108 . 显然,事件A·C 与事件B·D 互斥,且事件A 与C 是相互独立的,B 与D 也是相互独立的.所以试验成功的概率为P=P(A·C+B·D)=P(A·C)+P(B·D)=P(A)·P(C)+P(B)·P(D)=10059.∴本次试验成功的概率为10059. 9.如图,用A 、B 、C 、D 四类不同的元件连接成两个系统N 1、N 2.当元件A 、B 、C 、D 都正常工作时,系统N 1正常工作;当元件A 、B 至少有一个正常工作,且C 、D 至少有一个正常工作时,系统N 2正常工作.已知元件A 、B 、C 、D 正常工作的概率依次为0.80、0.90、0.90、0.70,分别求系统N 1、N 2正常工作的概率P 1、P 2.解析:N 1正常工作等价于A 、B 、C 、D 都正常工作,N 2正常工作等价于A 、B 中至少一个正常工作,且C 、D 中至少有一个正常工作.且A 、B 、C 、D 正常工作的事件相互独立.分别记元件A 、B 、C 、D 正常工作为事件A 、B 、C 、D ,由已知P (A )=0.80,P (B )=0.90,P (C )=0.90,P (D )=0.70.(1)P 1=P(A·B·C·D)=P(A)P(B)P(C)·P(D)=0.80×0.90×0.90×0.70=0.453 6.(2)P 2=P(1-A ·B )·P(1-C ·D )=[1-P(A )·P(B )][1-P(C )·P(D )]=(1-0.2×0.1)×(1-0.1×0.3)=0.98×0.97=0.950 6.拓展探究10.一个通讯小组有两套设备,只要其中有一套设备能正常工作,就能进行通讯.每套设备由3个部件组成,只要其中有一个部件出故障,这套设备就不能正常工作.如果在某一时间段内每个部件不出故障的概率为P ,计算在这一时间段内,(1)恰有一套设备能正常工作的概率;(2)能进行通讯的概率.解析:记“第一套通讯设备能正常工作”为事件A ,“第二套通讯设备能正常工作”为事件B.由题意知P (A )=p 3,P(B)=p 3, P(A )=1-p 3,P(B )=1-p 3. (1)恰有一套设备能正常工作的概率为P(A·B +A ·B)=P(A ·B )+P(A ·B)=p 3(1-p 3)+(1-p 3)p 3=2p 3-2p 6.(2)方法一:两套设备都能正常工作的概率为P(A·B)=P(A)·P(B)=p 6.至少有一套设备能正常工作的概率,即能进行通讯的概率为 P(A·B +A ·B)+P(A·B)=2p 3-2p 6+p 6=2p 3-p 6. 方法二:两套设备都不能正常工作的概率为 P(A ·B )=P(A )·P(B )=(1-p 3)2. 至少有一套设备能正常工作的概率,即能进行通讯的概率为1-P(A ·B )=1-P(A )·P(B )=1-(1-p 3)2=2p 3-p 6. 答:恰有一套设备能正常工作的概率为2p 3-2p 6,能进行通讯的概率为2p 3-p 6.备选习题11.从甲袋中摸出一个红球的概率是31,从乙袋内摸出1个红球的概率是21,从两袋内各摸出1个球,则32等于( ) A.2个球不都是红球的概率 B.2个球都是红球的概率C.至少有1个红球的概率D.2个球中恰好有1个红球的概率 答案:C12.某人有一串8把外形相同的钥匙,其中只有一把能打开家门,一次该人醉酒回家每次从8把钥匙中随便拿一把开门,试用后又不加记号放回,则该人第三次打开家门的概率是____________.解析:(87)2×81=51249. 答案:51249 13.下列各对事件(1)运动员甲射击一次,“射中9环”与“射中8环”;(2)甲、乙二运动员各射击一次,“甲射中10环”与“乙射中9环”;(3)甲、乙二运动员各射击一次,“甲、乙都射中目标”与“甲、乙都没有射中目标”.(4)甲、乙二运动员各射击一次,“至少有1人射中目标”与“甲射中目标但乙未射中目标”.是互斥事件的有____________;是相互独立事件的有____________.解析:(1)甲射击一次,“射中9环”与“射中8环”两个事件不可能同时发生,二者是互斥事件.(2)甲、乙各射击一次,“甲射中10环”发生与否,对“乙射中9环”的概率没有影响,二者是相互独立事件.(3)甲、乙各射击一次,“甲、乙都射中目标”与“甲、乙都没有射中目标”不可能同时发生,二者是互斥事件.(4)甲、乙各射击一次,“至少有1人射中目标”与“甲射中目标,但乙没有射中目标”可能会同时发生,二者构不成互斥事件,也不可能是相互独立事件.答案:(1),(3);(2)14.现有四个整流二极管可串联或并联组成一个电路系统,已知每个二极管的可靠度为0.8(即正常工作的概率),请你设计一种四个二极管之间的串并联形式的电路系统,使得其可靠度大于0.85.画出你的设计图并说明理由.解析:(1)P=1-(1-0.8)4=0.998 4>0.85;(2)P=1-(1-0.82)2=0.870 4>0.85;(3)P=[1-(1-0.8)2]2=0.921 6>0.85;(4)P=1-(1-0.8)(1-0.83)=0.902 4>0.85;(5)P=1-(1-0.8)2(1-0.82)=0.985 6>0.85.以上五种之一均可.15.某班有两个课外活动小组,其中第一小组有足球票6张,排球票4张;第二小组有足球票4张,排球票6张.甲从第一小组的10张票中任抽1张,乙从第二小组的10张票中任抽1张.(1)两人都抽到足球票的概率是多少?(2)两人中至少有1人抽到足球票的概率是多少?解析:记“甲从第一小组的10张票中任抽1张,抽到足球票”为事件A ,“乙从第二小组的10张票中任抽1张,抽到足球票”为事件B ;记“甲从第一小组的10张票中任抽1张,抽到排球票”为事件A ,“乙从第二小组的10张票中任抽1张,抽到排球票”为事件B .于是P (A )=53106=,P (A )=52; P(B)=104=52,P(B )=53. 由于甲(或乙)是否抽到足球票,对乙(或甲)是否抽到足球票没有影响,因此A 与B 是相互独立事件.(1)甲、乙两人都抽到足球票就是事件A·B 发生,根据相互独立事件的概率乘法公式,得到P (A ·B )=P (A )·P(B )=53·25652=. 答:两人都抽到足球票的概率是256. (2)甲、乙两人均未抽到足球票(事件B A ∙发生)的概率为P (B A ∙)=P (A )·P(B )=2565352=∙. ∴两人中至少有1人抽到足球票的概率为 P=1-P(B A ∙)=1-256=2519. 答:两人中至少有1人抽到足球票的概率是2519. 16.(2005全国高考卷3,文18)设甲、乙、丙三台机器是否需要照顾相互之间没有影响.已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125,(Ⅰ)求甲、乙、丙每台机器在这个小时内需要照顾的概率分别是多少;(Ⅱ)计算这个小时内至少有一台需要照顾的概率.DBBCA ,CCBCD ,BA18.解析:(Ⅰ)记甲、乙、丙三台机器在一小时需要照顾分别为事件A、B、C,则A、B、C相互独立.由题意得P(AB)=P(A)·P(B)=0.05P(AC)=P(A)·P(C)=0.1,P(BC)=P(B)·P(C)= 0.125解得P(A)=0.2;P(B)=0.25;P(C)=0.5所以,甲、乙、丙每台机器在这个小时内需要照顾的概率分别是0.2、0.25、0.5 (Ⅱ)∵A、B、C相互独立,∴A、B、C相互独立∴甲、乙、丙每台机器在这个小时内需都不需要照顾的概率为P(A·B·C)=P(A)P(B)P(C)=0.8×0.75×0.5=0.3∴这个小时内至少有一台需要照顾的概率为p=1-P(A·B·C)=1-0.3=0.7。
高中数学选修2-3(人教A版)第二章随机变量及其分布2.2知识点总结含同步练习及答案
第二章随机变量及其分布 2.2二项分布及其应用
一、学习任务 1. 了解条件概率的定义及计算公式,并会利用条件概率解决一些简单的实际问题. 2. 能通过实例理解相互独立事件的定义及概率计算公式,并能综合利用互斥事件的概率加法公 式即对立事件的概率乘法公式. 3. 理解独立重复试验的概率及意义,理解事件在 n 次独立重复试验中恰好发生 k 次的概率 公式,并能利用 n 次独立重复试验的模型模拟 n 次独立重复试验. 二、知识清单
(2)设事件“甲、乙两人在罚球线各投球二次均不命中”的概率为 P1 ,则
¯ ∩ ¯¯ ¯ ∩ ¯¯ ¯ ∩ ¯¯ ¯) P1 = P (¯¯ A A B B ¯ ) ⋅ P (¯¯ ¯ ) ⋅ P (¯¯ ¯ ) ⋅ P (¯¯ ¯) = P (¯¯ A A B B 1 2 = (1 − )2 (1 − )2 2 5
n−k k P (X = k) = Ck , k = 0, 1, 2, ⋯ , n. n p (1 − p)
此时称随机变量 X 服从二项分布(binnomial distribution),记作 X ∼ B(n, p)),并称 p 为 成功概率. 例题: 下列随机变量 X 的分布列不属于二项分布的是( ) A.投掷一枚均匀的骰子 5 次,X 表示点数 6 出现的次数 B.某射手射中目标的概率为 p ,设每次射击是相互独立的,X 为从开始射击到击中目标所需要 的射击次数 C.实力相等的甲、乙两选手举行了 5 局乒乓球比赛,X 表示甲获胜的次数 D.某星期内,每次下载某网站数据后被病毒感染的概率为 0.3,X 表示下载 n 次数据后电脑被 病毒感染的次数 解:B 选项 A,试验出现的结果只有两个:点数为 6 和点数不为 6 ,且点数为 6 的概率在每一次试验 都为
数学:2.2.2《二项分布及其应用-事件的相互独立性》PPT课件(新人教A版-选修2-3)
1 P( A B C ) 1 0.5 0.55 0.6 0.835
0.8 P ( D)
所以,合三个臭皮匠之力把握就大过诸葛亮.
