三角函数公式及推倒

合集下载

十三类三角函数公式及推导定义

十三类三角函数公式及推导定义

十三类三角函数公式及推导定义一、同角三角函数的基本关系倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系:sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系:sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α)平常针对不同条件的常用的两个公式sin² α+cos² α=1 tan α *cot α=1一个特殊公式(sina+sinθ)*(sina+sinθ)=sin(a+θ)*sin(a-θ)证明:(sina+sinθ)*(sina+sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin (a+θ)*sin(a-θ)二、锐角三角函数公式正弦:sin α=∠α的对边/∠α 的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的对边三、二倍角公式正弦sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1 =1-2Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 正切tan2A=(2tanA)/(1-tan^2(A))四、三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)三倍角公式推导sin(3a) =sin(a+2a) =sin2acosa+cos2asina=2sina(1-sin²a)+(1-2sin²a)sina =3sina-4sin^3a cos3a =cos(2a+a)=cos2acosa-sin2asina =(2cos²a-1)cosa-2(1-cos^a)cosa =4cos^3a-3cosa sin3a=3sina-4sin^3a =4sina(3/4-sin²a) =4sina[(√3/2)²-sin²a]=4sina(sin²60°-sin²a) =4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a) cos3a=4cos^3a-3cosa =4cosa(cos²a-3/4)=4cosa[cos²a-(√3/2)^2] =4cosa(cos²a-cos²30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°) =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)] =4cosacos(60°-a)cos(60°+a) 上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)五、n倍角公式sin(n a)=Rsina sin(a+π/n)……sin(a+(n-1)π/n)。

三角函数公式_及_推导

三角函数公式_及_推导

三角函数公式_及_推导三角函数是数学中非常重要的概念,它是描述两条直角边比例关系的函数。

在数学和物理等科学领域中,三角函数被广泛应用于描述波动、振动、周期性等问题。

本文将介绍三角函数的常用公式和推导过程。

一、正弦函数(sin)正弦函数是一个周期函数,其定义域为实数集,值域为[-1,1]。

正弦函数可以通过一个单位圆来进行定义,设单位圆上任意一点P(x,y),该点对应的角度为θ,则正弦函数的值sinθ等于点P的纵坐标y。

sinθ = y正弦函数的周期是2π,即在0到2π之间,sinθ会不断重复。

正弦函数的常见公式包括:1.正弦函数的平方加余弦函数的平方等于1:sin^2θ + cos^2θ = 12.三角函数的和差公式:sin(α ± β) = sinαcosβ ± cosαsinβ3.三角函数的倍角公式:sin2θ = 2sinθcosθ4.三重角公式:sin3θ = 3sinθ - 4sin^3θ二、余弦函数(cos)余弦函数是正弦函数的补函数,其定义域为实数集,值域也为[-1,1]。

余弦函数可以通过单位圆来进行定义,设单位圆上任意一点P(x,y),该点对应的角度为θ,则余弦函数的值cosθ等于点P的横坐标x。

cosθ = x余弦函数的周期也是2π,即在0到2π之间,cosθ会不断重复。

余弦函数的常见公式包括:1.正弦函数的平方加余弦函数的平方等于1:sin^2θ + cos^2θ = 12.三角函数的和差公式:cos(α ± β) = cosαcosβ - sinαsinβ3.三角函数的倍角公式:cos2θ = cos^2θ - sin^2θ4.三重角公式:cos3θ = 4cos^3θ - 3cosθ三、正切函数(tan)正切函数是正弦函数和余弦函数的商,其定义域为实数集,但它的值域却没有上界和下界。

