分类变量资料的统计描述
分类资料的统计描述
第六章 分类资料的统计描述一、教学大纲要求(一)掌握内容 1. 绝对数。
2. 相对数常用指标:率、构成比、比。
3. 应用相对数的注意事项。
4. 率的标准化和动态数列常用指标:标准化率、标准化法、时点动态数列、时期动态数列、绝对增长量、发展速度、增长速度、定基比、环比、平均发展速度和平均增长速度。
(二)熟悉内容1. 标准化率的计算。
2. 动态数列及其分析指标。
二、教学内容精要(一) 绝对数绝对数是各分类结果的合计频数,反映总量和规模。
如某地的人口数、发病人数、死亡人数等。
绝对数通常不能相互比较,如两地人口数不等时,不能比较两地的发病人数,而应比较两地的发病率。
(二)常用相对数的意义及计算 相对数是两个有联系的指标之比,是分类变量常用的描述性统计指标,常用两个分类的绝对数之比表示相对数大小,如率、构成比、比等。
常用相对数的意义及计算见表6-1。
表6-1 常用相对数的意义及计算常用相对数概念表示方式 计算公式 举例率(rate ) 又称频率指标,说明一定时期内某现象发生的频率或强度 百分率(%)、千分率(‰)等单位时间内的发病率、患病率,如年(季)发病率、时点患病率等构成比(proportion )又称构成指标,说明某一事物内部各组成部分所占的比重或分布 百分数疾病或死亡的顺位、位次或所占比重比(ratio )又称相对比,是A 、B 两个有关指标之比,说明A 是B 的若干倍或百分之几倍数或分数①对比指标,如男:女=106.04:100 ②关系指标,如医护人员:病床数=1.64③计划完成指标,如完成计划的130.5%%100⨯=单位总数可能发生某现象的观察数发生某现象的观察单位率%100⨯=观察单位总数同一事物各组成部分的位数某一组成部分的观察单构成比BA=比(三) 应用相对数时应注意的问题1. 计算相对数的分母一般不宜过小。
2. 分析时不能以构成比代替率 容易产生的错误有 (1)指标的选择错误如住院病人只能计算某病的病死率,不能认为是某病的死亡率; (2)若用构成指标下频率指标的结论将导致错误结论,如 某部队医院收治胃炎的门诊人数中军人的构成比最高,但不一定军人的胃炎发病率最高。
统计方法学部分对于连续变量和分类变量的描述
统计方法学部分对于连续变量和分类变量的描述全文共四篇示例,供读者参考第一篇示例:统计方法学是一门重要的学科,可应用于各个领域,包括医学、经济、社会科学等。
在统计学中,变量是一个基本概念,分为连续变量和分类变量。
这两种类型的变量在统计分析中有着不同的特点和分析方法。
连续变量是指可以取任意值的变量,通常用于度量某种属性或特征。
比如身高、体重、温度等都是连续变量。
在统计学中,对于连续变量的分析通常采用如均值、标准差、中位数等描述性统计量来描述数据的分布特征。
对于连续变量的变量间关系,通常采用相关分析、回归分析等方法进行研究。
在实际应用中,连续变量和分类变量经常同时存在,统计分析方法的选择需要考虑到变量的属性和研究目的。
对于同时包含连续变量和分类变量的数据,通常可以采用方差分析、多元回归等方法进行综合分析。
除了描述性统计和假设检验之外,统计方法学还有着更多的高级方法可以应用于连续变量和分类变量的分析。
比如聚类分析、主成分分析等多元统计方法可以帮助我们从复杂的数据中提取出有用的信息,发现变量之间的潜在关系。
统计方法学部分对于连续变量和分类变量的描述是统计学的基础,通过对数据的深入分析和挖掘,我们可以更好地理解变量之间的关系,为决策和预测提供更有力的支持。
希望本文能够帮助读者更好地理解统计方法学在连续变量和分类变量分析中的应用和意义。
第二篇示例:统计方法学是一门研究数据收集、分析和解释的学科,其中包含了多种方法用于处理连续变量和分类变量。
在统计方法学中,连续变量和分类变量是两种常见的数据类型,它们在统计分析中具有各自的特点和处理方法。
连续变量是指可以在一定区间内取任意值的变量,通常是测量得出的结果,例如身高、体重、收入等。
连续变量具有无限个可能值,可以是小数或整数,其取值范围是连续的,没有间断。
在统计分析中,对连续变量的处理通常包括描述统计和推断统计两个方面。
对于连续变量的描述统计,常见的方法包括均值、中位数、众数、标准差、极差等。
描述分类变量资料的主要统计指标
描述分类变量资料的主要统计指标在描述统计中,经常要描述两个变量之间的关系,这就是指标。
描述分类变量资料的主要统计指标有:平均数(AV)、中位数(median)、众数(major)、方差(F)、标准差(SD)、相关系数(r)、误差(SEM)、信赖区间(CI)、 F统计值等。
一、全距n。
平均数在统计学上指全部观察单位的算术平均数,即众数、中位数和方差的算术平均数。
它反映了各个变量在总体中所占的比例。
