2020届山东省泰安市肥城市一模数学试题(解析版)

合集下载

2020届山东省肥城市普通高中高三毕业班下学期高考适应性训练(一)数学试题(解析版)

2020届山东省肥城市普通高中高三毕业班下学期高考适应性训练(一)数学试题(解析版)

绝密★启用前山东省肥城市普通高中2020届高三毕业班下学期高考适应性训练(一)数学试题(解析版)注意事项:1.答题前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|320A x x x =-+<,{}|1|1B=x|x -<,则A B =( )A. {}|02x x <<B. {}1|0x x <<C. {}|2x x <D. {}|12x x <<【答案】D【解析】【分析】解出集合A 、B 中的不等式即可.【详解】因为{}{}2|320|12A x x x x x =-+<=<<,{}{}|1|102B=x|x x|x<-<=<所以A B ={}|12x x <<故选:D【点睛】本题考查的是一元二次不等式的解法和集合的运算,较简单.2.已知()2i i 2i z +=-,则z =( ) A. 3 B. 2 C. 1 D. 12【答案】C【解析】【分析】 本题首先可根据复数的四则运算得出4355z i =-+,然后根据复数的模的相关计算即可得出结果.【详解】()()()()()2221222122222i i i i i i i z i i i i i +-++-====----+ 224224224343441555i i i i i i i i +------+====-+-+,故1z ==, 故选:C.【点睛】本题考查复数的四则运算以及复数的模,若复数z a bi =+,则z =考查计算能力,是简单题.3.下列结论正确的是( )A. 残差点均匀分布的带状区域的宽度越窄,说明模型拟合精度越低.B. 在线性回归模型中,相关指数0.96=2R ,说明解释变量对于预报变量变化的贡献率约为96%.C. 已知随机变量2(2,)X N σ,若(02)0.4P X <<=,则(4)0.2P X >=.D. 设,a b 均为不等于1的正实数,则“log 2log 2b a >”的充要条件是“1a b >>”.【答案】B【解析】【分析】。

2020年山东省泰安市肥城市新高考数学模拟试卷(3月份)

2020年山东省泰安市肥城市新高考数学模拟试卷(3月份)

2020年山东省泰安市肥城市新高考数学模拟试卷(3月份)一、单选题1.(5分)已知集合{|11}A x x =-<<,{|02}B x x =<<,则(A B =U ) A .(1,2)-B .(1,0)-C .(0,1)D .(1,2)2.(5分)若集合{1P =,2,3,4},{|05Q x x =<<,}x R ∈,则“x P ∈”是“x Q ∈”的( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .既不充分也不必要条件3.(5分)已知(a x =r ,4-,2),(3b =r ,y ,5)-,若a b ⊥r r ,则22x y +的取值范围为()A .[2,)+∞B .[3,)+∞C .[4,)+∞D .[5,)+∞4.(5分)若a ,b ,c 满足23a =,2log 5b =,32c =.则( ) A .c a b <<B .b c a <<C .a b c <<D .c b a <<5.(5分)对数函数log (0a y x a =>且1)a ≠与二次函数2(1)y a x x =--在同一坐标系内的图象可能是( )A .B .C .D .6.(5分)函数2log y x x =( )A.B.C.D.7.(5分)已知函数31(0)()2(0)xaxf xx x-⎧+=⎨+>⎩…,若((1))18f f-=,那么实数a的值是()A.0B.1C.2D.38.(5分)2018年辽宁省正式实施高考改革.新高考模式下,学生将根据自己的兴趣、爱好、学科特长和高校提供的“选考科目要求”进行选课.这样学生既能尊重自己爱好、特长做好生涯规划,又能发挥学科优势,进而在高考中获得更好的成绩和实现自己的理想.考改实施后,学生将在高二年级将面临着312++的选课模式,其中“3”是指语、数、外三科必学内容,“1”是指在物理和历史中选择一科学习,“2”是指在化学、生物、地理、政治四科中任选两科学习.某校为了更好的了解学生对“1”的选课情况,学校抽取了部分学生对选课意愿进行调查,依据调查结果制作出如下两个等高堆积条形图:根据这两幅图中的信息,下列哪个统计结论是不正确的()A.样本中的女生数量多于男生数量B.样本中有学物理意愿的学生数量多于有学历史意愿的学生数量C.样本中的男生偏爱物理D .样本中的女生偏爱历史 二、多选题9.(5分)设函数()sin(2)cos(2)44f x x x ππ=+++,则()(f x )A .是偶函数B .在(0,)2π单调递减C .最大值为2D .其图象关于直线2x π=对称10.(5分)如表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:空调类冰箱类小家电类其它类营业收入占比 90.10% 4.98% 3.82% 1.10% 净利润占比95.80%0.48%-3.82%0.86%则下列判断中正确的是( )A .该公司2018年度冰箱类电器销售亏损B .该公司2018年度小家电类电器营业收入和净利润相同C .该公司2018年度净利润主要由空调类电器销售提供D .剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低 11.(5分)在空间四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 上的点,当//BD 平面EFGH 时,下面结论正确的是( ) A .E ,F ,G ,H 一定是各边的中点B .G ,H 一定是CD ,DA 的中点C .::AE EB AH HD =,且::BF FC DG GC = D .四边形EFGH 是平行四边形或梯形12.(5分)如图,正方体1111ABCD A B C D -的棱长为1,则下列四个命题正确的是( )A .直线BC 与平面11ABC D 所成的角等于4πB .点C 到面11ABC DC .两条异面直线1D C 和1BC 所成的角为4πD .三棱柱1111AA D BB C - 三、填空题13.(5分)1arcsin()arccos(arctan(2-++= .14.(5分)在平面直角坐标系xOy 中,将直线l 沿x 轴正方向平移3个单位,沿y 轴正方向平移5个单位,得到直线1l .再将直线1l 沿x 轴正方向平移1个单位,沿y 轴负方向平移2个单位,又与直线l 重合.若直线l 与直线1l 关于点(2,3)对称,则直线l 的方程是 . 15.(5分)在我国古代数学名著《九章算术》中,把两底面为直角三角形的直棱柱称为“堑堵”.已知三棱柱111ABC A B C -是一个“堑堵”,其中12AB BC BB ===,点M 是11A C 的中点,则四棱锥11M B C CB -的外接球的表面积为 .16.(5分)定义在R 上的偶函数()f x 满足()()f e x f e x +=-,且(0)0f =,当(0x ∈,]e 时,()f x lnx =.已知方程1()sin 22f x x e π=在区间[e -,3]e 上所有的实数根之和为3ea ,将函数2()3sin 14g x x π=+的图象向右平移a 个单位长度,得到函数()h x 的图象,则h (7)= . 四、解答题17.(10分)已知公差不为零的等差数列{}n a 的前n 项和为n S ,2219a a =,618S =.(1)求{}n a 的通项公式;(2)求n S 的最大值及对应n 的大小.18.(12分)已知函数44()cos 2sin cos sin f x x x x x =--. (1)求()f x 的单调递增区间;(2)求()f x 在[0,]2π上的最小值及取最小值时的x 的集合.19.(12分)如图所示的几何体中,111ABC A B C -为三棱柱,且1AA ⊥平面ABC ,1AA AC =,四边形ABCD 为平行四边形,2AD CD =,60ADC ∠=︒.(1)求证:AB ⊥平面11ACC A ;(2)若2CD =,求四棱锥111C A B CD -的体积.20.(12分)在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b +=>>的焦距为2,且过点2. (1)求椭圆C 的方程;(2)设椭圆C 的上顶点为B ,右焦点为F ,直线l 与椭圆交于M ,N 两点,问是否存在直线l ,使得F 为BMN ∆的垂心,若存在,求出直线l 的方程;若不存在,说明理由. 21.(12分)现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对“楼市限购令”赞成人数如表: 月收入(单位百元) [15,25) [25,35)[35,45) [45,55) [55,65) [65,75)频数 5 10 15 10 5 5 赞成人数4812521(Ⅰ)由以上统计数据填下面22⨯列联表并问是否有99%的把握认为“月收入以5500为分界点”对“楼市限购令”的态度有差异;月收入低于55百元的人数月收入不低于55百元的人数合计 赞成 不赞成 合计(Ⅱ)若采用分层抽样在月收入在[15,25),[25,35)的被调查人中共随机抽取6人进行追踪调查,并给予其中3人“红包”奖励,求收到“红包”奖励的3人中至少有1人收入在[15,25)的概率.参考公式:22()()()()()n ad bd K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:22.(12分)已知函数22()()x f x e ax x a =++在1x =-处取得极小值. (1)求实数a 的值;(2)若函数()f x 存在极大值与极小值,且函数()()2g x f x x m =--有两个零点,求实数m的取值范围.(参考数据: 2.236)e ≈≈2020年山东省泰安市肥城市新高考数学模拟试卷(3月份)参考答案与试题解析一、单选题1.(5分)已知集合{|11}A x x =-<<,{|02}B x x =<<,则(A B =U ) A .(1,2)-B .(1,0)-C .(0,1)D .(1,2)【解答】解:集合{|11}(1,1)A x x =-<<=-,{|02}(0,2)B x x =<<=, 则(1,2)A B =-U , 故选:A .2.(5分)若集合{1P =,2,3,4},{|05Q x x =<<,}x R ∈,则“x P ∈”是“x Q ∈”的( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .既不充分也不必要条件【解答】解:Q 集合{1P =,2,3,4},{|05Q x x =<<,}x R ∈,∴ “x P ∈” ⇒ “x Q ∈”,即充分性成立,反之,则不成立.例:0.1Q ∈,但0.1P ∉,即必要性不成立. 故“x P ∈”是“x Q ∈”的充分非必要条件. 故选:A .3.(5分)已知(a x =r ,4-,2),(3b =r ,y ,5)-,若a b ⊥r r ,则22x y +的取值范围为()A .[2,)+∞B .[3,)+∞C .[4,)+∞D .[5,)+∞【解答】解:Q a b ⊥r r ,∴34100a b x y =--=rr g, 原点到直线的距离2d ==.则22x y +的取值范围为[4,)+∞. 故选:C .4.(5分)若a ,b ,c 满足23a =,2log 5b =,32c =.则( ) A .c a b <<B .b c a <<C .a b c <<D .c b a <<【解答】解:23a =,可得(1,2)a ∈, 2log 52b =>,由32c =.可得(0,1)c ∈.c a b ∴<<.故选:A .5.(5分)对数函数log (0a y x a =>且1)a ≠与二次函数2(1)y a x x =--在同一坐标系内的图象可能是( )A .B .C .D .【解答】解:由对数函数log (0a y x a =>且1)a ≠与二次函数2(1)y a x x =--可知, ①当01a <<时,此时10a -<,对数函数log a y x =为减函数, 而二次函数2(1)y a x x =--开口向下,且其对称轴为102(1)x a =<-,故排除C 与D ;②当1a >时,此时10a ->,对数函数log a y x =为增函数, 而二次函数2(1)y a x x =--开口向上,且其对称轴为102(1)x a =>-,故B 错误,而A 符合题意. 故选:A .6.(5分)函数2log y x x =( )A .B .C .D .【解答】解:当4x =时,2log 44220y =-=, 当16x =时,2log 1616440y =-=-=, 即函数有两个零点,排除B ,C ,D 故选:A .7.(5分)已知函数31(0)()2(0)x a x f x x x -⎧+=⎨+>⎩„,若((1))18f f -=,那么实数a 的值是( )A .0B .1C .2D .3【解答】解:Q 函数31(0)()2(0)x a x f x x x -⎧+=⎨+>⎩„,((1))18f f -=,(1)314f ∴-=+=,((1))f f f -=(4)4218a =+=,解得2a =. 故选:C .8.(5分)2018年辽宁省正式实施高考改革.新高考模式下,学生将根据自己的兴趣、爱好、学科特长和高校提供的“选考科目要求”进行选课.这样学生既能尊重自己爱好、特长做好生涯规划,又能发挥学科优势,进而在高考中获得更好的成绩和实现自己的理想.考改实施后,学生将在高二年级将面临着312++的选课模式,其中“3”是指语、数、外三科必学内容,“1”是指在物理和历史中选择一科学习,“2”是指在化学、生物、地理、政治四科中任选两科学习.某校为了更好的了解学生对“1”的选课情况,学校抽取了部分学生对选课意愿进行调查,依据调查结果制作出如下两个等高堆积条形图:根据这两幅图中的信息,下列哪个统计结论是不正确的( )A .样本中的女生数量多于男生数量B .样本中有学物理意愿的学生数量多于有学历史意愿的学生数量C .样本中的男生偏爱物理D .样本中的女生偏爱历史 【解答】解:由等高堆积条形图知:在A 中,由等高堆积条形图2知,样本中的女生数量多于男生数量,故A 正确;在B 中,由等高堆积条形图1知,样本中有学物理意愿的学生数量多于有学历史意愿的学生数量,故B 正确;在C 中,由等高堆积条形图2知,样本中的男生偏爱物理,故C 正确; 在D 中,由等高堆积条形图2知,样本中的女生偏爱物理,故D 错误. 故选:D . 二、多选题9.(5分)设函数()sin(2)cos(2)44f x x x ππ=+++,则()(f x )A .是偶函数B .在(0,)2π单调递减C .最大值为2D .其图象关于直线2x π=对称【解答】解:Q 函数()sin(2)cos(2)44f x x x ππ=+++2)]44x ππ=++2)2x π=+2x =,()2f x x ∴=,()f x ∴C 不符合题意.()2)2()f x x x f x -=-==Q ,()y f x ∴=为偶函数,其对称轴方程是:()2k x k Z π=∈,所以A ,D 选项符合题意;2y x =的单调递减区间为222()k x k k Z πππ+∈剟,即()2k xk Z ππ∈剟,函数()y f x =在(0,)2π单调递减,所以B 选项符合题意.故选:ABD .10.(5分)如表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:则下列判断中正确的是( )A .该公司2018年度冰箱类电器销售亏损B .该公司2018年度小家电类电器营业收入和净利润相同C .该公司2018年度净利润主要由空调类电器销售提供D .剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低 【解答】解:根据表中数据知,该公司2018年度冰箱类电器销售净利润所占比为0.48-,是亏损的,A 正确;小家电类电器营业收入所占比和净利润所占比是相同的,但收入与净利润不一定相同,B 错误;该公司2018年度净利润空调类电器销售所占比为95.80%,是主要利润来源,C 正确; 所以剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低,D 正确. 故选:ACD .11.(5分)在空间四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 上的点,当//BD 平面EFGH 时,下面结论正确的是( )A .E ,F ,G ,H 一定是各边的中点B .G ,H 一定是CD ,DA 的中点C .::AE EB AH HD =,且::BF FC DG GC = D .四边形EFGH 是平行四边形或梯形【解答】解:Q 在三棱锥ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 上的点,//BD 平面EFGH ,//BD EH ∴,//BD FG ,E ,F ,G ,H 未必是各边的中点,故A ,B 错误; ::AE EB AH HD ∴=且::BF FC DG GC =.四边形EFGH 是平行四边形或梯形; 故选:CD .12.(5分)如图,正方体1111ABCD A B C D -的棱长为1,则下列四个命题正确的是( )A .直线BC 与平面11ABC D 所成的角等于4πB .点C 到面11ABCD 的距离为22C .两条异面直线1D C 和1BC 所成的角为4πD .三棱柱1111AA D BB C -3【解答】解:正方体1111ABCD A B C D -的棱长为1, 对于选项A :直线BC 与平面11ABC D 所成的角为14CBC π∠=,故选项A 正确.对于选项B :点C 到面11ABC D 的距离为1B C 长度的一半,即h =,故选项B 正确. 对于选项C :两条异面直线1D C 和1BC 所成的角为3π,故选项C 错误.对于选项D :三棱柱1111AA D BB C -外接球半径2r ==,故选项D 正确. 故选:ABD . 三、填空题13.(5分)1arcsin()arccos(arctan(2-++= 3π.【解答】解:11arcsin()arccos(arctan(arcsin()22π-++=-+--()6633πππππ=-+--=,故答案为:3π. 14.(5分)在平面直角坐标系xOy 中,将直线l 沿x 轴正方向平移3个单位,沿y 轴正方向平移5个单位,得到直线1l .再将直线1l 沿x 轴正方向平移1个单位,沿y 轴负方向平移2个单位,又与直线l 重合.若直线l 与直线1l 关于点(2,3)对称,则直线l 的方程是6810x y -+= .【解答】解:设直线l 的方程为:y kx b =+,将直线l 沿x 轴正方向平移3个单位,沿y 轴正方向平移5个单位,得到直线1:(3)5l y k x b =-++,化为53y kx b k =++-, 再将直线1l 沿x 轴正方向平移1个单位,沿y 轴负方向平移2个单位,(31)52y k x b =--++-,化为34y kx k b =+-+.又与直线l 重合.34b k b ∴=-+,解得34k =. ∴直线l 的方程为:34y x b =+,直线1l 为:31144y x b =++, 设直线l 上的一点3(,)4m P m b +,则点P 关于点(2,3)的对称点3(4,6)4P m b m '---,33116(4)444b m m b ∴--=-++,解得18b =.∴直线l 的方程是3148y x =+,化为:6810x y -+=. 故答案为:6810x y -+=.15.(5分)在我国古代数学名著《九章算术》中,把两底面为直角三角形的直棱柱称为“堑堵”.已知三棱柱111ABC A B C -是一个“堑堵”,其中12AB BC BB ===,点M 是11A C 的中点,则四棱锥11M B C CB -的外接球的表面积为 8π .【解答】解:由题意如图所示:设P 为底面正方形11BCC B 的中心, 即是底面外接圆的圆心可得外接圆的半径2r PC ==,1PE =, 取E 为11B C 的中点,连接ME ,由题意可得ME ⊥面1BC ,且可得11112ME A B ==, 过P 作PO ⊥面1BC 可得//PO ME ,取OC OP R ==,则O 为外接球的球心, 作//ON PE 交ME 于N ,可得四边形PONE 为矩形, 在三角形OPC 中222222OP OC PC R NE =-=-=, 在三角形MON 中22221MN OM ON R =-=-,因为ME MN NE =+,所以22112R R =-+-,解得2R =, 所以外接球的表面积248S R ππ==, 故答案为:8π.16.(5分)定义在R 上的偶函数()f x 满足()()f e x f e x +=-,且(0)0f =,当(0x ∈,]e 时,()f x lnx =.已知方程1()sin 22f x x e π=在区间[e -,3]e 上所有的实数根之和为3ea ,将函数2()3sin 14g x x π=+的图象向右平移a 个单位长度,得到函数()h x 的图象,则h (7)= 52. 【解答】解:因为()()f e x f e x +=-,所以()f x 关于x e =对称,又因为偶函数()f x ,所以()f x 的周期为2e . 当(0x ∈,]e 时,()f x lnx =, 另外(0)0f =,所以(2)0f e =,于是可作出函数()f x 在[e -,3]e 上的图象如图所示,方程1()sin 22f x x e π=的实数根可以看作函数()y f x =与函数1sin 22y x eπ=的交点的横坐标,由图象的对称性可知,两个函数在[e -,3]e 上有6个交点,且6个交点的横坐标之和为6e , 所以63e ea =,故2a =, 因为235()3sin 1cos 4222g x x x ππ=+=-+, 所以3535()cos (2)cos 222222h x x x ππ=--+=+,故3755(7)cos 2222h π=+=.故答案为:52.四、解答题17.(10分)已知公差不为零的等差数列{}n a 的前n 项和为n S ,2219a a =,618S =.(1)求{}n a 的通项公式;(2)求n S 的最大值及对应n 的大小. 【解答】解:(1)设{}n a 的公差为d ,且0d ≠由2219a a =,得140a d +=,由618S =,得1532a d +=,解得18a =,2d =-.{}n a ∴的通项公式为102n a n =-,*n N ∈.(2)由(1),得22(1)9818(2)9()224n n n S n n n n -=+⨯-=-+=--+. *n N ∈Q ,∴当4n =或5n =时,n S 有最大值为20.18.(12分)已知函数44()cos 2sin cos sin f x x x x x =--. (1)求()f x 的单调递增区间;(2)求()f x 在[0,]2π上的最小值及取最小值时的x 的集合.【解答】解:4422()cos 2sin cos sin cos sin sin 2cos2sin 22cos(2)4f x x x x x x x x x x x π=--=--=-=+,(1)令22224k x k πππππ+++剟,解可得,3788k x k ππππ++剟,k Z ∈, 故函数的单调递增区间37[,]88k k ππππ++,k Z ∈, (2)Q 1[0,]2x π∈,∴52[,]444x πππ+∈,∴当24x ππ+=即38x π=时,函数取得最小值2-. 19.(12分)如图所示的几何体中,111ABC A B C -为三棱柱,且1AA ⊥平面ABC ,1AA AC =,四边形ABCD 为平行四边形,2AD CD =,60ADC ∠=︒. (1)求证:AB ⊥平面11ACC A ;(2)若2CD =,求四棱锥111C A B CD -的体积.【解答】解:(1)证明:Q 四边形ABCD 为平行四边形,2AD CD =,60ADC ∠=︒.90ACD BAC ∴∠=∠=︒,AB AC ∴⊥,Q 几何体中,111ABC A B C -为三棱柱,且1AA ⊥平面ABC ,1AB AA ∴⊥,1AC AA A =Q I ,AB ∴⊥平面11ACC A .(2)解:连结1A C ,AB ⊥Q 平面11ACC A ,//CD AB ,CD ∴⊥平面11CC A ,∴四棱锥111C A B CD -的体积:11111D CC A C A B C V V V --=+1111111133A C C ABC CD S CC S =⨯⨯+⨯⨯V V 111122323232233232=⨯⨯⨯⨯+⨯⨯⨯⨯ 8=.20.(12分)在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b +=>>的焦距为2,且过点22. (1)求椭圆C 的方程;(2)设椭圆C 的上顶点为B ,右焦点为F ,直线l 与椭圆交于M ,N 两点,问是否存在直线l ,使得F 为BMN ∆的垂心,若存在,求出直线l 的方程;若不存在,说明理由. 【解答】解:(1)由题意知:22c =,221112a b+=,222a b c =+,解得:22a =,21b =, 所以椭圆的方程为:2212x y +=;(2)假设存在这样的直线l ,使得F 为BMN ∆的垂心,由(1)得(0,1)B ,(1,0)F ,1BF k ∴=-, 由题意可得l BF ⊥,NF BM ⊥,设直线l 的方程为:y x m =+,(,)M x y ,(,)N x y '', 联立直线与椭圆的方程整理得:2234220x mx m ++-=,∴△221643(22)0m m =-⨯⨯->,可得23m <,即33m -<<,且43mx x '+=-,2223m xx -'=,2()yy xx m x x m '''=+++Q (1FN BM x '=-u u u r u u u u rg ,)(y x ',2222224341)()2(1)()2(1)333m m m m y xx x yy y xx yy x x m xx m x x m m m m m -+-''''''''-=-+-=+--+=+-++-=--+-=g g ,因为NF BM ⊥,所以0NF BM =u u u r u u u u rg ,所以2340m m +-=,解得:1m =或43m =-,当1m =过了B 点,所以舍去所以存在直线4:3l y x =-符合F 为BMN ∆的垂心.21.(12分)现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对“楼市限购令”赞成人数如表: 月收入(单位百元) [15,25) [25,35)[35,45) [45,55) [55,65) [65,75)频数 5 10 15 10 5 5 赞成人数4812521(Ⅰ)由以上统计数据填下面22⨯列联表并问是否有99%的把握认为“月收入以5500为分界点”对“楼市限购令”的态度有差异;月收入低于55百元的人数月收入不低于55百元的人数合计 赞成 不赞成(Ⅱ)若采用分层抽样在月收入在[15,25),[25,35)的被调查人中共随机抽取6人进行追踪调查,并给予其中3人“红包”奖励,求收到“红包”奖励的3人中至少有1人收入在[15,25)的概率.参考公式:22()()()()()n ad bd K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:【解答】解:(Ⅰ)由题意填22⨯列联表如下,由表中数据,计算250(297311) 6.27 6.63540103218K ⨯⨯-⨯=≈<⨯⨯⨯,所以没有99%的把握认为“月收入以5500为分界点”对“楼市限购令”的态度有差异; (Ⅱ)用分层抽样在月收入在[15,25),[25,35)的被调查人中随机抽取6人, 则月收入在[15,25)内有562510⨯=+(人)记为A 、B ,在[25,35)有624-=(人),记为c 、d 、e 、f ;从这6人中抽取3人,基本事件是ABc 、ABd 、ABe 、ABf 、Acd 、Ace 、Acf 、Ade 、Adf 、Aef 、Bcd 、Bce 、Bcf 、Bde 、Bdf 、Bef 、cde 、cdf 、cef 、def 共20种,这3人中至少收入在[15,25)的事件是ABc 、ABd 、ABe 、ABf 、Acd 、Ace 、Acf 、Ade 、Adf 、Aef 、Bcd 、Bce 、Bcf 、Bde 、Bdf 、Bef 共16种,故所求的概率值为164205P ==. 22.(12分)已知函数22()()x f x e ax x a =++在1x =-处取得极小值. (1)求实数a 的值;(2)若函数()f x 存在极大值与极小值,且函数()()2g x f x x m =--有两个零点,求实数m的取值范围.(参考数据: 2.236)e ≈≈ 【解答】解:(1)函数22()()x f x e ax x a =++, 由题意得22()[(21)1]x f x e ax a x a '=++++,因为函数22()()x f x e ax x a =++在1x =-处取得极小值. 依题意知(1)0f '-=,解得0a =或1a =, 当0a =时,()(1)x f x e x '=+,若1x <-,()0f x '<,则函数()f x 单调递减; 若1x >-,()0f x '>,则函数()f x 单调递增;所以当1x =-时,()f x 取得极小值,无极大值,符合题意, 当1a =时,()(1)(2)x f x e x x '=++,若2x <-成1x >-,()0f x '>,则函数()f x 单调递增, 若21x -<<-,()0f x '<,则函数()f x 单调递减,所以函数()f x 在1x =-处取得极小值,2x =-处取得极大值,符合题意, 综上,实数0a =或1a =;(2)因为函数()f x 存在极大值与极小值, 所以由(1)知,1a =, 函数()()2g x f x x m =--, 所以2()(1)2x g x e x x x m =++--, ()(1)(2)2x g x e x x '=++-,当0x >时,()0g x '>,故函数()g x 在(0,)+∞上单调递增, 当0x <时,令()(1)(2)2x h x e x x =++-, 则2()(55)x h x e x x '=++,所以当x <或x >()0h x '>,()h x 单调递增,x <<()0h x '<,()h x 单调递减,第21页(共21页)因为(0)0h =,3.618336( 3.618)( 2.618)( 1.618)232220h h e e e --≈-=⨯-⨯--<⨯⨯-=-<, 所以当0x <时,()0g x '<,故()g x 在(,0)-∞上单调递减,因为函数()g x 在R 上有两个零点,所以(0)10g m =-<,所以1m >, 取02m x =-<, 222222(1)3()(1)2()(1)02422424m m m m m m m m m m g e m e e ----+-=-+-⨯--=-+=⨯>, 取1x m =>,2222()(1)31321(1)0m g m e m m m m m m m m m =++->++-=-+=->, 所以,实数m 的取值范围是(1,)+∞;。

