串联电抗器抑制谐波的作用及电抗率的选择

合集下载

电容器串联电抗率的选择

电容器串联电抗率的选择
21 0 0年 O 8月
吉 林 电 力
Jl e ti o r i n Elc NhomakorabeacP we i
Aug. 01 2 0
第3 8卷 第 4期 ( 总第 2 9期 ) 0
Vo . 8 No 4 ( e . . 0 ) 13 . S r No 2 9
电容器 串联 电抗 率 的选择
a mp i c t n z n n h c i g v la e a l ia i n r t r o n u h,f r h r wo k s o l e c r id o t i l ia i o e a d c e k n o t g mp i c to a i a e n t e o g f o f o u t e r h u d b a re u n
a 系统原理 图 . b 等效 电路 图 .
图 1 系 统 简 化 分 析 图
值 基 波短 路 电抗 ; 电容 器 组基 波 电抗 ; X 为 X 为 电
1 串联 电抗 器 抑 制 谐 波 原 理 ]
电容 器 装 置 侧有 谐 波 源 时 的模 型 如 图 1 示 , 所 谐 波 电流 和 。 : 为
考 虑 电容器 组接 人母 线处 的谐 波 背景 。如果 使 用不 当, 电容 器组 会对 谐 波起 放大 作用 , 重时会 发 生谐 严
振, 造成 电容器 自身 的损 坏或 无法 工作 , 至危 及 附 甚
近 的其 他 电气 设 备 的安全 。本 文对 串联 电抗 器 抑制 谐 波 的作 用进 行 介 绍 , 过 实 际 的 2个算 例 着 重 展 通 开分 析 , 并提 出 电抗率 的选 择方 法 。
文 章 编 号 : 0 9 5 0 ( 0 0 0 — 0 50 10 —3 6 2 1 )40 0 —3

无功补偿中对谐波的抑制作用及电抗率的选择及电容器的端电压计算

无功补偿中对谐波的抑制作用及电抗率的选择及电容器的端电压计算

电容器的端电压计算、电容器的端电压计算 Ucn ; Ucn=Uxn 心-电抗器的电抗率%)【Ucn 为电容器的额定端电压、 Uxn 为电网的线电压】,注;抑制5次以上的谐波时,电抗器的电抗率取4.5%〜6%,抑制3次以上的谐波时,电抗器的电抗率取12%,所以在选择无功补偿有电抗器时电容器一定要注意其端电压的选择。

②、电容器回 路电流的计算;lcn= Uxn/(1-电抗器的电抗率%)【Icn 为电容器的回路电流、Uxn 为电网的线电压】,所以 在选择其熔断器及热继电器时一定要把这时的电流一并考虑进去。

③、电抗器的电抗率 %是指串联电抗器的相感抗Xln 占电容器的相容抗 Xcn 的百分比,电容器回路线电流的计算; Icn=Qc/UxnV3=Uxn/ XcnV3 。

Xcn= Uxn2/ Qc 。

④、电容器串联电抗器后,其无功补偿的补偿量 =1.062 Qc ,提高了 6.2%。

⑤、并联电容器可以长期允许运行在1.1倍的额定线电压下。

a 、电抗器的电抗率为6%时,则电容器的端电压升高6.4%。

b 电抗器的电抗率为 12%时,则电容器的端电压升高 13.6%。

无功补偿中对谐波的抑制作用及 电抗率的选择随着电力电子技术的广泛应用与发展,供电系统中增加了大量的非线性负载,如低压它是以开关方式工作的,会引起电网电流、电压波形发生畸变,从而引起电网的谐波“污染”。

产生电网谐波“污染”的另一个重要原因是电网接有冲击性、 大型轧钢机、电力机车等,它们在运行中不仅会产生大量的高次谐波,而且会使电压波动、闪变、三相不平衡日趋严重。

这不仅会导致供用电设备本身的安全性降低,与电容器组任意组合, 更不能不考虑电容器组接入母线处的谐波背景。

器抑制谐波的作用展开分析,并提出电抗率的选择方法。

1谐波的产生及其主要构成成分小容量家用电器和高压大容量的工业用交、直流变换装置,特别是静止变流器的采用,由于波动性负荷,如电弧炉、 而且会严重削弱和干扰电网的经济运行,形成了对电网的“公害”。

低压串联电抗器

低压串联电抗器

主要作用:
1.用于低压无功补偿柜中,与电容器相串联,能有效地抑制合闸涌流及操作过电压,提高电容器寿命。

2.有效地吸收电网谐波,改善系统的电压波形。

性能参数:
1.额定容量:0.6-9Kvar;
2.电抗率:5%、6%、7%、12%、14%;
3.噪音低≤65dB;
4.每相电感误差:±10%;
5.允许1.35倍额定电流长期工作;
6.GB/T5729-1994电子设备用固定电阻器;
7.抗电强度:3.5KV/60S;
8.防护等级:IPOO;
9.绝缘等级:F级;
10.执行标准:GB 19212.21-2007 、GB 10229-1988。

适用环境:
1.海拔高度在2000m以下;
2.环境温度不超过40℃;
3.相对湿度不超过90%;
4.无剧烈震荡和冲击振动的场所;
5.环境空气中,不得含有腐蚀金属和破坏绝缘的有害气体及可燃气体或尘埃,使用时,不得使电抗器受到水、雨、雪的侵蚀;
6.周围环境应有良好的通风条件,若装在柜内,应加装通风设备。