用公式表示为n=AV。
例如:成人牙齿脱落率调查,共调查成人2046人,其中有根以上完全不能保留者占4.5%,按标准脱落百分数计算,每根牙齿应脱落2%。
则该项调查结果的全距是2.5%。
全距愈小说明变量在总体中所占的比例愈大,代表性愈强。
二、方差 1。
方差又称离散系数或变异系数。
由于各个观察单位所得的资料是来自不同的变量,因而这些资料都是不可比的。
但在抽样调查时,要使各个单位取得同样的结论,在对总体进行分析时,就必须把各单位的观察结果加以平均化,从而消除了由于来源不同引起的资料不可比问题,并使各单位的离散状况趋于一致。
这就需要用变异系数将各单位的资料加以平均,使其成为总体的平均资料。
因此,方差就是各个单位的变异程度的一种度量。
方差的符号是σ,单位是标准差(SD)。
2。
标准差的计算公式为:SD=∑[(X-Y)÷2]×100%。
式中SD表示标准差。
标准差的大小是随研究的目的而异的,通常用于某些问题的检验或推断。
如:某县的全年工业总产值的多少与全年粮食总产量的多少成正比;销售额的增长速度快慢与企业利润成正比。
对于全距,方差,标准差,原因,方差是概率统计的专有名词。
在实际工作中,我们通常简单地用:均数×方差=总体标准差(均值×方差=总体方差),来概括变量之间的关系。
当然,我们在阅读统计资料时,有时也会碰到一些专门用语,如果只看题目或只看这些专门用语,也很难理解题意,但只要知道它们的含义就行了。
6.分类变量的统计描述
某一事物各组成部分的个体数 构成比 = —————————————— × 100% 同一事物各组成部分的个体总数
医学统计学
DR. 朱彩华
3. 相对比 (Relative ratio) ratio)
医学统计学
DR. 朱彩华
如:
麻疹病人
甲地 乙地 200 240
哪个地方发病严重? 哪个地方发病严重?
易感者
甲地 乙地 1000 2000
哪个地方发病严重? 哪个地方发病严重?
医学统计学
DR. 朱彩华
甲地麻疹发病率: 甲地麻疹发病率: 200/1000 × 100% = 20% 乙地麻疹发病率: 乙地麻疹发病率: 240/2000 × 100% = 12% 一、相对数的作用 1、反映某现象当时当地的实际水平; 反映某现象当时当地的实际水平; 2、便于不同资料之间的比较。 便于不同资料之间的比较。
即得年龄标准化死亡(或发病)率。 医学统计学 DR. 朱彩华
P72表7-8,其基本操作用的是第1种方法:
各年龄组标准人( 栏 各年龄组标准人(口)数(2栏) 各年龄组的预期死亡数( 、 栏 各年龄组的预期死亡数(4、6栏) 两地标化率: 两地标化率: 甲县: 甲县 p´ = 6146 / 6152992 ×10000/10万 万 = 99.9 /10万 /10万 乙县: 乙县 p´ = 5245 / 6152992 ×10000/10万 万 = 85.2 /10万 /10万 医学统计学 DR. 朱彩华
22.3
医学统计学
DR. 朱彩华
四、率的标准化
分类变量的描述性统计讲解
相对危险度(relative risk,简称RR)是指暴露于某种 危险因素的观察对象的发病的危险度与低暴露或无暴 露的观察对象的发病危险度之间的相对比值。相对危 险度常用于队列研究,可用暴露与未暴露于危险因素 的累积发病率(Pl和P0)或人时发病率(F1和F0)估计, 公式为
RR P1 或 RR F1
第三讲 分类变量的统计描述
分类变量的整理(1)
14名成人的原始数据
编号 1 2 3 4 5 6 7 8 9 10 11 12 13 14
性别 男 女 男 女 男 女 男 女 男 女 男 女 男 女
身高 175 167 187 176 167 178 174 170 167 186 182 159 167 182
OR=odds1/odds2=ad/bc
病人
表3-2 COPD病人与非病人的吸烟情况资料
有吸烟史
无吸烟史
合计
231
125
356
非病人
183
296
479
合计
414
421
835
例3-4 采用例3-1的资料,将基本数据用表3-2表示,试 计算优势与优势比。
病人有吸烟史的优势
odds1
231/ 356 125/ 356
科室 标准组出院
甲院
乙院
病 人 构 成 比 原 治 愈 率 (%) 分 配 治 愈 率 (%) 原 治 愈 率 (%) 分 配 治 愈 率 (%)
Ni/N
pi
⑴
⑵
⑶
(Ni/N)pi
pi
⑷ =⑵ ⑶
⑸
(Ni/N)pi ⑹ =⑵ ⑸
内科
0.2792
妇科
0.2907
8.5.1分类变量资料资料的统计描述
♦ 1.计算相对数时分母不宜过小
例2:某医生治疗了4例支气管哮喘病患者, 其中3例有效,即报告有效率为75。 请问该说法是否正确?