2020年山东省泰安市肥城市一模数学试题

2020年山东省泰安市肥城市一模数学试题

2020年山东省泰安市肥城市一模数学试题一、选择题1.已知集合A ={x |﹣1<x <1},B ={x |0<x <2},则A ∪B =( )A .(﹣1,2)B .(﹣1,0)C .(0,1)D .(1,2)2.若集合{}{}1234|05P Q x x x ==<<∈R ,,,,,,则“x P ∈”是“x Q ∈”的( ) A .充分非必要条件 B .必要非充分条件C .充分必要条件D .既不充分也非不必要条件3.已知(),4,2a x =-,()3,,5b y =-,若a b ⊥,则22x y +的取值范围为( )A .[)2,+∞B .[)3,+∞C .[)4,+∞D .[)5,+∞4.若a ,b ,c 满足23a=,2log 5b =,32c =.则( )A .c a b <<B .b c a <<C .a b c <<D .c b a <<5.函数2log y x x =-的图象大致是( )A .B .C .D .6.已知函数31(0)()2(0)x a x f x x x -⎧+≤=⎨+>⎩,若((1))18f f -=,那么实数a 的值是( )A .4B .1C .2D .37.2018年辽宁省正式实施高考改革.新高考模式下,学生将根据自己的兴趣、爱好、学科特长和高校提供的“选考科目要求”进行选课.这样学生既能尊重自己爱好、特长做好生涯规划,又能发挥学科优势,进而在高考中获得更好的成绩和实现自己的理想.考改实施后,学生将在高二年级将面临着312++的选课模式,其中“3”是指语、数、外三科必学内容,“1”是指在物理和历史中选择一科学习,“2”是指在化学、生物、地理、政治四科中任选两科学习.某校为了更好的了解学生对“1”的选课情况,学校抽取了部分学生对选课意愿进行调查,依据调查结果制作出如下两个等高堆积条形图:根据这两幅图中的信息,下列哪个统计结论是不正确的( )A .样本中的女生数量多于男生数量B .样本中有学物理意愿的学生数量多于有学历史意愿的学生数量C .样本中的男生偏爱物理D .样本中的女生偏爱历史 二、填空题8.(13arcsin arccos arctan 322⎛⎫⎛⎫-+-+= ⎪ ⎪ ⎪⎝⎭⎝⎭______. 9.在平面直角坐标系xOy 中,将直线l 沿x 轴正方向平移3个单位长度,沿y 轴正方向平移5个单位长度,得到直线l 1.再将直线l 1沿x 轴正方向平移1个单位长度,沿y 轴负方向平移2个单位长度,又与直线l 重合.若直线l 与直线l 1关于点(2,3)对称,则直线l 的方程是________________.10.在我国古代数学名著《九章算术》中,把两底面为直角三角形的直棱柱称为“堑堵”.已知三棱柱111ABC A B C -是一个“堑堵”,其中12AB BC BB ===,点M 是11A C 的中点,则四棱锥11M B C CB -的外接球的表面积为__________.11.定义在R 上的偶函数f (x )满足f (e+x )=f (e ﹣x ),且f (0)=0,当x ∈(0,e]时,f (x )=ln x 已知方程122f x sin x e π=()在区间[﹣e ,3e]上所有的实数根之和为3e a ,将函数23sin 14g x x π=+()的图象向右平移a 个单位长度,得到函数h (x )的图象,,则h (7)=_____. 三、解答题12.记n S 为公差不为零的等差数列{}n a 的前n 项和,已知2219a a =,618S =.(1)求{}n a 的通项公式;(2)求n S 的最大值及对应n 的大小.13.已知函数4()cos f x x =-42sin cos sin x x x -(1)求()f x 的单调递增区间; (2)求()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最小值及取最小值时的x 的集合. 14.如图所示的几何体中,111ABC A B C -为三棱柱,且1AA ⊥平面ABC ,1AA AC =,四边形ABCD 为平行四边形,2AD CD =,60ADC ∠=︒.(1)求证:AB ⊥平面11ACC A ;(2)若2CD =,求四棱锥111C A B CD -的体积.15.在平面直角坐标系xOy 中,已知椭圆C :22221x y a b +=()0a b >>的焦距为2,且过点2⎛ ⎝⎭. (1)求椭圆C 的方程;(2)设椭圆C 的上顶点为B ,右焦点为F ,直线l 与椭圆交于M ,N 两点,问是否存在直线l ,使得F 为BMN ∆的垂心,若存在,求出直线l 的方程:若不存在,说明理由.16.现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对“楼市限购令”赞成人数如表: 月收入(单位百元) [15,25)[25,35)[35,45)[45,55)[55,65)[65,75)频数5 10 1510 5 5(Ⅰ)由以上统计数据填下面2×2列联表并问是否有99%的把握认为“月收入以5500为分界点”对“楼市限购令”的态度有差异;(Ⅱ)若采用分层抽样在月收入在[15,25),[25,35)的被调查人中共随机抽取6人进行追踪调查,并给予其中3人“红包”奖励,求收到“红包”奖励的3人中至少有1人收入在[15,25)的概率.参考公式:K 2()()()()2()n ad bd a b c d a c b d -=++++,其中n =a +b +c +d . 参考数据:17.已知函数()22()e x f x ax x a =++在1x =-处取得极小值.(1)求实数a 的值;(2)若函数()f x 存在极大值与极小值,且函数()()2g x f x x m =--有两个零点,求实数m 的取值范围.(参考数据:e 2.718≈ 2.236≈) 四、不定项选择题18.对数函数log a yx =(0a >且1a ≠)与二次函数2(1)y a x x =--在同一坐标系内的图像不可能是( )A .B .C .D .19.设函数()sin 2cos 244f x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则()f x ( ) A .是偶函数B .在0,2π⎛⎫⎪⎝⎭单调递减 C .最大值为2 D .其图像关于直线2x π=对称20.下表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:空调类 冰箱类 小家电类 其它类 营业收入占比 90.10% 4.98% 3.82% 1.10% 净利润占比95.80%﹣0.48%3.82%0.86%则下列判断中正确的是( )A .该公司2018年度冰箱类电器销售亏损B .该公司2018年度小家电类电器营业收入和净利润相同C .该公司2018年度净利润主要由空调类电器销售提供D .剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低21.在空间四边形ABCD 中,,,,E F G H 分别是,,,AB BC CD DA 上的点,当//BD 平面EFGH 时,下面结论正确的是( )A .,,,E F G H 一定是各边的中点B .,G H 一定是,CD DA 的中点C .::AE EB AH HD =,且::BF FC DG GC = D .四边形EFGH 是平行四边形或梯形22.如图,正方体1111ABCD A B C D -的棱长为1,则下列四个命题正确的是( )A .直线BC 与平面11ABC D 所成的角等于4π B .点C 到面11ABC D 的距离为22C .两条异面直线1D C 和1BC 所成的角为4π D .三棱柱1111AA D BB C -3参考答案1.【解析】由题意得{}()121,2A B x x ⋃=-<<=-.故选:A . 【答案】A2.【解析】由题可知,若x P ∈,则一定有x Q ∈,故充分性满足;但是若x Q ∈,则不一定有x Q ∈,故必要性不满足. 故“x P ∈”是“x Q ∈”的充分不必要条件. 故选:A . 【答案】A3.【解析】(),4,2a x =-,()3,,5b y =-,且a b ⊥由向量数量积的运算可得34100a b x y ⋅=--=22x y +的意义为(),x y 到原点距离平方由点到直线距离公式可知原点到直线34100x y --=的距离为2d ==因为点到直线的距离为最短距离,所以22x y +的最小值为4即22xy +的取值范围为[)4,+∞故选:C 【答案】C4.【解析】23a =,12232<<,∴12a <<,22log 5log 4b =>,∴2b >,32c =,01323<<,∴01c <<,∴c a b <<,故选:A . 【答案】A5.【解析】当4x =时2log 0y x ==,所以舍去D;当16x =时2log 0y x ==,所以舍去BC ; 故选:A 【答案】A6.【解析】(1)4f -=,((1))18f f -=变成(4)18f =,即4218a +=,解之得:2a =.故选:C . 【答案】C7.【解析】由图1知,样本中的女生数量对于男生数量,样本中有学物理意愿的学生数量多于有学历史意愿的学生数量,样本中的男生偏爱物理,女生也偏爱物理. 故选:D . 【答案】D8.【解析】(1arcsin arccos arctan 22⎛⎫⎛⎫-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭1arcsin arccos arctan 2π⎛⎫=-+-- ⎪⎝⎭⎝⎭663ππππ⎛⎫=-+-- ⎪⎝⎭ 3π=.故答案为:3π. 【答案】3π 9.【解析】由题意知直线l 的斜率存在,设直线l 的方程为y =kx +b ,则直线l 1:y =k (x -3)+5+b ,平移后的直线方程为y =k (x -3-1)+b +5-2 即y =kx +3-4k +b ,∴b =3-4k +b ,解得k =34, ∴直线l 的方程为y =34x +b ,直线l 1为y =34x +114+b取直线l 上的一点3,4P m m b ⎛⎫+ ⎪⎝⎭ ,则点P 关于点(2,3)的对称点为34,64m b m ⎛⎫--- ⎪⎝⎭ , ()331164444b m m b --=-++ ,解得b =18.∴直线l 的方程是3148y x =+ ,即6x -8y +1=0.故答案为:6x -8y +1=0 【答案】6x -8y +1=010.【解析】由题意得四边形11B C CB 为正方形,设其中心为O ,取11B C 中点N,则111,12ON MNON MN OM OB OC OB OC ⊥==∴=====,即O 为四棱锥11M B C CB -的外接球球心,球半径为2,球表面积为24π(2)8π=. 【答案】8π11.【解析】因为f (e+x )=f (e ﹣x ),所以f (x )关于x =e 对称,又因为偶函数f (x ),所以f (x )的周期为2e.当x ∈(0,e]时,f (x )=ln x ,于是可作出函数f (x )在[﹣e ,3e]上的图象如图所示, 方程1()sin 22e f x x π=的实数根是函数y =f (x )与函数1sin 22ey x π=的交点的横坐标, 由图象的对称性可知,两个函数在[﹣e ,3e]上有4个交点,且4个交点的横坐标之和为4e ,所以4e =3e a ,故a 43=, 因为235()3sin 1cos 4222g x x x ππ=+=-+, 所以345325()cos ()cos()22322232h x x x πππ=--+=--+, 故3253310(7)sin 2324h π+=+=. 故答案为:33104+.3310+12.【解析】(1)设{}n a 的公差为d ,且0d ≠.由2219a a =,得140a d +=,由618S =,得1532a d +=, 于是18a =,2d =-.所以{}n a 的通项公式为*(2)10n a n n ∈=-N .(2)由(1)得(1)8(2)2n n n S n -=+⨯- 29n n =-+2981()24n =--+因为*n ∈N ,所以当4n =或5n =时,n S 有最大值为20.【答案】(1)*(2)10n a n n ∈=-N (2)当4n =或5n =时,n S 有最大值为20.13.【解析】(1)()()()442222cos 2sin cos sin cos sin cos sin 2sin cos f x x x x x x x x x x x=--=-+-22cos sin 2sin cos cos 2sin 224x x x x x x x π⎛⎫=--=-=- ⎪⎝⎭,解不等式()3222242k x k k πππππ-+≤-≤-+∈Z , 得()588k x k k Z ππππ-+≤≤-+∈, 因此,函数()y f x =的单调递增区间为()5,88k k k ππππ⎡⎤-+-+∈⎢⎥⎣⎦Z ;(2)0,2x π⎡⎤∈⎢⎥⎣⎦,32444x πππ∴-≤-≤,当242x ππ-=时,即当38x π=时,函数()y f x =取得最小值.因此,函数()y f x =的最小值为,对应的x 的集合为38π⎧⎫⎨⎬⎩⎭.【答案】(1)()5,88k k k Z ππππ⎡⎤-+-+∈⎢⎥⎣⎦;(2)最小值为2-,x 的集合为38π⎧⎫⎨⎬⎩⎭.14.【解析】(1)证明:四边形ABCD 为平行四边形,2AD CD =,60ADC ∠=︒.90ACD BAC ∠∠∴==︒,AB AC ∴⊥,几何体中,111ABC A B C -为三棱柱,且1AA ⊥平面ABC ,1AB AA ∴⊥,1AC AA A ⋂=,AB ∴⊥平面11ACC A .(2)连结1A C ,AB ⊥平面11ACC A ,//CD AB ,CD 平面11CC A ,∴四棱锥111C A B CD -的体积:11111D CC A C A B C V V V --=+1111111133A C CA B C CD S CC S =⨯⨯+⨯⨯111122323232233232=⨯⨯⨯⨯⨯⨯8=.【答案】(1)证明见解析(2)815.【解析】解:(1)由已知可得:22222221112c a b a b c=⎧⎪⎪+=⎨⎪=+⎪⎩解得22a =,21b =,1c =, 所以椭圆C :2212x y +=.(2)由已知可得,()0,1B ,()1,0F ,∴1BF k =-,∵BF l ⊥, 设直线l 的方程为:y x m =+,代入椭圆方程整理得2234220x mx m ++-=,设()11,M x y ,()22,N x y ,则1243m x x +=-,212223m x x -⋅=,∵BN MF ⊥,∴1212111y y x x -⋅=--. 即1212120y y x x y x +--=,因为11y x m =+,22y x m =+,()()()1212120x m x m x x x m x +++-+-= 即()212122(1)0x x m x x m m +-++-=.()2222421033m m m m m --+-+-=.所以2340m m +-=,43m =-或1m =. 又1m =时,直线l 过B 点,不合要求,所以43m =-. 故存在直线l :43y x =-满足题设条件. 【答案】(1)2212x y +=(2)存在,43y x =-16.【解析】(Ⅰ)由题意填2×2列联表如下,由表中数据,计算K 2()25029731140103218⨯⨯-⨯=≈⨯⨯⨯ 6.27<6.635,所以没有99%的把握认为“月收入以5500为分界点”对“楼市限购令”的态度有差异;(Ⅱ)用分层抽样在月收入在[15,25),[25,35)的被调查人中随机抽取6人,则月收入在[15,25)内有65510⨯=+2(人)记为A 、B ,在[25,35)有6﹣2=4(人),记为c 、d 、e 、f ; 从这6人中抽取3人,基本事件是ABc 、ABd 、AB e 、ABf 、Acd 、Ac e 、Acf 、Ad e 、Adf 、A e f 、Bcd 、Bc e 、Bcf 、Bd e 、Bdf 、B e f 、cd e 、cdf 、c e f 、d e f 共20种,这3人中至少收入在[15,25)的事件是ABc 、ABd 、AB e 、ABf 、Acd 、Ac e 、Acf 、Ad e 、Adf 、A e f 、Bcd 、Bc e 、Bcf 、Bd e 、Bdf 、B e f 共16种, 故所求的概率值为P 164205==. 【答案】(Ⅰ)填表见解析,没有 (Ⅱ)4517.【解析】(1)由题意得22()e (21)1x f x ax a x a '⎡⎤=++++⎣⎦.因为函数()22()exf x axx a =++在1x =-处取得极小值,依题意知'(1)0f -=,解得0a =或1a =.当0a =时,'()e (1)x f x x =+,若1x <-,'()0f x <,则函数()f x 单调递减, 若1x >-,'()0f x >,则函数()f x 单调递增,所以,当1x =-时,()f x 取得极小值,无极大值,符合题意.当1a =时,'()(1)(2)xf x e x x =++,若2x <-或1x >-,'()0f x >,则函数()f x 单调递增;若21x -<<-,'()0f x <,则函数()f x 单调递减,所以函数()f x 在1x =-处取得极小值,2x =-处取得极大值,符合题意, 综上,实数0a =或1a =.(2)因为函数()f x 存在极大值与极小值,所以由(1)知,1a =. 所以()2()e12xg x xx x m =+--+,()e (1)(2)2x g x x x '=++-.当0x >时,'()0g x >,故函数()g x 在(0,)+∞上单调递增,当0x <时,令()e (1)(2)2xh x x x =++-,则()2()e 55xh x xx '=++,所以当x <x >时,()0h x '>,()h x 单调递增,x <<()0h x '<,()h x 单调递减,因为(0)0h =, 3.6183356( 3.618)e ( 2.618)( 1.618)2e 3222e h h --⎛-≈-=⨯-⨯--<⨯⨯-= ⎝⎭20-<,所以当0x <时,'0g x <(),故()g x 在(,0)-∞上单调递减. 因为函数()g x 在R 上有两个零点,所以(0)10g m =-<,所以1m .取02m x =-<,22222224(1)312e e 0242244m m m m m m m m m m g e m ---⎛⎫-+-+⎛⎫⎛⎫-=-+-⨯--==>⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; 取1x m =>,()2222()e131321(1)0mg m mm m m m m m m m =++->++-=-+=->,所以,实数m 的取值范围是(1,)+∞. 【答案】(1)0a =或1a =(2)(1,)+∞18.【解析】当01a <<时,函数log a yx =单调递减,2(1)y a x x =--开口向下,对称轴在y 轴的左侧,排除C ,D ;当1a >时,函数log ay x =单调递增,2(1)y a x x =--开口向上,对称轴在y 轴的右侧,排除B ; 故选:BCD 【答案】BCD19.【解析】()sin 2cos 2224444f x x x x x ππππ⎛⎫⎛⎫⎛⎫=+++=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.选项A :()2))()f x x x f x -=-==,它是偶函数,本说法正确;选项B :0,2x π⎛⎫∈ ⎪⎝⎭,所以()20,x π∈,因此()f x 是单调递减,本说法正确;选项C :()2f x x =,本说法不正确;选项D :当2x π=时,()22f x π=⨯=因此当2x π=时,函数有最小值,因此函数图象关于2x π=对称,本说法正确. 故选:ABD 【答案】ABD20.【解析】根据表中数据知,该公司2018年度冰箱类电器销售净利润所占比为﹣0.48,是亏损的,A 正确;小家电类电器营业收入所占比和净利润所占比是相同的,但收入与净利润不一定相同,B 错误; 该公司2018年度净利润空调类电器销售所占比为95.80%,是主要利润来源,C 正确;所以剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低,D 正确. 故选:ACD . 【答案】ACD21.【解析】由//BD 平面EFGH ,所以由线面平行的性质定理,得//BD EH ,//BD FG ,则::AE EB AH HD =,且::BF FC DG GC =,且//EH FG ,四边形EFGH 是平行四边形或梯形. 故选:CD. 【答案】CD22.【解析】正方体1111ABCD A B C D -的棱长为1,对于A ,直线BC 与平面11ABC D 所成的角为14CBC π∠=,故A 正确;对于B ,因为1B C ⊥平面11ABC D ,点C 到面11ABC D 的距离为1B C 长度的一半,即2h =,故B 正确;对于C ,因为11//BC AD ,所以异面直线1D C 和1BC 所成的角为1AD C ∠,而1AD C 为等边三角形,故两条异面直线1D C 和1BC 所成的角为3π,故C 错误; 对于D ,因为11111,,A A A B A D 两两垂直,所以三棱柱1111AA D BB C -外接球也是正方体1111ABCD A B C D -的外接球,故22r ==,故D 正确. 综上可知,正确的为ABD , 故选:ABD . 【答案】ABD。

山东省泰安市2019-2020学年第一次高考模拟考试数学试卷含解析

山东省泰安市2019-2020学年第一次高考模拟考试数学试卷含解析

山东省泰安市2019-2020学年第一次高考模拟考试数学试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知双曲线),其右焦点F 的坐标为,点是第一象限内双曲线渐近线上的一点,为坐标原点,满足,线段交双曲线于点.若为的中点,则双曲线的离心率为( ) A .B .2C .D .【答案】C 【解析】 【分析】 计算得到,,代入双曲线化简得到答案.【详解】双曲线的一条渐近线方程为,是第一象限内双曲线渐近线上的一点,,故,,故,代入双曲线化简得到:,故.故选:. 【点睛】本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.2.如果直线1ax by +=与圆22:1C x y +=相交,则点(),M a b 与圆C 的位置关系是( ) A .点M 在圆C 上 B .点M 在圆C 外 C .点M 在圆C 内 D .上述三种情况都有可能【答案】B 【解析】 【分析】根据圆心到直线的距离小于半径可得,a b 满足的条件,利用(),M a b 与圆心的距离判断即可. 【详解】Q 直线1ax by +=与圆22:1C x y +=相交,∴圆心(0,0)到直线1ax by +=的距离1d =<,1>.也就是点(,)M a b 到圆C 的圆心的距离大于半径. 即点(,)M a b 与圆C 的位置关系是点M 在圆C 外. 故选:B 【点睛】本题主要考查直线与圆相交的性质,考查点到直线距离公式的应用,属于中档题. 3.已知()y f x =是定义在R 上的奇函数,且当0x >时,2()3f x x x=+-.若0x ≤,则()0f x ≤的解集是( ) A .[2,1]--B .(,2][1,0]-∞-⋃-C .(,2][1,0)-∞-⋃-D .(,2)(1,0]-∞-⋃-【答案】B 【解析】 【分析】利用函数奇偶性可求得()f x 在0x <时的解析式和()0f ,进而构造出不等式求得结果. 【详解】()f x Q 为定义在R 上的奇函数,()00f ∴=.当0x <时,0x ->,()23f x x x∴-=---, ()f x Q 为奇函数,()()()230f x f x x x x∴=--=++<,由0230x x x <⎧⎪⎨++≤⎪⎩得:2x -≤或10x -≤<; 综上所述:若0x ≤,则()0f x ≤的解集为(][],21,0-∞--U . 故选:B . 【点睛】本题考查函数奇偶性的应用,涉及到利用函数奇偶性求解对称区间的解析式;易错点是忽略奇函数在0x =处有意义时,()00f =的情况.4.己知函数sin ,2,2(),2223sin ,2,2(),222x x k k k z y x x k k k z ππππππππππ⎧⎛⎫⎡⎫+∈-+∈ ⎪⎪⎪⎢⎪⎝⎭⎣⎭=⎨⎛⎫⎡⎫⎪-+∈++∈ ⎪⎪⎢⎪⎝⎭⎣⎭⎩的图象与直线(2)(0)y m x m =+>恰有四个公共点()()()()11123344,,,,.,,,A x y B x y C x y D x y ,其中1234x x x x <<<,则()442tan x x +=( ) A .1- B .0C .1D.22+ 【答案】A 【解析】 【分析】先将函数解析式化简为|cos |y x =,结合题意可求得切点4x 及其范围4,2x ππ⎛⎫∈ ⎪⎝⎭,根据导数几何意义,即可求得()442tan x x +的值. 【详解】函数sin ,2,2(),2223sin ,2,2(),222x x k k k z y x x k k k z ππππππππππ⎧⎛⎫⎡⎫+∈-+∈ ⎪⎪⎪⎢⎪⎝⎭⎣⎭=⎨⎛⎫⎡⎫⎪-+∈++∈ ⎪⎪⎢⎪⎝⎭⎣⎭⎩即|cos |y x =直线(2)(0)y m x m =+>与函数|cos |y x =图象恰有四个公共点,结合图象知直线(2)(0)y m x m =+>与函数cos y x =-相切于4x ,4,2x ππ⎛⎫∈ ⎪⎝⎭, 因为sin y x '=, 故444cos sin 2x k x x -==+,所以()()()()4444444sin 1221c 2tan os 2x x x x x x x -+⨯=+⨯=-++=.故选:A. 【点睛】本题考查了三角函数的图像与性质的综合应用,由交点及导数的几何意义求函数值,属于难题.5.已知函数3sin ()(1)()x x x xf x x m x e e-+=+-++为奇函数,则m =( )A .12B .1C .2D .3【答案】B 【解析】 【分析】根据()f x 整体的奇偶性和部分的奇偶性,判断出m 的值. 【详解】依题意()f x 是奇函数.而3sin y x x =+为奇函数,x xy e e -=+为偶函数,所以()()()1gx x m x =+-为偶函数,故()()0gx g x --=,也即()()()()110x m x x m x +---+=,化简得()220m x -=,所以1m =.故选:B 【点睛】本小题主要考查根据函数的奇偶性求参数值,属于基础题. 6.已知函数()sin()(0,||)2f x x πωϕωϕ=+>≤,4πx =-为()f x 的零点,4x π=为()y f x =图象的对称轴,且()f x 在区间(,)43ππ上单调,则ω的最大值是( )A .12B .11C .10D .9【答案】B 【解析】 【分析】由题意可得()4k πωϕπ-+=g ,且42k ππωϕπ+='+g ,故有2()1k k ω='-+①,再根据12234πππω-g …,求得12ω…②,由①②可得ω的最大值,检验ω的这个值满足条件.【详解】解:函数()sin()(0f x x ωϕω=+>,||)2πϕ…,4πx =-为()f x 的零点,4x π=为()y f x =图象的对称轴, ()4k πωϕπ∴-+=g ,且42k ππωϕπ+='+g ,k 、k Z '∈,2()1k k ω∴='-+,即ω为奇数①. ()f x Q 在(4π,)3π单调,∴12234πππω-g…,12ω∴…②. 由①②可得ω的最大值为1. 当11ω=时,由4x π=为()y f x =图象的对称轴,可得1142k ππϕπ⨯+=+,k Z ∈,故有4πϕ=-,()4k πωϕπ-+=g ,满足4πx =-为()f x 的零点, 同时也满足满足()f x 在,43ππ⎛⎫⎪⎝⎭上单调, 故11ω=为ω的最大值, 故选:B . 【点睛】本题主要考查正弦函数的图象的特征,正弦函数的周期性以及它的图象的对称性,属于中档题. 7.某个命题与自然数n 有关,且已证得“假设()*n k k N =∈时该命题成立,则1n k =+时该命题也成立”.现已知当7n =时,该命题不成立,那么( ) A .当8n =时,该命题不成立 B .当8n =时,该命题成立 C .当6n =时,该命题不成立 D .当6n =时,该命题成立【答案】C 【解析】 【分析】写出命题“假设()*n k k N=∈时该命题成立,则1n k =+时该命题也成立”的逆否命题,结合原命题与逆否命题的真假性一致进行判断. 【详解】由逆否命题可知,命题“假设()*n k k N =∈时该命题成立,则1n k =+时该命题也成立”的逆否命题为“假设当()1n k k N*=+∈时该命题不成立,则当n k =时该命题也不成立”,由于当7n =时,该命题不成立,则当6n =时,该命题也不成立,故选:C. 【点睛】本题考查逆否命题与原命题等价性的应用,解题时要写出原命题的逆否命题,结合逆否命题的等价性进行判断,考查逻辑推理能力,属于中等题.8.设等差数列{}n a 的前n 项和为n S ,若23S =,410S =,则6S =( ) A .21 B .22C .11D .12【答案】A 【解析】 【分析】由题意知24264,,S S S S S --成等差数列,结合等差中项,列出方程,即可求出6S 的值. 【详解】解:由{}n a 为等差数列,可知24264,,S S S S S --也成等差数列,所以()422642S S S S S -=+- ,即()62103310S ⨯-=+-,解得621S =. 故选:A. 【点睛】本题考查了等差数列的性质,考查了等差中项.对于等差数列,一般用首项和公差将已知量表示出来,继而求出首项和公差.但是这种基本量法计算量相对比较大,如果能结合等差数列性质,可使得计算量大大减少.9.如图,平面四边形ACBD 中,AB BC ⊥,AB DA ⊥,1AB AD ==,2BC =,现将ABD △沿AB 翻折,使点D 移动至点P ,且PA AC ⊥,则三棱锥P ABC -的外接球的表面积为( )A .8πB .6πC .4πD .823π 【答案】C 【解析】 【分析】由题意可得PA ⊥面ABC ,可知PA BC ⊥,因为AB BC ⊥,则BC ⊥面PAB ,于是BC PB ⊥.由此推出三棱锥P ABC -外接球球心是PC 的中点,进而算出2CP =,外接球半径为1,得出结果. 【详解】解:由DA AB ⊥,翻折后得到PA AB ⊥,又PA AC ⊥, 则PA ⊥面ABC ,可知PA BC ⊥.又因为AB BC ⊥,则BC ⊥面PAB ,于是BC PB ⊥, 因此三棱锥P ABC -外接球球心是PC 的中点.计算可知2CP =,则外接球半径为1,从而外接球表面积为4π.故选:C. 【点睛】本题主要考查简单的几何体、球的表面积等基础知识;考查空间想象能力、推理论证能力、运算求解能力及创新意识,属于中档题.10.设a b c ,,为非零实数,且a c b c >>,,则( ) A .a b c +> B .2ab c >C .a b2c +> D .112a b c+> 【答案】C 【解析】 【分析】取1,1,2a b c =-=-=-,计算知ABD 错误,根据不等式性质知C 正确,得到答案. 【详解】,a c b c >>,故2a b c +>,2a bc +>,故C 正确; 取1,1,2a b c =-=-=-,计算知ABD 错误; 故选:C . 【点睛】本题考查了不等式性质,意在考查学生对于不等式性质的灵活运用.11.已知函数()ln f x x ax b =++的图象在点(1,)a b +处的切线方程是32y x =-,则a b -=( ) A .2 B .3 C .-2 D .-3【答案】B 【解析】 【分析】根据(1)3f '=求出2,a =再根据(1,)a b +也在直线32y x =-上,求出b 的值,即得解. 【详解】 因为1()f x a x'=+,所以(1)3f '= 所以13,2a a +==,又(1,)a b +也在直线32y x =-上, 所以1a b +=, 解得2,1,a b ==- 所以3a b -=. 故选:B 【点睛】本题主要考查导数的几何意义,意在考查学生对这些知识的理解掌握水平. 12.若某几何体的三视图如图所示,则该几何体的表面积为( )A .240B .264C .274D .282【答案】B 【解析】 【分析】将三视图还原成几何体,然后分别求出各个面的面积,得到答案. 【详解】由三视图可得,该几何体的直观图如图所示, 延长BE 交DF 于A 点,其中16AB AD DD ===,3AE =,4AF =, 所以表面积()3436536246302642S ⨯=⨯+⨯+⨯+⨯+=. 故选B 项.【点睛】本题考查三视图还原几何体,求组合体的表面积,属于中档题 二、填空题:本题共4小题,每小题5分,共20分。