学习小结:
(1)列表比较 互斥事件 不可能同时发 定义 生的两个事件
相互独立事件 事件A是否发生对事件B 发生的概率没有影响
概率公式 P(A+B)=P(A)+P(B) P( A B) P( A) P( B) (2)解决概率问题的一个关键:分解复杂问题为基本 的互斥事件与相互独立事件. 选做作业: 研究性题:在力量不是十分悬殊的情况下我们解释 了“三个臭皮匠顶个诸葛亮”的说法.那么你能否用概 率的知识解释我们常说的“真理往往掌握在少数人手 里的”?
练习5
(1 0.7) (1 0.7) (1 0.7) 0.027
2
(4)
P2=1-(1-r)2
1 1 2 2
P3=1-(1-r2)2
P4=[1-(1-r)2]2
答案
附1:用数学符号语言表示下列关系:
若A、B、C为相互独立事件,则 B· ① A、B、C同时发生; ①A· C B· ② A、B、C都不发生; ② A· C ③ A、B、C中恰有一个发生; B·+A· C+A· C ③A· C B· B· ④ A、B、C中至少有一个发生的概率; -P( A· C ) ④1 B· ⑤ A、B、C中至多有一个发生. B· ⑤A· C + A· C + A· C+ A· C B· B· B·
2.2.二项分布及其应用
练习1、某射手在10次射击中射中次数X~(10,0.8)
(1)求P(X=8)
(2)求P(X≥8)
练习2、二项分布的逆用
至多、至少问题时涉及 到求对立事件的概率
(1)在4次独立重复试验中,事件出现的概率相同,事件A
至少出现一次的概率为65/81,则事件A在一次试验中中出现
P(X k) Cnk pk (1 p)nk , k 0,1, 2,..., n.
此时称随机变量X服从二项分布,记作X~B(n,p),并称p
为成功概率。
注:
Pn (k) cnk pkqnk是( p q)n 展开式中的第 k 1 项.
题型二、二项分布、独立事件、互斥事件的综合运用
例2、某气象站天气预报的准确率为80%,计算: (1)5次预报中恰有2次准确的概率; (2)5次预报中至少有2次准确的概率; (3)5次预报中恰有2次准确,且其中第3次预报准确的概率。
B(n, M )
N
⑵如果是一次取出 n 个球, 则 服从超几何分布.
P(
k)
C C k nk M NM
C
n N
(k
0,1, 2,L
, m) (其中 m
min(M , n)
不是一等品的概率为
2
12 ,甲丙两台机床加工的零件都是一
等品的概率为 9 。
(1)分别求甲、乙、丙三台机床各自加工的零件是一等品的
概率;
(2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个
一等品的概率。
复习引入
前面我们学习了互斥事件、条件概率、相互独立事件的 意义,这些都是我们在具体求概率时需要考虑的一些模型, 吻合模型用公式去求概率简便.
高中数学2.2二项分布及其应用试题
高中数学2.2二项分布及其应用试题2019.091,设函数3y x =与212x y -⎛⎫= ⎪⎝⎭的图象的交点为00()x y ,,则0x 所在的区间是A .(01),B .(12),C .(23),D .(34),2,已知直线12(1,3),(1,)l a l b k ==-的方向向量为直线的方向向量,若直线l 2经过点(0,5),且221,l l l 则直线⊥的方程为 A .053=-+y x B .0153=-+y x C .053=+-y xD .0153=+-y x3,已知向量1(,sin ),)2a b αα==v v ,且a v 与b v 共线,则锐角α等于 .4,当(12)x ∈,时,不等式240x mx ++<恒成立,则m 的取值范围是 5,直线20x y +-=上的点和圆()()226618x y -+-=上的点的最短距离是6,已知函数:c bx x x f ++=2)(,其中:40,40≤≤≤≤c b ,记函数)(x f 满足条件:⎩⎨⎧≤-≤3)1(12)2(f f 的事件为A ,则事件A 发生的概率为______.7,已知()1f x a b =⋅-,其中向量a =,c o s x x ),b =(1,2cos x )(x R ∈)(1)求()f x 的单调递增区间;(2)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,()2f A =,a =4B π=,求边长b 的值.8,将一颗骰子先后抛掷2次,观察向上的点数,求:(1)两数之和为5的概率;(2)两数中至少有一个奇数的概率;(3)以第一次向上点数为横坐标x ,第二次向上的点数为纵坐标y 的点(x,y)在圆x 2+y 2=15的内部的概率 9,如图所示,四棱锥P ABCD -中,底面ABCD 为正方形,PD ⊥平面ABCD ,2PD AB ==,E ,F ,G 分别为PC 、PD 、BC 的中点.(1)求证:PA 平面EFG ; (2)求三棱锥P EFG -的体积.10,已知数列{}n a 满足*12211,3,32().n n n a a a a a n N ++===-∈ (1)求3a ;(2)令1n n n b a a +=-,证明:数列{}n b 是等比数列; (3)求数列{}n a 的通项公式.11,已知函数).(3232)(23R ∈+-=x x ax x x f(1)若1=a ,点P 为曲线)(x f y =上的一个动点,求以点P 为切点的切线斜率取最小值时的切线方程;(2)若函数),0()(+∞=在x f y 上为单调增函数,求a 的取值范围.12,已知椭圆C 的中心在坐标原点,焦点为(-1,0)和(1,0),椭圆C 上的点到两个焦点的距离和为4.(1)求椭圆C 的标准方程;(2)若直线:l y kx m =+与椭圆C 相交于A B ,两点(A B ,不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标.13,图所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形,根据图中的数构成的规律,a 所表示的数是A .2B .4C .6D .814,下列推理正确的是A . 把()a b c + 与 log ()a x y + 类比,则有:log ()log log a a a x y x y +=+ .B .把()a b c + 与 sin()x y + 类比,则有:sin()sin sin x y x y +=+.C .把()n ab 与 ()n a b + 类比,则有:n n n()x y x y +=+.D .把()a b c ++ 与 ()xy z 类比,则有:()()xy z x yz =.15,用演绎法证明函数y = x 3是增函数时的小前提是 ( ) A .增函数的定义 B .函数y = x 3满足增函数的定义C .若x 1<x 2,则f (x 1)< f (x 2)D .若x 1>x 2,则f (x 1)> f (x 2)16,把下面在平面内成立的结论类比地推广到空间,结论还正确的是 A .如果一条直线与两条平行线中的一条相交,则他与另一条相交 . B .如果一条直线与两条平行线中的一条垂直,则他与另一条垂直. C .如果两条直线同时与第三条直线相交,则这两条直线相交. D .如果两条直线同时与第三条直线垂直,则这两条直线平行.17,下面几种推理是类比推理的是( )A .两条直线平行,同旁内角互补,如果∠A 和∠B 是两条平行直线的同旁内角,则∠A +∠B =1800B .由平面三角形的性质,推测空间四边形的性质C .某校高二级有20个班,1班有51位团员,2班有53位团员,3班有52位团员,由此可以推测各班都超过50位团员.D .