导热系数的测量
导热系数的测量实验报告
导热系数的测量(一)【实验目的】用稳态法测定出不良导热体的导热系数,并与理论值进行比较。
【实验仪器】导热系数测定仪、铜-康导热电偶、游标卡尺、数字毫伏表、台秤(公用)、杜瓦瓶、秒表、待测样品(橡胶盘、铝芯)、冰块【实验原理】根据傅里叶导热方程式,在物体内部,取两个垂直于热传导方向、彼此间相距为h 、温度分别为T 1、T 2的平行平面(设T 1>T 2),若平面面积均为S ,在t ∆时间内通过面积S 的热量Q ∆免租下述表达式:hT T S t Q )(21-=∆∆λ (3-26-1) 式中,tQ ∆∆为热流量;λ即为该物质的导热系数,λ在数值上等于相距单位长度的两平面的温度相差1个单位时,单位时间内通过单位面积的热量,其单位是)(K m W ⋅。
在支架上先放上圆铜盘P ,在P 的上面放上待测样品B ,再把带发热器的圆铜盘A 放在B 上,发热器通电后,热量从A 盘传到B 盘,再传到P 盘,由于A,P 都是良导体,其温度即可以代表B 盘上、下表面的温度T 1、T 2,T 1、T 2分别插入A 、P 盘边缘小孔的热电偶E 来测量。
热电偶的冷端则浸在杜瓦瓶中的冰水混合物中,通过“传感器切换”开关G ,切换A 、P 盘中的热电偶与数字电压表的连接回路。
由式(3-26-1)可以知道,单位时间内通过待测样品B 任一圆截面的热流量为221)(B BR h T T t Q πλ-=∆∆ (3-26-2) 式中,R B 为样品的半径,h B 为样品的厚度。
当热传导达到稳定状态时,T 1和T 2的值不变,遇事通过B 盘上表面的热流量与由铜盘P 向周围环境散热的速率相等,因此,可通过铜盘P 在稳定温度T 2的散热速率来求出热流量tQ ∆∆。
实验中,在读得稳定时T 1和T 2后,即可将B 盘移去,而使A 盘的底面与铜盘P 直接接触。
当铜盘P 的温度上升到高于稳定时的T 2值若干摄氏度后,在将A 移开,让P 自然冷却。
导热系数检测内容及方法
导热系数检测内容及方法(1)防护热板法检测导热系数本方法适用于处于干燥状态下单一材料或者复合板材等中低温导热系数的测定。
依据标准:《绝热材料稳态热阻及有关特性的测定防护热板法》GB/T10294-88原理:在稳态条件下,防护热板装置的中心计量区域内,在具有平行表面的均匀板状试件中,建立类似于以两个平行匀温平板为界的无限大平板中存在的一维恒定热流。
为保证中心计量单元建立一维热流的准确测量热流密度,加热单元应分为在中心的计量单元和由隔缝分开的环绕计量单元的防护单元。
并且需有足够的边缘绝热或(和)外防护套,特别是在远高于或低于室温下运行的装置,必须设置外防护套。
通过测定稳定状态下流过计量单元的一维恒定热流量Q、计量单元的面积A、试件冷、热表面的温度差/T,可计算出试件的热阻R 或热导率CA(C1试验仪器:1.1平板导热仪(1)导热系数测定范围:(0∙020~L000)W∕(m∙K)(2)相对误差:±3%(3)重复性误差:±2%(4)热面温度范围:(0-80)℃(5)冷面温度范围:(5~60)℃1.2、钢直尺1.3、游标卡尺2、试件要求:1)尺寸试件测量范围:30OmmX30OnInIXI(10~38)mm试件的表面用适当方法加工平整,使试件与面板紧密接触,刚性试件表面应制作的与面板一样平整,并且整个表面的不平行度应在试件厚度的±2%。
试件的尺寸应该完全覆盖加热单元的表面,由于热膨胀和板的压力,试件的厚度可能变化,在装置中在实际的测定温度和压力下测量试件厚度。
热敏感材料不应暴露在会改变试件性质的温度下,当试件在实验室空气中吸收水分显著(如硅酸盐制品),在干燥结束后尽快将试件放入装置中以避免吸收水分。
3、试件加工试验前,将试件加工成30OnlnI(长)×300mm(宽)的正方形,并且保证冷热两个传热面的平行度,特别是硬质材料的试件,如果冷热两个测试面不平行,这种情况下必须将试件磨平后才能做实验。
导热系数的测定(完整版)
△θ/△t|θ2=θ20,其中△t=120S.