2020年山东省泰安市高考数学一模试卷(文科)含答案解析

2020年山东省泰安市高考数学一模试卷(文科)含答案解析

2020年山东省泰安市高考数学一模试卷(文科)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4,5},集合A={1,2,3},集合B={3,4},则(∁U A)∪B=()A.{4}B.{2,3,4}C.{3,4,5}D.{2,3,4,5}2.已知为实数,则实数t的值为()A.1 B.﹣1 C.D.3.如图是一个程序框图,则输出S的值是()A.84 B.35 C.26 D.104.下列说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.已知y=f(x)是R上的可导函数,则“f′(x0)=0”是“x0是函数y=f(x)的极值点”的必要不充分条件C.命题“存在x∈R,使得x2+x+1<0”的否定是:“对任意x∈R,均有x2+x+1<0”D.命题“角α的终边在第一象限角,则α是锐角”的逆否命题为真命题5.高为4的直三棱柱被削去一部分后得到一个几何体,它的直观图和三视图中的侧视图、俯视图如图所示,则该几何体的体积是原直三棱柱的体积的()A.B.C.D.6.已知点及抛物线x2=﹣4y上一动点P(x,y),则|y|+|PQ|的最小值是()A.B.1 C.2 D.37.已知A(2,1),O(0,0),点M(x,y)满足,则的最大值为()A.﹣5 B.﹣1 C.0 D.18.已知下列三个命题:①若两组数据的平均数相等,则它们的标准差也相等;②在区间[﹣1,5]上随机选取一个数x,则x≥3的概率为;③直线x+y+1=0与圆相切;其中真命题的个数是()A.0 B.1 C.2 D.39.已知函数的图象向右平移个单位后与原图象重合,则ω的最小值是()A.3 B.C.D.10.奇函数f(x)的定义域为R,若f(x+1)为偶函数,且f(1)=2,则f(4)+f(5)的值为()A.2 B.1 C.﹣1 D.﹣2二、填空题:本大题共5个小题,每小题5分,共25分,请把答案填写在答题卡相应位置. 11.已知,则cos(30°﹣2α)的值为______.12.随机抽取100名年龄在[10,20),[20,30)…,[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示,从不小于30岁的人中按年龄段分层抽样的方法随机抽取22人,则在[50,60)年龄段抽取的人数为______.13.已知{a n}为等比数列,下列结论①a3+a5≥2a4;②;③若a3=a5,则a1=a2;④若a5>a3,则a7>a5.其中正确结论的序号是______.14.在平行四边形ABCD中,为CD的中点,若.则AD的长为______.15.若函数f(x)=﹣2x3+2tx2+1存在唯一的零点,则实数t的取值范围为______.三、解答题:本大题共6个小题,满分75分,解答应写出文字说明、证明过程或演算步骤. 16.已知函数f(x)=sinxcos(x+)+1.(1)求函数f(x)的单调递减区间;(2)在△ABC中,a,b,c分别是角A、B、C的对边f(C)=,b=4,•=12,求c.17.有两个袋子,其中甲袋中装有编号分别为1、2、3、4的4个完全相同的球,乙袋中装有编号分别为2、4、6的3个完全相同的球.(Ⅰ)从甲、乙袋子中各取一个球,求两球编号之和小于8的概率;(Ⅱ)从甲袋中取2个球,从乙袋中取一个球,求所取出的3个球中含有编号为2的球的概率.18.已知等比数列{a n}的公比q>1,a1=1,且a1,a3,a2+14成等差数列,数列{b n}满足:a1b1+a2b2+…+a n b n=(n﹣1)•3n+1,n∈N.(I)求数列{a n}和{b n}的通项公式;(Ⅱ)若ma n≥b n﹣8恒成立,求实数m的最小值.19.如图,在三棱锥P﹣ABC中,AB⊥平面PAC,∠APC=90°,E是AB的中点,M是CE 的中点,N点在PB上,且4PN=PB.(Ⅰ)证明:平面PCE⊥平面PAB;(Ⅱ)证明:MN∥平面PAC.20.如图:A,B,C是椭圆的顶点,点F(c,0)为椭圆的右焦点,离心率为,且椭圆过点.(Ⅰ)求椭圆的方程;(Ⅱ)若P是椭圆上除顶点外的任意一点,直线CP交x轴于点E,直线BC与AP相交于点D,连结DE.设直线AP的斜率为k,直线DE的斜率为k1,证明:.21.已知函数f(x)=lnx(Ⅰ)求函数的最大值.(Ⅱ)证明:;(Ⅲ)若不等式mf(x)≥a+x对所有的都成立,求实数a的取值范围.2020年山东省泰安市高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4,5},集合A={1,2,3},集合B={3,4},则(∁U A)∪B=()A.{4}B.{2,3,4}C.{3,4,5}D.{2,3,4,5}【考点】交、并、补集的混合运算.【分析】根据全集U求出A的补集,找出A补集与B的并集即可.【解答】解:∵全集U={1,2,3,4,5},集合A={1,2,3},∴∁U A={4,5},∵B={3,4},则(∁U A)∪B={3,4,5}.故选:C.2.已知为实数,则实数t的值为()A.1 B.﹣1 C.D.【考点】复数代数形式的乘除运算.【分析】利用复数代数形式的乘除运算化简,由虚部为0求得t值.【解答】解:∵z1=2t+i,z2=1﹣2i,∴=,又为实数,∴4t+1=0,即t=﹣.故选:D.3.如图是一个程序框图,则输出S的值是()A.84 B.35 C.26 D.10【考点】程序框图.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当k=1时,不满足退出循环的条件,执行循环后,S=1,k=3;当k=3时,不满足退出循环的条件,执行循环后,S=10,k=5;当k=5时,不满足退出循环的条件,执行循环后,S=35,k=7;当k=7时,满足退出循环的条件,故输出的S值为35,故选:B.4.下列说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.已知y=f(x)是R上的可导函数,则“f′(x0)=0”是“x0是函数y=f(x)的极值点”的必要不充分条件C.命题“存在x∈R,使得x2+x+1<0”的否定是:“对任意x∈R,均有x2+x+1<0”D.命题“角α的终边在第一象限角,则α是锐角”的逆否命题为真命题【考点】命题的真假判断与应用.【分析】利用命题的定义判断A的正误;函数的极值的充要条件判断B的正误;命题的否定判断C的正误;四种命题的逆否关系判断D的正误;【解答】解:对于A,命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”,不满足否命题的定义,所以A不正确;对于B,已知y=f(x)是R上的可导函数,则“f′(x0)=0”函数不一定有极值,“x0是函数y=f(x)的极值点”一定有导函数为0,所以已知y=f(x)是R上的可导函数,则“f′(x0)=0”是“x0是函数y=f(x)的极值点”的必要不充分条件,正确;对于C,命题“存在x∈R,使得x2+x+1<0”的否定是:“对任意x∈R,均有x2+x+1<0”,不满足命题的否定形式,所以不正确;对于D,命题“角α的终边在第一象限角,则α是锐角”是错误命题,则逆否命题为假命题,所以D不正确;故选:B.5.高为4的直三棱柱被削去一部分后得到一个几何体,它的直观图和三视图中的侧视图、俯视图如图所示,则该几何体的体积是原直三棱柱的体积的()A.B.C.D.【考点】由三视图求面积、体积.【分析】剩余几何体为四棱锥,分别计算出三棱柱和剩余几何体的体积.【解答】解:由俯视图可知三棱柱的底面积为=2,∴原直三棱柱的体积为2×4=8.由剩余几何体的直观图可知剩余几何体为四棱锥,四棱锥的底面为侧视图梯形的面积=6,由俯视图可知四棱锥的高为2,∴四棱锥的体积为=4.∴该几何体体积与原三棱柱的体积比为.故选C.6.已知点及抛物线x2=﹣4y上一动点P(x,y),则|y|+|PQ|的最小值是()A.B.1 C.2 D.3【考点】抛物线的简单性质;抛物线的标准方程;直线与圆锥曲线的关系.【分析】抛物线的准线是y=1,焦点F(0,﹣1).设P到准线的距离为d,利用抛物线的定义得出:y+|PQ|=d﹣1+|PQ|=|PF|+|PQ|﹣1≥|FQ|﹣1,利用当且仅当F、Q、P共线时取最小值,从而得出故y+|PQ|的最小值.【解答】解:抛物线x2=4y的准线是y=1,焦点F(0,﹣1).设P到准线的距离为d,则y+|PQ|=d﹣1+|PQ|=|PF|+|PQ|﹣1≥|FQ|﹣1=3﹣1=2(当且仅当F、Q、P共线时取等号)故y+|PQ|的最小值是2.故选:C.7.已知A(2,1),O(0,0),点M(x,y)满足,则的最大值为()A.﹣5 B.﹣1 C.0 D.1【考点】简单线性规划.【分析】先画出平面区域D,进行数量积的运算即得z=2x+y﹣5,所以y=﹣2x+5+z,所以根据线性规划的方法求出z的最大值即可.【解答】解:表示的平面区域D,如图中阴影部分所示,A(2,1),O(0,0),点M(x,y)的=(2,1)•(x﹣2,y﹣1)=2x+y﹣5;∴y=﹣2x+5+z;∴5+z表示直线y=﹣2x+5+z在y轴上的截距,所以截距最大时z最大;如图所示,当该直线经过点A1(2,2)时,截距最大,此时z最大;所以点A1(2,2)代入直线y=﹣2x+5+z即得z=1.故选:D.8.已知下列三个命题:①若两组数据的平均数相等,则它们的标准差也相等;②在区间[﹣1,5]上随机选取一个数x,则x≥3的概率为;③直线x+y+1=0与圆相切;其中真命题的个数是()A.0 B.1 C.2 D.3【考点】命题的真假判断与应用.【分析】根据标准差的含义,可判断①;根据几何概型概率计算公式,可判断②;根据直线与圆的位置关系,可判断③【解答】解:①若两组数据的平均数相等,不表示离散程度相等,则它们的标准差可能不相等,故为假命题;②在区间[﹣1,5]上随机选取一个数x,则x≥3的概率为=≠,故为假命题;③(0,0)点到直线x+y+1=0的距离d=,故直线x+y+1=0与圆相切,故为真命题;故选:B.9.已知函数的图象向右平移个单位后与原图象重合,则ω的最小值是()A.3 B.C.D.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】函数的图象向右平移个单位后与原图象重合可判断出是周期的整数倍,由此求出ω的表达式,判断出它的最小值【解答】解:∵函数的图象向右平移个单位后与原图象重合,∴=n×,n∈z,∴ω=3n,n∈z,又ω>0,故其最小值是3.故选:A.10.奇函数f(x)的定义域为R,若f(x+1)为偶函数,且f(1)=2,则f(4)+f(5)的值为()A.2 B.1 C.﹣1 D.﹣2【考点】抽象函数及其应用;奇偶性与单调性的综合.【分析】根据函数的奇偶性的性质,得到f(x+4)=f(x),即可得到结论.【解答】解:∵f(x+1)为偶函数,f(x)是奇函数,∴设g(x)=f(x+1),则g(﹣x)=g(x),即f(﹣x+1)=f(x+1),∵f(x)是奇函数,∴f(﹣x+1)=f(x+1)=﹣f(x﹣1),即f(x+2)=﹣f(x),f(x+4)=f(x+2+2)=﹣f(x+2)=f(x),则f(4)=f(0)=0,f(5)=f(1)=2,∴f(4)+f(4)=0+2=2,故选:A.二、填空题:本大题共5个小题,每小题5分,共25分,请把答案填写在答题卡相应位置. 11.已知,则cos(30°﹣2α)的值为.【考点】二倍角的余弦;两角和与差的余弦函数.【分析】利用诱导公式求得sin(15°﹣α)=,再利用二倍角的余弦公式可得cos(30°﹣2α)=1﹣2sin2(15°﹣α),运算求得结果.【解答】解:∵已知,∴sin(15°﹣α)=,则cos(30°﹣2α)=1﹣2sin2(15°﹣α)=,故答案为.12.随机抽取100名年龄在[10,20),[20,30)…,[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示,从不小于30岁的人中按年龄段分层抽样的方法随机抽取22人,则在[50,60)年龄段抽取的人数为2.【考点】频率分布直方图.【分析】根据频率分布直方图,求出样本中不小于30岁人的频率与频数,再求用分层抽样方法抽取的人数【解答】解:根据频率分布直方图,得;样本中不小于30岁的人的频率是1﹣0.020×10+0.025×10=0.55,∴不小于30岁的人的频数是100×0.55=55;从不小于30岁的人中按年龄段分层抽样的方法随机抽取22人,在[50,60)年龄段抽取的人数为22×=22×=2.故答案为:2.13.已知{a n}为等比数列,下列结论①a3+a5≥2a4;②;③若a3=a5,则a1=a2;④若a5>a3,则a7>a5.其中正确结论的序号是②④.【考点】命题的真假判断与应用.【分析】根据等比数列的性质结合不等式的关系进行判断即可.【解答】解:①a n=(﹣1)n,则a3+a5≥2a4不成立,故①错误,②∵a32+a52≥2|a3a5|=2a42;故;故②正确,③若a n=(﹣1)n,则a3=a5=﹣1,但a1=﹣1,a2=1,a1=a2;不成立,故③错误,④若a5>a3,则q2a3>a3,∵q2>0,∴q2a5>q2a3,即a7>a5成立,故④正确,故正确的是②④,故答案为:②④.14.在平行四边形ABCD中,为CD的中点,若.则AD的长为1.【考点】平面向量数量积的运算.【分析】用表示出,代入数量积公式解出AD.【解答】解:,==﹣+.∴=()•(﹣)=﹣++=1.∵=,=AD2,.∴AD2+﹣=1,解得AD=1.故答案为:1.15.若函数f(x)=﹣2x3+2tx2+1存在唯一的零点,则实数t的取值范围为t>﹣.【考点】函数零点的判定定理.【分析】求解导数f′(x)=﹣6x2+4tx,分类讨论得出极值点,根据单调性判断极值的大小,即可得出零点的个数.【解答】解:∵函数f(x)=﹣2x3+2tx2+1,∴f′(x)=﹣6x2+4tx=0,∴x=0,x=(1)当t=0时,f(x=﹣2x3+1单调递减,f(0)=1>0,f(2)=﹣15<0∴存在唯一的零点,是正数.(2)当t>0时,f′(x)=﹣6x2+4tx>0,即0f′(x)=﹣6x2+4tx<00,即x<0,x∴f(x)在(﹣∞,0),(,+∞)单调递减在(0,)单调递增∴极大值f()>f(1),极小值f(0)=1>0,∴存在唯一的零点,(3)当t<0时,f′(x)=﹣6x2+4tx>0,即<x<0f′(x)=﹣6x2+4tx<00,即x<,x>0∴f(x)在(﹣∞,),(0,+∞)单调递减在(,0)单调递增∴极小值f()<f(1),极大值f(0)=1>0,∵只需极小值f()>0即可,+1>0,且t<0∴﹣<t<0,综上:﹣<t<0,或t≥0故答案为:t>﹣.三、解答题:本大题共6个小题,满分75分,解答应写出文字说明、证明过程或演算步骤. 16.已知函数f(x)=sinxcos(x+)+1.(1)求函数f(x)的单调递减区间;(2)在△ABC中,a,b,c分别是角A、B、C的对边f(C)=,b=4,•=12,求c.【考点】解三角形;两角和与差的余弦函数.【分析】(1)使用和角公式展开再利用二倍角公式与和角的正弦公式化简f(x),利用正弦函数的单调性列出不等式解出;(2)根据f(C)=求出C,根据,•=12解出a,使用余弦定理解出c.【解答】解:(1)f(x)=sinx(cosx﹣sinx)+1=sin2x﹣+1=sin(2x+)+.令≤2x+≤,解得≤x≤.∴函数f(x)的单调递减区间是[,],k∈Z.(2)∵f(C)=sin(2C+)+=,∴sin(2C+)=1,∴C=.∵•=abcosA=2a=12,∴a=2.由余弦定理得c2=a2+b2﹣2abcosC=12+16﹣24=4.∴c=2.17.有两个袋子,其中甲袋中装有编号分别为1、2、3、4的4个完全相同的球,乙袋中装有编号分别为2、4、6的3个完全相同的球.(Ⅰ)从甲、乙袋子中各取一个球,求两球编号之和小于8的概率;(Ⅱ)从甲袋中取2个球,从乙袋中取一个球,求所取出的3个球中含有编号为2的球的概率.【考点】古典概型及其概率计算公式.【分析】(Ⅰ)利用列举法能求出两球编号之和小于8的概率.(Ⅱ)从甲袋中任取2球,从乙袋中任取一球,先求出所有基本事件个数,再求出含有编号2的基本事件个数,由此能求出所取出的3个球中含有编号为2的球的概率.【解答】解:(Ⅰ)将甲袋中编号分别为1,2,3,4的4个分别记为A1,A2,A3,A4,将乙袋中编号分别为2,4,6的三个球分别记为B2,B4,B6,从甲、乙两袋中各取一个小球的基本事件为:(A1,B2),(A1,B4),(A1,B6),(A2,B2),(A2,B4),(A2,B6),(A3,B2),(A3,B4),(A3,B6),(A4,B2),(A4,B4),(A4,B6),共12种,其中两球面镜编号之和小于8的共有8种,所以两球编号之和小于8的概率为:=.(Ⅱ)从甲袋中任取2球,从乙袋中任取一球,所有基本事件个数n==18,其中不含有编号2的基本事件有,∴含有编号2的基本事件个数m=18﹣6=12,∴所取出的3个球中含有编号为2的球的概率p=.18.已知等比数列{a n}的公比q>1,a1=1,且a1,a3,a2+14成等差数列,数列{b n}满足:a1b1+a2b2+…+a n b n=(n﹣1)•3n+1,n∈N.(I)求数列{a n}和{b n}的通项公式;(Ⅱ)若ma n≥b n﹣8恒成立,求实数m的最小值.【考点】数列的求和;等比数列的通项公式.【分析】(I)数列{a n}是首项为1,公比为q的等比数列,运用等比数列的通项公式和等差数列的中项性质,解方程可得a n=3n﹣1,再将n换为n﹣1,两式相减可得b n=2n﹣1;(2)若ma n≥b n﹣8恒成立,即为m≥的最大值,由c n=,作差,判断单调性,即可得到最大值,进而得到m的最小值.【解答】解:(I)∵数列{a n}是首项为1,公比为q的等比数列,∴a n=q n﹣1,由a1,a3,a2+14成等差数列,可得2a3=a1+a2+14,即为2q2=1+q+14,解得q=3(负的舍去),即有a n=3n﹣1,∴a1b1+a2b2+a3b3+…+a n b n=b1+3b2+32b3+…+3n﹣1b n=(n﹣1)•3n+1,∴b1+3b2+32b3+…+3n﹣2b n﹣1=(n﹣1﹣1)•3n﹣1+1(n≥2),两式相减得:3n﹣1b n=(n﹣1)•3n﹣(n﹣2)•3n﹣1=(2n﹣1)•3n﹣1,∴b n=2n﹣1,当n=1时,a1b1=1,即b1=1满足上式,∴数列{b n}的通项公式是b n=2n﹣1;(2)若ma n≥b n﹣8恒成立,即为m≥的最大值,由c n=,n≥2时,c n﹣1=,c n﹣c n﹣1=﹣=,可得n=2,3,…,6时,c n≥c n﹣1;n=7,…时,c n<c n﹣1.即有n=5或6时,c n取得最大值,且为,即为m≥,可得m的最小值为.19.如图,在三棱锥P﹣ABC中,AB⊥平面PAC,∠APC=90°,E是AB的中点,M是CE 的中点,N点在PB上,且4PN=PB.(Ⅰ)证明:平面PCE⊥平面PAB;(Ⅱ)证明:MN∥平面PAC.【考点】平面与平面垂直的判定;直线与平面平行的判定;直线与平面垂直的性质.【分析】(I)由AB⊥平面PAC可得AB⊥PC,再结合AP⊥PC得出PC⊥平面PAB,故而平面PCE⊥平面PAB;(II)取AE中点Q,连结NQ,MQ,则可证明平面MNQ∥平面PAC,故而MN∥平面PAC.【解答】证明:(I)∵AB⊥平面PAC,PC⊂平面PAC,∴AB⊥PC,∵∠APC=90°,∴AP⊥PC,又∵AP⊂平面PAB,AB⊂平面PAB,AP∩AB=A,∴PC⊥平面PAB,∵PC⊂平面PCE,∴平面PCE⊥平面PAB.(II)取AE中点Q,连结NQ,MQ,∵M是CE中点,∴MQ∥AC,∵PB=4PN,AB=4AQ,∴QN∥AP,又∵AP∩PC=P,AP⊂平面APC,PC⊂平面APC,QN∩QM=Q,QN⊂平面MNQ,QM⊂平面MNQ,∴平面MNQ∥平面PAC,∵MN⊂平面MNQ,∴MN∥平面PAC.20.如图:A,B,C是椭圆的顶点,点F(c,0)为椭圆的右焦点,离心率为,且椭圆过点.(Ⅰ)求椭圆的方程;(Ⅱ)若P是椭圆上除顶点外的任意一点,直线CP交x轴于点E,直线BC与AP相交于点D,连结DE.设直线AP的斜率为k,直线DE的斜率为k1,证明:.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程;椭圆的简单性质.【分析】(I)由题意得=, +=1,a2=b2+c2.联立解得即可得出椭圆方程.(Ⅱ)由截距式可得直线BC的方程为:y=x+2.直线AP的方程为:y=k(x﹣4),与椭圆方程联立可得:(4k2+1)x2﹣32k2x+64k2﹣16=0,又点P在椭圆上,利用根与系数的关系可得P.利用斜率计算公式可得k CP,可得直线CP的方程,可得E.把直线BC与AP的方程联立可得D.可得直线DE 的斜率,化简整理即可证明.【解答】解:(I)由题意得=, +=1,a2=b2+c2.联立解得a2=16,b2=4,∴椭圆C: +=1.证明:(Ⅱ)A(4,0),B(﹣4,0),C(0,2),直线BC的方程为:=1,化为:y=x+2.直线AP的方程为:y=k(x﹣4),与椭圆方程联立可得:(4k2+1)x2﹣32k2x+64k2﹣16=0,又点P在椭圆上,∴4x P=,解得x P=,∴y P=k(x P﹣4)=,故P.k CP==,故直线CP的方程为:y=x+2,令y=0,解得x=,可得E.把直线BC与AP的方程联立可得:,解得,∴D.直线DE的斜率为k1===,∴.21.已知函数f(x)=lnx(Ⅰ)求函数的最大值.(Ⅱ)证明:;(Ⅲ)若不等式mf(x)≥a+x对所有的都成立,求实数a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最大值即可;(Ⅱ)令h(x)=x﹣f(x),求出h(x)的导数,得到函数的单调区间,求出h(x)的最小值,结合F(x)的最大值,从而证出结论即可;(Ⅲ)利用参数分离法,转化为以m为变量的函数关系进行求解即可.【解答】解:(Ⅰ)F(x)=+=+,F′(x)=,令F′(x)>0,解得:x<e,令F′(x)<0,解得:x>e,∴F(x)在(0,e)递增,在(e,+∞)递减,故F(x)max=+;证明:(Ⅱ)令h(x)=x﹣f(x),则h′(x)=,从而h(x)在(0,1)递减,在(1,+∞)递增,∴h(x)的最小值是h(1)=1,又F(x)的最大值是+<1,∴F(x)<h(x),即+<x﹣f(x);解:(Ⅲ)不等式mf(x)≥a+x对所有的m∈[0,],x∈[1,e2]都成立,则a≤mlnx﹣x对所有的m∈[0,],x∈[1,e2]都成立,令H(x)=mlnx﹣x,m∈[0,],x∈[1,e2]是关于m的一次函数,∵x∈[1,e2],∴lnx∈[0,2],∴当m=0时,H(m)取得最小值﹣x,即a≤﹣x,当x∈[1,e2]时,恒成立,故a≤﹣e2.2020年9月19日。

2020年山东省泰安市高考数学一模试卷

2020年山东省泰安市高考数学一模试卷

2020年山东省泰安市高考数学一模试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U =R ,集合M ={x |﹣3<x <1},N ={x ||x |≤1},则阴影部分表示的集合是( )A .[﹣1,1]B .(﹣3,1]C .(﹣∞,﹣3)∪(﹣1,+∞)D .(﹣3,﹣1)2.(5分)已知复数2−ai i=1−bi ,其中a ,b ∈R ,i 是虚数单位,则|a +bi |=( ) A .﹣1+2iB .1C .5D .√53.(5分)已知(2−mx)(1−1x)3的展开式中的常数项为8,则实数m =( ) A .2B .﹣2C .﹣3D .34.(5分)已知函数f (x )=log a (|x ﹣2|﹣a )(a >0,且a ≠1),则“f (x )在(3,+∞)”上是单调函数”是“0<a <1”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件5.(5分)已知定义在R 上的函数f (x )的周期为4,当x ∈[﹣2,2)时,f(x)=(13)x −x −4,则f (﹣log 36)+f (log 354)=( ) A .32B .32−log 32C .−12D .23+log 326.(5分)如图,在△ABC 中,点O 是BC 的中点.过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB →=m AM →,AC →=n AN →,则m +n 的值为( )A .1B .2C .﹣2D .947.(5分)现有一个封闭的棱长为2的正方体容器,当水平放置时,如图,水面的高度正好为棱长的一半.若将该正方体绕下底面(底面与水平面平行)的某条棱任意旋转,则容器里水面的最大高度为( )A .1B .√2C .√3D .2√28.(5分)抛物线y 2=2px (p >0)的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点,且满足∠AFB =2π3.设线段AB 的中点M 在l 上的投影为N ,则|MN||AB|的最大值是( )A .√3B .√32C .√33D .√34二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.(5分)某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业岗位分布条形图,则下列结论正确的是( ) 注:90后指1990年及以后出生,80后指1980﹣1989年之间出生.80前指1979年及以前出生.A .互联网行业从业人员中从事技术和运营岗位的人数占总人数的三成以上B .互联网行业中从事技术岗位的人数超过总人数的20%C .互联网行业中从事运营岗位的人数90后比80前多D .互联网行业中从事技术岗位的人数90后比80后多 10.(5分)下列说法正确的是( )A .“c =5”是“点(2,1)到直线3x +4y +c =0的距离为3”的充要条件B.直线x sinα﹣y+1=0的倾斜角的取值范围为[0,π4]∪[3π4,π)C.直线y=﹣2x+5与直线2x+y+1=0平行,且与圆x2+y2=5相切D.离心率为√3的双曲线的渐近线方程为y=±√2x11.(5分)已知α,β是两个不重合的平面,m,n是两条不重合的直线,则下列命题正确的是()A.若m⊥n,m⊥α,n∥β,则α⊥βB.若m⊥α,n∥α,则m⊥nC.若α∥β,m⊂α,则m∥βD.若m∥n,α∥β,则m与α所成的角和n与β所成的角相等12.(5分)已知函f(x)=e|x|sin x,则下列结论正确的是()A.f(x)是周期为2π的奇函数B.f(x)在(−π4,3π4)上为增函数C.f(x)在(﹣10π,10π)内有21个极值点D.f(x)≥ax在[0,π4]上恒成立的充要条件是a≤1三、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知α,β∈(3π4,π),sin(α+β)=−35,sin(β−π4)=1213,则cos(α+π4)=.14.(5分)一个房间的地面是由12个正方形所组成,如图所示.今想用长方形瓷砖铺满地面,已知每一块长方形瓷砖可以覆盖两块相邻的正方形,即或,则用6块瓷砖铺满房间地面的方法有种.15.(5分)《易经》是中国传统文化中的精髓,如图是易经八卦(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(““表示一根阳线,““表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有两根阳线,四根阴线的概率为.16.(5分)过点M (﹣m ,0)(m ≠0)的直线l 与直线3x +y ﹣3=0垂直,直线l 与双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的两条渐近线分别交于点A ,B ,若点P (m ,0)满足|P A |=|PB |,则双曲线C 的渐近线方程为 ,离心率为 .四、解答题:本题共6小题,共70分.解答应写出文宇说明、证明过程或演算步骤. 17.(10分)在①A 5=B 3,②1a 1−1a 2=4B 2,③B 5=35这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{a n }的公差为d (d >0),等差数列{b n }的公差为2d .设A n ,B n 分别是数列{a n },{b n }的前n 项和,且b 1=3,A 2=3,________. (1)求数列{a n },{b n }的通项公式;(2)设c n =2a n +3b n b n+1,求数列{c n }的前n 项和S n .18.(12分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且8cos 2B+C 2−2cos2A =3.(1)求A ;(2)若a =2,且△ABC 面积的最大值为√3,求△ABC 周长的取值范围. 19.(12分)在四边形ABCP 中,AB =BC =√2,∠P =π3,PA =PC =2;如图,将△P AC 沿AC 边折起,连结PB ,使PB =P A ,求证: (1)平面ABC ⊥平面P AC ;(2)若F 为棱AB 上一点,且AP 与平面PCF 所成角的正弦值为√34,求二面角F ﹣PC ﹣A 的大小.20.(12分)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,整理如下:甲公司员工A :410,390,330,360,320,400,330,340,370,350 乙公司员工B :360,420,370,360,420,340,440,370,360,420 每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件0.65元,乙公司规定每天350件以内(含350件)的部分每件0.6元.超出350件的部分每件0.9元.(1)根据题中数据写出甲公司员工A 在这10天投递的快件个数的平均数和众数; (2)为了解乙公司员工B 每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为ξ(单位:元),求ξ的分布列和数学期望; (3)根据题中数据估算两公司被抽取员工在该月所得的劳务费. 21.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,直线l :y =kx +m 与椭圆C 相交于P ,Q 两点;当直线l 经过椭圆C 的下顶点A 和右焦点F 2时,△F 1PQ 的周长为4√2,且l 与椭圆C 的另一个交点的横坐标为43.(1)求椭圆C 的方程;(2)点M 为△POQ 内一点,O 为坐标原点,满足MP →+MO →+MQ →=0,若点M 恰好在圆O :x 2+y 2=49,求实数m 的取值范围. 22.(12分)已知函数f(x)=lnx+axe x,a ∈R . (1)若函数y =f (x )在x =x 0(ln 2<x 0<ln 3)处取得极值1,证明:2−1ln2<a <3−1ln3; (2)若f(x)≤x −1e x 恒成立,求实数a 的取值范围.2020年山东省泰安市高考数学一模试卷参考答案与试题解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U =R ,集合M ={x |﹣3<x <1},N ={x ||x |≤1},则阴影部分表示的集合是( )A .[﹣1,1]B .(﹣3,1]C .(﹣∞,﹣3)∪(﹣1,+∞)D .(﹣3,﹣1)【解答】解:因为全集U =R ,集合M ={x |﹣3<x <1}, N ={x ||x |≤1}=[﹣1,1],∴∁U N =(﹣∞,﹣1)∪(1,+∞);∴阴影部分表示的集合是M ∩(∁U N )=(﹣3,﹣1). 故选:D . 2.(5分)已知复数2−ai i=1−bi ,其中a ,b ∈R ,i 是虚数单位,则|a +bi |=( ) A .﹣1+2i B .1C .5D .√5【解答】解:由2−ai i =1−bi ,得:2﹣ai =i (1﹣bi )=b +i ,所以a =﹣1,b =2, 则a +bi =﹣1+2i ,所以|a +bi |=|﹣1+2i |=√(−1)2+22=√5. 故选:D .3.(5分)已知(2−mx)(1−1x )3的展开式中的常数项为8,则实数m =( ) A .2B .﹣2C .﹣3D .3【解答】解:∵(1−1x )3的展开式的通项公式为:∁3r •(−1x )r =(﹣1)r •∁3r •x ﹣r;﹣r =0得r =0;﹣r =﹣1得r =1;∴(2−mx)(1−1x )3的展开式中的常数项为:2×(﹣1)0•∁30+(﹣m )•(﹣1)1⋅∁31=8; ∴m =2; 故选:A .4.(5分)已知函数f (x )=log a (|x ﹣2|﹣a )(a >0,且a ≠1),则“f (x )在(3,+∞)”上是单调函数”是“0<a <1”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件【解答】解:|x ﹣2|﹣a =x ﹣2﹣a 在(3,+∞)上是单调递增, 要使f (x )在(3,+∞)上是单调函数函数, 则|3﹣2|﹣a >0,且a >0,且a ≠1, 解之得0<a <1,则0<a <1是0<a <1的充要条件, 故选:C .5.(5分)已知定义在R 上的函数f (x )的周期为4,当x ∈[﹣2,2)时,f(x)=(13)x −x −4,则f (﹣log 36)+f (log 354)=( ) A .32B .32−log 32C .−12D .23+log 32【解答】解:因为函数f (x )的周期为4,当x ∈[﹣2,2)时,f(x)=(13)x −x −4,∴f (﹣log 36)=f (log 316)=(13)log 316−log 316−4=2+log 36; f (log 354)=f (3+log 32)=f (log 32﹣1)=f (log 323)=(13)log 323−log 323−4=32−log 32+1﹣4=32−log 32﹣3; ∴f (﹣log 36)+f (log 354)=2+log 36+32−log 32﹣3=32; 故选:A .6.(5分)如图,在△ABC 中,点O 是BC 的中点.过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB →=m AM →,AC →=n AN →,则m +n 的值为( )A .1B .2C .﹣2D .94【解答】解:由已知得AO →=12(AB →+AC →),结合AB →=m AM →,AC →=n AN →,所以AO →=12mAM →+12nAN →.又因为O ,M ,N 三点共线,所以12m +12n =1,所以m +n =2. 故选:B .7.(5分)现有一个封闭的棱长为2的正方体容器,当水平放置时,如图,水面的高度正好为棱长的一半.若将该正方体绕下底面(底面与水平面平行)的某条棱任意旋转,则容器里水面的最大高度为( )A .1B .√2C .√3D .2√2【解答】解:∵现有一个封闭的棱长为2的正方体容器, 当水平放置时,如图,水面的高度正好为棱长的一半, ∴正方体的面对角线长为2√2,将该正方体绕下底面(底面与水平面平行)的某条棱任意旋转, 当旋转到对角线与小平面垂直时容器里水面的高度最大, ∴容器里水面的最大高度为面对角线长的一半, ∴容器里水面的最大高度为√2. 故选:B .8.(5分)抛物线y 2=2px (p >0)的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点,且满足∠AFB =2π3.设线段AB 的中点M 在l 上的投影为N ,则|MN||AB|的最大值是( ) A .√3B .√32C .√33D .√34【解答】解:设|AF |=a ,|BF |=b ,A 、B 在准线上的射影点分别为Q 、P , 连接AQ 、BQ由抛物线定义,得|AF |=|AQ |且|BF |=|BP |,在梯形ABPQ 中根据中位线定理,得2|MN |=|AQ |+|BP |=a +b . 由余弦定理得|AB |2=a 2+b 2﹣2ab cos 2π3=a 2+b 2+ab ,配方得|AB |2=(a +b )2﹣ab , 又∵ab ≤(a+b 2) 2,∴(a +b )2﹣ab ≥(a +b )2﹣( a+b 2) 2=34(a +b )2得到|AB |≥√32(a +b ). 所以|MN||AB|≤a+b2√32(a+b)=√33, 即|MN||AB|的最大值为√33. 故选:C .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.(5分)某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业岗位分布条形图,则下列结论正确的是( )注:90后指1990年及以后出生,80后指1980﹣1989年之间出生.80前指1979年及以前出生.A.互联网行业从业人员中从事技术和运营岗位的人数占总人数的三成以上B.互联网行业中从事技术岗位的人数超过总人数的20%C.互联网行业中从事运营岗位的人数90后比80前多D.互联网行业中从事技术岗位的人数90后比80后多【解答】解:在A中,由整个互联网行业从业者年龄分布饼状图、90后从事互联网行业岗位分布条形图得到:56%×(39.6%+17%)=31.696%>30%,互联网行业从业人员中从事技术和运营岗位的人数占总人数的三成以上,故A正确;在B中,由整个互联网行业从业者年龄分布饼状图、90后从事互联网行业岗位分布条形图得到:56%×39.6%=22.176%>20%,互联网行业中从事技术岗位的人数超过总人数的20%,故B正确;在C中,由整个互联网行业从业者年龄分布饼状图、90后从事互联网行业岗位分布条形图得到:17%×56%=9.52%互联网行业中从事运营岗位的人数90后比80前多,故C正确;在D中,由整个互联网行业从业者年龄分布饼状图、90后从事互联网行业岗位分布条形图得到:互联网行业中从事技术岗位的人数90后不一定比80后多,故D错误.故选:ABC.10.(5分)下列说法正确的是()A.“c=5”是“点(2,1)到直线3x+4y+c=0的距离为3”的充要条件B .直线x sin α﹣y +1=0的倾斜角的取值范围为[0,π4]∪[3π4,π) C .直线y =﹣2x +5与直线2x +y +1=0平行,且与圆x 2+y 2=5相切D .离心率为√3的双曲线的渐近线方程为y =±√2x【解答】解:“c =5”是“点(2,1)到直线3x +4y +c =0的距离为3”的充分条件,所以A 不正确;直线x sin α﹣y +1=0的斜率为:sin α,直线的倾斜角为θ,所以tan θ=sin α∈[﹣1,1], 所以直线倾斜角的取值范围为[0,π4]∪[3π4,π),所以B 正确;直线y =﹣2x +5与直线2x +y +1=0平行,正确,因为圆的圆心到直线的距离为:√5=√5,所以两条直线与圆x 2+y 2=5相切,所以C 正确; 离心率为√3的双曲线,可得ca =√3,即c 2=3a 2,所以b 2=2a 2,所以双曲线的渐近线方程为:y =±√2x 或y =±√22x ,所以D 不正确; 故选:BC .11.(5分)已知α,β是两个不重合的平面,m ,n 是两条不重合的直线,则下列命题正确的是( )A .若m ⊥n ,m ⊥α,n ∥β,则α⊥βB .若m ⊥α,n ∥α,则m ⊥nC .若α∥β,m ⊂α,则m ∥βD .若m ∥n ,α∥β,则m 与α所成的角和n 与β所成的角相等【解答】解:A .满足m ⊥n ,m ⊥α,n ∥β时,得不出α⊥β,α与β可能平行,如图所示:∴该选项错误;B .∵n ∥α,∴设过n 的平面β与α交于a ,则n ∥a ,又m ⊥α,∴m ⊥a ,∴m ⊥n ,∴该选项正确;C .∵α∥β,∴α内的所有直线都与β平行,且m ⊂α,∴m ∥β,∴该选项正确;D .根据线面角的定义即可判断该选项正确. 故选:BCD .12.(5分)已知函f (x )=e |x |sin x ,则下列结论正确的是( ) A .f (x )是周期为2π的奇函数 B .f (x )在(−π4,3π4)上为增函数C .f (x )在(﹣10π,10π)内有21个极值点D .f (x )≥ax 在[0,π4]上恒成立的充要条件是a ≤1 【解答】解:A 错,因为函数是奇函数,但不是周期函数. B 对,利用奇函数去绝对值,求导可判断f (x )在(−π4,3π4)上递增;C 错,x ≥0时,f (x )=e x sin x ,则f ′(x )=e x sin x +e x cos x =0,即sin x +cos x =0,0<x <10π,方程有10个根.有奇偶性﹣10π<x <0时,有10个根,故计算得f (x )在(﹣10π,10π)内有20个极点;D 对,当x ∈[0,π4],f (x )=e x sin x ,则f ′(x )=e x sin x +e x cos x ,即f ′(0)=1,a 表示过原点直线的斜率,则由恒成立可求a ≤1. 故选:BD .三、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知α,β∈(3π4,π),sin(α+β)=−35,sin(β−π4)=1213,则cos(α+π4)= −5665. 【解答】解:已知α,β∈(3π4,π),sin(α+β)=−35, sin(β−π4)=1213,α+β∈(3π2,2π),β−π4∈(π2,3π4), ∴cos(α+β)=45,cos(β−π4)=−513, ∴cos(α+π4)=cos[(α+β)−(β−π4)]=cos(α+β)cos(β−π4)+sin(α+β)sin(β−π4) =45⋅(−513)+(−35)⋅1213=−5665故答案为:−56 6514.(5分)一个房间的地面是由12个正方形所组成,如图所示.今想用长方形瓷砖铺满地面,已知每一块长方形瓷砖可以覆盖两块相邻的正方形,即或,则用6块瓷砖铺满房间地面的方法有11种.【解答】解:由题意只能分成三类铺砖:第一类.横5竖1:竖砖只能排在上两行中(如图所示的竖线位置之一),两头与中间,其余排竖砖,共3种;第二类.横3竖3:左下角一块横砖,另外三块竖砖排在上面两行,中间形成四个空,两块横砖上下并排插空共4种铺法;或左上角一块横砖,另两块横砖并排排在上面两行右边部分,其余空排竖砖,有2种排法.所以此类共有6种排法.第三类.横1竖5:横砖只能排在最左边最上一行或最下一行,其余排竖砖,共有2种铺法;综上一共有3+6+2=11种排法.故答案为:11.15.(5分)《易经》是中国传统文化中的精髓,如图是易经八卦(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(““表示一根阳线,““表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有两根阳线,四根阴线的概率为314.【解答】解:观察八卦图可知,含3根阴线的共有1卦,含3根阳线的共有1卦,还有2根阴线1根阳线的共有3卦,含有1根阴线2根阳线的共有3卦,∴从八卦中任取两卦,这两卦的六根线恰有两根阳线,四根阴线的概率为:P=C31+C32C82=314.故答案为:314.16.(5分)过点M(﹣m,0)(m≠0)的直线l与直线3x+y﹣3=0垂直,直线l与双曲线C:x2 a2−y2b2=1(a>0,b>0)的两条渐近线分别交于点A,B,若点P(m,0)满足|P A|=|PB|,则双曲线C的渐近线方程为y=±12x,离心率为√52.【解答】解:过点M(﹣m,0)(m≠0)的直线l与直线3x+y﹣3=0垂直,可得:直线l:x﹣3y+m=0(m≠0),由双曲线的方程可知,渐近线为y=±ba x,分别与x﹣3y+m=0(m≠0)联立,解得A(−ama−3b,−bma−3b),B(−ama+3b,bma+3b),∴AB中点坐标为(ma29b2−a2,3mb29b2−a2),∵点P(m,0)满足|P A|=|PB|,∴3mb29b2−a2−0 ma29b2−a2−m=−3,∴a =2b ,∴双曲线C 的渐近线方程为:y =±12x . ∴c =√5b , ∴e =ca =√52. 故答案为:y =±12x :√52. 四、解答题:本题共6小题,共70分.解答应写出文宇说明、证明过程或演算步骤. 17.(10分)在①A 5=B 3,②1a 1−1a 2=4B 2,③B 5=35这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{a n }的公差为d (d >0),等差数列{b n }的公差为2d .设A n ,B n 分别是数列{a n },{b n }的前n 项和,且b 1=3,A 2=3,________. (1)求数列{a n },{b n }的通项公式; (2)设c n =2a n +3b n b n+1,求数列{c n }的前n 项和S n . 【解答】解:方案一:选条件① (1)由题意,可知∵数列{a n },{b n }都是等差数列,且A 2=3,A 5=B 3, ∴{2a 1+d =35a 1+10d =9+6d ,解得{a 1=1d =1, ∴a n =1+1•(n ﹣1)=n ,n ∈N *, b n =3+2•1•(n ﹣1)=2n +1,n ∈N *, 综上所述,可得a n =n ,b n =2n +1. (2)由(1)知,c n =2n +3(2n+1)(2n+3)=2n +32(12n+1−12n+3), ∴S n =c 1+c 2+…+c n=[2+32(13−15)]+[22+32(15−17)]+…+[2n +32(12n+1−12n+3)]=(2+22+⋯+2n )+32[(13−15)+(15−17)+⋯+(12n+1−12n+3)]=2(1−2n)1−2+32(13−12n+3)=2n+1−3(n+2)2n+3.方案二:选条件② (1)由题意,可知∵数列{a n },{b n }都是等差数列,且A 2=3,1a 1−1a 2=4B 2,∴{2a 1+d =31a 1−1a 1+d =42×3+2d,整理,得{2a 1+d =34a 1(a 1+d)=d(6+2d),解得{a 1=1d =1,∴a n =1+1•(n ﹣1)=n ,n ∈N *, b n =3+2•1•(n ﹣1)=2n +1,n ∈N *, 综上所述,可得a n =n ,b n =2n +1. (2)同方案一第(2)小题解题过程. 方案三:选条件③ (1)由题意,可知∵数列{a n },{b n }都是等差数列,且A 2=3,B 5=35, ∴{2a 1+d =33×5+5×42×2d =35,解得{a 1=1d =1, ∴a n =1+1•(n ﹣1)=n ,n ∈N *, b n =3+2•1•(n ﹣1)=2n +1,n ∈N *, 综上所述,可得a n =n ,b n =2n +1. (2)同方案一第(2)小题解题过程.18.(12分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且8cos 2B+C 2−2cos2A =3.(1)求A ;(2)若a =2,且△ABC 面积的最大值为√3,求△ABC 周长的取值范围. 【解答】解:(1)∵8cos 2B+C2−2cos2A =3, ∴4(1+cos (B +C ))﹣2cos2A =3, 整理得4cos 2A +4cos •A ﹣3=0, 解得cosA =12或cosA =−32(舍去), 又A ∈(0,π)∴A =π3,(2)由题意知S △ABC =12bcsinA =√34bc ≤√3,∴bc ≤4,又b 2+c 2﹣a 2=2bc cos A ,a =2, ∴b 2+c 2=4+bc ,∴(b +c )2=4+3bc ≤16, 又b +c >2,所以2<b +c ≤4,4<a +b +c ≤6,,∴△ABC 周长的取值范围是(4,6].19.(12分)在四边形ABCP 中,AB =BC =√2,∠P =π3,PA =PC =2;如图,将△P AC 沿AC 边折起,连结PB ,使PB =P A ,求证: (1)平面ABC ⊥平面P AC ;(2)若F 为棱AB 上一点,且AP 与平面PCF 所成角的正弦值为√34,求二面角F ﹣PC ﹣A 的大小.【解答】证明:(1)在△PAC 中,PA =PC =2,∠P =π3∴△P AC 为正三角形,且AC =2在△ABC 中,AB =BC =√2∴△ABC 为等腰直角三角形,且AB ⊥BC 取AC 的中点O ,连接OB ,OP∴OB ⊥AC ,OP ⊥AC#/DEL/#∵OB =1,OP =√3,PB =PA =2#/DEL/#∴OP ⊥OBOP ∩AC =O ,AC ,OP ⊂平面P AC ∴OB ⊥平面P AC ∵OB ⊂平面ABC ∴平面ABC ⊥平面P AC (2)以O 为坐标原点,建立如图所示的空间直角坐标系O ﹣xyz ,则A(0,−1,0),B(1,0,0),C(0,1,0),P(0,0,√3),AB →=(1,1,0),AP →=(0,1,√3),CP →=(0,−1,√3),CA →=(0,−2,0),设AF →=mAB →(0<m <1),则CF →=CA →+AF →=(m ,m −2,0)设平面PFC 的一个法向量为n =(x ,y ,z ),则{n ⋅CF →=0n ⋅CP →=0∴{mx +y(m −2)=0−y +√3z =0令y =√3,解得{x =2−mm √3z =1∴n =(2−mm √3,√3,1)∵AP 与平面PFC 所成角的正弦值为√34, ∴|n⋅AP→|n|⋅|AP|→|=√3√3(2−m)2m 2+3+1=√34整理得3m 2+4m ﹣4=0解得m =23或m =−2(舍去)∴n =(2√3,√3,1) 又OB →为平面P AC 的一个法向量 ∴cos〈n ,OB →〉=n⋅OB→|n||OB|→=√32#/DEL/#∴〈n ,OB →〉=π6#/DEL/#∴二面角F ﹣P A ﹣C 的大小为π6.20.(12分)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,整理如下:甲公司员工A :410,390,330,360,320,400,330,340,370,350 乙公司员工B :360,420,370,360,420,340,440,370,360,420 每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件0.65元,乙公司规定每天350件以内(含350件)的部分每件0.6元.超出350件的部分每件0.9元.(1)根据题中数据写出甲公司员工A 在这10天投递的快件个数的平均数和众数; (2)为了解乙公司员工B 每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为ξ(单位:元),求ξ的分布列和数学期望; (3)根据题中数据估算两公司被抽取员工在该月所得的劳务费. 【解答】解:(1)由题意知:甲公司员工A 在这10天投递的快递件数的平均数为:110(410+390+330+360+320+400+330+340+370+350)=360,众数为330.(2)设乙公司员工B 1天的投递件数为X ,则X 的可能取值为340,360,370,420,440, 当X =340时,ξ=340×0.6=204,P(ξ=204)=110,当X =360时,ξ=350×0.6+(360−350)×0.9=219,P(ξ=219)=310, 当X =370时,ξ=350×0.6+(370−350)×0.9=228,P(ξ=228)=15, 当X =420时,ξ=350×0.6+(420−350)×0.9=273,P(ξ=273)=310, 当X =440时,ξ=350×0.6+(440−350)×0.9=291,P(ξ=291)=110, ∴ξ的分布列为ξ 204 219 228 273 291 P11031015310110∴E(ξ)=204×110+219×310+228×15+273×310+291×110=242.7. (3)由(1)估计甲公司被抽取员工在该月所得的劳务费为 360×30×0.65=7020(元)由(2)估计乙公司被抽取员工在该月所得的劳务费为: 242.7×0.6×30=4368.6(元). 21.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,直线l :y =kx +m 与椭圆C 相交于P ,Q 两点;当直线l 经过椭圆C 的下顶点A 和右焦点F 2时,△F 1PQ 的周长为4√2,且l 与椭圆C 的另一个交点的横坐标为43.(1)求椭圆C 的方程;(2)点M 为△POQ 内一点,O 为坐标原点,满足MP →+MO →+MQ →=0,若点M 恰好在圆O :x 2+y 2=49,求实数m 的取值范围. 【解答】解:(1)由题意知4a =4√2,∴a =√2, 直线AF 2的方程为y =b c (x −c),∵直线AF 2与椭圆C 的另一个交点的横坐标为43,∴{y =b c (43−c)(43)22+y 2b2=1,解得c =1或c =2(舍去), ∴b 2=a 2﹣c 2=1, ∴椭圆C 的方程为x 22+y 2=1;(2)设P (x 1,y 1),Q (x 2,y 2),∵MP →+MO →+MQ →=0,∴点M 为△POQ 的重心,得M(x 1+x 23,y 1+y 23), ∵点M 在O :x 2+y 2=49上,∴(x 1+x 2)2+(y 1+y 2)2=4, 由{y =kx +m x 22+y 2=1,得(1+2k 2)x 2+4kmx +2m 2﹣2=0,∴x 1+x 2=−4km 1+2k2,x 1x 2=2m 2−21+2k 2,∴(x 1+x 2)2+(y 1+y 2)2=(−4km 1+2k2)2+(k(−4km 1+2k2)+2m)2=4,即16(1+k 2)k 2m 2(1+2k 2)2−16k 2m 21+2k 2+4m 2=4,得m 2=(1+2k 2)24k 2+1,由△>0得1+2k 2>m 2,∴1+2k 2>(1+2k 2)24k 2+1,解得k ≠0, ∴m 2=(1+2k 2)24k 2+1=1+4k44k 2+1=1+44k 2+1k4>1, ∴m >1或m <﹣1. 22.(12分)已知函数f(x)=lnx+axe x,a ∈R . (1)若函数y =f (x )在x =x 0(ln 2<x 0<ln 3)处取得极值1,证明:2−1ln2<a <3−1ln3;(2)若f(x)≤x−1e x恒成立,求实数a的取值范围.【解答】解:(1)f′(x)=1x+a−(lnx+ax)e x.∵函数y=f(x)在x=x0处取得极值1,∴f′(x0)=1x0+a−(lnx0+ax0)e x0=0,且f(x0)=lnx0+ax0e x0=1,∴1x0+a=lnx0+ax0=e x0,∴a=e x0−1x0,令r(x)=e x−1x(x>0),则r′(x)=e x+1x2>0,∴r(x)为增函数,∵0<ln2<x0<ln3,∴r(ln2)<a<r(ln3),即2−1ln<a<3−1ln3.(2)不等式f(x)≤x−1e x恒成立,即不等式xe x﹣lnx﹣ax≥1恒成立,即a≤e x−lnxx−1x恒成立.令g(x)=e x−lnxx−1x,则g′(x)=e x−1−lnxx2+1x2=x2e2+lnxx2.令ℎ(x)=x2e x+lnx,则ℎ′(x)=(x2+2x)e x+1 x.∵x>0,∴h'(x)>0.∴h(x)在(0,+∞)上单调递增,且ℎ(1)=e>0,ℎ(12)=√e4−ln2<0.∴h(x)有唯一零点x1,且12<x1<1.当x∈(0,x1)时,h(x)<0,g'(x)<0,g(x)单调递减;∴a≤e x1−lnx1x1−1x1.由h(x1)=0整理得x1e x1=−lnx1x1,∵12<x1<1,−lnx1>0,令k(x)=xe x(x>0),则方程x1e x1=−lnx1x1等价于k(x1)=k(﹣lnx1),而k'(x)=(x+1)e x在(0,+∞)上恒大于零,∴k(x)在(0,+∞)上单调递增,∵k(x1)=k(﹣lnx1),∴x1=﹣lnx1,∴e x1=1x1,∴g(x1)=e x1−lnx1x1−1x1=1x1−(−x1)x1−1=1.x1∴a≤1.∴实数a的取值范围为(﹣∞,1].。

