2011海淀初三数学二模答案

合集下载

海淀区2010-2011学年第二学期初三期中数学试题及参考答案

海淀区2010-2011学年第二学期初三期中数学试题及参考答案

海淀区九年级第二学期期中练习数 学 2011.5一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.-2的相反数是A .12-B . 12C. -2D. 22.据报道,北京市今年开工及建设启动的8条轨道交通线路,总投资约82 000 000 000元. 将82 000 000 000 用科学计数法表示为A .110.8210⨯B .108.210⨯C .98.210⨯D .98210⨯ 3.在下列几何体中,主视图、左视图和俯视图形状都相同的可能是4. 一个布袋中有1个红球,3个黄球,4个蓝球,它们除颜色外完全相同. 从袋中随机取出一个球,取到黄球的概率是 A.18 B. 38 C. 13D. 125. 用配方法把代数式245x x -+变形,所得结果是A .2(2)1x -+B .2(2)9x --C .2(2)1x +-D .2(2)5x +-6. 如图,ABCD 中,AB =10,BC =6,E 、F 分别是AD 、DC的中点,若EF =7,则四边形EACF 的周长是A .20B .22C .29D .317.有20名同学参加“英语拼词”比赛,他们的成绩各不相同,按成绩取前10名参加复赛. 若小新知道了自己的成绩,则由其他19名同学的成绩得到的下列统计量中,可判断小新能否进入复赛的是 A .平均数 B .极差 C .中位数 D .方差ABD CE F B CDA8.如图,在Rt ABC △中,∠C =90°,AB =5cm ,BC =3cm ,动点P 从点A 出发, 以每秒1cm 的速度,沿A →B →C 的方向运动,到达点C 时停止.设2y PC =, 运动时间为t 秒,则能反映y 与t 之间函数关系的大致图象是二、填空题(本题共16分,每小题4分) 9.若分式14x -有意义,则x 的取值范围是 . 10. 分解因式: 269mx mx m -+= .11. 如图,CD 是⊙O 的直径,弦AB ⊥CD 于点H ,若∠D =30°, CH =1cm ,则AB = cm .12.如图,矩形纸片ABCD中,AB BC =第一次将纸片折叠,使点B 与点D 重合,折痕与BD 交于点1O ;设1O D 的中点为1D ,第二次将纸片折叠使点B 与点1D 重合,折痕与BD 交于点2O ;设21O D 的中点 为2D ,第三次将纸片折叠使点B 与点2D 重合,折痕与BD 交于点3O ,… .按上述方法折叠,第n 次折叠后的折痕与BD 交于点n O ,则1BO = ,n BO = .…第一次折叠 第二次折叠 第三次折叠 …CDC A B DBADCBBAD BAD三、解答题(本题共30分,每小题5分)130211)()4sin 452-+-︒.14.解不等式组:48011.32x x x -<⎧⎪+⎨-<⎪⎩,15.如图,点C 、D 在线段AB 上,E 、F 在AB 同侧,DE 与CF 相交于点O ,且AC =BD , CO =DO ,A B ∠=∠. 求证:AE =BF .16.已知m 是方程220x x --=的一个实数根,求代数式22()(1)m m m m--+的值.17.如图,一次函数y kx b =+与反比例函数my x=的图象交于A (2,1),B (-1,n )两点. (1)求k 和b 的值; (2)结合图象直接写出不等式0mkx b x+->的解集.18.列方程或方程组解应用题:“五一”节日期间,某超市进行积分兑换活动,具体兑换方法见右表. 爸爸拿出自己的积分卡,对小华说:“这里积有8200 分,你去给咱家兑换礼品吧”.小华兑换了两种礼品,共10件,还剩下了200分,请问她兑换了哪两种礼品,各多少件?A C D BEFO四、解答题(本题共20分,每小题5分)19.如图,在梯形ABCD 中,AD ∥BC ,∠B=60°,∠ADC=105°,AD =6,且AC ⊥AB ,求AB 的长.20. 如图,AB 为⊙O 的直径,AB =4,点C 在⊙O 上, CF ⊥OC ,且CF =BF . (1)证明BF 是⊙O 的切线;(2)设AC 与BF 的延长线交于点M ,若MC =6,求∠MCF 的大小.21.为了解学生的课余生活情况,某中学在全校范围内随机抽取部分学生进行问卷调查. 问卷中请学生选择最喜欢的课余生活种类(每人只选一类),选项有音乐类、美术类、体育类及其他共四类,调查后将数据绘制成扇形统计图和条形统计图(如图所示).(1)请根据所给的扇形图和条形图,填写出扇形图中缺失的数据,并把条形图补充完整; (2)在问卷调查中,小丁和小李分别选择了音乐类和美术类,校学生会要从选择音乐类和美术类的学生中分别抽取一名学生参加活动,用列表或画树状图的方法求小丁和小李恰好都被选中的概率; (3)如果该学校有500名学生,请你估计该学校中最喜欢体育运动的学生约有多少名?A D CB A FC OBM 32%其他16%音乐12%美术%体育音乐美术体育其他类别扇形统计图条形统计图合),记△DEF 的周长为p .(1)若D 、E 、F 分别是AB 、BC 、AC 边上的中点,则p =_______;(2)若D 、E 、F 分别是AB 、BC 、AC 边上任意点,则p 的取值范围是 .小亮和小明对第(2)问中的最小值进行了讨论,小亮先提出了自己的想法:将ABC △以AC 边为轴翻折一次得1AB C △,再将1AB C △以1B C 为轴翻折一次得11A B C △,如图2所示. 则由轴对称的性质可知,112DF FE E D p ++=,根据两点之间线段最短,可得2p DD ≥. 老师听了后说:“你的想法很好,但2DD 的长度会因点D 的位置变化而变化,所以还得不出我们想要的结果.”小明接过老师的话说:“那我们继续再翻折3次就可以了”.请参考他们的想法,写出你的答案.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知关于x 的方程2(3)40x m x m --+-=.(1)求证:方程总有两个实数根;(2)若方程有一个根大于4且小于8,求m 的取值范围;(3)设抛物线2(3)4y x m x m =--+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y x =-的对称点恰好是点M ,求m 的值.A BD FC E 1图AB D FC E 1F 1A 1B 2D 1D 1E 2图24.已知平面直角坐标系xOy 中, 抛物线2(1)y ax a x =-+与直线y kx =的一个公共点为(4,8)A . (1)求此抛物线和直线的解析式;(2)若点P 在线段OA 上,过点P 作y 轴的平行线交(1)中抛物线于点Q ,求线段PQ 长度的最大值; (3)记(1)中抛物线的顶点为M ,点N 在此抛物线上,若四边形AOMN 恰好是梯形,求点N 的坐标及梯形AOMN 的面积.25.在Rt △ABC 中,∠ACB =90°,tan ∠BAC =12. 点D 在边AC 上(不与A ,C 重合),连结BD ,F 为BD 中点.(1)若过点D 作DE ⊥AB 于E ,连结CF 、EF 、CE ,如图1. 设CF kEF =,则k = ;(2)若将图1中的△ADE 绕点A 旋转,使得D 、E 、B 三点共线,点F 仍为BD 中点,如图2所示.求证:BE -DE =2CF ;(3)若BC =6,点D 在边AC 的三等分点处,将线段AD 绕点A 旋转,点F 始终为BD 中点,求线段CF长度的最大值.(备图1)(备图2)BCA DEFBDEA FC BAC1图2图备图海淀区九年级第二学期期中练习数 学参考答案及评分标准 2011.5说明: 合理答案均可酌情给分,但不得超过原题分数 一、选择题(本题共32分,每小题4分)二、填空题(本题共16分,每小题4分)注:第12题答对一个给2分,答对两个给4分 三、解答题(本题共30分,每小题5分) 13.解:原式=14+-…………………………….……………………………4分 = 3.…………………………….……………………………5分 14.解:解不等式480x -<,得 2x <,…………………………….……………………………2分解不等式1132x x+-<,得 2263x x +-<, 即 4x >-, …………………………….……………………………4分 所以,这个不等式组的解集是42x -<<. …………………………….……………………………5分15.证明:在△COD 中,∵ CO =DO ,∴ ∠ODC =∠OCD . …………………………….……………………………1分 ∵ AC =BD ,∴ AD =BC . …………………………….……………………………2分 在△ADE 和△BCF 中,∵,,,A B AD BC EDA FCB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ △ADE ≌△BCF . …………………………….……………………………4分 ∴ AE =BF .…………………………….……………………………5分16.解:∵ m 是方程220x x --=的一个根,∴ 220m m --=.∴ 22m m -=,22m m -=. …………………………….……………………………2分 ∴ 原式=222()(1)m m m m--+…………………………….……………………………3分 =2(1)mm⨯+ …………………………….……………………………4分 =22⨯=4.…………………………….……………………………5分17.解:(1)∵ 反比例函数my x =的图象过点A (2,1), ∴ m =2.…………………………….……………………………1分∵ 点B (-1,n )在反比例函数2y x=的图象上, ∴ n = -2 .∴ 点B 的坐标为(-1,-2).…………………………….……………………………2分∵ 直线y kx b =+过点A (2,1),B (-1,-2), ∴ 21,2.k b k b +=⎧⎨-+=-⎩解得1,1.k b =⎧⎨=-⎩…………………………….……………………………3分(2)10x -<<或2x >. (写对1个给1分) …………….……………………………5分18.解:因为积分卡中只有8200分,要兑换10件礼品,所以不能选择兑换电茶壶.设小华兑换了x 个保温杯和y 支牙膏, …………….……………………………1分 依题意,得10,20005008200200.x y x y +=⎧⎨+=-⎩…………….……………………………3分解得2,8.x y =⎧⎨=⎩…………….……………………………4分答:小华兑换了2个保温杯和8支牙膏.…………….……………………………5分四、解答题(本题共20分,每小题5分)19.解:过点D 作DE ⊥AC 于点E ,则∠AED =∠DEC =90°.………….……………………1分∵ AC ⊥AB ,∴ ∠BAC =90°. ∵ ∠B =60°,∴ ∠ACB =30°.ADE∴ ∠DAC =∠ACB =30°.………….……………………2分∴ 在Rt △ADE 中,DE =12AD =3,AE=,∠ADE =60°.….………3分∵ ∠ADC=105°, ∴ ∠EDC =45°.∴ 在Rt △CDE 中, CE =DE =3.…………….……………………………4分∴ AC =AE +CE=3.∴ 在Rt △ABC 中,AB =AC ⋅tan ∠ACB=3)3=+ …….……………………5分20.证明:连接OF . (1) ∵ CF ⊥OC,∴ ∠FCO =90°. ∵ OC =OB , ∴ ∠BCO =∠CBO . ∵ FC =FB , ∴ ∠FCB =∠FBC .…………………………..1分∴ ∠BCO +∠FCB =∠CBO +∠FBC . 即 ∠FBO =∠FCO =90°. ∴ OB ⊥BF . ∵ OB 是⊙O 的半径, ∴ BF 是⊙O 的切线.…………………………..2分(2) ∵ ∠FBO =∠FCO =90°,∴ ∠MCF +∠ACO =90°,∠M +∠A =90°. ∵ OA =OC , ∴ ∠ACO =∠A. ∴ ∠FCM =∠M.……………………………………3分易证△ACB ∽△ABM, ∴AC ABAB AM=. ∵ AB =4,MC =6, ∴ AC =2.………………………………………………..4分∴ AM =8,BM . ∴cos ∠MC F = cos M =BM AM. ∴ ∠MCF =30°.………………………………………………..5分AFCOBM21.(1)…………………………….……………………………2分(2)易知选择音乐类的有4人,选择美术类的有3人.记选择音乐类的4人分别是12,,,A A A 小丁;选择美术类的3人分别是12,,B B 小李.可画出树状图如下:由树状图可知共有12中选取方法,小丁和小李都被选中的情况仅有1种,所以小丁和小李恰好都被选中的概率是112. .…………………………….……………………………4分由表可知共有12中选取方法,小丁和小李都被选中的情况仅有1种,所以小丁和小李恰好都被选中的概率是112..…………………………….……………………………4分 (3)由(1)可知问卷中最喜欢体育运动的的学生占40%,得 50040%200⨯=所以该年级中最喜欢体育运动的学生约有200名.…………….……………………………5分22. 解:(1)32p =; .…………………………….……………………………2分 (2)332p <≤..…………………………….……………………………5分音乐美术体育其他类别扇形统计图条形统计图32%其他16%音乐12%美术40%体育1A 1B 2B 小李2A 1B 2B 小李3A 1B 2B 小李1B 2B 小李小丁五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.证明:(1)22224(3)4(4)1025(5)b ac m m m m m ∆=-=---=-+=-≥0,所以方程总有两个实数根..…………………………….……………………………2分解:(2)由(1)2(5)m ∆=-,根据求根公式可知,方程的两根为:x =即:11x =,24x m =-,由题意,有448m <-<,即812m <<.……………………….……………………………5分(3)易知,抛物线2(3)4y x m x m =--+-与y 轴交点为M (0,4m -),由(2)可知抛物线与x 轴的交点为(1,0)和(4m -,0),它们关于直线y x =-的对称点分别为(0,1-)和(0, 4m -), 由题意,可得:14m -=-或44m m -=-,即3m =或4m =.……….……………………………7分24.解:(1)由题意,可得8164(1)a a =-+及84k =,解得1,2a k ==,所以,抛物线的解析式为22y x x =-,直线的解析式为2y x =.…………………………2分(2)设点P 的坐标为4(,2)(0)t t t ≤≤,可得点Q 的坐标为2(,2)t t t -,则 2222(2)4(2)4PQ t t t t t t =--=-=--+ 所以,当2t =时,PQ 的长度取得最大值为4.………………………………4分(3)易知点M 的坐标为(1,-1).过点M 作直线OA 的平行线交抛物线于点N ,如图所示,四边形AOMN为梯形.直线MN 可看成是由直线OA 向下平移b 个单位得到,所以直线MN 的方程为2y x b =-.因为点M 在直线2y x b =-上,解得b =3,即直线MN 的方程为23y x =-,将其代入22y x x =-,可得 2232x x x -=-即 2430x x -+= 解得 11x =,23x = 易得 11y =-,23y =所以,直线MN 与抛物线的交点N 的坐标为(3,3).…………5分如图,分别过点M 、N 作y 轴的平行线交直线OA 于点显然四边形MNHG 是平行四边形.可得点G (1,2),H (113(10)[2(1)]222OMG S MG =⨯-⨯=⨯--=△113(43)(63)222ANH S NH =⨯-⨯=⨯-=△(31)236MNHG S NH =-⨯=⨯=△所以,梯形AOMN 的面积9OMG MNHG ANH AOMN S S S S =++=△△△梯形. ……………………7分25. 解:(1)k =1;……………………….……………………………2分(2)如图2,过点C 作CE 的垂线交BD 于点G ,设BD 与AC 的交点为Q .由题意,tan ∠BAC =12, ∴12BC DE AC AE ==. ∵ D 、E 、B 三点共线, ∴ AE ⊥DB .∵ ∠BQC =∠AQD ,∠ACB =90°,∴ ∠QBC =∠EAQ.∵ ∠ECA+∠ACG =90°,∠BCG+∠ACG =90°, ∴ ∠ECA =∠BCG . ∴ BCG ACE △∽△. ∴12BC GB AC AE ==. ∴ GB =DE. ∵ F 是BD 中点, ∴ F 是EG 中点. 在Rt ECG △中,12CF EG =, ∴ 2BE DE EG CF -==..…………………………….……………………………5分(3)情况1:如图,当AD =13AC 时,取AB 的中点M ,连结MF 和CM ,∵∠ACB =90°, tan ∠BAC =12,且BC = 6, ∴AC =12,AB=.∵M 为AB 中点,∴CM=∵AD =13AC ,∴AD =4.∵M 为AB 中点,F 为BD 中点,∴FM =12AD = 2.B2图BD EAFC GQ∴当且仅当M、F、C三点共线且M在线段CF上时CF最大,此时CF=CM+FM=2+. .…………………………….……………………………6分情况2:如图,当AD=23AC时,取AB的中点M,连结MF和CM,类似于情况1,可知CF的最大值为4+………….……………………………7分综合情况1与情况2,可知当点D在靠近点C的三等分点时,线段CF的长度取得最大值为4+.…………………………….……………………………8分。