正切函数可以通过正弦函数和余弦函数的比值来进行定义。

tanθ = sinθ / cosθ正切函数的周期是π,即在0到π之间,tanθ会不断重复。

三角函数公式大全及推导过程

三角函数公式大全及推导过程

三角函数公式大全及推导过程一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=, 正弦:r y =αsin 余弦:r x =αcos 正切:xy =αtan 二、同角三角函数的基本关系式 商数关系:αααcos sin tan =,平方关系:1cos sin 22=+αα,221cos 1tan αα=+ 三、诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin (2k π+α)= sin α cos (2k π+α)= cos α tan (2k π+α)= tan α 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin (π+α)= -sin α cos (π+α)= -cos α tan (π+α)= tan α公式三:任意角α与 -α的三角函数值之间的关系:sin (-α)= -sin α cos (-α)= cos α tan (-α)= -tan α公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin (π-α)= sin α cos (π-α)= -cos α tan (π-α)= -tan α公式五: 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sin α cos (2π-α)= cos α tan (2π-α)= -tan α公式六:2π±α及23π±α与α的三角函数值之间的关系: sin (2π-α)= cos α cos (2π-α)= sin α sin (2π+α)= cos α cos (2π+α)= -sin α sin (23π-α)= -cos α cos (23π-α)= -sin α sin (23π+α)= -cos α cos (23π+α)= sin α 三、两角和差公式βαβαβαsin cos cos sin )sin(⋅+⋅=+βαβαβαsin cos cos sin )sin(⋅-⋅=-βαβαβαsin sin cos cos )cos(⋅-⋅=+βαβαβαsin sin cos cos )cos(⋅+⋅=-βαβαβαtan tan 1tan tan )tan(⋅-+=+ βαβαβαtan tan 1tan tan )tan(⋅+-=- 四、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(*ααα2tan 1tan 22tan -= 二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角)αα2cos 22cos 1=+ αα2sin 22cos 1=-2)cos (sin 2sin 1ααα+=+ 2)cos (sin 2sin 1ααα-=-其它公式五、辅助角公式:)sin(cos sin 22ϕ++=+x b a x b x a (其中ab =ϕtan ) 其中:角ϕ的终边所在的象限与点),(b a 所在的象限相同,(以上k ∈Z)六、其它公式:1、正弦定理:R Cc B b A a 2sin sin sin ===(R 为ABC ∆外接圆半径) 2、余弦定理 A bc c b a cos 2222⋅-+=B ac c a b cos 2222⋅-+=C ab b a c cos 2222⋅-+=3、三角形的面积公式 高底⨯⨯=∆21ABC S B ca A bc C ab S ABC sin 21sin 21sin 21===∆(两边一夹角)万能公式推导sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,(因为cos^2(α)+sin^2(α)=1)再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))然后用α/2代替α即可。

三角函数公式大全及其推导方法

三角函数公式大全及其推导方法

三角函数公式大全及其推导方法三角函数是高中数学课程中重要的内容之一、在学习三角函数时,我们会学习各种不同的三角函数公式,这些公式有助于解决三角函数相关的各种问题。

本文将介绍常用的三角函数公式及其推导方法。

一、基本三角函数公式1. 正弦函数(sin):在直角三角形中,正弦函数定义为对边与斜边的比值。

sin(A) = 对边 / 斜边2. 余弦函数(cos):在直角三角形中,余弦函数定义为邻边与斜边的比值。

cos(A) = 邻边 / 斜边3. 正切函数(tan):在直角三角形中,正切函数定义为对边与邻边的比值。

tan(A) = 对边 / 邻边二、三角函数的诱导公式1.正弦函数的诱导公式:sin(α ± β) = sin(α)cos(β) ± cos(α)sin(β)sin(2α) = 2sin(α)cos(α)2.余弦函数的诱导公式:cos(α ± β) = cos(α)cos(β) ∓ sin(α)sin(β)cos(2α) = cos²(α) - sin²(α) = 2cos²(α) - 1 = 1 -2sin²(α)3.正切函数的诱导公式:tan(α ± β) = (tan(α) ± tan(β)) / (1 ∓ tan(α)tan(β)) tan(2α) = 2tan(α) / (1 - tan²(α))三、倍角公式1.正弦函数的倍角公式:sin(2α) = 2sin(α)cos(α)2.余弦函数的倍角公式:cos(2α) = cos²(α) - sin²(α) = 2cos²(α) - 1 = 1 -2sin²(α)3.正切函数的倍角公式:tan(2α) = 2tan(α) / (1 - tan²(α))四、和差公式1.正弦函数的和差公式:sin(α + β) = sin(α)cos(β) + cos(α)sin(β)sin(α - β) = sin(α)cos(β) - cos(α)sin(β)2.余弦函数的和差公式:cos(α + β) = cos(α)cos(β) - sin(α)sin(β)cos(α - β) = cos(α)cos(β) + sin(α)sin(β)3.正切函数的和差公式:tan(α + β) = (tan(α) + tan(β)) / (1 - tan(α)tan(β))tan(α - β) = (tan(α) - tan(β)) / (1 + tan(α)tan(β))五、万能公式sin(A) = (e^(iA) - e^(-iA)) / (2i)cos(A) = (e^(iA) + e^(-iA)) / 2以上是一些常用的三角函数公式及其推导方法。

