数据结构与算法分析 学习笔记
数据结构高分笔记
本书讨论群:15945769
本书特点:
作者 qq:39826407
(1)精心挑选出适合考研的习题,并配上通俗易懂的答案供你自测和练习。
(2)总结出考研必备知识点,并且帮你把其中过于专业过于严谨的表述翻译成通俗易 懂的语言。
(3)针对于近年数据结构大题的出题风格(比如算法设计题目中的三段式题目:1.表 述算法思想。2.写出算法描述。3.计算算法的时间和空间复杂度),设计了独特的真题仿 造部分,让你在复习的过程中逐渐养成适合解决考研类型题目的习惯。
第三章 栈、队列和数组. . . . . . . . . . . . . . . . . . . . . . . ..54
3.1 栈和队列的基本概念. . . . . . . . . . . . . . . . . . . . . . . . . ..54 3.1.1 栈的基本概念. . . . . . . . . . . . . . . . . . . . . . . . . . ...54 3.1.2 队列的基本概念. . . . . . . . . . . . . . . . . . . . . . . . . . .54
接下来我详细讲解一下这本辅导书书的写作过程,请看下图:
本书讨论群:15945769
作者 qq:39826407
郝斌数据结构自学笔记--知识点+程序源代码
郝斌数据结构自学笔记--知识点+程序源代码(总24页)-本页仅作为预览文档封面,使用时请删除本页-郝斌数据结构自学笔记--知识点+程序源代码By-HZM1_什么叫做数据结构数据结构概述定义我们如何把现实中大量而复杂的问题以特定的数据类型和特定的存储结构保存到主存储器(内存)中,以及在此基础上为实现某个功能(比如查找某个元素,删除某个元素,对所有元素进行排序)而执行的相应操作,这个相应的操作也叫算法。
数据结构=个体的存储+个体的关系存储算法=对存储数据的操作2_衡量算法的标准算法解题的方法和步骤衡量算法的标准1)时间复杂度:大概程序执行的次数,而非执行的时间2)空间复杂度:算法执行过程中大概所占用的最大内存3)难易程度4)健壮性3_数据结构的特点数据结构的地位数据结构是软件中最核心的课程程序=数据的存储+数据的操作+可以被计算机执行的语言4_预备知识_指针_15_预备知识_指针_2指针的重要性:指针是C语言的灵魂定义:地址:地址是内存单元的编号,从0开始的非负整数,范围:0-FFFFFFFF【0-4G-1】CPU=====地址线,控制线,数据线=====内存指针:指针就是地址,地址就是指针。
指针变量是存放内存单元地址的变量。
指针的本质是一个操作受限的非负整数。
分类:1.基本类型的指针2.指针和数组的关系变量并不一定连续分配,随机分配内存。
内存:内存是多字节组成的线性一维存储空间。
内存的基本划分单位是字节。
每个字节含有8位,每一位存放1个0或1个1.内存和编号是一一对应的。
软件在运行前需要向操作系统申请存储空间。
在软件运行期间,该软件所占空间不再分配给其他软件。
当软件运行完毕后,操作系统将回收该内存空间(操作系统并不清空该内存空间中遗留下来的数据)。
NOTE:1)指针变量也是变量,普通变量前不能加*,常亮和表达式前不能加&。
2)局部变量只在本函数内部使用。
如何通过被调函数修改主调函数中普通变量的值。
天大《数据结构》学习笔记五
主 题: 《数据结构》学习笔记内 容:《数据结构》学习笔记五——图一、图的概念:1、术语:有向图,无向图,子图,顶点,边,弧,邻接点,出度,入度,路径,连通图。
2、图的存储:2.1邻接矩阵:0 1 1 0 0 1 0 1 00 0 0 0 1 0 1 0 10 0 0 1 0 1 0 1 11 0 0 0 1 0 1 0 00 1 1 0 02.2邻接表:2 3 ^4 ^1 ^Struct node{int data;struct node *next;}struct node V[n+1];3、程序:3.1已知邻接表,建立邻接矩阵。
{……for(I=1;I<=n;I++)for(j=1;j<=n;j++)w[I][j]=0;for(I=1;I<=n;I++){p=v[I].next;while(p){j=p->data;w[I][j]=1;p=p->next;}}}3.2已知邻接矩阵,建立邻接表。
{……for(I=1;I<=n;I++)v[I].next=0;for(I=1;I<=n;I++)for(j=1;j<=n;j++)if (w[I][j]= =1){p=(……)malloc(……);p->data=j;p->next=v[I].next;v[I].next=p;}}1、广度优先遍历1.1作法:(i)初始化(打印,加标记,进队)(ii)出队.(J)(iii)扫描(J)链,遇未访问点,则打印,加标记,进队.返回ii,直至队空.1.2 结果:2、深度优先遍历:2.1作法:从某点进入,打印,加标记,扫描此链:如没遇到未访问点,则返到原转来点.算法结束于进入点那个链的链尾.2.2 结果:1,2,4,8,5,3,6,73、广度优先程序:bfs(I)int I;{……f=0; r=0;for(t=1;t<=n;t++)v[t].data=0;printf(“%d”,I);v[I].data=1;r++; q[r]=I;while(f!=r){f++; j=q[f];p=v[j].next;while(p){k=p->data;if(v[k].data= =0){printf(“%d”,k);v[k].data=1;r++;q[r]=k;}p=p->next;}}}4、深度优先程序:dfs(I)int I;{……v[I].data=1;printf(“%d”,I);p=v[I].next;while(p){j=p->data;if(v[j].data= =0)dfs(j);p=p->next;}}三、最小生成树:1、解法11.1问题:选哪几条边,使得(I)能连到各点(II)边长之和最小?1.2思路:i. 从当前点集的发出边中选最小者,打印。
数据结构复习笔记
第一章概论1.数据:信息的载体,能被计算机识别、存储和加工处理;2.数据元素:数据的基本单位,可由若干个数据项组成,数据项是具有独立含义的最小标识单位;3.数据结构:数据之间的相互关系,即数据的组织形式;它包括:1数据的逻辑结构,从逻辑关系上描述数据,与数据存储无关,独立于计算机;2数据的存储结构,是逻辑结构用计算机语言的实现,依赖于计算机语言;3数据的运算,定义在逻辑结构上,每种逻辑结构都有一个运算集合;常用的运算:检索/插入/删除/更新/排序;4.数据的逻辑结构可以看作是从具体问题抽象出来的数学模型;数据的存储结构是逻辑结构用计算机语言的实现;5.数据类型:一个值的集合及在值上定义的一组操作的总称;分为:原子类型和结构类型;6.抽象数据类型:抽象数据的组织和与之相关的操作;优点:将数据和操作封装在一起实现了信息隐藏;7. 抽象数据类型ADT:是在概念层上描述问题;类:是在实现层上描述问题;在应用层上操作对象类的实例解决问题;8.数据的逻辑结构,简称为数据结构,有:1线性结构,若结构是非空集则仅有一个开始和终端结点,并且所有结点最多只有一个直接前趋和后继;2非线性结构,一个结点可能有多个直接前趋和后继;9.数据的存储结构有:1顺序存储,把逻辑相邻的结点存储在物理上相邻的存储单元内;2链接存储,结点间的逻辑关系由附加指针字段表示;3索引存储,存储结点信息的同时,建立附加索引表,有稠密索引和稀疏索引;4散列存储,按结点的关键字直接计算出存储地址;10.评价算法的好坏是:算法是正确的;执行算法所耗的时间;执行算法的存储空间辅助存储空间;易于理解、编码、调试;11.算法的时间复杂度Tn:是该算法的时间耗费,是求解问题规模n的函数;记为On;时间复杂度按数量级递增排列依次为:常数阶O1、对数阶Olog2n、线性阶On、线性对数阶Onlog2n、平方阶On^2、立方阶On^3、……k次方阶On^k、指数阶O2^n;13.算法的空间复杂度Sn:是该算法的空间耗费,是求解问题规模n的函数;12.算法衡量:是用时间复杂度和空间复杂度来衡量的,它们合称算法的复杂度;13. 算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关;第二章线性表1.线性表:是由nn≥0个数据元素组成的有限序列;3.顺序表:把线性表的结点按逻辑次序存放在一组地址连续的存储单元里;4.顺序表结点的存储地址计算公式:Locai=Loca1+i-1C;1≤i≤n5.