一切偶数都能被2整除,1002是偶数,所以1002能被2整除.18,等比数列{},243,9,52==a a a n 中则其前4项和为( ) A .81 B .120 C .168 D .19219,四个小动物换座位,开始是鼠、猴、兔、猫分别坐1,2,3,4号位子上(如图),第一次前后排动物互换座位,第二次左右列动物互换座位,…,这样交替进行下去,那么第2005次互换座位后,小兔的座位对应的是A .编号1B .编号2C .编号3D .编号420,定义A*B 、B*C 、C*D 、D*B 分别对应下列图形(左),那么下列图形(右)中,可以表示A*D 、A*C 的分别是( )①②③④(1)(2)(3)(4)A .(1)(2)B .(2)(3)C .(2)(4)D .(1)(4)试题答案1, B 2, B3, 6π 4, 5m -≤5,6, 857, 解:⑴f (x)=a ·b -1,cosx )·(1,2cosx )-1sin2x +2cos 2x -1+cos2x =2sin (2x +6π) 由2k π-2π≤2x +6π≤2k π+2π 得k π-3π≤x ≤k π+6π∴f (x)的递增区间为,36k k ππππ⎡⎤-+⎢⎥⎣⎦ (k ∈Z ) ⑵f (A)=2sin (2A +6π)=2 ∴sin (2A +6π)=1∴2A +6π=2π∴A =6π由正弦定理得:sin 21sin 2a Bb A===.∴边长b8, 解: 将一颗骰子先后抛掷2次,此问题中含有36个等可能基本事件 (1)记“两数之和为5”为事件A ,则事件A 中含有4个基本事件,所以P (A )=41369=; 答:两数之和为5的概率为19.(2)记“两数中至少有一个奇数”为事件B ,则事件B 与“两数均为偶数”为对立事件,所以P (B )=931364-=;答:两数中至少有一个奇数的概率34.(3)基本事件总数为36,点(x ,y )在圆x 2+y 2=15的内部记为事件C ,则C 包含8个事件,所以P (C )=82369=. 答:点(x,y)在圆x 2+y 2=15的内部的概率29.9, (1)证法1:如图,取AD 的中点H ,连接,GH FH ,∵,E F 分别为,PC PD 的中点,∴EF CD .∵,G H 分别为,BC AD 的中点,∴GH CD . ∴EFGH .∴,,,E F H G 四点共面.∵,F H 分别为,DP DA 的中点,∴PA FH . ∵PA ⊄平面EFG ,FH ⊂平面EFG , ∴PA 平面EFG .证法2:∵,,E F G 分别为,,PC PD BC 的中点, ∴EF CD ,EG PB . ∵CD AB ,∴EFAB .又EF PAB AB PAB ⊄⊂面,面 EFPAB EGPAB 面,同理面∵EF EG E =,∴平面EFG 平面PAB . ∵PA ⊂平面PAB ,∴PA 平面EFG .(2)解:∵PD ⊥平面ABCD ,GC ⊂平面ABCD ,∴GC PD ⊥. ∵ABCD 为正方形,∴GC CD ⊥. ∵PD CD D =,∴GC ⊥平面PCD .∵112PF PD ==,112EF CD ==,∴1122PEF S EF PF ∆=⨯=. ∵112GC BC ==,∴111113326P EFG G PEF PEF V V S GC --∆==⋅=⨯⨯=.10, 解:(1)∵*12211,3,32().n n n a a a a a n N ++===-∈321327a a a ∴=-=(2)证明:2132,n n n a a a ++=-{}n b ∴是以21a a -2=为首项,2为公比的等比数列. (3)由(I )得*12(),n n n a a n N +-=∈112211()()...()n n n n n a a a a a a a a ---∴=-+-++-+12*22...2121().n n n n N --=++++=-∈11, 解:(1)设切线的斜率为k ,则22()2432(1)1k f x x x x '==-+=-+又35)1(=f ,所以所求切线的方程为:135-=-x y 即.0233=+-y x(2)342)(2+-='ax x x f , ∵)(x f y =为单调增函数,∴()0f x '≥即对任意的0)(),,0(≥'+∞∈x f x 恒有0342)(2≥+-='ax x x fx x x x a 4324322+=+≤∴而26432≥+x x ,当且仅当26=x 时,等号成立.所以a ≤12, 解:(1)由题意设椭圆的标准方程为22221(0)x y a b a b +=>>,由已知得:222213a c b a c ==∴=-=,,∴椭圆的标准方程为22143x y +=.(2)设1122()()A x y B x y ,,,.联立221.43y kx m x y =+⎧⎪⎨+=⎪⎩,得:222(34)84(3)0k x mkx m +++-=, 则22222212221226416(34)(3)03408344(3).34m k k m k m mk x x k m x x k ⎧⎪∆=-+->+->⎪⎪+=-⎨+⎪⎪-=⎪+⎩,即,,又22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k -=++=+++=+. 因为以AB 为直径的圆过椭圆的右顶点(20)D ,,1AD BDk k ∴=-,即1212122y y x x =---.1212122()40y y x x x x ∴+-++=.2222223(4)4(3)1540343434m k m mkk k k --∴+++=+++. 2271640m mk k ∴++=.解得:12227km k m =-=-,,且均满足22340k m +->.当12m k =-时,l 的方程(2)y k x =-,直线过点(20),,与已知矛盾; 当227k m =-时,l 的方程为27y k x ⎛⎫=- ⎪⎝⎭,直线过定点207⎛⎫ ⎪⎝⎭,. 所以,直线l 过定点,定点坐标为207⎛⎫ ⎪⎝⎭,.13, C 14, D 15, B 16, B 17, B 18, B 19, A 20, C。
高中数学 第二章 随机变量及其分布 2.2 二项分布及其应用 2.2.2 事件的相互独立性 新人教A
解析:根据相互独立事件的概念知,这三个说法都是 正确的.
答案:(1)√ (2)√ (3)√
2.袋内有 3 个白球和 2 个黑球,从中不放回地摸球, 用 A 表示“第一次摸得白球”,用 B 表示“第二次摸得白 球”,则 A 与 B 是( )
A.互斥事件 B.相互独立事件 C.对立事件 D.不相互独立事件 解析:根据互斥事件、对立事件和相互独立事件的定
(3)条件概率法:当 P(A)>0 时,可用 P(B|A)=P(B) 判断.
[变式训练] 下面所给出的两个事件 A 与 B 相互独立
吗? ①抛掷一枚骰子,事件 A=“出现 1 点”,事件 B=
“出现 2 点”; ②先后抛掷两枚均匀硬币,事件 A=“第一枚出现正
面”,事件 B=“第二枚出现反面”;
③在含有 2 红 1 绿三个大小相同的小球的口袋中,任 取一个小球,观察颜色后放回袋中,事件 A=“第一次取 到绿球”,B=“第二次取到绿球”.
解:①事件 A 与 B 是互斥事件,故 A 与 B 不是相互
独立事件.
②第一枚出现正面还是反面,对第二枚出现反面没有
影响,所以 A 与 B 相互独立.
③由于每次取球观察颜色后放回,故事件 A 的发生 对事件 B 发生的概率没有影响,所以 A 与 B 相互独立.
义可知,A 与 B 不是相互独立事件.
答案:D
3.国庆节放假,甲去北京旅游的概率为13,乙、丙去
北京旅游的概率分别为14,15.假定三人的行动相互之间没
有影响,那么这段时间内至少有 1 人去北京旅游的概率为
()
A.5690
B.35
1
1
C.2
D.60
解析:因甲、乙、丙去北京旅游的概率分别为13,14, 15.因此,他们不去北京旅游的概率分别为23,34,45,所以, 至少有 1 人去北京旅游的概率为 P=1-23×34×45=35.