低压系统中并联电容器造成的谐波放大及串联电抗器电抗率的选择问题

低压系统中并联电容器造成的谐波放大及串联电抗器电抗率的选择问题

将 在 较 大的 高 次谐 波 电流 下过 早 地损 坏 串联 合 适 的 电 抗 器 , 不仅 可 以 阻止谐 波放 大 的危 险 , 且 具 有 一 定滤 波 效 果 。 它 而
[ 关键词 ] 谐波 电容 器 电抗器 电抗率
1引 言 .
流人供 电系统的谐 波电流 I : 为
这就是并联 电容器装置设计规范所给 出的校验避开并联谐振的电 容器组容量 , 设计 在确定电容器组分组容量 时 , 应根据系统背景谐波 , 对分组电容器按各种容量组合运行时 , 尽量避开谐振容量进行校验 , 不 得 发 生谐 波 的严 重 放 大 和 谐振 。 由串联 电抗器和并联电容器组构成的 串联回路对于 n次谐波发生 串联谐振 的条件是 :x_ x n 这时串联电抗器和并联电抗器组构成的 -
P ln Q/d > /2 c S (- ) 3 6
(— ) 3 5
 ̄ x

- = 1
从式 2 12 2可以看出 , - ,- 进入电容器回路的谐 波电流 I 和流人 系 统 的谐 波 电流 I 大 于 谐 波 中 流 I 就 是 电容 器 对 谐 波 的放 大 现 象 。 均 这 较大的 I 使用电容器过负荷。最 为严重 的情 况是 :X= x 时 , n 系统 等值阻抗 n x 和电容 器组 回路容抗 n x x 构成谐振 条件电路 即发
∑ = I IVI L +
其电容器过负荷倍数为 :
(-) 29
( - o 2 l)
3串联 电抗 器 电抗 率 分 析 .
31电抗器 电抗率选择 . 南等值阻抗 图及推理可得出 , 发生并联谐振的条件是 : f简单系统图 a )
n sn l 【 X + X『X/ _ n (— ) 3 1

串联电抗器抑制谐波作用与电抗率的选择

串联电抗器抑制谐波作用与电抗率的选择

串联电抗器抑制谐波作用与电抗率的选择串联电抗器是一种电力电子器件,用于抑制电力系统中的谐波。

谐波产生主要是由于非线性负载引起的,而非线性负载会将电流波形扭曲成富含谐波成分的波形。

为了减小谐波对电力系统的影响,必须对谐波进行补偿。

而串联电抗器是一种用来抑制谐波的装置。

电抗器是一种具有大量电感的元件,它对电流波形中的高频分量具有阻抗,抑制了谐波的传播。

串联电抗器是按照一定的电压等级和容量安装在配电系统的干线上,起到串联谐波电流和阻抗的作用,从而抑制谐波的产生和传递。

电抗器的容量选择与抑制谐波的效果直接相关。

根据电力系统的需求和实际运行情况,选择合适的电抗率是非常重要的。

首先,容量选择应考虑谐波源的类型和强度。

谐波源可以分为非线性负载、电力电子器件和谐波产生负载等。

通过分析谐波源的类型和产生的谐波谐波电流,可以确定需要抑制的谐波类型和强度。

不同类型的谐波对电力系统的影响不同,因此选择合适的电抗器容量可以有针对性地抑制特定的谐波。

其次,容量选择还需要考虑电力系统的谐波特性和功率因数。

在选取电抗率时,需要考虑电力系统的谐波频率分布和谐波电流谱。

合适的电抗器容量可以保证在特定的谐波频率范围内,电抗器和负载的综合阻抗较低,从而达到较低的谐波电流。

此外,容量选择还需要考虑电力系统的功率因数。

因为串联电抗器会增加系统的无功功率,所以在容量选择时需要综合考虑功率因数的影响。

一般来说,在容量选择时需要保持较高的功率因数,以避免对电力系统的稳定性和效率产生负面影响。

最后,容量选择还需要考虑经济性和实用性。

选取合适的电抗器容量不仅需要能够实现对谐波的有效抑制,还需要考虑电抗器的成本和运维成本。

在容量选择时,需要综合考虑电力系统的实际运行工况、负荷变化和未来的发展需求,以确保经济性和实用性。

综上所述,串联电抗器的抑制谐波作用与电抗率的选择密切相关。

在选择电抗器容量时,需要考虑谐波源的类型和强度、电力系统的谐波特性和功率因数,以及经济性和实用性等因素。

无功补偿电抗率选7%还是14%,电抗率是越高越好么?

无功补偿电抗率选7%还是14%,电抗率是越高越好么?

无功补偿电抗率选7%还是14%,电抗率是越高越好么?1引言并联电容补偿装置由于容量组合灵活、安装维护简便、投资省等原因而广泛应用于电力系统。

作为无功电力的主要电源,对于电力系统调相调压、稳定运行、改善电能质量和降损节能具有重要作用。

随着电力事业的迅速发展,电容装置安装投运容量亦迅速增长。

同时随着电力电子技术的广泛应用,带整流器的设备如变频调速装置、UPS电源装置,以及软起动器、新型节能电光源等产生高次谐波电流的电气设备应用越来越多,给电网带来了严重的谐波污染,导致一系列的设备问题。