2020届山东省肥城市高三第一次统考数学试题(解析版)

2020届山东省肥城市高三第一次统考数学试题(解析版)

2020届山东省肥城市高三第一次统考数学试题一、单选题1.已知集合{}240M x x x =-<,{}124x N x -=<,则MN =( )A .()1,3B .()0,3C .()0,4D .∅【答案】B【解析】可以求出集合M ,N ,然后进行交集的运算即可. 【详解】 解:{|04}M x x =<<,{|3}N x x =<,(0,3)M N ∴⋂=.故选:B . 【点睛】本题考查描述法、区间的定义,一元二次不等式的解法,指数函数的单调性,以及交集的运算。

属于基础题。

2.设()1,z x yi x y R =+∈,234z i =-(i 为虚数单位),且125z z +=,则( ) A .()()22345x y ++-= B .()()223425x y ++-= C .()()22345x y -++= D .()()223425x y -++=【答案】B【解析】由复数代数形式的加减运算求得12z z +,再由复数模的计算公式求解. 【详解】解:由1(,)z x yi x y R =+∈,234z i =-, 得12()(34)(3)(4)z z x yi i x y i +=++-=++-,又125z z +=,∴5=,即22(3)(4)25x y ++-=. 故选:B . 【点睛】本题考查复数代数形式的加减运算,考查复数模的求法,属于基础题.3.已知函数()sin ,0,621,0.x x x f x x ππ⎧⎛⎫+≤⎪ ⎪=⎝⎭⎨⎪+>⎩则()()21f f -+=( ) ABC .72D .52【答案】C【解析】结合分段函数的表达式,利用代入法进行求解即可. 【详解】解:1(2)sin(2)sin 662f πππ-=-+==,f (1)1213=+=,∴17(2)(1)322f f -+=+=,故选:C . 【点睛】本题主要考查函数值的计算,利用代入法是解决本题的关键.属于基础题.4.某文体局为了解“跑团”每月跑步的平均里程,收集并整理了2018年1月至2018年11月期间“跑团”每月跑步的平均里程(单位:公里)的数据,绘制了下面的折线图.根据折线图,下列结论正确的是( )A .月跑步平均里程的中位数为6月份对应的里程数B .月跑步平均里程逐月增加C .月跑步平均里程高峰期大致在8、9月D .1月至5月的月跑步平均里程相对于6月至11月,波动性更小,变化比较平稳 【答案】D【解析】根据折线图中11个月的数据分布,数据从小到大排列中间的数可得中位数,根据数据的增长趋势可判断BCD. 【详解】由折线图知,月跑步平均里程的中位数为5月份对应的里程数;月跑步平均里程不是逐月增加的;月跑步平均里程高峰期大致在9,l 0月份,故A ,B ,C 错.本题选择D 选项. 【点睛】本题主要考查了识别折线图进行数据分析,属于基础题.5.正方形ABCD 中,点E ,F 分别是CD ,BC 的中点,那么EF =( )A .1122AB AD + B .1122AB AD -- C .1122AB AD -+D .1122AB AD -【答案】D【解析】由题意点E ,F 分别是DC ,BC 的中点,求出EC ,CF ,然后求出向量EF 即得. 【详解】解:因为点E 是CD 的中点,所以12EC AB =, 点得F 是BC 的中点,所以1122CF CB AD ==-,所以1122EF EC CF AB AD =+=-,故选:D . 【点睛】本题考查向量加减混合运算及其几何意义,注意中点关系与向量的方向,考查基本知识的应用。

2020届山东省泰安市肥城市一模数学试题(解析版)

2020届山东省泰安市肥城市一模数学试题(解析版)

山东省肥城2020届高三新高考数学模拟试题一、单选题1.已知集合A ={x |﹣1<x <1},B ={x |0<x <2},则A ∪B =( ) A. (﹣1,2) B. (﹣1,0)C. (0,1)D. (1,2)【答案】A 【解析】 【分析】根据并集的概念直接计算即可得解.【详解】由题意得{}()121,2A B x x ⋃=-<<=-. 故选:A.【点睛】本题考查了集合并集的运算,属于基础题.2.若集合{}{}1234|05P Q x x x R ==<<∈,,,,,,则“x P ∈”是“x Q ∈”的( ) A. 充分非必要条件 B. 必要非充分条件C. 充分必要条件D. 既不充分也非不必要条件【答案】A 【解析】 【分析】根据题意,对充分性和必要性进行讨论,即可判断和选择. 【详解】由题可知,若x P ∈,则一定有x Q ∈,故充分性满足; 但是若x Q ∈,则不一定有x Q ∈,故必要性不满足. 故“x P ∈”是“x Q ∈”的充分不必要条件. 故选:A .【点睛】本题考查充分条件和必要条件的判断,属基础题.3.已知(),4,2a x =-r ,()3,,5b y =-r ,若a b ⊥r r ,则22x y+取值范围为( )A. [)2,+∞B. [)3,+∞C. [)4,+∞ D. [)5,+∞【答案】C 【解析】 【分析】根据向量的坐标与垂直关系,可得,x y 的等量关系.由22xy +可知其意义为(),x y 到原点距离平方,即可由点到直线距离公式求解.【详解】(),4,2a x =-r,()3,,5b y =-r ,且a b ⊥r r由向量数量积的运算可得34100a b x y ⋅=--=rr22x y +的意义为(),x y 到原点距离平方由点到直线距离公式可知原点到直线34100x y --=的距离为()2210234d -==+-因为点到直线的距离为最短距离,所以22x y +的最小值为4即22xy +的取值范围为[)4,+∞故选:C【点睛】本题考查了空间向量垂直的坐标关系,向量数量积的运算.点到直线距离公式的应用,两点间距离公式的理解,属于基础题.4.若a ,b ,c 满足23a =,2log 5b =,32c =.则( ) A. c a b << B. b c a <<C. a b c <<D. c b a <<【答案】A 【解析】 【分析】利用指数函数和对数函数的单调性即可比较大小. 【详解】Q 23a =,12232<<,∴12a <<,Q 22log 5log 4b =>,∴2b >, Q 32c =,01323<<,∴01c <<,∴c a b <<,故选:A.【点睛】本题考查了指数函数和对数函数的单调性,考查了计算能力和推理能力,属于基础题. 5.对数函数log (0a y x a =>且1)a ≠与二次函数2(1)y a x x =--在同一坐标系内的图象可能是( )A. B. C. D.【答案】A 【解析】 【分析】根据对数函数的单调性,分类讨论,结合二次函数的图象与性质,利用排除法,即可求解,得到答案. 【详解】由题意,若01a <<,则log ay x =在(0,)+∞上单调递减,又由函数2(1)y a x x =--开口向下,其图象的对称轴12(1)x a =-在y 轴左侧,排除C , D.若1a >,则log ay x =在(0,)+∞上是增函数,函数2(1)y a x x =--图象开口向上,且对称轴12(1)x a =-在y 轴右侧,因此B 项不正确,只有选项A 满足.【点睛】本题主要考查了对数函数与二次参数的图象与性质,其中解答中熟记二次函数和对数的函数的图象与性质,合理进行排除判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题. 6.函数2log y x x =-的图象大致是( )A.B.C. D.【答案】A 【解析】 【分析】结合图象只需研究函数零点个数,即可判断选择. 【详解】当4x =时2log 0y x x ==,所以舍去D; 当16x =时2log 0y x x ==,所以舍去BC ; 故选:A【点睛】本题考查利用函数零点判断函数图象,考查基本分析判断能力,属基础题.7.已知函数31(0)()2(0)x a x f x x x -⎧+≤=⎨+>⎩,若((1))18f f -=,那么实数a 的值是( )A. 4B. 1C. 2D. 3【答案】C 【解析】 【分析】先求出(1)4f -=,((1))18f f -=变成(4)18f =,可得到4218a +=,解方程即可得解. 【详解】(1)4f -=,((1))18f f -=变成(4)18f =,即4218a +=,解之得:2a =. 故选:C.【点睛】本题考查已知函数值求参数的问题,考查分段函数的知识,考查计算能力,属于常考题. 8.2018年辽宁省正式实施高考改革.新高考模式下,学生将根据自己的兴趣、爱好、学科特长和高校提供的“选考科目要求”进行选课.这样学生既能尊重自己爱好、特长做好生涯规划,又能发挥学科优势,进而在高考中获得更好的成绩和实现自己的理想.考改实施后,学生将在高二年级将面临着312++的选课模式,其中“3”是指语、数、外三科必学内容,“1”是指在物理和历史中选择一科学习,“2”是指在化学、生物、地理、政治四科中任选两科学习.某校为了更好的了解学生对“1”的选课情况,学校抽取了部分学生对选课意愿进行调查,依据调查结果制作出如下两个等高堆积条形图:根据这两幅图中的信息,下列哪个统计结论是不正确的( )A. 样本中的女生数量多于男生数量B. 样本中有学物理意愿的学生数量多于有学历史意愿的学生数量C. 样本中的男生偏爱物理D. 样本中的女生偏爱历史 【答案】D【解析】 【分析】根据这两幅图中的信息,即可得出结论.【详解】由图1知,样本中的女生数量对于男生数量,样本中有学物理意愿的学生数量多于有学历史意愿的学生数量,样本中的男生偏爱物理,女生也偏爱物理. 故选:D.【点睛】本题考查等高堆积条形图,考查学生对图形的认识,属于基础题.二、多选题9.设函数()sin 2cos 244f x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则()f x ( ) A. 是偶函数B. 在0,2π⎛⎫⎪⎝⎭单调递减 C. 最大值为2 D. 其图像关于直线2x π=对称【答案】ABD 【解析】 【分析】利用辅助角公式、诱导公式化简函数()f x 的解析式,然后根据余弦函数的性质对四个选项逐一判断即可.【详解】()sin 2cos 2224444f x x x x x ππππ⎛⎫⎛⎫⎛⎫=+++=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.选项A :()2))()f x x x f x -=-==,它是偶函数,本说法正确;选项B :0,2x π⎛⎫∈ ⎪⎝⎭,所以()20,x π∈,因此()f x 是单调递减,本说法正确;选项C :()2f x x =,本说法不正确;选项D :当2x π=时,()22f x π=⨯=因此当2x π=时,函数有最小值,因此函数图象关于2x π=对称,本说法正确. 故选:ABD【点睛】本题考查了辅助角公式、诱导公式、考查了余弦型函数的性质,属于基础题. 10.下表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:则下列判断中正确的是()A. 该公司2018年度冰箱类电器销售亏损B. 该公司2018年度小家电类电器营业收入和净利润相同C. 该公司2018年度净利润主要由空调类电器销售提供D. 剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低 【答案】ACD 【解析】 【分析】根据题意,分析表中数据,即可得出正确的选项.【详解】根据表中数据知,该公司2018年度冰箱类电器销售净利润所占比为﹣0.48,是亏损的,A 正确; 小家电类电器营业收入所占比和净利润所占比是相同的,但收入与净利润不一定相同,B 错误; 该公司2018年度净利润空调类电器销售所占比为95.80%,是主要利润来源,C 正确;所以剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低,D 正确. 故选ACD .【点睛】本题考查了数据分析与统计知识的应用问题,考查了读表与分析能力,是基础题.11.在空间四边形ABCD 中,,,,E F G H 分别是,,,AB BC CD DA 上的点,当//BD 平面EFGH 时,下面结论正确的是( )A. ,,,E F G H 一定是各边的中点B. ,G H 一定是,CD DA 的中点C. ::AE EB AH HD =,且::BF FC DG GC =D. 四边形EFGH 是平行四边形或梯形 【答案】CD 【解析】 【分析】根据线面平行的性质定理即可得解.【详解】解:由//BD 平面EFGH ,所以由线面平行的性质定理,得//BD EH ,//BD FG ,则::AE EB AH HD =,且::BF FC DG GC =,且//EH FG ,四边形EFGH 是平行四边形或梯形.故选:CD .【点睛】本题考查线面平行的性质定理的应用,属于基础题.12.如图,正方体1111ABCD A B C D -的棱长为1,则下列四个命题正确的是( )A. 直线BC 与平面11ABC D 所成的角等于4π B. 点C 到面11ABC D 2C. 两条异面直线1D C 和1BC 所成的角为4π D. 三棱柱1111AA D BB C -3【答案】ABD 【解析】 【分析】根据线面角的定义及求法,点面距的定义,异面直线所成角的定义及求法,三棱柱的外接球的半径求法,即可判断各选项的真假.【详解】正方体1111ABCD A B C D -的棱长为1, 对于A ,直线BC 与平面11ABC D 所成的角为14CBC π∠=,故选项A 正确;对于B ,因为1B C ⊥面11ABC D ,点C 到面11ABC D 的距离为1B C 长度的一半,即22h =,故选项B 正确;对于C ,因为11//BC AD ,所以异面直线1D C 和1BC 所成的角为1AD C ∠,而1AD C V 为等边三角形,故两条异面直线1D C 和1BC 所成的角为3π,故选项C 错误; 对于D ,因为11111,,A A A B A D 两两垂直,所以三棱柱1111AA D BB C -外接球也是正方体1111ABCD A B C D -的外接球,故22r ==,故选项D 正确. 故选:ABD .【点睛】本题主要考查线面角的定义以及求法,点面距的定义以及求法,异面直线所成角的定义以及求法,三棱柱的外接球的半径求法的应用,属于基础题.三、填空题13.(1arcsin arccos arctan 22⎛⎫⎛⎫-+-+= ⎪ ⎪ ⎪⎝⎭⎝⎭______. 【答案】3π【解析】 【分析】利用反三角函数的定义和性质,求得要求式子的值.【详解】(1arcsin arccos arctan 2⎛⎛⎫-++ ⎪ ⎝⎭⎝⎭1arcsin arccos arctan 2π⎛⎫=-+-- ⎪⎝⎭⎝⎭663ππππ⎛⎫=-+-- ⎪⎝⎭ 3π=.故答案为:3π. 【点睛】本题主要考查反三角函数的定义和性质,考查学生的计算能力,属于基础题.14.在平面直角坐标系xOy 中,将直线l 沿x 轴正方向平移3个单位长度,沿y 轴正方向平移5个单位长度,得到直线l 1.再将直线l 1沿x 轴正方向平移1个单位长度,沿y 轴负方向平移2个单位长度,又与直线l 重合.若直线l 与直线l 1关于点(2,3)对称,则直线l 方程是________________. 【答案】6x -8y +1=0 【解析】 【分析】根据平移得到l 1:y =k (x -3)+5+b 和直线:y =kx +3-4k +b ,解得k =34,再根据对称解得b =18,计算得到答案.【详解】由题意知直线l 的斜率存在,设直线l 的方程为y =kx +b ,则直线l 1:y =k (x -3)+5+b ,平移后的直线方程为y =k (x -3-1)+b +5-2 即y =kx +3-4k +b ,∴b =3-4k +b ,解得k =34, ∴直线l 的方程为y =34x +b ,直线l 1为y =34x +114+b取直线l 上的一点3,4P m m b ⎛⎫+ ⎪⎝⎭ ,则点P 关于点(2,3)的对称点为34,64m b m ⎛⎫--- ⎪⎝⎭ , ()331164444b m m b --=-++ ,解得b =18.∴直线l 的方程是3148y x =+ ,即6x -8y +1=0.故答案为:6x -8y +1=0【点睛】本题考查了直线的平移和对称,意在考查学生对于直线知识的综合应用.15.在我国古代数学名著《九章算术》中,把两底面为直角三角形的直棱柱称为“堑堵”.已知三棱柱111ABC A B C -是一个“堑堵”,其中12AB BC BB ===,点M 是11A C 的中点,则四棱锥11M B C CB -的外接球的表面积为__________. 【答案】8π 【解析】 【分析】先根据对称性确定四棱锥11M B C CB -的外接球球心位置,再求球半径,最后代入球表面积公式即可. 【详解】由题意得四边形11B C CB 为正方形,设其中心为O ,取11B C 中点N,则111,1ON MN ON MN OM OB OC OB OC ⊥==∴=====Q ,即O 为四棱锥11M B C CB -的外接,球表面积为24π8π=.【点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解. 16.定义在R 上的偶函数f (x )满足f (e +x )=f (e ﹣x ),且f (0)=0,当x ∈(0,e ]时,f (x )=lnx 已知方程122f x sin x e π=()在区间[﹣e ,3e ]上所有的实数根之和为3ea ,将函数2314g x sin x π=+()的图象向右平移a 个单位长度,得到函数h (x )的图象,,则h (7)=_____. 【答案】33104+ 【解析】 【分析】根据题意可知函数f (x )是一个周期为2e 的偶函数,即可作出函数f (x )在[﹣e ,3e ]上的图象,由方程的根与两函数图象交点的横坐标的关系可求得a 的值,再利用二倍角公式化简函数()g x ,然后根据平移法则即可求得()h x ,从而求得()7h .【详解】因为f (e +x )=f (e ﹣x ),所以f (x )关于x =e 对称,又因为偶函数f (x ), 所以f (x )的周期为2e .当x ∈(0,e ]时,f (x )=lnx ,于是可作出函数f (x )在[﹣e ,3e ]上的图象如图所示, 方程1()22f x sin x eπ=的实数根是函数y =f (x )与函数122y sin x e π=的交点的横坐标,由图象的对称性可知,两个函数在[﹣e ,3e ]上有4个交点,且4个交点的横坐标之和为4e ,所以4e =3ea ,故a 43=, 因为235()314222g x sin x cos x ππ=+=-+, 所以345325()()()22322232h x cos x cos x πππ=--+=--+, 故3253310(7)232h sin π+=+=. 故答案为:33104+.【点睛】本题主要考查函数的性质应用,图象的应用,方程的根与两函数图象交点的横坐标的关系的应用,二倍角公式的应用,以及平移法则的应用,意在考查学生的转化能力和数形结合能力,属于中档题.四、解答题17.记n S 为公差不为零的等差数列{}n a 的前n 项和,已知2219a a =,618S =.(1)求{}n a 的通项公式;(2)求n S 的最大值及对应n 的大小.【答案】(1)*(2)10n a n n ∈=-N (2)当4n =或5n =时,n S 有最大值为20.【解析】 【分析】(1)将已知条件转化为1,a d 的形式列方程,由此解得1,a d ,进而求得{}n a 的通项公式.(2)根据等差数列前n 项和公式求得n S ,利用配方法,结合二次函数的性质求得n S 的最大值及对应n 的大小.【详解】(1)设{}n a 的公差为d ,且0d ≠.由2219a a =,得140a d +=,由618S =,得1532a d +=, 于是18a =,2d =-.所以{}n a 的通项公式为*(2)10n a n n ∈=-N .(2)由(1)得(1)8(2)2n n n S n -=+⨯- 29n n =-+2981()24n =--+因为*n ∈N ,所以当4n =或5n =时,n S 有最大值为20.【点睛】本小题主要考查等差数列通项公式和前n 项和公式基本量的计算,考查等差数列前n 项和的最值的求法,属于基础题.18.已知函数4()cos f x x =-42sin cos sin x x x - (1)求()f x 的单调递增区间;(2)求()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最小值及取最小值时的x 的集合.【答案】(1)()5,88k k k Z ππππ⎡⎤-+-+∈⎢⎥⎣⎦;(2)最小值为,x 的集合为38π⎧⎫⎨⎬⎩⎭. 【解析】 【分析】(1)利用平方差公式、二倍角公式以及辅助角公式得出()24f x x π⎛⎫=-⎪⎝⎭,然后解不等式()3222242k x k k Z πππππ-+≤-≤-+∈,解此不等式即可得出函数()y f x =的单调递增区间; (2)由0,2x π⎡⎤∈⎢⎥⎣⎦求出24x π-的取值范围,结合正弦函数的基本性质得出函数()y f x =的最小值,并求出对应的x 的值. 【详解】(1)()()()442222cos 2sin cos sin cos sin cos sin 2sin cos f x x x x x x x x x x x=--=-+-Q22cos sin 2sin cos cos 2sin 224x x x x x x x π⎛⎫=--=-=- ⎪⎝⎭,解不等式()3222242k x k k Z πππππ-+≤-≤-+∈, 得()588k x k k Z ππππ-+≤≤-+∈, 因此,函数()y f x =的单调递增区间为()5,88k k k Z ππππ⎡⎤-+-+∈⎢⎥⎣⎦;(2)0,2x π⎡⎤∈⎢⎥⎣⎦Q ,32444x πππ∴-≤-≤,当242x ππ-=时,即当38x π=时,函数()y f x =取得最小值.因此,函数()y f x =的最小值为,对应的x 的集合为38π⎧⎫⎨⎬⎩⎭. 【点睛】本题考查正弦型函数单调性区间与最值的求解,一般要利用三角恒等变换思想将函数解析式进行化简,考查运算求解能力,属于中等题.19.如图所示的几何体中,111ABC A B C -为三棱柱,且1AA ⊥平面ABC ,1AA AC =,四边形ABCD 为平行四边形,2AD CD =,60ADC ∠=︒.(1)求证:AB ⊥平面11ACC A ;(2)若2CD =,求四棱锥111C A B CD -的体积. 【答案】(1)证明见解析(2)8 【解析】 【分析】(1)推导出AB AC ⊥,1AB AA ⊥,由此能证明AB ⊥平面11ACC A ;(2)连结1A C ,则CD ⊥平面11CC A ,四棱锥111C A B CD -的体积:11111D CC A C A B C V V V --=+,由此能求出结果. 【详解】(1)证明:Q 四边形ABCD 为平行四边形,2AD CD =,60ADC ∠=︒.90ACD BAC ∠∠∴==︒,AB AC ∴⊥,Q 几何体中,111ABC A B C -为三棱柱,且1AA ⊥平面ABC ,1AB AA ∴⊥,1AC AA A Q ⋂=,AB ∴⊥平面11ACC A .(2)连结1A C ,AB ⊥Q 平面11ACC A ,//CD AB ,CD \^平面11CC A ,∴四棱锥111C A B CD -的体积:11111D CC A C A B C V V V --=+1111111133A C C ABC CD S CC S =⨯⨯+⨯⨯V V1111223232=⨯⨯⨯⨯⨯⨯8=.【点睛】本题考查线面垂直的证明,考查四棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.20.在平面直角坐标系xOy 中,已知椭圆C :22221x y a b +=()0a b >>的焦距为2,且过点1,2⎛ ⎝⎭. (1)求椭圆C 的方程;(2)设椭圆C 的上顶点为B ,右焦点为F ,直线l 与椭圆交于M ,N 两点,问是否存在直线l ,使得F 为BMN ∆的垂心,若存在,求出直线l 的方程:若不存在,说明理由.【答案】(1)2212x y +=(2)存在,43y x =-【解析】 【分析】(1)把点的坐标代入椭圆方程,利用椭圆中,,a b c 的关系和已知,可以求出椭圆方程;(2)设直线l 的方程,与椭圆方程联立,根据一元二次方程根与系数关系,结合已知和斜率公式,可以求出直线l 的方程.【详解】解:(1)由已知可得:22222221112c a b a b c=⎧⎪⎪+=⎨⎪=+⎪⎩解得22a =,21b =,1c =, 所以椭圆C :2212x y +=.(2)由已知可得,()0,1B ,()1,0F ,∴1BF k =-,∵BF l ⊥, 设直线l 的方程为:y x m =+,代入椭圆方程整理得2234220x mx m ++-=,设()11,M x y ,()22,N x y ,则1243m x x +=-,212223m x x -⋅=,∵BN MF ⊥,∴1212111y y x x -⋅=--. 即1212120y y x x y x +--=,因为11y x m =+,22y x m =+,()()()1212120x m x m x x x m x +++-+-= 即()212122(1)0x x m x x m m +-++-=.()2222421033m m m m m --+-+-=.所以2340m m +-=,43m =-或1m =. 又1m =时,直线l 过B 点,不合要求,所以43m =-. 故存在直线l :43y x =-满足题设条件. 【点睛】本题考查了求椭圆的标准方程,考查了直线与椭圆的位置关系,考查了垂心的概念,考查了数学运算能力.21.现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对“楼市限购令”赞成人数如表:(Ⅰ)由以上统计数据填下面2×2列联表并问是否有99%的把握认为“月收入以5500为分界点”对“楼市限购令”的态度有差异;(Ⅱ)若采用分层抽样在月收入在[15,25),[25,35)的被调查人中共随机抽取6人进行追踪调查,并给予其中3人“红包”奖励,求收到“红包”奖励的3人中至少有1人收入在[15,25)的概率.参考公式:K 2()()()()2()n ad bd a b c d a c b d -=++++,其中n =a +b +c +d . 参考数据:【答案】(Ⅰ)填表见解析,没有 (Ⅱ)45【解析】 【分析】(Ⅰ)由题意填表,计算K 2,对照临界值得出结论 (Ⅱ)由分层抽样求出抽取的人数,列举法写出基本事件,计算概率即可.【详解】(Ⅰ)由题意填2×2列联表如下,由表中数据,计算K 2()25029731140103218⨯⨯-⨯=≈⨯⨯⨯ 6.27<6.635,所以没有99%的把握认为“月收入以5500为分界点”对“楼市限购令”的态度有差异;(Ⅱ)用分层抽样在月收入在[15,25),[25,35)的被调查人中随机抽取6人,则月收入在[15,25)内有65510⨯=+2(人)记为A 、B ,在[25,35)有6﹣2=4(人),记为c 、d 、e 、f ; 从这6人中抽取3人,基本事件是ABc 、ABd 、ABe 、ABf 、Acd 、Ace 、Acf 、Ade 、Adf 、Aef 、Bcd 、Bce 、Bcf 、Bde 、Bdf 、Bef 、cde 、cdf 、cef 、def 共20种,这3人中至少收入在[15,25)的事件是ABc 、ABd 、ABe 、ABf 、Acd 、Ace 、Acf 、Ade 、Adf 、Aef 、Bcd 、Bce 、Bcf 、Bde 、Bdf 、Bef 共16种,故所求的概率值为P 164205==. 【点睛】本题主要考查了22⨯列联表与独立性检验问题,古典概型的概率问题,属于中档题. 22.已知函数()22()xf x eaxx a =++1x =-处取得极小值.(1)求实数a 的值;(2)若函数()f x 存在极大值与极小值,且函数()()2g x f x x m =--有两个零点,求实数m 的取值范围.(参考数据:e 2.718≈ 2.236≈) 【答案】(1)0a =或1a =(2)(1,)+∞ 【解析】 【分析】(1)根据极值的定义,求出0a =或1a =,再对a 的两种取值分别进行验证; (2)由第(1)问先确定1a =,得到()2()12xg x exx x m =+--+,利用导数研究函数()g x 的单调性,即函数()g x 在(0,)+∞上单调递增,在(,0)-∞上单调递减,再结合零点存在定理的条件,得到参数m 的取值范围.【详解】解:(1)由题意得22()(21)1x f x e ax a x a '⎡⎤=++++⎣⎦.因为函数()22()xf x eaxx a =++在1x =-处取得极小值,依题意知'(1)0f -=,解得0a =或1a =.当0a =时,'()(1)xf x e x =+,若1x <-,'()0f x <,则函数()f x 单调递减,若1x >-,'()0f x >,则函数()f x 单调递增,所以,当1x =-时,()f x 取得极小值,无极大值,符合题意.当1a =时,'()(1)(2)xf x e x x =++,若2x <-或1x >-,'()0f x >,则函数()f x 单调递增;若21x -<<-,'()0f x <,则函数()f x 单调递减,所以函数()f x 在1x =-处取得极小值,2x =-处取得极大值,符合题意, 综上,实数0a =或1a =.(2)因为函数()f x 存在极大值与极小值,所以由(1)知,1a =. 所以()2()12xg x exx x m =+--+,()(1)(2)2x g x e x x '=++-.当0x >时,'()0g x >,故函数()g x 在(0,)+∞上单调递增,当0x <时,令()(1)(2)2x h x e x x =++-,则()2()55xh x e xx '=++,所以当x <x >时,()0h x '>,()h x 单调递增,x <<时,()0h x '<,()h x 单调递减,因为(0)0h =, 3.6183356( 3.618)( 2.618)( 1.618)2e 3222e h h e --⎛-≈-=⨯-⨯--<⨯⨯-= ⎝⎭ 20-<,所以当0x <时,'0g x <(),故()g x 在(,0)-∞上单调递减. 因为函数()g x 在R 上有两个零点,所以(0)10g m =-<,所以1m >.取02m x =-<,22222224(1)312e e 0242244m m m m m m m m m m g e m ---⎛⎫-+-+⎛⎫⎛⎫-=-+-⨯--==> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;取1x m =>,()2222()e131321(1)0mg m mm m m m m m m m =++->++-=-+=->,所以,实数m 的取值范围是(1,)+∞.【点睛】本题考查利用导数研究函数的极值、单调性及零点存在定理的应用,考查逻辑推理能力和运算求解能力,求解过程中要做中脑中有图,充分利用数形结合思想分析和解决问题,同时注意分类讨论思想的运用.。