三角函数公式大全及推导

三角函数公式大全及推导

锐角三角函数公式 (2)倍角公式 (3)三倍角公式 (3)三倍角公式推导 (3)辅助角公式 (4)降幂公式 (4)推导公式 (4)半角公式 (7)三角和 (7)两角和差 (8)和差化积 (8)积化和差 (9)诱导公式 (9)诱导公式记背诀窍:奇变偶不变,符号看象限 (10)万能公式 (10)其它公式 (10)锐角三角函数公式sin α=∠α的对边/ 斜边cos α=∠α的邻边/ 斜边tan α=∠α的对边/ ∠α的邻边cot α=∠α的邻边/ ∠α的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方sin2(A))三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a ·tan(π/3+a)·tan(π/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina辅助角公式Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),(此括号内不是文章内容,来自学习方法网,阅读请跳过),tant=A/B降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin²a)+(1-2sin²a)sina =3sina-4sin³acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos²a-1)cosa-2(1-sin²a)cosa =4cos³a-3cosasin3a=3sina-4sin³a=4sina(3/4-sin²a)=4sina[(√3/2)²-sin²a]=4sina(sin²60°-sin²a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2] =4sinasin(60°+a)sin(60°-a)cos3a=4cos³a-3cosa=4cosa(cos²a-3/4)=4cosa[cos²a-(√3/2)²]=4cosa(cos²a-cos²30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))学习方法网[]三角和sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sin β·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sin β·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tan β·tanγ-tanγ·tanα)cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)和差化积sinθ+sinφ= 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ= 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ= 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ= -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)sinαsinβ= [cos(α-β)-cos(α+β)] /2cosαcosβ= [cos(α+β)+cos(α-β)]/2sinαcosβ= [sin(α+β)+sin(α-β)]/2cosαsinβ= [sin(α+β)-sin(α-β)]/2 诱导公式sin(-α) = -sinαcos(-α) = cosαtan (—a)=-tanαsin(π/2-α) = cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/[1+tan^(α/2)]cosα=[1-tan^(α/2)]/1+tan^(α/2)]tanα=2tan(α/2)/[1-tan^(α/2)]其它公式(1)(sinα)^2+(cosα)^2=1(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC(9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0。

三角函数公式及推导

三角函数公式及推导

三角函数公式及推导
三角函数是数学中常见的函数之一,常用于解决与角度相关的问题。

三角函数公式是三角函数的基本知识点之一,掌握了三角函数公式,就能更好的理解和应用三角函数。

三角函数公式主要包括正弦、余弦、正切、余切、正割、余割等六种函数的公式。

这些公式可以通过三角函数的定义和性质来推导得到。

正弦函数公式:sin(a+b)=sinacosb+cosasinb
余弦函数公式:cos(a+b)=cosacosb-sinasinb
正切函数公式:tan(a+b)= (tana + tanb)/ (1 - tana*tanb) 余切函数公式:cot(a+b)= (cota*cotb - 1) / (cota + cotb) 正割函数公式:sec(a+b)= (secacosb+sinasectanb) / (secb) 余割函数公式:csc(a+b)= (cscacosc+b) / (sincosb)
以上公式都可以通过三角函数的定义和一些基本的代数运算及恒等式推导出来。