如电动机振动、发热,变压器产生附加损耗,使容性回路过电流,干扰通讯,电子设备误触发等等。

因此,对谐波的污染须予以重视。

抑制谐波的措施很多,常见技术措施如改变变压器的接线方式;加装滤波装置;加装静态(动态)无功补偿装置;在电容回路加装串联电抗器等等。

目前,国内很多用电单位使用传统的单纯电容器进行无功补偿,其补偿装置的运行受到严重威胁,电力电容器的故障率越来越高。

本文主要探讨给电容器加装串联电抗器以达到抑制谐波的对策,避免电容器与电网产生串联或并联谐振,从而改善系统的功率因数和保证补偿电容器的稳定运行。

2谐波对补偿系统的影响在无功补偿系统中,电网以感抗为主,电容器回路以容抗为主。

在工频条件下,并联电容器的容抗比系统的感抗大很多,补偿电容器对电网发出无功功率,对电网进行无功补偿,提高了系统的功率因数。

在有背景谐波的系统中。

非线性负荷会产生大量的谐波电流注入电网,引起电压及电流波形畸变。

影响电力电容器的正常运行。

2.1造成电容器过电流谐波分流原理图如图1所示:图1谐波分流示意图n次谐波下变压器阻抗:X S(n)=2πf(n)L(1)n次谐波下电容器阻抗:X C(n)=1/2πf(n)L(2)存在高次谐波时,由于f(n)的增大,从而导致X S(n)增大及X C(n)减少,从而导致谐波电流大量涌入电容器。

假设电容器工作运行在满载电流,若加上谐波电流后,电容器运行电流大于1.3倍的额定电流,电容器将出现故障。

电抗器的工作原理及在电力系统中的作用

电抗器的工作原理及在电力系统中的作用

电抗器的工作原理及在电力系统中的作用电抗器的工作原理:由于电力系统中大量使用电力电子器件,直流用电,变频用电等,产生了大量的谐波,使得看是简单的问题变得复杂了,用以补偿的电容器频繁损坏,有的甚至无法投入补偿电容器,当谐波较小时,可以用谐波抑制器,但系统中的谐波较高时,就要用串联电抗器了,放大谐波电流. 电抗率为4.5%~7%滤波电抗器,用于抑制电网中5次及以上谐波;电抗率为12%~13 %滤波电抗器,用于抑制电网中3次及以上谐波.电抗器装于柜内,应加装通风设备散热.电抗器能在额定电压的 1.35倍下长期运行,常用电抗器的电抗率种类有4.5%、5%、6%、7%、12%、13%等,电抗器的温升:铁芯85K,线圈95K,绝缘水平:3kV/1min,无击穿与闪络,电抗器在1.8倍额定电流下的电抗值,其下降值不大于5%,电抗器有三相、单相之分,三相电抗器任二相电抗值之差不大于±3%,电抗器可用于400V或600V系统,电抗器噪声等级,不大于50dB,电抗器耐温等级H级以上.电抗器在电力系统中的作用:电力系统中所采取的电抗器,常见的有串联电抗器和并联电抗器。

串联电抗器主要用来限制短路电流,也有在滤波器中与电容器串联或并联用来限制电网中的高次谐波。

并联电抗器用来吸收电网中的容性无功,如500kV电网中的高压电抗器,500kV变电站中的低压电抗器,都是用来吸收线路充电电容无功的;220kV、110kV、35kV、10kV电网中的电抗器是用来吸收电缆线路的充电容性无功的。

可以通过调整并联电抗器的数量来调整运行电压。

超高压并联电抗器有改善电力系统无功功率有关运行状况的多种功能,主要包括:1)轻空载或轻负荷线路上的电容效应,以降低工频暂态过电压。

2)改善长输电线路上的电压分布。

3)使轻负荷时线路中的无功功率尽可能就地平衡,防止无功功率不合理流动,同时也减轻了线路上的功率损失。

4)在大机组与系统并列时,降低高压母线上工频稳态电压,便于发电机同期并列。

串联电抗器的作用和选择

串联电抗器的作用和选择

串联电抗器的作用和选择作者:郑冰来源:《商品与质量·学术观察》2013年第03期摘要:简述谐波对低压并联电容器装置的危害。

从理论上分析采用串联电抗器抑制谐波的作用,并提出串联电抗器的选用方法以及设计中应注意的一些问题。

关键词:谐波并联谐振并联电容器装置串联电抗器电抗率1、引言随着电力电子技术的广泛应用与发展,供电系统中增加了大量的非线性负载,会引起电网电流、电压波形发生畸变,从而引起电网的谐波“污染”。

在并联电容器装置接入母线处的谐波“污染”未得到整治之前,如果不采取必要的措施,将会产生一定的谐波放大。

在并联电容器的回路中串联电抗器是非常有效和可行的方法。

串联电抗器的主要作用是抑制高次谐波和限制合闸涌流,防止谐波对电容器造成危害,避免电容器装置的接入对电网谐波的过度放大和谐振发生。

下面分析低压并联电容器回路中串联电抗器抑制谐波的作用,并提出串联电抗器选用的一些建议。

2、谐波的产生原因及谐波的危害在电力系统中,谐波产生的根本原因是由于非线性负载所致。

当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,即电路中有谐波产生。

由于半导体晶闸管的开关操作和二极管、半导体晶闸管的非线性特性,电力系统的某些设备如功率转换器比较大的背离正弦曲线波形。

对周期性的非正弦电量进行傅里叶级数分解,除了得到与电网基波频率相同的分量,还得到一系列大于电网基波频率的分量,这部分电量称为谐波。

谐波的危害主要有以下几个方面:①使发电机的输出功率降低;②使变压器产生附加损耗,引起过热,加速绝缘介质老化,导致绝缘损坏;③使接入交流系统的电容器过载;④引起电器的附加发热;⑤使感应电动机转速发生周期性变动,并引起附加损耗,产生附加的谐波转矩,产生机械振动和噪声;⑥加速电缆老化,缩短电缆寿命;⑦对弱电系统产生干扰,影响计算机、通信设备等的正常运行,造成继电保护误动作等等。