北京初三数学2011年各区一模二模12题汇总(含答案)

北京初三数学2011年各区一模二模12题汇总(含答案)

2011年北京市一模、二模第12题汇总12.(11hdym)如图,矩形纸片ABC D 中,6,10AB BC ==.第一次将纸片折叠,使点B 与点D 重合,折痕与BD 交于点1O ;设1O D 的中点为1D ,第二次将纸片折叠使点B 与点1D 重合,折痕与BD 交于点2O ;设21O D 的中点为2D ,第三次将纸片折叠使点B 与点2D 重合,折痕与BD交于点3O ,… .按上述方法折叠,第n 次折叠后的折痕与BD 交于点n O , 则1BO = ,n BO = .(2,12332n n --)…第一次折叠 第二次折叠 第三次折叠 图1 图2 …12.(11dcym) 如图,直线x y 33=,点1A 坐标为(1,0),过点1A 作x 轴的垂线交直线于点1B ,以原点O 为圆心,1O B 长为半径画弧交x 轴于点2A ;再过点2A 作x 轴的垂线交直线于点2B ,以原点O 为圆心,2O B 长为半径画弧交x 轴于点3A ,…,按此做法进行下去,点4A 的坐标为( , );点n A ( , ).(938,0 1)332(-n ,0)12.(11syym) 将除去零以外的自然数按以下规律排列,根据第一列的奇数行的数的规律,写出第一列第9行的数为 ,再结合第一行的偶数列的数的规律,判断2011所在的BADCBA DC1O 1O 2O 1D 1D 2D 1O 2O 3O B ADCB ADC…① ② ③ ④位置是第 行第 列.(6,121n n +)12.(11fsym)如图,以边长为1的正方形的四边中点为顶点作四边形, 再以所得四边形四边中点为顶点作四边形,......依次作下去, 图中所作的第三个四边形的周长为________;所作的第n个四边形的周长为_________________.(2,42()2n)12.(11yqym)如图,图①是一块边长为1,周长记为1P 的正三角形纸板,沿图①的底边剪去一块边长为12的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的21)后,得图③,④,…,记第)3(≥n n块纸板的周长为n P ,则=-34P P ;1--n n P P = .(81, 121-⎪⎭⎫ ⎝⎛n )12.(11myym) 如图,一个空间几何体的主视图和左视图都是边长为1的正 三角形,俯视图是一个圆,那么这个几何体的侧面积是 . (12π)12.(11dxym).将一个面积为1的等边三角形挖去连接三边中点所组成的三角形(如第①图)后,继续挖去连接剩余各个三角形三边中点所成的三角形(如第②图、第③图)…如此进行挖下去,第④个图中,剩余图形的面积为 ,那么第n(n 为正整数)个图中,挖去的所有三角形形的面积和为 (用含n 的代数式表示). ⎪⎭⎫⎝⎛25681)43(4或, n )(431-.(12题图)12.(11sjsym)已知:如图,在平面直角坐标系xOy 中,点1B 、点1C 的坐标分别为()0,1,()31,,将△11C OB绕原点O 逆时针旋转︒60,再将其各边都扩大为原来的m 倍,使12OC OB =,得到△22C OB .将△22C OB 绕原点O 逆时针旋转︒60,再将其各边都扩大为原来的m 倍,使23OC OB =,得到△33C OB ,如此下去,得到△n n C OB . (1)m 的值是_______________;(2)△20112011C OB 中,点2011C 的坐标:_____________.(2;(32,220102010)) 12.(11ysym)已知:点F 在正方形纸片ABCD 的边CD 上,AB=2,∠FBC=30°(如图1);沿BF 折叠纸片,使点C 落在纸片内点C '处(如图2);再继续以BC '为轴折叠纸片,把点A 落在纸片上的位置记作A '(如图3),则点D 和A '之间的距离为_________. (2-6)12.(11mtgym)已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如图所示).当n = 8时,共向外作出了个小等边三角形; 当n = k 时,共向外作出了 个小等边三角形,这些小等边三角形的面积和是 (用 含k 的式子表示).183(-2)k23(2)k sk-A D A D D C 'F F F A 'B C B B图1 图2 图3n =3n =5……n =4D 4D 1D 2D 3ABCE 3E 2E 112.(11tongzym )已知ABC AB AC m ∆==中,,72A B C ∠=︒,1BB 平分A B C ∠交A C 于1B ,过1B 作12B B //B C 交AB 于2B ,作23B B 平分21A B B ∠,交A C 于3B ,过3B 作34//B B BC ,交AB 于4B ……依次进行下去,则910B B 线段的长度用含有m 的代数式可以表示为 .212332n n --12.(11changpem)如图,点E 、D 分别是正三角形ABC 、正四边形ABCM 、正五边形ABCMN 中以C 点为顶点的一边延长线和另一边反向延长线上的点,且BE =CD ,DB 的延长线交AE 于点F ,则图1中∠AFB 的度数为 ;若将条件“正三角形、正四边形、正五边形”改为“正n 边形”,其他条件不变,则∠AFB 的度数为 .(用n 的代数式表示,其中,n ≥3,且n 为整数)(0°,2180n n-⋅())图1E FB ADC图2AC DB FEM图3NAC DB F EM12.(11fangsem)如图,正方形ABCD ,E 为AB 上的动点,(E 不与A 、B 重合)联结DE ,作DE 的中垂线,交AD 于点F . (1)若E 为AB 中点,则D F A E=.(2)若E 为AB 的n 等分点(靠近点A),则D FA E = .(251,42n n+) 12. (11fengtem)已知:如图,在R t ABC △中,点1D 是斜边A B 的中点,过点1D 作11D E AC ⊥于点E 1,联结1B E 交1C D 于点2D ;过点2D 作22D E AC ⊥于点2E ,联结2BE交1C D 于点3D ;过点3D 作33D E AC ⊥于点3E ,如此继续,可以依次得到点45、D D 、…、n D ,分别记112233△、△、△、BD E BD E BD E …、n nBD E △的面积为123、、、S S S …n S .设△ABC 的面积是1, 则S 1= ,n S = (用含n 的代数式表示)(211,4(1)n +)12. (11huairem)如图7所示,P 1(x 1,y 1)、P 2(x 2,y 2),……P n (x n ,y n )在函数y =x4(x >0)的图象上,⊿OP 1A 1,⊿P 2A 1A 2,⊿P 3A 2A 3……⊿P n A n -1A n ……都是等腰三角形,斜边OA 1,A 1A 2……A n -1A n ,都在x 轴上,则y 1= .y 1+y 2+…y n = . (2, 2n )12.(11shijsem)如图平面内有公共端点的五条射线,,,,,OE OD OC OB OA 从射线OA 开始,在射线上写出数字1,2,3,4,5; 6,7,8,9,10;….按此规律,则“12”在射线 上;“2011”在射线 上.(OC ;OB ) 12.(11yanqem)正方形ABCD 的位置如图所示,点A 的坐标为)0,1(,点D 的坐标为)2,0(. 延长CB 交x 轴于点1A ,作正方形C C B A 111; 延长11B C 交x 轴于点2A ,作正方形1222C C B A … 按这样的规律进行下去,第3个正方形的面积为________; 第n 个正方形的面积为_____________(用含n 的代数式表示).4235)( , 22235-⎪⎭⎫ ⎝⎛nyo xAAAB B B CC CD 第12题图。

海淀区初三二模数学试题含答案

海淀区初三二模数学试题含答案

海淀区九年级第二学期期末练习2018. 5学校姓名成绩考1.本试卷共8页,共三道大题,28道小题,满分100分。

考试时间120分钟。

2.在试卷和答题卡上准确填写学校名称、班级和准考证号。

生3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

须4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,将本试卷、答题卡和草稿纸一并交回。

一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个..1,若代数式—有意义,则实数x的取值范围是x 1A . X 1 B. X 1C. X 1D. X 02.如图,圆。

的弦GH , EF , CD , AB中最短的是A . GH B. EFC. CDD. AB3. 2018年4月18日,被誉为“中国天眼”的FAST望远镜首次发现的毫秒脉冲星得到国际认证.新发现的脉冲星自转周期为0.00519秒,是至今发现的射电流量最弱的高能毫秒脉冲星之一.将0.00519用科学记数法表示应为A. 5.19 10-2B. 5.19 10-3C. 519 10-5D. 519 10-64.下列图形能折叠成三棱柱的是A B8 .“单词的记忆效率”是指复习一定量的单词,一周后能正确默写出的单词个数与复习的单词个数的比值.右图描述了某次单词复习中M ,N,S,T 四位同学的单词记忆效率y 与复习的单词个数 x 的情况,则这四位同学在这次单词复习中正确默写出的单词 个数最多的是B. NC. S5 .如图,直线DE 经过点A, DE // BC ,A. 60B. 65C. 70D. 756 .西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表.如图是一个根据北京的地理位置设计的圭表,其中,立柱AC 高为a .已知,冬至时北京的正午日光入射角 ABC 约为26.5。