♦ 2.分析时不能以构成比代替率
♦ 3.注意资料的可以性
用率或构成比进行比较时,必须注 意资料的可比性,即除了要比较的因素 外,其他可能影响研究结果的因素(如 时间、年龄、职业、地区、民族、风俗 习惯、经济水平等内部构成)要尽可能 的相同。
一、常用相对数
例1:甲小学有534人,乙小学为313人, 经 检查发现, 甲学校患龋齿者57人, 乙学校 患龋齿人数33人。 问那所学校发现患龋齿的强度高?
相对数:是指两个有联系的指标之比。
常用的相对数有率、构成比和相对比。
(一)率(频率指标)
(二)构成比(构成指标)
(三)相对比(比)
比 A B
♦ 4.正确计算平均率
例3 某班有男生50人,女生20人,男生英语四级 通过率为80%,女生四级通过率为100%,请问该 班四级通过率为多少?
• 答案A:90%。 • 答案B:85.7%
♦ 5.样本率或构成比的比较应做假 设检验
样本率或构成比是抽样得到的,存 在抽样误差,进行比较时不能仅凭表面数 值大小直接下结论,应做假设检验
2-数值变量与分类变量的统计描述分析
实习二统计描述第164~180页实习二统计描述医学统计资料类型¾数值变量资料:又称为计量资料。
变量值是定量的,有单位的,表示为数值的大小。
¾无序分类资料:又称为计数资料。
变量值是定性的,没有单位,表示为相互独立的类别。
¾有序分类资料:又称为等级资料。
变量值是定性的,没有单位,各类别具有程度上的差异。
注:不同类型的资料,统计方法不同;各种类型的资料之间是可以相互转化的。
一、数值变量资料的统计描述统计描述包括两个方面:集中趋势的描述和离散趋势的描述一、数值变量资料的统计描述(一)数值变量资料的频数表频数表(frequency table):当变量值或者观测值较多时,将变量值分为适当的组段,统计各组段中相应的频数(或者人数),以描述数值变量资料的分布特征和分布类型。
一、数值变量资料的统计描述(一)数值变量资料的频数表频数表的用途1.描述数值变量资料的分布特征集中趋势(central tendency):频数最多的组段代表了中心位置(平均水平),从两侧到中心,频数分布是逐渐增加的。
离散趋势(tendency of dispersion):从中心到两侧,频数分布是逐渐减少的。
反映了数据的离散程度或者变异程度。
一、数值变量资料的统计描述(一)数值变量资料的频数表频数表的用途2.描述数值变量资料的分布类型正态分布:集中位置居中,左右两侧频数基本对称。
常见近似正态分布。
偏态分布:集中位置偏向一侧,频数分布不对称。
正偏态分布:集中位置偏向数值小的一侧或者左侧,有较长的右尾部。
负偏态分布:集中位置偏向数值大的一侧或者右侧,有较长的左尾部。
一、数值变量资料的统计描述(二)数值变量资料的频数分布图及正态曲线直方图及近似正态分布直方图及正偏态分布(二)数值变量资料的频数分布图及正态曲线一、数值变量资料的统计描述(三)集中趋势指标描述1.算数均数(均数mean )适用于正态分布或者近似正态分布总体均数:µ;样本均数:一、数值变量资料的统计描述一、数值变量资料的统计描述(三)集中趋势指标描述2.几何均数(geometric mean,G)适用于一种特殊的偏态分布资料:等比资料(常见于抗体滴度)。
第6章 分类变量的统计描述与参数估计
6.1.2 多个分类变量的联合描述 分类变量的联合描述使用列联表; 列联表是因分类变量的各类别交叉而成的复合频 数表,被称为行×列表; 列联表的分析结果直观、易比较; 应用列联表进行变量的交叉分析是数据分析报告 中分析结果显示的主要方式之一; 列联表分二维表和多维表(或n维表); 单元格内可给出原始频数、行与列百分比和总百 分比。
(3)率(Rate) 率是一个具有时间、速度、强度含义 的概念或指标,用于说明某个时期内某个 事件发生的频率或强度,其计算公式为: 某事件的发生率=观察期内发生某事件的对 象数/该时期开始时的观察对象数