2020届山东省泰安肥城市高三适应性训练(一)数学试题(解析版)

2020届山东省泰安肥城市高三适应性训练(一)数学试题(解析版)

2020届山东省泰安肥城市高三适应性训练(一)数学试题一、单选题1.已知集合{}2|320A x x x =-+<,{}|1|1B=x|x -<,则AB =( )A .{}|02x x <<B .{}1|0x x <<C .{}|2x x <D .{}|12x x <<【答案】D【解析】解出集合A 、B 中的不等式即可. 【详解】因为{}{}2|320|12A x x x x x =-+<=<<,{}{}|1|102B=x|x x|x<-<=<所以A B ={}|12x x <<故选:D【点睛】本题考查的是一元二次不等式的解法和集合的运算,较简单. 2.已知()2i i 2iz +=-,则z =( )A .3B .2C .1D .12【答案】C【解析】本题首先可根据复数的四则运算得出4355z i =-+,然后根据复数的模的相关计算即可得出结果. 【详解】()()()()()2221222122222i i i i i i i z iii i i +-++-====----+224224224343441555i i i i i i i i +------+====-+-+,故1z ==, 故选:C. 【点睛】本题考查复数的四则运算以及复数的模,若复数z a bi =+,则z =考查计算能力,是简单题.3.下列结论正确的是( )A .残差点均匀分布的带状区域的宽度越窄,说明模型拟合精度越低.B .在线性回归模型中,相关指数0.96=2R ,说明解释变量对于预报变量变化的贡献率约为96%.C .已知随机变量2(2,)XN σ,若(02)0.4P X <<=,则(4)0.2P X >=.D .设,a b 均为不等于1的正实数,则“log 2log 2b a >”的充要条件是“1a b >>”. 【答案】B【解析】根据残差点均匀分布的带状区域的宽度越窄,说明模型拟合效果越好、精度越高可知,选项A 正确;根据相关指数意义可知,选项B 正确;根据正态曲线的对称性可知,故选项C 错误;根据对数的性质以及对数函数的单调性可知,选项D 错误. 【详解】对于A ,残差点均匀分布的带状区域的宽度越窄,说明模型拟合精度越高,故选项A 错误;对于B ,在线性回归模型中,相关指数0.96=2R ,说明解释变量对于预报变量变化的贡献率约为96%,故选项B 正确;对于C ,因为2μ=且(02)0.4P X <<=,所以(24)0.4P X <<=,所以(4)(2)(02)0.50.40.1P X P X P X >=>-<<=-=,故选项C 错误;对于D ,log 2log 2b a >2211log log b a ⇔>101b a >⎧⇔⎨<<⎩或1a b >>或01b a <<<,故选项D 错误. 故选:B. 【点睛】本题考查了回归分析,考查了正态分布,考查了对数的性质以及对数函数的单调性,考查了充要条件,属于基础题.4.若nx ⎛+ ⎝的展开式中各项系数之和为256,则展开式中x 的系数是( )A .54B .81C .96D .106【答案】A【解析】先由题意求出n ,再由二项展开式的通项公式,即可求出结果.【详解】因为nx ⎛+ ⎝的展开式中各项系数之和为256,所以8(213)256n +==,解得4n =,因此4x ⎛ ⎝的展开式的通项是432442214433r r r r r r r r T C x x C x -----+==,由3212r -=得2r ,所以,展开式中x 的系数为224354C ⨯=.故选:A. 【点睛】本题主要考查求指定项的系数,熟记二项式定理即可,属于常考题型.5.若圆锥的侧面展开图是半径为l 的半圆,则这个圆锥的表面积与侧面积比值是( ) A .32B .2C .43D .53【答案】A【解析】设该圆锥的底面半径为r ,母线长为l ,根据题意可得r l 2π=π,所以2l r =,然后根据圆锥的表面积公式计算即可. 【详解】设该圆锥的底面半径为r ,母线长为l ,根据题意可得r l 2π=π,所以2l r = 所以这个圆锥的表面积与侧面积比值是()222:2:32:3rl rl r rr πππππ+==故选:A 【点睛】本题考查的是圆锥的表面积公式,考查了学生对基础知识的掌握情况,较简单. 6.已知点00(,)M x y 在直线320x y ++=上,且满足001x y >-,则0y x 的取值范围为( ) A .1(3,]3-- B .()1,3(,)3-∞--+∞ C .1(,3](,3+)-∞--∞ D .1(3,)3--【答案】B【解析】由001x y >-,求出0x 的取值范围,再求0y x 的范围. 【详解】由题意00320x y ++=,0032y x =--, ∵001x y >-,∴00321x x >---,解得034x >-, 000003223y x x x x --==--, ∵034x >-,∴0143x <-或010x >, ∴0233x --<-或02133x -->-,所以01(,3)(,)3y ∈-∞--+∞. 故选:B . 【点睛】本题考查直线方程,考查不等式的性质,解题过程是利用点在直线上,且满足的不等关系求出0x 的范围,然后再利用不等式的性质求解.7.函数()cos 2lg 22x xx f x π-⎛⎫- ⎪⎝⎭=-在区间[)(]3,00,3-上的大致图象为( )A .B .C .D .【答案】C【解析】化简函数()y f x =的解析式,判断函数()y f x =的奇偶性及()3f 的符号,结合排除法可得出合适的选项. 【详解】()cos sin 2lg 22lg 22x x x xx x f x π--⎛⎫- ⎪⎝⎭==--,()()()sin sin lg 22lg 22x xx xx xf x f x ----==-=---, 函数()y f x =为奇函数,排除A 、D 选项;()sin 3301lg 88f =>⎛⎫- ⎪⎝⎭,排除B 选项. 故选:C. 【点睛】本题考查利用函数的解析式选择函数图象,一般从函数的定义域、奇偶性、单调性、零点以及函数值符号进行分析,结合排除法得出合适的选项,考查推理能力,属于中等题. 8.已知函数4(),[,)af x x b x b x=++∈+∞,其中0,b a R >∈,记M 为()f x 的最小值,则当2M =时,a 的取值范围为( ) A .13a >B .13a <C .14a >D .14a <【答案】D【解析】根据a 的正负以及与b 大小关系分类讨论()f x 单调性,再根据单调性确定最小值取法,最后根据最小值求结果. 【详解】①当0a ≤时,()f x 在[,)+∞b上单调递增,所以min 4()()220a f x f b b b b b==+=>∴0a ≤满足题意; ②当0a >时,()f x在)+∞上单调递增,在上单调递减因此⑴当b ≤时,()f x 在[,)+∞b上单调递增,所以2min 4()()2220180,a f x f b b b b a a b b==+=-+=∴∆=-≥=≥ 222121182()042432bb aa ba b b b bb +-≤∴≤∴-≤>∴≥∴=11811016a +-≥≥⇒<≤或11618161a a a ⎧>⎪⇒⎨⎪-≥-⎩1016a <≤或11169a <<109a ∴<≤⑵当b >时,()f x在)+∞上单调递增,在[,b 上单调递减,所以min 11()202094f x f b b a ===<<>-∴<<;综上,a 的取值范围为14a <, 故选:D 【点睛】本题考查函数最值、分式函数单调性,考查分类讨论思想方法以及综合分析求解能力,属较难题.二、多选题9.大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中国传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,…,则下列说法正确的是( ) A .此数列的第20项是200B .此数列的第19项是182C .此数列偶数项的通项公式为222n a n =D .此数列的前n 项和为(1)n S n n =⋅-【答案】AC【解析】首先寻找出数列的规律,归纳出通项公式,然后判断各选项即可. 【详解】观察此数列,偶数项通项公式为222n a n =,奇数项是后一项减去后一项的项数,2122n n a a n -=-,由此可得220210200a =⨯=,A 正确;192020180a a =-=,B 错误;C 正确;2(1)n S n n n n =-=-是一个等差数列的前n 项,而题中数列不是等差数列,不可能有(1)n S n n =⋅-,D 错. 故选:AC . 【点睛】本题考查数列的通项公式,要求从数列的前几项归纳出数列的通项公式.这里我们只能从常见的数列出发,寻找各项与项数n 之间的关系,归纳结论.有时需要分奇数项与偶数项分别讨论归纳出结论,或者寻找两者的关系,从而得出结论.10.已知1F 、2F 是双曲线22:142y x C -=的上、下焦点,点M 是该双曲线的一条渐近线上的一点,并且以线段12F F 为直径的圆经过点M ,则下列说法正确的是( ) A .双曲线C的渐近线方程为y = B .以12F F 为直径的圆的方程为222x y += C .点M的横坐标为D .12MF F △的面积为【答案】ACD【解析】根据双曲线的标准方程求出渐近线方程,以12F F 为直径的圆的方程,M 点坐标,12MF F △的面积然后判断各选项. 【详解】由双曲线方程22142-=y x知2,a b ==y轴,渐近线方程为ay x b=±=,A 正确;c ==12F F 为直径的圆的方程是226x y +=,B 错;由226x y y ⎧+=⎪⎨=⎪⎩得2x y ⎧=⎪⎨=⎪⎩2x y ⎧=⎪⎨=-⎪⎩,由对称性知M点横坐标是,C 正确;12121122MF F M S F F x ==⨯=△D 正确. 故选:ACD . 【点睛】本题考查双曲线的几何性质,解题时可根据双曲线方程确定,,a b c ,同时注意焦点据的轴,然后根据,,a b c 求解其他量.11.已知定义在R 上的函数()f x 满足()()0,(6)()f x +f x f x f x -=+=-,且对[]12,3,0x x ∀∈-,当12x x ≠时,都有11221221()()()()x f x x f x x f x x f x +<+,则以下判断正确的是( ) A .函数()f x 是偶函数 B .函数()f x 在[]9,6--单调递增 C .3x =是函数()f x 的对称轴D .函数()f x 的最小正周期是12【答案】BCD【解析】由()+()0f x f x -=得函数为奇函数,判断A 选项;通过(6)()f x f x +=-得函数的最小正周期,判断D 选项;通过题意得(6)()f x f x +=-,进而得函数的对称轴,判断C 选项;化简11221221()()()()x f x x f x x f x x f x +<+为()()()()12120x x f x f x -⋅-<得到函数在[]3,0-上的单调性,结合奇偶性、对称轴、周期得[]9,6--上的单调性,判断B 选项即可. 【详解】解:因为()+()0f x f x -=,即()()f x f x -=-,所以函数为奇函数,故A 选项错误; 因为(6)()f x f x +=-,而()()f x f x -=-,所以(6)()f x f x +=-,所以函数的对称轴为6032x +==,故C 选项正确; 因为(6)()f x f x +=-,所以()(12)(6)f x f x f x +=-+=,即()(12)f x f x +=, 所以()f x 的最小正周期是12,故D 选项正确;因为[]12,3,0x x ∀∈-,当12x x ≠时,都有11221221()()()()x f x x f x x f x x f x +<+, 由11221221()()()()x f x x f x x f x x f x +<+化简得()()()()12120x x f x f x -⋅-<, 所以3,0x时,()f x 为减函数.因为函数为奇函数,所以[]0,3x ∈时,()f x 为减函数,又因为函数()f x 关于3x =对称,所以[]3,6x ∈时,()f x 为增函数.因为()f x 的最小正周期是12,所以[]9,6x ∈--的单调性与[]3,6x ∈时的单调性相同. 故,[]9,6x ∈--时,()f x 单调递增,故B 选项正确. 故选:BCD. 【点睛】本题主要考查抽象函数的单调性,奇偶性,对称轴和周期,属于中档题.12.如图四棱锥P ABCD -,平面PAD ⊥平面ABCD ,侧面PAD 是边长为三角形,底面ABCD 为矩形,CD =Q 是PD 的中点,则下列结论正确的是( )A .CQ ⊥平面PADB .PC 与平面AQC 22C .三棱锥B ACQ -的体积为62D .四棱锥Q ABCD -外接球的内接正四面体的表面积为3【答案】BD【解析】取AD 的中点O ,BC 的中点E ,连接,OE OP ,则由已知可得OP ⊥平面ABCD ,而底面ABCD 为矩形,所以以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴,建立空间直角坐标系,利用空间向量依次求解即可. 【详解】解:取AD 的中点O ,BC 的中点E ,连接,OE OP , 因为三角形PAD 为等边三角形,所以OP AD ⊥, 因为平面PAD ⊥平面ABCD ,所以OP ⊥平面 ABCD , 因为AD OE ⊥,所以,,OD OE OP 两两垂直,所以,如下图,以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴, 建立空间直角坐标系,则(0,0,0),(6,0,0),(6,0,0)O D A ,(0,0,32),6,23,0),(6,23,0)P C B ,因为点Q 是PD 的中点,所以632Q , 平面PAD 的一个法向量为(0,1,0)m =,632(23,)2QC =-,显然 m 与QC 不共线,所以CQ 与平面PAD 不垂直,所以A 不正确;3632(6,23,32),(,0,),(26,22PC AQ AC =-==, 设平面AQC 的法向量为(,,)n x y z =,则3602260n AQ x zn AC ⎧⋅=+=⎪⎨⎪⋅=+=⎩, 令=1x ,则y z ==, 所以(1,2,n =-, 设PC 与平面AQC 所成角为θ,则21sin 36n PC n PCθ⋅===, 所以cos θ=B 正确; 三棱锥B ACQ -的体积为1132B ACQ Q ABC ABCV V SOP --==⋅ 1116322=⨯⨯⨯=, 所以C 不正确;设四棱锥Q ABCD -外接球的球心为)M a ,则MQ MD =,所以2222222aa ⎛⎫++-=++ ⎪ ⎪⎝⎭⎝⎭,解得0a =,即M 为矩形ABCD 对角线的交点, 所以四棱锥Q ABCD -外接球的半径为3,设四棱锥Q ABCD -外接球的内接正四面体的棱长为x , 将四面体拓展成正方体,其中正四面体棱为正方体面的对角线,故正方体的棱长为22x ,所以22236x ⎛⎫= ⎪ ⎪⎝⎭,得224x =, 所以正四面体的表面积为234243x ⨯=,所以D 正确. 故选:BD【点睛】此题考查线面垂直,线面角,棱锥的体积,棱锥的外接球等知识,综合性强,考查了计算能力,属于较难题.三、填空题13.用0,1,2,3,4这五个数字,可以组成________个三位正整数. 【答案】100【解析】用分步乘法原理计数. 【详解】用0,1,2,3,4这五个数字,可以组成三位数的个数为455100⨯⨯=. 故答案为:100. 【点睛】本题考查分步乘法原理,解题关键是确定完成这件事的方法,是分步还是分类.14.函数()2sin cos sin 222x x x f x π⎛⎫=+- ⎪⎝⎭在[]0,π上的最小值是________. 【答案】212-【解析】利用三角恒等变换思想化简得出()1242f x x π⎛⎫=--- ⎪⎝⎭,由0x π≤≤计算得出4x π-的取值范围,再利用正弦函数的基本性质可求得函数()y f x =的最小值. 【详解】()2211cos sin cos sin sin cos sin sin 22222222x x x x x x x f x x π-⎛⎫=+-=--=--⎪⎝⎭1111sin cos 222242x x x π⎛⎫⎛⎫=---=--- ⎪ ⎪⎝⎭⎝⎭,当0x π≤≤时,3444x πππ-≤-≤,所以当42x ππ-=时,函数()y f x =取得最小值,即()min 12f x =-=.故答案为:【点睛】本题考查正弦型函数在区间上最值的求解,解答的关键就是利用三角恒等变换思想化简函数解析式,考查计算能力,属于中等题.15.已知一袋中装有红,蓝,黄,绿小球各一个,每次从中取出一个,记下颜色后放回.当四种颜色的小球全部取出时即停止,则恰好取6次停止的概率为______. 【答案】75512【解析】事件“恰好取6次停止”是第4种颜色第6次才取到,前5次只出现3种颜色,求出它的方法数,再求出取6次球的总方法数,由概率公式可计算出概率. 【详解】取球6次,总的方法为64,记“恰好取6次停止”为事件A ,事件A 的发生,前5次取球只出现3种颜色,第6次取出的是第4种颜色,而前5次出现3种颜色又可从3种颜色出现的次数分成两类,1、1、3和1、2、2,因此事件A 的方法数为223335345322600C C C C A A ⎛⎫+= ⎪⎝⎭,所以660075()4512P A ==. 故答案为:75512.本题考查古典概型,解题关键是确定事件发生的过程,即怎样完成事件“恰好取6次停止”.是分类还是分步,根据不同的方法选择不同的计数方法.四、双空题16.已知圆F :()2231x y ++=,直线:2l y =,则与直线l 相切且与圆F 外切的圆的圆心M 的轨迹方程为_________.点P 是圆心M 轨迹上的动点,点A 的坐标是()0,3,则使|PF||PA|取最小值时的点P 的坐标为__.【答案】212x y =- ()6,3±-【解析】根据直线与圆位置关系以及圆与圆位置关系列式,再化简得结果;根据两点间距离公式化简,再根据基本不等式确定最小值取法,即得结果. 【详解】因为圆M 与直线l 相切且与圆F 外切,所以||1M l MF d -=+设(,)|2|1M x y y =-+ 当2y ≤2312y x y =-∴=-当2y >21880y x y =-∴=--<,舍 综上,圆心M 的轨迹方程为212x y =- 设2(,)12,0P m n m n n ∴=-≤|PF||PA|∴===当0n =时,1|PF||PA|= 当0n <时,|PF||PA |==当且仅当23,3,36,6n n m m -==-==±时取等号综上,使|PF||PA|取最小值时的点P 的坐标为()6,3±- 故答案为:212x y =-,()6,3±-本题考查求动点轨迹方程、利用基本不等式求函数最值,考查综合分析求解能力,属中档题.五、解答题17.已知数列{}n a 各项均为正数,11a =,{}2n a 为等差数列,公差为2.(1)求数列{}n a 的通项公式; (2)求2223221232222n n n S a a a a =++++.【答案】(1)n a =(2)()16232n+n S n =+-⨯.【解析】(1)确定等差数列{}2n a 的首项和公差,可求得数列{}2n a 的通项公式,进而可求得数列{}n a 的通项公式; (2)利用错位相减法可求得n S . 【详解】(1)11a =,211a =,{}2n a 为等差数列,公差为2,()2211221n a a n n ∴=+-⨯=-,0n a >,∴数列{}n a的通项公式为n a =(2)2223221232222n n n S a a a a =++++,即()23123252212n n S n =⨯+⨯+⨯++-⨯ 则()23412123252212n+n S n =⨯+⨯+⨯++-⨯以上两式相减,得()23112222222212n n+n S n -=⨯+⨯+⨯++⨯--⨯()()()()31123112122212222212623212n n n n+n+n n n -++-=+--⨯=+---⨯=---⨯-.因此,()16232n+n S n =+-⨯.【点睛】本题考查等差数列通项公式的求解,同时也考查了错位相减法,考查计算能力,属于中等题.18.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且222(2)()2cos b c b a c abc C --+=.(1)求角A 的大小. (2)若3B π=,D 为ABC 外一点,2BD =,1CD =,四边形ABDC 的面积是5324+,求a . 【答案】(1)3A π=;(2)523a =+.【解析】(1)本题首先可以根据正弦定理以及余弦定理对()()22222cos b c b a c abc C --+=进行化简,得出2sin cos sin B A B =,再根据sin 0B ≠以及()0,A π∈即可得出结果;(2)首先可以结合题意绘出图像,然后在BCD 中根据余弦定理得出254cos BC D =-,再然后根据解三角形面积公式求出ABCS以及BDC S ∆,并根据四边形ABDC 的面积是532+求出56D π=,最后将56D π=代入254cos BC D =-,即可得出结果. 【详解】(1)因为()()22222cos b c b a cabc C --+=,所以()()2222cos 2b c b c a a C bc-+-=,由余弦定理可得()2cos cos b c A a C -=,由正弦定理可得2sin cos sin cos sin cos B A C A A C -=, 因为A B C π++=,所以()2sin cos sin cos cos sin sin sin B A C A C A C A B =+=+=, 因为sin 0B ≠,所以1cos 2A = 因为()0,A π∈,所以3A π=.(2)如图,结合题意绘出图像:在BCD 中,2BD =,1CD =,由余弦定理得:22212212cos 54cos BC D D =+-⨯⨯=-, 因为3A B π==,所以3C π=,ABC 为等边三角形,所以2153sin 3cos 23ABC S BC D △π=⨯⨯=-, 因为1sin sin 2BDC S =BD DC D D ∆⨯⨯⨯=, 所以5353sin 3cos 2sin 4453324ABDC S D D D 四边形π⎛⎫=+-=+-= ⎪⎭+⎝, 所以sin()13D π-=,因为(0,)D π∈,所以56D π=, 故2554cos 54cos 5+236BC D π=-=-=,523BC =+, 即523a =+. 【点睛】本题考查余弦定理解三角形、三角形面积公式以及正弦定理边角互化,考查三角恒等变换,考查的公式有()sin cos cos sin sin C A C A C A +=+、1=sin 2S ab C 、2222cos a b c bc A =+-等,考查化归与转化思想,是中档题.19.条件①:图(1)中4tan 23B =-. 条件②:图(1)中2133AD AB AC =+. 条件③:图(2)中三棱锥A BCD -的体积最大.从以上三个条件中任选一个,补充在问题(2)中的横线上,并加以解答.如图(1)所示,在ABC 中,45ACB ∠=,3BC =,过点A 作AD BC ⊥,垂足D 在线段BC 上,沿AD 将ABD △折起,使90BDC ∠= (如图(2)),点,E M 分别为棱,BC AC 的中点.(1)求证:CD ME ⊥.(2)已知______,试在棱CD 上确定一点N ,使得EN BM ⊥,并求锐二面角M BN C --的余弦值.注:如果选择多个条件分别解答,按第一个解答计分. 【答案】(1)证明见解析;(2)不论选择哪个条件,6. 【解析】【详解】 解:(1),,CD AD CD BD AD BD D ⊥⊥=,CD平面ABD ,AB 平面ABD ,CD AB ∴⊥.又,M E 分别为,AC BC 的中点,//,ME AB ∴.CD ME ∴⊥(2) 方案一:选①在图(1)所示的ABC 中,由242tan tan 231tan B B B=-=-, 解得tan 2B =或1tan 2B =-(舍去).设AD CD x ==,在Rt ABD △中,tan 23AD xB BD x===-, 解得2x =,∴1BD =.以点D 为原点,,,DB DC DA 分别为,,x y z 轴建立如图所示的空间直角坐标系D xyz -,1(0,0,0),(1,0,0),(0,2,0),(0,0,2),(0,1,1),(,1,0)2D B C A ME ,则(1),1,1BM =-.设(0,,0)N a ,则1(,1,0)2EN a =--.,0EN BM EN BM ⊥∴⋅=,即1,1,0()(1,1,1)02a -⋅-=-,∴12a =,∴1(0,,0)2N , ∴当12DN =(即N 是CD 的靠近D 的一个四等分点)时,EN BM ⊥. 取平面BNM 的一个法向量(,,)n x y z =,且1(1,,0)2BN =-,由00n BN n BM ⎧⋅=⎨⋅=⎩,得20x y x y z -+=⎧⎨-++=⎩,令1x =,则(1,2,1)n =-.取平面BNC 的一个法向量(0,0,1)m =,2226cos ,6|12(1)m n m n m||n ⋅<>===-++-|,∴锐二面角M BN C --6方案二:选②在图(1)所示的ABC 中,设BD BC λ=,()(1)AD AB BD AB BC AB AC AB AB AC λλλλ=+=+=+-=-+,又因为2133AD AB AC =+,由平面向量基本定理知13λ=,即1BD =. 以点D 为原点,,,DB DC DA 分别为,,x y z 轴建立如图所示的空间直角坐标系D xyz -,1(0,0,0),(1,0,0),(0,2,0),(0,0,2),(0,1,1),(,1,0)2D B C A ME ,则(1),1,1BM =-.设(0,,0)N a ,则1(,1,0)2EN a =--.,0EN BM EN BM ⊥∴⋅=.即1,1,0()(1,1,1)02a -⋅-=-,∴12a =,∴1(0,,0)2N ,∴当12DN = (即N 是CD 的靠近D 的一个四等分点)时,EN BM ⊥.取平面BNM 的一个法向量(,,)n x y z =,且1(1,,0)2BN =-,由00n BN n BM ⎧⋅=⎨⋅=⎩,得200x y x y z -+=⎧⎨-++=⎩,令1x =,则(1,2,1)n =-.取平面BNC 的一个法向量(0,0,1)m =,2226cos ,|12(1)m n m n m||n ⋅<>===++-| ∴锐二面角M BN C --的余弦值为66方案三:选③在图(1)所示的ABC 中,设(03)BD x x =<<,则3CD x =-,∵,45AD BC ACB ⊥∠=,∴ADC 为等腰直角三角形,∴3AD CD x ==-, 折起后,AD DC AD BD ⊥⊥,且BDDC D =,∴AD ⊥平面BCD ,又90BDC ∠=,∴1(3)2BCD S x x =-△, 321111(3)(3)(69)3326A BCD BCD V AD S x x x x x x -=⋅=-⋅-=-+△,(0,3)x ∈, 令321()(69)6f x x x x =-+,1()()3)12(f x x x '=--,当01x <<时,()0f x '>,当13x <<时,()0f x '<,∴1x BD ==时,三棱锥A BCD -体积最大.以点D 为原点,,,DB DC DA 分别为,,x y z 轴建立如图所示的空间直角坐标系D xyz -,1(0,0,0),(1,0,0),(0,2,0),(0,0,2),(0,1,1),(,1,0)2D B C A ME ,则(1),1,1BM =-.设(0,,0)N a ,则1(,1,0)2EN a =--.,0EN BM EN BM ⊥∴⋅=,即1,1,0()(1,1,1)02a -⋅-=-,∴12a =,∴1(0,,0)2N ,∴当12DN = (即N 是CD 的靠近D 的一个四等分点)时,EN BM ⊥.取平面BNM 的一个法向量(,,)n x y z =,且1(1,,0)2BN =-,由00n BN n BM ⎧⋅=⎨⋅=⎩,得200x y x y z -+=⎧⎨-++=⎩,令1x =,则(1,2,1)n =-.取平面BNC 的一个法向量(0,0,1)m =,2226cos ,6|12(1)m n m n m||n ⋅<>===-++-|, ∴锐二面角M BN C --6【点睛】本题考查证明线线垂直,考查用空间向量法求二面角.解题关键是确定图形中点的位置关系,特别是线段的长度.其中方案①利用正切的二倍角公式求得tan B ,从而确定出线段,AD BD ,方案②利用平面向量基本定理确定,BD AD ,方案③,设一条线段如CD x =,求出棱锥体积,用导数求最值得出x 值在,确定出,AD BD ,然后建立空间直角坐标系,写出各点坐标,由向量垂直的坐标运算确定N 点位置,求出二面角两个面的法向量,由法向量夹角的余弦得二面角的余弦.20.已知椭圆()2222:10x y C a b a b+=>>的离心率为12,左、右焦点分别是1F 、2F ,不经过左焦点1F的直线0x y -+=上有且只有一个点A 满足1290F AF ∠=. (1)求椭圆C 的标准方程.(2)与圆222x y +=相切的直线l :y kx m =+交椭圆C 于P 、Q 两点,若椭圆上存在点M 满足()()0OM OP OQμμ=+>,求四边形OPMQ 面积的取值范围.【答案】(1)22143x y +=;(2)⎡⎣. 【解析】(1)依题意可得直线0x y -与圆222x y c +=相切,利用点到线的距离公式即可求出c ,再根据离心率及222b a c =-,求出椭圆方程; (2)直线与圆相切得到()2221m k=+,且22m≥,设()11,P x y ,()22,Q x y ,()00,M x y 联立直线与椭圆方程消元列出韦达定理,由()OM OP OQ μ=+可得0202843643km x k m y k μμ-⎧=⎪⎪+⎨⎪=⎪+⎩,又M 在椭圆C上,得到μ=OPMQ的面积2POQS S μ==△ 【详解】 解:(1)直线0x y -+=上有且只有一个点A 满足1290F AF ∠=,∴直线0x y -与圆222x y c +=相切,∴c =,∴1c=.又12c a =, ∴2a =,∴2223b a c =-=, ∴椭圆C 的方程为22143x y +=.(2)直线l :y kx m =+与圆222x y +=相切,=即()2221m k=+,且22m≥.设()11,P x y ,()22,Q x y ,()00,M x y由22143y kx m x y =+⎧⎪⎨+=⎪⎩ 消去y 得,()2224384120k x kmx m +++-=, ∴122843km x x k -+=+,212241243m x x k -=+,∴()121226243my y k x x m k +=++=+. ()OM OP OQ μ=+,∴0202843643km x k m y k μμ-⎧=⎪⎪+⎨⎪=⎪+⎩,又M 在椭圆C 上,∴2222864343143km m k k μμ⎛⎫⎛⎫- ⎪ ⎪++⎝⎭⎝⎭+=,∴2mμ=. 设PQ 的中点为E ,则()2OM OP OQ OE μμ=+=,()0,0O 到:l y kx m =+的距离为,∴四边形OPMQ的面积1222POQ S S PQ d PQ μμ==⋅⋅=△=== 令()222211143286k f k k k +==-++,2866k +≥,∴()1132f k ≤<, ∴2S ≤<,∴四边形OMPN 面积的取值范围为⎡⎣.【点睛】本题考查待定系数法求椭圆方程,直线与椭圆的综合应用,属于中档题. 21.已知函数()ln 1f x x x ax =+-()a R ∈. (1)讨论()f x 的零点个数.(2)正项数列{}n a 满足123a =,11ln 12n n a +a ++=(n *∈N ),求证:121111nn a a a ++⋅⋅⋅+<+. 【答案】(1)答案见解析;(2)证明见解析.【解析】(1)首先利用导数求出()f x 的最小值为11(e )1e a a f --=-,然后分1a <、1a =、1a >三种情况讨论即可;(2)由(1)知:当1a =时,()0f x ≥,即 1ln 1x x≥-,可得121n n n a a a +≥+,然后可得1112nn a -≤,再由等比数列的前n 项和公式,即可证明. 【详解】(1)()f x 的定义域为{}|0x x >,令()ln 10f x x a '=+-=,则1a x e -=. 当10a x e -<<时()0f x '<;当1a x e ->时,()0f x '>,∴()f x 在1(0,)a e -单调递减,在1(,)a e -+∞单调递增, ∴()f x 的最小值为11(e )1e a a f --=-.当1a <时,110a e -->,此时()f x 无零点. 当1a =时,11e 0a --=,此时()f x 只有一个零点 当1a >时,11e 0a --<,(e )10af =>,又1e e a a ->,∴()f x 在1(,)a e -+∞上有且只有一个零点.2(e )12e a a aae af a e---=-=,令()2ah a e a =-, ()e 2a h a '=-,1a >,∴()0h a '>,∴()(1)20h a h e >=->,∴2e a a <,∴(e )0a f ->,所以()f x 在1(0,)a e -上有且只有一个零点.综上:当1a <时,函数无零点;当1a =时,函数有且只有一个零点; 当1a >时,函数有两个零点.(2)由(1)知:当1a =时,()0f x ≥,∴1ln 1x x≥-, ∴1122ln12211n n n n n a a a a a ++=+≥-=++, ∴11111222n n n n a a a a ++≤=+, ∴11111(1)2n na a +-≤-, ∴21121111111111(1)(1)(1)2222n n n n n a a a a ----≤-≤-≤⋅⋅⋅≤-=, ∴1112n n a ≤+ ∴12111()1111221()11212n n n +n n n a a a ⎡⎤-⎢⎥⎣⎦++⋅⋅⋅≤+=+-<+-.【点睛】本题考查的是利用导数研究函数的零点和证明不等式,考查了分类讨论的思想,属于较难题.22.为丰富学生课外生活,某市组织了高中生钢笔书法比赛,比赛分两个阶段进行:第一阶段由评委给出所有参赛作品评分,并确定优胜者;第二阶段为附加赛,参赛人员由组委会按规则另行确定.数据统计员对第一阶段的分数进行了统计分析,这些分数X 都在[70,100)内,在以组距为5画分数的频率分布直方图(设“=Y 频率组距”)时,发现Y 满足*8109,16300,N ,55(1)11,161520n n Y n n X n k n n -⎧⎪⎪=∈<+⎨⎪-⋅>⎪-⎩. (1)试确定n 的所有取值,并求k ;(2)组委会确定:在第一阶段比赛中低于85分的参赛者无缘获奖也不能参加附加赛;分数在[)95,100的参赛者评为一等奖;分数在[90,95)的同学评为二等奖,但通过附加赛有111的概率提升为一等奖;分数在[85,90)的同学评为三等奖,但通过附加赛有17的概率提升为二等奖(所有参加附加赛的获奖人员均不降低获奖等级).已知学生A 和B 均参加了本次比赛,且学生A 在第一阶段评为二等奖.(i )求学生B 最终获奖等级不低于学生A 的最终获奖等级的概率;(ii )已知学生A 和B 都获奖,记A B ,两位同学最终获得一等奖的人数为ξ,求ξ的分布列和数学期望.【答案】(1)314,15,16,17,18,19,50k =;(2)(i )51220;(ii )分布列见解析,2099. 【解析】(1)X 在[)70,100内,按组距为5可分成6个小区间,分别是[70,75),[)75,80,[80,85),[85,90),[90,95),[95,100).由70100X ≤<,()551n X n ≤<+*n ∈N ,能求出n 的所有取值和k ;(2)(i )由于参赛学生很多,可以把频率视为概率.学生B 的分数属于区间[)70,75,[)75,80,[)80,85,[)85,90,[)90,95,[)95,100的概率分别是360,1160,1960,1460,1160,260.用符号ij A 或(ij B )表示学生A (或B )在第一轮获奖等级为i ,通过附加赛最终获奖等级为j ,其中(),1,2,3j i j ≤=,记“学生B 最终获奖等级不低于学生A 的最终获奖等级”为事件W ,由此能求出学生B 最终获奖等级不低于学生A 的最终获奖等级的概率;(ii )学生A 最终获得一等奖的概率是()21111P A =,学生B 最终获得一等奖的概率是()121211112727119P B B ''+=+⋅=,ξ的可能取值为0,1,2,分别求出相应的概率,求出ξ的分布列和E ξ. 【详解】(1)根据题意,X 在[70,100)内,按组距为5可分成6个小区间, 分别是[70,75),[75,80),[80,85),[85,90),[90,95),[95,100), 70100X ≤<,由*55(1),n X n n ≤<+∈N ,14,15,16,17,18,19n ∴=.每个小区间的频率值分别是8109,14,15,16605115,17,18,19320n n P Y k n n -⎧=⎪⎪==⎨⎪-⋅=⎪-⎩. 由3111911151160606032k ⎛⎫+++-++= ⎪⎝⎭,解得350k =. n ∴的所有取值为14,15,16,17,18,19,350k =.(2)(i )由于参赛学生很多,可以把频率视为概率.由(1)知,学生B 的分数属于区间[)[)[)[)[)[)70,75,75,80,80,85,85,90,90,95,95,100的概率分别是:360,1160,1960,1460,1160,260. 我们用符号ij A (或ij B )表示学生A (或B )在第一轮获奖等级为i ,通过附加赛最终获奖等级为j ,其中(,1,2,3)j i i j =.记“学生B 最终获奖等级不低于学生A 的最终获奖等级”为事件W , 则()12122223222()P W P B B B A B A =+++()()()()()()12122223222P B P B P B P A P B P A =+++ 2111111010141105160601160111160711220=+⋅+⋅⋅+⋅⋅=. (ii )学生A 最终获得一等奖的概率是()21111P A =, 学生B 最终获得一等奖的概率是()12121112116060272711272796060P B B ''+=+⋅=+=, 1180(0)1111999P ξ⎛⎫⎛⎫==--= ⎪⎪⎝⎭⎝⎭,111118(1)1111911999P ξ⎛⎫⎛⎫==⋅-+-⋅= ⎪ ⎪⎝⎭⎝⎭, 111(2)11999P ξ==⋅=, ξ∴的分布列为:801812001299999999E ξ=⋅+⋅+⋅=. 【点睛】本题考查频率分布直方图、条件概率、离散型随机变量的分布列、数学期望,考查学生的逻辑思维能力和运算能力,属于难题.。