,则立柱根部与圭表的冬至线的距离(即 BC 的长)约为A . a sin 26.5 B. --------tan26.5C. acos26.5_ aD. ---------cos26.7 .实数a,b,c 在数轴上的对应点的位置如图所示,若a b则下列结论中一定成立的是A. b c 0 C.B. a c 2 D. abc 0D. T、填空题(本题共16分,每小题2分)29 . 分解因式:3a 6a 310 .如图,AB 是。

海淀初三二模数学试题及答案

海淀初三二模数学试题及答案

海淀区九年级第二学期期中练习数学2015.6一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.1.中国国家图书馆是亚洲最大的图书馆,截止到今年初馆藏图书达3 119万册,其中古籍善本约有2 000 000册.2 000 000用科学记数法可以表示为A.70.210⨯ B.6210⨯ C.52010⨯ D.6102⨯2.若二次根式x的取值范围是A.0≤x B.0≥x C.2≤x D.2≥x3.我国古代把划分成十二个时段,每一个时段叫一个,古时与今时的对应关系(部分)如下表所示.天文兴趣小组的小明等4位同学从今夜23:00至明晨7:00将进行接力观测,每人两小时,观测的先后顺序随机抽签确定,小明在子时观测的概率为古时子时丑时寅时卯时今时23:00~1:001:00~3:003:00~5:005:00~7:00A .13 B .14 C .16 D .1124.如图,小明将几块六边形纸片分别减掉了一部分(虚线部分),得到了一个新多边形.若新多边形的内角和为540°,则对应的是下列哪个图形A B C D5.如图,根据计算正方形ABCD 的面积,可以说明下列哪个等式成立A .()2222a b a ab b +=++ B. ()2222a b a ab b -=-+CababbC. ()()22-=-a ab a ab+-=- D. ()2a b a b a b6.甲和乙入选学校的定点投篮大赛,他们每天训练后投10个球测试,记录命中的个数,五天后将记录的数据绘制成折线统计图,如右图所示.则下列对甲、乙数据描述正确的是A.甲的方差比乙的方差小B.甲的方差比乙的方差大C.甲的平均数比乙的平均数小D.甲的平均数比乙的平均数大7.在学习“用直尺和圆规作一个角等于已知角”时,教科书介绍如下:对于“想一想”中的问题,下列回答正确的是:A .根据“边边边”可知,△'''C O D ≌△COD ,所以∠'''A OB =∠AOB B .根据“边角边”可知,△'''C OD ≌△COD ,所以∠'''A O B =∠AOB C .根据“角边角”可知,△'''C O D ≌△COD ,所以∠'''A O B =∠AOB D .根据“角角边”可知,△'''C O D ≌△COD ,所以∠'''A O B =∠AOB8.小明家端午节聚会,需要12个粽子.小明发现某商场正好推出粽子“买10赠1”的促销活动,即顾客每买够10个粽子就送1个粽子.已知粽子单价是5元/个,按此促销方法,小明至少应付钱A .45元B .50元C .55元D . 60元9.如图,点A ,B 是棱长为1的正方体的两个顶点,将正方体按图中所示展开,则在展开图中A ,B 两点间的距离为A .2 BC.10.如右图所示,点Q 表示蜜蜂,它从点P 出发,按照着箭头所示的方向沿P →A →B →P →C →D →P 的路径匀速飞DBACPQO行,此飞行路径是一个以直线l 为对称轴的轴对称图形,在直线l 上的点O 处(点O 与点P 不重合)利用仪器测量了∠POQ 的大小.设蜜蜂飞行时间为x ,∠POQ 的大小为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是A B C D二、填空题(本题共18分,每小题3分)11. 将函数y =x 2 ?2x + 3写成()2y a x h k =-+的形式为 .12. 点A,B 是一个反比例函数图象上的两个不同点.已知点A (2,5),写出一个满足条件的B 点的坐标是 .13. 如图,四边形ABCD 内接于⊙O ,∠BCD=100°,AC 平分∠BAD ,则∠BAC 的度数为 .东南北B CABOA14.如图,在一次测绘活动中,某同学站在点A 观测放置于B ,C 两处的标志物,数据显示点B 在点A 南偏东75°方向20米处,点C 在点A 南偏西15°方向20米处,则点B 与点C 的距离为 米.15. 如图,在Rt △ABC 中,∠C =90°,∠BAC =30°, BC =1,以B 为圆心,BA 为半径画弧交CB 的延长线与点D ,则»AC 的长为 .16. 五子棋是一种两人对弈的棋类游戏,规则是:在正方形棋盘中,由黑方先行,白方后行,轮流弈子,下在棋盘横线与竖线的交叉点上,直到某一方首先在任一方向(横向、竖向或者是斜着的方向)上连成五子者为胜.如图,这一部分棋盘是两个五子棋爱好者的对弈图.观察棋盘,以点O 为原点,在棋盘上建立平面直角坐标系,将每个棋子看成一个点,若黑子A 的坐标为(7,5),则白子B 的坐标为______________;为了不让白方获胜,此时黑方应该下在坐标为______________的位置处.三、解答题(本题共30分,每小题5分)OB17.计算:11tan 45+()3-+︒-.18.解不等式2(1)13x x -≤+,并把它的解集在数轴上表示出来.19.如图,已知∠BAC =∠BCA ,∠BAE =∠BCD =90°,BE=BD .求证:∠E =∠D .20.已知2410x x --=,求代数式314x x x---的值.21.列方程或方程组解应用题:小明坚持长跑健身.他从家匀速跑步到学校,通常需30分钟.某周日,小李与同学相约早上八点学校见,他七点半从家跑步出发,平均每分钟比平时快了40米,结果七点五十五分就到达了学校,求小明家到学校的距离.DA22.已知关于x的方程24310-+-=有两个实数根.x x a(1)求实数a的取值范围;(2)若a为正整数,求方程的根.四、解答题(本题共20分,每小题5分)23.已知,ABC△中,D是BC上的一点,且∠DAC=30°,过点D作ED⊥AD交AC于点E,AE=,24EC=.(1)求证:AD=CD;(2)若tan B=3,求线段AB的长.24. 小明和小腾大学毕业后准备自主创业,开一个小店卖腊汁肉夹馍.为了使产品更好地适合大众口味,他们决定进行一次抽样调查.在某商场门口将自己制作的肉夹馍免费送给36人品尝,并请每个人填写了一份调查问卷,以调查这种肉夹馍的咸淡程度是否适中.调查问卷如下所示:经过调查,他们得到了如下36个数据:B C B A D A C D B C B C D C D C E C C A B E A D E C B C B C E D E D D C(1)小明用表格整理了上面的调查数据,写出表格中m 和n 的值; (2)小腾根据调查数据画出了条形统计图,请你补全这个统计图;(3)根据所调查的数据,你认为他们做的腊汁肉夹馍味道适中吗?.(填“适中”或者“不适中”)25.如图,Rt △ABC 中,∠A =90°,以AB 为直径的⊙O 交BC 于点D ,点E 在⊙O 上, CE =CA ,DFB AOAB,CE的延长线交于点F.(1)求证:CE与⊙O相切;(2)若⊙O的半径为3,EF=4,求BD的长.0(0)x k-=>成立的x2y kx=+的图象请回答:(1)当k=1时,使得原等式成立的x的个数为 _______;(2)当0<k<1时,使得原等式成立的x的个数为_______;(3)当k>1时,使得原等式成立的x的个数为 _______.参考小明思考问题的方法,解决问题:关于x 的不等式240 ()x a a x+-<>0只有一个整数解,求a 的取值范围.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.在平面直角坐标系xOy 中,抛物线224y mx m m x -++=与y 轴交于点A (0,3),与x 轴交于点B ,C (点B 在点C 左侧).(1)求该抛物线的表达式及点B ,C 的坐标;(2)抛物线的对称轴与x 轴交于点D ,若直线y kx b =+经过点D 和点E (1,2)--,求直线DE 的表达式;(3)在(2)的条件下,已知点P (t ,0),过点P 作垂直于x 轴的直线交抛物线于点M ,交直线DE 于点N ,若点M 和点N 中至少有一个点在x 轴下方,直接写出t 的取值范围.28.如图1,在△ABC 中,AB =AC ,∠ABC =α,D 是BC 边上一点,以AD 为边作△ADE ,使AE =AD ,DAE ∠+BAC ∠=180°.()(1)直接写出∠ADE的度数(用含 的式子表示);(2)以AB,AE为边作平行四边形ABFE,①如图2,若点F恰好落在DE上,求证:BD=CD;②如图3,若点F恰好落在BC上,求证:BD=CF.图1 图2 图329. 如图1,在平面直角坐标系xOy 内,已知点(1,0)A -,(1,1)B -,(1,0)C ,(1,1)D ,记线段AB 为1T ,线段CD 为2T ,点P 是坐标系内一点.给出如下定义:若存在过点P 的直线l 与1T ,2T 都有公共点,则称点P 是12T T -联络点.例如,点P 1(0,)2是12T T -联络点.(1)以下各点中,__________________是12T T -联络点(填出所有正确的序号);①(0,2);②(4,2)-;③(3,2).图1 备用图(2)直接在图1中画出所有12T T -联络点所组成的区域,用阴影部分表示;(3)已知点M 在y 轴上,以M 为圆心,r 为半径画圆,⊙M 上只有一个点为12T T -联络点,①若1r =,求点M 的纵坐标; ②求r 的取值范围.海淀区九年级第二学期期末练习数学试卷答案及评分参考2015.6一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共30分,每小题5分)17.(本小题满分5分) 解:原式213=+- (4)分4.……………………………………………………………………………………...5分18. (本小题满分5分)解法一:去括号,得22133x x -+≤.…………………………………………………………………..1分移项,得22133x x -+≤.…………………………………………………………………..2分合并,得1533x -≤. ……………………………………………………………………3分系数化为1,得5x -≥. (4)分不等式的解集在数轴上表示如下:. …………………………………………………………5分解法二:去分母,得2233x x -+≤. (1)分移项,得2332x x -+≤. (2)分合并,得5x -≤. (3)分系数化为1,得5x -≥. (4)分不等式的解集在数轴上表示如下:. …………………………………………………………5分19.(本小题满分5分)证明:在△ABC 中∵∠BAC =∠BCA ,∴AB =CB . ……………………………………………1分DA∵∠BAE =∠BCD =90°,在Rt△EAB 和Rt△DCB 中,,,AB CB BE BD =⎧⎨=⎩∴Rt△EAB ≌Rt△DCB . ……………………………………4分∴∠E =∠D . …………………………………………5分20.(本小题满分5分)解:原式()()()3444x x x x x x x --=---……………………………………………………………………….1分()2344x x x x x --+=-……………………………………………..………………………………2分22444x x x x-+=-.………………………………………………………………………………3分∵2410x x --=,∴241x x -=.………………………………………………………………………………………4分∴原式1451+==.………………………………………………………………………………..5分21. (本小题满分5分)解:设小明家到学校的距离为x米.……………………………………………………………………..1分由题意,得403025x x +=.………………………………………………………………………..3分解得6000x =. ……………………………………………………………………..4分答:小明家到学校的距离为6000米. ………………………………………………………………….5分22. (本小题满分5分)解:(1)∵关于x 的方程24310x x a -+-=有两个实数根,∴2(4)4(31)0a ∆=---≥.……………………………………………………………………..1分解得53a ≤.……………………………………………………………………………………2分∴a 的取值范围为53a ≤.(2)∵53a ≤,且a 为正整数,∴1a =.…………………………………………………………………………………………3分∴方程24310x x a -+-=可化为2420x x -+=.∴此方程的根为1222x x ==. (5)分四、解答题(本题共20分,每小题5分)23. (本小题满分5分)(1)证明: ∵ED ⊥AD ,∴∠ADE =90°.在Rt△ADE 中,∠DAE=30°,AE =4, ∴60DEA =∠o,122DE AE ==.………………………………………………………………1分 ∵2EC =, ∴DE EC =. ∴EDC C =∠∠.又60,EDC C DEA +=∠=∠∠o Q ∴30C DAE =∠=∠o . ∴AD=DC . ………………….…………………………………………………………………2分(2)解:过点A 作AF ⊥BC 于点F ,如图. ∴∠AFC =∠AFB =90°.∵AE =4,EC =2, ∴AC =6.在Rt△AFC 中,∠AFC =90°,∠C=30°, ∴132AF AC == …………………………………………………………………………3分在Rt△AFB 中,∠AFB =90°,tan B=3, ∴1tan AFBF B==.……….………………………………………………………………………4分∴AB =. (5)分24. (本小题满分5分) (1)8m =;5n =;………………………………………………………………………………...2分(2)………………………………………………………………...4分(3)适中. ………………………………………………………………………………….5分25.(本小题满分5分) 证明:连接OE ,OC .在△OEC 与△OAC 中,,,,OE OA OC OC CE CA =⎧⎪=⎨⎪=⎩∴△OEC ≌△DF BAOOAC . (1)分∴∠OEC =∠OAC .∵∠OAC =90°, ∴∠OEC =90°. ∴OE ⊥CF 于E . ∴CF 与⊙O 相切.………………………………………………………………………………...2分(2)解:连接AD . ∵∠OEC =90°,∴∠OEF =90°.∵⊙O 的半径为3, ∴OE =OA=3.在Rt△OEF 中,∠OEF =90°,OE = 3,EF = 4,∴5OF =,………………………………………………………………………3分F3tan 4OE F EF ==. 在Rt△FAC 中,∠FAC =90°,8AF AO OF =+=, ∴tan 6AC AF F =⋅=.…………………………………………………………………………4分∵AB 为直径,∴AB =6=AC ,∠ADB =90°. ∴BD =2BC. 在Rt△ABC 中,∠BAC =90°,∴BC =.∴BD =.…………………………………………………………………………………….5分26. (本小题满分5分) 解:(1)当k =1时,使得原等式成立的x 的个数为1 ;…………………………………….………1分 (2)当0<k <1时,使得原等式成立的x 的个数为2 ;…………………………………………2分(3)当k>1时,1 . (3)解决问题:将不等式24+-<x ax研究函数2(0)=+>与函数yy x a a∵函数4=的图象经过点Ayx函数2=的图象经过点Cy x若函数2(0)=+>经过点A(1,4),则y x a a3a=,……………………………………………………4分结合图象可知,当03<<时,关于x的不等式24(0)ax a a+<>只有一个整数解.x也就是当03a<<时,关于x的不等式240 ()+-<>0只有一个整数x a ax解. ……………………5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27. (本小题满分7分)解:(1)∵抛物线224y mx m mx-++=与y轴交于点A(0,3),∴43m+=.∴1m=-.∴抛物线的表达式为232y x x=-++.…………………………………………………………………1分∵抛物线232y x x=-++与x轴交于点B,C,∴令0y=,即2320x x+-=+.解得11x=-,23x=.又∵点B在点C左侧,∴点B的坐标为(1,0)-,点C的坐标为(3,0).…………………………………………………...……3分(2)∵2223(1)4y x x x+=---++=,∴抛物线的对称轴为直线1x=.∵抛物线的对称轴与x轴交于点D,∴点D的坐标为(1,0).…………………………………………………………………………...………4分∵直线y kx b=+经过点D(1,0)和点E(1,2)--,∴0,2.k b k b +=⎧⎨-+=-⎩解得1,1.k b =⎧⎨=-⎩∴直线DE 的表达式为1y x =-. ………………………………………………………………………5分(3)1t <或3t > ……………………………………………………………………………………………7分28.(本小题满分7分) (1)∠ADE=90α︒-.…………………………………………………………………………………….…1分(2)①证明:∵四边形ABFE 是平行四边形,∴AB ∥EF .∴EDC ABC α∠=∠=. (2)分由(1)知,∠ADE =90α︒-,∴90ADC ADE EDC ∠=∠+∠=︒. …………………...……3分∴AD⊥BC.∵AB=AC,∴BD=CD.……………………………………………………………………………………..……………4分②证明:∴C Bα∠=∠=.∵四边形ABFE是平行四边形,∴AE∥BF, AE=BF.∴EAC Cα∠=∠=.……………………………………………………………………………………………5分由(1)知,2DAEα∠=,∴DACα∠=.…………………………………………………………………………………………………6分∴DAC C∠=∠.∴AD =CD . ∵AD =AE =BF , ∴BF =CD . ∴BD =CF .………………………………………………………………………………………………………7分 29. (本小题满分8分) (1)②,③是12T T -联络或与直线BD 相切于(0,1),如图所示.又∵⊙M 的半径1r =,∴点M 的坐标为(0,1-)或(0,2).………………6分经检验:此时⊙M 与直线AD ,BC 无交点,⊙M 上只有一个点为12T T -联络点,符合题意.∴点M 的坐标为(0,1-)或(0,2).∴点M 的纵坐标为1-或2. ② 阴影部分关于直线12y =∵点M 在y 轴上,⊙M 阴影部分关于y ∴⊙M 与直线AC 相切于作ME ⊥AD 于E ,设AD 与BC 的交点为F ,∴MO = r ,ME > r ,F (0,12). 在Rt △AOF 中,∠AOF =90°,AO =1,12OF =, ∴AF =,sin AO AFO AF ∠==.在Rt △FEM 中,∠FEM =90°,FM = FO + OM = r +12,sin sin EFM AFO ∠=∠=, ∴sin ME FM EFM =⋅∠=.>.又∵0rr>,∴<<.……………………………………………………………………………r02………8分。