相对数在使用时应当注意适用条件: 样本量较大时相对数比较稳定; 基数不同相对数不能直接相加求和。
第6章 分类变量的统计描述 与参数估计
2013.10
离散变量是把取值范围为有限个数或者是 一个数列构成的变量。 分类变量是表示分类情况的离散变量。 根据类别的有序性,分类变量可分为有序 分类变量(Ordinal Variable)和无序分类 变量(Nominal Variable),这两类变量 在统计描述上没有差别。
(2)构成比(Proportion) 构成比是把观察对象分为k个部分,其中 某一个/多个部分的例数占总例数的比例。它 描述某个事物内部各构成部分所占的比重,其 计算公式为: 构成比=某一组成部分的样本数/总样本数 构成比的分子必须是分母的一部分,所以 其取值0-1,百分比是一个标准的构成比,而 累计频率则是构成比概念的直接延伸。
6.1 指标体系概述
6.1.1 单个分类变量的统计描述 1.频数分布 频数(绝对频数)是指本类别出现的次数; 百分比(构成比)是指本类别出现的次数占 总次数的百分比,即本类别出现次数/总次 数×100%。
分类变量资料的统计描述
(二)标准化率的计算 1、选择标准人口
✓ 代表性的、内部构成相对稳定的较大人群 ✓ 要比较的两组资料内部各相应小组的观察单位数
相加,作为共同的标准 ✓ 两组中任选一组的内部构成作为标准
26
2、计算预期发生数 预期发生数=标准人口数×原发生率
表4-6 甲、乙两地用“标准人口数”计算标准化死亡率(1/10万)
2. 标准化的目的是在两个(或多个)总体率 比较时,采用统一标准消除内部构成不同 的影响。
30
3. 计算资料标准化率时各比较组应选用同一 标准。选用的标准不用,算得的标准化率 也不同。标准化率只反映资料的相对水平, 不代表实际水平,仅在比较时使用,原率 才能反映某时某地某现象的实际水平。
4. 样本标准化率同样存在抽样误差,若要进 行比较,应进行假设检验。
18
例:某医师对本院某年收治的1907例麻疹患者做了年龄 的分布描述,资料如下。该医生认为,1岁儿童的麻疹发 病率高于其他各年龄组,年龄越大,发病率越低。
某医院某年收治的1907例麻疹儿童的年龄分布
1. 该医生的分析是否正确? 2. 由上述资料可以得出什么结论?
19
率和构成比的区别:
1. 二者在概念和计算方法上都不相同,所得结论也不同 2. 率是说明某现象发生的频率或强度的 3. 构成比可以说明某事物内部各组成部分的比重或分布 4. 不能以构成比代替率。
术前中性白细胞构成比
= 术前中性白细胞计数 术前白细胞总数
= 4156 5800
100 %=71.66%
术前中性白细胞构成比是71.66%。
构成比的特点:
①各组成部分的构成比之和为100 %或1。 ②事物内部某一部分的构成比发生变化,其它
部分的构成比也相应地发生变化。
分类变量资料的统计描述
可能发生某现象的总数之比。用以说明某现 象发生的频率或强度。
常用率: 发病率、患病率、死亡率、病死
率、治愈率等。
率的计算方法
率
现象实际发生例数 可能发生某现象的总数
k
率
A( ) A( ) A( )
k
k为比例基数,常取百分率(%)、千分率(‰)、 万分率(1/万)、十万分率(1/10万)等。
计算公式:
构成比(%)
事物内部某一部分的个体数 事物内部各构成部分的个体数总和
100%
构成比(%)
A
100%
A B C
设某事物个体数的合计由A1,A2,· · ·,Ak个
部分组成,构成比的计算为:
构成比1
A1 A1+A2 +Ak
100%
…..构…成…比…2……A…1+A…2+A…2 . + Ak 100%
返 回
计划完成指标
: 定义 说明计划完成的程度,常用实际数达到计划数的百分之
几或几倍表示。
计算公式:
举例:
某县原计划在一个伤寒疫区周围的人群对1500名居民接种伤寒疫苗, 而实际上接种了1958人,计划完成指标为: (1958÷1500)×100%=130.5%,即完成了计划的130.5%,也可用倍数表 示,即完成计划的1.305 倍。
原则:①保留1~2位整数 ②惯例
例如:患病率通常用100% 、婴儿死亡率用1000‰、 肿瘤死亡率以10万/10万表示。
例 某医院1998年在某城区随机调查了 8589例60岁及以上老人,体检发现高血 压患者为2823例。
高血压患病率为: 2823 / 8589 100% = 32.87% 。
(完整版)医学统计学知识点汇总
医学统计学总结绪论1、随机现象:在同一条件下进行试验,一次试验结果不能确定,而在一定数量的重复试验之后呈现统计规律的现象。
2、同质:统计学中对研究指标影响较大的,可以控制的主要因素。
3、变异:同质基础上各观察单位某变量值的差异。
数值变量:变量值是定量的,由此而构成的资料称为数值变量资料或计量资料,其数值是连续性的,称之为连续型变量。
变量无序分类变量:所分类别或属性之间无顺序和程度上的差异分类变量:定性变量有序分类变量:有顺序和程度上的差异4、总体:根据研究目的确定的同质研究对象中所有观察单位某变量值的集合。
可以分为有限总体和无限总体。
5、样本:是按随机化原则从同质总体中随机抽取的部分观察单位某变量值的集合。
样本代表性的前提:同质总体,足够的观察单位数,随机抽样。
统计学中,描述样本特征的指标称为统计量,描述总体特征的指标称为参数。
6、概率:描述随机事件发生的可能性大小的一个度量。
若P(A)=1,则称A为必然事件;若P(A)=0,则称A为不可能事件;随机事件A的概率为0<P<1.小概率事件:若随机事件A的概率P≤α,则称随机事件A为小概率事件,其统计学意义为:小概率事件在一次随机试验中认为是不可能发生的。
统计描述1、频数分布有两个重要的特征:集中趋势和离散程度。
频数分布有对称分布和偏态分布之分。
后者是指频数分布不对称,集中趋势偏向一侧,如偏向数值小的一侧为正偏态分布,如偏向数值大的一侧为负偏态分布。
2、常用的集中趋势的描述指标有:均数,几何均数,中位数等。
均数:适用于正态或近似正态的分布的数值变量资料。
样本均数用x表示,总体均数用μ表示。
几何均数:适用于等比级数资料和对数呈正态分布的资料。
注意观察值中不能有零,一组观察值中不能同时有正值和负值。
中位数:适用于偏态分布资料以及频数分布的一端或两端无确切数据的资料。
3、常用的离散程度的描述指标有:全距,四分位数间距,方差,标准差,变异系数。
全距:任何资料,一组中最大值与最小值的差。
实用卫生统计学试题(含答案)
医学统计方法概述l.统计中所说的总体是指:A根据研究目的确定的同质的研究对象的全体2.概率P=0,则表示B某事件必然不发生3.抽签的方法属于D单纯随机抽样4.测量身高、体重等指标的原始资料叫:B计量资料5.某种新疗法治疗某病患者41人,治疗结果如下:该资料的类型是:D有序分类资料治疗结果治愈显效好转恶化死亡治疗人数8236316.样本是总体的C有代表性的部分7.将计量资料制作成频数表的过程,属于¬¬统计工作哪个基本步骤:C整理资料8.统计工作的步骤正确的是C设计、收集资料、整理资料、分析资料9.良好的实验设计,能减少人力、物力,提高实验效率;还有助于消除或减少:B系统误差10.以下何者不是实验设计应遵循的原则D交叉的原则11.表示血清学滴度资料平均水平最常计算B几何均数12.某计量资料的分布性质未明,要计算集中趋势指标,宜选择CM13.各观察值均加(或减)同一数后:B均数改变,标准差不变14.某厂发生食物中毒,9名患者潜伏期分别为:16、2、6、3、30、2、lO、2、24+(小时),问该食物中毒的平均潜伏期为多少小时?C615.比较12岁男孩和18岁男子身高变异程度大小,宜采用的指标是:D变异系数16.下列哪个公式可用于估计医学95%正常值范围A X±1.96S17.标准差越大的意义,下列认识中错误的是B观察个体之间变异越小18.正态分布是以E均数为中心的频数分布19.确定正常人的某项指标的正常范围时,调查对象是B排除影响研究指标的疾病和因素的人20.均数与标准差之间的关系是E标准差越小,均数代表性越大21.从一个总体中抽取样本,产生抽样误差的原因是A总体中个体之间存在变异22.两样本均数比较的t检验中,结果为P<0.05,有统计意义。