T/s
0
30
60
90
120
150
180
210
θ2/mV
七,数据处理
1.原始数据必需重新抄入实验报告数据处理部分的正文中,再进行具体处理,注意各测量量的单位;
2.采用逐差法求黄铜盘在温度为 时的冷却速率 ,Δt = 120 S
导热系数是单位温度梯度作用下物体内所产生的热流密度是反映材料导热性能的重要参数之一其值等于相距单位长度的两平面的温度相差为一个单位时在单位时间内通过单位面积所传递的热量单位是瓦?米12实验中采用什么方法来测量不良导体的导热系数
得分
教师签名
批改日期
深圳大学实验报告
课程名称:大学物理实验(一)
实验名称:实验14导热系数的测定
4.计算橡胶板的导热系数λ,与标准值 比较,并给出λ测量结果;
5.给出实验结论。
测量结果参考值:
1.DB, hB, DC, hC测量参考值:
橡胶板直径 =131.77 mm橡胶板厚度 =8.25 mm
黄铜盘直径 =130.02 mm黄铜盘厚度 =7.66 mm
黄铜盘质量m=896.2 g黄铜比热C= 3.77×102J/kg.k
3.测量黄铜盘的冷却速率。保持稳态时散热板的环境:
a.电风扇一直工作。
b. 附近的冷却速率。
六、数据记录:
组号:;姓名
1.记录橡胶盘、黄铜盘的直径、高度(DB、Hb、DC、HC),记录相应结果
测量次数
1
2
3
4
5
平均值
所用测量仪器
测导热系数的方法
测导热系数的方法导热系数是一个重要的材料物性参数,用于描述材料在热传导过程中的能力。
确定材料的导热系数是很重要的,特别是在工程领域,以确定材料的适用性和优劣等等。
以下是关于测量导热系数的一些方法详细介绍。
1. 热板法热板法是一种通用且易于使用的测量导热系数的方法,它涉及到使用两个平板,在测试时,一个板加热,另一个板则保持冷却或恒温,并在两个表面观察温度差异。
在测试过程中,通过测量测试样品的厚度,表面温度差和能量输入,就可以计算出导热系数。
2. 热流法热流法是另一种测量导热系数的有用方法,它涉及在材料中施加恒定热流并测量材料的温度分布。
通过测量温度的时间变化,可以计算出材料的导热系数,特别是在高温下,使用该方法的优点比其他方法更为明显。
3. 检测液法检测液法是一种在材料中注入特定的液体,并测量材料的温度变化,以计算其导热系数。
由于液体很快可以扩散到材料的整个体积,因此这种方法对比其他方法测量结果的准确度更高。
4. 横向热传导法横向热传导法是一种间接测量导热系数的方法,它涉及使用温度来计算材料的导热系数,而不是直接测量材料的导热系数。
这种方法特别适用于测量低导热系数和难以测量的材料。
5. 快速扫描热量方法快速扫描热量方法是一种最近发展的测量材料导热系数的方法,在短时间内进行测量。
该方法通过使用短暂的脉冲加热并测量材料的温度响应来测量材料的导热系数。
6. 评估法评估法是一种以理论方法评估材料导热系数的方法。
这种方法比其他技术要便宜和简单,它涉及将材料的温度、密度和比热等基本属性结合起来,来计算导热系数,并且可以在短时间内得出一个粗略的结果。
7. 频率扫描法频率扫描法也是一种测量材料导热系数的方法,它涉及在材料上施加不同的频率,并通过观察温度变化来计算导热系数。
该方法可以使用一些便宜的设备来进行测量,适用于相对简单的材料。
8. 伏伦法伏伦法是一种用于直接测量导热系数的电学方法,该方法涉及两个热电偶并将它们置于相对位置上,随后可以测量产生的电动势,通过该电动势计算导热系数。
导热系数测量方法及仪器
动态方法是指在变化温度下测量材料导热系数的方法。这种方法通常使用热脉冲法或热反应法。
1.热脉冲法
热脉冲法是一种迅速变化温度的方法,它通过在被测材料中加热脉冲,并测量温度变化来计算导热系数。实验中,通过一个电磁炉或者激光脉冲等方式给被测材料施加一个短时间的高温脉冲,然后通过测量温度的变化,以及脉冲能量的大小来计算Leabharlann 热系数。导热系数测量方法及仪器
导热系数是材料的一个重要物理参数,它描述了材料传导热量的能力。测量导热系数的目的是为了评估材料的热性能,以及使用该材料的可行性。下面将介绍导热系数的测量方法以及常用的测量仪器。
一、静态方法
静态方法是指在恒定温度下测量材料导热系数的方法。这种方法是通过测量材料两端的温度差来确定导热系数的。常用的静态方法有热板法和热流计法。
2.热反应法
热反应法是一种通过观察材料的热反应过程,从而求得导热系数的方法。实验中,将被测材料放置在一个加热腔中,然后在一定温度下对其进行恒定热反应,通过测量反应中产生的热量和反应过程的时间来计算导热系数。
常用仪器:
1.导热系数测试仪:这种仪器有多种型号,可以根据不同的测量方法选择合适的仪器。一般包括加热装置、温度传感器、温度控制系统、数据采集和分析系统等组成。
2.热板法仪器:热板法需要使用一块平板和对应的温度传感器,以及控制电路等。
3.热流计:热流计用于测量导热材料中的热流量,它包括散热区、热电偶和测温装置等。
4.热脉冲测试仪:热脉冲测试仪包括一个加热器、一个测温电阻和一个控制系统,用于给被测材料施加热脉冲以及测量温度变化。
总结:
导热系数是材料的一个重要物理参数,测量导热系数有静态方法和动态方法两种。常用的测量仪器包括导热系数测试仪、热板法仪器、热流计和热脉冲测试仪等。这些仪器可根据实验需要选择使用。随着科技的发展和进步,导热系数的测量方法和仪器也将进一步提高和完善。
11 导热系数的测量
实验十一 导热系数的测量导热系数是表征物质热传导性质的物理量。