顺序表上的基本运算public interface List {链表:只有一个链域的链表称单链表;在结点中存储结点值和结点的后继结点的地址,data next data是数据域,next是指针域;1建立单链表;时间复杂度为On;加头结点的优点:1链表第一个位置的操作无需特殊处理;2将空表和非空表的处理统一; 2查找运算;时间复杂度为On;public class SLNode implements Node {private Object element;private SLNode next;public SLNodeObject ele, SLNode next{= ele;= next;}public SLNode getNext{return next;}public void setNextSLNode next{= next;}public Object getData {return element;}public void setDataObject obj {element = obj;}}public class ListSLinked implements List {private SLNode head; etData==ereturn p;else p = ;return null;}etData;.getNext;size--;return obj;}etNext;size--;return true;}return false;}环链表:是一种首尾相连的链表;特点是无需增加存储量,仅对表的链接方式修改使表的处理灵活方便;8.空循环链表仅由一个自成循环的头结点表示;9.很多时候表的操作是在表的首尾位置上进行,此时头指针表示的单循环链表就显的不够方便,改用尾指针rear来表示单循环链表;用头指针表示的单循环链表查找开始结点的时间是O1,查找尾结点的时间是On;用尾指针表示的单循环链表查找开始结点和尾结点的时间都是O1;10.在结点中增加一个指针域,prior|data|next;形成的链表中有两条不同方向的链称为双链表;public class DLNode implements Node {private Object element;private DLNode pre;private DLNode next;public DLNodeObject ele, DLNode pre, DLNode next{= ele;= pre;= next;}public DLNode getNext{return next;}public void setNextDLNode next{= next;}public DLNode getPre{return pre;}public void setPreDLNode pre{= pre;}public Object getData {return element;}public void setDataObject obj {element = obj;}}public class LinkedListDLNode implements LinkedList {private int size; etPrenode;node;size++;return node;}etNextnode;node;size++;return node;}etNext;.setPre;size--;return obj;}序表和链表的比较1基于空间的考虑:顺序表的存储空间是静态分配的,链表的存储空间是动态分配的;顺序表的存储密度比链表大;因此,在线性表长度变化不大,易于事先确定时,宜采用顺序表作为存储结构;2基于时间的考虑:顺序表是随机存取结构,若线性表的操作主要是查找,很少有插入、删除操作时,宜用顺序表结构;对频繁进行插入、删除操作的线性表宜采用链表;若操作主要发生在表的首尾时采用尾指针表示的单循环链表;12.存储密度=结点数据本身所占的存储量/整个结点结构所占的存储总量存储密度:顺序表=1,链表<1;第三章栈和队列1.栈是限制仅在表的一端进行插入和删除运算的线性表又称为后进先出表LIFO表;插入、删除端称为栈顶,另一端称栈底;表中无元素称空栈;2.栈的基本运算有:1initstacks,构造一个空栈;2stackemptys,判栈空;3stackfulls,判栈满;4pushs,x,进栈;5pops,退栈;6stacktops,取栈顶元素;3.顺序栈:栈的顺序存储结构称顺序栈;4.当栈满时,做进栈运算必定产生空间溢出,称“上溢”;当栈空时,做退栈运算必定产生空间溢出,称“下溢”;上溢是一种错误应设法避免,下溢常用作程序控制转移的条件;5.在顺序栈上的基本运算:public interface Stack {栈:栈的链式存储结构称链栈;栈顶指针是链表的头指针;7.链栈上的基本运算:public class StackSLinked implements Stack {private SLNode top; 列是一种运算受限的线性表,允许删除的一端称队首,允许插入的一端称队尾;队列又称为先进先出线性表,FIFO表;9.队列的基本运算:1initqueueq,置空队;2queueemptyq,判队空;3queuefullq,判队满;4enqueueq,x,入队;5dequeueq,出队;6queuefrontq,返回队头元素;10.顺序队列:队列的顺序存储结构称顺序队列;设置front和rear指针表示队头和队尾元素在向量空间的位置;11.顺序队列中存在“假上溢”现象,由于入队和出队操作使头尾指针只增不减导致被删元素的空间无法利用,队尾指针超过向量空间的上界而不能入队;12.为克服“假上溢”现象,将向量空间想象为首尾相连的循环向量,存储在其中的队列称循环队列;i=i+1%queuesize13.循环队列的边界条件处理:由于无法用front==rear来判断队列的“空”和“满”;解决的方法有:1另设一个布尔变量以区别队列的空和满;2少用一个元素,在入队前测试rear在循环意义下加1是否等于front;3使用一个记数器记录元素总数;14.循环队列的基本运算:public interface Queue {队列:队列的链式存储结构称链队列,链队列由一个头指针和一个尾指针唯一确定;16.链队列的基本运算:public class QueueSLinked implements Queue {private SLNode front;private SLNode rear;private int size;public QueueSLinked {front = new SLNode;rear = front;size = 0;}etData;}}第四章串1.串:是由零个或多个字符组成的有限序列;包含字符的个数称串的长度;2.空串:长度为零的串称空串;空白串:由一个或多个空格组成的串称空白串;子串:串中任意个连续字符组成的子序列称该串的子串;主串:包含子串的串称主串;子串的首字符在主串中首次出现的位置定义为子串在主串中的位置;3.空串是任意串的子串;任意串是自身的子串;串常量在程序中只能引用但不能改变其值;串变量取值可以改变;4.串的基本运算1intstrlenchars;求串长;2charstrcpycharto,charfrom;串复制;3charstrcatcharto,charfrom;串联接;4intstrcmpchars1,chars2;串比较;5charstrchrchars,charc;字符定位;5.串的存储结构:1串的顺序存储:串的顺序存储结构称顺序串;按存储分配不同分为:1静态存储分配的顺序串:直接用定长的字符数组定义,以“\0”表示串值终结;definemaxstrsize256typedefcharseqstringmaxstrsize;seqstrings;不设终结符,用串长表示;Typedefstruct{Charchmaxstrsize;Intlength;}seqstring;以上方式的缺点是:串值空间大小是静态的,难以适应插入、链接等操作;2动态存储分配的顺序串:简单定义:typedefcharstring;复杂定义:typedefstruct{charch;intlength;}hstring;2串的链式存储:串的链式存储结构称链串;链串由头指针唯一确定;类型定义:typedefstructnode{chardata;structnodenext;}linkstrnode;typedeflinkstrnodelinkstring;linkstrings;将结点数据域存放的字符个数定义为结点的大小;结点大小不为1的链串类型定义:definenodesize80typedefstructnode{chardatanodesize;structnodenext;}linkstrnode;6.串运算的实现1顺序串上的子串定位运算;1子串定位运算又称串的模式匹配或串匹配;主串称目标串;子串称模式串; 2朴素的串匹配算法;时间复杂度为On^2;比较的字符总次数为n-m+1m; Intnaivestrmatchseqstringt,seqstringp{inti,j,k;intm=;intn=;fori=0;i<=n-m;i++{j=0;k=i;whilej<m&&k==j{j++;k++;}ifj==mreturni;}return–1;}2链串上的子串定位运算;时间复杂度为On^2;比较的字符总次数为n-m+1m;LinkstrnodelilnkstrmatchlinkstringT,linkstringP {linkstrnodeshift,t,p;shift=T;t=shift;p=P;whilet&&p{ift->data==p->data{t=t->next;p=p->next;}else{shift=shift->next;t=shift;p=P;}}ifp==NULLreturnshift;elsereturnNULL;}第五章多维数组和广义表1.多维数组:一般用顺序存储的方式表示数组;2.常用方式有:1行优先顺序,将数组元素按行向量排列;2列优先顺序,将数组元素按列向量排列;3.