信号与线性系统分析吴大正第四版习题答案第六章
(NEW)吴大正《信号与线性系统分析》(第4版)配套题库【名校考研真题+课后习题+章节题库+模拟试题】上册
二、判断题
任何系统的全响应必为零状态响应与零输入响应之和。( )[北京 邮电大学2012研]
【答案】×
【解析】零输入响应为仅由起始状态所产生的响应。零状态响应是系统 的初始状态为零时,仅由输入信号引起的响应。由此可知仅当系统满足 线性时,其全响应必为零状态响应与零输入响应之和。
三、分析计算题
1.已知某系统的转移函数 ,求系统的零状态响应
【答案】
【解析】设f1(t)=ε(t)由LTI系统的线性和时不变性得(由于该题 没有给出系统的初始状态,所以这里不考虑)
f(t)=ε(t-1)-ε(t-2)=f1(t-1)-f1(t-2)
3.已知某LTI系统,当t>0时有: 当输入f(t)=(e-t+2e-2t)ε(t)时,输出响应为(e-t+5e-2t) ε(t); 当输入f(t)=(2e-t+e-2t)ε(t)时,输出响应为(5e-t+e-2t) ε(t); 当输入f(t)=(e-t+e-2t)ε(t)时,输出响应为(e-t+e-2t) ε(t); 则当输入为f(t)=(e-t-e-2t)ε(t)时,系统的输出响应为 ______。[长沙理工大学2006研]
整理得:
则
关) 取其逆变换得:
(仅与输入有关) (仅与系统的初始状态有
第3章 离散系统的时域分析 一、选择题
1.有限长序列 的长度为4,欲使 与 的圆卷积和线卷积相同, 则长度L的最小值为( )。[中国科学院研究生院2012研] A.5 B.6 C.7 D.8 【答案】C
【解析】 的长度为4,则其线卷积的长度为4+4-1=7。当 与 的圆卷积 时, 与 的圆卷积和线卷积相同,可知L的最小
【答案】
;
;稳定
【解析】由
可知,该系统任意两个相邻的输出值之差就是该
信号与线性系统分析_(吴大正_第四版)习题答案12264精编版
第一章 信号与系统(一)1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。
(2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为 (2)∞<<-∞=-t e t f t ,)((3))()sin()(t t t f επ=(4))fεt=(sin)(t(5))trf=(sin)(t(7))t(kf kε=)(2(10))f kεk-=(k+(])1(1[)1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。
(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k---=εε 解:各信号波形为 (1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t rt rt rtf(5))2()2()(ttrtf-=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(kkkf k---=εε1-3 写出图1-3所示各波形的表达式。
1-4 写出图1-4所示各序列的闭合形式表达式。
1-5 判别下列各序列是否为周期性的。
如果是,确定其周期。
(2))63cos()443cos()(2ππππ+++=k k k f (5))sin(2cos 3)(5t t t f π+=解:1-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形。
信号与线性系统分析_(吴大正_第四版)习题答案
1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。
之吉白夕凡创作(2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f =(7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+=解:各信号波形为(2)∞<<-∞=-t e t f t,)((3))()sin()(t t t f επ=(4))(sin )(t t f ε=(5))(sin )(t r t f =(7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+=1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。