材料结构的变化与所含杂质等因素都会对导热系数产生明显的影响,因此,材料的导热系数常常需要通过实验来具体测定。
测量导热系数的方法比较多,但可以归并为两类基本方法:一类是稳态法,另一类为动态法。
用稳态法时,先用热源对测试样品进行加热,并在样品内部形成稳定的温度分布,然后进行测量。
而在动态法中,待测样品中的温度分布是随时间变化的,例如按周期性变化等。
本实验采用稳态法进行测量。
【实验目的】1. 用稳态法测定出不良导体的导热系数,并与理论值进行比较。
2. 用稳态法测定铝合金棒的导热系数,分析用稳态法测定良导体导热系数存在的缺点。
【实验原理】根据傅立叶导热方程式,在物体内部,取两个垂直与热传导方向、彼此间相距为h 、温度分别为21T ,T 的平行平面(设21T T >),若平面面积均为S ,在t ∆时间内通过面积S 的热量Q ∆满足下述表达式:h)T T (S t Q21-••λ=∆∆ ( 1 ) 式中tQ∆∆为热流量,λ即为该物质的热导率(又称作导热系数),λ在数值上等于相距单位长度的两平面的温度相差1个单位时,单位时间内通过单位面积的热量,其单位是11K m W --•• 。
本实验仪器如图1所示:在支架上先放上圆铜盘P ,在P 的上面放上待测样品B (圆盘形的不良导体),再把带发热器的圆铝盘A 放在B 上,发热器通电后,热量从A 盘传到B 盘,再传到P 盘,由于P ,A 盘都是良导体,其温度即可以代表B 盘上、下表面的温度1T 、2T ,1T 、2T 分别由插入P ,A 盘边缘小孔铂电阻温度传感器E 来测量。
通过变换温度传感器插入位置,即可改变铂电阻温度传感器的测量目标。
由式(1)可以知道,单位时间内通过待测样品B 任一圆截面的热流量为:2B B21R h )T T (t Q•π•-•λ=∆∆ ( 2 ) 式中B R 为样品的半径,B h 为样品的厚度,当热传导达到稳定状态时,1T 和2T 的值不变,于是通过B 盘上表面的热流量与由铜盘P 向周围环境散热的速率相等,因此,可通过铜盘P 在稳定温度2T 时的散热速率来求出热流量tQ∆∆ 。
导热系数的测定方法
导热系数的测定方法导热系数(thermal conductivity)是指物质传导热量的能力,是描述物质热传导性能的重要参数。
测定物质的导热系数有多种方法,下面将介绍其中常用的几种方法。
1.热板法测定导热系数热板法是一种常用的测定导热系数的方法。
该方法需要将待测物质包裹在两块热板之间,首先加热其中一块热板,保持另一块热板的温度恒定,然后通过测量两块热板之间传导的热流量和温度差来计算导热系数。
该方法适用于导热系数在0.03-200W/m·K范围内的材料。
2.平板法测定导热系数平板法是另一种常用的测定导热系数的方法。
该方法将待测物质切割成平板状,在平板两侧施加不同温度,通过测量两侧温度差和传导热流量来计算导热系数。
该方法适用于导热系数在0.1-500W/m·K范围内的材料。
3.横向比热差法测定导热系数横向比热差法是一种用于测定导热系数的动态方法。
该方法将待测物质制成棒状,在其表面施加周期性的热源和热沉,通过测量棒状物体两处的温度差和周期性热流量来计算导热系数。
该方法适用于导热系数在0.2-10W/m·K范围内的材料。
4.传导-对流法测定导热系数传导-对流法是一种用于测定导热系数的方法。
该方法将待测物质加工成圆柱形,通过测量圆柱的传热速率和端部的温度差来计算导热系数。
在传热过程中考虑了传导和对流两个因素。
该方法适用于导热系数在0.03-100W/m·K范围内的材料。
5.热流计法测定导热系数热流计法是一种常用的测定导热系数的方法。
该方法使用热流计进行测量,将待测物质放置在热流计中,通过测量热流计两侧温度的变化和流过的热量来计算导热系数。
该方法适用于导热系数在0.1-500W/m·K范围内的材料。
除上述方法外,还有一些其他测定导热系数的方法,例如横向比热法、横向热流测量法、测量材料的导电系数然后通过Wiedemann-Franz定律计算导热系数等。
这些方法各有优缺点,选择合适的方法需要考虑待测物质的性质、测试条件和测量精度等因素。
导热系数的测量
4、取出样品,使加热盘与散热盘直接接触 ,再加热。当散热盘温度比稳态时的T3高出 约10℃(电压表读数约增加0.5mV)时,停止 加热,并立即移去加热盘,让散热盘开始自 然冷却,并马上每隔30s记录一次散热盘的温 度值,直到电压表读数比稳态时低约0.5mV为 止。
实验目的
1、掌握稳态法测材料导热系数 的方法
2、掌握一种用热电转换方式进行温
度测量的方法。
实验仪器
YBF-2型导热 系数测试仪
杜瓦瓶 测试样品(硬
铝、橡皮) 游标卡尺等
仪 器 简介
仪器采用低于36V的隔离电压作 为加热电源,固定于底座上的3 个测微螺旋头支撑着一个散热圆 铜盘,样品上下面可与加热铜盘 及散热铜盘紧密接触。散热盘下 方有一轴流式风扇,用来快速散 热,两个热电偶的冷端浸于杜瓦
3、根据稳态法,为得到稳定的温度分布,可 先将电源电压打到“高”档,几分钟后 θ1=4.00mv即可将开关拨到“低”档,通过调 节电热板电压“高”、“低”及“断”电档 ,使θ1读数在±0.03mv范围内,同时每隔30秒 读θ2的数值,如果在2分钟内样品下表面温度 θ2示值不变,即可认为已达到稳定状态。记 录稳态时与θ1,θ2对应的T1,T2值。
思考题
1、测导热系数λ要满足哪些条件?在实 验中如何保证?
2、测冷却速率时,为什么要在稳态温度 T2(或T3)附近选值?如何计算冷却 速率?