3、串联电抗器的选择分析3.1 串联电抗器额定端电压串联电抗器的额定端电压与串联电抗率、电容器的额定电压有关。

串联电抗器及其电抗率的选取

串联电抗器及其电抗率的选取

串联电抗器的作用及电抗率的选择1 前言随着电力电子技术的广泛应用与发展,供电系统中增加了大量的非线性负载,如低压小容量家用电器和高压大容量的工业用交、直流变换装置,特别是静止变流器的采用,由于它是以开关方式工作的,会引起电网电流、电压波形发生畸变,从而引起电网的谐波“污染”。

产生电网谐波“污染”的另一个重要原因是电网接有冲击性、波动性负荷,如电弧炉、大型轧钢机、电力机车等,它们在运行中不仅会产生大量的高次谐波,而且会使电压波动、闪变、三相不平衡日趋严重。

这不仅会导致供用电设备本身的安全性降低,而且会严重削弱和干扰电网的经济运行,形成了对电网的“公害”。

电能质量的综合治理应遵循谁污染谁治理,多层治理、分级协调的原则。

在地区的配电和变电系统中,选择主要电能质量污染源和对电能质量敏感的负荷中心设立电能质量控制枢纽点,在这些点进行在线电能质量监测、采取相应的电能质量改善措施显得格外重要。

在并联电容器装置接入母线处的谐波“污染”暂未得到根本整治之前,如果不采取必要的措施,将会产生一定的谐波放大。

在并联电容器的回路中串联电抗器是非常有效和可行的方法。

串联电抗器的主要作用是抑制高次谐波和限制合闸涌流[1],防止谐波对电容器造成危害,避免电容器装置的接入对电网谐波的过度放大和谐振发生。

但是串联电抗器绝不能与电容器组任意组合,更不能不考虑电容器组接入母线处的谐波背景。

文章着重就串联电抗器抑制谐波的作用展开分析,并提出电抗率的选择方法。

2 电抗器选择不当的后果2.1 基本情况介绍某110kV 变电所新装两组容量2400kvar 的电容器组,由生产厂家提供成套无功补偿装置,其中配置了电抗率为6%的串联电抗器,容量为144kvar。

电容器组投入运行之后,经过实测发现,该110kV 变电所的10kV 母线的电压总畸变率达到4.33%,超过公用电网谐波电压(相电压)4%的限值[2],其中 3 次谐波的畸变率达到 3.77%,超过公用电网谐波电压(相电压)3.2%的限值[2]。

串联电抗器的作用

串联电抗器的作用

1电抗器的作用串联电抗器顾名思义就是指串联在电路中电抗器(电感),无功补偿和谐波治理行业内的串联电抗器主要是指和电容器串联的电抗器,电抗器和电容器串联后构成谐振回路,起到消谐或滤波的作用,而电抗器在谐振回路中起的作用如下:1.1降低电容器组的涌流倍数和涌流频率。

降低电容器组的涌流倍数和涌流频率,以保护电容器和便于选择配套设备。

加装串联电抗器后可以把合闸涌流抑制在1+电抗率倒数的平方根倍以下。

国标GB50227-2008要求应将涌流限制在电容器额定电流的20倍以下(通常为10倍左右),为了不发生谐波放大(谐波牵引),要求串联电抗器的伏安特性尽量为线性。

网络谐波较小时,采用限制涌流的电抗器;电抗率在0.1%-1%左右即可将涌流限制在额定电流的10倍以下,以减少电抗器的有功损耗,而且电抗器的体积小、占地面积小、便于安装在电容器柜内。

采用这种电抗器是即经济,又节能。

1.2与电容器组构成全谐振回路,滤除特征次谐波。

串联滤波电抗器感抗与电容器容抗全调谐后,组成特征次谐波的交流滤波器,滤去某次特征次谐波,从而降低母线上该次谐波的电压畸变,减少线路上特征次谐波电流,提高网络同母线供电的电能质量。

1.3与电容器组构成偏谐振回路,抑制特征次谐波。

先决条件是需要清楚电网的谐波情况,查清周围电力用户有无大型整流设备、电弧炉、轧钢机等能产生谐波的负荷,有无性能不良好的高压变压器及高压电机,尽可能实测一下电网谐波的实际值,再根据实际谐波成分来配置合适的电抗器。

1.4提高短路阻抗,减小短路容量,降低短路电流。

无功补偿支路前置了串联电抗器,当出现电容器故障时,例如电容器极板击穿或对地击穿,系统通过系统阻抗和串联电抗器阻抗提供短路电流,由于串联电抗器阻抗远大于系统阻抗,所以有效降低了电容器短路故障时的短路容量,保证了配电断路器断开短路电流可能,提高了系统的安全、稳定性能。