高中数学第二章2.2二项分布及其应用2.2.2事件的相互独立性讲义新人教A版选修2_3
2.2.2 事件的相互独立性知识点 相互独立的概念 (1)相互独立的定义设A ,B 为两个事件,如果P (AB )=□01P (A )P (B ),则称事件A 与事件B 相互独立. (2)相互独立事件事件A (或B )发生对事件B (或A )发生的概率□02没有影响,这样的两个事件叫做相互独立事件.知识点 相互独立的性质若事件A 与B 相互独立,则□01A 与□02B -,□03A -与□04B ,□05A -与□06B -也相互独立.1.若A ,B 为相互独立事件,则P (AB )=P (A )P (B ),该性质可推广为:若A 1,A 2,A 3,…,A n 相互独立,那么这n 个事件同时发生的概率等于各个事件发生概率的积,即P (A 1A 2…A n )=P (A 1)P (A 2)…P (A n ).2.在解题中要注意区分事件A 与B 相互独立、事件A 与B 互斥,两个事件互斥是指两个事件不可能同时发生,两个事件相互独立是指一个事件的发生与否对另一个事件发生的概率没有影响,相互独立的事件可以同时发生,且同时发生的概率P (AB )=P (A )P (B ),而互斥的两个事件A ,B 满足P (A +B )=P (A )+P (B ).1.判一判(正确的打“√”,错误的打“×”) (1)不可能事件与任何一个事件相互独立.( ) (2)必然事件与任何一个事件相互独立.( )(3)如果事件A 与事件B 相互独立,则P (B |A )=P (B ).( )(4)“P (AB )=P (A )·P (B )”是“事件A ,B 相互独立”的充要条件.( ) 答案 (1)√ (2)√ (3)√ (4)√ 2.做一做(1)甲、乙两水文站同时作水文预报,如果甲站、乙站各自预报的准确率为0.8和0.7.那么,在一次预报中,甲、乙两站预报都准确的概率为________.(2)一件产品要经过两道独立的工序,第一道工序的次品率为a ,第二道工序的次品率为b ,则该产品的正品率为________.(3)已知A ,B 是相互独立事件,且P (A )=12,P (B )=23,则P (A B -)=________;P (A -B -)=________.答案 (1)0.56 (2)(1-a )(1-b ) (3)16 16解析 (1)甲、乙两站水文预报相互独立,则P =0.8×0.7=0.56.(2)由于经过两道工序才能生产出一件产品,当两道工序都合格时才能生产出正品,又由于两道工序相互独立,则该产品的正品率为(1-a )(1-b ).(3)因为P (A )=12,P (B )=23,所以P (A -)=12,P (B -)=13.所以P (A B -)=P (A )P (B -)=12×13=16,P (A -B -)=P (A -)P (B -)=12×13=16.探究1 事件独立性的判断例1 判断下列各对事件是不是相互独立事件:(1)甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,“从甲组中选出1名男生”与“从乙组中选出1名女生”;(2)容器内盛有5个白乒乓球和3个黄乒乓球,“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”;(3)掷一颗骰子一次,“出现偶数点”与“出现3点或6点”.[解] (1)“从甲组中选出1名男生”这一事件是否发生,对“从乙组中选出1名女生”这一事件发生的概率没有影响,所以它们是相互独立事件.(2)“从8个球中任意取出1个,取出的是白球”的概率为58,若这一事件发生了,则“从剩下的7个球中任意取出1个,取出的仍是白球”的概率为47,若前一事件没有发生,则后一事件发生的概率为57.可见,前一事件是否发生,对后一事件发生的概率有影响,所以两者不是相互独立事件.(3)记A :出现偶数点,B :出现3点或6点,则A ={2,4,6},B ={3,6},AB ={6},∴P (A )=36=12,P (B )=26=13,P (AB )=16, ∴P (AB )=P (A )·P (B ), ∴事件A 与B 相互独立. 拓展提升(1)利用相互独立事件的定义(即P (AB )=P (A )·P (B ))可以准确地判定两个事件是否相互独立,这是用定量计算方法,较准确,因此我们必须熟练掌握.(2)判别两个事件是否为相互独立事件也可以从定性的角度进行分析,即看一个事件的发生对另一个事件的发生是否有影响.没有影响就是相互独立事件,有影响就不是相互独立事件.[跟踪训练1] 一个家庭中有若干个小孩,假定生男孩和生女孩是等可能的,令A ={一个家庭中既有男孩又有女孩},B ={一个家庭中最多有一个女孩}.对下述两种情形,讨论A 与B 的独立性:(1)家庭中有两个小孩; (2)家庭中有三个小孩.解 (1)有两个小孩的家庭,小孩为男孩、女孩的所有可能情形为Ω={(男,男),(男,女),(女,男),(女,女)}包含4个基本事件,由等可能性知每个基本事件的概率均为14.这时A ={(男,女),(女,男)},B ={(男,男),(男,女),(女,男)}, AB ={(男,女),(女,男)},于是P (A )=12,P (B )=34,P (AB )=12.由此可知P (AB )≠P (A )P (B ),所以事件A ,B 不相互独立.(2)有三个小孩的家庭,小孩为男孩、女孩的所有可能情形为Ω={(男,男,男),(男,男,女),(男,女,男),(女,男,男),(男,女,女),(女,男,女),(女,女,男),(女,女,女)}包含8个基本事件,由等可能性知每个基本事件的概率均为18.这时A 包含6个基本事件,B 包含4个基本事件,AB 包含3个基本事件.于是P (A )=68=34,P (B )=48=12,P (AB )=38,显然有P (AB )=P (A )P (B )成立.从而事件A 与B 是相互独立的. 探究2 相互独立事件概率的计算例2 甲、乙两人在罚球线投球命中的概率分别为12与25.(1)甲、乙两人在罚球线各投球一次,求恰好命中一次的概率;(2)甲、乙两人在罚球线各投球二次,求这四次投球中至少一次命中的概率.[解] (1)记“甲投一次命中”为事件A ,“乙投一次命中”为事件B ,则P (A )=12,P (B )=25,P (A -)=12,P (B -)=35. ∴恰好命中一次的概率为P =P (A B -)+P (A -B )=P (A )P (B -)+P (A -)P (B ) =12×35+12×25 =510=12. (2)设事件“甲、乙两人在罚球线各投球二次均不命中”的概率为P 1,则 P 1=P (A -∩A -∩B -∩B -) =P (A -)P (A -)P (B -)P (B -)=⎝ ⎛⎭⎪⎫1-122×⎝ ⎛⎭⎪⎫1-252 =9100. ∴甲、乙两人在罚球线各投球二次,至少一次命中的概率为P =1-P 1=91100.拓展提升(1)求相互独立事件同时发生的概率的步骤是: ①首先确定各事件之间是相互独立的; ②确定这些事件可以同时发生; ③求出每个事件的概率,再求积.(2)使用相互独立事件同时发生的概率计算公式时,要掌握公式的适用条件,即各个事件是相互独立的,而且它们同时发生.[跟踪训练2] 小王某天乘火车从重庆到上海去办事,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:(1)这三列火车恰好有两列正点到达的概率; (2)这三列火车至少有一列正点到达的概率.解 用A ,B ,C 分别表示这三列火车正点到达的事件,则P (A )=0.8,P (B )=0.7,P (C )=0.9,所以P (A -)=0.2,P (B -)=0.3,P (C -)=0.1.(1)由题意得A ,B ,C 之间互相独立,所以恰好有两列正点到达的概率为 P 1=P (A -BC )+P (A B -C )+P (AB C -)=P (A -)P (B )P (C )+P (A )P (B -)P (C )+P (A )P (B )P (C -) =0.2×0.7×0.9+0.8×0.3×0.9+0.8×0.7×0.1=0.398.(2)三列火车至少有一列正点到达的概率为 P 2=1-P (A -B -C -) =1-P (A -)P (B -)P (C -) =1-0.2×0.3×0.1=0.994. 探究3 相互独立事件的综合应用例3 甲、乙两人各射击一次,击中目标的概率分别是23和34.假设两人射击是否击中目标相互之间没有影响,每人每次射击是否击中目标相互之间也没有影响.(1)求甲、乙各射击一次均击中目标的概率; (2)求甲射击4次,恰有3次连续击中目标的概率;(3)若乙在射击中出现连续2次未击中目标则会被终止射击,求乙恰好射击4次后被终止射击的概率.[解] (1)记事件A 表示“甲击中目标”,事件B 表示“乙击中目标”. 依题意知,事件A 和事件B 相互独立, 因此甲、乙各射击一次均击中目标的概率为P (AB )=P (A )P (B )=23×34=12.(2)记事件A i 表示“甲第i 次射击击中目标”(其中i =1,2,3,4),并记“甲4次射击恰有3次连续击中目标”为事件C ,则C =A 1A 2A 3A -4∪A -1A 2A 3A 4,且A 1A 2A 3A -4与A -1A 2A 3A 4是互斥事件.由于A 1,A 2,A 3,A 4之间相互独立,所以A i 与A -j (i ,j =1,2,3,4,且i ≠j )之间也相互独立. 由于P (A 1)=P (A 2)=P (A 3)=P (A 4)=23,故P (C )=P (A 1A 2A 3A -4∪A -1A 2A 3A 4)=P (A 1)P (A 2)P (A 3)P (A -4)+P (A -1)P (A 2)P (A 3)·P (A 4)=⎝ ⎛⎭⎪⎫233×13+13×⎝ ⎛⎭⎪⎫233=1681. (3)记事件B i 表示“乙第i 次射击击中目标”(其中i =1,2,3,4),并记事件D 表示“乙在第4次射击后终止射击”,则D =B 1B 2B -3B -4∪B -1B 2B -3B -4, 且B 1B 2B -3B -4与B -1B 2B -3B -4是互斥事件.