(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f (5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=kkkkfεεπ(12))]()3([2)(kkkf k---=εε解:各信号波形为(1))2()1(3)1(2)(-+--+=ttttfεεε(2))2()1(2)()(-+--=t rt rt rtf(5))2()2()(ttrtf-=ε(8))]5()([)(--=kkkkfεε(11))]7()()[6sin()(--=kkkkfεεπ(12))]()3([2)(kkkf k---=εε1-3 写出图1-3所示各波形的表达式。
1-4 写出图1-4所示各序列的闭合形式表达式。
1-5 判别下列各序列是否为周期性的。
如果是,确定其周期。
(2))63cos()443cos()(2ππππ+++=k k k f (5))sin(2cos 3)(5t t t f π+= 解:1-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形。
信号与线性系统分析_(吴大正_第四版)习题答案
5-50 求下列象函数的双边拉普拉斯变换。
(1) (2)
(3) (4)
1-1画出下列各信号的波形【式中】为斜升函数。
(2) (3)
(4) (5)
(7) (10)
解:各信号波形为
(2)
(3)
(4)
(5)
(7)
(10)
1-2 画出下列各信号的波形[式中为斜升函数]。
(1) (2)
(5) (8)
(11) (12)
解:各信号波形为
(1)
(2)
(5)
(8)
(11)
(12)
1-3 写出图1-3所示各波形的表达式。
4.17 根据傅里叶变换对称性求下列函数的傅里叶变换
(1)
(2)
(3)
4.18 求下列信号的傅里叶变换
(1) (2)
(3) (4)
(5)
4.19 试用时域微积分性质,求图4-23示信号的频谱。
图4-23
4.20 若已知,试求下列函数的频谱:
(1) (3) (5)
(8) (9)
4.21 求下列函数的傅里叶变换
(1)如,求的频谱函数(或画出频谱图)。
(2)如,求的频谱函数(或画出频谱图)。
4.45 如图4-42(a)的系统,带通滤波器的频率响应如图(b)所示,其相频特性,若输入
求输出信号。
图4-42
4.48 有限频带信号的最高频率为100Hz,若对下列信号进行时域取样,求最小取样频率。
(1) (2)
(3) (4)
3.22、如图所示的复合系统有三个子系统组成,它们的单位序列响应分别为,,求复合系统的单位序列响应。
第四章习题
4.6 求下列周期信号的基波角频率Ω和周期T。
信号和线性系统分析-(吴大正-第四版)习题答案解析02871
1 / 28专业课习题解析课程第1讲第一章 信号与系统〔一 专业课习题解析课程第2讲第一章 信号与系统〔二1-1画出下列各信号的波形[式中)()(t t t r ε=]为斜升函数。
〔2∞<<-∞=-t et f t,)( 〔3)()sin()(t t t f επ=〔4)(sin )(t t f ε= 〔5)(sin )(t r t f =2 / 28〔7)(2)(k t f kε= 〔10)(])1(1[)(k k f kε-+=解:各信号波形为 〔2∞<<-∞=-t et f t,)(〔3)()sin()(t t t f επ= 〔4)(sin )(t t f ε= 〔5)(sin )(t r t f = 〔7)(2)(k t f k ε= 〔10)(])1(1[)(k k f k ε-+=1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。
〔1)2()1(3)1(2)(-+--+=t t t t f εεε 〔2)2()1(2)()(-+--=t r t r t r t f 〔5)2()2()(t t r t f -=ε 〔8)]5()([)(--=k k k k f εε 〔11)]7()()[6sin()(--=k k k k f εεπ〔12)]()3([2)(k k k f k---=εε 解:各信号波形为〔1)2()1(3)1(2)(-+--+=t t t t f εεε3 / 28〔2)2()1(2)()(-+--=t r t r t r t f〔5)2()2()(t t r t f -=ε〔8)]5()([)(--=k k k k f εε〔11)]7()()[6sin()(--=k k k k f εεπ〔12)]()3([2)(k k k f k---=εε1-3 写出图1-3所示各波形的表达式。