1.5减少电容器组向故障电容器组的放电电流,保护电力电容器。

电容器串联电抗率的选择

电容器串联电抗率的选择

电容器串联电抗率的选择中国航空工业规划设计研究院刘屏周抑制谐波采用无源滤波器,或为了降低供电设备容量,减少供电电压偏差,采用并联电容器提高负载的功率因数。

在电容器回路中串联适当电抗率的电抗器,防止谐波电流被放大,保护电容器过负荷。

若电容器回路中串联电抗器的电抗率不适当,发生电容器回路的串联谐振或电容器回路与电源系统的并联谐振,影响系统的安全运行。

以下提出电容器回路中串联电抗器的电抗率计算方法,仅供参考。

串联电抗器的电容器回路与谐波源并联主电路如图1所示。

图1的等值电路如图2所示。

根据图2谐波电流分流的等值电路,谐波电流I n流入供电系统电流I sn和电容器支路电流I cn 计算公式如下:图1 谐波源、串联电抗器的电容器主电路图2 计算谐波电流分流的等值电路nC1L1S11L1snInXnnnXnI)(-+-=XXX C(1)nC1L1S1S1cnInXnnnI)(-+=XXX(2)式中I sn-谐波电流流入供电系统电流;I cn-谐波电流流入电容器支路电流;I n-谐波电流;X S1-供电系统基波电抗;X C1-电容器基波容抗;X L1-电抗器基波电抗;n-谐波次数。

设S11L1nnXnXX C-=β,β称谐波电流的分流系数。

上述(1)、(2)式改为如下:nsnI1Iββ+=(3)n cn I 11I β+=(4) n sn I I 、ncn I I与β的关系曲线如图3所示。

图3n sn I I 、ncn I I与β的关系曲线 电容器支路与供电系统并联谐振发生在β=-1处,谐振谐波次数S1L1C10X X X +=n ,电容器支路串联电抗器的电感越大,谐振谐波次数越低。

当β=-2时,谐波次数S1L1C11X 2X X +=n ,2I I n sn =,1I I n cn =;当β=-0.5时,谐波次数S1L1C12X 5.0X X +=n ,1I I n sn =,2I I n cn =。

谐波源的谐波次数n ,在n 1与n 2范围内,即n 1≤n ≤n 2,同时有1I I n sn ≥和1I Incn ≥,谐波电流被放大。

浅议变电站电容器组串联电抗器的作用

浅议变电站电容器组串联电抗器的作用

浅议变电站电容器组串联电抗器的作用【摘要】电容器组配套设置的串联电抗器是为了限制合闸涌流和限制谐波两个目的,是降低电容器组在合闸过程中产生的涌流倍数和涌流频率对电容器组的影响;能限制操作过电压,滤除指定的高次谐波,同时抑制其它次谐波放大,减少电网中电压波形畸变。

【关键词】电容器组,电抗器,作用【abstract 】capacitor set of serial reactor is supporting set off in order to limit the current and limiting harmonic two purposes, is to reduce capacitor set off in produces in the process flow and flow of multiple frequency to the influence of the capacitor set; Can limit operating over-voltage, filter out designated higher harmonic, at the same time, other times suppress harmonic amplifier, reduce the power of the voltage waveform distortion.【key words 】of capacitors, reactor, role电抗器的特性1、铁芯电抗器噪声大、电抗器线性度差、能引起漏磁、局部过热,易发生磁饱和,烧毁线圈。

系统过压、过流和谐波的影响,致使铁芯过饱和电抗值急剧下降,抑制谐波的能力下降,抗短路电流能力低。

干式铁芯式电抗器除上述缺点外,还不能在室外运行。

2、干式空芯电抗器干式空心电抗器结构上不用任何铁磁性材料,因此,线性度大大优于铁芯电抗器,应该首选。

但由于没有铁芯,绕组中通过单位电流所产生的磁通较小,所以体积较大。

电容串联电抗

电容串联电抗

⏹使用串联电抗的无功补偿电容组来滤除谐波
⏹串联电抗器是抑制谐波电流放大的有效措施,其参数应根据实
际存在谐波进行选择。

并联电容器之所以能够引起谐波放大,是因为电容器回路在谐波频率范围内呈现出容性,若在电容器回路中串接电抗器,通过选择电抗值使电容器回路在最低次谐波频率下呈现出感性,就可消除谐波放大。

为此,串联电抗器的电抗值应满足,即。

⏹目前,国内并联电容器配置的电抗器的电抗率主要有以下4种
类型:小于0.5%、4.5%、6%和12% 。

配置小于0.5%电抗率的电抗器的主要目的是限制电容器的合闸涌流;当采用基波感抗为容抗的4.5%或6%的串联电抗器时,可抑制5次以上的谐波电流;当采用基波感抗为容抗的12%的串联电抗器时,可抑制3次以上的谐波电流。