由于B 1,B 2,B 3,B 4之间相互独立,所以B i 与B -j (i ,j =1,2,3,4,且i ≠j )之间也相互独立. 由于P (B i )=34(i =1,2,3,4),故P (D )=P (B 1B 2B -3B -4∪B -1B 2B -3B -4) =P (B 1B 2B -3B -4)+P (B -1B 2B -3B -4)=P (B 1)P (B 2)P (B -3)P (B -4)+P (B -1)·P (B 2)P (B -3)P (B -4)=⎝ ⎛⎭⎪⎫342×⎝ ⎛⎭⎪⎫142+34×⎝ ⎛⎭⎪⎫143=364. 拓展提升常见事件与概率间的关系已知两个事件A ,B ,它们的概率为P (A ),P (B ).将A ,B 中至少有一个发生记为事件A ∪B ,都发生记为事件AB ,都不发生记为事件A -B -,恰有一个发生记为事件A B -∪A -B ,至多有一个发生记为事件A -B -∪A -B ∪A B -,为方便同学们记忆,我们用表格的形式将其展示出来.[跟踪训练3] 甲、乙、丙三台机床各自独立加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为14,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为112,甲、丙两台机床加工的零件都是一等品的概率为29. (1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;(2)从甲、乙、丙三台机床加工的零件中各取一个进行检验,求至少有一个一等品的概率. 解 (1)设A ,B ,C 分别为甲、乙、丙三台机床各自加工的零件是一等品的事件.由题意得⎩⎪⎨⎪⎧P (A B -)=14,P (B C -)=112,P (AC )=29,则⎩⎪⎨⎪⎧P (A )[1-P (B )]=14,①P (B )[1-P (C )]=112,②P (A )P (C )=29.③由①③得P (B )=1-98P (C ),代入②得27[P (C )]2-51P (C )+22=0, 解得P (C )=23或P (C )=119(舍去).将P (C )=23代入②得P (B )=14,将P (B )=14代入①得P (A )=13.故甲、乙、丙三台机床各自加工的零件是一等品的概率分别是13,14,23.(2)记D 为从甲、乙、丙三台机床加工的零件中各取一个进行检验,其中至少有一个一等品的事件,则P (D )=1-P (D -)=1-[1-P (A )][1-P (B )][1-P (C )]=1-23×34×13=56.故从甲、乙、丙加工的零件中各取一个进行检验,至少有一个一等品的概率为56.1.相互独立事件与互斥事件的区别2.相互独立事件同时发生的概率P (AB )=P (A )P (B ),就是说,两个相互独立事件同时发生的概率等于每个事件发生的概率的积.此性质还可推广到n (n >2,n ∈N *)个事件的相互独立性,即若事件A 1,A 2,…,A n 相互独立,则这n 个事件同时发生的概率P (A 1A 2…A n )=P (A 1)P (A 2)…P (A n ).3.求复杂事件概率的步骤(1)列出题中涉及的各种事件,并用适当的符号表示;(2)理清事件之间的关系(两事件是互斥、对立,还是相互独立),列出关系式; (3)根据事件之间的关系准确选取概率公式进行计算;(4)当直接计算符合条件的事件的概率较复杂时,可先间接地计算对立事件的概率,再求出符合条件的事件的概率.1.下列事件A,B是相互独立事件的是( )A.一枚硬币掷两次,A=“第一次为正面”,B=“第二次为反面”B.袋中有2个白球,2个黑球,不放回地摸球两次,每次摸一球,A=“第一次摸到白球”,B=“第二次摸到白球”C.掷一枚骰子,A=“出现点数为奇数”,B=“出现点数为偶数”D.A=“一个灯泡能用1000小时”,B=“一个灯泡能用2000小时”答案 A解析把一枚硬币掷两次,对于每次而言是相互独立的,其结果不受先后影响,故A是相互独立事件;B中是不放回地摸球,显然A事件与B事件不相互独立;对于C,其结果具有唯一性,A,B应为互斥事件;D中事件B受事件A的影响.故选A.2.已知A,B是两个相互独立事件,P(A),P(B)分别表示它们发生的概率,则1-P(A)P(B)是下列哪个事件的概率( )A.事件A,B同时发生B.事件A,B至少有一个发生C.事件A,B至多有一个发生D.事件A,B都不发生答案 C解析P(A)P(B)是指A,B同时发生的概率,1-P(A)P(B)是A,B不同时发生的概率,即至多有一个发生的概率.3.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B ,则事件A ,B 中至少有一件发生的概率是( )A.512 B.12 C.712 D.34答案 C解析 用间接法考虑,事件A ,B 一个都不发生的概率为P (A -B -)=P (A -)P (B -)=12×56=512.则事件A ,B 中至少有一件发生的概率为1-P (A -B -)=712.故C 正确.4.甲袋中有8个白球,4个红球,乙袋中有6个白球,6个红球.从每袋中任取一个球,则取得同色球的概率为________.答案 12解析 若都取到白球,P 1=812×612=13,若都取到红球,P 2=412×612=16, 则所求概率P =P 1+P 2=13+16=12.5.甲、乙两人独立地破译密码的概率分别为13,14.求:(1)两个人都译出密码的概率; (2)两个人都译不出密码的概率; (3)恰有一人译出密码的概率; (4)至多一人译出密码的概率; (5)至少一人译出密码的概率.解 记事件A 为“甲独立地译出密码”,事件B 为“乙独立地译出密码”. (1)两个人都译出密码的概率为P (AB )=P (A )P (B )=13×14=112.(2)两个人都译不出密码的概率为P (A -B -)=P (A -)P (B -)=[1-P (A )][1-P (B )] =⎝ ⎛⎭⎪⎫1-13⎝ ⎛⎭⎪⎫1-14=12. (3)恰有一人译出密码分为两类:甲译出乙译不出,乙译出甲译不出, 即A B -+A -B ,- 11 - ∴P (A B -+A -B )=P (A B -)+P (A -B )=P (A )P (B -)+P (A -)P (B )=13×⎝ ⎛⎭⎪⎫1-14+⎝⎛⎭⎪⎫1-13×14=512.(4)至多一人译出密码的对立事件是两人都译出密码,∴其概率为1-P (AB )=1-112=1112.(5)至少一人译出密码的对立事件为两人都没有译出密码,∴其概率为1-P (A -B -)=1-12=12.。
二项分布及其应用习题课公开课获奖课件省赛课一等奖课件
P(B)·P(C|B)=70%×95%+30%×80%=0.905=90.5%.
【答案】
2 (1)9
(2)90.5%
【变式训练】一批晶体管元件,其中一等品占95%,二 等品占4%,三等品占1%,它们能工作5 000小时以 上旳概率分别为90%,80%,70%,求任取一种元 件能工作5 000小时以上旳概率. 【解题指南】借助条件概率及其变形公式求解. 【解析】设Bi={取到元件为i等品}(i=1,2,3),A={取 到元件能工作5 000小时以上},则 P(A)=P(B1)P(A|B1)+P(B2)·P(A|B2)+P(B3)·P(A| B3)= 95%·90%+4%·80%+1%·70%=0.894.
措施二:
1 3( 1 )2 5 (1)3 25 . 6 6 6 27
P(A B C A B C A B C A B C)
(5)3 3 1 (5)2 25 .
6
6 6 27
故三位同学中至少有两位没有中奖旳概率为 25 .
27
系统可靠性问题
【典例训练】
1.在如图所示旳电路图中,开关a,b,c闭合与断开旳概率都 是 1 ,且是相互独立旳,则灯亮旳概率是( )
ξ旳分布列如下:
ξ0 p 0.95
1 0.5×0.94
2
3
0.1×0.93 0.01×0.92
4
4.5× 0.14
5 0.15
答案:
ξ0 p 0.95
1 0.5×0.94
2
3
0.1×0.93 0.01×0.92
4
4.5× 0.14
5 0.15
2.取到黑球数X旳可能取值为0,1,2,3.又因为每次取到黑
二项分布及应用
数量 厂别 等级
合格品
次品
合计
甲厂
475 25 500
乙厂
644 56 700
合计
1 119 81
1 200
(1)从这批产品中随意地取一件,则这件产品恰好是
次品的概率是_________; 27 400
(2)在已知取出的产品是甲厂生产的,则这件产品恰好
1 是次品的概率是_________;20
3
P(B
A)
P( AB) P( A)
10 3
1 2
5
例1、在5道题中有3道理科题和2道文科题,如果不放回 地依次抽取2道题,求: (1)第一次抽取到理科题的概率; (2)第一次和第二次都抽取到理科题的概率; (3)在第一次抽到理科题的条件下,第二次抽到理科题
的概率。
解法二:因为n(AB)=6,n(A)=12,所以
解 {(男,男), (男,女), (女,男), (女,女)}
A={已知一个是女孩}={(男,女), (女,男), (女,女)}
B {另一个也是女孩} {(女,女)}
所以所求概率为 1 . 3
4
问题 该家庭中有两个孩子,已知老大是女孩,问另一个 小孩也是女孩的概率为多大?
解 {(男,男), (男,女), (女,男), (女,女)}
2
你能算吗?
五一假期你妈妈带你到她的一个朋友家做客, 闲谈间正巧碰到她的女儿回家,这时主人介 绍说:“这是我的一个女儿,我还有一个孩 子呢。”这个家庭中有两个孩子,已知其中 有一个是女孩,问这时另一个孩子也是女孩 的概率为多大?
3
问题 该家庭中有两个孩子,已知其中有一个是女孩, 问另一个小孩也是女孩的概率为多大?