1-4 写出图1-4所示各序列的闭合形式表达式。
吴大正《信号与线性系统分析》(第4版)配套题库【章节题库】(下册)-第5~6章【圣才出品】
第5章连续系统的s域分析一、选择题1.信号的拉普拉斯变换为()。
【答案】C【解析】为t与u(t)的卷积,u(t)的拉氏变换为1/s,t的拉氏变换为,时域的卷积对应频域的乘积,所以×=。
2.f(t)=e2t u(t)的拉氏变换及收敛域为()。
【答案】C【解析】u(t)的拉氏变换为1/s,根据频域的平移性质,x(t)jcte-←−→X(s-c)。
题中c=2,右边信号的收敛域大于极点。
3.已知某信号的拉氏变换式为,则该信号的时间函数为()。
A.e-α(t—T)u(t-T)B.e-αt u(t-T)C.e-αt u(t-α)D .e -αu (t -T ) 【答案】B【解析】可采用从时域到频域一一排除的方法,u (t )的拉氏变换为1/s,根据时移性,u (t -T )的拉氏变换为s e sT -,再根据频域的时移性,e -αt u (t -T )的拉氏变换为sesT-的s 左移α,即se sT-中的s 加上α。
可推断出B 项的拉氏变换为。
4.信号f (t )=(t +1)u (t +1)的单边拉普拉斯变换为( )。
【答案】B【解析】f (t )是tu (t )向左移1个单位时间后的结果,由于单边拉氏变换只研究0t ≥的时间函数,故不能利用性质求F (s )。
因此可认为f (t )与(t +1)u (t )的单边拉氏变换相同,于是2111(t )u(t )s s+↔+。
5.信号u (t )-u (t -2)的拉普拉斯变换及收敛域为( )。
【答案】A【解析】阶跃u (t )的拉普拉斯变换为s1,根据拉普拉斯变换的时移性,f (t -0t ))(0s F ets -−→←,则u (t )的拉普拉斯变换为se s2-。
6.象函数的拉普拉斯逆变换为( )。
【答案】B【解析】由常用拉氏变换和拉氏变换的性质知()1(),,s sT s a T ate e u t s s s a--+-↔↔↔+时域平移u(t-T)域平移e u(t-T) 首先将F (s )变形为:e sT T e s αα--+,e st s α+的逆变换为(t T )e u(t T )α---,T e α-为常数,所以所求的逆变换为(t T )eu(t T )α---T e α-=t e u(t T )α--。
线性系统分析_(吴大正_第四版)习题答案
专业课习题解析课程西安电子科技大学844信号与系统专业课习题解析课程第1讲第一章信号与系统(一)专业课习题解析课程第2讲第一章信号与系统(二)1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。
(2)∞<<-∞=-t et f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f kε= (10))(])1(1[)(k k f kε-+=解:各信号波形为 (2)∞<<-∞=-t et f t,)((3))()sin()(t t t f επ=(4))fεt=(sin)(t(5))trf=(sin)(t(7))t(kf kε=)(2(10))f kεk-=(k+(])1(1[)1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。
(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f (5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11))]7()()[6sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k---=εε解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t rt rt rtf(5))2()2()(ttrtf-=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(kkkf k---=εε1-3 写出图1-3所示各波形的表达式。
1-4 写出图1-4所示各序列的闭合形式表达式。
(NEW)吴大正《信号与线性系统分析》(第4版)笔记和课后习题(含考研真题)详解