了解这些公式,可以在解决复杂三角函数问题时更灵活应用。

除了以上推导的公式,还有许多其它的三角函数公式,比如二倍角公式、半角公式、余角公式等等,这些公式也是非常重要的。

在学习三角函数时,需要重点掌握这些公式,才能更好地理解和运用三角函数。

三角函数公式的推导并不是一件容易的事情,需要对三角函数的性质和一些基本的代数运算非常熟练才能够推导得出。

因此,在学习
三角函数时,需要认真掌握每一个知识点,努力理解和应用三角函数公式,才能在以后的学习和工作中发挥更大的作用。

三角函数推导及公式应用大全

三角函数推导及公式应用大全

三角函数公式1、两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)2、倍角公式tan2A = 2tanA/(1-tan^2 A)Sin2A=2SinA•CosACos2A = Cos^2 A--Sin^2 A=2Cos^2 A—1=1—2sin^2 A三倍角公式sin3A = 3sinA-4(sinA)^3;cos3A = 4(cosA)^3 -3cosAtan3a = tan a •tan(π/3+a)•tan(π/3-a) 半角公式sin(A/2) = √{(1--cosA)/2}cos(A/2) = √{(1+cosA)/2}tan(A/2) = √{(1--cosA)/(1+cosA)}cot(A/2) = √{(1+cosA)/(1-cosA)}tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)3、和差化积sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2] sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2] cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2] cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2] tanA+tanB=sin(A+B)/cosAcosB4、积化和差sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]5、诱导公式sin(-a) = -sin(a)cos(-a) = cos(a)sin(π/2-a) = cos(a)cos(π/2-a) = sin(a)sin(π/2+a) = cos(a)cos(π/2+a) = -sin(a)sin(π-a) = sin(a)cos(π-a) = -cos(a)sin(π+a) = -sin(a)cos(π+a) = -cos(a)tgA=tanA = sinA/cosA6、万能公式sin(a) = [2tan(a/2)] / {1+[tan(a/2)]^2}cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]^2}tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}7、其它公式a•sin(a)+b•cos(a) = [√(a^2+b^2)]*sin(a+c) [其中,tan(c)=b/a]a•sin(a)-b•cos(a) = [√(a^2+b^2)]*cos(a-c) [其中,tan(c)=a/b]1+sin(a) = [sin(a/2)+cos(a/2)]^2;1-sin(a) = [sin(a/2)-cos(a/2)]^2;;8、其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)9、双曲函数sinh(a) = [e^a-e^(-a)]/2cosh(a) = [e^a+e^(-a)]/2tg h(a) = sin h(a)/cos h(a)公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotαcot(3π/2-α)= tanα(以上k∈Z)三角函数公式大全锐角三角函数公式sin α=∠α的对边/ 斜边cos α=∠α的邻边/ 斜边tan α=∠α的对边/ ∠α的邻边cot α=∠α的邻边/ ∠α的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方sin2(A))三倍角公式sin3α=4sinα•sin(π/3+α)sin(π/3-α)cos3α=4cosα•cos(π/3+α)cos(π/3-α)tan3a = tan a •tan(π/3+a)•tan(π/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina辅助角公式Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin²a)+(1-2sin²a)sina=3sina-4sin³acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos²a-1)cosa-2(1-sin²a)cosa=4cos³a-3cosasin3a=3sina-4sin³a=4sina(3/4-sin²a)=4sina[(√3/2)²-sin²a]=4sina(sin²60°-sin²a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos³a-3cosa=4cosa(cos²a-3/4)=4cosa[cos²a-(√3/2)²]=4cosa(cos²a-cos²30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(α+β+γ)=sinα•cosβ•cosγ+cosα•sinβ•cosγ+cosα•cosβ•sinγ-sinα•sinβ•sinγcos(α+β+γ)=cosα•cosβ•cosγ-cosα•sinβ•sinγ-sinα•cosβ•sinγ-sinα•sinβ•cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα•tanβ•tanγ)/(1-tanα•tanβ-tanβ•tanγ-tanγ•tanα)两角和差cos(α+β)=cosα•cosβ-sinα•sinβcos(α-β)=cosα•cosβ+sinα•sinβsin(α±β)=sinα•cosβ±cosα•sinβtan(α+β)=(tanα+tanβ)/(1-tanα•tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα•tanβ)和差化积sinθ+sinφ= 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ= 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ= 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ= -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)积化和差sinαsinβ= [cos(α-β)-cos(α+β)] /2cosαcosβ= [cos(α+β)+cos(α-β)]/2sinαcosβ= [sin(α+β)+sin(α-β)]/2cosαsinβ= [sin(α+β)-sin(α-β)]/2诱导公式sin(-α) = -sinαcos(-α) = cosαtan (—a)=-tanαsin(π/2-α) = cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/〔1+tan^(α/2)〕cosα=〔1-tan^(α/2)〕/1+tan^(α/2)〕tanα=2tan(α/2)/〔1-tan^(α/2)〕其它公式(1)(sinα)^2+(cosα)^2=1(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC(9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0一,诱导公式口诀:(分子)奇变偶不变,符号看象限.1. sin (α+k•360)=sin αcos (α+k•360)=cos atan (α+k•360)=tan α2. sin(180°+β)=-sinαcos(180°+β)=-cosa3. sin(-α)=-sinacos(-a)=cosα4*. tan(180°+α)=tanαtan(-α)=tanα5. sin(180°-α)=sinαcos(180°-α)=-cosα6. sin(360°-α)=-sinαcos(360°-α)=cosα7. sin(π/2-α)=cosαcos(π/2-α)=sinα8*. Sin(3π/2-α)=-cosαcos(3π/2-α)=-sinα9*. Sin(π/2+α)=cosαcos(π/2+a)=-sinα10*.sin(3π/2+α)=-cosαcos(3π/2+α)=sinα二,两角和与差的三角函数1. 两点距离公式2. S(α+β): sin(α+β)=sinαcosβ+cosαsinβC(α+β): cos(α+β)=cosαcosβ-sinαsinβ3. S(α-β): sin(α-β)=sinαcosβ-cosαsinβC(α-β): cos(α-β)=cosαcosβ+sinαsinβ4. T(α+β):T(α-β):5*.三,二倍角公式1. S2α: sin2α=2sinαcosα2. C2a: cos2α=cos2α-sin2a3. T2α: tan2α=(2tanα)/(1-tan2α)4. C2a': cos2α=1-2sin2αcos2α=2cos2α-1四*,其它杂项(全部不可直接用)1.辅助角公式asinα+bcosα=sin(a+φ),其中tanφ=b/a,其终边过点(a, b) asinα+bcosα=cos(a-φ),其中tanφ=a/b,其终边过点(b,a) 2.降次,配方公式降次:sin2θ=(1-cos2θ)/2cos2θ=(1+cos2θ)/2配方1±sinθ=[sin(θ/2)±cos(θ/2)]21+cosθ=2cos2(θ/2)1-cosθ=2sin2(θ/2)3. 三倍角公式sin3θ=3sinθ-4sin3θcos3θ=4cos3-3cosθ4. 万能公式5. 和差化积公式sinα+sinβ=sinα-sinβ=cosα+cosβ=cosα-cosβ=6. 积化和差公式sinαsinβ=1/2[sin(α+β)+sin(α-β)]cosαsinβ=1/2[sin(α+β)-sin(α-β)]sinαsinβ-1/2[cos(α+β)-cos(α-β)]cosαcosβ=1/2[cos(α+β)+cos(α-β)]7. 半角公式另:三角函数口诀三角知识,自成体系,记忆口诀,一二三四.一个定义,三角函数,两种制度,角度弧度.三套公式,牢固记忆,同角诱导,加法定理.同角公式,八个三组,平方关系,导数商数.诱导公式,两类九组,象限定号,偶同奇余.两角和差,欲求正弦,正余余正,符号同前.两角和差,欲求余弦,余余正正,符号相反.两角相等,倍角公式,逆向反推,半角极限.加加减减,变量替换,积化和差,和奇互变.锐角三角函数公式sin α=∠α的对边/ 斜边cos α=∠α的邻边/ 斜边tan α=∠α的对边/ ∠α的邻边cot α=∠α的邻边/ ∠α的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方sin2(A))三倍角公式sin3α=4sinα•sin(π/3+α)sin(π/3-α)cos3α=4cosα•cos(π/3+α)cos(π/3-α)tan3a = tan a •tan(π/3+a)•tan(π/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina辅助角公式Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin²a)+(1-2sin²a)sina=3sina-4sin³acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos²a-1)cosa-2(1-sin²a)cosa=4cos³a-3cosasin3a=3sina-4sin³a=4sina(3/4-sin²a)=4sina[(√3/2)²-sin²a]=4sina(sin²60°-sin²a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos³a-3cosa=4cosa(cos²a-3/4)=4cosa[cos²a-(√3/2)²]=4cosa(cos²a-cos²30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(α+β+γ)=sinα•cosβ•cosγ+cosα•sinβ•cosγ+cosα•cosβ•sinγ-sinα•sinβ•sin γcos(α+β+γ)=cosα•cosβ•cosγ-cosα•sinβ•sinγ-sinα•cosβ•sinγ-sinα•sinβ•cos γtan(α+β+γ)=(tanα+tanβ+tanγ-tanα•tanβ•tanγ)/(1-tanα•tanβ-tanβ•tanγ-tan γ•tanα)两角和差cos(α+β)=cosα•cosβ-sinα•sinβcos(α-β)=cosα•cosβ+sinα•sinβsin(α±β)=sinα•cosβ±cosα•sinβtan(α+β)=(tanα+tanβ)/(1-tanα•tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα•tanβ)和差化积sinθ+sinφ= 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ= 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ= 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ= -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)积化和差sinαsinβ= [cos(α-β)-cos(α+β)] /2cosαcosβ= [cos(α+β)+cos(α-β)]/2sinαcosβ= [sin(α+β)+sin(α-β)]/2cosαsinβ= [sin(α+β)-sin(α-β)]/2诱导公式sin(-α) = -sinαcos(-α) = cosαtan (—a)=-tanαsin(π/2-α) = cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/[1+tan^(α/2)]cosα=[1-tan^(α/2)]/1+tan^(α/2)]tanα=2tan(α/2)/[1-tan^(α/2)]其它公式(1)(sinα)^2+(cosα)^2=1(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC(9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0。