计算地址的函数:LOCAij=LOCAc1c2+i-c1d2-c2+1+j-c2d4.矩阵的压缩存储:为多个非零元素分配一个存储空间;对零元素不分配存储空间;1对称矩阵:在一个n阶的方阵A中,元素满足Aij=Aji0<=i,j<=n-1;称为对称矩阵;元素的总数为:nn+1/2;设:I=i或j中大的一个数;J=i或j中小的一个数;则:k=II+1/2+J;地址计算:LOCAij=LOCsak=LOCsa0+kd=LOCsa0+II+1/2+Jd2三角矩阵:以主对角线划分,三角矩阵有上三角和下三角;上三角的主对角线下元素均为常数c;下三角的主对角线上元素均为常数c;元素总数为:nn+1/2+1;以行优先顺序存放的Aij与SAk的关系:上三角阵:k=i2n-i+1/2+j-i;下三角阵:k=ii+1/2+j;3对角矩阵:所有的非零元素集中在以主对角线为中心的带状区域,相邻两侧元素均为零;|i-j|>k-1/2以行优先顺序存放的Aij与SAk的关系:k=2i+j;5.稀疏矩阵:当矩阵A中有非零元素S个,且S远小于元素总数时,称为稀疏矩阵;对其压缩的方法有顺序存储和链式存储;1三元组表:将表示稀疏矩阵的非零元素的三元组行号、列号、值按行或列优先的顺序排列得到的一个结点均是三元组的线性表,将该表的线性存储结构称为三元组表;其类型定义:definemaxsize10000typedefintdatatype;typedefstruct{inti,j;datatypev;}trituplenode;typedefstruct{trituplenodedatamaxsize;intm,n,t;}tritupletable;2带行表的三元组表:在按行优先存储的三元组表中加入一个行表记录每行的非零元素在三元组表中的起始位置;类型定义:definemaxrow100typedefstruct{tritulpenodedatamaxsize;introwtabmaxrow;intm,n,t;}rtritulpetable;6.广义表:是线性表的推广,广义表是n个元素的有限序列,元素可以是原子或一个广义表,记为LS;7.若元素是广义表称它为LS的子表;若广义表非空,则第一个元素称表头,其余元素称表尾;8.表的深度是指表展开后所含括号的层数;9.把与树对应的广义表称为纯表,它限制了表中成分的共享和递归;10.允许结点共享的表称为再入表;11.允许递归的表称为递归表;12.相互关系:线性表∈纯表∈再入表∈递归表;13.广义表的特殊运算:1取表头headLS;2取表尾tailLS;第六章树1.树:是n个结点的有限集T,T为空时称空树,否则满足:1有且仅有一个特定的称为根的结点;2其余结点可分为m个互不相交的子集,每个子集本身是一棵树,并称为根的子树;2.树的表示方法:1树形表示法;2嵌套集合表示法;3凹入表表示法;4广义表表示法;3.一个结点拥有的子树数称为该结点的度;一棵树的度是指树中结点最大的度数;4.度为零的结点称叶子或终端结点;度不为零的结点称分支结点或非终端结点5.根结点称开始结点,根结点外的分支结点称内部结点;6.树中某结点的子树根称该结点的孩子;该结点称为孩子的双亲;7.树中存在一个结点序列K1,K2,…Kn,使Ki为Ki+1的双亲,则称该结点序列为K1到Kn的路径或道路;8.树中结点K到Ks间存在一条路径,则称K是Ks的祖先,Ks是K的子孙;9.结点的层数从根算起,若根的层数为1,则其余结点层数是其双亲结点层数加1;双亲在同一层的结点互为堂兄弟;树中结点最大层数称为树的高度或深度;10.树中每个结点的各个子树从左到右有次序的称有序树,否则称无序树;11.森林是m棵互不相交的树的集合;12.二叉树:是n个结点的有限集,它或为空集,或由一个根结点及两棵互不相交的、分别称为该根的左子树和右子树的二叉树组成;13.二叉树不是树的特殊情况,这是两种不同的数据结构;它与无序树和度为2的有序树不同;14.二叉树的性质:1二叉树第i层上的结点数最多为2^i-1;2深度为k的二叉树至多有2^k-1个结点;3在任意二叉树中,叶子数为n0,度为2的结点数为n2,则n0=n2+1;15.满二叉树是一棵深度为k的且有2^k-1个结点的二叉树;16.完全二叉树是至多在最下两层上结点的度数可以小于2,并且最下层的结点集中在该层最左的位置的二叉树;17.具有N个结点的完全二叉树的深度为log2N取整加1;18.二叉树的存储结构1顺序存储结构:把一棵有n个结点的完全二叉树,从树根起自上而下、从左到右对所有结点编号,然后依次存储在一个向量b0~n中,b1~n存放结点,b0存放结点总数;各个结点编号间的关系:1i=1是根结点;i>1则双亲结点是i/2取整;2左孩子是2i,右孩子是2i+1;要小于n3i>n/2取整的结点是叶子;4奇数没有右兄弟,左兄弟是i-1;5偶数没有左兄弟,右兄弟是i+1;2链式存储结构结点的结构为:lchild|data|rchild;相应的类型说明:typedefchardata;typedefstructnode{datatypedata;structnodelchild,rchild;}bintnode;typedefbintnodebintree;19.在二叉树中所有类型为bintnode的结点和一个指向开始结点的bintree类型的头指针构成二叉树的链式存储结构称二叉链表;20.二叉链表由根指针唯一确定;在n个结点的二叉链表中有2n个指针域,其中n+1个为空;21.二叉树的遍历方式有:前序遍历、中序遍历、后序遍历;时间复杂度为On;22.线索二叉树:利用二叉链表中的n+1个空指针域存放指向某种遍历次序下的前趋和后继结点的指针,这种指针称线索;加线索的二叉链表称线索链表;相应二叉树称线索二叉树;23.线索链表结点结构:lchild|ltag|data|rtag|rchild;ltag=0,lchild是指向左孩子的指针;ltag=1,lchild是指向前趋的线索;rtag=0,rchild是指向右孩子的指针;rtag=1,rchild是指向后继的线索;24.查找p在指定次序下的前趋和后继结点;算法的时间复杂度为Oh;线索对查找前序前趋和后序后继帮助不大;25.遍历线索二叉树;时间复杂度为On;26.树、森林与二叉树的转换1树、森林与二叉树的转换1树与二叉树的转换:1}所有兄弟间连线;2}保留与长子的连线,去除其它连线;该二叉树的根结点的右子树必为空;2森林与二叉树的转换:1}将所有树转换成二叉树;2}将所有树根连线;2二叉树与树、森林的转换;是以上的逆过程;27.树的存储结构1双亲链表表示法:为每个结点设置一个parent指针,就可唯一表示任何一棵树;Data|parent2孩子链表表示法:为每个结点设置一个firstchild指针,指向孩子链表头指针,链表中存放孩子结点序号;Data|firstchild;3双亲孩子链表表示法:将以上方法结合;Data|parent|firstchild4孩子兄弟链表表示法:附加两个指向左孩子和右兄弟的指针;Leftmostchild|data|rightsibling28.树和森林的遍历:前序遍历一棵树等价于前序遍历对应二叉树;后序遍历等价于中序遍历对应二叉树;29.最优二叉树哈夫曼树:树的路径长度是从树根到每一结点的路径长度之和;将树中的结点赋予实数称为结点的权;30.结点的带权路径是该结点的路径长度与权的乘积;树的带权路径长度又称树的代价,是所有叶子的带权路径长度之和;31.带权路径长度最小的二叉树称最优二叉树哈夫曼树;32.具有2n-1个结点其中有n个叶子,并且没有度为1的分支结点的树称为严格二叉树;33.哈夫曼编码34.对字符集编码时,要求字符集中任一字符的编码都不是其它字符的编码前缀,这种编码称前缀码;35.字符出现频度与码长乘积之和称文件总长;字符出现概率与码长乘积之和称平均码长;36.使文件总长或平均码长最小的前缀码称最优前缀码37.利用哈夫曼树求最优前缀码,左为0,右为1;编码平均码长最小;没有叶子是其它叶子的祖先,不可能出现重复前缀;第七章图1.图:图G是由顶点集V和边集E组成,顶点集是有穷非空集,边集是有穷集;中每条边都有方向称有向图;有向边称弧;边的始点称弧尾;边的终点称弧头;G中每条边都没有方向的称无向图;3.顶点n与边数e的关系:无向图的边数e介于0~nn-1/2之间,有nn-1/2条边的称无向完全图;有向图的边数e介于0~nn-1之间,有nn-1条边的称有向完全图;4.无向图中顶点的度是关联与顶点的边数;有向图中顶点的度是入度与出度的和;所有图均满足:所有顶点的度数和的一半为边数;5.图GV,E,如V’是V的子集,E’是E的子集,且E’中关联的顶点均在V’中,则G’V’,E’是G的子图;6.在有向图中,从顶点出发都有路径到达其它顶点的图称有根图;7.在无向图中,任意两个顶点都有路径连通称连通图;极大连通子图称连通分量;8.在有向图中,任意顺序两个顶点都有路径连通称强连通图;极大连通子图称强连通分量;9.将图中每条边赋上权,则称带权图为网络;10.图的存储结构:1邻接矩阵表示法:邻接矩阵是表示顶点间相邻关系的矩阵;n个顶点就是n阶方阵;无向图是对称矩阵;有向图行是出度,列是入度;2邻接表表示法:对图中所有顶点,把与该顶点相邻接的顶点组成一个单链表,称为邻接表,adjvex|next,如要保存顶点信息加入data;对所有顶点设立头结点,vertex|firstedge,并顺序存储在一个向量中;vertex保存顶点信息,firstedge保存邻接表头指针;11.