配电网一般考虑3、5次谐波,因此配电网大多采用串联4.5~6%电抗器的电容器组。

串联电抗器抑制谐波作用与电抗率的选择

串联电抗器抑制谐波作用与电抗率的选择

串联电抗器抑制谐波作用与电抗率的选择福建福安市赛岐供电所(福建福安255001)金秋生0 引言并联电容器进行无功补偿是电力系统改善功率因素和跳崖的有效措施。

然而电力系统中大量非线性负载的投运,特别是以晶闸管作为换流元件的电力半导体器件,由于它以开关方式工作,将会引起电网电流、电压波形的畸变,产生大量高次谐波。

而电容器对高次谐波反应比较敏感,会对谐波电刘起到放大作用,严重时还会产生谐振,造成电容器自身的损坏或无法工作,还危及附近其他电器设备的安全。

在具有高次谐波背景中装设补偿电容器,一般采用在电容器回路中串联电抗器的措施,这既不影响电容器的无功补偿作用,又能抑制高次谐波。

但串联电抗器必须考虑电容器接入处电网的谐波背景,绝不可任意组合。

只有合理选择串联电抗器的电抗率,使之与电容器进行合理匹配,才能有效地起到抑制谐波的作用,并有限制合闸涌流的效果。

1 抑制高次谐波当无功补偿电容器接入电网存在有高次谐波时,电容器对n次谐波的容抗降为x c/n,系统电感对n次谐波的感抗升高为nx L。

在电网存在有n次谐波电流时,如果符合nx L=x c/n的条件,则将产生n次谐波的谐振现象。

其n次谐波电流与基波电流迭加后,使流过电容器的电流骤增,此时产生的过电流必将危及电容器自身安全或无法工作。

同时谐波电流在系统阻抗上产生的谐波电压与源电压迭加后产生过电压,此过电压也会威胁到电容器的安全运行。

采用并联电容器进行无功补偿而构成的电路中,若电容器支路与系统发生并联谐振,此时谐振点的谐振次数为:n0=√x c/(x L+x s)式中x s———系统等值基波短路电抗;x L———电抗器基波电抗;x c———电容器基波电抗;(x L=Ax c,A为电抗率)从上式看出,串入电抗器电感量越大,则谐波次数n0越低,因而可通过串入电抗器电感量的大小来控制并联谐振点,从而达到避开谐波源中的各次谐波。

由此可见,在补偿电容器回路中串联一定电抗率的电抗器,即能有效地避开谐振点。

串联电抗器及其电抗率的选取

串联电抗器及其电抗率的选取

such factors
as
the main harmonic frequen- conditions of the de—
cy,capacitor capacity,short-circuit capacity of bus and permissible vice. Keywords:shunt capacitor devices;series reactor reactance plification;harmonic resonance
动,一般不宜超过母线电压的2.5%,而△∥c,*
Q。/S。,所以电容器组的分组容量不宜过大。 从表l可知,当Q。/Sd>0.02时,若lj}=O.06,
・60・
为x’。。,而电抗器电抗率k下降为k’,是否会出现
万方数据
第3l卷第3期 2010年6月
电力电容器与无功补偿
Power Capacitor&Reactive Power Compensation
2.Hefti Huawei automtizatian Co.,Ltd.,Hefei
230011,China)
se-
Abstract:In order to suppress the danger of harmonics,one effective measure is to put reactor in



5)五一方<o,Xe・+丘t(.|}一方)=0。这时,
图l供电系统示意图与等值回路图
L一一∞;屯-++∞
也就是谐波电流,^在电容器回路阻抗与系 统阻抗之间发生并联谐振,,^得到极大的放大,这 是绝对需要避免发生的。 从上述讨论可知,对同一系统,由于后值不 同,其运行状况截然不同,因此正确选择k值是十 分重要的。

串联电抗器抑制谐波的分析

串联电抗器抑制谐波的分析
Ke wo d s un a ct r e e e co ;r a t n e r t y r s:h tc pa i ;s r sr a t r e ca c a i o i o;h r n c c re言
并 联 电容 器对 电 网进 行无 功补 偿是 提 高电力 系统 的功率 因素 、 证 电网安 全 、 定运 行 的重要 保 稳 手段 。 同时 电容器 投入 电 网后 会对 注入 系统 的谐 波进行 放 大 , 加剧 谐 波 危 害 。为 了抑 制 这种 现 象 的发生 , 般在 电容 器 回路 中串联 电抗 器 。另 外 , 一
关键 词 : 并联 电容 器 ;串联 电抗 器 ;电抗 率 ; 波 电流 谐 中图分类 号 : M 7 文献 标识 码 :A 文章编 号 : 6 41 5 (0 2 0 -0 90 T4 1 7 —7 7 2 1 ) 1 2 -4 0
An l s n S p r s i g Ha m o i fS r e a t r ay i o u p e sn r n c o e is Re c o s
抑 制背 景谐 波 ; 讨 了 当并 联 电 容 器缺 台及 电容 研
图 1 电 力 系统 示 意 图 与 等值 回 路 图
F g 1 P we y t m i g a a d e u v l n i c i a r m i . o r s se d a r m n q i a e tcr u td g a i
器部分击穿时 , 电抗率选择对谐波抑制效果 的影
响; 并就 并联 电容器 及 串联 电抗 器 额定 电压 选 择
图 1中,。 为系统基波阻抗 ; 为电容器组
基 波容 抗 ; 为 串联 电抗 器 基 波 电抗 ; n为 谐 波 次数 ; 为谐 波 源产生 的 n次谐 波 电流 ; 为 注入 , n , 蚰 系统 的 n 谐 波 电流 ;c 电 容器 组 回路 的 n次 次 l为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

串联电抗器抑制谐波的作用及电抗率的选择摘要:串联电抗器是高压并联电容器装置的重要组成部分,其主要作用是抑制谐波和限制涌流,因此,在并联电容器的回路中串联电抗器是非常必要的。

电抗率是串联电抗器的重要参数,电抗率的大小直接影响着它的作用。

文章着重就串联电抗器抑制谐波的作用展开分析,并提出电抗率的选择方法。

关键词:串联电抗器谐波抑制电抗率选择1 前言随着电力电子技术的广泛应用与发展,供电系统中增加了大量的非线性负载,如低压小容量家用电器和高压大容量的工业用交、直流变换装置,特别是静止变流器的采用,由于它是以开关方式工作的,会引起电网电流、电压波形发生畸变,从而引起电网的谐波“污染”。