2011学年北京市海淀区中考数学模拟试卷

2011学年北京市海淀区中考数学模拟试卷

2011-2012学年北京市海淀区中考数学模拟试卷2011-2012学年北京市海淀区中考数学模拟试卷一、选择题(本题共8个小题,每小题4分,共32分)在下列各题的四个备选答案中,只有一个是正确的.D2.(4分)(2010•平谷区一模)温家宝总理在2010年3月5日的十一届全国人大第三次会议的政府工作报告中指出,3.(4分)(2011•内江)如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是()4.(4分)(2012•武鸣县一模)一个几何体的三视图如图所示,这个几何体是()5.(4分)(2013•武侯区一模)小明要给刚结识的朋友小林打电话,他只记住了电话号码的前5位的顺序,后3位.C D.6.(4分)(2007•韶关)2007年5月份,某市市区一周空气质量报告中某项污染指数的数据是:31 35 31 34 30 32 31,7.(4分)(2010•福州)已知反比例函数y=(k≠0)的图象经过点(1,3),则此反比例函数的图象在()8.(4分)(2008•丽水)如图,已知⊙O是以数轴的原点O为圆心,半径为1的圆,∠AOB=45°,点P在数轴上运动,若过点P且与OA平行的直线与⊙O有公共点,设OP=x,则x的取值范围是()≤≤二、填空题(本题共16分,每小题4分)9.(4分)(2013•普洱)函数y=中,自变量x的取值范围是_________.10.(4分)(2008•无锡)如图,CD⊥AB于E,若∠B=60°,则∠A=_________度.11.(4分)(2011•石景山区二模)分解因式:8a3﹣8a2+2a=_________.12.(4分)(2012•宿迁模拟)如图,∠AOB=45°,过OA上到点O的距离分别为1,3,5,7,9,11…的点作OA 的垂线与OB相交,得到并标出一组黑色梯形,它们的面积分别为S1,S2,S3,S4…则第一个黑色梯形的面积S1= _________;观察图中的规律,第n(n为正整数)个黑色梯形的面积S n=_________.三、解答题(本题共25分,每小题5分)13.(5分)(2009•黄石)求值:|﹣2|+20090﹣(﹣)﹣1+3tan30°.14.(5分)(2013•湖北模拟)解分式方程:.15.(5分)(2013•东城区二模)已知:如图,点E、F分别为▱ABCD的BC、AD边上的点,且∠1=∠2.求证:AE=FC.16.(5分)(2010•平谷区一模)已知x2﹣4x+3=0,求(x﹣1)2﹣2(1+x)的值.17.(5分)如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x,y的方程组,,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由._________.四、解答题(本题共10分,每小题5分)18.(5分)(2009•金华)如图,有一块半圆形钢板,直径AB=20cm,计划将此钢板切割成下底为AB的等腰梯形,上底CD的端点在圆周上,且CD=10cm.(1)求梯形ABCD面积;(2)求图中阴影部分的面积.19.(5分)(2013•兰州)已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.(1)求证:DE是⊙O的切线;(2)若DE=6cm,AE=3cm,求⊙O的半径.五、解答题(本题共6分)20.(6分)(2009•本溪)初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了_________名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该市近20 000名初中生中大约有多少名学生学习态度达标?(达标包括A级和B级)六、解答题(本题共9分,21小题5分,22小题4分)21.(5分)(2012•合浦县模拟)某商场用2500元购进A、B两种新型节能台灯共50盏,这两种台灯的进价、标价(2)在每种台灯销售利润不变的情况下,若该商场计划销售这批台灯的总利润至少为1400元,问至少需购进B种台灯多少盏?22.(4分)如图(1),凸四边形ABCD,如果点P满足∠APD=∠APB=α,且∠BPC=∠CPD=β,则称点P为四边形ABCD的一个半等角点.(1)在图(2)正方形ABCD内画一个半等角点P,且满足α≠β;(2)在图(3)四边形ABCD中画出一个半等角点P,保留画图痕迹(不需写出画法).七、解答题(共22分,其中23题7分、24题8分,25题7分)23.(7分)(2013•密云县二模)已知:关于x的一元二次方程(m﹣1)x2+(m﹣2)x﹣1=0(m为实数)(1)若方程有两个不相等的实数根,求m的取值范围;(2)在(1)的条件下,求证:无论m取何值,抛物线y=(m﹣1)x2+(m﹣2)x﹣1总过x轴上的一个固定点;(3)关于x的一元二次方程(m﹣1)x2+(m﹣2)x﹣1=0有两个不相等的整数根,把抛物线y=(m﹣1)x2+(m ﹣2)x﹣1向右平移3个单位长度,求平移后的解析式.24.(8分)(2009•宁德)如图,已知抛物线C1:y=a(x+2)2﹣5的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.(1)求P点坐标及a的值;(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;(3)如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.25.(7分)(2013•湖北模拟)已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.(1)如图①,当∠MAN点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:_________;(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)2011-2012学年北京市海淀区中考数学模拟试卷参考答案与试题解析一、选择题(本题共8个小题,每小题4分,共32分)在下列各题的四个备选答案中,只有一个是正确的.D2.(4分)(2010•平谷区一模)温家宝总理在2010年3月5日的十一届全国人大第三次会议的政府工作报告中指出,3.(4分)(2011•内江)如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是()4.(4分)(2012•武鸣县一模)一个几何体的三视图如图所示,这个几何体是()5.(4分)(2013•武侯区一模)小明要给刚结识的朋友小林打电话,他只记住了电话号码的前5位的顺序,后3位.C D.=6.(4分)(2007•韶关)2007年5月份,某市市区一周空气质量报告中某项污染指数的数据是:31 35 31 34 30 32 31,7.(4分)(2010•福州)已知反比例函数y=(k≠0)的图象经过点(1,3),则此反比例函数的图象在()y=y=中8.(4分)(2008•丽水)如图,已知⊙O是以数轴的原点O为圆心,半径为1的圆,∠AOB=45°,点P在数轴上运动,若过点P且与OA平行的直线与⊙O有公共点,设OP=x,则x的取值范围是()≤≤.所以≤OP=≤二、填空题(本题共16分,每小题4分)9.(4分)(2013•普洱)函数y=中,自变量x的取值范围是x≠2.10.(4分)(2008•无锡)如图,CD⊥AB于E,若∠B=60°,则∠A=30度.11.(4分)(2011•石景山区二模)分解因式:8a3﹣8a2+2a=2a(2a﹣1)2.12.(4分)(2012•宿迁模拟)如图,∠AOB=45°,过OA上到点O的距离分别为1,3,5,7,9,11…的点作OA 的垂线与OB相交,得到并标出一组黑色梯形,它们的面积分别为S1,S2,S3,S4…则第一个黑色梯形的面积S1= 4;观察图中的规律,第n(n为正整数)个黑色梯形的面积S n=8n﹣4.(×三、解答题(本题共25分,每小题5分)13.(5分)(2009•黄石)求值:|﹣2|+20090﹣(﹣)﹣1+3tan30°.==6﹣14.(5分)(2013•湖北模拟)解分式方程:.15.(5分)(2013•东城区二模)已知:如图,点E、F分别为▱ABCD的BC、AD边上的点,且∠1=∠2.求证:AE=FC.16.(5分)(2010•平谷区一模)已知x2﹣4x+3=0,求(x﹣1)2﹣2(1+x)的值.17.(5分)如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x,y的方程组,,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由.经过.的坐标即为方程组的解;,所以四、解答题(本题共10分,每小题5分)18.(5分)(2009•金华)如图,有一块半圆形钢板,直径AB=20cm,计划将此钢板切割成下底为AB的等腰梯形,上底CD的端点在圆周上,且CD=10cm.(1)求梯形ABCD面积;(2)求图中阴影部分的面积.=5=(×π=CD=25π25π)19.(5分)(2013•兰州)已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.(1)求证:DE是⊙O的切线;(2)若DE=6cm,AE=3cm,求⊙O的半径.五、解答题(本题共6分)20.(6分)(2009•本溪)初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该市近20 000名初中生中大约有多少名学生学习态度达标?(达标包括A级和B级)六、解答题(本题共9分,21小题5分,22小题4分)21.(5分)(2012•合浦县模拟)某商场用2500元购进A、B两种新型节能台灯共50盏,这两种台灯的进价、标价(2)在每种台灯销售利润不变的情况下,若该商场计划销售这批台灯的总利润至少为1400元,问至少需购进B种台灯多少盏?,;,22.(4分)如图(1),凸四边形ABCD,如果点P满足∠APD=∠APB=α,且∠BPC=∠CPD=β,则称点P为四边形ABCD的一个半等角点.(1)在图(2)正方形ABCD内画一个半等角点P,且满足α≠β;(2)在图(3)四边形ABCD中画出一个半等角点P,保留画图痕迹(不需写出画法).七、解答题(共22分,其中23题7分、24题8分,25题7分)23.(7分)(2013•密云县二模)已知:关于x的一元二次方程(m﹣1)x2+(m﹣2)x﹣1=0(m为实数)(1)若方程有两个不相等的实数根,求m的取值范围;(2)在(1)的条件下,求证:无论m取何值,抛物线y=(m﹣1)x2+(m﹣2)x﹣1总过x轴上的一个固定点;(3)关于x的一元二次方程(m﹣1)x2+(m﹣2)x﹣1=0有两个不相等的整数根,把抛物线y=(m﹣1)x2+(m ﹣2)x﹣1向右平移3个单位长度,求平移后的解析式.,再根据两根之积等于﹣解方程,得是整数.24.(8分)(2009•宁德)如图,已知抛物线C1:y=a(x+2)2﹣5的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.(1)求P点坐标及a的值;(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;(3)如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.y=m=点坐标为(,点坐标为(,)或(;y=,点坐标为(,点坐标为(,)或(,25.(7分)(2013•湖北模拟)已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.(1)如图①,当∠MAN点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:AH=AB;(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)中,中,参与本试卷答题和审题的老师有:ln_86;zhjh;Linaliu;nhx600;zcx;kuaile;HLing;zhangCF;蓝月梦;心若在;lf2-9;shuiyu;张超。