人教课标版高中数学选修2-3《事件的独立性》教案-新版
第二章随机变量及其分布2.2 二项分布及其应用2.2.1 事件的独立性一、教学目标1、核心素养通过上一节课条件概率和本节课事件的相互独立性的学习,使学生会处理较为复杂的概率计算,同时也培养了学生分类讨论的思想.从而提高了学生的运算能力和数学建模能力;2、学习目标(1)理解事件独立性的概念;(2)理解互斥事件、对立事件和相互独立事件的区别;(3)会利用相互独立事件概率的乘法公式解决相应的问题;3、学习重点理解事件A与B独立的概念,并能运用相互独立事件的概率乘法公式解决实际问题;4、学习难点运用相互独立事件的概率乘法公式解决实际问题二、教学设计(一)课前设计1、预习任务任务1阅读教材,思考:(1)互斥事件、相互独立事件和对立事件的区别?(2)如何用条件概率证明两个事件相互独立?任务2熟记相互独立事件的乘法公式,并会利用公式解决预习自测的题目;2、预习自测1.设A与B是相互独立事件,则下列命题中正确的命题是()A.A与B是对立事件B.A与B是互斥事件C.A与B不相互独立D.A与B是相互独立事件答案 D2.一个口袋中有黑球和白球各5个,从中连摸两次球,每次摸一个且每次摸出后不放回,用A表示第一次摸得白球,B 表示第二次摸得白球,则A 与B 是( )A 、互斥事件B 、不相互独立事件C 、对立事件D 、相互独立事件 答案 B3.在某段时间内,甲地不下雨的概率为0.3,乙地不下雨的概率为0.4,假设在这段时间内两地是否下雨相互无影响,则这段时间内两地都下雨的概率是( )A.0.12B.0.88C.0.28D.0.42答案:D4.一学生通过英语听力测试的概率是21,他连续测试两次,那么其中恰好一次通过的概率是( ) A.41 B.31 C.21 D.43 答案:C(二)课堂设计1、知识回顾(1)互斥事件和相互独立事件的概念;(2)互斥事件与相互独立事件的区别;(3)古典概型的概率公式;(4)条件概率的概念及其性质、计算公式;(5)本节课所学习的事件独立性的概念?相互独立事件概率计算公式?2、问题探究问题探究一 活动一:三张奖券中只有一张能中奖,现分别由三名同学有放回地抽取,事件A 为“第一名同学没有抽到中奖奖券”,事件B 为“最后一名同学抽到中奖奖券”.事件A 的发生会影响事件B 发生的概率吗?解析:显然无放回时,A 的发生影响着B ,即是条件概率.而当有放回地抽取奖券时,最后一名同学也是从原来的三张奖券中任抽一张,因此第一名同学抽的结果对最后一名同学的抽奖结果没有影响,即事件A 的发生不会影响事件B 发生的概率.于是P (B |A )=P (B ),代入条件概率公式得P (AB )=P (B |A )P (A )=P (A )P (B )活动二:甲坛子里有3个白球,2个黑球,乙坛子里有2个白球,2个黑球,从这两个坛子里分别摸出1个球,它们都是白球的概率是多少?事件A :从甲坛子里摸出1个球,得到白球;事件B :从乙坛子里摸出1个球,得到白球 问题:事件A 、B 是否互斥?(不互斥)可以同时发生吗?(可以)问题:事件A (或B )是否发生对事件B (或A )发生的概率有无影响?(无影响) “从这两个坛子里分别摸出1个球,它们都是白球”是一个事件,它的发生,就是事件A ,B 同时发生,记作A B ⋅.(简称积事件)从甲坛子里摸出1个球,有5种等可能的结果;从乙坛子里摸出1个球,有4种等可能的结果于是从这两个坛子里分别摸出1个球,共有54⨯种等可能的结果同时摸出白球的结果有32⨯种所以从这两个坛子里分别摸出1个球,它们都是白球的概率323()5410P A B ⨯⋅==⨯. 另一方面,从甲坛子里摸出1个球,得到白球的概率3()5P A =,从乙坛子里摸出1个球,得到白球的概率2()4P B =.显然()()()P A B P A P B ⋅=⋅. 这就是说,两个相互独立事件同时发生的概率,等于每个事件发生的概率的积一般地,如果事件12,,,n A A A 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅. 相互独立事件的定义:设A,B 为两个事件,如果 P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立(mutually independent ).事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立相互独立事件同时发生的概率:()()()P A B P A P B ⋅=⋅问题探究二、互斥事件、对立事件、相互独立事件的区别 1.定义:设A ,B 为两个事件,如果()=()()P AB P A P B ⋅,那么称事件A 与事件B 相互独立.2.如果A 与B 相互独立,那么A 与B ,A 与B ,A 与B 也都相互独立.3.如果A 与B 相互独立,那么()=()P B A P B ,()=()P A B P A .4.互斥事件是不可能同时发生的两个事件,而相互独立事件是指一个事件是否发生对另一个事件发生的概率没有影响,二者不能混淆.对于事件A、B,在一次试验中,A、B如果不能同时发生,那么称A、B互斥.一次试验中,如果A、B两个事件互斥且A、B中必然有一个发生,那么称A、B对立,显然A+B为一个必然事件.A、B互斥则不能同时发生,但可能同时不发生.如掷一枚骰子,“点数为1”为事件A,“点数为2”为事件B,则A、B可能都不发生.两事件相互独立是指一个事件的发生与否对另一事件发生的概率没有影响.A、B互斥,则0)(=ABP;A、B对立,则1)()(=+BPAP.A、B相互独立,则)()()(BPAPABP⋅=,可见这是不相同的概率.问题探究三、利用相互独立事件乘法公式能解决哪些实际问题?例1.一个口袋内装有2个白球和2个黑球.求(1)先摸出一个白球不放回,再摸出一个白球的概率是多少?(2)先摸出一个白球后放回,再摸出一个白球的概率是多少?【知识点:相互独立事件乘法公式、条件概率】详解:(1)先摸出一白球不放回这件事对再摸出一个白球的概率产生了影响,再摸时只有一个白球,两个黑球,则概率为13;(2)先摸出一白球后放回这件事对再摸出一个白球的概率没有影响,还是从两个白球两个黑球中摸,则概率为1 2例2.天气预报中,在元旦假期甲地的降雨概率是0.2,乙地的降雨概率是0.3.假定在这段时间内两地是否降雨相互之间没有影响,计算在这段时间内:(1)甲乙两地都降雨的概率;(2)甲乙两地都不降雨的概率;(3)甲乙两地至少一个地方的概率;【知识点:相互独立事件乘法公式;数学思想:正难则反思想】详解:“甲地降雨”为时间A,“乙地降雨”为事件B.(1)“甲乙两地都不下雨”表示时间A,B同时发生,且甲乙两地是否降雨相互之间没有影响,即事件A与事件B相互独立.所以()()()=0.20.3=0.06p AB P A P B=⨯(2)“甲乙两地都不降雨”即事件A与B同时发生.利用独立事件的性质2可知,事件A与B 相互独立.所以()()()10.210.30.56p AB P A p B==-⨯-=()()(3)“至少一个地方降雨”用字母表示应为()()()()()()()()()()0.20.70.80.30.20.30.44p AB AB AB p AB p AB p AB p A p B p A p B p A p B ++=++=++=⨯+⨯+⨯=例3:俗话说“三个臭皮匠,顶上一个诸葛亮”,从数学角度解释这句话的含义【知识点:相互独立事件乘法公式;数学思想:正难则反思想】分析:三个臭皮匠不妨命名为A,B,C .假设三人解决某一问题的概率为0.5,且相互独立.诸葛亮解决该问题的概率为0.8.那么这三个臭皮匠至少有一人解决问题的概率为:1()10.50.50.50.8750.8p ABC -=-⨯⨯=>从数学角度解释名言,更能引起同学们的兴趣.激发他们上课的热情和积极性.例4:某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券.奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动.如果两次兑奖活动的中奖概率都是0.05,求两次抽奖中以下事件的概率:(1)都抽到某一指定号码;(2)恰有一次抽到某一指定号码;(3)至少有一次抽到某一指定号码;【知识点:相互独立事件乘法公式;数学思想:正难则反思想】详解:设“第一次抽奖抽到某一指定号码”为事件A ,“第二次抽奖抽到某一指定号码”为事件B ,“两次抽奖都抽到某一指定号码”为事件AB .(1)由于两次抽奖结果互不影响,因此事件A 与B 相互独立.于是由独立性可得,两次抽奖抽到某一指定号码的概率为P (AB )=P (A )P (B )=0.05×0.05=0.0025.(2)“两次抽奖恰有一次抽到某一指定号码”可以用(A )()B AB 表示.由于事件B A B A 与互斥,根据概率的加法公式和相互独立事件的定义可得,所求事件的概率为095.005.0)05.01()05.01(05.0)()()()()()(=⨯-+-⨯=+=+B P A P B P A P B A P B A P (3)“两次抽奖至少有一次抽到某一指定号码”可以用()()()AB AB AB 表示.由于事件B A B A AB ,,两两互斥,根据概率的加法公式和相互独立事件的定义可得,所求事件的概率为0975.0095.00025.0)()()(=+=++B A P B A P AB P例5.已知某种高炮在它控制的区域内击中敌机的概率为0.2.(1)假定有5门这种高炮控制某个区域,求敌机进入这个区域后未被击中的概率;(2)要使敌机一旦进入这个区域后有0.9以上的概率被击中,需至少布置几门高炮?【知识点:相互独立事件乘法公式;数学思想:正难则反思想】分析:因为敌机被击中的就是至少有1门高炮击中敌机,故敌机被击中的概率即为至少有1门高炮击中敌机的概率解:(1)设敌机被第k 门高炮击中的事件为K A (k =1,2,3,4,5),那么5门高炮都未击中敌机的事件为12345A A A A A ⋅⋅⋅⋅.