产生电网谐波“污染”的另一个重要原因是电网接有冲击性、波动性负荷,如电弧炉、大型轧钢机、电力机车等,它们在运行中不仅会产生大量的高次谐波,而且会使电压波动、闪变、三相不平衡日趋严重。

这不仅会导致供用电设备本身的安全性降低,而且会严重削弱和干扰电网的经济运行,形成了对电网的“公害”。

电能质量的综合治理应遵循谁污染谁治理,多层治理、分级协调的原则。

在地区的配电和变电系统中,选择主要电能质量污染源和对电能质量敏感的负荷中心设立电能质量控制枢纽点,在这些点进行在线电能质量监测、采取相应的电能质量改善措施显得格外重要。

在并联电容器装置接入母线处的谐波“污染”暂未得到根本整治之前,如果不采取必要的措施,将会产生一定的谐波放大。

在并联电容器的回路中串联电抗器是非常有效和可行的方法。

串联电抗器的主要作用是抑制高次谐波和限制合闸涌流[1],防止谐波对电容器造成危害,避免电容器装置的接入对电网谐波的过度放大和谐振发生。

但是串联电抗器绝不能与电容器组任意组合,更不能不考虑电容器组接入母线处的谐波背景。

文章着重就串联电抗器抑制谐波的作用展开分析,并提出电抗率的选择方法。

2 电抗器选择不当的后果2.1 基本情况介绍某110kV变电所新装两组容量2400kvar的电容器组,由生产厂家提供成套无功补偿装置,其中配置了电抗率为6%的串联电抗器,容量为144kvar。

电容器组投入运行之后,经过实测发现,该110kV变电所的10kV母线的电压总畸变率达到4.33%,超过公用电网谐波电压(相电压)4%的限值[2],其中3次谐波的畸变率达到3.77%,超过公用电网谐波电压(相电压)3.2%的限值[2]。

经过仔细了解和分析,发现该110kV变电所的10kV系统存在大量的非线性负载。

即使在电容器组不投入运行的情况下,10kV母线的电压总畸变率也高达4.01%,其中3次谐波的畸变率高达3.48%。

在如此谐波背景下,2400kvar电容器组配置电抗率为6%的串联电抗器是否适合?现计算分析如下。

2.2 电抗率的选择分析(1)电容器装置侧有谐波源时的电路模型及参数在同一条母线上有非线性负荷形成的谐波电流源时(略去电阻),并联电容器装置的简化模型如图1所示[3]。

谐波电流和并联谐波阻抗为式中n为谐波次数;n为谐波源的第n次谐波电流;X S为系统等值基波短路电抗;X C 为电容器组基波容抗;X L为串联电抗器基波电抗。

由于谐波源为电流源,谐波电压放大率与谐波电流放大率相等,故由式⑴整理推导可得谐波电压放大率(先推导出公式5比较合适)当式(2)谐波阻抗的分子的数值等于零时,即从谐波源看入的阻抗为零,表示电容器装置与电网在第n次谐波发生串联谐振,可得电容支路的串联谐振点当式(2)谐波阻抗的分母的数值等于零时,即从谐波源看入的阻抗为∞,表示电容器装置与电网在第n次谐波发生并联谐振,并可推导出电容器装置的谐振容量Q CX[4]为系统及元件的参数如表1所示。

(2)避免谐振分析计算电抗率选择6%时,发生3次、5次谐波谐振的电容器容量,将有关参数代入式(5),得3次、5次谐波谐振电容器容量分别为由此可见,2400 kvar的电容器组配置电抗率为6%的串联电抗器不会发生3次、5次谐波并联谐振或接近于谐振。

(3)限制涌流分析计算电抗率选择6%后,同一电抗率的电容器单组或追加投入时,能否有效抑制涌流,文献[4]中所提供的涌流峰值的标幺值(以投入的电容器组额定电流的峰值为基准值);Q为电容器组的总容量,Mvar;Q 0为正在投入的电容器组的总容量,Mvar;Q ¢为所有原来已经运行的电容器组的总容量,Mvar;b为电源影响系数。

已知两套电容器装置均为单组投切由此可见,2400 kvar的电容器组配置电抗率为6%的串联电抗器,另外一组电抗率为6%的电容器单组或追加投入时,涌流能够得到有效限制。

(4)谐波电压放大率分析计算电抗率选择6%时,将有关参数代入式(3),经过计算,电容器组对1~7次谐波电压放大率F VN 结果如表2所示。

由计算结果可以看出,选择6%的串联电抗器对3次谐波电压放大率F VN为1.21,对5次谐波电压放大率F VN为0.69。

经过与现场谐波实测数据比较发现:3次谐波电压放大率F VN与以上理论计算值基本一致,但5次谐波电压放大率F VN的误差较大。

文献[5]认为:简化的电路模型对于3次谐波电压放大率F VN的计算有工程价值,但对5次谐波电压放大率F VN的计算无工程价值。

2400 kvar的电容器组配置电抗率为6%的串联电抗器,产生了3次谐波放大,且超过公用电网谐波电压(相电压)3.2%的限值[2]。

因此可以判断在如此谐波背景下,2400kvar的电容器组配置电抗率为6%的串联电抗器是不恰当的。

(5)电抗率的合理选择要做到合理地选择电抗率必须了解该电容器接入母线处的背景谐波,根据实测结果对症下药。

并联电容器的串联电抗器,IEC标准按照其作用分为阻尼电抗器和调谐电抗器。

阻尼电抗器的作用是限制并联电容器组的合闸涌流,其电抗率可选择得比较小,一般为0.1%~1%;调谐电抗器的作用是抑制谐波。

当电网中存在的谐波不可忽视时,则应考虑使用调谐电抗器,其电抗率可选择得比较大,用以调节并联电路的参数,使电容支路对于各次有威胁性谐波的最低次谐波阻抗成为感性,据式(4)可得K值即对于谐波次数最低为5次的,K>4%;对于谐波次数最低为3次的,K>11.1%。