海淀初三二模数学试题及答案

海淀初三二模数学试题及答案

海淀区九年级第二学期期末练习数学学校班级___________ 姓名成绩一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.1.2022年冬奥会由北京和张家口两市联合承办.北京到张家口的自驾距离约为196 000米.196 000用科学记数法表示应为A.×105 B.×104 C.×106 D.×1062.中华文化底蕴深厚,地方文化活动丰富多彩.下面的四幅简笔画是从我国地方文化活动中抽象出来的,其中是轴对称图形的是1A .B .C .D .3.下列计算正确的是 A .632a a a=⋅ B .842a a a ÷= C .623)(a a = D .a a a 632=+4.如图,边长相等的正方形、正六边形的一边重合, 则1∠的度数为A .20° B.25° C .30° D .35°5.如图,数轴上有M ,N ,P ,Q 四个点,其中点P 所表示的数为a ,则数3a -所对应的点可能是A .MB .NC .PD .Q6.在一次中学生趣味数学竞赛中,参加比赛的10名学生的成绩如下NM QP表所示:这10名学生所得分数的平均数是A .86B .88C .90D .92 7.如图,A ,B ,C ,D 为⊙O 上的点, AB OC ⊥于点E ,若=30CDB ∠︒,2OA =,则AB 的长为A B . C .2 D .48.某通信公司自2016年2月1日起实行新的4G 飞享套餐,部分套餐资费标准如下:套餐1181000元/MB 元/分钟套餐22810050套餐33830050套餐44850050小明每月大约使用国内数据流量200MB,国内主叫200分钟,若想使每月付费最少,则他应预定的套餐是A.套餐 1 B.套餐 2 C.套餐 3 D.套餐49.随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎.该打车方式采用阶梯收费标准.打车费用y(单位:元)与行驶里程x(单位:千米)的函数关系如图所示.如果小明某次打车行驶里程为20千米,则他的打车费用为A .32元B .34元C .36元D .40元10.如图1,抛物线2y x bx c =-++的顶点为P ,与x 轴交于A ,B 两点.若A ,B 两点间的距离为m , n 是m 的函数,且表示n 与m 的函数关系的图象大致如图2所示,则n 可能为A .PA AB + B .PA AB -C .AB PAD .PAAB二、填空题(本题共18分,每小题3分) 11.当分式221x x -+的值为0时,x 的值为 . 12.分解因式:2312x -=______ _________.13.据传说,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度.如图所示,木杆EF的长为2m,它的影长FD为3m,测得OA为201m,则金字塔的高度BO为______ _ m.14.请写出一个图象过(2,3)和(3,2)两点的函数解析式______ ____.15.在某次试验数据整理过程中,某个事件发生的频率情况如下表所示.试验次数105010020050010002000事件发生的频率估计这个事件发生的概率是_________________(精确到,试举出一个随机事件的例子,使它发生的概率与上述事件发生的概率大致相同:___________________________________________________________________________________.16.阅读下面材料:实际生活中,有时会遇到一些“不能接近的角”,如图中的P,我们可以采用下面的方法作一条直线平分P∠.如图,(1)作直线l与P∠的两边分别交于点A,B,分别作PAB∠∠和PBA的角平分线,两条角平分线相交于点M;(2)作直线k与P∠的两边分别交于点C,D,分别作PCD∠的角∠和PDC平分线,两条角平分线相交于点N;(3)作直线 MN.所以,直线MN平分P∠.请回答:上面作图方法的依据是_________________ ___.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:101()(32)124cos 453----+-+︒.18.解不等式组8(1)517,106,2x x x x ->-⎧⎪⎨--≤⎪⎩并将解集在数轴上表示出来.19.已知关于x 的方程2670x x k -++=有两个不相等的实数根. (1)求k 的取值范围;(2)当k 为正整数时,求方程的根.20.已知:如图,在△ABC 中,∠ACB =90︒,点D 在BC 上,且BD =AC ,过点D 作DE ⊥AB 于点E ,过点B 作CB 的垂线,交DE 的延长线于点F .求证:AB =DF .21.为了提升阅读速度,某中学开设了“高效阅读”课.小静经过2个月的训练,发现自己现在每分钟阅读的字数比原来的2倍还多300字,现在读9100字的文章与原来读3500字的文章所用的时间相同.求小静现在每分钟阅读的字数.22.如图,在△ABC 中,∠ACB =90︒,CD 为AB 边上的中线,过点D 作DE BC ⊥于E ,过点C 作AB 的平行线与DE 的延长线交于点F ,连接BF ,AE .(1)求证:四边形BDCF 为菱形;(2)若四边形BDCF 的面积为24,tan ∠EAC =23,求CF 的长.23.在平面直角坐标系xOy 中,直线1l :12y x b =+与双曲线6y x=的一个交点为(,1)A m . (1)求m 和b 的值;(2)过(1,3)B 的直线交1l 于点D ,交y 轴于点E . 若2BD BE =,求点D 的坐标.24.如图,在△ABC 中,∠C =90°,点E 在AB 上,以AEE ODBAC为直径的⊙O切BC于点D,连接AD.(1)求证:AD平分∠BAC;(2)若⊙O的半径为5,sin∠DAC=5,求BD的长.25.据报道,2015年我国每千名儿童所拥有的儿科医生数为(将0~14岁的人群定义为儿童),远低于世界主要发达国家,儿科医生存在较大缺口.根据2000-2015年报道的相关数据,绘制统计图表如下:全国人口、儿童人口、儿科医生及每千名儿童拥有的儿科医生数统计表20152015年全国人口年龄构成统计图根据以上信息解答下列问题:(1)直接写出扇形统计图中m的值;(2)根据统计表估计2020年我国人口数约为亿人;(3)若2020年我国儿童占总人口的百分比与2015年相同,请你估算到2020年我国儿科医生需比2015年增加多少万人,才能使每千名儿童拥有的儿科医生数达到.26. 小明在做数学练习时,遇到下面的题目:小明的计算结果与参考答案不同,因此他对参考答案产生了质疑.下面是他的分析、探究过程,请你补充完整.第一步,读题,并标记题目条件如下:在△ABC 中,D 为AC 边上一点,①AB=AC ;②DBA A ∠=∠;③BD=BC ;④CD =2;⑤△BDC 的周长为14.第二步,依据条件③、④、⑤,可以求得BD BC ==__________; 第三步,作出△BCD ,如图2所示;第四步,依据条件①,在图2中作出△ABC ;(尺规作图,保留作图痕迹)BDC图2题目:如图1,在△ABC 中,D 为AC 边上一点,AB=AC ,DBA A ∠=∠,BD=BC .若CD =2,△BDC 的周长为14,第五步,对所作图形进行观察、测量,发现与标记的条件_____不符(填序号),去 掉这个条件,题目中其他部分保持不变,求得AB 的长为__________.27.已知:点(,)P m n 为抛物线24y ax ax b =-+(0a ≠)上一动点.(1) 1P (1,1n ),2P (3,2n )为P 点运动所经过的两个位置,判断1n ,2n 的大小,并说明理由;(2)当14m ≤≤时,n 的取值范围是14n ≤≤,求抛物线的解析式.28. 已知:AB BC =,90ABC ∠=︒.将线段AB 绕点A 逆时针旋转α(090α︒<<︒)得到线段AD .点C 关于直线BD 的对称点为E ,连接AE ,CE . (1)如图, ①补全图形; ②求AEC ∠的度数;CDBA老师:“质疑是小明:“该题目的已知条件存在自(2)若2AE=,31CE=-,请写出求α度数的思路.(可以不...写出计算结果......)29. 对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值. 在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如,下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数1y x=-,1yx=,2y x=有没有不变值如果有,直接写出其不变长度;(2)函数22y x bx=-.①若其不变长度为零,求b的值;②若13≤≤,求其不变长度q的取值范围;b(3)记函数22()=-≥的图象为1G,将1G沿x=m翻折后得到的y x x x m函数图象记为G.函数G的图象由1G和2G两部分组成,若其不变长2度q满足03≤≤,则m的取值范围为 .q海淀区九年级第二学期期末练习数学试卷参考答案一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:原式31+42=--⨯ ……………………4分5=.………………………5分18.解:原不等式组为8(1)5171062x x x x ->-⎧⎪⎨--≤⎪⎩,①,②解不等式①,得 3x >-. ………………………2分 解不等式②,得 2≤x . ………………………3分∴ 原不等式组的解集为32x -≤<.………………………4分 不等式组的解集在数轴上表示如下:………………………5分19. 解:(1)∵ 原方程有两个不相等的实数根,∴ 0Δ>.即 364(7)0k -+>.∴ 2k <..………………………2分(2)∵2k <且k 为正整数,∴1=k ..………………………3分 ∴0862=+-x x .∴1224x x ==,..………………………5分20.证明:∵ AB DE BC BF ⊥⊥,,90ACB ∠=︒,∴90DBF BEF ACB ∠=∠=∠=︒.∴ ︒=∠+∠︒=∠+∠9029021F ,. ∴ F ∠=∠1..………………………2分 在中和△△DFB ABC ,1F ACB DBF AC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴ ABC △≌DFB △.………………………4分 ∴DF AB =..………………………5分21.解:设小静原来每分钟阅读x 个字.…………1分由题意,得300291003500+=x x . ………………………3分 解得 500=x . ………………………4分 经检验,500=x 是原方程的解,且符合题意. ∴130030050023002=+⨯=+x .答:小静现在每分钟阅读1300个字. ………………………5分22.(1)证明:∵ 90ACB ∠=︒, ∴AC BC ⊥. ∵DE BC ⊥, ∴AC ∥DE . 又∵ CF ∥AD ,∴ 四边形ACFD 为平行四边形. …………1分∴CF AD =.∵ CD AB 为边上的中线, ∴BD AD =. ∴CF BD =.∴四边形BDCF 为平行四边形. ∵ BC DE ⊥,∴四边形BDCF 为菱形. ………………………3分F(2)解:在Rt ACE △中,∵ 2tan 3EC EAC AC ∠==, ∴设 2,3CE x AC DF x ===. ∵菱形BDCF 的面积为24,∴ 1242DF BC ⋅=.………………………4分∴ 24DF EC ⋅=. ∴ 3224x x ⋅=.∴ 12x =,22x =-(舍).∴4CE =,12EF =3DF =. ∴5CF =. ………………………5分23. 解:(1)∵点)1,(m A 在双曲线xy 6=上,∴6=m . ………………………1分∵点)1,6(A 在直线b x y +=21上,∴2-=b . ………………………2分 (2)当点B 在线段DE 上时,如图1,过点D 作DP ⊥y 轴于P ,过点B 作BQ ⊥y 轴于Q .可得EQB △∽EPD △. ∵BE BD 2=,∴13BQ BE DP DE ==. ∵1BQ =, ∴3DP =.∵点D 在直线1l 上, ∴)213(-,的坐标为点D .………………4分当点B 在线段DE 的延长线上时,如图2,同理,由BE BD 2=,可得点D 的坐标为5(1)2--,. 图2综上所述,点D 的坐标为)213(-,或5(1)2--,.…………… 5分24. (1)证明:连接OD .………………………1分∵⊙O 切BC 于点D , 90C ∠=︒, ∴90ODB C ∠=∠=︒. ∴OD ∥AC . ∴DAC ODA ∠=∠.∵OD OA =,∴OAD ODA ∠=∠.∴DAC OAD ∠=∠.∴AD 平分BAC ∠.………………………2分(2)解:连接DE . ∵AE 为直径, ∴︒=∠90ADE .∵OAD DAC ∠=∠,sin 5DAC ∠=,∴sin 5OAD ∠=. ∵5OA =, ∴10AE =.∴AD =.………………………3分 ∴4CD =,8AC =. ∵OD ∥AC ,∴BOD BAC △∽△.………………………4分∴OD BDAC BC=. 即584BDBD =+.∴203BD =.………………………5分25.(1)m 16.5=;………………………2分(2)14;(估值在合理范围内即可) ………………………3分 (3)14000016.5%0.69.721000⨯⨯- 4.14=.答:2020年我国儿科医生需比2015年增加万人,才能使每千名儿童拥有的儿科医生数达到. ………………………5分26. 第二步:6BD BC ==;………………………1分第四步:如图,△ABC 即为所求. ………………3分 第五步: ② ,18.………………5分27. 解:(1)12n n =. ……………… 1 分理由如下:由题意可得抛物线的对称轴为2x =.∵1P (1,1n ),2P (3,2n )在抛物线24y ax ax b =-+上, ∴12n n =.………………3分 (2)当0a >时,抛物线的顶点为(2,1),且过点(4,4),∴抛物线的解析式为23344y x x =-+.………………5分当0a <时,抛物线的顶点为(2,4),且过点(4,1),∴抛物线的解析式为23314y x x =-++.综上所述,抛物线的解析式为23344y x x =-+或23314y x x =-++.…………7 分28. 解:(1)①补全图形,如图1所示.…………1分②连接BE .∵AB BC =,,E C 关于直线BD 对称, ∴AB BC BE ==.………………………2分 ∴C BEC ∠=∠, BAE BEA ∠=∠. ∵90ABC ∠=︒,∴270BAE AEC C ∠+∠+∠=︒.∴135AEC ∠=︒..………………………4分 (2)求解思路如下:a .连接AC ,过点A 作AF ⊥CE ,交CE 延长线于点F ,如图2所示;b .由(1)可求︒=∠135AEC ,由2AE =可求1AF EF ==;c .由31CE =-,可求2AC =, 2AB BC ==,可证△ABE 为等边三角形;d .由C ,E 两点关于直线BD 对称,AB AD =,可求15EBD ∠=︒,75ABD ∠=︒,30α=︒. ……………………7分29.解:(1)函数1y x =-没有不变值; ………………1分函数1y x=有1-和1两个不变值,其不变长度为2;………………2分函数2y x =有0和1两个不变值,其不变长度为1;………………3分(2)①∵函数22y x bx =-的不变长度为零, ∴方程22x bx x -=有两个相等的实数根. ∴1b =-. ………………4分②解方程22x bx x -=,得10x =,212b x +=.………………5分 ∵13b ≤≤, ∴212x ≤≤.∴函数22y x bx =-的不变长度q 的取值范围为12q ≤≤. ………………6分(3)m 的取值范围为13m ≤≤或18m <-. ………………8分。