3、讨论本实验的误差因素,并说明导热 系数可能偏小的原因。
(如图),以
dT dx
表示在x处的温度梯度,以
dQ dt
表示在该处传
导热系数的测定
实验4—7 导热系数的测定热传导是热量交换(热传导、对流、辐射)的三种基本方式之一,导热系数(又称热导率)是反映材料热传导性质的物理量,表示材料导热能力的大小。
材料的导热机理在很大程度上取决于它的微观结构,热量的传递依靠原子、分子绕平衡位置的振动以及自由电子的迁移。
在金属中电子流起支配作用,在绝缘体和大部分半导体中则以晶格振动起主导作用。
因此,某种材料的导热系数不仅与构成材料的物质种类密切相关,而且还与它的微观结构、温度、压力及杂质含量有关。
在科学实验和工程设计中,所用材料的导热系数都需要用实验的方法精确测定。
物体按导热性能可分为良导体和不良导体。
对于良导体一般用瞬态法测量其导热系数,即通过测量正在导热的流体在某段时间内通过的热量。
对于不良导体则用稳态平板法测量其导热系数。
所谓稳态即样品内部形成稳定的温度分布。
本实验就是用稳态法测量不良导体的导热系数。
【实验目的】1. 了解热传导现象的物理过程,巩固和深化热传导的基本理论。
2. 学习用稳态平板法测量不良导体的导热系数。
3. 学会用作图法求冷却速率。
4. 了解实验材料的导热系数与温度的关系。
【实验原理】1. 导热系数根据1882年傅立叶(J.Fourier )建立的热传导理论,当材料内部有温度梯度存在时,就有热量从高温处传向低温处,这时,在dt 时间内通过dS 面积的热量dQ ,正比于物体内的温度梯度,其比例系数是导热系数,即:dS dzdT dt dQ λ-= (4-7-1) 式中,dtdQ 为传热速率;dz dT 为与面积dS 相垂直方向上的温度梯度,负号则表示热量从高温处传到低温处;λ为导热系数。
在国际单位制中,导热系数的单位为-1-1W m K ⋅⋅。
2. 用稳态平板法测不良导体的导热系数设圆盘B 为待测样品,如图4-7-1所示,待测样品B 、散热盘C 二者的规格相同(其位置如图4-7-2所示),厚度均为h 、截面积均为S (2S D π=,D 为圆盘直径),圆盘B大学物理实验 78 上下两面的温度1T 和2T 保持稳定,侧面近似绝热,则根据(4-7-1)式可知传热速率为: S h T T S h T T dt dQ 2112-=--=λλ (4-7-2) 为了减小侧面散热的影响,圆盘B 的厚度h 不能太大。
导热系数的测定讲解
导热系数的测定导热系数(热导率)是反映材料导热性能的物理量,它不仅是评价材料的重要依据,而且是应用材料时的一个设计参数,在加热器、散热器、传热管道设计、房屋设计等工程实践中都要涉及这个参数。
因为材料的热导率不仅随温度、压力变化,而且材料的杂质含量、结构变化都会明显影响热导率的数值,所以在科学实验和工程技术中对材料的热导率常用实验的方法测定。
测量热导率的方法大体上可分为稳态法和动态法两类。
本测试仪采用稳态法测量不同材料的导热系数,其设计思路清晰、简捷、实验方法具有典型性和实用性。
测量物质的导热系数是热学实验中的一个重要内容。
【实验目的】1、了解热传导现象的物理过程2、学习用稳态平板法测量材料的导热系数3.学习用作图法求冷却速率4、掌握一种用热电转换方式进行温度测量的方法【实验仪器】1、YBF-3导热系数测试仪一台2、冰点补偿装置一台3、测试样品(硬铝、硅橡胶、胶木板)一组4、塞尺一把【仪器简介】仪器的面板图上面板图下面板图加热温度的设定:①.按一下温控器面板上设定键(S ),此时设定值(SV )显示屏一位数码管开始闪烁。
②. 根据实验所需温度的大小,再按设定键(S )左右移动到所需设定的位置,然后通过加数键(▲)、减数键(▼)来设定好所需的加热温度。
③.设定好加热温度后,等待8秒钟后返回至正常显示状态。
仪器的连接连线图从铜板上引出的热电偶其冷端接至冰点补偿器的信号输入端,经冰点补偿后由冰点补偿器的信号输出端接到导热系数测定仪的信号输入端。
【实验原理】为了测定材料的导热系数,首先从热导率的定义和它的物理意义入手。
热传导定律指出:如果热量是沿着Z 方向传导,那么在Z 轴上任一位置Z 0 处取一个垂直截面积d S (如图1)以 表示在Z 处的温度梯度,以 表示在该处的传热速率(单位时间内通过截面积d S 的热量),那么传导定律可表示成:(S1-1)式中的负号表示热量从高温区向低温区传导(即热传导的方向与温度梯度的方向相反)。
实验11 导热系数的测量
实验11 导热系数的测量导热系数(热导率)是反映材料热性能的物理量,导热是热交换三种(导热、对流和辐射)基本形式之一,是工程热物理、材料科学、固体物理及能源、环保等各个研究领域的课题之一,要认识导热的本质和特征,需了解粒子物理而目前对导热机理的理解大多数来自固体物理的实验。
材料的导热机理在很大程度上取决于它的微观结构,热量的传递依靠原子、分子围绕平衡位置的振动以及自由电子的迁移,在金属中电子流起支配作用,在绝缘体和大部分半导体中则以晶格振动起主导作用。
因此,材料的导热系数不仅与构成材料的物质种类密切相关,而且与它的微观结构、温度、压力及杂质含量相联系。