目 录第1章 信号与系统1.1 复习笔记1.2 课后习题详解1.3 名校考研真题详解第2章 连续系统的时域分析2.1 复习笔记2.2 课后习题详解2.3 名校考研真题详解第3章 离散系统的时域分析3.1 复习笔记3.2 课后习题详解3.3 名校考研真题详解第4章 傅里叶变换和系统的频域分析4.1 复习笔记4.2 课后习题详解4.3 名校考研真题详解第5章 连续系统的s域分析5.1 复习笔记5.2 课后习题详解5.3 名校考研真题详解第6章 离散系统的z域分析6.1 复习笔记6.2 课后习题详解6.3 名校考研真题详解第7章 系统函数7.1 复习笔记7.2 课后习题详解7.3 名校考研真题详解第8章 系统的状态变量分析8.1 复习笔记8.2 课后习题详解8.3 名校考研真题详解第1章 信号与系统1.1 复习笔记一、信号的基本概念与分类信号是载有信息的随时间变化的物理量或物理现象,其图像为信号的波形。
根据信号的不同特性,可对信号进行不同的分类:确定信号与随机信号;周期信号与非周期信号;连续时间信号与离散时间信号;实信号与复信号;能量信号与功率信号等。
二、信号的基本运算1加法和乘法f1(t)±f2(t)或f1(t)×f2(t)两信号f1(·)和f2(·)的相加、减、乘指同一时刻两信号之值对应相加、减、乘。
2.反转和平移(1)反转f(-t)f(-t)波形为f(t)波形以t=0为轴反转。
图1-1(2)平移f(t+t0)t0>0,f(t+t0)为f(t)波形在t轴上左移t0;t0<0,f(t+t0)为f(t)波形在t轴上右移t0。
图1-2平移的应用:在雷达系统中,雷达接收到的目标回波信号比发射信号延迟了时间t0,利用该延迟时间t0可以计算出目标与雷达之间的距离。
这里雷达接收到的目标回波信号就是延时信号。
3.尺度变换f(at)若a>1,则f(at)波形为f(t)的波形在时间轴上压缩为原来的;若0<a<1,则f(at)波形为f(t)的波形在时间轴上扩展为原来的;若a<0,则f(at)波形为f(t)的波形反转并压缩或展宽至。
信号与线性系统分析_(吴大正_第四版)习题答案
1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。
之樊仲川亿创作(2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f =(7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+=解:各信号波形为(2)∞<<-∞=-t e t f t ,)((3))()sin()(t t t f επ=(4))(sin )(t t f ε=(5))(sin )(t r t f =(7))(2)(k t f k ε=(10))(])1(1[)(k k f k ε-+= 1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。
(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(ttrtf-=ε(8))]5()([)(--=kkkkfεε(11))]7()()[6sin()(--=kkkkfεεπ(12))]()3([2)(kkkf k---=εε解:各信号波形为(1))2()1(3)1(2)(-+--+=ttttfεεε(2))2()1(2)()(-+--=t rt rt rtf(5))2()2()(ttrtf-=ε(8))]5()([)(--=kkkkfεε(11))]7()()[6sin()(--=kkkkfεεπ(12))]()3([2)(kkkf k---=εε1-3 写出图1-3所示各波形的表达式。
1-4 写出图1-4所示各序列的闭合形式表达式。
1-5 判别下列各序列是否为周期性的。
如果是,确定其周期。
(2))63cos()443cos()(2ππππ+++=kkkf(5))sin(2cos3)(5tttfπ+=解:1-6 已知信号)(tf的波形如图1-5所示,画出下列各函数的波形。
信号与线性系统分析_(吴大正_第四版)习题答案第六章
. 学习参考. 第六章6.4 根据下列象函数及所标注的收敛域,求其所对应的原序列。
(1)1)(=z F ,全z 平面(2)∞<=z z z F ,)(3(3)0,)(1>=-z z z F(4)∞<<-+=-z z z z F 0,12)(2(5)a z az z F >-=-,11)(1(6)a z az z F <-=-,11)(1. 学习参考.6.5 已知1)(↔k δ,az z k a k -↔)(ε,2)1()(-↔z z k k ε,试利用z 变换的性质求下列序列的z 变换并注明收敛域。