P愈小则E愈有理由认为两总体均数不同23.由10对(20个)数据组成的资料作配对t检验,其自由度等于C924.t检验结果,P>0.05,可以认为B两样本均数差别无显着性25.下列哪项不是t检验的注意事项D分母不宜过小26.在一项抽样研究中,当样本量逐渐增大时B标准误逐渐减少27.t<t0.05(v),统计上可认为C两样本均数,差别无显着性28.两样本均数的t检验中,检验假设(H0)是Bμ1=μ229.同一总体的两个样本中,以下哪种指标值小的其样本均数估计总体均数更可靠?A.Sx 30.标准差与标准误的关系是:C前者大于后者31在同一正态总体中随机抽取含量为n的样本,理论上有95%的总体均数在何者范围内C均数加减1.96倍的标准误32.同一自由度下,P值增大Ct值减小33.两样本作均数差别的t检验,要求资料分布近似正态,还要求D两样本总体方差相等34.构成比的重要特点是各组成部分的百分比之和C一定等于135.计算相对数的目的是C为了便于比较36.某医院某日门诊病人数1000人,其中内科病人400人,求得40%,这40%是B构成比37.四个样本率作比较,x2>x20.01(3),可以认为A各总体率不同或不全相同38.卡方检验中自由度的计算公式是D(行数-1)(列数-1)39.作四格表卡方检验,当N>40,且__________时,应该使用校正公式E1<T<540.若X2≥X20.05(ν)则AP≤0.0541.相对数使用时要注意以下几点,其中哪一项是不正确的B注意离散程度的影响42.反映某一事件发生强度的指标应选用D率43.反映事物内部组成部分的比重大小应选用A构成比44.计算标化率的目的是D消除资料内部构成不同的影响,使率具有可比性45.在两样本率比较的X2检验中,无效假设(H0)的正确表达应为Cπ1=π246.四格表中四个格子基本数字是D两对实测阳性绝对数和阴性绝对数47.比较某地1990~1997年肝炎发病率宜绘制C普通线图48.关于统计资料的列表原则,错误的是B线条主要有顶线,底线及纵标目下面的横线,分析指标后有斜线和竖线49.比较甲、乙、丙三地区某年度某种疾病的发病率情况,可用A直条图50.描述某地某地210名健康成人发汞含量的分布,宜绘制B直方图l、统计中所说的总体是指:A根据研究目的确定的同质的研究对象的全体。
医学统计学-分类变量的统计描述
高血压 172665
40
23.2
冠心病 172665
11
6.4
脑卒中 172665
253
146.5
风心病 172665
38
22.0
例:某医院部分科室院内感染情况
科室
调查 感染 感染 感染人数 病人数 人数 率% 构成比
呼吸内科 100 10
心血管内科 100 8
泌尿外科 40 6
胸外科
42 2
普外科
定基比发展速度: 环比发展速度 定基比增长速度 环比增长速度
相对比的应用:某事物不同时间的动态分析
表5-9 某医院1991-1993年门诊量动态分析
门诊 发展速度% 增长速度%
年份 人数 定基比 环比 定基比 环比
1991 1200
100
100
—
—
1992 1500
125
125
25
ቤተ መጻሕፍቲ ባይዱ25
1993 1600
无变化
样本率或构成比的比较应进行假设检验
第二节 标准化法
什么是标准化? 为什么要进行标(准)化?
内部结构不同的两组对象进行比较:例如A组病情严 重者多,B组病情较轻的多,但要比较两种不同方法的治 疗效果,结果会怎样?