邻接矩阵表示法与邻接表表示法的比较:1邻接矩阵是唯一的,邻接表不唯一;2存储稀疏图用邻接表,存储稠密图用邻接矩阵;3求无向图顶点的度都容易,求有向图顶点的度邻接矩阵较方便;4判断是否是图中的边,邻接矩阵容易,邻接表最坏时间为On;5求边数e,邻接矩阵耗时为On^2,与e无关,邻接表的耗时为Oe+n;12.图的遍历:1图的深度优先遍历:类似与树的前序遍历;按访问顶点次序得到的序列称DFS序列;对邻接表表示的图深度遍历称DFS,时间复杂度为On+e;对邻接矩阵表示的图深度遍历称DFSM,时间复杂度为On^2;2图的广度优先遍历:类似与树的层次遍历;按访问顶点次序得到的序列称BFS序列;对邻接表表示的图广度遍历称BFS,时间复杂度为On+e;对邻接矩阵表示的图广度遍历称BFSM,时间复杂度为On^2;13.将没有回路的连通图定义为树称自由树;14.生成树:连通图G的一个子图若是一棵包含G中所有顶点的树,该子图称生成树;有DFS生成树和BFS生成树,BFS生成树的高度最小;非连通图生成的是森林;15.最小生成树:将权最小的生成树称最小生成树;是无向图的算法1普里姆算法:1确定顶点S、初始化候选边集T0~n-2;formvex|tovex|lenght2选权值最小的Ti与第1条记录交换;3从T1中将tovex取出替换以下记录的fromvex计算权;若权小则替换,否则不变;4选权值最小的Ti与第2条记录交换;5从T2中将tovex取出替换以下记录的fromvex计算权;若权小则替换,否则不变;6重复n-1次;初始化时间是On,选轻边的循环执行n-1-k次,调整轻边的循环执行n-2-k;算法的时间复杂度为On^2,适合于稠密图;2克鲁斯卡尔算法:1初始化确定顶点集和空边集;对原边集按权值递增顺序排序;2取第1条边,判断边的2个顶点是不同的树,加入空边集,否则删除;3重复e次;对边的排序时间是Oelog2e;初始化时间为On;执行时间是Olog2e;算法的时间复杂度为Oelog2e,适合于稀疏图;16.路径的开始顶点称源点,路径的最后一个顶点称终点;17.单源最短路径问题:已知有向带权图,求从某个源点出发到其余各个顶点的最短路径;18.单目标最短路径问题:将图中每条边反向,转换为单源最短路径问题;19.单顶点对间最短路径问题:以分别对不同顶点转换为单源最短路径问题;20.所有顶点对间最短路径问题:分别对图中不同顶点对转换为单源最短路径问题;21.迪杰斯特拉算法:1初始化顶点集Si,路径权集Di,前趋集Pi;2设置Ss为真,Ds为0;3选取Di最小的顶点加入顶点集;4计算非顶点集中顶点的路径权集;5重复3n-1次;算法的时间复杂度为On^2;22.拓扑排序:对一个有向无环图进行拓扑排序,是将图中所有顶点排成一个线性序列,满足弧尾在弧头之前;这样的线性序列称拓扑序列;1无前趋的顶点优先:总是选择入度为0的结点输出并删除该顶点的所有边;设置各个顶点入度时间是On+e,设置栈或队列的时间是On,算法时间复杂度为On+e;2无后继的顶点优先:总是选择出度为0的结点输出并删除该顶点的所有边;设置各个顶点出度时间是On+e,设置栈或队列的时间是On,算法时间复杂度为On+e;求得的是逆拓扑序列;第八章排序1.文件:由一组记录组成,记录有若干数据项组成,唯一标识记录的数据项称关键字;2.排序是将文件按关键字的递增减顺序排列;3.排序文件中有相同的关键字时,若排序后相对次序保持不变的称稳定排序,否则称不稳定排序;4.在排序过程中,文件放在内存中处理不涉及数据的内、外存交换的称内排序,反之称外排序;5.排序算法的基本操作:1比较关键字的大小;2改变指向记录的指针或移动记录本身;6.评价排序方法的标准:1执行时间;2所需辅助空间,辅助空间为O1称就地排序;另要注意算法的复杂程度;7.若关键字类型没有比较运算符,可事先定义宏或函数表示比较运算;8.插入排序1直接插入排序算法中引入监视哨R0的作用是:1保存Ri的副本;2简化边界条件,防止循环下标越界;关键字比较次数最大为n+2n-1/2;记录移动次数最大为n+4n-1/2;算法的最好时间是On;最坏时间是On^2;平均时间是On^2;是一种就地的稳定的排序;2希尔排序实现过程:是将直接插入排序的间隔变为d;d的取值要注意:1最后一次必为1;2避免d 值互为倍数;关键字比较次数最大为n^;记录移动次数最大为^;算法的平均时间是On^;是一种就地的不稳定的排序;9.交换排序1冒泡排序实现过程:从下到上相邻两个比较,按小在上原则扫描一次,确定最小值,重复n-1次;关键字比较次数最小为n-1、最大为nn-1/2;记录移动次数最小为0,最大为3nn-1/2;算法的最好时间是On;最坏时间是On^2;平均时间是On^2;是一种就地的稳定的排序;2快速排序实现过程:将第一个值作为基准,设置i,j指针交替从两头与基准比较,有交换后,交换j,i;i=j时确定基准,并以其为界限将序列分为两段;重复以上步骤;关键字比较次数最好为nlog2n+nC1、最坏为nn-1/2;算法的最好时间是Onlog2n;最坏时间是On^2;平均时间是Onlog2n;辅助空间为Olog2n;是一种不稳定排序;10.选择排序1直接选择排序实现过程:选择序列中最小的插入第一位,在剩余的序列中重复上一步,共重复n-1次;关键字比较次数为nn-1/2;记录移动次数最小为0,最大为3n-1;算法的最好时间是On^2;最坏时间是On^2;平均时间是On^2;是一种就地的不稳定的排序;2堆排序。
考研数据结构图的必背算法及知识点
考研数据结构图的必背算法及知识点Prepared on 22 November 20201.最小生成树:无向连通图的所有生成树中有一棵边的权值总和最小的生成树问题背景:假设要在n个城市之间建立通信联络网,则连通n个城市只需要n—1条线路。
这时,自然会考虑这样一个问题,如何在最节省经费的前提下建立这个通信网。
在每两个城市之间都可以设置一条线路,相应地都要付出一定的经济代价。
n个城市之间,最多可能设置n(n-1)/2条线路,那么,如何在这些可能的线路中选择n-1条,以使总的耗费最少呢分析问题(建立模型):可以用连通网来表示n个城市以及n个城市间可能设置的通信线路,其中网的顶点表示城市,边表示两城市之间的线路,赋于边的权值表示相应的代价。
对于n个顶点的连通网可以建立许多不同的生成树,每一棵生成树都可以是一个通信网。
即无向连通图的生成树不是唯一的。
连通图的一次遍历所经过的边的集合及图中所有顶点的集合就构成了该图的一棵生成树,对连通图的不同遍历,就可能得到不同的生成树。
图G5无向连通图的生成树为(a)、(b)和(c)图所示:G5G5的三棵生成树:可以证明,对于有n个顶点的无向连通图,无论其生成树的形态如何,所有生成树中都有且仅有n-1条边。
最小生成树的定义:如果无向连通图是一个网,那么,它的所有生成树中必有一棵边的权值总和最小的生成树,我们称这棵生成树为最小生成树,简称为最小生成树。
最小生成树的性质:假设N=(V,{E})是个连通网,U是顶点集合V的一个非空子集,若(u,v)是个一条具有最小权值(代价)的边,其中,则必存在一棵包含边(u,v)的最小生成树。
解决方案:两种常用的构造最小生成树的算法:普里姆(Prim)和克鲁斯卡尔(Kruskal)。
他们都利用了最小生成树的性质1.普里姆(Prim)算法:有线到点,适合边稠密。
时间复杂度O(N^2)假设G=(V,E)为连通图,其中V为网图中所有顶点的集合,E为网图中所有带权边的集合。
数据结构考研笔记整理(全)
数据结构考研笔记整理(全)一、第二章线性表●考纲内容●一、线性表的基本概念●线性表是具有相同数据结构类型的n个数据元素的有限序列;线性表为逻辑结构,实现线性表的存储结构为顺序表或者链表●二、线性表的实现●1、顺序表●定义(静态分配)●#define MaxSize 50 \\ typedef struct{ \\ ElemType data[MaxSize];\\ intlength;\\ }SqList;●定义(动态分配)●#define MaxSize 50\\ typedef strcut{\\ EleType *data; //指示动态非配数组的指针\\ int MaxSize,length;\\ }SqList;●c的动态分配语句为L.data=(ElemType*)malloc(sizeof(ElemType)*InitSize);●c++动态分配语句为L.data=new ElemType[InitSize];●插入操作●删除操作●按值寻找●2、链表●单链表●单链表的定义●●头插法建立单链表●●尾插法建立单链表●●按序号查找getElem(LinkList L,int i)和按值查找locateElem(LinkListL,ElemType e)●插入结点(后插)●p=getElem(L,i-1); //查找插入位置的前驱结点\\ s.next=p.next;\\p.next=s;●将前插操作转化为后插操作,即先将s插入的p的后面然后调换s和p的数据域●s.next=p.next;\\ p.next=s.next;\\ temp=p.data;\\ p.data=s.data;\\s.data=temp;●删除结点●p.getElem(L,i-1);\\ q=p.next;\\ p.next=q.next;\\ free(q);●双链表(结点中有prior指针和next指针)●循环链表●静态链表●借助数组来描述线性表的链式存储结构,结点中的指针域next为下一个元素的数组下标●三、线性表的应用●使用的时候如何选择链表还是顺序表?