如果该变电所的2400 kvar电容器组的电抗率分别按照0.1%、1%、4.5%、12%配置,试将有关参数代入式(3),经过计算,1~7次谐波电压放大率F VN的结果如表3所示。

由计算结果可以看出,选择12%的串联电抗器对3次谐波电压放大率F VN仅为0.50。

因此电抗率按照12%配置是值得进一步验算的。

经过进一步验算(谐振分析、限制涌流分析因篇幅所限略),选择12%的串联电抗器不会发生3次、5次谐波并联谐振或接近于谐振,同时另外一组电抗率为12%的电容器单组或追加投入时,涌流能够得到有效限制。

(6)电抗率选择的进一步分析值得一提的是我国的电网普遍存在3次谐波,故不同电抗率所对应的3次谐波谐振电容器容量Q CX3应该引起足够的重视。

由式(5)计算可得,分别选择4.5%、6%和12%的串联电抗器后,3次谐波谐振电容器容量分别为即当串联电抗率选4.5%,电容器的容量达到或接近电容器装置接入母线的短路容量的6.6%时,就会发生3次谐波并联谐振或接近于谐振;当串联电抗率选6%,电容器的容量达到或接近电容器装置接入母线的短路容量的5.1%时,也会发生3次谐波并联谐振或接近于谐振;当串联电抗率选12%,一般不会发生3次谐波并联谐振。

一般情况下,110kV变电所装设的电容器的容量较小(0.05S d ~0.06 S d),不会发生3次谐波并联谐振或接近于谐振,但会引起3次谐波的放大;而220kV变电所装设的电容器的容量较大,完全有可能发生3次谐波并联谐振或接近于谐振,因此务必引起设计人员的高度重视。

3 串联电抗器的选择3.1 串联电抗器额定端电压串联电抗器的额定端电压与串联电抗率、电容器的额定电压有关。

该额定端电压等于电容器的额定电压乘以电抗率(一相中仅一个串联段时),10kV串联电抗器的额定端电压的选择见表4。

3.2 串联电抗器额定容量串联电抗器额定容量等于电容器的额定容量乘以电抗率(单相和三相均可按此简便计算)。

由此可见,串联电抗器额定端电压、额定容量均与电容器的额定电压、额定容量及电抗率有关。

电容器的额定电压、额定容量本文不作详细分析,下面着重分析串联电抗率的选择3.3 电抗率选择的一般原则(1)电容器装置接入处的背景谐波为3次根据文献[4],当接入电网处的背景谐波为3次及以上时,一般为12%;也可采用4.5%~6%与12%两种电抗率。

设计规范说的较含糊,实际较难执行。

笔者认为,上述情况应区别对待:1)3次谐波含量较小,可选择0.1%~1%的串联电抗器,但应验算电容器装置投入后3次谐波放大是否超过或接近国标限值,并且有一定的裕度。

2)3次谐波含量较大,已经超过或接近国标限值,选择12%或12%与4.5%~6%的串联电抗器混合装设。

(2)电容器装置接入处的背景谐波为3次、5次1)3次谐波含量很小,5次谐波含量较大(包括已经超过或接近国标限值),选择4.5%~6%的串联电抗器,忌用0.1%~1%的串联电抗器。

2)3次谐波含量略大,5次谐波含量较小,选择0.1%~1%的串联电抗器,但应验算电容器装置投入后3次谐波放大是否超过或接近国标限值,并且有一定的裕度。

3)3次谐波含量较大,已经超过或接近国标限值,选择12%或12%与4.5%~6%的串联电抗器混合装设。

(3)电容器装置接入处的背景谐波为5次及以上1)5次谐波含量较小,应选择4.5%~6%的串联电抗器。

2)5次谐波含量较大,应选择4.5%的串联电抗器。

(4)对于采用0.1%~1%的串联电抗器,要防止对5次、7次谐波的严重放大或谐振;对于采用4.5%~6%的串联电抗器,要防止对3次谐波的严重放大或谐振。

4 几点建议(1)新建变电所的电容器装置中串联电抗器的选择必须慎重,不能与电容器任意组合,更不能不考虑电容器装置接入处的谐波背景。

(2)对于已经投运的电容器装置,其串联电抗器选择是否合理需进一步验算,并组织现场实测,了解电网谐波背景的变化。

对于电抗率选择合理的电容器装置不得随意增大或减小电容器组的容量;对于电抗率选择不合理的电容器装置必须更换匹配的串联电抗器。

(3)电能质量的综合治理是系统工程,在并联电容器回路中串联电抗器仅是抑制谐波的治标之举,要真正做到标本兼治必须遵循谁污染谁治理、多层治理分级协调的原则。

变频器和电动机之间的连线很长时,电线间的分布电容会产生较大的高频电流,可能造成变频器过电流调闸、漏电流增加、电流显示精度变差等。

因此,3.7KW以下的电动机连线不要超过50m,3.7以上不要超过100m。

否则,最好加装输出电抗器。

另外,变频器和电动机之间有热继电器时,尤其是400V系列的话,即使连接线小于50m 也可能发生热继电器的误动作,此时请使用输出电抗器。

相关文档
最新文档