三角函数公式大全及其推导方法

三角函数公式大全及其推导方法

三角函数公式大全及其推导方法1.基本关系:三角函数的定义是将角的信息转化为边长比值的函数。

主要有正弦函数sin(x)、余弦函数cos(x)、正切函数tan(x)、余切函数cot(x)、正割函数sec(x)和余割函数csc(x)。

2.三角函数的和差公式:(1)正弦函数的和差公式:sin(a ± b) = sin(a)cos(b) ± cos(a)sin(b)(2)余弦函数的和差公式:cos(a ± b) = cos(a)cos(b) ∓ sin(a)sin(b)(3)正切函数的和差公式:tan(a ± b) = (tan(a) ± tan(b)) / (1 ∓ tan(a)tan(b))(4)余切函数的和差公式:cot(a ± b) = (cot(a)cot(b) ∓ 1) / (cot(b) ± cot(a))3.三角函数的倍角公式:(1)正弦函数的倍角公式:sin(2a) = 2sin(a)cos(a)(2)余弦函数的倍角公式:cos(2a) = cos^2(a) - sin^2(a) = 2cos^2(a) - 1 = 1 - 2sin^2(a)tan(2a) = 2tan(a) / (1 - tan^2(a))(4)余切函数的倍角公式:cot(2a) = (cot^2(a) - 1) / (2cot(a))4.三角函数的半角公式:(1)正弦函数的半角公式:sin(a/2) = ± √((1 - cos(a)) / 2)(2)余弦函数的半角公式:cos(a/2) = ± √((1 + cos(a)) / 2)(3)正切函数的半角公式:tan(a/2) = ± √((1 - cos(a)) / (1 + cos(a)))5.诱导公式:(1)正切函数的诱导公式:tan(a ± b) = (tan(a) ± tan(b)) / (1 ∓ tan(a)tan(b))(2)余切函数的诱导公式:cot(a ± b) = (cot(a)cot(b) ∓ 1) / (cot(b) ± cot(a))6.三角函数的倒角公式:(1)正弦函数的倒角公式:sin(a/2) = ± √((1 - cos(a)) / 2)cos(a/2) = ± √((1 + cos(a)) / 2)(3)正切函数的倒角公式:tan(a/2) = ± √((1 - cos(a)) / (1 + cos(a)))这些都是三角函数的重要公式。

三角函数推导及公式大全

三角函数推导及公式大全

三角函数诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系sin(π/2+α)=cosαsin(π/2-α)=cosαcos(π/2+α)=-sinαcos(π/2-α)=sinαtan(π/2+α)=-cotαtan(π/2-α)=cotαcot(π/2+α)=-tanαcot(π/2-α)=tanα诱导公式记忆口诀:“奇变偶不变,符号看象限”。

“奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。

(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。

以cos(π/2+α)=-sinα为例,等式左边cos(π/2+α)中n=1,所以右边符号为sinα,把α看成锐角,所以π/2<(π/2+α)<π,y=cosx在区间(π/2,π)上小于零,所以右边符号为负,所以右边为-sinα。