2020年山东省泰安市高考数学一模试卷1(含答案解析)

2020年山东省泰安市高考数学一模试卷1(含答案解析)

2020年山东省泰安市高考数学一模试卷1一、选择题(本大题共12小题,共60.0分)1.若集合4=(x|-4<x<3}>B={-5,-4,一3,—2},则AC\B={)A.{一4,一3,—2}B.(-3,-2}C・(-4,-3} D. {-5,-4)2.设,是虚数单位.如果复数z=M,其实部与虚部互为相反数,那么实数々=()A.—3B.3C.—iD.3.某老师从自己所带的两个班级中各抽取6人,记录他们的考试成绩,得到甲||乙如图所示的茎叶图,已知甲班6名同学成绩的平均数为82,乙班6名同学[6|7成绩的中位数为77,则z-y=(), 7?:?:6x1|R25A.3B.-3C.4D. -40L L4.过焦点为F的抛物线y2=i2x上一点M向其准线作垂线,垂足为N,若直线NF的斜率为—手则|MF|=()A.2B.2^3C.4D.4屯5.如图是一个算法流程图,则输出的〃的值为()A. 3B. 4C.5D.6y-x<0,6.设%,y满足约束条件x+2y<4,则z=x—3y的最大值为()(x-2y<2,A.4B. IC. -:D・27.一个正三棱柱的三视图如图所示,则该校柱的表面积为()A. 24 +V3B. 24 + 2V3C. 14V 字 D・ 12焰8, 在等比数列{%}中,若Q1 = 2, %=16,则{%}的前5项和晃等于()A. 30 B. 31 C. 62 D. 649. 函数/'(x ) = /4sin (anr + <p )(其中4 > 0, 3 > 0. M < ?)的图象如图所示.为了得到g (x ) = sin2x的图象,则只需将『侦)的图象()A.向左平移:个长度单位C.向右平移:个长度单位 B.向右平移?个长度单位D.向左平移;个长度单位1!哗>.』3 -:r), T 1 . n 则/(2019)=()A i B.j C. j IL 3、已知 lg2 = a. Ig3 = t,则也 12 等于()A. B. fe + 2« C. « + 2iD 蓦D・u +护r f -(3/w + 1)k +3,X 。

肥城一模数学试卷答案高三

肥城一模数学试卷答案高三

一、选择题1. 答案:D解析:由题意可知,函数在x=0时取得最大值,且最大值为2。

根据二次函数的性质,可知函数的开口方向向下,故A、B、C选项错误。

因此,答案为D。

2. 答案:C解析:根据复数的乘法运算,可得$(a+bi)(c+di) = ac + adi + bci + bdi^2 = (ac-bd) + (ad+bc)i$。

根据题目中的复数乘法,可知ac-bd=1,ad+bc=0。

将这两个等式联立,解得a=1,b=0,c=0,d=1。

因此,答案为C。

3. 答案:B解析:由题意可知,数列{an}是等差数列,且公差为2。

根据等差数列的通项公式,可得an = a1 + (n-1)d。

将n=5代入公式,得a5 = a1 + 4d。

由题意可知,a5 = 2a1,代入公式得2a1 = a1 + 4d,解得a1 = 4d。

因此,答案为B。

4. 答案:A解析:由题意可知,点P在圆x^2+y^2=4上,且满足直线x+y-2=0。

将直线方程代入圆的方程,得x^2+(2-x)^2=4,化简得x^2-4x+4=0,解得x=2。

将x=2代入直线方程,得y=0。

因此,点P的坐标为(2,0)。

故答案为A。

5. 答案:D解析:由题意可知,函数在区间(0,1)上单调递增,在区间(1,2)上单调递减。

根据导数的定义,可知当x=1时,函数取得极大值。

因此,答案为D。

二、填空题6. 答案:2解析:由题意可知,函数在x=0时取得最小值,且最小值为-2。

根据二次函数的性质,可知函数的开口方向向上,故a>0。

由题意可知,函数的对称轴为x=1,故顶点坐标为(1,-2)。

因此,答案为2。

7. 答案:-3解析:由题意可知,函数在x=0时取得最大值,且最大值为3。

根据二次函数的性质,可知函数的开口方向向下,故a<0。

由题意可知,函数的对称轴为x=2,故顶点坐标为(2,3)。

因此,答案为-3。

8. 答案:1/2解析:由题意可知,数列{an}是等比数列,且公比为1/2。

山东省泰安市2019-2020学年中考数学一模考试卷含解析

山东省泰安市2019-2020学年中考数学一模考试卷含解析

山东省泰安市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.25B.35C.5 D.62.运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.则图中阴影部分的面积是()A.252πB.10πC.24+4πD.24+5π3.如图是由长方体和圆柱组成的几何体,它的俯视图是()A.B.C.D.4.如图,在边长为的等边三角形ABC中,过点C垂直于BC的直线交∠ABC的平分线于点P,则点P到边AB所在直线的距离为()A.B.C.D.15.如图,AB 是⊙O 的直径,点C ,D ,E 在⊙O 上,若∠AED =20°,则∠BCD 的度数为()A .100°B .110°C .115°D .120°6.对于不为零的两个实数a ,b ,如果规定:a ★b =()()a ba b a a b b+<⎧⎪⎨-≥⎪⎩,那么函数y =2★x 的图象大致是( )A .B .C .D .7.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°8.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1﹣6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于( ) A .16B .13C .12D .239.下列运算正确的是( ) A .32()x =x 5B .55()x x -=-C .3x ·2x =6xD .32x +2 35x 5x =10.如图,点E 是矩形ABCD 的边AD 的中点,且BE ⊥AC 于点F ,则下列结论中错误的是( )A .AF=12CF B .∠DCF=∠DFC C .图中与△AEF 相似的三角形共有5个D .tan ∠CAD=211.如右图,⊿ABC 内接于⊙O ,若∠OAB=28°则∠C 的大小为( )A .62°B .56°C .60°D .28°12.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大.如图是对某球员罚球训练时命中情况的统计:下面三个推断:①当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;②随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;③由于该球员“罚球命中”的频率的平均值是0.1,所以“罚球命中”的概率是0.1.其中合理的是( ) A .①B .②C .①③D .②③二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.方程32x x =+的根是________.14.因式分解:2mn +6mn+9m=_________________. 15.如图,矩形OABC 的两边落在坐标轴上,反比例函数y=kx的图象在第一象限的分支过AB 的中点D 交OB 于点E ,连接EC ,若△OEC 的面积为12,则k=_____.16.如图,将边长为1的正方形的四条边分别向外延长一倍,得到第二个正方形,将第二个正方形的四条边分别向外延长一倍得到第三个正方形,…,则第2018个正方形的面积为_____.17.钓鱼岛周围海域面积约为170000平方千米,170000用科学记数法表示为______.18.如图,已知⊙O1与⊙O2相交于A、B两点,延长连心线O1O2交⊙O2于点P,联结PA、PB,若∠APB=60°,AP=6,那么⊙O2的半径等于________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知点A,C在EF上,AD∥BC,DE∥BF,AE=CF.(1)求证:四边形ABCD是平行四边形;(2)直接写出图中所有相等的线段(AE=CF除外).20.(6分)在平面直角坐标系xOy中,抛物线y=mx2﹣2mx﹣3(m≠0)与x轴交于A(3,0),B两点.(1)求抛物线的表达式及点B的坐标;(2)当﹣2<x<3时的函数图象记为G,求此时函数y的取值范围;(3)在(2)的条件下,将图象G在x轴上方的部分沿x轴翻折,图象G的其余部分保持不变,得到一个新图象M.若经过点C(4.2)的直线y=kx+b(k≠0)与图象M在第三象限内有两个公共点,结合图象求b的取值范围.21.(6分)某数学教师为了解所教班级学生完成数学课前预习的具体情况,对该班部分学生进行了一学期的跟踪调查,将调查结果分为四类并给出相应分数,A:很好,95分;B:较好75分;C:一般,60分;D:较差,30分.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(Ⅰ)该教师调查的总人数为,图②中的m值为;(Ⅱ)求样本中分数值的平均数、众数和中位数.22.(8分)如图,已知:正方形ABCD,点E在CB的延长线上,连接AE、DE,DE与边AB交于点F,FG∥BE交AE于点G.(1)求证:GF=BF;(2)若EB=1,BC=4,求AG的长;(3)在BC边上取点M,使得BM=BE,连接AM交DE于点O.求证:FO•ED=OD•EF.23.(8分)解方程组3{3814 x yx y-=-=24.(10分)在传箴言活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行统计,并绘制成了如图所示的两幅统计图(1)将条形统计图补充完整;(2)该班团员在这一个月内所发箴言的平均条数是________;(3)如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学,现要从发了3条箴言和4条箴言的同学中分别选出一位参加总结会,请你用列表或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.25.(10分)如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=mx的图象都经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.26.(12分)某中学七、八年级各选派10名选手参加知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀,这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分的选手人数分别为a、b.队别平均分中位数方差合格率优秀率七年级 6.7 m 3.41 90% n八年级7.1 7.5 1.69 80% 10%(1)请依据图表中的数据,求a、b的值;(2)直接写出表中的m、n的值;(3)有人说七年级的合格率、优秀率均高于八年级;所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.27.(12分)如图,已知正方形ABCD,E是AB延长线上一点,F是DC延长线上一点,且满足BF =EF,将线段EF绕点F顺时针旋转90°得FG,过点B作FG的平行线,交DA的延长线于点N,连接NG.求证:BE=2CF;试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题分析:连接EF交AC于点M,由四边形EGFH为菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易证△FMC≌△EMA,根据全等三角形的性质可得AM=MC;在Rt△ABC中,由勾股定理求得AC=45,且tan∠BAC=12BCAB=;在Rt△AME中,AM=12AC=25,tan∠BAC=12EMAM=可得EM=5;在Rt△AME中,由勾股定理求得AE=2.故答案选C.考点:菱形的性质;矩形的性质;勾股定理;锐角三角函数.2.A【解析】【分析】作直径CG,连接OD、OE、OF、DG,则根据圆周角定理求得DG的长,证明DG=EF,则S扇形ODG=S扇形OEF,然后根据三角形的面积公式证明S△OCD=S△ACD,S△OEF=S△AEF,则S阴影=S扇形OCD+S扇形OEF=S 扇形OCD+S扇形ODG=S半圆,即可求解.【详解】作直径CG,连接OD、OE、OF、DG.∵CG是圆的直径,∴∠CDG=90°,则2222106CG CD--=8,又∵EF=8,∴DG=EF,∴¼»DG EF=,∴S扇形ODG=S扇形OEF,∵AB∥CD∥EF,∴S△OCD=S△ACD,S△OEF=S△AEF,∴S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆=12π×52=252π,故选A.【点睛】本题考查扇形面积的计算,圆周角定理.本题中找出两个阴影部分面积之间的联系是解题的关键.3.A【解析】分析:根据从上边看得到的图形是俯视图,可得答案.详解:从上边看外面是正方形,里面是没有圆心的圆,故选A.点睛:本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.4.D【解析】试题分析:∵△ABC为等边三角形,BP平分∠ABC,∴∠PBC=∠ABC=30°,∵PC⊥BC,∴∠PCB=90°,在Rt△PCB中,PC=BC•tan∠PBC==1,∴点P到边AB所在直线的距离为1,故选D.考点:1.角平分线的性质;2.等边三角形的性质;3.含30度角的直角三角形;4.勾股定理.5.B【解析】【分析】连接AD,BD,由圆周角定理可得∠ABD=20°,∠ADB=90°,从而可求得∠BAD=70°,再由圆的内接四边形对角互补得到∠BCD=110°.【详解】如下图,连接AD,BD,∵同弧所对的圆周角相等,∴∠ABD=∠AED=20°,∵AB为直径,∴∠ADB=90°,∴∠BAD=90°-20°=70°,∴∠BCD=180°-70°=110°.故选B【点睛】本题考查圆中的角度计算,熟练运用圆周角定理和内接四边形的性质是关键.6.C【解析】【分析】先根据规定得出函数y=2★x的解析式,再利用一次函数与反比例函数的图象性质即可求解.【详解】由题意,可得当2<x,即x>2时,y=2+x,y是x的一次函数,图象是一条射线除去端点,故A、D错误;当2≥x,即x≤2时,y=﹣2x,y是x的反比例函数,图象是双曲线,分布在第二、四象限,其中在第四象限时,0<x≤2,故B错误.故选:C.【点睛】本题考查了新定义,函数的图象,一次函数与反比例函数的图象性质,根据新定义得出函数y=2★x的解析式是解题的关键.7.A【解析】试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.考点:平行线的性质. 8.B 【解析】 【分析】直接得出两位数是3的倍数的个数,再利用概率公式求出答案. 【详解】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次, 十位数为3,则两位数是3的倍数的个数为2. ∴得到的两位数是3的倍数的概率为:26 =13. 故答案选:B. 【点睛】本题考查了概率的知识点,解题的关键是根据题意找出两位数是3的倍数的个数再运用概率公式解答即可. 9.B 【解析】 【分析】根据幂的运算法则及整式的加减运算即可判断. 【详解】 A. ()23x =x 6,故错误;B. ()55x x -=-,正确; C. 3x ·2x =5x ,故错误; D. 32x +2 3x 不能合并,故错误, 故选B. 【点睛】此题主要考查整式的加减及幂的运算,解题的关键是熟知其运算法则. 10.D 【解析】 【分析】 由1122AE AD BC ==, 又AD ∥BC ,所以12AE AF BC FC ==, 故A 正确,不符合题意;过D 作DM ∥BE 交AC 于N ,得到四边形BMDE 是平行四边形,求出BM=DE=12BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故B正确,不符合题意;根据相似三角形的判定即可求解,故C正确,不符合题意;由△BAE∽△ADC,得到CD与AD的大小关系,根据正切函数可求tan∠CAD的值,故D错误,符合题意.【详解】A.∵AD∥BC,∴△AEF∽△CBF,∴12AE AFBC FC==,∵1122AE AD BC==,∴12AFFC=,故A正确,不符合题意;B. 过D作DM∥BE交AC于N,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴12BM DE BC==,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DF=DC,∴∠DCF=∠DFC,故B正确,不符合题意;C. 图中与△AEF相似的三角形有△ACD,△BAF,△CBF,△CAB,△ABE共有5个,故C正确,不符合题意;D. 设AD=a,AB=b,由△BAE∽△ADC,有2.aba b=∵tan∠CAD2,2CD bAD a===故D错误,符合题意.故选:D.【点睛】考查相似三角形的判定,矩形的性质,解直角三角形,掌握相似三角形的判定方法是解题的关键. 11.A【解析】【详解】连接OB.在△OAB中,OA=OB(⊙O的半径),∴∠OAB=∠OBA(等边对等角);又∵∠OAB=28°,∴∠OBA=28°;∴∠AOB=180°-2×28°=124°;而∠C=12∠AOB(同弧所对的圆周角是所对的圆心角的一半),∴∠C=62°;故选A12.B【解析】【分析】根据图形和各个小题的说法可以判断是否正确,从而解答本题【详解】当罚球次数是500时,该球员命中次数是411,所以此时“罚球命中”的频率是:411÷500=0.822,但“罚球命中”的概率不一定是0.822,故①错误;随着罚球次数的增加,“罚球命中”的频率总在0.2附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.2.故②正确;虽然该球员“罚球命中”的频率的平均值是0.1,但是“罚球命中”的概率不是0.1,故③错误.故选:B.【点睛】此题考查了频数和频率的意义,解题的关键在于利用频率估计概率.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x=2【解析】分析:解此方程首先要把它化为我们熟悉的方程(一元二次方程),解新方程,检验是否符合题意,即可求得原方程的解.详解:据题意得:2+2x=x 2,∴x 2﹣2x ﹣2=0,∴(x ﹣2)(x+1)=0,∴x 1=2,x 2=﹣1.,∴x=2.故答案为:2.点睛:本题考查了学生综合应用能力,解方程时要注意解题方法的选择,在求值时要注意解的检验. 14.()23m n +【解析】【分析】提公因式法和应用公式法因式分解.【详解】解: ()()222mn +6mn+9m=m n +6n+9=m n+3. 故答案为:()23m n +【点睛】本题考查因式分解,要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.15.【解析】【分析】 设AD=a ,则AB=OC=2a ,根据点D 在反比例函数y=k x 的图象上,可得D 点的坐标为(a ,k a),所以OA=k a ;过点E 作EN ⊥OC 于点N ,交AB 于点M ,则OA=MN=k a,已知△OEC 的面积为12,OC=2a ,根据三角形的面积公式求得EN=12a ,即可求得EM=12k a-;设ON=x ,则NC=BM=2a-x ,证明△BME ∽△ONE ,根据相似三角形的性质求得x=24a k ,即可得点E 的坐标为(24a k ,12a ),根据点E 在在反比例函数y=k x 的图象上,可得24a k ·12a =k ,解方程求得k 值即可. 【详解】设AD=a ,则AB=OC=2a ,∵点D 在反比例函数y=k x的图象上,∴D(a,k a),∴OA=ka,过点E 作EN⊥OC于点N,交AB于点M,则OA=MN=ka,∵△OEC的面积为12,OC=2a,∴EN=12a,∴EM=MN-EN=ka-12a=12ka-;设ON=x,则NC=BM=2a-x,∵AB∥OC,∴△BME∽△ONE,∴EM BMEN ON=,即12212ka xaxa--=,解得x=24ak,∴E(24ak,12a),∵点E在在反比例函数y=kx的图象上,∴24ak·12a=k,解得k=122±∵k>0,∴2故答案为:2.【点睛】本题是反比例函数与几何的综合题,求得点E的坐标为(24ak,12a)是解决问题的关键.16.1【解析】【分析】先分别求出第1个、第2个、第3个正方形的面积,由此总结规律,得到第n个正方形的面积,将n=2018代入即可求出第2018个正方形的面积.【详解】:∵第1个正方形的面积为:1+4××2×1=5=51;第2个正方形的面积为:5+4××2×=25=52;第3个正方形的面积为:25+4××2×=125=53;…∴第n个正方形的面积为:5n;∴第2018个正方形的面积为:1.故答案为1.【点睛】本题考查了规律型:图形的变化类,解题的关键是得到第n个正方形的面积.17.51.710⨯【解析】解:将170000用科学记数法表示为:1.7×1.故答案为1.7×1.18.3【解析】【分析】由题意得出△ABP为等边三角形,在Rt△ACO2中,AO2=ACsin60︒即可.【详解】由题意易知:PO1⊥AB,∵∠APB=60°∴△ABP为等边三角形,AC=BC=3∴圆心角∠AO2O1=60°∴在Rt△ACO2中,AO2=ACsin60︒3.故答案为3.【点睛】本题考查的知识点是圆的性质,解题的关键是熟练的掌握圆的性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)AD=BC,EC=AF,ED=BF,AB=DC.【解析】整体分析:(1)用ASA证明△ADE≌△CBF,得到AD=BC,根据一组对边平行且相等的四边形是平行四边形证明;(2)根据△ADE≌△CBF,和平行四边形ABCD的性质及线段的和差关系找相等的线段.解:(1)证明:∵AD∥BC,DE∥BF,∴∠E=∠F,∠DAC=∠BCA,∴∠DAE=∠BCF.在△ADE和△CBF中,E FAE CFDAE BCF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE≌△CBF,∴AD=BC,∴四边形ABCD是平行四边形.(2)AD=BC,EC=AF,ED=BF,AB=DC.理由如下:∵△ADE≌△CBF,∴AD=BC,ED=BF.∵AE=CF,∴EC=AF.∵四边形ABCD是平行四边形,∴AB=DC.20.(1)抛物线的表达式为y=x2﹣2x﹣2,B点的坐标(﹣1,0);(2)y的取值范围是﹣3≤y<1.(2)b的取值范围是﹣83<b<25.【解析】【分析】(1)、将点A坐标代入求出m的值,然后根据二次函数的性质求出点B的坐标;(2)、将二次函数配成顶点式,然后根据二次函数的增减性得出y的取值范围;(2)、根据函数经过(-1,0)、(3,2)和(0,-2)、(3,2)分别求出两个一次函数的解析式,从而得出b的取值范围.【详解】(1)∵将A(2,0)代入,得m=1,∴抛物线的表达式为y=2x-2x-2.令2x-2x-2=0,解得:x=2或x=-1,∴B点的坐标(-1,0).(2)y=2x-2x-2=()21x--3.∵当-2<x<1时,y随x增大而减小,当1≤x<2时,y随x增大而增大,∴当x=1,y最小=-3.又∵当x=-2,y=1,∴y的取值范围是-3≤y<1.(2)当直线y=kx+b经过B(-1,0)和点(3,2)时,解析式为y=25x+25.当直线y=kx+b经过(0,-2)和点(3,2)时,解析式为y=54x-2.由函数图象可知;b的取值范围是:-2<b<25.【点睛】本题主要考查的就是二次函数的性质、一次函数的性质以及函数的交点问题.在解决第二个问题的时候,我们首先必须要明确给出x的取值范围是否是在对称轴的一边还是两边,然后根据函数图形进行求解;对于第三问我们必须能够根据题意画出函数图象,然后根据函数图象求出取值范围.在解决二次函数的题目时,画图是非常关键的基本功.21.(Ⅰ)25、40;(Ⅱ)平均数为68.2分,众数为75分,中位数为75分.【解析】【分析】(1)由直方图可知A的总人数为5,再依据其所占比例20%可求解总人数;由直方图中B的人数为10及总人数可知m的值;(2)根据平均数、众数和中位数的定义求解即可.【详解】(Ⅰ)该教师调查的总人数为(2+3)÷20%=25(人),m%=×100%=40%,即m=40,故答案为:25、40;(Ⅱ)由条形图知95分的有5人、75分的有10人、60分的有6人、30分的有4人,则样本分知的平均数为955751060630468.225⨯+⨯+⨯+⨯=(分),众数为75分,中位数为第13个数据,即75分.【点睛】理解两幅统计图中各数据的含义及其对应关系是解题关键.22.(1)证明见解析;(2)AG=175;(3)证明见解析.【解析】【分析】(1)根据正方形的性质得到AD∥BC,AB∥CD,AD=CD,根据相似三角形的性质列出比例式,等量代换即可;(2)根据勾股定理求出AE,根据相似三角形的性质计算即可;(3)延长GF交AM于H,根据平行线分线段成比例定理得到GF FHBE BM=,由于BM=BE,得到GF=FH,由GF∥AD,得到EF GFED AD=,FH FOAD OD=等量代换得到EF FHED AD=,即EF GFED AD=,于是得到结论.【详解】解:(1)∵四边形ABCD是正方形,∴AD∥BC,AB∥CD,AD=CD,∵GF∥BE,∴GF∥BC,∴GF∥AD,∴GF EF AD ED=,∵AB∥CD,BF EFCD ED=,∵AD=CD,∴GF=BF;(2)∵EB=1,BC=4,∴DF BCFE EB==4,AE=2217EB AB+=,∴AG DFGE FE==4,∴AG=417;(3)延长GF交AM于H,∵GF∥BC,∴FH∥BC,∴GF AF BE AB=,∴GF FH BE BM=,∵BM=BE,∴GF=FH,∵GF∥AD,∴EF GFED AD=,FH FOAD OD=,∴EF FH ED AD=,∴EF GF ED AD=,∴FO•ED=OD•EF.【点睛】本题主要考查平行线分线段成比例及正方形的性质,掌握平行线分线段中的线段对应成比例是解题的关键,注意利用比例相等也可以证明线段相等.23.21 xy=⎧⎨=-⎩【解析】解:由①得③把③代入②得把代人③得∴原方程组的解为24.(1)作图见解析;(2)3;(3)7 12【解析】【分析】(1)根据发了3条箴言的人数与所占的百分比列式计算即可求出该班全体团员的总人数为12,再求出发了4条箴言的人数,然后补全统计图即可;(2)利用该班团员在这一个月内所发箴言的总条数除以总人数即可求得结果;(3)列举出所有情况,看恰好是一位男同学和一位女同学占总情况的多少即可.【详解】解:(1)该班团员人数为:3÷25%=12(人),发了4条赠言的人数为:12−2−2−3−1=4(人),将条形统计图补充完整如下:(2)该班团员所发赠言的平均条数为:(2×1+2×2+3×3+4×4+1×5)÷12=3,故答案为:3;(3)∵发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学,∴发了3条箴言的同学中有一位女同学,发了4条箴言的同学中有一位男同学,方法一:列表得:共有12种结果,且每种结果的可能性相同,所选两位同学中恰好是一位男同学和一位女同学的情况有7种,所选两位同学中恰好是一位男同学和一位女同学的概率为:7 12;方法二:画树状图如下:共有12种结果,且每种结果的可能性相同,所选两位同学中恰好是一位男同学和一位女同学的情况有7种,所选两位同学中恰好是一位男同学和一位女同学的概率为:7 12;【点睛】此题考查了树状图法与列表法求概率,以及条形统计图与扇形统计图的知识.注意平均条数=总条数÷总人数;如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率()mP An=.25.(1)反比例函数表达式为4yx=-,正比例函数表达式为y x=-;(2)(4,1)C-,6ABCS=V.【解析】试题分析:(1)将点A坐标(2,-2)分别代入y=kx、y=mx求得k、m的值即可;(2)由题意得平移后直线解析式,即可知点B坐标,联立方程组求解可得第四象限内的交点C得坐标,可将△ABC的面积转化为△OBC的面积.试题解析:(1)把()2,2A-代入反比例函数表达式myx=,得22m-=,解得4m=-,∴反比例函数表达式为4yx=-,把()2,2A-代入正比例函数y kx=,得22k-=,解得1k=-,∴正比例函数表达式为y x=-.(2)直线BC由直线OA向上平移3个单位所得,∴直线BC的表达式为3y x=-+,由43yxy x⎧=-⎪⎨⎪=-+⎩,解得1142xy=⎧⎨=-⎩或2214xy=-⎧⎨=⎩,∵C在第四象限,∴()4,1C-,连接OC,∵OA BCP,12ABC BOC CS S OB x==⋅⋅V V,1342=⨯⨯,6=.26.(1)a=5,b=1;(2)6;20%;(3)八年级平均分高于七年级,方差小于七年级. 【解析】试题分析:(1)根据题中数据求出a与b的值即可;(2)根据(1)a与b的值,确定出m与n的值即可;(3)从方差,平均分角度考虑,给出两条支持八年级队成绩好的理由即可.试题解析:(1)根据题意得:31671819110 6.710 {111110a ba b⨯++⨯+⨯+⨯+=⨯+++++=解得a=5,b=1;(2)七年级成绩为3,6,6,6,6,6,7,8,9,10,中位数为6,即m=6;优秀率为111105+==20%,即n=20%;(3)八年级平均分高于七年级,方差小于七年级,成绩比较稳定,故八年级队比七年级队成绩好.考点:1.条形统计图;2.统计表;3.加权平均数;4.中位数;5.方差.27.(1)见解析;(2)四边形BFGN是菱形,理由见解析.【解析】【分析】(1)过F作FH⊥BE于点H,可证明四边形BCFH为矩形,可得到BH=CF,且H为BE中点,可得BE=2CF;(2)由条件可证明△ABN≌△HFE,可得BN=EF,可得到BN=GF,且BN∥FG,可证得四边形BFGN 为菱形.【详解】(1)证明:过F作FH⊥BE于H点,在四边形BHFC中,∠BHF=∠CBH=∠BCF=90°,所以四边形BHFC为矩形,∴CF=BH,∵BF=EF,FH⊥BE,∴H为BE中点,∴BE=2BH,∴BE=2CF;(2)四边形BFGN是菱形.证明:∵将线段EF绕点F顺时针旋转90°得FG,∴EF=GF,∠GFE=90°,∴∠EFH+∠BFH+∠GFB=90°∵BN∥FG,∴∠NBF+∠GFB=180°,∴∠NBA+∠ABC+∠CBF+∠GFB=180°,∵∠ABC=90°,∴∠NBA+∠CBF+∠GFB=180°−90°=90°,由BHFC是矩形可得BC∥HF,∴∠BFH=∠CBF,∴∠EFH=90°−∠GFB−∠BFH=90°−∠GFB−∠CBF=∠NBA,由BHFC是矩形可得HF=BC,∵BC=AB,∴HF=AB,在△ABN和△HFE中,NAB EHF90AB HFNBA EFH∠∠︒⎧⎪⎨⎪∠∠⎩====,∴△ABN≌△HFE,∴NB=EF,∵EF=GF,∴NB=GF,又∵NB∥GF,∴NBFG是平行四边形,∵EF=BF,∴NB=BF,∴平行四边NBFG是菱形.点睛:本题主要考查正方形的性质及全等三角形的判定和性质,矩形的判定与性质,菱形的判定等,作出辅助线是解决(1)的关键.在(2)中证得△ABN≌△HFE是解题的关键.。