●表长难以估计,经常需要增加、删除操作——链表;表长可以估计,查询比较多——顺序表●链表的头插法,尾插法,逆置法,归并法,双指针法;顺序表结合排序算法和查找算法的应用●小知识点(选择题)二、第三章栈,队列和数组●考纲内容●一、栈和队列的基本概念●栈:后进先出,LIFO,逻辑结构上是一种操作受限的线性表●队列:先进先出,FIFO,逻辑结构上也是一种操作受限的线性表●二、栈和队列的顺序存储结构●栈的顺序存储●●队列的顺序存储●进队:队不满时,送值到队尾元素,再将队尾指针加一●出队:队不空时,取队头元素值,再将队头指针加一●判断队空:Q.front==Q.rear==0;●循环队列(牺牲一个单元来区分队空和队满,尾指针指向队尾元素的后一个位置,也就是即将要插入的位置)●初始:Q.front==Q.rear●队满:(Q.rear+1)%MaxSize=Q.front●出队,队首指针进1:Q.front=(Q.front+1)%MaxSize●入队,队尾指针进1:Q.rear=(Q.rear+1)%MaxSize●队列长度:(Q.rear+MaxSize-Q.front)%MaxSize●三、栈和队列的链式存储结构●栈的链式存储●●队列的链式存储●实际是上一个同时带有头指针和尾指针的单链表,尾指针指向单链表的最后一个结点,与顺序存储不同,通常带有头结点●四、多维数组的存储●行优先:00,01,02,10,11,12●列优先:00,10,01,11,02,12●五、特殊矩阵的压缩存储●对称矩阵●三角矩阵●三对角矩阵(带状矩阵)●稀疏矩阵●将非零元素及其相应的行和列构成一个三元组存储●十字链表法●六、栈、队列、数组的应用●栈在括号匹配中的应用●栈在递归中的应用●函数在递归调用过程中的特点:最后被调用的函数最先执行结束●队列在层次遍历中的应用●二叉树的层次遍历●1跟结点入队●2若队空,则结束遍历,否则重复3操作●3队列中的第一个结点出队并访问,若有左孩子,则左孩子入队;若有右孩子,则右孩子入队●重点为栈的(出入栈过程、出栈序列的合法性)和队列的操作及其特征●小知识点(选择题)●n个不同元素进栈,出栈元素不同排列的个数为{2n\choose n }/(n+1)●共享栈是指让两个顺序栈共享一个存储空间,将两个栈的栈底分别设置在共享空间的两端,两个栈顶向共享空间的中间延伸,可以更有效的利用存储空间,同时对存储效率没有什么影响●双端队列是指允许两端都可以进行入队和出队操作的队列●输出受限的双端队列:允许两端插入,只允许一端删除●输入受限的双端队列:允许两端删除,只允许一端插入三、第四章串●考纲内容●字符串模式匹配●暴力算法●注意指针回退时的操作是i=i-j+2;j=j+1;●kmp算法●手工求next数组时,next[j]=s的最长相等前后缀长度+1,其中s为1到j-1个字符组成的串●在实际kmp算法中,为了使公式更简洁、计算简单,如果串的位序是从1开始的,则next数组需要整体加一;如果串的位序是从0开始的,则next数组不需要加一●根据next数组求解nextval数组:如果p[j]==p[next[j]],则nextval[j]=nextval[next[j]],否则nextval[j]=next[j];●小知识点●串和线性表的区别:1线性表的数据元素可以不同,但串的数据元素一般是字符;2串的操作对象通常是子串而不是某一个字符四、第五章树与二叉树●考纲内容●一、树的基本概念●定义●树是一种递归的数据结构,是一种逻辑结构●树的性质●结点数为n,则边的数量为n-1●树中的结点数等于所有结点的度数之和加1(一个结点的孩子个数称为该结点的度,树中结点的最大度数称为树的度,每一条边表示一个结点,对应一个度,只有根结点上面无边,故结点树=度数之和+1)●度为m的树中第i层至多有m^{i-1}个结点(i\geq1)(m叉树的第i层最多有m^{i-1}个结点)●高度为h的m叉树至多有(m^h-1)/(m-1)个结点(假设每一个结点都有m个孩子,则由等比数列的求和公式可以推导出该式子)●具有n个结点的m叉树的最小高度是\lceil log_m(n(m-1)+1)\rceil(由高度为h的m叉树的最大结点树公式有,n满足式子(m^{h-1}-1)/(m-1) \leq n\leq (m^h-1)/(m-1))●高度为h的m叉树至少有h个结点;高为h,度为m的树至少有h+m-1个结点(m叉树并不等于度为m的树,m叉树可以为空树,要求所有结点的度小于等于m,而度为m的树一定有一个结点的度数为m)●二、二叉树●二叉树的定义及其主要特征●定义●特点●每个结点至多只有两颗子树●二叉树是有序树,其子树有左右之分,次序不能颠倒,否则将成为另一颗二叉树,即使树中结点只有一颗子树,也要区分他是左子树还是右子树●特殊的二叉树●满二叉树:高度为h,结点数为2^h-1,所有叶子结点都集中在二叉树的最下面一层,除叶子结点外的所有结点度数都为2,从根结点为1开始编号,对于编号为i的结点,其父结点为\lfloor i/2 \rfloor,左孩子(若有)编号为2i,右孩子(若有)编号为2i+1,所以编号为偶数的结点只可能是左孩子,编号为奇数的结点只可能是右孩子●完全二叉树:删除了满二叉树中编号更大的结点,高为h,结点数为n的完全二叉树的每个结点的编号都与高度为h的满二叉树中编号为1到n的结点相同。
数据结构与算法基础知识总结
数据结构与算法基础知识总结1 算法算法:是指解题方案的准确而完整的描述。
算法不等于程序,也不等计算机方法,程序的编制不可能优于算法的设计。
算法的基本特征:是一组严谨地定义运算顺序的规则,每一个规则都是有效的,是明确的,此顺序将在有限的次数下终止。
特征包括:(1)可行性;(2)确定性,算法中每一步骤都必须有明确定义,不充许有模棱两可的解释,不允许有多义性;(3)有穷性,算法必须能在有限的时间内做完,即能在执行有限个步骤后终止,包括合理的执行时间的含义;(4)拥有足够的情报。
算法的基本要素:一是对数据对象的运算和操作;二是算法的控制结构。
指令系统:一个计算机系统能执行的所有指令的集合。
基本运算和操作包括:算术运算、逻辑运算、关系运算、数据传输。
算法的控制结构:顺序结构、选择结构、循环结构。
算法基本设计方法:列举法、归纳法、递推、递归、减斗递推技术、回溯法。
算法复杂度:算法时间复杂度和算法空间复杂度。
算法时间复杂度是指执行算法所需要的计算工作量。
算法空间复杂度是指执行这个算法所需要的内存空间。
2 数据结构的基本基本概念数据结构研究的三个方面:(1)数据集合中各数据元素之间所固有的逻辑关系,即数据的逻辑结构;(2)在对数据进行处理时,各数据元素在计算机中的存储关系,即数据的存储结构;(3)对各种数据结构进行的运算。
数据结构是指相互有关联的数据元素的集合。
数据的逻辑结构包含:(1)表示数据元素的信息;(2)表示各数据元素之间的前后件关系。
数据的存储结构有顺序、链接、索引等。
线性结构条件:(1)有且只有一个根结点;(2)每一个结点最多有一个前件,也最多有一个后件。
非线性结构:不满足线性结构条件的数据结构。
3 线性表及其顺序存储结构线性表由一组数据元素构成,数据元素的位置只取决于自己的序号,元素之间的相对位置是线性的。
在复杂线性表中,由若干项数据元素组成的数据元素称为记录,而由多个记录构成的线性表又称为文件。
数据结构与算法总结
《数据结构与算法》课程学习总结报告1004012005 10计本(4)班章兴春本学期所学习的《数据结构与算法》课程已经告一段落,就其知识点及其掌握情况、学习体会以及对该门课程的教学建议等方面进行学习总结。
以便在所学习知识有更深刻的认识。
一、《数据结构与算法》知识点:学习数据结构之前、一直以为数据结构是一门新的语言、后来才知道学习数据结构是为了更加高效的的组织数据、设计出良好的算法,而算法则是一个程序的灵魂。
经过了一学期的数据结构了,在期末之际对其进行总结。
首先,学完数据结构我们应该知道数据结构讲的是什么,数据结构课程主要是研究非数值计算的研究的程序设计问题中所出现的计算机处理对象以及它们之间关系和操作的学科。
第一章主要介绍了相关概念,如数据、数据元素、数据类型以及数据结构的定义。
其中,数据结构包括逻辑结构、存储结构和运算集合。
逻辑结构分为四类:集合型、线性、树形和图形结构,数据元素的存储结构分为:顺序存储、链接存储、索引存储和散列存储四类。
最后着重介绍算法性能分析,包括算法的时间性能分析以及算法的空间性能分析。
第二章具体地介绍了顺序表的定义、特点及其主要操作,如查找、插入和删除的实现。
需要掌握对它们的性能估计。
包括查找算法的平均查找长度,插入与删除算法中的对象平均移动次数。
链表中数据元素的存储不一定是连续的,还可以占用任意的、不连续的物理存储区域。
与顺序表相比,链表的插入、删除不需要移动元素,给算法的效率带来较大的提高。
链表这一章中介绍了链表的节点结构、静态与动态链表的概念、链表的基本运算(如求表长、插入、查找、删除等)、单链表的建立(头插法和尾插法)以及双向循环链表的定义、结构、功能和基本算法。