在科学实验和工程设计中所用材料的导热系数都需要用实验的方法测定。
(粗略的估计,可从热学参数手册或教科书的数据和图表中查寻)1882年法国科学家J•傅里叶奠定了热传导理论,目前各种测量导热系数的方法都是建立在傅里叶热传导定律基础之上,从测量方法来说,可分为两大类:稳态法和动态法,本实验采用的是稳态平板法测量材料的导热系数。
【实验目的】(1)了解热传导现象的物理过程(2)学习用稳态平板法测量材料的导热系数(3)学习用作图法求冷却速率(4)掌握一种用热电转换方式进行温度测量的方法系数。
【实验仪器】YBF-3导热系数测试仪、测试样品(硬铝、橡皮、牛筋、陶瓷、胶木板)、塞尺YBF-3导热系数测试仪面板图:上面板图下面板图dzdTdt dQ h T T 21-【实验原理】为了测定材料的导热系数,首先从热导率的定义和它的物理意义入手。
热传导定律指出:如果热量是沿着Z 方向传导,那么在Z 轴上任一位置Z0 处取一个垂直截面积dS (如图1)以 表示在Z 处的温度梯度,以 表示在该处的传热速率(单位时间内通过截面积dS 的热量),那么传导定律可表示成:(2-1)式中的负号表示热量从高温区向低温区传导(即热传导的方向与温度梯度的方向相反)。
式中比例系数λ即为导热系数,可见热导率的物理意义:在温度梯度为一个单位的情况下,单位时内垂直通过单位面积截面的热量。
导热系数的测量实验报告
导热系数的测量实验报告导热系数的测量实验报告引言:导热系数是描述材料导热性能的重要参数,对于研究材料的热传导特性和应用于热工学、材料科学等领域具有重要意义。
本实验旨在通过测量不同材料的导热系数,探究不同材料的导热性能差异,并对实验结果进行分析和讨论。
实验方法:1. 实验仪器和材料准备:本实验使用的仪器包括导热系数测量仪、热电偶、热电偶接线仪、数字温度计等。
实验所用材料包括铝、铜、铁、玻璃等。
2. 实验步骤:a. 将导热系数测量仪预热至一定温度,使其达到稳定状态。
b. 将待测材料样品放置在测量仪器的传热面上,并保持其表面平整。
c. 记录待测材料样品的初始温度,并启动测量仪器。
d. 根据测量仪器的指示,等待一段时间,直至待测材料样品达到热平衡状态。
e. 记录待测材料样品的最终温度,并停止测量仪器。
实验结果:通过实验测量得到的材料导热系数如下表所示:材料导热系数(W/m·K)铝 205铜 385铁 80玻璃 1.05实验讨论:从实验结果可以看出,不同材料的导热系数存在明显差异。
铜的导热系数最高,达到385 W/m·K,而玻璃的导热系数最低,仅为1.05 W/m·K。
这是因为不同材料的结构和化学成分决定了其导热性能。
对于金属材料,其导热性能优于非金属材料,因为金属的导热机制主要是通过自由电子的传导。
而非金属材料如玻璃,则主要通过分子之间的振动传递热量,导致其导热性能较差。
此外,实验结果还表明不同金属材料的导热系数也存在差异。
铜的导热系数明显高于铝和铁,这是因为铜具有更高的电导率和更低的电阻率,使得其导热性能更好。
铁的导热系数较低,这可能与其晶格结构和杂质含量有关。
实验的不确定性主要来自于测量仪器的精度和待测材料样品的表面状态。
如果样品表面不平整或存在氧化层等影响传热的因素,将会对实验结果产生一定影响。
因此,在进行导热系数测量实验时,需要注意样品的处理和仪器的校准,以提高实验的准确性和可靠性。
导热系数的测定
导热系数的测定讲义⼀:导热系数的测定【实验⽬的】1、感知热传导现象的物理过程;2、学习⽤稳态法测量不良导体的导热系数;3、学习利⽤物体的散热速率测量传热速率。
【实验仪器及装置】FD-TC-B 型导热系数测定仪、游标卡尺及电⼦天平等【实验原理】 1、傅⽴叶热传导⽅程傅⽴叶热传导⽅程正确的反映了材料内部的热传导的基本规律。
该⽅程式指出:在物体内部,垂直于热传导⽅向彼此相距B h ,温度分别是121θθθ(和>)2θ的两个平⾏平⾯之间,当平⾯的⾯积为S 时,在t δ时间内通过⾯积S 的热量Q δ满⾜关系:212124B B B Q S d t h h θθθθδλλπδ--== (1)其tQ δδ为单位时间传过的热量(⼜称热流量),与λ为导热系数(⼜称热导率)、传热⾯积24B d S π=、距离B h 以及温差12θθ-有关。
⽽λ的物理意义为:相距单位长度的两个平⾯间的温度相差⼀个单位时,每秒通过单位⾯积的热量,单位为C m W 0//。
不良导体的导热系数⼀般很⼩,例如,矿渣棉为0.058,⽯棉板为0.12,松⽊为0.15~0.35,混凝⼟板为0.87,红砖为0.19,橡胶为0.22等。
良导体的导热系数通常⽐较⼤,约为不良导体的321010~倍,如铜为4.0×210。
以上各量单位是C m W 0//。
2、稳态温度和热流量的测量(1)稳态温度测量如图(⼆)所⽰,当传热达到稳定状态时,样品上下表⾯的温度21θθ和不变,这时可以认为加热盘C 通过样品传递的热流量与散热盘P 向周围环境散热θθ加热铜盘待测样品散热铜盘图(⼆)1θ2θB h速率相等。
因此可以通过散热盘P 在稳态温度2θ时的散热速率来求出通过样品传递的热流量δδ。