山东省泰安市肥城市2020届数学一模试卷

山东省泰安市肥城市2020届数学一模试卷

山东省泰安市肥城市2020届数学一模试卷一、单选题(共8题;共16分)1.已知集合A={x|﹣1<x<1},B={x|0<x<2},则A∪B=()A. (﹣1,2)B. (﹣1,0)C. (0,1)D. (1,2)2.若集合,则“ ”是“ ”的()A. 充分非必要条件B. 必要非充分条件C. 充分必要条件D. 既不充分也非不必要条件3.已知,,若,则的取值范围为()A. B. C. D.4.若,,,满足,,,则()A. B. C. D.5.对数函数且与二次函数在同一坐标系内的图象可能是( )A. B. C. D.6.函数的图象大致是()A. B.C. D.7.已知函数,若,那么实数的值是()A. 4B. 1C. 2D. 38.2018年辽宁省正式实施高考改革.新高考模式下,学生将根据自己的兴趣、爱好、学科特长和高校提供的“选考科目要求”进行选课.这样学生既能尊重自己爱好、特长做好生涯规划,又能发挥学科优势,进而在高考中获得更好的成绩和实现自己的理想.考改实施后,学生将在高二年级将面临着的选课模式,其中“3”是指语、数、外三科必学内容,“1”是指在物理和历史中选择一科学习,“2”是指在化学、生物、地理、政治四科中任选两科学习.某校为了更好的了解学生对“1”的选课情况,学校抽取了部分学生对选课意愿进行调查,依据调查结果制作出如下两个等高堆积条形图:根据这两幅图中的信息,下列哪个统计结论是不正确的()A. 样本中的女生数量多于男生数量B. 样本中有学物理意愿的学生数量多于有学历史意愿的学生数量C. 样本中的男生偏爱物理D. 样本中的女生偏爱历史二、多选题(共4题;共12分)9.设函数,则( )A. 是偶函数B. 在单调递减C. 最大值为2D. 其图像关于直线对称10.下表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:空调类冰箱类小家电类其它类营业收入占比 90.10% 4.98% 3.82% 1.10%净利润占比95.80% ﹣0.48% 3.82% 0.86%则下列判断中正确的是()A. 该公司2018年度冰箱类电器销售亏损B. 该公司2018年度小家电类电器营业收入和净利润相同C. 该公司2018年度净利润主要由空调类电器销售提供D. 剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低11.在空间四边形中, 分别是上的点,当平面时,下面结论正确的是( )A. 一定是各边的中点B. 一定是的中点C. ,且D. 四边形是平行四边形或梯形12.如图,正方体的棱长为1,则下列四个命题正确的是( )A. 直线与平面所成的角等于B. 点C到面的距离为C. 两条异面直线和所成的角为D. 三棱柱外接球半径为三、填空题(共4题;共4分)13.________.14.在平面直角坐标系xOy中,将直线l沿x轴正方向平移3个单位长度,沿y轴正方向平移5个单位长度,得到直线l1.再将直线l1沿x轴正方向平移1个单位长度,沿y轴负方向平移2个单位长度,又与直线l重合.若直线l与直线l1关于点(2,3)对称,则直线l的方程是________.15.在我国古代数学名著《九章算术》中,把两底面为直角三角形的直棱柱称为“堑堵”.已知三棱柱是一个“堑堵”,其中,点是的中点,则四棱锥的外接球的表面积为________.16.定义在R上的偶函数f(x)满足f(e+x)=f(e﹣x),且f(0)=0,当x∈(0,e]时,f(x)=lnx已知方程在区间[﹣e,3e]上所有的实数根之和为3ea,将函数的图象向右平移a个单位长度,得到函数h(x)的图象,,则h(7)=________.四、解答题(共6题;共55分)17.记为公差不为零的等差数列的前项和,已知,.(1)求的通项公式;(2)求的最大值及对应的大小.18.已知函数(1)求的单调递增区间;(2)求在上的最小值及取最小值时的的集合.19.如图所示的几何体中,为三棱柱,且平面ABC,,四边形ABCD为平行四边形,,.(1)求证:平面;(2)若,求四棱锥的体积.20.在平面直角坐标系中,已知椭圆:的焦距为2,且过点.(1)求椭圆的方程;(2)设椭圆的上顶点为,右焦点为,直线与椭圆交于,两点,问是否存在直线,使得为的垂心,若存在,求出直线的方程:若不存在,说明理由.21.现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对“楼市限购令”赞成人数如表:月收入(单位百元) [15,25) [25,35) [35,45) [45,55) [55,65) [65,75)频数 5 10 15 10 5 5赞成人数 4 8 12 5 2 1(Ⅰ)由以上统计数据填下面2×2列联表并问是否有99%的把握认为“月收入以5500为分界点”对“楼市限购令”的态度有差异;月收入低于55百元的人数月收入不低于55百元的人数合计赞成不赞成合计(Ⅱ)若采用分层抽样在月收入在[15,25),[25,35)的被调查人中共随机抽取6人进行追踪调查,并给予其中3人“红包”奖励,求收到“红包”奖励的3人中至少有1人收入在[15,25)的概率.参考公式:K2,其中n=a+b+c+d.参考数据:P(K2≥k) 0.050 0.010 0.001k 3.841 6.635 10.82822.已知函数在处取得极小值.(1)求实数的值;(2)若函数存在极大值与极小值,且函数有两个零点,求实数的取值范围.(参考数据:,)答案解析部分一、单选题1.【答案】A2.【答案】A3.【答案】C4.【答案】A5.【答案】A6.【答案】A7.【答案】C8.【答案】D二、多选题9.【答案】A,B,D10.【答案】A,C,D11.【答案】C,D12.【答案】A,B,D三、填空题13.【答案】14.【答案】6x-8y+1=015.【答案】16.【答案】四、解答题17.【答案】(1)解:设的公差为,且.由,得,由,得,于是, .所以的通项公式为.(2)解:由(1)得因为,所以当或时,有最大值为20.18.【答案】(1)解:,解不等式,得,因此,函数的单调递增区间为;(2)解:,,当时,即当时,函数取得最小值.因此,函数的最小值为,对应的的集合为.19.【答案】(1)证明: 四边形ABCD为平行四边形, , .,,几何体中, 为三棱柱,且平面ABC,,,平面.(2)解:连结,平面, ,平面,四棱锥的体积:.20.【答案】(1)解:由已知可得:解得,,,所以椭圆:.(2)解:由已知可得,,,∴,∵,设直线的方程为:,代入椭圆方程整理得,设,,则,,∵,∴.即,因为,,即..所以,或.又时,直线过点,不合要求,所以.故存在直线:满足题设条件.21.【答案】解:(Ⅰ)由题意填2×2列联表如下,月收入低于55百元的人数月收入不低于55百元的人数合计赞成29 3 32 不赞成11 7 18 合计40 10 50 由表中数据,计算K2 6.27<6.635,所以没有99%的把握认为“月收入以5500为分界点”对“楼市限购令”的态度有差异;(Ⅱ)用分层抽样在月收入在[15,25),[25,35)的被调查人中随机抽取6人,则月收入在[15,25)内有6 2(人)记为A、B,在[25,35)有6﹣2=4(人),记为c、d、e、f;从这6人中抽取3人,基本事件是ABc、ABd、ABe、ABf、Acd、Ace、Acf、Ade、Adf、Aef、Bcd、Bce、Bcf、Bde、Bdf、Bef、cde、cdf、cef、def共20种,这3人中至少收入在[15,25)的事件是ABc、ABd、ABe、ABf、Acd、Ace、Acf、Ade、Adf、Aef、Bcd、Bce、Bcf、Bde、Bdf、Bef共16种,故所求的概率值为P.22.【答案】(1)解:由题意得.因为函数在处取得极小值,依题意知,解得或.当时,,若,,则函数单调递减,若,,则函数单调递增,所以,当时,取得极小值,无极大值,符合题意.当时,,若或,,则函数单调递增;若,,则函数单调递减,所以函数在处取得极小值,处取得极大值,符合题意,综上,实数或.(2)解:因为函数存在极大值与极小值,所以由(1)知,.所以,.当时,,故函数在上单调递增,当时,令,则,所以当或时,,单调递增,当时,,单调递减,因为,,所以当时,,故在上单调递减.因为函数在上有两个零点,所以,所以.取,取,,所以,实数的取值范围是.。

2020年泰安市高三数学下期末第一次模拟试题及答案

2020年泰安市高三数学下期末第一次模拟试题及答案

2020年泰安市高三数学下期末第一次模拟试题及答案一、选择题1.设数列{}n a 的前n 项和为n S ,若2,n S ,3n a 成等差数列,则5S 的值是( )A .243-B .242-C .162-D .2432.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为( ) A .65B .184C .183D .1763.通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:由2222()110(40302030),7.8()()()()60506050n ad bc K K a b c d a c b d -⨯⨯-⨯==≈++++⨯⨯⨯算得 附表:参照附表,得到的正确结论是( )A .有99%以上的把握认为“爱好该项运动与性别有关”B .有99%以上的把握认为“爱好该项运动与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” 4.已知平面向量a r=(1,-3),b r=(4,-2),a b λ+rr与a r垂直,则λ是( ) A .2B .1C .-2D .-15.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =u u u vA .3144AB AC -u u uv u u u v B .1344AB AC -u u uv u u u v C .3144+AB AC u u uv u u u vD .1344+AB AC u u uv u u u v6.若满足sin cos cos A B Ca b c==,则ABC ∆为( ) A .等边三角形 B .有一个内角为30°的直角三角形 C .等腰直角三角形D .有一个内角为30°的等腰三角形7.设双曲线2222:1x y C a b-=(00a b >>,)的左、右焦点分别为12F F ,,过1F 的直线分别交双曲线左右两支于点M N ,,连结22MF NF ,,若220MF NF ⋅=u u u u v u u u u v,22MF NF =u u u u v u u u u v ,则双曲线C 的离心率为( ).AB C D8.已知a r 与b r均为单位向量,它们的夹角为60︒,那么3a b -r r 等于( )A BC D .49.已知π,4αβ+=则(1tan )(1tan )αβ++的值是( ) A .-1B .1C .2D .410.样本12310,?,?,? a a a a ⋅⋅⋅的平均数为a ,样本12310,?,?,? b b b b ⋅⋅⋅的平均数为b ,那么样本1122331010,? ,,? ,?,,?,? a b a b a b a b ⋅⋅⋅的平均数为( )A .()a b +B .2()a b +C .1()2a b + D .1()10a b + 11.设双曲线22221x y a b-=(0a >,0b >)的渐近线与抛物线21y x =+相切,则该双曲线的离心率等于( )A B .2CD 12.已知复数z 满足()12i z +=,则复数z 的虚部为( ) A .1B .1-C .iD .i -二、填空题13.已知函数()2xf x =,等差数列{}n a 的公差为2,若()2468104f a a a a a ++++=,则()()()()212310log f a f a f a f a ⋅⋅⋅⋅=⎡⎤⎣⎦L ___________.14.若变量,x y 满足约束条件{241y x y x y ≤+≥-≤,则3z x y =+的最小值为_____.15.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________. 16.记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_____________.17.能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________.18.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)19.已知双曲线1C :22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,第一象限内的点00(,)M x y 在双曲线1C 的渐近线上,且12MF MF ⊥,若以2F 为焦点的抛物线2C :22(0)y px p =>经过点M ,则双曲线1C 的离心率为_______.20.设α 为第四象限角,且sin3sin αα=135,则 2tan =α ________. 三、解答题21.已知在等比数列{}n a 中, 11a =,且2a 是1a 和31a -的等差中项. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足()*21n n b n a n N =-+∈,求{}nb 的前n 项和nS.22.已知0a >,0b >,且1a b +=. (1)若ab m ≤恒成立,求m 的取值范围; (2))若41212x x a b+≥--+恒成立,求x 的取值范围. 23.如图,四面体ABCD 中,O 、E 分别是BD 、BC的中点,AB AD ==2CA CB CD BD ====. (1)求证:AO ⊥平面BCD ;(2)求异面直线AB 与CD 所成角的余弦值; (3)求点E 到平面ACD 的距离.24.已知曲线C 的参数方程为32cos 12sin x y αα=+⎧⎨=-⎩(a 参数),以直角坐标系的原点为极点,x 正半轴为极轴建立极坐标系.(Ⅰ)求曲线C 的极坐标方程;(Ⅱ)若直线l 极坐标方程为1sin 2cos θθρ-=,求曲线C 上的点到直线l 最大距离.25.已知椭圆22221(0)x y a b a b +=>>的离心率为6,以椭圆的2个焦点与1个短轴端点为顶点的三角形的面积为22. (1)求椭圆的方程;(2)如图,斜率为k 的直线l 过椭圆的右焦点F ,且与椭圆交与,A B 两点,以线段AB 为直径的圆截直线1x =所得的弦的长度为5,求直线l 的方程.26.定义在R 的函数()f x 满足对任意x y ÎR 、恒有()()()f xy f x f y =+且()f x 不恒为0.(1)求(1)(1)f f -、的值; (2)判断()f x 的奇偶性并加以证明;(3)若0x ≥时,()f x 是增函数,求满足不等式(1)(2)0f x f x +--≤的x 的集合.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【解析】 【分析】 【详解】因为2,,3n n S a 成等差数列,所以223n n S a =+,当1n =时,111223,2S a a =+∴=-;当2n ≥时,1113333112222n n n n n n n a S S a a a a ---=-=+--=-,即11322n n a a -=,即()132nn a n a -=≥,∴数列{}n a 是首项12a =-,公比3q =的等比数列,()()55151213242113a q S q---∴===---,故选B.2.B解析:B 【解析】分析:将原问题转化为等差数列的问题,然后结合等差数列相关公式整理计算即可求得最终结果.详解:由题意可得,8个孩子所得的棉花构成公差为17的等差数列,且前8项和为996, 设首项为1a ,结合等差数列前n 项和公式有:811878828179962S a d a ⨯=+=+⨯=, 解得:165a =,则81765717184a a d =+=+⨯=. 即第八个孩子分得斤数为184. 本题选择B 选项.点睛:本题主要考查等差数列前n 项和公式,等差数列的应用,等差数列的通项公式等知识,意在考查学生的转化能力和计算求解能力.3.A解析:A 【解析】 【分析】 【详解】由27.8 6.635K ≈>,而()26.6350.010P K ≥=,故由独立性检验的意义可知选A4.D解析:D 【解析】 【详解】试题分析:()()(),34,24,32a b λλλλλ+=-+-=+--r r ,由a b λ+r r 与a r 垂直可知()()()·0433201a b a λλλλ+=∴+---=∴=-r r r考点:向量垂直与坐标运算5.A解析:A 【解析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得1122BE BA BC =+u u u v u u u v u u u v ,之后应用向量的加法运算法则-------三角形法则,得到BC BA AC =+u u u v u u u v u u u v,之后将其合并,得到3144BE BA AC =+u u u v u u u v u u u v ,下一步应用相反向量,求得3144EB AB AC =-u u u v u u u v u u u v,从而求得结果.详解:根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC =+=+=++u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v1113124444BA BA AC BA AC u uu v u u u v u u u v u u u v u u u v =++=+, 所以3144EB AB AC =-u u u v u u u v u u u v ,故选A.点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.6.C解析:C 【解析】 【分析】由正弦定理结合条件可得tan tan 1B C ==,从而得三角形的三个内角,进而得三角形的形状.【详解】由正弦定理可知sin sin sin A B Ca b c ==,又sin cos cos A B C a b c==, 所以cos sin ,cos sin B B C C ==,有tan tan 1B C ==.所以45B C ==o .所以180454590A =--=o o o o . 所以ABC ∆为等腰直角三角形. 故选C. 【点睛】本题主要考查了正弦定理解三角形,属于基础题.7.B解析:B 【解析】 【分析】本道题设2MF x =,利用双曲线性质,计算x ,结合余弦定理,计算离心率,即可. 【详解】结合题意可知,设22,,2,MF x NF x MN x ===则则结合双曲线的性质可得,21122,2MF MF a MF MN NF a -=+-=代入,解得22x a =,所以12222,22NF a a NF a =+=,01245F NF ∠= 对三角形12F NF 运用余弦定理,得到()()()()()2220222222222222cos45a aac a a a ++-=+⋅,解得3ce a== 故选B. 【点睛】本道题考查了双曲线的性质,考查了余弦定理,关键利用余弦定理,解三角形,进而计算x ,即可,难度偏难.8.A解析:A 【解析】本题主要考查的是向量的求模公式.由条件可知==,所以应选A .9.C解析:C 【解析】 【分析】 由4παβ+=,得到1tanαβ+=(),利用两角和的正切函数公式化简1tan αβ+=(),即可得到所求式子的值. 【详解】 由由4παβ+=,得到1tanαβ+=(), 所以11tan tan tantan tan αβαβαβ++==-() ,即1tan tan tan tan αβαβ+=-,则1112tan tan tan tan tan tan αβαβαβ++=+++=()() . 故选C . 【点睛】本题考查学生灵活运用两角和与差的正切函数公式及特殊角的三角函数值化简求值,是一道基础题.10.C解析:C 【解析】 【分析】 【详解】由题意可知1210121010,10a a a a b b b b +++=+++=L L ,所以所求平均数为()121012101210121012020202a a ab b b a a a b b b a b +++++++++++++=+=+L L L L考点:样本平均数11.D解析:D 【解析】由题意可知双曲线的渐近线一条方程为b y x a =,与抛物线方程组成方程组2,1b y x a y x ⎧=⎪⎨⎪=+⎩消y 得,2210,()40b b x x a a -+=∆=-=,即2()4b a =,所以e == D. 【点睛】双曲线22221x y a b-=(0a >,0b >)的渐近线方程为b y x a =±.直线与抛物线交点问题,直线与抛物线方程组方程组,当直线与抛物线对称轴平行时,直线与抛物线相交,只有一个交点.当直线与抛物线对称轴不平行时,当>0∆时,直线与抛物线相交,有两个交点. 当0∆=时,直线与抛物线相切,只有一个交点. 当∆<0时,直线与抛物线相离,没有交点.12.B解析:B【解析】设,,z a bi a b R =+∈() ,由()1i 22z z i z +=⇒=--()2a bi i a bi ⇒+=--(),2a bi b a i ⇒+=-+-() ,2a b b a =-⎧⇒⎨=-⎩ 1b ⇒=- ,故选B.二、填空题13.【解析】【分析】根据指数运算出再利用等差中项的性质得出并得出然后再利用等差数列的性质和指数对数的运算法则求出的值【详解】依题意有且则而因此故答案为【点睛】本题考查等差数列基本性质的计算同时也考查了等 解析:6-【解析】 【分析】根据指数运算出2468102a a a a a ++++=,再利用等差中项的性质得出625a =,并得出56825a a =-=-,然后再利用等差数列的性质和指数、对数的运算法则求出()()()()212310log f a f a f a f a ⋅⋅⋅⋅⎡⎤⎣⎦L 的值.【详解】依题意有246810625a a a a a a ++++==,625a ∴=,且56282255a a =-=-=-. 则()()()110123101105610825556255a a a a a a a a a a +⎛⎫++++==+=+=⨯-+=- ⎪⎝⎭L , 而()()()()1231061231022a a a a f a f a f a f a ++++-⋅⋅⋅⋅==L L ,因此,()()()()62123102log log 26f a f a f a f a -⋅⋅⋅⋅==-⎡⎤⎣⎦L .故答案为6-. 【点睛】本题考查等差数列基本性质的计算,同时也考查了等差数列的定义以及指数、对数的运算,解题时充分利用等差中项的性质,可简化计算,考查计算能力,属于中等题.14.8【解析】【分析】【详解】作出不等式组表示的平面区域得到如图的△A BC 及其内部其中A (22)B ()C (32)设z=F (xy )=3x+y 将直线l :z=3x+y 进行平移当l 经过点A (22)时目标函数z 达解析:8 【解析】 【分析】 【详解】作出不等式组 表示的平面区域,得到如图的△ABC 及其内部,其中A (2,2),B (53,22),C (3,2)设z =F (x ,y )=3x +y ,将直线l :z =3x +y 进行平移, 当l 经过点A (2,2)时,目标函数z 达到最小值 ∴z 最小值=F (2,2)=8 故选:C15.【解析】试题分析:因为和关于轴对称所以那么(或)所以【考点】同角三角函数诱导公式两角差的余弦公式【名师点睛】本题考查了角的对称关系以及诱导公式常用的一些对称关系包含:若与的终边关于轴对称则若与的终边解析:79-【解析】试题分析:因为α和β关于y 轴对称,所以2,k k Z αβππ+=+∈,那么1sin sin 3βα==,22cos cos 3αβ=-=(或22cos cos 3βα=-=),所以()2227cos cos cos sin sin cos sin 2sin 19αβαβαβααα-=+=-+=-=-. 【考点】同角三角函数,诱导公式,两角差的余弦公式【名师点睛】本题考查了角的对称关系,以及诱导公式,常用的一些对称关系包含:若α与β的终边关于y 轴对称,则2,k k Z αβππ+=+∈ ,若α与β的终边关于x 轴对称,则2,k k Z αβπ+=∈,若α与β的终边关于原点对称,则2,k k Z αβππ-=+∈.16.【解析】【分析】首先根据题中所给的类比着写出两式相减整理得到从而确定出数列为等比数列再令结合的关系求得之后应用等比数列的求和公式求得的值【详解】根据可得两式相减得即当时解得所以数列是以-1为首项以2 解析:63-【解析】 【分析】首先根据题中所给的21n n S a =+,类比着写出1121n n S a ++=+,两式相减,整理得到12n n a a +=,从而确定出数列{}n a 为等比数列,再令1n =,结合11,a S 的关系,求得11a =-,之后应用等比数列的求和公式求得6S 的值.【详解】根据21n n S a =+,可得1121n n S a ++=+, 两式相减得1122n n n a a a ++=-,即12n n a a +=, 当1n =时,11121S a a ==+,解得11a =-, 所以数列{}n a 是以-1为首项,以2为公比的等比数列,所以66(12)6312S --==--,故答案是63-.点睛:该题考查的是有关数列的求和问题,在求解的过程中,需要先利用题中的条件,类比着往后写一个式子,之后两式相减,得到相邻两项之间的关系,从而确定出该数列是等比数列,之后令1n =,求得数列的首项,最后应用等比数列的求和公式求解即可,只要明确对既有项又有和的式子的变形方向即可得结果.17.y=sinx (答案不唯一)【解析】分析:举的反例要否定增函数可以取一个分段函数使得f (x )>f (0)且(02]上是减函数详解:令则f (x )>f (0)对任意的x ∈(02]都成立但f (x )在[02]上不解析:y =sin x (答案不唯一)【解析】分析:举的反例要否定增函数,可以取一个分段函数,使得f (x )>f (0)且(0,2]上是减函数.详解:令0,0()4,(0,2]x f x x x =⎧=⎨-∈⎩,则f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不是增函数.又如,令f (x )=sin x ,则f (0)=0,f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不是增函数.点睛:要判定一个全称命题是假命题,只要举出集合M 中的一个特殊值0x ,使0()p x 不成立即可.通常举分段函数.18.【解析】【分析】首先想到所选的人中没有女生有多少种选法再者需要确定从人中任选人的选法种数之后应用减法运算求得结果【详解】根据题意没有女生入选有种选法从名学生中任意选人有种选法故至少有位女生入选则不同 解析:16【解析】 【分析】首先想到所选的人中没有女生,有多少种选法,再者需要确定从6人中任选3人的选法种数,之后应用减法运算,求得结果. 【详解】根据题意,没有女生入选有344C =种选法,从6名学生中任意选3人有3620C =种选法,故至少有1位女生入选,则不同的选法共有20416-=种,故答案是16. 【点睛】该题是一道关于组合计数的题目,并且在涉及到“至多、至少”问题时多采用间接法,一般方法是得出选3人的选法种数,间接法就是利用总的减去没有女生的选法种数,该题还可以用直接法,分别求出有1名女生和有两名女生分别有多少种选法,之后用加法运算求解.19.【解析】【分析】由题意可得又由可得联立得又由为焦点的抛物线:经过点化简得根据离心率可得即可求解【详解】由题意双曲线的渐近线方程为焦点为可得①又可得即为②由联立①②可得由为焦点的抛物线:经过点可得且即解析:2+【解析】 【分析】 由题意可得00by x a=,又由12MF MF ⊥,可得22200y x c +=,联立得0x a =,0y b =,又由F 为焦点的抛物线2C :22(0)y px p =>经过点M ,化简得224ac 0c a --=,根据离心率ce a=,可得2410e e --=,即可求解. 【详解】由题意,双曲线的渐近线方程为by x a=±,焦点为()1,0F c -,()2,0F c , 可得00by x a=,① 又12MF MF ⊥,可得00001y yx c x c⋅=-+-, 即为22200y x c +=,②由222a b c +=,联立①②可得0x a =,0y b =,由F 为焦点的抛物线2C :22(0)y px p =>经过点M , 可得22b pa =,且2pc =,即有2224b ac c a ==-,即224ac 0c a --=由ce a =,可得2410e e --=,解得2e =+【点睛】本题考查了双曲线的几何性质——离心率的求解,其中根据条件转化为圆锥曲线的离心率的方程是解答的关键.求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c 的值,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).20.-【解析】因为=====4cos2α-1=2(2cos2α-1)+1=2cos2α+1=所以cos2α=又α是第四象限角所以sin2α=-tan2α=-点睛:三角函数求值常用方法:异名三角函数化为同解析:-34【解析】 因为3sin sin αα=()2sin sin ααα+ =22sin cos cos sin sin ααααα+=()22221sin cos cos sin sin ααααα+-=24sin cos sin sin αααα-=4cos 2α-1=2(2cos 2α-1)+1=2cos 2α+1 =135,所以cos 2α=45. 又α是第四象限角,所以sin 2α=-35,tan 2α=-34. 点睛:三角函数求值常用方法:异名三角函数化为同名三角函数,异角化为同角,异次化为同次,切化弦,特殊值与特殊角的三角函数互化.三、解答题21.(1) 12n n a -=(2) n S 221n n =+-【解析】 【分析】(1)由题意结合等差数列的性质得到关于公比的方程,解方程求得公比的值,然后结合首项求解数列的通项公式即可.(2)结合(1)的结果首先确定数列{}n b 的通项公式,然后分组求和即可求得数列{}n b 的前n 项和n S . 【详解】(1)设等比数列{}n a 的公比为q ,则2a q =,23a q =,∵2a 是1a 和31a -的等差中项, ∴()21321a a a =+-, 即()2211q q =+-, 解得2q =,∴12n n a -=.(2) 121212n n n b n a n -=-+=-+,则()()11321122n n S n -⎡⎤=+++-++++⎣⎦L L()12112212n n n ⎡⎤+--⎣⎦=+-. 221n n =+-.【点睛】数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和. 22.(1)14m ≥(2)[]6,12- 【解析】 【分析】(1)由已知根据基本不等式得2124a b ab +⎛⎫≤=⎪⎝⎭,再由不等式的恒成立的思想:ab m ≤恒成立,则需()max m ab ≥得所求范围;(2)根据基本不等式得()41419a b a b a b ⎛⎫+=++≥ ⎪⎝⎭,再根据不等式恒成立的思想得到绝对值不等式2129x x --+≤,运用分类讨论法可求出不等式的解集. 【详解】(1)0a >,0b >,且1a b +=,∴2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时“=”成立,由ab m ≤恒成立,故14m ≥. (2)∵(),0,a b ∈+∞,1a b +=,∴()41414559b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭,故若41212x x a b+≥--+恒成立,则2129x x --+≤, 当2x -≤时,不等式化为1229x x -++≤,解得62x -≤≤-,当122x -<<,不等式化为1229x x ---≤,解得122x -<<, 当12x ≥时,不等式化为2129x x ---≤,解得1122x ≤≤.综上所述,x 的取值范围为[]6,12-. 【点睛】本题综合考查运用基本不等式求得最值,利用不等式的恒成立的思想建立相应的不等关系,分类讨论求解绝对值不等式,属于中档题.23.(1)见解析(2)4(3)7【解析】 【分析】(1)连接OC ,由BO =DO ,AB =AD ,知AO ⊥BD ,由BO =DO ,BC =CD ,知CO ⊥BD .在△AOC 中,由题设知AO 1CO ==,AC =2,故AO 2+CO 2=AC 2,由此能够证明AO ⊥平面BCD ;(2)取AC 的中点M ,连接OM 、ME 、OE ,由E 为BC 的中点,知ME ∥AB ,OE ∥DC ,故直线OE 与EM 所成的锐角就是异面直线AB 与CD 所成的角.在△OME中,11EM AB OE DC 122====,由此能求出异面直线AB 与CD 所成角大小的余弦;(3)设点E 到平面ACD 的距离为h .在△ACD 中,CA CD 2AD ===,ACD1S 22==V ,由AO =1,知2CDE 1S 22==V ,由此能求出点E 到平面ACD 的距离. 【详解】(1)证明:连接OC ,∵BO =DO ,AB =AD ,∴AO ⊥BD , ∵BO =DO ,BC =CD ,∴CO ⊥BD .在△AOC 中,由题设知1AO CO ==,AC =2, ∴AO 2+CO 2=AC 2,∴∠AOC =90°,即AO ⊥OC . ∵AO ⊥BD ,BD ∩OC =O , ∴AO ⊥平面BCD .(2)解:取AC 的中点M ,连接OM 、ME 、OE ,由E 为BC 的中点, 知ME ∥AB ,OE ∥DC ,∴直线OE 与EM 所成的锐角就是异面直线AB 与CD 所成的角.在△OME 中,111222EM AB OE DC ====, ∵OM 是直角△AOC 斜边AC 上的中线,∴112OM AC ==,∴111224221cos OEM +-∠==⨯⨯, ∴异面直线AB 与CD所成角大小的余弦为24(3)解:设点E 到平面ACD 的距离为h .E ACD A CDE V V --=Q ,1133ACD CDE h S AO S ∴=V V ..., 在△ACD 中,22CA CD AD ===,,∴212724222ACDS ⎛⎫=⨯⨯-= ⎪ ⎪⎝⎭V , ∵AO =1,21332242CDE S =⨯⨯=V , ∴3121277CDE ACDAO S h S ⨯⋅===V V ,∴点E 到平面ACD 的距离为217.【点睛】本题考查点、线、面间的距离的计算,考查空间想象力和等价转化能力,解题时要认真审题,仔细解答,注意化立体几何问题为平面几何问题. 24.(1)26cos 2sin 60ρρθρθ--+=(26525【解析】 【分析】(1)利用平方和为1消去参数α得到曲线C 的直角坐标方程,再利用y sin x cos ρθρθ=⎧⎨=⎩,整理即可得到答案;(2)将直线的极坐标方程化为直角坐标方程,求出圆心到直线的距离,加上半径即可得到最大距离. 【详解】(1)由3212x cos y sin αα=+⎧⎨=-⎩,得3212x cos y sin αα-=⎧⎨-=-⎩,两式两边平方并相加,得()()22314x y -+-=, 所以曲线C 表示以()3,1为圆心,2为半径的圆.将y sin x cos ρθρθ=⎧⎨=⎩代入得()()22cos 3sin 14ρθρθ-+-=,化简得26cos 2sin 60ρρθρθ--+=所以曲线C 的极坐标方程为26cos 2sin 60ρρθρθ--+= (2)由1sin 2cos θθρ-=,得sin 2cos 1ρθρθ-=,即21y x -=,得210x y -+=所以直线l 的直角坐标方程为210x y -+=因为圆心()3,1C 到直线:l 210x y -+=的距离5d ==,所以曲线C 上的点到直线l 的最大距离为2d r +=+. 【点睛】本题考查直角坐标方程,参数方程及极坐标方程之间的互化,考查直线与圆的位置关系的应用,属于基础题.25.(1)22162x y +=;(2)2y x =-或2y x =-+.【解析】 【分析】(1)根据椭圆的离心率,三角形的面积建立方程,结合a 2=b 2+c 2,即可求椭圆C 的方程;(2)联立直线方程与椭圆联立,利用韦达定理表示出12x x +及12x x ⋅,结合弦的长度为即可求斜率k 的值,从而求得直线方程.【详解】解:(1)由椭圆()222210x y a b a b +=>>得c =,b =.由21223S c b a =⋅⋅==a = b =22162x y +=.(2)解:设直线():2AB l y k x =-,()11,A x y ,()22,B x y ,AB 中点()00,M x y . 联立方程()222360y k x x y ⎧=-⎨+-=⎩得()222213121260kxk x k +-+-=,2212122212126,1313k k x x x x k k -+==++.()2122113k AB x x k+=-=+. 所以202613k x k=+, 点M 到直线1x =的距离为22022316111313k k d x k k -=-=-=++. 由以线段AB 为直径的圆截直线1x =22222AB d ⎛⎛⎫-= ⎪ ⎝⎭⎝⎭,所以()222222213113132k k k k ⎤+⎛⎫⎛⎫-⎥-= ⎪ ⎪ ⎪++⎢⎥⎝⎭⎝⎭⎣⎦, 解得1k =±,所以直线l 的方程为2y x =-或2y x =-+.【点睛】本题考查椭圆的标准方程与几何性质,考查直线与椭圆的位置关系,联立直线与椭圆方程,利用韦达定理,整理出12x x +及12x x ⋅,代入弦长公式AB =,考查学生的计算能力,属于中档题.26.(1)(1)0f =,(1)0f -=;(2)偶函数,证明见解析;(3)1{|}2x x ≤ 【解析】 试题分析:(1)利用赋值法:令1x y ==得()10f =,令1x y ==-,得()10f -=; (2)令1y =-,结合(1)的结论可得函数()f x 是偶函数;(3)结合函数的奇偶性和函数的单调性脱去f 符号,求解绝对值不等式12x x +≤-可得x 的取值范围是1{|}2x x ≤. 试题解析:(1)令1x y ==得()10f =,令1x y ==-,得()10f -=;(2)令1y =-,对x R ∈得()()()1f x f f x -=-+即()()f x f x -=,而()f x 不恒为0,()f x ∴是偶函数;(3)又()f x 是偶函数,()()f x fx ∴=,当0x >时,()f x 递增,由()()+≤-,得()()f x f x12+≤-∴+≤-∴的取值范围是f x f x x x x12,12,1x x≤.{|}2。