第三章介绍了堆栈与队列这两种运算受限制的线性结构。
其基本运算方法与顺序表和链表运算方法基本相同,不同的是堆栈须遵循“先进后出”的规则,对堆栈的操作只能在栈顶进行;而队列要遵循“先进先出”的规则,教材中列出了两种结构的相应算法,如入栈、出栈、入队、出队等。
数据结构与算法分析总结5则范文
数据结构与算法分析总结5则范文第一篇:数据结构与算法分析总结数据结构和算法设计与分析谈到计算机方面的专业课程,我觉得数据结构算是一门必不可少的课了,它是计算机从业和研究人员了解、开发及最大程度的利用计算机硬件的一种工具。
数据结构与算法分析是两门紧密联系的课程,算法要靠好的数据结构来实现,二者的关系是密不可分的,谈到算法不得不讲数据结构,谈数据结构也不可避免的要了解算法,好的算法一定有一个好的数据结构,很多算法实际上是对某种数据结构实行的一种变换,研究算法也就是研究在实行变换过程中数据的动态性质。
这两门课程分别是我在大二和研一的时候学的,因为它们密切的联系,这里将其放在一起总结如下。
什么是数据结构呢?研究数据的逻辑结构和存储结构(物理结构)以及它们之间的关系,且为该结构定义相应的运算设计相应的算法。
这里的数据是指可输入到计算机能被程序处理的符号的集合。
其中,数据的逻辑结构是指数据之间逻辑关系的描述,逻辑结构的分类有线性结构、树形结构和图结构。
数据的存储结构是指数据在计算机中存储结构,也称为物理结构,它有4类基本的存储映射方法:1.顺序的方法;2.链接的方法;3.索引的方法;4.散列的方法。
在程序设计语言中,数据结构直接反映在数据类型上,比如一个整型变量就是一个节点,根据类型给他分配内存单元。
抽象数据类型:一组值以及在这些值上定义的操作集合,它是描述数据结构的一种理论工具,其特点是把数据结构作为独立于应用程序的一种抽象代数结构。
线性表结构:由一系列元素组成的有序的序列,除了第一个元素和最后一个元素外,每个元素都只有一个直接前趋和直接后继,元素的个数称为线性表的长度。
它的存储方式有顺序存储和链式存储。
顺序存储方式它的优点是存储单元是连续的,适合快速访问元素内容,链表的特点是动态申请内存空间,并通过指针来链接结点,按照线性表的前驱关系把一个个结点链接起来,这样可以动态地根据需要分配内存空间,经常用于插入新结点或删除节点的需要,链表还可以根据结点中指针个数分为单链表、双链表、循环链表等。
数据结构和算法的设计与分析
数据结构和算法的设计与分析在计算机科学领域中,数据结构和算法是两个非常基础的概念。
数据结构可以被视为是计算机存储和组织数据的方式,而算法则是计算机解决问题的方法。
在实际的应用中,一个好的数据结构和算法的设计和分析可以让极其复杂的问题变得简单化,运行效率得到大幅度提升。
本篇文章将会重点探讨数据结构和算法的设计和分析,并讨论其在实际中的应用。
一、数据结构的设计和分析1.1 数据结构的定义和分类数据结构是一种在计算机中组织和存储数据的方式。
它们可以被定义为一定数量的数据元素(结点)的集合。
数据结构是由若干种基本数据类型组成,其包括数值,字符,短语数据和其他各种复杂的数据类型。
在计算机科学领域中,数据结构被分为两类: 线性数据结构和非线性数据结构。
线性数据结构包括数组,链表,堆栈,队列等,其是一种每个数据元素只有一个前驱和一个后继的结构。
非线性数据结构则包括二叉树,图,堆,散列表等,其是一种每个数据元素可以有多个前驱和后继的结构。
而在实际的应用中,数据结构的选择和设计往往取决于应用的需求和数据类型。
1.2 数据结构的设计和分析数据结构的设计和分析对于计算机算法和程序设计来说起着非常重要的作用。
一个好的数据结构可以成倍地提高算法的效率,使得程序的执行速度变得更快。
而数据结构的分析则是评估程序的运行时间以及空间使用情况,这对于性能优化和资源管理都至关重要。
在数据结构的设计上,我们需要考虑以下问题:(1) 功能需求: 首先我们需要明确所需的功能需求,例如查找,排序,插入,删除等。
根据不同的需求可以选择不同的数据结构。
(2) 空间复杂度: 我们需要评估程序的空间复杂度以确定所选择数据结构的大小和使用情况。
(3) 时间复杂度: 我们需要评估程序的时间复杂度以确定算法的效率和性能。
(4) 可读性和维护性: 我们需要评估程序的可读性和维护性,以确定程序的可读性和长期维护性。
在数据结构的分析上,我们需要考虑以下问题:(1) 时间复杂度: 我们需要评估程序的运行时间,以确保算法的执行时间足够短。
《数据结构与算法》知识点整理
《数据结构与算法》知识点整理《数据结构与算法》知识点整理1:数据结构概述1.1 什么是数据结构1.2 数据结构的作用1.3 数据结构的分类1.4 数据结构的存储方式2:线性表2.1 顺序表2.1.1 顺序表的定义2.1.2 顺序表的基本操作2.2 链表2.2.1 链表的定义2.2.2 链表的基本操作2.3 栈2.3.1 栈的定义2.3.2 栈的基本操作2.4 队列2.4.1 队列的定义2.4.2 队列的基本操作3:树3.1 树的基本概念3.1.1 结点3.1.2 父节点、子节点、兄弟节点 3.2 二叉树3.2.1 二叉树的定义3.2.2 二叉树的遍历方式3.3 平衡二叉树3.3.1 平衡二叉树的定义3.3.2 平衡二叉树的实现4:图4.1 图的基本概念4.1.1 顶点4.1.2 边4.1.3 权重4.2 图的表示方式4.2.1 邻接矩阵4.2.2 邻接表4.3 图的搜索算法4.3.1 深度优先搜索 4.3.2 广度优先搜索5:排序算法5.1 冒泡排序5.2 插入排序5.3 选择排序5.4 快速排序5.5 归并排序6:查找算法6.1 顺序查找6.2 二分查找6.3 哈希查找7:字符串匹配算法7.1 暴力匹配算法7.2 KMP算法7.3 Boyer-Moore算法8:动态规划算法8.1 动态规划的基本概念8.2 0-1背包问题8.3 最长公共子序列问题9:附件9.1 Examples:docx - 包含各章节示例代码的附件文件10:法律名词及注释10:1 数据结构 - 在计算机科学中,数据结构是计算机中存储、组织数据的方式。
10:2 线性表 - 线性表是数据元素的有限序列,元素之间具有线性关系。
10:3 顺序表 - 顺序表是用一组地址连续的存储单元依次存储线性表的元素。
10:4 链表 - 链表是一种数据元素按照顺序存放,元素之间通过指针进行关联的数据结构。
10:5 栈 - 栈是一种特殊的线性表,只能在一端进行插入和删除操作。
数据结构与算法的哪些知识点最容易考察
数据结构与算法的哪些知识点最容易考察在计算机科学领域,数据结构与算法是至关重要的基础知识。
无论是在学术研究还是实际的软件开发中,对于数据结构和算法的理解与掌握程度都有着很高的要求。
当我们面临各种考试或者技术面试时,了解哪些知识点最容易被考察,能够帮助我们更有针对性地进行学习和准备。
首先,链表(Linked List)是经常被考察的一个重要知识点。
链表是一种常见的数据结构,它由一系列节点组成,每个节点包含数据和指向下一个节点的指针。
对于链表的操作,如链表的创建、遍历、插入、删除节点等,都是常见的考察点。
特别是在处理链表的循环、链表的反转等问题时,需要我们对指针的操作有清晰的理解和熟练的运用能力。
栈(Stack)和队列(Queue)也是容易考察的内容。
栈遵循后进先出(Last In First Out,LIFO)的原则,而队列遵循先进先出(First In First Out,FIFO)的原则。
理解这两种数据结构的特点以及它们的基本操作,如入栈、出栈、入队、出队等,是很关键的。
此外,利用栈来解决表达式求值、括号匹配等问题,以及使用队列来实现广度优先搜索(BreadthFirst Search,BFS)等算法,也是常见的考察形式。
树(Tree)结构在数据结构与算法中占据着重要地位。
二叉树(Binary Tree)是其中的基础,包括二叉树的遍历(前序、中序、后序遍历)、二叉搜索树(Binary Search Tree)的特性和操作,以及平衡二叉树(如 AVL 树、红黑树)的概念和调整算法等,都是容易被考察的知识点。
此外,树的层次遍历、构建二叉树等问题也经常出现在考题中。
图(Graph)的相关知识也是考察的重点之一。
图的表示方法(邻接矩阵、邻接表)、图的遍历算法(深度优先搜索(DepthFirst Search,DFS)和广度优先搜索(BreadthFirst Search,BFS))、最短路径算法(如迪杰斯特拉算法(Dijkstra's Algorithm)和弗洛伊德算法(FloydWarshall Algorithm))以及最小生成树算法(如普里姆算法(Prim's Algorithm)和克鲁斯卡尔算法(Kruskal's Algorithm))等,都是需要我们熟练掌握的内容。
数据结构与算法分析
数据结构与算法分析数据结构与算法分析是计算机科学领域中最为重要的基础知识之一。
它们是计算机程序设计和软件开发的基石,对于解决实际问题具有重要的指导作用。
本文将围绕数据结构与算法分析的概念、作用以及常见的数据结构和算法进行深入探讨,以便读者对其有更全面的理解。
一、数据结构的概念数据结构是计算机科学中研究组织和存储数据的方法,它关注如何将数据按照逻辑关系组织在一起并以一定的方式存储在计算机内存中。
常见的数据结构包括数组、链表、栈、队列、树等。