表1 两种疗法疗效比较
旧疗法
治疗
分组
治疗 人数
痊愈 人数
治愈 率%
成人组 100
绝对数:即各分类事物的合计数,绝对数反映某事物 实际发生的规模大小。
相对数:是两个有联系的(数值)指标之比。
相对数的意义: 1.消除基数影响,便于事物间的比较。 2.给出事物发生频率(强度)的估计。 3.相对数是工作决策的依据。
分类变量的描述统计
4.双变量分类数据的频数分布
双变量分类数据的频数分布常常表现为一张二维表(two-way table),我们把它叫做列联表 (contingency table)。
下表展现了不同城市的女性对新款夏装的接受态度的调查数据表
表1.3 列联表
对新款夏装的态度
非常喜 欢
有点 喜欢
既不反对 有点不 完全不 不知 Row 也不喜欢 喜欢 喜欢 道 Total
Statistics: principle and application
南京大学金陵学院
12
(1)点图
1.2 频数分布表
图1.3 饮料的点图
(2)条形图
条形图是用宽度相同的柱子的高度或长短来表示各类别数据的图形
Statistics: principle and application
图1.4 饮料的条形图
1.1 变量的类型 1.2 频数分布表 1.3 两个分类变量的关系
Statistics: principle and application
南京大学金陵学院
3
学习目标及重难点
【学习目标】: 1.用频数分布表描述数据的分布 2.用点图、条形图等图形来展示数据 3.用列联表分析两个分类变量之间的关系 【重难点】: 1.掌握用条件相对频数表示的对比条形图 2.两个分类变量是否独立
态度
非常喜 欢
有点喜欢
既不反对也 有点不
不喜欢
喜欢
完全不 喜欢
不知 道
合计
南京 上海
34.44% 22.58%
38.41% 30.97%
16.56% 25.81%
7.95% 13.55%
1.99% 0.66% 100.00% 5.81% 1.29% 100.00%
人群健康研究的统计学方法(四)考试答案和讲义
人群健康研究的统计学方法(四)1、率表示()A、某现象发生的频率或强度B、事物内部各组成部分所占的比重或分布情况C、两个有联系指标之比D、某事物内部各组成部分出现的频率2、以下关于率的抽样误差代表意义描述错误的是()A、率的抽样误差越小,说明率的标准误越小B、率的抽样误差越小,用样本推论总体时,可信程度越低C、率的抽样误差越小,用样本推论总体时,可信程度越高D、率的抽样误差越大,说明率的标准误越大3、相对比=A/B,说明()A、A为B的若干倍或百分之几B、A、B两个指标只可以为绝对数C、性质肯定相同D、肯定是定性资料4、以下关于应用相对数时的描述正确的是()A、分析时可以以构成比代替率B、观察单位数不等的几个率的平均率,不能将这几个率直接相加求其均值C、所比较资料的内部构成不一定相同D、样本率或构成比的比较不必进行假设检验5、()在表的左侧,表明被研究事物的主要特征,相当于句子的主语A、备注B、标题C、纵标目D、横标目人群健康研究的统计学方法(四)北京大学公共卫生学院刘爱萍一、分类变量资料的统计分析(一)分类变量资料的统计描述1 .相对数常用的指标及其意义相对数主要涵盖:率、构成比和相对比。
率是表示某现象发生的频率或强度,常用百分率、千分率、万分率或十万分率等表示。
它的计算公式是:(实际发生某现象的观察单位数 / 可能发生该现象的观察单位总数)×比例基数。
构成比是说明事物内部各组成部分所占的比重或分布情况,用百分数表示。
构成比 = (事物内部某一组成部分的观察单位数 / 同一事物各组成部分的观察单位总数)× 100% 。
构成比的特点有 : 它的值在 0 和 1 之间变动。
当某一部分构成比发生变化时,其他部分的构成比也相应地发生变化。
相对比是指两个有联系指标之比( A/B ),常以百分数或者倍数表示。
它说明 A 是 B 的若干倍或百分之几,指标可以是绝对数,也可以是相对数,性质可以相同,也可以不同,可以是定性资料,也可以是定量资料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人数)×比例基数(K) 比例基数(K) :100%、1000‰、10000/万、100000/10万等
2、不能以构成比代替率。 3、正确计算合计率和平均率。 4、相对数的比较应具有可比性。 5. 比较样本率(或构成比)时应做假设检验
二 应用相对数的注意事项
2、不能以构成比代替率
某地各年龄组中老年人白内障患病情况统计
年龄组 受检人数 患者数
⑴
⑵
⑶
40~
560
68
50~
441
129
60~
296
135
70~
可见,乙地流行性感冒发病比甲地严重,这就使 我们对两地发病情况有了更深入地了解。
相对数是两个有联系的指标之比,说 明事物发生情况的相对水平,便于对分类变量资料 进行分析和比较。
相对数的常用指标
➢率(rate) ➢构成比(proportion) ➢相对比(relative ratio)
相对数的常用指标
三日疟
17
17.5
17
34.0
合计
97