三角函数诱导公式万能公式和差化积公式倍角公式等公式总结及其推导

三角函数诱导公式万能公式和差化积公式倍角公式等公式总结及其推导

三角函数诱导公式万能公式和差化积公式倍角公式等公式总结及其推导一、三角函数诱导公式1、万能公式a sin(A+B) = a sinAcosB + a cosAsinBa cos(A+B) = a cosAcosB - a sinAsinB2、差化积公式sinAcosB - cosAsinB = sin(A-B)cosAcosB + sinAsinB = cos(A-B)3、倍角公式sin2A = 2sinAcosAcos2A = cos2A - sin2A = 2cos2A - 1 = 1 - 2sin2A4、和差公式sin(A±B) = sinAcosB±cosAsinBcos(A±B) = cosAcosB∓sinAsinB二、推导1、万能公式推导过程设定A+B=C,则有:a sin(A + B)= a sinC左右两侧同时乘以cosB:a sin(A + B)cosB = a sinCcosB左右两侧同时乘以sinB:a sin(A + B)sinB = a sinCsinB将上式整合即可得:a sin(A + B)= a sinAcosB + a cosAsinB同理,可推导出:a cos(A + B) = a cosAcosB - a sinAsinB2、差化积公式推导过程设定A=B,则有:sinAcosB - cosAsinB = sinAcosA - cosAcosA 经过整合可得:sinAcosB - cosAsinB = sinA -cosA将A=B替换为A-B,即可得sinAcosB - cosAsinB = sin(A-B)同理:cosAcosB + sinAsinB = cosAcosA + sinAsinA 经过整合可得:cosAcosB +sinAsinB = cosA +sinA将A=B替换为A-B,即可得cosAcosB +sinAsinB = cos(A-B)3、倍角公式的推导过程由于A为任意角度,对其两侧两边可以分别进行乘以cosA及sinA,得到:sinAcosA + sinAcosA = cosA*sinA + cosA*sinA经过整合可得:sin2A = 2sinAcosAcos2A = cosAcosA - sinAcosA经过整合可得:cos2A = 2cos2A - 1再把上式中的cos2A代入:2cos2A - 1 = 1 - 2sin2A4、和差公式推导过程设定A+B=C,则有:sin(A + B)= sinC将左右两侧分别乘以cosB及sinB:。

三角函数公式及推导公式

三角函数公式及推导公式

三角函数公式及推导公式三角函数是数学中的重要概念之一,它们在几何学、物理学、工程学和数学分析等领域中被广泛应用。

本文将介绍常见的三角函数公式及其推导。

一、正弦函数(sin)1.定义正弦函数表示的是一个角的对边与斜边的比值,通常用sin来表示。

2.常见公式(1)和差公式:sin(A ± B) = sin A · cos B ± cos A · sin B(2)倍角公式:sin 2A = 2 · sin A · cos A(3)半角公式:sin(A/2) = ±√[(1 - cos A) / 2]二、余弦函数(cos)1.定义余弦函数表示的是一个角的邻边与斜边的比值,通常用cos来表示。

2.常见公式(1)和差公式:cos(A ± B) = cos A · cos B ∓ sin A · sin B(2)倍角公式:cos 2A = cos² A - sin² A = 2 · cos² A - 1 = 1 - 2 · sin² A (3)半角公式:cos(A/2) = ±√[(1 + cos A) / 2]三、正切函数(tan)1.定义正切函数表示的是一个角的对边与邻边的比值,通常用tan来表示。

2.常见公式(1)和差公式:tan(A ± B) = (tan A ± tan B) / (1 ∓ tan A · tan B)(2)倍角公式:tan 2A = (2 · tan A) / (1 - tan² A)(3)半角公式:tan(A/2) = ±√[(1 - cos A) / (1 + cos A)]四、余切函数(cot)1.定义余切函数表示的是一个角的邻边与对边的比值,通常用cot来表示。

三角函数公式及推导公式

三角函数公式及推导公式

三角函数公式及推导公式三角函数是解析几何中的重要内容,它研究的是角度和三角形的关系。

三角函数包括正弦函数、余弦函数、正切函数等,它们常用于求解角度、测量距离和角度的相关问题。

一、正弦函数正弦函数是三角函数中最基本的函数之一,它表示的是一个锐角的对边与斜边之间的比值。

正弦函数可以用如下公式表示:sinθ = 对边 / 斜边其中,θ是一个锐角,对边是与该锐角相对的边,斜边是与该锐角相邻的边。

二、余弦函数余弦函数是三角函数中的另一个基本函数,它表示的是锐角的邻边与斜边之间的比值。

余弦函数可以用如下公式表示:cosθ = 邻边 / 斜边其中,θ是一个锐角,邻边是与该锐角相邻的边,斜边是与该锐角相对的边。

三、正切函数正切函数是三角函数中的第三个基本函数,它表示的是锐角的对边与邻边之间的比值。

正切函数可以用如下公式表示:tanθ = 对边 / 邻边其中,θ是一个锐角,对边是与该锐角相对的边,邻边是与该锐角相邻的边。

四、推导公式1.和差公式sin(α + β) = sinαcosβ + cosαsinβsin(α - β) = sinαcosβ - cosαsinβcos(α + β) = cosαcosβ - sinαsinβcos(α - β) = cosαcosβ + sinαsinβtan(α + β) = (tanα + tanβ) / (1 - tanαtanβ)tan(α - β) = (tanα - tanβ) / (1 + tanαtanβ)2.积化和差公式sin2θ = (1 - cos2θ) / 2cos2θ = (1 + cos2θ) / 2tan2θ = (1 - cos2θ) / (1 + cos2θ)3.和差化积公式sinα + sinβ = 2sin((α + β) / 2)cos((α - β) / 2)sinα - sinβ = 2cos((α + β) / 2)sin((α - β) / 2)cosα + cosβ = 2cos((α + β) / 2)cos((α - β) / 2)cosα - cosβ = -2sin((α + β) / 2)sin((α - β) / 2)四、推导下面以正弦函数的推导为例进行详细说明。