不同的数据结构适用于不同类型的问题,选择合适的数据结构对于算法的效率和性能至关重要。
二、算法分析的意义算法分析是对算法的效率和性能进行评估和估算的过程。
它主要关注算法的时间复杂度和空间复杂度,这两者是衡量算法性能的重要指标。
通过对算法进行分析,我们可以选择最适合解决问题的算法,提高程序的运行效率和资源利用率。
在实际开发中,合理选择和使用算法可以减少计算机的负荷,提高系统的响应速度。
三、常见的数据结构1. 数组:数组是一种线性数据结构,它以连续的内存空间存储一组相同类型的数据。
数组的优点是可以随机访问,但缺点是插入和删除操作的效率较低。
2. 链表:链表是一种常见的动态数据结构,它由一系列节点组成,每个节点包含数据和指向下一节点的指针。
链表的优点是插入和删除操作的效率较高,但访问数据的效率较低。
3. 栈:栈是一种后进先出(LIFO)的数据结构,常用操作包括入栈和出栈。
栈通常用于实现函数调用、表达式求值以及回溯算法等。
4. 队列:队列是一种先进先出(FIFO)的数据结构,它常用操作包括入队和出队。
队列通常用于实现广度优先搜索和任务调度等。
5. 树:树是一种非线性的数据结构,它以层次结构存储数据。
常见的树包括二叉树、平衡二叉树、二叉搜索树等。
树的应用非常广泛,例如数据库索引、文件系统等。
四、常见的算法1. 排序算法:排序算法用于将一组元素按照某种规则进行排序。
常见的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序等。
数据结构与算法课程设计 心得体会 学习体会
数据结构与算法课程设计心得体会学习体会作为一名计算机科学专业的学生,在学习过程中,了解数据结构与算法是非常重要的。
因此,我在学习过程中选修了中国数据结构与算法课程设计,通过这门课程,我的学习获得了许多益处。
首先,我学习了许多数据结构的基础知识,比如链表、二叉树和图等等。
这些基础知识对于软件开发来说是至关重要的,可以用来解决现实世界的问题。
我们在学习过程中还学习了这些数据结构如何在内存中存储,以及如何使用它们来解决复杂的问题。
在接下来的学习过程中,我们还学习了一些算法,比如搜索和排序算法。
这些算法可以在许多领域用于解决各种问题,例如在网站开发中,排序算法可以用于快速检索和呈现数据。
其次,我还学习了编程技能。
配合学习数据结构和算法,我深入了解了 C++ 语言的语法特性,以及如何将它们用于实际编程过程中。
这门课程的一个具体实例是,在实现不同数据结构的过程中,我学会了如何设计类和使用类来解决问题。
通过完成数据结构和算法的课程设计,我还提高了我的问题解决能力。
通过独立思考和尝试不同的方法,我学习了如何在解决问题时提出最有效的解决方案。
通过课后阅读和编程实践过程中的挑战,我还学会了如何有效地满足不同类型的客户需求,并找到适合他们的解决方案。
最后,我学习了如何与团队协作。
在实现数据结构和算法的过程中,我学会了如何与同学共同解决问题,如何有效地分享任务,并根据个人能力进行分配。
在这个过程中,我认识到了团队协作的重要性,以及如何在团队中发挥自己的最大价值。
总而言之,中国数据结构与算法课程设计为我提供了宝贵的知识和经验。
通过学习这一过程,我学会了许多有用的技能和知识,并提高了自己的问题解决能力和协作能力。
我相信这些技能和知识将在今后的求职过程中大有用处,同时,在我的日常生活中也将成为一个巨大的帮助。
数据结构整理笔记
数据结构整理笔记数据结构与算法数据结构:数据的组成形式(数据是以什么样的形式组织起来的,数组、链表、队列、树、图等)算法(注:强调的是数据结构与算法中的算法,狭义算法):对所存储数据的操作(操作指的是对于所存数据有关问题,求解最终答案的过程)的⽅法,例:[1、2、3、4、5]中的最⼤值,求得最⼤值的⽅法(⼀系列操作)就是算法书籍推荐数据结构概述(教材选⽤严蔚敏、吴伟民,该书程序是伪算法具体的程序是⾼⼀凡,西电的,⼤⽜,只有程序。
还有⼀本书,台湾的黄国瑜⾃⼰写的只有思路,程序是另外⼀个合作的清华的写的,可惜很多错的。
)学完数据结构之后会对⾯向过程的函数有⼀个更深的了解,有本通俗易懂的数据结构的书《⼤话数据结构》⽤来⼊门很不错。
数据结构的概述定义我们如何把现实中⼤量⽽反复的问题以特定的数据类型(个体的数据类型)和特定的存储结构(个体间的相互关系)保存到主存储器(内存)中,以及在此基础上为实现某个功能(⽐如查找某个元素,删除某个元素,对所有元素进⾏排序)⽽执⾏的相应的操作,这个相应的操作也叫做算法。
数据结构=个体+个体的关系算法=对存储数据的操作狭义:数据结构是专门研究数据存储的问题数据的存储包含两⽅⾯:个体的存储 + 个体关系的存储⼴义:数据结构既包含数据的存储也包含数据的操作对存储数据的操作就是算法算法狭义:算法是和数据的存储⽅式密切相关⼴义:算法和数据的存储⽅式⽆关,这就是泛型思想算法的真正学法:很多算法你根本解决不了因为很多都属于数学上的东西,所以我们把答案找出来,如果能看懂就⾏,但是⼤部分⼈⼜看不懂,分三步,按照流程,语句,试数。
这个过程肯定会不断地出错,所以不断出错,不断改错,这样反复敲很多次,才能有个提⾼。
实在看不懂就先背会。
衡量算法的标准:(1) 时间复杂度⼤概程序要执⾏的次数,⽽并⾮是执⾏的时间(因为同⼀程序在不同机器上执⾏的时间是不⼀样的,有差异)(2) 空间复杂度算法执⾏过程中⼤概所占⽤的最⼤内存(3) 难易程度(主要是应⽤⽅⾯看重)(4) 健壮性(不能别⼈给⼀个⾮法的输⼊就挂掉)数据结构的地位:数据结构是软件中最核⼼的课程程序 = 数据的存储 + 数据的操作 + 可以被计算机执⾏的语⾔泛型对于同⼀种逻辑结构,⽆论该逻辑结构的物理存储是什么样⼦的,我们可以对它执⾏相同的操作。
数据结构与算法分析课后习题答案
数据结构与算法分析课后习题答案第一章:基本概念一、题目:什么是数据结构与算法?数据结构是指数据在计算机中存储和组织的方式,如栈、队列、链表、树等;而算法是一系列解决问题的清晰规范的指令步骤。
数据结构和算法是计算机科学的核心内容。
二、题目:数据结构的分类有哪些?数据结构可以分为以下几类:1. 线性结构:包括线性表、栈、队列等,数据元素之间存在一对一的关系。
2. 树形结构:包括二叉树、AVL树、B树等,数据元素之间存在一对多的关系。
3. 图形结构:包括有向图、无向图等,数据元素之间存在多对多的关系。
4. 文件结构:包括顺序文件、索引文件等,是硬件和软件相结合的数据组织形式。
第二章:算法分析一、题目:什么是时间复杂度?时间复杂度是描述算法执行时间与问题规模之间的增长关系,通常用大O记法表示。
例如,O(n)表示算法的执行时间与问题规模n成正比,O(n^2)表示算法的执行时间与问题规模n的平方成正比。
二、题目:主定理是什么?主定理(Master Theorem)是用于估计分治算法时间复杂度的定理。
它的公式为:T(n) = a * T(n/b) + f(n)其中,a是子问题的个数,n/b是每个子问题的规模,f(n)表示将一个问题分解成子问题和合并子问题的所需时间。
根据主定理的不同情况,可以得到算法的时间复杂度的上界。
第三章:基本数据结构一、题目:什么是数组?数组是一种线性数据结构,它由一系列具有相同数据类型的元素组成,通过索引访问。
数组具有随机访问、连续存储等特点,但插入和删除元素的效率较低。
二、题目:栈和队列有什么区别?栈和队列都是线性数据结构,栈的特点是“先进后出”,即最后压入栈的元素最先弹出;而队列的特点是“先进先出”,即最先入队列的元素最先出队列。
第四章:高级数据结构一、题目:什么是二叉树?二叉树是一种特殊的树形结构,每个节点最多有两个子节点。
二叉树具有左子树、右子树的区分,常见的有完全二叉树、平衡二叉树等。
数据结构笔记
数据结构笔记基础:数据结构与算法(一)数据结构基本概念数据(data):是对客观事物的符号表示,在计算机科学中是指所有能输入到计算机中并被计算机程序处理的符号总称数据元素(data element):是数据的基本单位,在计算机中通常被当做一个整体进行考虑和处理数据对象(data object):性质相同的数据元素的集合,是数据的一个子集数据结构(data structure):相互之间存在一种或多种特定关系的数据元素的集合4类基本结构:集合、线性结构、树形结构、图形(网状)结构数据结构的形式定义为数据结构是一个二元组Data Structure = (D,S),其中D是数据元素的有限集,S是D上关系的有限集数据结构定义中的“关系"描述的是数据元素之间的逻辑关系,因此又称为数据的逻辑结构数据结构在计算机中的表示(映像)称为物理结构(存储结构)计算机中表示信息的最小单位是二进制中的一位,叫做位(bit),一到若干位组成一个位串表示一个数据元素,这个位串称为元素或结点数据结构之间关系在计算机中的表示有两种:顺序映像、非顺序映像,并由此得到两种存储结构:顺序存储、链式存储,前者运用相对位置表示数据元素间的逻辑结构,后者借助指针任何一个算法的设计取决于数据(逻辑)结构,而实现依赖于存储结构数据类型是一个值的集合和定义在这个值集上的一组操作的总称数据类型分两种:原子类型、结构类型,前者不可分解(例如int、char、float、void ),后者结构类型由若干成分按某种结构组成,可分解,成分既可以是非结构的也可以是结构的(例:数组)抽象数据类型(Abstract Data Type ):是指一个数学模型及定义在该模型上的一组操作(P8)抽象数据类型格式如下:ADT抽象数据类型名{数据对象:<数据对象的定义>数据关系:<数据关系的定义>数据操作:〈数据操作的定义>}ADT抽象数据类型名基本操作格式如下:基本操作名(参数表)初始条件:〈初始条件描述〉操作结果:〈操作结果描述>多形数据类型(polymorphic data type):是指其值得成分不确定的数据类型(P9)抽象数据类型可由固有数据类型来表示和实现(二)算法(概念)和算法分析(时、空性能)算法(algorithm):对特定问题求解步骤的一种描述算法5特性:有穷、确定、可行、输入、输出1、有穷性:算法必须在可接受的时间内执行有穷步后结束2、确定性:每条指令必须要有确切含义,无二义性,并且只有唯一执行路径,即对相同的输入只能得相同输出3、可行性:算法中的操作都可通过已实现的基本运算执行有限次来完成4、输入:一个算法有一到多个输入,并取自某个特定对象合集5、输出:一个算法有一到多个输出,这些输出与输入有着某些特定关系的量算法设计要求(好算法):正确性、可读性、健壮性、效率与低存储需求健壮性是指对于规范要求以外的输入能够判断出这个输入不符合规范要求,并能有合理的处理方式.