. 学习参考 .(1))(])1(1[21k k ε-+ (3))()1(k k k ε-(5))1()1(--k k k ε (7))]4()([--k k k εε(9))()2cos()21(k k k επ. 学习参考.6.8 若因果序列的z 变换)(z F 如下,能否应用终值定理?如果能,求出)(lim k f k ∞→。
(1))31)(21(1)(2+-+=z z z z F (3))2)(1()(2--=z z z z F. 学习参考.6.10 求下列象函数的双边逆z 变换。
(1)31,)31)(21(1)(2<--+=z z z z z F (2)21,)31)(21()(2>--=z z z z z F (3)21,)1()21()(23<--=z z z z z F. 学习参考 .(4)2131,)1()21()(23<<--=z z z z z F. 学习参考.. 学习参考.. 学习参考.. 学习参考.6.11 求下列象函数的逆z 变换。
(1)1,11)(2>+=z z z F (2)1,)1)(1()(22>+--+=z z z z z z z F (5)1,)1)(1()(2>--=z z z z z F (6)a z a z az z z F >-+=,)()(32. 学习参考.. 学习参考.. 学习参考.6.13 如因果序列)()(z F k f ,试求下列序列的z 变换。
信号与线性系统分析_(吴大正_第四版)习题答案
(1)画出及取样信号在频率区间(-2kHz,2kHz)的频谱图。
(2)若将取样信号输入到截止频率,幅度为的理想低通滤波器,即其频率响应
画出滤波器的输出信号的频谱,并求出输出信号。
图4-47
图4-48
图4-49
4.53 求下列离散周期信号的傅里叶系数。
第二章
2-1 已知描述系统的微分方程和初始状态如下,试求其零输入响应。
(1)
(4)
2-2 已知描述系统的微分方程和初始状态如下,试求其值和。
(2)
(4)
解:
2-4 已知描述系统的微分方程和初始状态如下,试求其零输入响应、零状态响应和全响应。
(2)
解:
2-8 如图2-4所示的电路,若以为输入,为输出,试列出其微分方程,并求出冲激响应和阶跃响应。
3.22、如图所示的复合系统有三个子系统组成,它们的单位序列响应分别为,,求复合系统的单位序列响应。
第四章习题
4.6 求下列周期信号的基波角频率Ω和周期T。
(1) (2)
(3) (4)
(5) (6)
4.7 用直接计算傅里叶系数的方法,求图4-15所示周期函数的傅里叶系数(三角形式或指数形式)。
图4-15
(1)如,求的频谱函数(或画出频谱图)。
(2)如,求的频谱函数(或画出频谱图)。
4.45 如图4-42(a)的系统,带通滤波器的频率响应如图(b)所示,其相频特性,若输入
求输出信号。
图4-42
4.48 有限频带信号的最高频率为100Hz,若对下列信号进行时域取样,求最小取样频率。
(1) (2)
(3) (4)
(1) (2)
(完整版)信号与线性系统分析_(吴大正_第四版)习题答案
1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。
(2)∞<<-∞=-t et f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f kε= (10))(])1(1[)(k k f kε-+=解:各信号波形为 (2)∞<<-∞=-t et f t,)((3))()sin()(t t t f επ=(4))(sin )(t t f ε=(5))f=rt)(sin(t (7))t(k=f kε)(2(10))f kεk=(k+-((])11[)1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。
(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k ---=εε解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k---=εε1-3 写出图1-3所示各波形的表达式。
1-4 写出图1-4所示各序列的闭合形式表达式。
1-5 判别下列各序列是否为周期性的。
如果是,确定其周期。
(2))63cos()443cos()(2ππππ+++=k k k f (5))sin(2cos 3)(5t t t f π+=解:1-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形。