2011年北京市海淀区初三数学二模试卷答案

2011年北京市海淀区初三数学二模试卷答案

海淀区九年级第二学期期末练习数 学参考答案及评分标准 2011.6说明: 合理答案均可酌情给分,但不得超过原题分数 一、选择题(本题共32分,每小题4分)题号 1 2 3 4 5 6 7 8 答案ADCBCDDC二、填空题(本题共16分,每小题4分)题号 9 10 11 12答案52(3)2y x =+-30°1014注:第12题答对一个给2分,答对两个给4分 三、解答题(本题共30分,每小题5分) 13.解:原式323=--+231+ …….……………………..4分 2=-.…….……………………..5分14.解:方程两边同时乘以(2)(2)x x +-方程可化为: 3(2)2(2)3(2)(2)x x x x x -++=+-,…….……………………..2分即 223624312x x x x -++=-. ∴ 4x =.…….……………………..4分经检验:4x =是原方程的解. ∴原方程的解是4x =.…….……………………..5分15. 证明:∵AE ⊥BC 于E , AF ⊥CD 于F ,∴90AEB AFD ∠=∠=︒, …….……………………..1分 ∵菱形ABCD ,∴AB =AD , B D ∠=∠.…….……………………..3分在Rt △EBA 和Rt △FDA 中, ,,.AEB AFD B D AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△EBA ≌△FDA . …….……………………..4分 ∴AE =AF .…….……………………..5分16.解:∵2()(2)(2)x y x y y x ----=(2)(2)x y x y x y ---+ …….……………………..1分 (2)y x y =-,…….……………………..2分又∵32y x y +=, ∴32x y y -=.………………..3分将32x y y-=代入上式,得(2) 3.y x y -= ∴当32y x y+=时,代数式2()(2)(2)x y x y y x ----的值为3. …….……………………..5分17.解:(1)∵ 直线y x b =-+经过点(2,1)A ,∴ 12b =-+.…….……………………..1分 ∴ 3b =.…….……………………..2分(2)∵ M 是直线3y x =-+上异于A 的动点,且在第一象限内.∴ 设M (a ,3a -+),且03a <<. 由MN ⊥x 轴,AB x ⊥轴得,MN=3a -+,ON=a ,AB =1,2OB =. ∵ MON △的面积和AOB △的面积相等, ∴()1132122a a -+=⨯⨯. …….……………………..3分解得:11a =,22a =(不合题意,舍).…….……………………..4分∴ M (1,2).…….……………………..5分18.解:(1)由租用甲种汽车x 辆,则租用乙种汽车(8x -)辆. …….……………………..1分由题意得:290,100.4030(8)1020(8)x x x x +-⎧⎨+-⎩≥≥ …….……………………..3分 解得:56x ≤≤.…….……………………..4分即共有2种租车方案: 第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆. …….……………………..5分19.解:作DE //AC ,交BC 的延长线于点E ,作DF ⊥BE,垂足为F. …….……………………..1分∵AD //BC ,∴四边形ACED 为平行四边形.∴AD=CE=3,BE=BC+CE=8.…….……………………..2分∵AC ⊥BD , ∴DE ⊥BD.∴△BDE 为直角三角形 ,90.BDE ∠=︒ ∵∠DBC =30°,BE =8,∴4,4 3.DE BD == …….……………………..4分在直角三角形BDF 中∠DBC =30°, ∴23DF =.…….……………………..5分BADCEF y x b=-+B O A x yMN20.(1)证明:连结OC .∵CD 是O ⊙的切线, ∴OC ⊥CD. ∴90OCM ∠=︒.…….……………………..1分∵//CD AB ,∴180OCM COA ∠+∠=︒. ∵AM ⊥CD, ∴90AMC ∠=︒.∴在四边形OAMC 中90OAM ∠=︒ .∵OA 为O ⊙的半径,∴AM 是O ⊙的切线 .…….……………………..2分(2)连结OC ,BC .∵CD 是O ⊙的切线, ∴OC ⊥CD . ∴90OCM ∠=︒. ∵AM ⊥CD , ∴90AMC ∠=︒. ∴//OC AM .∴12∠=∠.∵OA= OC ,∴32∠=∠. 即BAC CAM ∠=∠.…….……………………..3分易知90ACB ∠=︒, ∴BAC CAM △∽△.…….……………………..4分∴AB ACAC AM=. 即224AC AB AM =⋅=. ∴26AC =.…….……………………..5分 21.解:(1)800,400,40; …….……………………..3分 (2)2010,1800.…….……………………..5分注:本题一空一分22.解:(1)如图,当C 、D 是边AO ,OB 的中点时,点E 、F 都在边AB 上,且CF AB ⊥. ∵OA =OB =8, ∴OC =AC=OD=4. ∵90AOB ∠=︒,∴42CD =.…….……………………..1分ACODBFEDBMAOC1图2图OABDMC 123在Rt ACF △中, ∵45A ∠=︒,∴22CF =.∴422216CDEF S =⨯=矩形.…….……………………..2分(2)设,CD x CF y ==.过F 作FH AO ⊥于H . 在Rt COD △中,∵4tan 3CDO ∠=, ∴43sin ,cos 55CDO CDO ∠=∠=.∴45CO x =.…….……………………..3分∵90FCH OCD ∠+∠=︒, ∴FCH CDO ∠=∠. ∴3cos .5HC y FCH y =⋅∠=∴2245FH CF CH y =-=.∵AHF △是等腰直角三角形, ∴45AH FH y ==. ∴AO AH HC CO =++. ∴74855y x +=. ∴1(404)7y x =-.…….……………………..4分易知2214(404)[(5)25]77CDEF S xy x x x ==-=---矩形,∴当5x =时,矩形CDEF 面积的最大值为1007. …….……………………..5分 23.解:(1)由题意可知,∵(32)4(3)90m m m ∆=---=>错误!未找到引用源。