山东省泰安市2020年中考数学一模试卷解析版

山东省泰安市2020年中考数学一模试卷解析版

16. 二次函数 y=ax2+bx+c(a,b,c 为常数,且 a≠0)中的 x 与 y 的部分对应值如表
x -1
0
1
3
y -1
3
5
3
下列结论: ①ac<0; ②当 x>1 时,y 的值随 x 值的增大而减小. ③3 是方程 ax2+(b-1)x+c=0 的一个根; ④当-1<x<3 时,ax2+(b-1)x+c>0. 其中正确的结论是______. 17. 《九章算术》是中国传统数学最重要的著作,在“勾股”章中 有这样一个问题:“今有邑方二百步,各中开门,出东门十五
四、解答题(本大题共 6 小题,共 50.0 分)
20. 先化简:
+ ÷ 在从-1≤x≤3 的整数中选取一你喜欢的 x 的值代入求值.
21. 如图,平面直角坐标系中,O 为原点,点 A、B 分别在 y 轴、x 轴的正半轴上.△AOB 的两条外角平分线交于点 P,P 在反比例函数 y= 的图象上.PA 的延长线交 x 轴于 点 C,PB 的延长线交 y 轴于点 D,连接 CD. (1)求∠P 的度数及点 P 的坐标; (2)求△OCD 的面积; (3)△AOB 的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明 理由.
A. 2
B. 4
C.
D. 2
11. 如图,菱形 ABCD 的边长为 2,∠A=60°,以点 B 为圆心的
圆与 AD、DC 相切,与 AB、CB 的延长线分别相交于点 E、
F,则图中阴影部分的面积为( )
A. +
B. +π
C. -
D. 2 +
12. 如图,正△ABC 的边长为 4,点 P 为 BC 边上的任意一点( 不与点 B、C 重合),且∠APD=60°,PD 交 AB 于点 D.设 BP=x,BD=y,则 y 关于 x 的函数图象大致是( )

2020年山东省泰安市肥城马埠中学高一数学理模拟试卷含解析

2020年山东省泰安市肥城马埠中学高一数学理模拟试卷含解析

2020年山东省泰安市肥城马埠中学高一数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 圆C:x2+y2+2x+4y-3=0 的圆心坐标是()A.(1,2) B.(2,4) C.(-1,-2) D.(-1,-4)参考答案:D略2. 设,函数在区间[]上的最大值与最小值之差为,则A. 4B. 2C.D.参考答案:A3. 函数(,-<<)的部分图象如图所示,则,的值分别是().A.2,-B.2,-C.4,-D.4,参考答案:A4. 是平面内的一定点,、、是平面上不共线的三个点.动点满足则点的轨迹一定通过的( ).外心.垂心.内心.重心参考答案:D5. 已知y=f(x)是奇函数,当x>0时,f(x)=x(1+x),那么当x<0时,f(x)的解析式是()A、x(1+x)B、x(1-x)C、-x(1-x)D、-x(1+x)参考答案:B略6. (3分)将函数y=sin(x﹣)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得图象向左平移个单位,则所得函数图象对应的解析式为()A.y=sin(x﹣)B.y=sin(2x﹣)C.y=sin x D.y=sin(x﹣)参考答案:D考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:根据函数y=Asin(ωx+φ)的图象变换规律即可得解,注意三角函数的平移原则为左加右减上加下减.解答:解:将函数y=sin(x﹣)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到的图象对应的解析式为y=sin(x﹣),再将所得图象向左平移个单位,则所得函数图象对应的解析式为y=sin=sin(x﹣),故选:D.点评:本题主要考查函数y=Asin(ωx+φ)的图象变换,三角函数的平移原则为左加右减上加下减,属于基础题.7. 长方体的一个顶点上三条棱的边长分别为3、4、5,且它的八个顶点都在同一球面上,这个球的表面积是()A. B. C. D.参考答案:C8. 函数图象的一条对称轴方程是()A. B. C. D.参考答案:C9. 已知中,角的对边分别为,且,则的形状为()A.等腰三角形B.直角三角形C.等边三角形 D.不能确定参考答案:B略10. 设、、是非零向量,则下列结论正确是()A. B.若,则C.若,则 D.参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11. 长方体被一平行于棱的平面截成体积相等的两个几何体,其中一个几何体的三视图如图所示,则长方体的体积为.参考答案:48【考点】由三视图求面积、体积.【分析】由题意,长方体的长宽高分别为3,4,4,即可求出长方体的体积.【解答】解:由题意,长方体的长宽高分别为3,4,4,所以长方体的体积为3×4×4=48.故答案为48.12. 命题“存在x∈R,使得x2+2x+5=0”的否定是参考答案:对任何x∈R,都有x2+2x+5≠0.【详解】因为命题“存在x∈R,使得x2+2x+5=0”是特称命题,根据特称命题的否定是全称命题,可得命题的否定为:对任何x∈R,都有x2+2x+5≠0.故答案为对任何x∈R,都有x2+2x+5≠0.13. (5分)如果一个水平放置的图形的斜二测直观图是一个底面为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是参考答案:.考点:平面图形的直观图.专题:计算题.分析:水平放置的图形为直角梯形,求出上底,高,下底,利用梯形面积公式求解即可.解答:水平放置的图形为一直角梯形,由题意可知上底为1,高为2,下底为1+,S=(1++1)×2=2+.故答案为:2+.点评:本题考查水平放置的平面图形的直观图斜二测画法,也可利用原图和直观图的面积关系求解.属基础知识的考查.14. 若函数对于上的任意都有,则实数的取值范围是▲.参考答案:略15. 已知点在映射“”作用下的对应点是,若点在映射作用下的对应点是,则点的坐标为___________参考答案:16. 适合等式arccos – arccos ( –) = arcsin x 的x 的值是。

【精选3份合集】山东省泰安市2020年中考一模数学试卷有答案含解析

【精选3份合集】山东省泰安市2020年中考一模数学试卷有答案含解析

A.
B.
C.
D.
解析:A 【解析】 【分析】 利用平行线的性质以及相似三角形的性质一一判断即可. 【详解】 解:∵AB⊥BD,CD⊥BD,EF⊥BD, ∴AB∥CD∥EF ∴△ABE∽△DCE,

,故选项 B 正确,
∵EF∥AB,



,故选项 C,D 正确,
故选:A. 【点睛】 考查平行线的性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌 握基本知识,属于中考常考题型.
5.如图,将一张三角形纸片 ABC 的一角折叠,使点 A 落在 ABC 处的 A' 处,折痕为 DE .如果 A , CEA' , BDA' ,那么下列式子中正确的是( )
A. 2
解析:A
B. 2
C.
D. 180
【解析】 【详解】 分析:根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论. 详解:
由折叠得:∠A=∠A', ∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA', ∵∠A=α,∠CEA′=β,∠BDA'=γ, ∴∠BDA'=γ=α+α+β=2α+β, 故选 A. 点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键. 6.如图,下列条件不能判定△ADB∽△ABC 的是( )
相等的两个三角形相似.
7.二次函数 y ax2 bx c(a 0) 的图像如图所示,下列结论正确是( )
A. abc 0
等的实数根
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020届山东省泰安市肥城市一模数学试题一、单选题1.已知集合A ={x |﹣1<x <1},B ={x |0<x <2},则A ∪B =( ) A .(﹣1,2) B .(﹣1,0)C .(0,1)D .(1,2)【答案】A【解析】根据并集的概念直接计算即可得解. 【详解】由题意得{}()121,2A B x x ⋃=-<<=-. 故选:A. 【点睛】本题考查了集合并集的运算,属于基础题.2.若集合{}{}1234|05P Q x x x R ==<<∈,,,,,,则“x P ∈”是“x Q ∈”的( ) A .充分非必要条件 B .必要非充分条件C .充分必要条件D .既不充分也非不必要条件【答案】A【解析】根据题意,对充分性和必要性进行讨论,即可判断和选择. 【详解】由题可知,若x P ∈,则一定有x Q ∈,故充分性满足; 但是若x Q ∈,则不一定有x Q ∈,故必要性不满足. 故“x P ∈”是“x Q ∈”的充分不必要条件. 故选:A. 【点睛】本题考查充分条件和必要条件的判断,属基础题.3.已知(),4,2a x =-r ,()3,,5b y =-r ,若a b ⊥r r ,则22x y +的取值范围为( )A .[)2,+∞B .[)3,+∞C .[)4,+∞D .[)5,+∞【答案】C【解析】根据向量的坐标与垂直关系,可得,x y 的等量关系.由22xy +可知其意义为(),x y 到原点距离平方,即可由点到直线距离公式求解.(),4,2a x =-r,()3,,5b y =-r ,且a b ⊥r r由向量数量积的运算可得34100a b x y ⋅=--=rr22x y +的意义为(),x y 到原点距离平方由点到直线距离公式可知原点到直线34100x y --=的距离为()2210234d -==+-因为点到直线的距离为最短距离,所以22x y +的最小值为4即22xy +的取值范围为[)4,+∞故选:C 【点睛】本题考查了空间向量垂直的坐标关系,向量数量积的运算.点到直线距离公式的应用,两点间距离公式的理解,属于基础题.4.若a ,b ,c 满足23a =,2log 5b =,32c =.则( ) A .c a b << B .b c a <<C .a b c <<D .c b a <<【答案】A【解析】利用指数函数和对数函数的单调性即可比较大小. 【详解】Q 23a =,12232<<,∴12a <<, Q 22log 5log 4b =>,∴2b >, Q 32c =,01323<<,∴01c <<,∴c a b <<,故选:A. 【点睛】本题考查了指数函数和对数函数的单调性,考查了计算能力和推理能力,属于基础题. 5.对数函数且与二次函数在同一坐标系内的图象可能是( )A .B .C .D .【解析】根据对数函数的单调性,分类讨论,结合二次函数的图象与性质,利用排除法,即可求解,得到答案. 【详解】 由题意,若,则在上单调递减,又由函数开口向下,其图象的对称轴在轴左侧,排除C ,D.若,则在上是增函数,函数图象开口向上,且对称轴在轴右侧,因此B 项不正确,只有选项A 满足. 【点睛】本题主要考查了对数函数与二次参数的图象与性质,其中解答中熟记二次函数和对数的函数的图象与性质,合理进行排除判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.6.函数2log y x x =-的图象大致是( )A .B .C .D .【答案】A【解析】结合图象只需研究函数零点个数,即可判断选择. 【详解】当4x =时2log 0y x x ==,所以舍去D; 当16x =时2log 0y x x ==,所以舍去BC ; 故选:A 【点睛】本题考查利用函数零点判断函数图象,考查基本分析判断能力,属基础题.7.已知函数31(0)()2(0)x a x f x x x -⎧+≤=⎨+>⎩,若((1))18f f -=,那么实数a 的值是( )A .4B .1C .2D .3【答案】C【解析】先求出(1)4f -=,((1))18f f -=变成(4)18f =,可得到4218a +=,解方程即可得解. 【详解】(1)4f -=,((1))18f f -=变成(4)18f =,即4218a +=,解之得:2a =.故选:C. 【点睛】本题考查已知函数值求参数的问题,考查分段函数的知识,考查计算能力,属于常考题. 8.2018年辽宁省正式实施高考改革.新高考模式下,学生将根据自己的兴趣、爱好、学科特长和高校提供的“选考科目要求”进行选课.这样学生既能尊重自己爱好、特长做好生涯规划,又能发挥学科优势,进而在高考中获得更好的成绩和实现自己的理想.考改实施后,学生将在高二年级将面临着312++的选课模式,其中“3”是指语、数、外三科必学内容,“1”是指在物理和历史中选择一科学习,“2”是指在化学、生物、地理、政治四科中任选两科学习.某校为了更好的了解学生对“1”的选课情况,学校抽取了部分学生对选课意愿进行调查,依据调查结果制作出如下两个等高堆积条形图:根据这两幅图中的信息,下列哪个统计结论是不正确的( )A .样本中的女生数量多于男生数量B .样本中有学物理意愿的学生数量多于有学历史意愿的学生数量C .样本中的男生偏爱物理D .样本中的女生偏爱历史【解析】根据这两幅图中的信息,即可得出结论. 【详解】由图1知,样本中的女生数量对于男生数量,样本中有学物理意愿的学生数量多于有学历史意愿的学生数量,样本中的男生偏爱物理,女生也偏爱物理. 故选:D. 【点睛】本题考查等高堆积条形图,考查学生对图形的认识,属于基础题.二、多选题9.设函数()sin 2cos 244f x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则()f x ( ) A .是偶函数B .在0,2π⎛⎫⎪⎝⎭单调递减 C .最大值为2 D .其图像关于直线2x π=对称【答案】ABD【解析】利用辅助角公式、诱导公式化简函数()f x 的解析式,然后根据余弦函数的性质对四个选项逐一判断即可. 【详解】()sin 2cos 2224444f x x x x x ππππ⎛⎫⎛⎫⎛⎫=+++=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.选项A :()2))()f x x x f x -=-==,它是偶函数,本说法正确;选项B :0,2x π⎛⎫∈ ⎪⎝⎭,所以()20,x π∈,因此()f x 是单调递减,本说法正确;选项C :()2f x x =,本说法不正确;选项D :当2x π=时,()22f x π=⨯=2x π=时,函数有最小值,因此函数图象关于2x π=对称,本说法正确.故选:ABD 【点睛】本题考查了辅助角公式、诱导公式、考查了余弦型函数的性质,属于基础题. 10.下表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:则下列判断中正确的是()A .该公司2018年度冰箱类电器销售亏损B .该公司2018年度小家电类电器营业收入和净利润相同C .该公司2018年度净利润主要由空调类电器销售提供D .剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低【答案】ACD【解析】根据题意,分析表中数据,即可得出正确的选项. 【详解】根据表中数据知,该公司2018年度冰箱类电器销售净利润所占比为﹣0.48,是亏损的,A 正确;小家电类电器营业收入所占比和净利润所占比是相同的,但收入与净利润不一定相同,B 错误;该公司2018年度净利润空调类电器销售所占比为95.80%,是主要利润来源,C 正确; 所以剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低,D 正确. 故选:ACD . 【点睛】本题考查了数据分析与统计知识的应用问题,考查了读表与分析能力,是基础题. 11.在空间四边形ABCD 中,,,,E F G H 分别是,,,AB BC CD DA 上的点,当//BD 平面EFGH 时,下面结论正确的是( )A .,,,E F G H 一定是各边的中点B .,G H 一定是,CD DA 的中点C .::AE EB AH HD =,且::BF FC DG GC = D .四边形EFGH 是平行四边形或梯形【解析】根据线面平行的性质定理即可得解. 【详解】解:由//BD 平面EFGH ,所以由线面平行的性质定理,得//BD EH ,//BD FG ,则::AE EB AH HD =,且::BF FC DG GC =,且//EH FG ,四边形EFGH 是平行四边形或梯形. 故选:CD . 【点睛】本题考查线面平行的性质定理的应用,属于基础题.12.如图,正方体1111ABCD A B C D -的棱长为1,则下列四个命题正确的是( )A .直线BC 与平面11ABC D 所成的角等于4π B .点C 到面11ABC D 的距离为22C .两条异面直线1D C 和1BC 所成的角为4π D .三棱柱1111AA D BB C -外接球半径为32【答案】ABD【解析】根据线面角的定义及求法,点面距的定义,异面直线所成角的定义及求法,三棱柱的外接球的半径求法,即可判断各选项的真假. 【详解】正方体1111ABCD A B C D -的棱长为1,对于A ,直线BC 与平面11ABC D 所成的角为14CBC π∠=,故选项A 正确;对于B ,因为B C ⊥面ABC D ,点C 到面ABC D 的距离为B C 长度的一半,即2h =,故选项B 正确; 对于C ,因为11//BC AD ,所以异面直线1D C 和1BC 所成的角为1AD C ∠,而1AD C V 为等边三角形,故两条异面直线1D C 和1BC 所成的角为3π,故选项C 错误; 对于D ,因为11111,,A A A B A D 两两垂直,所以三棱柱1111AA D BB C -外接球也是正方体1111ABCD A B C D -的外接球,故2r ==,故选项D 正确. 故选:ABD . 【点睛】本题主要考查线面角的定义以及求法,点面距的定义以及求法,异面直线所成角的定义以及求法,三棱柱的外接球的半径求法的应用,属于基础题.三、填空题13.(1arcsin arccos arctan 2⎛⎛⎫-++= ⎪ ⎝⎭⎝⎭______. 【答案】3π 【解析】利用反三角函数的定义和性质,求得要求式子的值. 【详解】(1arcsin arccos arctan 22⎛⎛⎫-+-+ ⎪ ⎝⎭⎝⎭1arcsin arccos arctan 22π⎛⎛⎫=-+-- ⎪ ⎝⎭⎝⎭663ππππ⎛⎫=-+-- ⎪⎝⎭ 3π=.故答案为:3π. 【点睛】本题主要考查反三角函数的定义和性质,考查学生的计算能力,属于基础题.14.在平面直角坐标系xOy 中,将直线l 沿x 轴正方向平移3个单位长度,沿y 轴正方轴负方向平移2个单位长度,又与直线l 重合.若直线l 与直线l 1关于点(2,3)对称,则直线l 的方程是________________. 【答案】6x -8y +1=0【解析】根据平移得到l 1:y =k (x -3)+5+b 和直线:y =kx +3-4k +b ,解得k =34,再根据对称解得b =18,计算得到答案. 【详解】由题意知直线l 的斜率存在,设直线l 的方程为y =kx +b ,则直线l 1:y =k (x -3)+5+b ,平移后的直线方程为y =k (x -3-1)+b +5-2 即y =kx +3-4k +b ,∴b =3-4k +b ,解得k =34, ∴直线l 的方程为y =34x +b ,直线l 1为y =34x +114+b取直线l 上的一点3,4P m m b ⎛⎫+ ⎪⎝⎭,则点P 关于点(2,3)的对称点为34,64m b m ⎛⎫---⎪⎝⎭, ()331164444b m m b --=-++ ,解得b =18.∴直线l 的方程是3148y x =+ ,即6x -8y +1=0.故答案为:6x -8y +1=0 【点睛】本题考查了直线的平移和对称,意在考查学生对于直线知识的综合应用.15.在我国古代数学名著《九章算术》中,把两底面为直角三角形的直棱柱称为“堑堵”.已知三棱柱111ABC A B C -是一个“堑堵”,其中12AB BC BB ===,点M 是11A C 的中点,则四棱锥11M B C CB -的外接球的表面积为__________. 【答案】8π【解析】先根据对称性确定四棱锥11M B C CB -的外接球球心位置,再求球半径,最后代入球表面积公式即可. 【详解】111,1ON MN ON MN OM OB OC OB OC ⊥==∴=====Q ,即O 为四棱锥11M B C CB -,球表面积为24π8π=.【点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.16.定义在R 上的偶函数f (x )满足f (e +x )=f (e ﹣x ),且f (0)=0,当x ∈(0,e ]时,f (x )=lnx 已知方程122f x sin x eπ=()在区间[﹣e ,3e ]上所有的实数根之和为3ea ,将函数2314g x sin x π=+()的图象向右平移a 个单位长度,得到函数h (x )的图象,,则h (7)=_____.【答案】104【解析】根据题意可知函数f (x )是一个周期为2e 的偶函数,即可作出函数f (x )在[﹣e ,3e ]上的图象,由方程的根与两函数图象交点的横坐标的关系可求得a 的值,再利用二倍角公式化简函数()g x ,然后根据平移法则即可求得()h x ,从而求得()7h . 【详解】因为f (e +x )=f (e ﹣x ),所以f (x )关于x =e 对称,又因为偶函数f (x ), 所以f (x )的周期为2e .当x ∈(0,e ]时,f (x )=lnx ,于是可作出函数f (x )在[﹣e ,3e ]上的图象如图所示, 方程1()22f x sin x eπ=的实数根是函数y =f (x )与函数122y sinx e π=的交点的横坐标, 由图象的对称性可知,两个函数在[﹣e ,3e ]上有4个交点,且4个交点的横坐标之和为4e ,所以4e =3ea ,故a 43=, 因为235()314222g x sinx cos x ππ=+=-+, 所以345325()()()22322232h x cos x cos x πππ=--+=--+,故32510(7)2324h sin π=+=.故答案为:10.【点睛】本题主要考查函数的性质应用,图象的应用,方程的根与两函数图象交点的横坐标的关系的应用,二倍角公式的应用,以及平移法则的应用,意在考查学生的转化能力和数形结合能力,属于中档题.四、解答题17.记n S 为公差不为零的等差数列{}n a 的前n 项和,已知2219a a =,618S =.(1)求{}n a 的通项公式;(2)求n S 的最大值及对应n 的大小.【答案】(1)*(2)10n a n n ∈=-N (2)当4n =或5n =时,n S 有最大值为20.【解析】(1)将已知条件转化为1,a d 的形式列方程,由此解得1,a d ,进而求得{}n a 的通项公式.(2)根据等差数列前n 项和公式求得n S ,利用配方法,结合二次函数的性质求得n S 的最大值及对应n 的大小. 【详解】(1)设{}n a 的公差为d ,且0d ≠.由2219a a =,得140a d +=,由618S =,得1532a d +=, 于是18a =,2d =-.所以{}n a 的通项公式为*(2)10n a n n ∈=-N .(2)由(1)得(1)8(2)2n n n S n -=+⨯- 29n n =-+2981()24n =--+因为*n ∈N ,所以当4n =或5n =时,n S 有最大值为20.【点睛】本小题主要考查等差数列通项公式和前n 项和公式基本量的计算,考查等差数列前n 项和的最值的求法,属于基础题.18.已知函数4()cos f x x =-42sin cos sin x x x - (1)求()f x 的单调递增区间; (2)求()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最小值及取最小值时的x 的集合.【答案】(1)()5,88k k k Z ππππ⎡⎤-+-+∈⎢⎥⎣⎦;(2)最小值为,x 的集合为38π⎧⎫⎨⎬⎩⎭.【解析】(1)利用平方差公式、二倍角公式以及辅助角公式得出()24f x x π⎛⎫=- ⎪⎝⎭,然后解不等式()3222242k x k k Z πππππ-+≤-≤-+∈,解此不等式即可得出函数()y f x =的单调递增区间; (2)由0,2x π⎡⎤∈⎢⎥⎣⎦求出24x π-的取值范围,结合正弦函数的基本性质得出函数()y f x =的最小值,并求出对应的x 的值.【详解】 (1)()()()442222cos 2sin cos sin cos sin cos sin 2sin cos f x x x x x x x x x x x=--=-+-Q22cos sin 2sin cos cos 2sin 224x x x x x x x π⎛⎫=--=-=- ⎪⎝⎭,解不等式()3222242k x k k Z πππππ-+≤-≤-+∈, 得()588k x k k Z ππππ-+≤≤-+∈,因此,函数()y f x =的单调递增区间为()5,88k k k Z ππππ⎡⎤-+-+∈⎢⎥⎣⎦;(2)0,2x π⎡⎤∈⎢⎥⎣⎦Q ,32444x πππ∴-≤-≤,当242x ππ-=时,即当38x π=时,函数()y f x =取得最小值2-. 因此,函数()y f x =的最小值为2-,对应的x 的集合为38π⎧⎫⎨⎬⎩⎭. 【点睛】本题考查正弦型函数单调性区间与最值的求解,一般要利用三角恒等变换思想将函数解析式进行化简,考查运算求解能力,属于中等题.19.如图所示的几何体中,111ABC A B C -为三棱柱,且1AA ⊥平面ABC ,1AA AC =,四边形ABCD 为平行四边形,2AD CD =,60ADC ∠=︒.(1)求证:AB ⊥平面11ACC A ;(2)若2CD =,求四棱锥111C A B CD -的体积. 【答案】(1)证明见解析(2)8【解析】(1)推导出AB AC ⊥,1AB AA ⊥,由此能证明AB ⊥平面11ACC A ;(2)连结1A C ,则CD ⊥平面11CC A ,四棱锥111C A B CD -的体积:11111D CC A C A B C V V V --=+,由此能求出结果. 【详解】(1)证明:Q 四边形ABCD 为平行四边形,2AD CD =,60ADC ∠=︒.90ACD BAC ∠∠∴==︒,AB AC ∴⊥,Q 几何体中,111ABC A B C -为三棱柱,且1AA ⊥平面ABC ,1AB AA ∴⊥,1AC AA A Q ⋂=,AB ∴⊥平面11ACC A .(2)连结1A C ,AB ⊥Q 平面11ACC A ,//CD AB ,CD \^平面11CC A ,∴四棱锥111C A B CD -的体积:11111D CC A C A B C V V V --=+1111111133A C C ABC CD S CC S =⨯⨯+⨯⨯V V 111122323232233232=⨯⨯⨯⨯⨯⨯8=.【点睛】本题考查线面垂直的证明,考查四棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.20.在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=()0a b >>的焦距为2,且过点21,2⎛⎫⎪ ⎪⎝⎭. (1)求椭圆C 的方程;(2)设椭圆C 的上顶点为B ,右焦点为F ,直线l 与椭圆交于M ,N 两点,问是否存在直线l ,使得F 为BMN ∆的垂心,若存在,求出直线l 的方程:若不存在,说明理由.【答案】(1)2212x y +=(2)存在,43y x =-【解析】(1)把点的坐标代入椭圆方程,利用椭圆中,,a b c 的关系和已知,可以求出椭圆方程;(2)设直线l 的方程,与椭圆方程联立,根据一元二次方程根与系数关系,结合已知和斜率公式,可以求出直线l 的方程. 【详解】解:(1)由已知可得:22222221112c a b a b c=⎧⎪⎪+=⎨⎪=+⎪⎩解得22a =,21b =,1c =,所以椭圆C :2212x y +=.(2)由已知可得,()0,1B ,()1,0F ,∴1BF k =-,∵BF l ⊥, 设直线l 的方程为:y x m =+,代入椭圆方程整理得2234220x mx m ++-=,设()11,M x y ,()22,N x y ,则1243m x x +=-,212223m x x -⋅=,∵BN MF ⊥,∴1212111y y x x -⋅=--. 即1212120y y x x y x +--=,因为11y x m =+,22y x m =+,()()()1212120x m x m x x x m x +++-+-= 即()212122(1)0x x m x x m m +-++-=.()2222421033m m m m m --+-+-=.所以2340m m +-=,43m =-或1m =. 又1m =时,直线l 过B 点,不合要求,所以43m =-. 故存在直线l :43y x =-满足题设条件. 【点睛】本题考查了求椭圆的标准方程,考查了直线与椭圆的位置关系,考查了垂心的概念,考查了数学运算能力.21.现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对“楼市限购令”赞成人数如表:(Ⅰ)由以上统计数据填下面2×2列联表并问是否有99%的把握认为“月收入以5500为分界点”对“楼市限购令”的态度有差异;(Ⅱ)若采用分层抽样在月收入在[15,25),[25,35)的被调查人中共随机抽取6人进行追踪调查,并给予其中3人“红包”奖励,求收到“红包”奖励的3人中至少有1人收入在[15,25)的概率.参考公式:K 2()()()()2()n ad bd a b c d a c b d -=++++,其中n =a +b +c +d . 参考数据:【答案】(Ⅰ)填表见解析,没有 (Ⅱ)45【解析】(Ⅰ)由题意填表,计算K 2,对照临界值得出结论 (Ⅱ)由分层抽样求出抽取的人数,列举法写出基本事件,计算概率即可.【详解】(Ⅰ)由题意填2×2列联表如下,由表中数据,计算K 2()25029731140103218⨯⨯-⨯=≈⨯⨯⨯ 6.27<6.635,所以没有99%的把握认为“月收入以5500为分界点”对“楼市限购令”的态度有差异; (Ⅱ)用分层抽样在月收入在[15,25),[25,35)的被调查人中随机抽取6人,则月收入在[15,25)内有65510⨯=+2(人)记为A 、B ,在[25,35)有6﹣2=4(人),记为c 、d 、e 、f ; 从这6人中抽取3人,基本事件是ABc 、ABd 、ABe 、ABf 、Acd 、Ace 、Acf 、Ade 、Adf 、Aef 、Bcd 、Bce 、Bcf 、Bde 、Bdf 、Bef 、cde 、cdf 、cef 、def 共20种,这3人中至少收入在[15,25)的事件是ABc 、ABd 、ABe 、ABf 、Acd 、Ace 、Acf 、Ade 、Adf 、Aef 、Bcd 、Bce 、Bcf 、Bde 、Bdf 、Bef 共16种, 故所求的概率值为P 164205==. 【点睛】本题主要考查了22⨯列联表与独立性检验问题,古典概型的概率问题,属于中档题. 22.已知函数()22()xf x e axx a =++在1x =-处取得极小值.(1)求实数a 的值;(2)若函数()f x 存在极大值与极小值,且函数()()2g x f x x m =--有两个零点,求实数m 的取值范围.(参考数据:e 2.718≈ 2.236≈) 【答案】(1)0a =或1a =(2)(1,)+∞【解析】(1)根据极值的定义,求出0a =或1a =,再对a 的两种取值分别进行验证; (2)由第(1)问先确定1a =,得到()2()12xg x exx x m =+--+,利用导数研究函数()g x 的单调性,即函数()g x 在(0,)+∞上单调递增,在(,0)-∞上单调递减,再结合零点存在定理的条件,得到参数m 的取值范围. 【详解】解:(1)由题意得22()(21)1x f x e ax a x a '⎡⎤=++++⎣⎦.因为函数()22()xf x eaxx a =++在1x =-处取得极小值,依题意知'(1)0f -=,解得0a =或1a =.当0a =时,'()(1)x f x e x =+,若1x <-,'()0f x <,则函数()f x 单调递减,若1x >-,'()0f x >,则函数()f x 单调递增,所以,当1x =-时,()f x 取得极小值,无极大值,符合题意.当1a =时,'()(1)(2)xf x e x x =++,若2x <-或1x >-,'()0f x >,则函数()f x 单调递增;若21x -<<-,'()0f x <,则函数()f x 单调递减,所以函数()f x 在1x =-处取得极小值,2x =-处取得极大值,符合题意, 综上,实数0a =或1a =.(2)因为函数()f x 存在极大值与极小值,所以由(1)知,1a =. 所以()2()12xg x exx x m =+--+,()(1)(2)2x g x e x x '=++-.当0x >时,'()0g x >,故函数()g x 在(0,)+∞上单调递增, 当0x <时,令()(1)(2)2xh x e x x =++-,则()2()55xh x exx '=++,所以当52x --<或52x -+>时,()0h x '>,()h x 单调递增,当5522x --<<时,()0h x '<,()h x 单调递减, 因为(0)0h =,3.6183356( 3.618)( 2.618)( 1.618)2e 3222e h h e --⎛⎫+-≈-=⨯-⨯--<⨯⨯-= ⎪ ⎪⎝⎭20-<,所以当0x <时,'0g x <(),故()g x 在(,0)-∞上单调递减. 因为函数()g x 在R 上有两个零点,所以(0)10g m =-<,所以1m >. 取02mx =-<,22222224(1)312e e 0242244m m m m m m m m m m g e m ---⎛⎫-+-+⎛⎫⎛⎫-=-+-⨯--==> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;取1x m =>,()2222()e 131321(1)0m g m m m m m m m m m m =++->++-=-+=->,所以,实数m 的取值范围是(1,)+∞. 【点睛】本题考查利用导数研究函数的极值、单调性及零点存在定理的应用,考查逻辑推理能力和运算求解能力,求解过程中要做中脑中有图,充分利用数形结合思想分析和解决问题,同时注意分类讨论思想的运用.。

相关文档
最新文档