信号与线性系统分析_(吴大正_第四版)习题答案
图4-18
4-11 某1Ω电阻两端的电压如图4-19所示,
(1)求的三角形式傅里叶系数。
(2)利用(1)的结果和,求下列无穷级数之和
(3)求1Ω电阻上的平均功率和电压有效值。
(4)利用(3)的结果求下列无穷级数之和
图4-19
第三章习题
3.1、试求序列 的差分、和。
3.6、求下列差分方程所描述的LTI离散系统的零输入相应、零状态响应和全响应。
1)
3)
5)
3.8、求下列差分方程所描述的离散系统的单位序列响应。
2)
5)
3.9、求图所示各系统的单位序列响应。
(a)
(c)
3.10、求图所示系统的单位序列响应。
3.11、各序列的图形如图所示,求下列卷积和。
(1)如,求的频谱函数(或画出频谱图)。
(2)如,求的频谱函数(或画出频谱图)。
4.45 如图4-42(a)的系统,带通滤波器的频率响应如图(b)所示,其相频特性,若输入
求输出信号。
图4-42
4.48 有限频带信号的最高频率为100Hz,若对下列信号进行时域取样,求最小取样频率。
(1) (2)
(3) (4)
4.17 根据傅里叶
(3)
4.18 求下列信号的傅里叶变换
(1) (2)
(3) (4)
(5)
4.19 试用时域微积分性质,求图4-23示信号的频谱。
图4-23
4.20 若已知,试求下列函数的频谱:
(1) (3) (5)
(8) (9)
4.21 求下列函数的傅里叶变换
图4-30
4.33 某LTI系统,其输入为,输出为
吴大正《信号与线性系统分析》(第4版)笔记和课后习题考研真题详解
第 7 章 系统函数 7.1 复习笔记 7.2 课后习题详解 7.3 名校考研真题详解
第 8 章 系统的状态变量分析 8.1 复习笔记 8.2 课后习题详解 8.3 名校考研真题详解
吴大正《信号与线性系统分பைடு நூலகம்》(第 4 版)笔记和课后习题(含考研真题)详
解完整版>精研学习 wang>无偿试用 20%资料
全国 547 所院校视频及题库资料
考研全套>视频资料>课后答案>往年真题>职称考试
第 1 章 信号与系统 1.1 复习笔记 1.2 课后习题详解 1.3 名校考研真题详解
第 2 章 连续系统的时域分析 2.1 复习笔记 2.2 课后习题详解 2.3 名校考研真题详解
第 3 章 离散系统的时域分析 3.1 复习笔记 3.2 课后习题详解 3.3 名校考研真题详解
第 4 章 傅里叶变换和系统的频域分析 4.1 复习笔记 4.2 课后习题详解 4.3 名校考研真题详解
第 5 章 连续系统的 s 域分析 5.1 复习笔记 5.2 课后习题详解 5.3 名校考研真题详解
信号与线性系统分析习题答案吴大正第四版高等教育出版社
41 / 255
42 / 255
2-8 如图 2-4 所示的电路,若以 i S(t ) 为输入, uR (t ) 为输出,试列出其微分方程,并求出冲激响应和阶跃响
应。
43 / 255
44 / 255
2-12 如图 2-6 所示的电路,以电容电压 uC (t ) 为响应,试求其冲激响应和阶跃响应。
70 / 255
71 / 255
3.13、求题 3.9 图所示各系统的阶跃响应。
72 / 255
73 / 255
74 / 255
75 / 255
3.14、求图所示系统的单位序列响应和阶跃响应。
76 / 255
3.15、若 LTI 离散系统的阶跃响应 g( k)
k
0.5
k ,求其单位序列响应。
第一章 信号与系统(二)
1-1 画出下列各信号的波形【式中 r (t ) t (t) 】为斜升函数。
( 2) f (t ) e t ,
t
(3) f (t ) sin( t) (t )
( 4) f (t ) (sin t )
( 5) f (t) r (sin t)
( 7) f (t ) 2k ( k)
析各系统是否是线性的。
(1) y(t) e t x(0)
t
sin xf ( x)dx
0
t
(2) y(t)
f (t ) x(0)
f (x) dx
0
t
(3) y(t ) sin[ x(0)t]
f (x)dx
0
(4) y(k ) (0.5)k x(0) f (k) f (k 2)
k
(5) y(k) kx(0)
的两倍而得)。将 f (3 t ) 的波形反转而得到 f (t 3) 的波形,如图 1-12(b) 所示。再将 f (t 移 3 个单位,就得到了 f (t ) ,如图 1-12(c) 所示。 df (t) 的波形如图 1-12(d) 所示。
信号与线性系统分析_(吴大正_第四版)习题答案
3.1、试求序列 的差分、和。