100.0
50
100.0
特点:1.各构成部分的构成比之和为100% 2.某一部分所占比重的增(减),其他部分会 相应的减(增),此消彼长。
相对数的常用指标
➢ 相对比(relative ratio):简称比,是甲乙两个有关 指标之比,说明甲是乙的若干倍或百分之几,通常用倍 数或分数表示。
如:发病率、死亡率、发生率、阳性率、患病率等
例1:某地1980年的人口数为56万,麻疹发生数 为411人,则:
麻疹发病率=411/560000×10000/万=7.3/万
➢计算率时,应注意分母和时间的确定。分母 只包括可能会发生某事件的观察单位,尤其 在计算某病的发生率时,不可能会发生的单 位应予以排除。如在计算传染病发病率时, 分母不应包括已经患过该传染病或因接种疫 苗而获得免疫力的人群,即应只包括易感人 群。
149
97
≥80
22
19
合计 1468
448
患者构成比 (%)⑷
15.18 28.79 30.13 21.65 4.24
100.00
患病率(%) ⑸=(3)/(2) 12.14 29.25 45.61 65.10 86.36
30.52
率与构成比
区别点
率
构成比
概念
发生的频率 各组成部分所占的
或强度
比重
相对比= 甲指标/乙指标(或×100%)
如:男:女、医生:护士、教师:学生
相对比(relative ratio)
1.两类个体数之比 R = 甲类发生的例数/乙类发生的例数
例:我国1990年第4次人口普查总人数中, 男性为584949922人,女性为548732579 人,试计算男女性别比。
性别比=1.066 或 106.6:100
分类变量资料的统计描述
万州疾控中心 陈春蓉
统计分析 设检验
统计描述 参数估计
统计推断 假
主要内容
一 相对数的意义及常用指标 二 应用相对数的注意事项 三 率的标准化法
学习要求
1.掌握相对数的概念、常用指标及 应用
2.理解率的标准化法的基本思想; 学会运用标化率解决实际问题
如:某年甲、乙两地流行性感冒流行,甲地
总人口数30000人、乙地总人口数15000人;
甲地发病1500人,乙地发病1200人。
➢ 发病人数是绝对数,它说明两地流行性感冒实际 发生的绝对水平。
➢ 仅使用绝对数还不能对两地疾病发生的严重程度 进行深入的分析比较。如果要比较两地发病的严 重程度,需要考虑该地的总人口数。
甲地流行性感冒发病率=1500/30000×100%=5% 乙地流行性感冒发病率=1200/15000×100%=8%
精品课件
区 甲 乙 丙 合计
某年某市三个区的肠道传染病发病率
人口数
发病数 发病率(‰)
98740
503
5.09
75135
264
3.51
118730
466
3.92
292605
1233
4.21
注意:计算合计发病率时,不能直接将几个率相加求 得,应以肠道传染病总的发病人数除以总人数。
相对数的常用指标
➢ 构成比(proportion):又称构成指标,是指某一事物 内部某一组成部分的观察单位数与该事物观察单位总数 之比,即比例。说明某一事物内部各组成部分所占的比 重,也叫百分比。
2. 根据分子分母的关系,相对数可分为 (1)关系指标:指两个有关系的非同类事物的比
。 如:医护人员数:病床数 (2)对比指标:指同类事物的两个指标之比,如
甲乙两地恶性肿瘤之比。 相对比的分子和分母不一定有相同的量纲。 如:体质指数=体重/身高2(kg/m2)
二 应用相对数的注意事项
1、计算相对数的分母不宜过小,即大数原则。小 则直接叙述。(大样本原则)
2.两个率之比
R = P1/P2
例:某市区肺癌病死率1957年为7.7/10万,1972 年为32.4/10万,用相对比反映两年肺癌病死 率的变化。 相对比=7.7/32.4×100%=23.77% 或 相对比=32.4/7.7=4.2
相对比特点
1. 甲、乙两个指标可以是相对数、也可以是绝对数, 可性质相同也可性质不同。
某年某市三个区的肠道传染病发病率
区
人口数
发病数 发病率(‰)
甲
98740
503
5.09
乙
75135
264
3.51
丙
118730
466
3.92
合计
292605
1233
4.21
注意:计算合计率或平均发病率,不能直接将几个 率相加求得,应以肠道传染病总的发病人数除以总 人数。
资料获得
较难
容易
分母
观察单位总数
各部分之和
特点
合计率不一定为 合计为100%,相互
100%,互相独立
影响
3、正确计算合计率或平均率。
例: 若P1=x1/n1 P3=x3/n3
P2=x2/n2
(正确)
P=(x1+ x2+ x3)/ (n1+ n2+ n3))
P=(P1+ P2+ P3)/3
(错ቤተ መጻሕፍቲ ባይዱ)
精品课件
构成比=(事物内部某组成部分观察单位数/同一 事物各组成部分观察单位总数)×100%
如:教研室16人,中高级职称有4人,占25%。
表 某地1955年和1956年疟疾的构成
类别
1955 发病人数 构成比(%)
1956 发病人数 构成比(%)
恶性疟
68
70.1
21
42.0
间日疟
12
12.4
12
24.0