(2)热流量的测量当测得稳态时的样品上下表⾯温度1θ和2θ后,将样品B 抽去,让加热盘C 与散热盘P 接触,使散热盘的温度上升⾼到其稳态2θ时的5℃以上,再移开加热盘,让散热盘在风扇作⽤下冷却,记录散热盘温度θ随时间t 的下降情况,便可求出散热盘在其稳态2θ处的冷却速率2θθθ=??t ,则散热盘P 在2θ时的散热速率为:2θθθ=??t mc(2)其中m 为散热盘P 的质量,c 为其⽐热容。
导热系数的测量实验报告
导热系数的测量实验报告内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)导热系数的测量导热系数(又称导热率)是反映材料热性能的重要物理量,导热系数大、导热性能好的材料称为良导体,导热系数小、导热性能差的材料称为不良导体。
一般来说,金属的导热系数比非金属的要大,固体的导热系数比液体的要大,气体的导热系数最小。
因为材料的导热系数不仅随温度、压力变化,而且材料的杂质含量、结构变化都会明显影响导热系数的数值,所以在科学实验和工程设计中,所用材料的导热系数都需要用实验的方法精确测定。
一.实验目的1.用稳态平板法测量材料的导热系数。
2.利用稳态法测定铝合金棒的导热系数,分析用稳态法测定不良导体导热系数存在的缺点。
二.实验原理热传导是热量传递过程中的一种方式,导热系数是描述物体导热性能的物理量。
单位时间内通过某一截面积的热量dQ/dt 是一个无法直接测定的量,我们设法将这个量转化为较容易测量的量。
为了维持一个恒定的温度梯度分布,必须不断地给高温侧铜板加热,热量通过样品传到低温侧铜板,低温侧铜板则要将热量不断地向周围环境散出。
单位时间通过截面的热流量为:当加热速率、传热速率与散热速率相等时,系统就达到一个动态平衡,称之为稳态,此时低温侧铜板的散热速率就是样品内的传热速率。
这样,只要测量低温侧铜板在稳态温度 T2 下散热的速率,也就间接测量出了样品内的传热速率。
但是,铜板的散热速率也不易测量,还需要进一步作参量转换,我们知道,铜板的散热速率与冷却速率(温度变化率)dQ/dt=-mcdT/dt式中的 m 为铜板的质量, C为铜板的比热容,负号表示热量向低温方向传递。
由于质量容易直接测量,C 为常量,这样对铜板的散热速率的测量又转化为对低温侧铜板冷却速率的测量。
铜板的冷却速率可以这样测量:在达到稳态后,移去样品,用加热铜板直接对下铜板加热,使其温度高于稳态温度 T2(大约高出 10℃左右),再让其在环境中自然冷却,直到温度低于 T2,测出 温度在大于T2到小于T2区间中随时间的变化关系,描绘出 T —t 曲线(见图 2),曲线在T2处的斜率就是铜板在稳态温度时T2下的冷却速率。
导热系数的测定方法
导热系数的测定方法导热系数测定方法是用于测量材料导热性能的一种方法,它反映了材料传热过程中导热性能的好坏。
导热系数(也称热传导系数)是指单位面积上单位温度梯度所传热量的大小,通常以W/(m·K)作为单位。
导热系数的测定对于材料的工程应用和科学研究有着重要意义。
导热系数的测定方法主要包括静态法和动态法两种。
静态法主要包括平板法、线热源法和电导率法;动态法主要包括热板法、热流法和横向热阻法。
下面将分别对这些测定方法进行详细介绍。
首先是静态法的测定方法。
平板法是一种常用的测定导热系数的方法,它通过测量在一个稳态条件下材料两侧的温度差及导热板上的热流量来计算导热系数。
具体实验步骤为:首先,将样品固定在一个热源上,使之与导热板接触,然后,在导热板上施加适当的热流,通过测量导热板上和样品两侧的温度差,计算出样品的导热系数。
线热源法是另一种常用的测定导热系数的方法,它通过测量样品上一点处的温升及与之相邻两点的温差来计算导热系数。
具体实验步骤为:首先,在样品中加热一条线热源,然后在与该热源相邻的两点处测量温度差,并测量热源上一点处的温升,通过计算这些数据可以得到样品的导热系数。
电导率法是一种通过测量导体的电阻来计算其导热系数的方法。
此方法适用于导电性能良好的材料,例如金属。
具体实验步骤为:首先,在样品上施加一个稳定的电流,然后测量样品两侧的电压差,并根据样品的几何尺寸计算出其电阻,进而得到导热系数。
其次是动态法的测定方法。
热板法是一种常用的动态法测定导热系数的方法,它通过测量热板上的温度变化来计算导热系数。
具体实验步骤为:首先,将样品夹在两块热板之间,并施加一个恒定的热流,然后通过测量热板上的温度变化,结合样品的几何尺寸和材料的热容量,计算出样品的导热系数。
热流法是一种通过测量固体材料上的传热流量来测定导热系数的方法。
具体实验步骤为:首先,在样品上施加一个恒定的热流,然后通过测量热流的大小和样品两侧的温度差,计算出样品的导热系数。
导热系数的测定
导热系数的测定导热系数通常表示为λ,是指单位时间单位面积内的热量在温度差为1度时通过该材料的能力。
导热系数是材料热传导过程中的一个重要参数,它反映了热传导的速率和效率。
在工程实际中,导热系数的测定是一项重要的研究内容。
1. 热板法热板法是一种静态测量法,即样品两侧的温度分别保持一定的差值,在一定时间内测量样品内的温度变化,以求得样品的导热系数。
瞬态热法是将一个热脉冲注入样品中,然后测量样品的温度响应,根据时间-温度响应曲线来计算导热系数。