3.6、求下列差分方程所描述的LTI离散系统的零输入相应、零状态响应和全响应。
1)
3)
5)
3.8、求下列差分方程所描述的离散系统的单位序列响应。
2)
5)
3.9、求图所示各系统的单位序列响应。
(a)
(c)
3.10、求图所示系统的单位序列响应。
3.11、各序列的图形如图所示,求下列卷积和。
(1) (2)
5-7 求图5-2所示在时接入的有始周期信号的象函数。
图5-2
5-8 求下列各象函数的拉普拉斯变换。
(1) (3) (5)
(7) (9)
5-9 求下列象函数的拉普拉斯变换,并粗略画出它们的波形图。
(1) (3) (6)
其波形如下图所示:
其波形如下图所示:
其波形如下图所示:
5-10 下列象函数的原函数是接入的有始周期信号,求周期T并写出其第一个周期()的时间函数表达式。
4.50 有限频带信号,其中,求的冲激函数序列进行取样(请注意)。
(1)画出及取样信号在频率区间(-2kHz,2kHz)的频谱图。
(2)若将取样信号输入到截止频率,幅度为的理想低通滤波器,即其频率响应
画出滤波器的输出信号的频谱,并求出输出信号。
图4-47
图4-48
图4-49
4.53 求下列离散周期信号的傅里叶系数。
3.22、如图所示的复合系统有三个子系统组成,它们的单位序列响应分别为,,求复合系统的单位序列响应。
第四章习题
4.6 求下列周期信号的基波角频率Ω和周期T。
(1) (2)
(3) (4)
(5) (6)
4.7 用直接计算傅里叶系数的方法,求图4-15所示周期函数的傅里叶系数(三角形式或指数形式)。
信号与线性系统分析-(吴大正-第四版)习题答案
1-1画出以下各信号的波形【式中)()(t t t r ε=】为斜升函数。
〔2〕∞<<-∞=-t et f t,)( 〔3〕)()sin()(t t t f επ=〔4〕)(sin )(t t f ε= 〔5〕)(sin )(t r t f = 〔7〕)(2)(k t f kε= 〔10〕)(])1(1[)(k k f kε-+=解:各信号波形为 〔2〕∞<<-∞=-t et f t,)(〔3〕)()sin()(t t t f επ=〔4〕)(sin )(t t f ε=〔5〕)f=rt)(sin(t〔7〕)t=(kf kε(2)〔10〕)f kεk=(k+-((])1)1[1-2 画出以下各信号的波形[式中)()(t t t r ε=为斜升函数]。
〔1〕)2()1(3)1(2)(-+--+=t t t t f εεε 〔2〕)2()1(2)()(-+--=t r t r t r t f〔5〕)2()2()(t t r t f -=ε 〔8〕)]5()([)(--=k k k k f εε〔11〕)]7()()[6sin()(--=k k k k f εεπ〔12〕)]()3([2)(k k k f k ---=εε解:各信号波形为〔1〕)2()1(3)1(2)(-+--+=t t t t f εεε〔2〕)2()1(2)()(-+--=t r t r t r t f〔5〕)2()2()(t t r t f -=ε〔8〕)]5()([)(--=k k k k f εε〔11〕)]7()()[6sin()(--=k k k k f εεπ〔12〕)]()3([2)(k k k f k---=εε1-3 写出图1-3所示各波形的表达式。
1-4 写出图1-4所示各序列的闭合形式表达式。
1-5 判别以下各序列是否为周期性的。
如果是,确定其周期。
〔2〕)63cos()443cos()(2ππππ+++=k k k f 〔5〕)sin(2cos 3)(5t t t f π+=解:1-6 信号)(t f 的波形如图1-5所示,画出以下各函数的波形。
信号与线性系统分析第四版(吴大正)习题答案
第一章 信号与系统(一)1-1画出下列各信号的波形【式中)()(t t t r ε=】 为斜升函数。
(2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为 (2)∞<<-∞=-t e t f t ,)((3))()sin()(t t t f επ=(4))fεt=(sin)(t (5))tf=r(sin)(t(7))tf kε(k=(2)(10))f kεk-=(k+]()1(1[)1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。