北京市2011年数学中考模拟试卷及答案

北京市2011年数学中考模拟试卷及答案

ABCDE 122010~2011学年九年级综合水平质量调研数学试卷 2011.3学校___________________班级_______________姓名________________学号_____________ 考 生 须 知1. 本试卷共8页,共五道大题,25道小题,满分120分,考试时间120分钟. 2. 在试卷和答题卡上准确填写学校.班级.姓名.学号.3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效. 4. 考试结束,请将本试卷和答题卡一并交回.注意事项 1. 考生要按规定的要求在机读答题卡上作答,题号要对应,填涂要规范. 2. 考试结束后,试卷和机读答题卡由监考人一并收回.第一卷(机读卷32分)一 选 择 题 本 题32分, 每 小 题 4 分1. 4的算术平方根是A .2B .±2C .16D .±16 2. 如图,已知△ABC 为直角三角形,∠C =90°,若沿图中虚线剪去∠C , 则∠1+∠2等于 A . 90° B . 135° C . 150°D . 270°第2题图3.布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任 意摸出一个球,摸出的球是白球..的概率是 A .13 B .16 C .12 D . 564.某班的9名同学的体重分别是(单位:千克): 61,59, 70,59,65,67,59, 63,57,这组数据的众数和中位数分别是A .59,61B .59,63C .59,65D . 57,615.全球可被人类利用的淡水总量仅占地球上总水量的0.00003,因此珍惜水、保护 水,是我们每一位公民义不容辞的责任.其中数字0.00003用科学记数法表示为 A .4103-⨯ B .5103-⨯ C .4103.0-⨯ D .5103.0-⨯6.如图,模块①-⑤均由4个棱长为1的小正方体构成,模块⑥由15个棱长为1的小正方体构成. 现从模块①-⑤中选出三个放到模块⑥上,使得模块⑥成为一个棱长为3的大正方体. 则下列选择方案中,能够完成任务的为A.模块②,④,⑤B.模块①,③,⑤C.模块①,②,⑤D.模块③,④,⑤一选择题本题32 分,每小题4分7. 如图,两个同心圆,大圆的弦AB与小圆相切于点P,大圆的弦CD经过点P,且CD=13,PC=4,则两圆组成的圆环的面积是A.16π B.36π C.52π D.81π8. 矩形ABCD中,8cm6cmAD AB==,.动点E从点C开始沿边CB向点B以2cm/s的速度运动至点B停止,动点F从点C同时出发沿边CD向点D以1cm/s的速度运动至点D停止.如图可得到矩形CFHE,设运动时间为x(单位:s),此时矩形ABCD去掉矩形CFHE后剩余部分的面积为y(单位:2cm),则y与x之间的函数关系用图象表示大致是下图中的第8题图第7题图注意事项1.第Ⅱ卷包括4道填空题和13道解答题,共8页.答题前要认真审题,看清题目要求,按要求认真作答.2.答题时字迹要工整,画图要清晰,卷面要整洁.3.考生除画图可以用铅笔外,答题必须用蓝色或黑色钢笔、圆珠笔.第二卷(非机读卷88分)二填空题本题共16分,每小题4分9.若分式2x4x2--的值为0,则x的值为.10. 如图,点A、B、C是半径为6的⊙O上的点,30B∠=︒,则的长为_____________.第10题图11. 如图,在△ABC中,D、E分别AB、AC边上的点,DE∥BC.若AD=3,DB=5,DE=1.2,则BC=.第11题图12. 如图,在ABC∆中,α=∠A,ABC∠的平分线与ACD∠的平分线交于点1A,得1A∠,则1A∠= .BCA1∠的平分线与CDA1∠的平分线交于点2A,得2A∠,……,BCA2009∠的平分线与CDA2009∠的平分线交于点2010A,得2010A∠,则2010A∠= .第12题图三解答题本13. (本小题5分)(31)4sin6027-+-ACOABCCAEDB题共30分,每小题5 分14. (本小题5分)解不等式组31422xx x->-⎧⎨<+⎩,并把它的解集表示在数轴上.15. (本小题5分)如图,E F、是平行四边形ABCD对角线AC上两点,BE DF∥,求证:AF CE=。

北京市海淀区初三数学二模试卷答案及答案

北京市海淀区初三数学二模试卷答案及答案

DFACBE 品种海淀区九年级第二学期期末练习数 学录入 by iC 2011.061. 6-的绝对值是( ) A. 6B. 6-C.16D. 16-2. 下列运算正确的是( )A. 22a a a += B. 236a a a ⋅= C. 33a a ÷= D. 33()a a -=-3. 如图,Rt ABC V中,90ACB ∠=︒,过点C 的直线DF 与BAC ∠的平分线AE 平行,若50B ∠=︒,则BCF ∠=( )A. 100︒B. 80︒C. 70︒D. 50︒ 4. 已知关于x 的一元二次方程21104x x m -+-=有实数根,则m 的取值范围是( ) A. 2m ≥ B. 5m ≤C. 2m >D. 5m <5. 在6张完全相同的卡片上分别画有线段、等边三角形、直角梯形、正方形、正五边形和圆各一个图形。

从这6张卡片随机地抽取一张卡片,则这张卡片上的图形是中心对称图形的概率是( ) A.16B.13C.12D.236. 两个半径不等的圆相切,圆心距为6cm ,且大圆半径是小圆半径的2倍,则小圆的半径为( ) A. 3 B. 4 C. 2或4 D. 2或67. 农科所连续四年在两块环境相同的实验田里种植甲、乙两种不同品种的小麦。

亩产量(单位:公斤)统计如下表。

设甲、乙品种四年亩产量的平均数依次为x 甲,x 乙,四年亩产量的方差依次为2S 甲,2S 乙,则下A. x 甲<x 乙,2S 甲>2S 乙B. x 甲>x 乙,2S 甲<2S 乙C. x 甲>x 乙,2S 甲>2S 乙D. x 甲<x 乙,2S 甲<2S 乙8. 一个不透明的小方体的的6个面上分别写有数学1,2,3,4,5,6,任意两对面上所写的两个数字之和为7。

将这样的几个小方体按照相接触的两个面上的数字之和为8摆放成一个几何体,这个几何体的三视图如右图所示,已知图中所标注的是部分面上所见的数字,则★所代表的数是( ) A. 1 B. 2 C. 3D.49. 一个正n 边形的每个内角都是108︒,则n =_______.10. 将抛物线2y x =向左平移3个单位,再向下平移2个单位后,所得抛物线的解析式为___________.11. 如图,在扇形OAB 中,90AOB ∠=︒,C 为OA 的中点,点D 在»AB 上,2007 2008 2009 2010 甲 454 457 462 459 乙454459465458年份 DCA12. 某种数字化的信息传输中,先将信息转化为数学0和1组成的数字串,并对数字串进行了加密后再传输。

北京海淀初三数学二模试题及答案(电子版)免费下载

北京海淀初三数学二模试题及答案(电子版)免费下载

北京海淀初三数学二模试题及答案(电子版)免费下载海淀区九年级第二学期期末练习数学20XX年. 6一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的...1. -5的倒数是11A.B.C.5 D.5552. 20XX年4月22日是第43个世界地球日,中国国土资源报社联合腾讯网发起“世界地球日”微话题,共有18 891 511人次参与了这次活动,将18 891 511用科学记数法表示(保留三个有效数字)约为A. 18.9 106B. 0.189 108C. 1.89 107D. 18.8 106 3. 把2x2 4x + 2分解因式,结果正确的是A.2(x 1)2 B.2x(x 2) C.2(x2 2x + 1) D.(2x 2)24. 右图是由七个相同的小正方体堆砌而成的几何体,则这个几何体的俯视图是A BCD 5.从1, -2, 3这三个数中,随机抽取两个数相乘,积为正数的概率是A.0B.C.D.1336. 如图,在△ABC 中,∠C=90°,BC=3,D,E 分别在AB、AC上,将△ADE沿DE 翻折后,点A落在点A′处,若A′为CE 的中点,则折痕DE的长为BA.12B. 3 D. 1CA'EC. 2C. 中位数是51.5D. 众数是588.如图,在梯形ABCD中,AD//BC,∠ABC=60°,AB= DC=2, AD=1,R、P分别是BC、CD边上的动点(点R、B不重合, 点P、C不重合),E、F分别是AP、RP 的中点,设BR=x,EF=y,则下列图象中,能表示y与x的函数关系的图象大致是A B C D二、填空题(本题共16分,每小题4分)9. 若二次根式3x 2有意义,则x的取值范围是 .10.若一个多边形的内角和等于540 ,则这个多边形的边数是B11. 如图,在平面直角坐标系xOy中,已知点A、B、C 在双曲线y6上,BD x轴于D, CE y轴于E,点F在x轴上,x且AO=AF, 则图中阴影部分的面积之和为 .12.小东玩一种“挪珠子”游戏,根据挪动珠子的难度不同而得分不同,规定每次挪动珠子的颗数与所得分数的对应关系如下表所示:按表中规律,当所得分数为71分时,则挪动的珠子数为颗; 当挪动n颗珠子时(n为大于1的整数), 所得分数为(用含n的代数式表示).三、解答题(本题共30分,每小题5分)13| 5| () 1 3tan60 .14.解方程:15. 如图,AC //EG, BC //EF, 直线GE分别交BC、BA 于P、D,且AC=GE, BC=FE. 求证:A= G.FC146x 1. x 2x 316.已知a2 2a 2 0,求代数式11a 1的值.2 2a 1a 1a 2a 117. 如图,一次函数的图象与x轴、y轴分别交于点A(-2, 0)、B(0, 2). (1)求一次函数的解析式;(2)若点C在x轴上,且OC=2, 请直接写出ABC的度数.18. 如图,在四边形ABCD中,ADB= CBD=90 ,BE//CD交AD于E , 且EA=EB.若AB=4,DB=4, 求四边形ABCD的面积.四、解答题(本题共20分,第19题、第20题各5分,第21题6分,第22题4分)19. 某街道办事处需印制主题为“做文明有礼的北京人,垃圾减量垃圾分类从我做起”的宣传单. 街道办事处附近的甲、乙两家图文社印制此种宣传单的收费标准如下:甲图文社收费s(元)与印制数t(张)的函数关系如下表:乙图文社的收费方式为:印制2 000张以内(含2 000张),按每张0.13元收费;超过 2 000张,均按每张0.09元收费.(1)根据表中给出的对应规律,写出甲图文社收费s(元)与印制数t(张)的函数关系式;(2)由于马上要用宣传单,街道办事处同时在甲、乙两家图文社共印制了1 500张宣传单,印制费共179元,问街道办事处在甲、乙两家图文社各印制了多少张宣传单?(3)若在下周的宣传活动中,街道办事处还需要加印5 000张宣传单,在甲、乙两家图文社中选择图文社更省钱.20.如图,AC、BC是⊙O的弦, BC//AO, AO的延长线与过点C的射线交于点D, 且D=90 -2 A.(1)求证:直线CD是⊙O的切线;(2)若BC=4,tanD 1,求CD和AD的长.221. 李老师为了了解所教班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:DC25%B50%类别(1)李老师一共调查了多少名同学?(2)C类女生有名,D类男生有(3)为了共同进步,李老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.22.阅读下面材料:小明遇到这样一个问题:我们定义: 如果一个图形绕着某定点旋转一定的角度(0 360 ) 后所得的图形与原图形重合,则称此图形是旋转对称图形. 如等边三角形就是一个旋转角为120 的旋转对称图形. 如图1,点O是等边三角形△ABC的中心, D、E、F分别为AB、BC、CA 的中点,ABC.图1 图2小明利用旋转解决了这个问题,图2中阴影部分所示的图形即是与△ABC面积相等的新的旋转对称图形.21 32 1 如图3,在等边△ABC中, E1、E2、E3分别为AB、BC、CA 的中点,P 1、P2, M 1、M2, N1、N2分别为AB、BC、CA的三等分点.CE2 2 1(1)在图3中画出一个和△ABC面积相等的新的旋转对称图形,并用阴影表示(保留画图痕迹);(2)若△ABC的面积为a,则图3中△FGH的面积为.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知抛物线y (m 1)x2 (m 2)x 1与x轴交于A、B两点.(1)求m的取值范围;(2)若m1, 且点A在点B的左侧,OA : OB=1 : 3, 试确定抛物线的解析式;(3)设(2)中抛物线与y轴的交点为C,过点C作直线l //x轴, 将抛物线在y轴左侧的部分沿直线l翻折, 抛物线的其余部分保持不变,得到一个新图象. 请你结合新图象回答: 当直线y 取值范围.24. 如图, 在平面直角坐标系xOy中,抛物线yB, 且对称轴与x轴交于点C.(1)求点B的坐标(用含m的代数式表示);1x b与新图象只有一个公共点P(x0, y0)且y0 7时, 求b的322x 2x与x轴负半轴交于点A, 顶点为m(2)D为BO中点,直线AD交y轴于E,若点E的坐标为(0, 2), 求抛物线的解析式;(3)在(2)的条件下,点M在直线BO上,且使得△AMC的周长最小,P在抛物线上,Q在直线BC上,若以A、M、P、Q为顶点的四边形是平行四边形,求点P的坐标.备用图25. 在矩形ABCD中, 点F在AD延长线上,且DF= DC, M 为AB边上一点, N为MD的中点, 点E在直线CF上(点E、C 不重合).(1)如图1, 若AB=BC, 点M、A重合, E为CF的中点,试探究BN与NE的位置关系及CE的值, 并证明你的结论; BM(2)如图2,且若AB=BC, 点M、A不重合, BN=NE,你在(1)中得到的两个结论是否成立, 若成立,加以证明; 若不成立, 请说明理由;(3)如图3,若点M、A不重合,BN=NE,你在(1)中得到的结论两个是否成立, 请直接写出你的结论.A( M )。