算法效率的度量:(1)事后统计:程序运行结束后借助计算机内部计时功能,缺点一是必须先运行依据算法编制的程序,二是受限于计算机软硬件,导致掩盖了算法本身的优劣(2)事前分析估计:消耗时间影响因素:算法策略、问题规模、编程语言、编译程序产生的机器码质量、机器执行指令的速度撇开各种影响因素只考虑问题的规模(通常用整数量n表示),记为问题规模的函数算法时间取决于控制结构(顺序,分支,循环)和固有数据类型操作的综合效果书写格式:T(n)= O(f(n))f(n)为n的某个函数时间复杂度:算法的渐近时间复杂度(asymptotic time complexity),它表示随问题规模的增大,算法执行时间的增长率和f(n)的增长率相同以循环最深层原操作为度量基准频度:该语句重复执行的次数算法的存储空间需求:空间复杂度(space complexity):算法所需存储空间度量,记作S(n)= O(f(n)),其中n为问题规模的大小一、线性表(一)线性表基本概念线性表(linear_list):n个数据元素的有限序列结构特点:存在唯一的被称作“第一个”、“最后一个"的数据元素,且除了第一个以外每个元素都有唯一前驱,除最后一个以外都有唯一后继在复杂线性表中存在:数据项-〉记录-〉文件,例如每个学生情况为一个记录,它由学号、性别。
常见数据结构与算法整理总结
常见数据结构与算法整理总结一、常见数据结构与算法整理总结在我们日常的工作中,数据结构和算法是非常重要的知识体系。
它们可以帮助我们更好地理解和处理数据,提高我们的工作效率。
在这篇文章中,我将对一些常见的数据结构和算法进行整理和总结,帮助大家更好地掌握这些知识。
二、数据结构的基础知识1.1 数组数组是一种最基本的数据结构,它可以存储一组具有相同类型的数据。
数组的优点是查找、插入和删除操作非常快,因为它们的时间复杂度都是O(1)。
但是,数组的大小是固定的,不能动态扩展。
1.2 链表链表是一种由一系列节点组成的数据结构。
每个节点包含两部分:数据域和指针域。
数据域用于存储数据,指针域用于指向下一个节点。
链表的优点是可以动态扩展,但是查找、插入和删除操作的时间复杂度都是O(n)。
1.3 栈栈是一种后进先出(LIFO)的数据结构。
它有两个主要的操作:入栈和出栈。
入栈是将元素压入栈顶,出栈是从栈顶弹出元素。
栈的优点是空间利用率高,但是只能在栈顶进行插入和删除操作,查找操作的时间复杂度是O(n)。
1.4 队列队列是一种先进先出(FIFO)的数据结构。
它有两个主要的操作:入队和出队。
入队是将元素放入队尾,出队是从队头取出元素。
队列的优点是可以动态扩展,但是只能在队头进行插入操作,查找操作的时间复杂度是O(n)。
三、算法的基础知识2.1 排序算法排序算法是将一组无序数据按照某种规则排列成有序数据的算法。
常见的排序算法有冒泡排序、选择排序、插入排序、快速排序等。
排序算法的时间复杂度通常在O(nlogn)到O(n^2)之间,其中最常用的是快速排序算法。
2.2 查找算法查找算法是在一组数据中查找指定元素的算法。
常见的查找算法有顺序查找、二分查找、哈希查找等。
查找算法的时间复杂度通常在O(logn)到O(n)之间,其中最常用的是二分查找算法。
2.3 图论算法图论算法是研究图结构的一类算法。
常见的图论算法有深度优先搜索、广度优先搜索、最短路径算法等。
数据结构笔记
数据结构笔记基础:数据结构与算法(一)数据结构基本概念数据(data):是对客观事物的符号表示,在计算机科学中是指所有能输入到计算机中并被计算机程序处理的符号总称数据元素(data element):是数据的基本单位,在计算机中通常被当做一个整体进行考虑和处理数据对象(data object):性质相同的数据元素的集合,是数据的一个子集数据结构(data structure):相互之间存在一种或多种特定关系的数据元素的集合4类基本结构:集合、线性结构、树形结构、图形(网状)结构数据结构的形式定义为数据结构是一个二元组Data Structure = (D,S),其中D是数据元素的有限集,S是D上关系的有限集数据结构定义中的“关系”描述的是数据元素之间的逻辑关系,因此又称为数据的逻辑结构数据结构在计算机中的表示(映像)称为物理结构(存储结构)计算机中表示信息的最小单位是二进制中的一位,叫做位(bit),一到若干位组成一个位串表示一个数据元素,这个位串称为元素或结点数据结构之间关系在计算机中的表示有两种:顺序映像、非顺序映像,并由此得到两种存储结构:顺序存储、链式存储,前者运用相对位置表示数据元素间的逻辑结构,后者借助指针任何一个算法的设计取决于数据(逻辑)结构,而实现依赖于存储结构数据类型是一个值的集合和定义在这个值集上的一组操作的总称数据类型分两种:原子类型、结构类型,前者不可分解(例如int、char、float、void ),后者结构类型由若干成分按某种结构组成,可分解,成分既可以是非结构的也可以是结构的(例:数组)抽象数据类型(Abstract Data Type ):是指一个数学模型及定义在该模型上的一组操作(P8)抽象数据类型格式如下:ADT抽象数据类型名{数据对象:<数据对象的定义>数据关系:<数据关系的定义>数据操作:<数据操作的定义>}ADT抽象数据类型名基本操作格式如下:基本操作名(参数表)初始条件:<初始条件描述>操作结果:<操作结果描述>多形数据类型(polymorphic data type):是指其值得成分不确定的数据类型(P9)抽象数据类型可由固有数据类型来表示和实现(二)算法(概念)和算法分析(时、空性能)算法(algorithm):对特定问题求解步骤的一种描述算法5特性:有穷、确定、可行、输入、输出1、有穷性:算法必须在可接受的时间内执行有穷步后结束2、确定性:每条指令必须要有确切含义,无二义性,并且只有唯一执行路径,即对相同的输入只能得相同输出3、可行性:算法中的操作都可通过已实现的基本运算执行有限次来完成4、输入:一个算法有一到多个输入,并取自某个特定对象合集5、输出:一个算法有一到多个输出,这些输出与输入有着某些特定关系的量算法设计要求(好算法):正确性、可读性、健壮性、效率与低存储需求健壮性是指对于规范要求以外的输入能够判断出这个输入不符合规范要求,并能有合理的处理方式。
数据结构与算法读书笔记
数据结构与算法读书笔记数据结构和算法是计算机科学中非常重要的领域,它们对于解决问题和优化代码性能至关重要。
以下是一些关于数据结构和算法的读书笔记:1.掌握基本数据结构:了解常见的数据结构,如数组、链表、栈、队列、散列表、树和图等。
理解它们的特点、操作和适用场景。
2.理解时间复杂度和空间复杂度:学习如何分析算法的时间和空间复杂度。
了解最坏情况、平均情况和最好情况下的复杂度分析方法。
3.掌握常见算法:学习基本的排序算法(如冒泡排序、插入排序、选择排序、快速排序、归并排序),搜索算法(如线性搜索、二分搜索),以及常见的图算法(如深度优先搜索、广度优先搜索)等。
4.解决实际问题:将学到的数据结构和算法应用到解决实际问题中。
通过练习编写代码来加深对数据结构和算法的理解和应用能力。
5.阅读经典教材:阅读经典的数据结构和算法教材,如《算法导论》(Introduction to Algorithms)、《数据结构与算法分析》(Data Structures and Algorithm Analysis in C++)等。
这些教材系统地介绍了各种数据结构和算法的原理和实现。
6.刷题实践:参加在线编程竞赛,刷LeetCode、HackerRank等网站上的算法题目。
这样可以锻炼自己的解题思路和编码能力,同时熟悉常见算法的应用场景。
7.学习高级数据结构和算法:在掌握基本的数据结构和算法后,可以进一步学习高级的数据结构和算法,如红黑树、A VL树、动态规划、贪心算法等。
8.追踪最新发展:关注数据结构和算法领域的最新研究和发展,了解新的数据结构和算法模型,如布隆过滤器、哈希图等。
以上是一些关于数据结构和算法的读书笔记。
通过系统学习和实践,不断提升自己的数据结构和算法能力,可以在编程领域中取得更好的成果。