(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k---=εε 解:各信号波形为 (1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t rt rt rtf(5))2()2()(ttrtf-=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(kkkf k---=εε1-3 写出图1-3所示各波形的表达式。
1-4 写出图1-4所示各序列的闭合形式表达式。
1-5 判别下列各序列是否为周期性的。
如果是,确定其周期。
(2))63cos()443cos()(2ππππ+++=k k k f (5))sin(2cos 3)(5t t t f π+=解:1-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形。
吴大正《信号与线性系统分析》(第4版)配套题库【章节题库】(下册)第6章 离散系统的z域分析【圣才出
i0
0
k为奇数 2k1 2k1 ,又 ak z ,所以
k为偶数
za
2k 1
2 k1
z 1
z
z
2
z 1
z
z
2
2z z2
4
,故原式=
2z z2
4
。
3.对某线性时不变离散时间系统,若其单位阶跃响应为 数为 H(z)=_____。
,则该系统的系统函
【答案】
【解析】当输入为 (k) ,对应输出为单位阶跃响应,所以有
a z
),
X
(z)
az2 1 az1
故
(z)
X
( z )
az 1 1 az1
a(a)
n1u(n
1)
所以
x(n) (1)n1 an u(n 1) n
5.序列
的单边 z 变换 F(z)等于( )。
【答案】C
2 / 58
圣才电子书 十万种考研考证电子书、题库视频学习平台
)]
z2
d
2X( z dz 2
)
z
dX ( z dz
)
, n2u( n )
z( z 1) ( z 1)3
,位移性
(n-1)2u(n-1)
z 1
z( z 1) ( z 1)3
【解析】z 变换性质的位移性 x( n m ) z mX ( z ) 。
11.f(n)=(n-1)2u(n-1)的 z 变换式 F(z)=______。
【答案】
【解析】由 z 变换性质序列线性加权可知 nx( n ) z d X ( z ) , dx
n2x( n )
z
d dz
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求输入 。
6.34因果序列 满足方程
求序列 。
6.37移动平均是一种用以滤除噪声的简单数据处理方法。当接收到输入数据 后,就将本次输入数据与其前3次的输入数据(共4个数据)进行平均。求该数据处理系统的频率响应。
6.46如图6-所示为因果离散系统, 为输入, 为输出。
第六章
6.4根据下列象函数及所标注的收敛域,求其ቤተ መጻሕፍቲ ባይዱ对应的原序列。
(1) ,全z平面
(2)
(3)
(4)
(5)
(6)
6.5已知 , , ,试利用z变换的性质求下列序列的z变换并注明收敛域。
(1) (3)
(5) (7)
(9)
6.8若因果序列的z变换 如下,能否应用终值定理?如果能,求出 。
(1) (3)
6.10求下列象函数的双边逆z变换。
(1)列出该系统的输入输出差分方程。
(2)问该系统存在频率响应否?为什么?
(3)若频响函数存在,求输入 时系统的稳态响应 。
6.20如图6-2的系统,求激励为下列序列时的零状态响应。
(1) (3)
6.23如图6-5所示系统。
(1)求该系统的单位序列响应 。
(2)若输入序列 ,求零状态响应 。
6.24图6-6所示系统,
(1)求系统函数 ;
(2)求单位序列响应 ;
(3)列写该系统的输入输出差分方程。
6.26已知某LTI因果系统在输入 时的零状态响应为
求该系统的系统函数 ,并画出它的模拟框图。
图6-12
6-29已知某一阶LTI系统,当初始状态 ,输入 时,其全响应 ;当初始状态 ,输入 时,其全响应 。求输入 时的零状态响应。
6.31如图6-10所示的复合系统由3个子系统组成,已知子系统2的单位序列响应 ,子系统3的系统数 ,当输入 时复合系统的零状态响应 。求子系统1的单位序列响应 。
(1)
(2)
(3)
(4)
6.11求下列象函数的逆z变换。
(1)
(2)
(5)
(6)
6.13如因果序列 ,试求下列序列的z变换。
(1) (2)
6.15用z变换法解下列齐次差分方程。
(1)
(3)
6.17描述某LTI离散系统的差分方程为
已知 ,求该系统的零输入响应 ,零状态响应 及全响应 。
6.19图6-2为两个LTI离散系统框图,求各系统的单位序列响应 和阶跃响应 。