三角函数公式的推导及公式大全

三角函数公式的推导及公式大全

三角函数公式的推导及公式大全三角函数是数学中常用的一类函数,它们描述了角度与三角形边长之间的关系。

三角函数公式的推导基于角度的单位圆定义和三角形的几何性质。

本文将详细介绍三角函数的推导和给出常用的三角函数公式。

1.角度的定义和单位圆首先,让我们来定义角度。

角度是用来度量平面上两条射线之间的夹角的量度,也可以理解为弧度的一种度量方式。

常用的度量单位有度和弧度。

在许多三角函数的推导中,我们使用弧度作为角度的单位。

① sinθ = y② cosθ = x③ tanθ = sinθ / cosθ = y / x④ cotθ = cosθ / sinθ = x / y⑤ secθ = 1 / cosθ = 1 / x⑥ cscθ = 1 / sinθ = 1 / y2.基本三角函数公式基本的三角函数公式可以通过单位圆上的定义推导得出。

这些公式为我们计算各种三角函数提供了便利。

以下是基本的三角函数公式:①互余三角函数关系:sinθ = 1 / cscθcosθ = 1 / secθtanθ = 1 / cotθ②诱导公式:sin(-θ) = -sinθcos(-θ) = cosθtan(-θ) = -tanθ③倍角公式:sin(2θ) = 2sinθcosθcos(2θ) = cos²θ - sin²θtan(2θ) = (2tanθ) / (1 - tan²θ)④半角公式:sin(θ/2) = sqrt((1 - cosθ) / 2)cos(θ/2) = sqrt((1 + cosθ) / 2)tan(θ/2) = sinθ / (1 + cosθ)⑤和差公式:sin(A ± B) = sinAcosB ± cosAsinBcos(A ± B) = cosAcosB ∓ sinAsinBtan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)这些基本的三角函数公式是推导其他三角函数公式的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二角和差公式
三角和公式
和差化积
口诀:正加正,正在前,余加余,余并肩,正减正,余在前,余减余,负正弦.积化和差
倍角公式
二倍角公式
三倍角公式
证明:
sin3a
=sin(a+2a)
=sin^2a·cosa+cos^2a·sina
=2sina(1-sin^2a)+(1-2sin^2a)sina
=3sina-4sin^3a
cos3a
=cos(2a+a)
=cos^2acosa-sin^2asina
=(2cos^2a-1)cosa-2(1-cos^2a)cosa
=4cos^3a-3cosa
sin3a
=3sina-4sin^3a
=4sina(3/4-sin^2a)
=4sina[(√3/2)-sina][(√3/2)+sina]
=4sina(sin60°+sina)(sin60°-sina)
=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[60°+a)/2]
=4sinasin(60°+a)sin(60°-a)
cos3a
=4cos^3a-3cosa
=4cosa(cos^2a-3/4)
=4cosa[cos^2a-(√3/2)^2]
=4cosa(cosa-cos30°)(cosa+cos30°)
=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°)
=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]
=-4cosacos(60°-a)[-cos(60°+a)]
=4cosacos(60°-a)cos(60°+a)
上述两式相比可得:
tan3a=tana·tan(60°-a)·tan(60°+a)
四倍角公式
sin4a=-4*[cosa*sina*(2*sina^2-1)]
cos4a=1+(-8*cosa^2+8*cosa^4)
tan4a=(4*tana-4*tana^3)/(1-6*tana^2+tana^4)
五倍角公式
n倍角公式
应用欧拉公式:
.
上式用于求n倍角的三角函数时,可变形为:
所以,
其中,Re表示取实数部分,Im表示取虚数部分.而
所以,
n倍角的三角函数
半角公式
(正负由
所在的象限决定)万能公式
辅助角公式

证明:
由于
,显然
,且
故有:。

相关文档
最新文档