∵事件1A ,2A ,3A ,4A ,5A 相互独立,∴敌机未被击中的概率为5512345123454()=()()()()()(10.2)5P A A A A A P A P A P A P A P A ⎛⎫⋅⋅⋅⋅⋅⋅⋅⋅=-= ⎪⎝⎭∴敌机未被击中的概率为5)54(. (2)至少需要布置n 门高炮才能有0.9以上的概率被击中,仿(1)可得: 敌机被击中的概率为415n⎛⎫- ⎪⎝⎭∴令41()0.95n -≥,∴41()510n ≤ 两边取常用对数,得110.313lg 2n ≥≈- ∵+∈N n ,∴11n = ∴至少需要布置11门高炮才能有0.9以上的概率击中敌机点拨:上面例题的解法,都是解应用题的逆向思考方法采用这种方法在解决带有词语“至多”、“至少”的问题时的运用,常常能使问题的解答变得简便;3、课堂总结结合第一小节的知识梳理【知识梳理】【重点难点突破】(1)条件概率的计算方法有两种:①利用定义计算,先分别计算概率)(AB P 和)(A P ,然后代入公式)()()(A P AB P A B P =. ②利用缩小样本空间计算(局限在古典概型内),即将原来的样本空间Ω缩小为已知的事件A ,原来的事件B 缩小为AB ,利用古典概型计算概率:)()()(A n AB n A B P =. (2)判定相互独立事件的方法①由定义,若)()()(B P A P AB P ⋅=,则B A 、独立.②有些事件不必通过概率的计算就能判定其独立性,如有放回的两次抽奖,由事件本身的性质就能直接判定出是否相互影响,从而得出它们是否相互独立.4、随堂检测1.在一段时间内,甲去某地的概率是14,乙去此地的概率是15,假定两人的行动相互之间没有影响,那么在这段时间内至少有1人去此地的概率是( )()A 320 ()B 15 ()C 25 ()D 920【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案 C2.从甲口袋内摸出1个白球的概率是13,从乙口袋内摸出1个白球的概率是12,从两个口袋内各摸出1个球,那么56等于( ) ()A 2个球都是白球的概率 ()B 2个球都不是白球的概率()C2个球不都是白球的概率()D2个球中恰好有1个是白球的概率【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案 C3.电灯泡使用时间在1000小时以上概率为0.2,则3个灯泡在使用1000小时后坏了1个的概率是()()A0.128 ()B0.096 ()C0.104 ()D0.384【知识点:相互独立事件乘法公式;】答案 B4.某道路的A、B、C三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒,某辆车在这条路上行驶时,三处都不停车的概率是()()A35192()B25192()C35576()D65192【知识点:相互独立事件乘法公式;】答案 A5.(1)将一个硬币连掷5次,5次都出现正面的概率是;(2)甲、乙两个气象台同时作天气预报,如果它们预报准确的概率分别是0.8与0.7,那么在一次预报中两个气象台都预报准确的概率是.【知识点:相互独立事件乘法公式;】答案(1) 132(2) 0.56(三)课后作业★基础型自主突破1.一个口袋中有黑球和白球各5个,从中连摸两次球,每次摸一个且每次摸出后不放回,用A 表示第一次摸得白球,B表示第二次摸得白球,则A与B是()A、互斥事件B、不相互独立事件C、对立事件D、相互独立事件【知识点:相互独立事件、互斥事件】答案 B2.10件产品中有4件是次品,从10件产品中任取2件,恰好2件是正品或2件是次品的概率是()A、225B、215C、13D、715【知识点:相互独立事件乘法公式;数学思想:分类谈论思想】答案 D3.加工某零件需要经过两道工序,第一道工序的废品率是0.01,第二道工序的废品率为0.02,设这两道工序是否出废品是彼此无关的,那么产品的合格率为()A、0.9702B、0.9700C、0.9998D、0.9996【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案 A4.种植某种树苗,成活率为0.9,若种植这种树苗5棵,则恰好成活4棵的概率是()A、0.33B、0.66C、0.5D、0.45【知识点:相互独立事件乘法公式】答案 B5.一射手对同一目标独立地射击四次,已知至少命中一次的概率为8081,则此射手每次击中的概率是()A、13B、23C、14D、25【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案 C6.甲、乙两篮球运动员在罚球线投球的命中率分别是0.7和0.6,每人投球3次,则两人都投进2球的概率是_________.【知识点:相互独立事件乘法公式】答案0.19★★能力型师生共研7.甲、乙两人独立地解同一问题,甲解决这个问题的概率是p1,乙解决这个问题的概率是p2,那么恰好有1人解决这个问题的概率是()A.p1p2B.p1(1-p2)+p2(1-p1)C.1-p1p2D.1-(1-p1)(1-p2)【知识点:相互独立事件乘法公式;数学思想:分类讨论思想】答案 B8.(浙江)甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜.根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是( )(A ) 0.216 (B )0.36 (C )0.432 (D )0.648【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案 D9.一道数学竞赛试题,甲生解出它的概率为21,乙生解出它的概率为31,丙生解出它的概率为41,由甲、乙、丙三人独立解答此题只有一人解出的概率为______. 【知识点:相互独立事件乘法公式;数学思想:分类讨论思想】答案 2411 10.某学生参加一次选拔考试,有5道题,每题10分.已知他解题的正确率为53,若40分为最低分数线,则该生被选中的概率是________.【知识点:相互独立事件乘法公式;数学思想:分类讨论思想】答案 31251053 11.甲、乙、丙三人射击命中目标的概率分别为0.5,0.25,0.125,现三人同时射击一目标,则目标被命中的概率为________.【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案 6443 ★★★探究型 多维突破12.荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一片荷叶跳到另一个荷叶),而且顺时针方向跳的概率是逆时针方向跳的概率的两倍,如图所示.假设现在青蛙在A 荷叶上,则跳三次之后停在A 荷叶上的概率是( )A.13 B.29 C.49 D.827答案 A【知识点:相互独立事件乘法公式;数学思想:分类讨论思想】13.在一个选拔项目中,每个选手都需要进行四轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰.已知某选手能正确回答第一、二、三、四轮问题的概率分别为5 6、45、34、13,且各轮问题能否正确回答互不影响.(1)求该选手进入第三轮才被淘汰的概率;(2)求该选手至多进入第三轮考核的概率;(3)该选手在考核过程中回答过的问题的个数记为X,求随机变量X的分布列.【知识点:相互独立事件乘法公式;数学思想:正难则反思想,分类讨论思想】答案:设事件A i(i=1,2,3,4)表示“该选手能正确回答第i轮问题”,由已知P(A1)=56,P(A2)=45,P(A3)=34,P(A4)=13,(1)设事件B表示“该选手进入第三轮才被淘汰”,则P(B)=P(A1A2A3)=P(A1)P(A2)P(A3)=56×45×(1-34)=16.(2)设事件C表示“该选手至多进入第三轮考核”,则P(C)=P(A1+A1A2+A1A2A3)=P(A1)+P(A1A2)+P(A1A2A3)=16+56×15+56×45×(1-34)=12.(3)X的可能取值为1,2,3,4.P(X=1)=P(A1)=1 6,P(X=2)=P(A1A2)=56×(1-45)=16,P(X=3)=P(A1A2A3)=56×45×(1-34)=16,P(X=4)=P(A1A2A3)=56×45×34=12,所以,X的分布列为自助餐1.已知事件A 、B 发生的概率都大于零,则( )A .如果A 、B 是互斥事件,那么A 与B 也是互斥事件B .如果A 、B 不是相互独立事件,那么它们一定是互斥事件C .如果A 、B 是相互独立事件,那么它们一定不是互斥事件D .如果A +B 是必然事件,那么它们一定是对立事件【知识点:相互独立事件、互斥事件】答案 C2.两个事件对立是这两个事件互斥的( )A .充分但不是必要条件B .必要但不是充分条件C .充分必要条件D .既不充分又不必要条件【知识点:互斥事件、对立事件】答案 B3.打靶时,甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射击一个目标,则它们都中靶的概率是( )A.35B.34C.1225D.1425【知识点:相互独立事件乘法公式】答案 D4.今有光盘驱动器50个,其中一级品45个,二级品5个,从中任取3个,出现二级品的概率为( )A .35035C CB .350352515C C C C ++ C .3503451C C -D .3501452524515C C C C C + 【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案 D5.甲、乙、丙3人投篮,投进的概率分别是13,25,12.现3人各投篮1次,则3人都没有投进的概率为( )A.115B.215C.15D.110【知识点:相互独立事件乘法公式】答案 C6.甲盒中有200个螺杆,其中有160个A 型的,乙盒中有240个上螺母,其中有180个A 型的,现从甲、乙两盒中各任取一个,则能配成A 型的螺栓概率为( )A .201 B.1615 C .53 D .2019 【知识点:相互独立事件乘法公式】答案 C7.到成都旅游的外地游客中,若甲、乙、丙三人选择去武侯祠游览的概率均为35,且他们的选择互不影响,则这三人中至多有两人选择去武侯祠游览的概率为( )A.36125B.44125C.54125D.98125【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案 D8.