二、热板法测定导热系数的原理和步骤热板法是常见的测定导热系数的方法之一。
它根据样品的厚度和面积、热板的温度差、热板材料的导热系数和热容量等参数,测算出样品的导热系数。
(一)测定原理热板法通过测量测试样品中的温度场分布,计算测试样品的导热系数。
在实验装置中,两个寸头平整的热板相互接合,在热板之间放置测试样品,测试样品的上下表面与热板接触,实验时保持一定的温度差,通过记录在热板的加热或冷却过程中,测试样品中温度场变化,以推算测试样品的导热系数。
(二)测定步骤1. 制作测试样品,将样品定向放在两片平行的热板夹具之间,两片热板夹紧。
2. 测定热板间距,两热板表面需用电子秤进行测量,确定热板间的距离。
3. 测定热板温差,在实验前,将装置达到稳定温度,温差保持一致。
4. 记录测试样品的温度分布,在热板的加热或冷却过程中,进行数据采集和处理,记录测试样品的温度变化。
5. 计算测试样品的导热系数,通过计算温度分布,以及相关参数的测量,计算出测试样品的导热系数。
热流计法是通过施加一定的热流密度,测量材料不同位置的温度和不同时间点的温度变化,求解材料的导热系数。
其基本原理是著名的傅里叶热传导定律,该定律表述了物质中热量的传递与媒质的导热系数成正比,与媒质的面积和温度变化成正比,与媒质的厚度成反比。
热流计法是一种直接测量法,即施加定量的热量到测试样品中,记录不同位置的温度变化。
实验中将两片金属薄片紧贴在测试样品表面,接口处数值间隙极小,而金属薄片内部均布热电偶,能够精密观察温度变化。
导热系数的测定方法
实验时,在直径为 d1 和 d2 的两个同心圆球的圆壳之间均匀地填 充被测材料(可为粉状、粒状或纤维状),在内球中则装有球形电 炉加热器。当加热时间足够长时,球壁导热仪将达到热稳定状态, 内外壁面温度分别恒为 t1 和 t2 。根据这种状态,可以推导出导热系 数λ的计算公式。
根据傅立叶定理,经过物体的热流量有如下的关系: (44-1)
式中: Q ── 单位时间内通过球面的热流量,W ; λ ── 绝热材料的导热系数,W/m·℃ ; dt/dr — 温度梯度,℃/m ; A ── 球面面积,A = 4πr2,m2 。
对(44 -1)式进行分离变量,并根据上述条件取定 积分得 (44 - 2)
其中:r1、r2分别为内球外半径和外球内半径。积分得:
5.测定并绘制绝热材料的导热系数和温度之间的关系
6.关闭电源,结束实验。
Q( d 2 d1 ) 2 ( t1 t 2 ) d1 d 2
(44-3)
其中:Q为球形电炉提供的热量。只要测出该热量,即可计算出所测隔热材料 的导热系数。 事实上,由于给出的λ是隔热材料在平均温度 tm =(t1+t2)/2时的导热系数。因 此,在实验中只要保持温度场稳定,测出球径d1和d2 ,热量Q以及内外球面温度 即可计算出平均温度tm下隔热材料的导热系数。改变 t1 和 t2 ,则可得到导热系数 与温度关系的曲线。
1.将被测绝热材料放置在烘箱中干燥,然后均匀地装入球壳的夹 层之中。 2.按图44-1安装仪器仪表并连接导线,注意确保球体严格同心。 检查连线无误后通电,使测试仪温度达到稳定状态(约3~4小时)。 3.用温度计测出热电偶冷端的温度t0。 4.每间隔5~10分钟测定一组温度数据(内上、内下、外上、外 下)。读数应保证各相应点的温度不随时间变化(实验中以电位差 计显示变化小于0.02 mv为准),温度达到稳定状态时再记录。共测 试3组,取其平均值。
导热系数测量及方法
导热系数测量及方法导热系数是一个物质传导热量的特性参数,它反映了物质的热传导能力,是研究导热性能的重要指标。
测量导热系数的方法有很多种,以下将介绍几种常用的方法:1.平板热流法(也称平板法):平板热流法是一种常用的测量导热系数的方法。
它基于热传导定律,利用一个恒定的热流通过被测物质的平板,测量平板上下表面的温度差,根据传热方程计算导热系数。
该方法适用于导热系数较小的材料。
2.水热平衡法:水热平衡法是一种测量导热系数的间接方法。
它利用被测物质与水接触后,通过测量水的温度变化以及水的热容和物质的密度等参数,推导出物质的导热系数。
该方法适用于导热系数较小且液体样品和粉末样品的测量。
3.热板法:热板法是一种高精度的测量导热系数的方法。
它利用两个平行板,一个加热,一个冷却,并通过测量平板上的温度分布来计算导热系数。
该方法适用于导热系数较小的材料,如绝热材料。
4.横向传热法:横向传热法也称为横截面法或雷诺热传导法。
它通过测量一个材料的截面上的温度分布,利用热传导定律来计算导热系数。
该方法适用于导热系数较大的材料。
5.数值模拟方法:数值模拟方法是一种计算机辅助的测量导热系数的方法。
它通过建立物质的传热模型,并利用计算流体力学(CFD)或有限元法等数值方法,模拟和计算物质的导热过程,从而获得导热系数。
该方法适用于复杂样品或无法直接测量的情况。
6.激光闪烁法:激光闪烁法利用激光束在被测物体表面产生温度脉冲,通过测量激光束经过物体后的时间衰减和频率偏移等参数来计算导热系数。
该方法适用于导热系数较小的材料。
总之,测量导热系数的方法多种多样,选择合适的方法取决于被测物质的性质、样品形状和导热系数的大小等因素。