位于坐标原点的一个质点P 按下列规则移动:质点每次移动一个单位移动的方向为向上或向右,并且向上和向右移动的概率都为21,质点P 移动5次后位于(2,3)的概率是( ) A.5)21( B.525)21(C C.325)21(C D.53525)21(C C【知识点:相互独立事件乘法公式;数学思想:分类讨论思想】答案 B9.某市派出甲、乙两支球队参加全省足球冠军赛甲乙两队夺取冠军的概率分别是4173和 .则该市足球队夺得全省冠军的概率是_________.【知识点:互斥事件加法公式】答案 2819 10.一个家庭中有两个小孩,求:(1)两个小孩中有一个是女孩的概率;(2)两个都是女孩的概率; (3)已知其中一个是女孩,另一个也是女孩的概率.【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案:设“家庭中有一个是女孩”为事件A ,“另一个也是女孩”为事件B ,则“两个都是女孩”为事件AB ,家庭中有两个小孩的情况有:男、男;男、女;女、男;女、女;共4种情况,因此n (Ù)=4;其中有一个是女孩的情况有3种,因此n (A )=3;其中两个都是女孩的情况有1种,因此n (AB )=1.(1)由P (A )=n (A )n (Ù)=34,可得两个小孩中有一个是女孩的概率为34.(2)由P (AB )=n (AB )n (Ù)=14,可得两个都是女孩的概率为14.(3)由条件概率公式,可得P (B |A )=P (AB )P (A )=1434=13或P (B |A )=n (AB )n (A )=13.因此,在已知其中一个是女孩,另一个也是女孩的概率为13.11.某零件从毛坯到成品,一共要经过六道自动加工工序,如果各道工序出次品的概率分别为0.01、0.02、0.03、0.03、0.05、0.05,那么这种零件的次品率是多少?【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案:设“第i 道工序出次品”为事件A i ,i =1,2,3,4,5,6,它们相互独立,但不互斥,所以出现次品的概率为P (A 1+A 2+A 3+A 4+A 5+A 6)=1-P (A -1·A -2·A -3·A -4·A -5·A -6)=1-(1-0.01)·(1-0.02)·(1-0.03)2·(1-0.05)2=0.176 1.12.甲、乙2个人独立地破译一个密码,他们能译出密码的概率分别为13和14,求:(1)2个人都译出密码的概率;(2)2个人都译不出密码的概率;(3)恰有1个人译出密码的概率;(4)至多1个人译出密码的概率;(5)至少1个人译出密码的概率.【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案: 记“甲独立地译出密码”为事件A ,“乙独立地译出密码”为事件B ,A ,B 为相互独立事件,且P (A )=13,P (B )=14.(1)“2 个人都译出密码”的概率为:P (A ·B )=P (A )×P (B )=13×14=112.(2)“2个人都译不出密码”的概率为:P (A ·B )=P (A )×P (B )=[1-P (A )]×[1-P (B )]=(1-13)(1-14)=12. (3)“恰有1个人译出密码”可以分为两类:甲译出乙未译出以及甲未译出乙译出,且两个事件为互斥事件,所以恰有1个人译出密码的概率为:P (A ·B +A ·B )=P (A ·B )+P (A ·B )=P (A )P (B )+P (A )P (B )=13(1-14)+(1-13)×14=512.(4)“至多1个人译出密码”的对立事件为“有2个人译出密码”,所以至多1个人译出密码的概率为:1-P (AB )=1-P (A )P (B )=1-13×14=1112.(5)“至少1个人译出密码”的对立事件为“2个都未译出密码”,所以至少有1个人译出密码的概率为:1-P (A ·B )=1-P (A )P (B )=1-23×34=12.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、条件概率的性质 (1)0≤P(B|A)≤1
(2)B、C是互斥事件 P(BUC|A)= P(B|A)+ P(C|A)
考点一、条件概率的计算
(1)P(B | A) n( AB) n( A)
(2)P(B | A) P( AB) P( A)
例1、在6道题中有4道理科题和2道文科题,如果不放回的依次
次品的概率是____2_7____; 400
(2)在已知取出的产品是甲厂生产的,则这件产品恰好
1 是次品的概率是__2_0______;
例2、一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任 选一个,某人在银行自动提款机上取钱时,忘记了密码的最后一 位数字,求 (1)任意按最后一位数字,不超过2次就按对的概率; (2)如果他记得密码的最后一位是偶数,不超过2次
就按对的概率。
变式(3)、如果他记得密码的最后一位是偶数,不超 过3次就按对的概率。
练习4、抛掷两颗均匀的骰子,已知第一颗骰子掷出6点,问: 掷出点数之和大于等于10的概率。
变式:抛掷两颗均匀的骰子,已知点数不同,求至少有一个是 6点的概率?
探究: 三张奖券中只有一张能中奖,现分别由三名同学有放回的抽取, 事件A:“第一名同学没有抽到中奖奖券”, 事件B:”最后一名同学抽到中奖奖券”, 求(1)P(B);(2)P(B|A).
抽取2道题
(1)第一次抽到理科题的概率
(2)第一次与第二次都抽到理科题的概率
(3)第一次抽到理科题的条件下,第二次抽到理科题的概率.
★概率 P(B|A)与P(AB)的区别与联系
P( AB) nAB n总
P(B A) nAB , nA
练习1、从一副不含大小王的52张扑克牌中不放回地抽 取2次,每次取1张.已知第1次抽到A,求第2次也抽到A 的概率.
一、相互独立事件的概念
1、事件的相互独立性
设A,B为两个事件,如果 P(AB)=P(A)P(B),则称事件A与事 件B相互独立。 即事件A是否发生,对事件B发生的 (即事件B是否发生,对事件A发生的) 概率没有影响,这样两个事件叫做相互独立事件。
注:如果事件A与B相互独立,那么A与B,A与B,A与B是不
1/2
. P(B|A)=1/2
记: B={第三个人去扛水};A={第一个不用扛水}
一、条件概率的概念及公式
1、条件概率:一般地,设A,B为两个事件,在事件A发生的 条件下,求事件B发生的概率。
记作:P(B|A) 读作:A发生的条件下B发生的概率
2、条件概率P(B|A)的公式?
P(B | A) P( AB) 或P(AB) P(A) • P(B | A) P( A)
练习2、100件产品中有5件次品,不放回地抽取2次,每 次抽1件.已知第1次抽出的是次品,求第2次抽出正品的 概率.
练习3、一批同型号产品由甲、乙两厂生产,产品结构如下表:
数量 厂别 等级
合格品
次品
合计
甲厂
475 25 500
乙厂
644 56 700
合计
1 119 81
1 200
(1)从这批产品中随意地取一件,则这件产品恰好是
(3)袋中有4个白球, 3个黑球, 从袋中取出1球. 事件A为“取出的是白球”; 事件B为“取出的是黑球”.
练习、课本P55 T1
题型二、相互独立事件同时发生的概率
事件A、B相互独立 P(AB)= P(A)P(B)
例1、某商场推出二次开奖活动,凡购买一定价值的商品可以 获得一张奖券。奖券上有一个兑奖号码,可以分别参加两次抽 奖方式相同的兑奖活动。如果两次兑奖活动的中奖概率都是 0.05 ,求两次抽奖中以下事件的概率: (1)都抽到某一指定号码; (2)恰好第二次抽到指定号码; (2)恰有一次抽到某一指定号码; (3)至少有一次抽到某一指定号码。
A B AB AB
AB AB AB
意义
A、B同时发生 A不发生B发生
A发生B不发生
A不发生B不发生 A、B中恰有一个发生
A、B中至少有一个发生
A、B中至多有一个发生
事件A、B、C相互独立 P(ABC)= P(A)P(B)P(C)
4
例3 某班甲、乙、丙三名同学竞选班委,甲当选的概率为 ,
乙当选的概率为
探究: 三张奖券中只有一张能中奖,现分别由三名同学无放回
的抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同 学小.
思考1? 如果已经知道第一名同学没有抽到中奖奖券,那么最后
一名同学抽到中奖奖券的概率又是多少?
已知第一名同学的抽奖结果为什么会影响最后一名同 学抽到中奖奖券的概率呢?
条件概率的理解
计算公式 P(A∪B)=P(A)+P(B) P(AB)= P(A)P(B)
题型一、事件相互独立性的判断
判断事件下列事件是否为互斥, 互独事件? (1)袋中有4个白球, 3个黑球, 从袋中依次取2球. 事件A:“第一次取出的是白球”.把取出的球放回盒中, 事件B:“第二次取出的是白球”
(2)袋中有4个白球, 3个黑球, 从袋中依次取2球. 事件A:“第一次取出的是白球”. 取出的球不放回盒中, 事件B:“第二次取出的是白球”
练习、课本P55 T2,3
例2.甲、乙两个人独立地破译一个密码,他们能译出密码
的概率分别为 1 , 1 ,求
3
4
(1)两个人都译出密码的概率;(2)两个人都译不出密码的概率;
(3)恰有1个人译出密码的概率;(4)至多1个人译出密码的概率;
(5)至少1个人译出密码的概率.
事件
AB
AB
AB
AB
AB AB
是相互独立的
区分互斥事件与相互独立事件
概念
互斥事件
不可能同时发生 的两个事件叫做 互斥事件.
相互独立事件
如果事件A(或B)是 否发生对事件B(或A) 发生的概率没有影响, 这样的两个事件叫做 相互独立事件 .
符号
互斥事件A、B中 有一个发生,记作
A + B或(A∪B))
相互独立事件A、B同 时发生记作 AB
3Hale Waihona Puke ,丙当选的概率为 57 10
P(B|A)表示事件A发生条件下,B发生的概率
寓言故事新编:“一个和尚挑水吃,两个和尚抬水吃,三个和
尚没水吃” ,现在他们学会了团结与合作,为提高效率,三人
决定依次抽签选一人去扛水。
(1)第三个人去扛水的概率为 1/3 ; P(B)=1/3
(2)已知第一个人抽签结果不用扛水,则第三
个人去扛水的概率为