随着技术的进步,新的测量方法不断涌现,为研究导热性能提供了更多的选择。
导热系数的测定方法
导热系数的测定方法
导热系数是描述物质传热性能的物理量,常用的测定方法有以下几种:
1. 平板法:将待测物质制成平板样品,在样品两侧施加一个恒定的温度差,通过测量样品两侧的温度分布来计算导热系数。
2. 热线法:通过将一根加热丝放入待测物质中,使其在一定时间内以恒定功率加热,同时测量加热丝的温度和待测物质的温度分布,从而计算导热系数。
3. 横向热流法:将待测物质制成长方体样品,样品两侧施加不同温度的热源,通过测量样品两侧的热流量和温度差来计算导热系数。
4. 热平衡法:将待测物质制成试样,放置在稳定的温度环境中,测量试样的表面温度,根据表面温度的变化率和试样的尺寸参数来计算导热系数。
5. 热梯度法:简单地说就是测量物质中的温度差别,通过测量物质内部的温度梯度和加热面的功率,来计算导热系数。
这些方法根据不同的实验条件和样品特点选择适合的测定方法,以获得准确的导热系数数值。
同时,也可以利用计算机模拟和数值方法来推算导热系数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验九 导热系数的测量
[实验目的]
用稳态法测出不良导热体的导热系数,并与理论值进行比较。
[实验仪器]
发热盘A ,散热盘P ,样品B ,数显计时器,毫伏表,电源,冰瓶,游标卡尺。
[实验原理]
h
T T S t Q
21-=∆∆λ ( 9-1 )
B B
R h T T t Q
221πλ-=∆∆ ( 9-2 )
(
)()
P
P 2
P P
P 2P h R 22h R 2R mc ππππ++∆∆=∆∆R t T t Q (9-3) ()()()2
211
222B
P P B P P R T T h R h h R t T mc
πλ•-+•+∆∆= (9-4)
[实验步骤]
1、用游标卡尺测量待测样品直径和厚度,各测5次。
2、用游标卡尺测量散热盘P 的直径和厚度,测5次。
用天平称出P 盘的质量。
一、不良导体导热系数的测量
1、实验时,先将待测样品(例如硅橡胶圆片)放在散热盘P 上面,然后将发热盘A 放在样品盘B 上方,并用固定螺母固定在机架上,再调节三个螺旋头,使样品盘的上下两个表面与发热盘和散热盘紧密接触。
2、在杜瓦瓶中放入冰水混合物,将热电偶的冷端(黑色)插入杜瓦瓶中。
将热电偶的热端(红色)分别插入加热盘A 和散热盘P 侧面的小孔中,并分别将其插入加热盘A 和散热盘P 的热电偶接线连接到仪器面板的传感器Ⅰ、Ⅱ上。
3、接通电源,将加热开关置于高挡,开始加热。
当传感器Ⅰ的温度读数V T1约为时,再将加热开关置于低挡,降低加热电压,以免温度过高。
4、传感器Ⅰ、Ⅱ的读数不再上升(V T1和V T2的数值在10min 内的变化小于,约需40分钟,视不同的实验条件而不同)时,说明已达到稳态,每隔3分钟记录V T1和V T2的值。
5、测量散热盘在稳态值T 2附近的散热速率(
t
Q
∆∆)。
移开铜盘A ,取下橡胶盘,并使铜盘A 的底面与铜盘P 直接接触,当P 盘的温度上升到高于稳定态的V T2值若干度(左右)后,再将铜盘A 移开,让铜盘P 自然冷却,每隔30秒(或自定)记录此时的T 2值。
根据测量值计算出散热速率
t
Q
∆∆。
二、金属导热系数的测量
1、先将两块树脂圆环套在金属圆筒两端,并在金属圆筒两端涂上导热硅脂,然后把圆柱体金属铝棒,置于发热圆盘与散热圆盘之间。
调节散热盘P 下方的三颗螺丝,使金属圆筒与加热盘A 及散热盘P 紧密接触。
2、当发热盘与散热盘达到稳定的温度分布后,T 1、T 2值为金属样品上下两个面的温度,此时散热盘P 的温度为T 3值。
因此测量P 盘的冷却速度为:
3
T T t
Q =∆∆
由此得到导热系数为2
211
3
mR T T h t
Q mc
T T ⨯-⨯
∆∆==λ
测T 3值时可在T 1、T 2达到稳定时,将插在发热圆盘与散热圆盘中的热电偶取出,分别插入金属圆柱体上的上下两孔中进行测量。
三、测量空气的导热系数,调节三个螺旋头,使发热圆盘与散热圆盘的距离为h ,并用塞尺进行测量(即塞尺的厚度),此距离为待测空气层的厚度。
[实验数据与结果]
1、 实验数据记录(铜的比热11C g cal 09197.0c --︒⋅⋅=,比重cm 3
)
散热盘P : 质量m = 968 (g) 半径==
P P D 2
1
R (cm )
橡胶盘: 半径==B B D 2
1R (cm )
稳态时T 1、T 2的值(转换见附录2的分度表)T 1=℃ T 2= ℃
散热速率:
2、根据实验结果,计算出不良导热体的导热系数,并求出相对误差。
()
()()2
211
222B P P B P P R T T h R h h R t T mc
πλ•-+•+∆∆=
相对误差=%~% [实验结果分析]
1、放置热电偶的发热和散热圆盘侧面的小孔应与杜瓦瓶同一侧,避免热电偶线相互交叉。
2、实验中,抽出被测样品时,应先旋松加热圆筒侧面的紧定螺钉。
样品取出后,小心将加热圆筒降下,使发热盘与散热盘接触,应防止高温烫伤。
= W/。