【人教版】北京海淀区初三二模数学试卷及答案

【人教版】北京海淀区初三二模数学试卷及答案

A
E
F
(2)若 CE EB ,求证:四边形 ABCF 是矩形.
D
22.已知直线 l 过点 P(2, 2) ,且与函数 y k (x 0) 的图象相交于 A, B 两点, x
与 x 轴、 y 轴分别交于点 C, D ,如图所示,四边形 ONAE,OFBM 均为矩 形,且矩形 OFBM 的面积为 3 . (1)求 k 的值; (2)当点 B 的横坐标为 3 时,求直线 l 的解析式及线段 BC 的长; (3)如图是小芳同学对线段 AD, BC 的长度关系的思考示意图.
„„
„„
备注:出租车计价段里程精确到 500 米;出租汽车收费结算以元为单位,元以
下四舍五入。
小明首先简化模型,从简单情形开始研究:①只考虑白天正常行驶(无低
速和等候);②行驶路程 3 公里以上时,计价器每 500 米计价 1 次,且每 1 公
里中前 500 米计价 1.2 元,后 500 米计价 1.1 元.
(1)根据折线图把下列表格补充完整;
运动员
平均数
中位数
众数

8.5
9

8.5
(2) 根据上述图表运用所学统计知识对甲、乙两名运动员的射击水平进行评
价并说明理由.
25.小明对某市出租汽车的计费问题进行研究,他搜集了一些资料,部分信息
如下:
收费项目
收费标准
3 公里以内收费
13 元
基本单价
2.3 元/公里
18. 解:去分母,得 6x 3 (x 2 ) 2 (2x. )
去括号,得 6x 3x 6 4 2x. 移项,合并得 5x 1 0. 系数化为 1,得 x 2 .
②若一次运营行驶 x 公里的平均单价 w 不大于行驶任意 s ( s x )公里的平均 单价 ws ,则称这次行驶的里程数为幸运里程数.请在上图中 x 轴上表示出 3 : 4 (不包括端点)之间的幸运里程数 x 的取值范围.

2011年北京市海淀区初三数学二模试卷答案及答案

2011年北京市海淀区初三数学二模试卷答案及答案

D FC海淀区九年级第二学期期末练习数 学录入 by iC 2011.061. 6-的绝对值是() A. 6B. 6-C.16D. 16-2. 下列运算正确的是( )A. 22a a a += B. 236a a a ⋅= C. 33a a ÷= D. 33()a a -=-3. 如图,Rt ABC中,90ACB ∠=︒,过点C 的直线DF 与BAC ∠的平分线AE 平行,若50B ∠=︒,则BCF ∠=( )A. 100︒B. 80︒C. 70︒D. 50︒4. 已知关于x 的一元二次方程21104x x m -+-=有实数根,则m 的取值范围是( ) A. 2m ≥ B. 5m ≤C. 2m >D. 5m <5. 在6张完全相同的卡片上分别画有线段、等边三角形、直角梯形、正方形、正五边形和圆各一个图形。

从这6张卡片随机地抽取一张卡片,则这张卡片上的图形是中心对称图形的概率是( ) A.16B.13C.12D.236. 两个半径不等的圆相切,圆心距为6cm ,且大圆半径是小圆半径的2倍,则小圆的半径为( ) A. 3 B. 4 C. 2或4 D. 2或67. 农科所连续四年在两块环境相同的实验田里种植甲、乙两种不同品种的小麦。

亩产量(单位:公斤)统 计如下表。

设甲、乙品种四年亩产量的平均数依次为x 甲,x 乙,四年亩产量的方差依次为2S 甲,2S 乙,则下A. x 甲<x 乙,2S 甲>2S 乙B. x 甲>x 乙,2S 甲<2S 乙C. x 甲>x 乙,2S 甲>2S 乙D. x 甲<x 乙,2S 甲<2S 乙8. 一个不透明的小方体的的6个面上分别写有数学1,2,3,4,5,6,任意两对面上所写的两个数字之和为7。

将这样的几个小方体按照相接触的两个面上的数字之和为8摆放成一个几何体,这个几何体的三视图如右图所示,已知图中所标注的是部分面上所见的数字,则★所代表的数是( ) A. 1 B. 2 C. 3D. 49. 一个正n 边形的每个内角都是108︒,则n =_______.10. 将抛物线2y x =向左平移3个单位,再向下平移2个单位后,所得抛物线的解析式为___________.11. 如图,在扇形OAB 中,90AOB ∠=︒,C 为OA 的中点,点D 在 AB 上,CA12. 某种数字化的信息传输中,先将信息转化为数学0和1组成的数字串,并对数字串进行了加密后再传输。

2009-2011海淀、东城、西城、一模、二模试题初三数学汇编Microsoft Word 文档 (2)

2009-2011海淀、东城、西城、一模、二模试题初三数学汇编Microsoft Word 文档 (2)

北京市东城区2010--2011学年第二学期初三综合练习(一)数 学 试 卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的. 1.-2的相反数是( ) A . 2 B.21 C. 21- D. -2 2.根据国家统计局的公布数据,2010年我国GDP 的总量约为398 000亿元人民币. 将398 000 用科学记数法表示应为( )A. 398×103B. 0.398×106 C . 3.98×105 D. 3.98×106 3.如图,直线AB ∥CD ,∠A =70︒,∠C =40︒,则∠E 等于( ) A . 30° B. 40°C. 60° D . 70°4.如图,在△ABC 中,D 、E 分别是BC 、AC 边的中点. 若DE =2,则AB 的长度是( ) A .6 B .5 C .4 D .35.甲、乙、丙、丁四名学生10次小测验成绩的平均数(单位:分)和方差如下表: 则这四人中成绩最稳定的是( ) A.甲 B .乙 C.丙 D.丁6.已知圆锥的母线长为4,底面半径为2,则圆锥的侧面积等于( )A .11πB .10πC .9πD .8π7. 若从10~99这连续90个正整数中选出一个数,其中每个数被选出的机会相等,则选出的 数其十位数字与个位数字的和为9的概率是 A .901 B . 101 C. 91 D. 4548. 如图,在矩形ABCD 中,AB =5,BC =4,E 、F 分别是AB 、AD 的中点.动点R 从点B 出发,沿B →C →D →F 方向运动至点F 处停止.设点R 运动的路程为x ,EFR △的面积为y ,当y 取到最大值时,点R 应运动到A .BC 的中点处B .C 点处C .CD 的中点处 D .D 点处 二、填空题(本题共16分,每小题4分) 9. 若分式53+x 有意义,则x 的取值范围是____________. 10. 分解因式:a 2b -2ab+b =________________.2是 .(写出一对即可) 12. 如图,直线x y 33=,点1A 坐标为(1,0),过点1A 作x 轴的垂线交直线于点1B ,以原点O 为圆心,1OB 长为半径画弧交x 轴于点2A ;再过点2A 作x 轴的垂线交直线于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于点3A ,…,按此做法进行下去,点4A 的坐标为( , );点n A ( , ).三、解答题(本题共30分,每小题5分) 13.计算:04sin 45(3)4︒+-π+-.14. 求不等式组46,1(3)22x x +≤⎧⎪⎨->-⎪⎩ 的整数解.15.先化简,再求值:1)1213(22-÷-+-x xxx x x ,其中13-=x .16. 如图,在四边形ABCD 中, AC 是∠DAE 的平分线,DA ∥CE ,∠AEB =∠CEB . 求证:AB=CB .17.列方程或方程组解应用题随着人们节能意识的增强,节能产品进入千家万户,今年1月小明家将天燃气热水器换成了太阳能热水器.去年12月份小明家的燃气费是96元,从今年1月份起天燃气价格每立方米上涨25%,小明家2月份的用气量比去年12月份少10立方米,2月份的燃气费是90元.问小明家2月份用气多少立方米.18.如图,在平行四边形ABCD 中,过点A 分别作AE ⊥BC 于点E ,AF ⊥CD 于点F . (1)求证:∠BAE =∠DAF ;(2)若AE =4,AF =245,3sin 5BAE ∠=,求CF 的长.四、解答题(本题共20分,每小题5分)19. 某中学的地理兴趣小组在本校学生中开展主题为―地震知识知多少‖的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为―非常了解‖、―比较了解‖、―基本了解‖、―不太了解‖四个等级,划分等级后的数据整理如下表:(1)表中的m 的值为_______,n 的值为 .(2)根据表中的数据,请你计算―非常了解‖的频率在下图中所对应的扇形的圆心角的度数,并补全扇形统计图.(3)若该校有1500名学生,请根据调查结果估计这些学生中―比较了解‖的人数约为多少?20. 已知:AB是⊙O的弦,OD⊥AB于M交⊙O于点D,CB⊥AB交AD的延长线于C.(1)求证:AD=DC;(2)过D作⊙O的切线交BC于E,若DE=2,CE=1,求⊙O的半径.21.在平面直角坐标系xOy中,一次函数y=k1x+b与反比例函数y=xk2的图象交于A(1,6),B(a,3)两点.(1)求k1,k2的值;(2)如图,点D在x轴上,在梯形OBCD中,BC∥OD,OB=DC,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为18时,求PE:PC的值.22. 如图1,在△ABC 中,已知∠BAC =45°,AD ⊥BC 于D ,BD =2,DC =3,求AD 的长. 小萍同学灵活运用轴对称知识,将图形进行翻折变换如图1.她分别以AB 、AC 为对称轴,画出△ABD 、△ACD 的轴对称图形,D 点的对称点为E 、F ,延长EB 、FC 相交于G 点,得到四边形AEGF 是正方形.设AD =x ,利用勾股定理,建立关于x 的方程模型,求出x 的值. (1)请你帮小萍求出x 的值.(2) 参考小萍的思路,探究并解答新问题:如图2,在△ABC 中,∠BAC =30°,AD ⊥BC 于D ,AD =4.请你按照小萍的方法画图,得到四边形AEGF ,求△BGC 的周长.(画图所用字母与图1中的字母对应)图1 图2五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 已知关于x 的方程(m -1)x 2-(2m-1)x +2=0有两个正整数根.(1) 确定整数m 值;(2) 在(1)的条件下,利用图象写出方程(m -1)x 2-(2m -1)x +2+xm=0的实数根的个数.24. 等边△ABC边长为6,P为BC边上一点,∠MPN=60°,且PM、PN分别于边AB、AC交于点E、F.(1)如图1,当点P为BC的三等分点,且PE⊥AB时,判断△EPF的形状;(2)如图2,若点P在BC边上运动,且保持PE⊥AB,设BP=x,四边形AEPF面积的y,求y 与x的函数关系式,并写出自变量x的取值范围;(3)如图3,若点P在BC边上运动,且∠MPN绕点P旋转,当CF=AE=2时,求PE的长.图1 图2 图325. 如图,已知二次函数y=ax2+bx+8(a≠0)的图像与x轴交于点A(-2,0),B,与y轴交于点C,tan∠ABC=2.(1)求抛物线的解析式及其顶点D的坐标;(2)设直线CD交x轴于点E.在线段OB的垂直平分线上是否存在点P,使得经过点P的直线PM垂直于直线CD,且与直线OP的夹角为75°?若存在,求出点P的坐标;若不存在,请说明理由;(3)过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴向上平移,使抛物线与线段EF总有公共点.试探究:抛物线最多可以向上平移多少个单位长度?北京市东城区2010--2011学年第二学期初三综合练习(二)数 学 试 卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1. 21-的绝对值是( ) A. 21 B. 21- C. 2 D. -22. 下列运算中,正确的是( )A .235a a a += B .3412a a a ⋅= C .236a a a =÷ D .43a a a -=3.一个不透明的袋中装有除颜色外均相同的5个红球和3个黄球,从中随机摸出一个,摸到黄球的概率是( )A .18 B . 13 C . 38 D . 354.下列图形中,既是..轴对称图形又是..中心对称图形的是( )5. 若一个正多边形的一个内角等于150°,则这个正多边形的边数是( )A .9B .10C .11D .126.A .30,35B .50,35C .50,50D .15,50 7.已知反比例函数2k y x -=的图象如图所示,则一元二次方程22x -况是( )A .没有实根B . 有两个不等实根C .有两个相等实根D .无法确定8.用min{a ,b }表示a ,b 两数中的最小数,若函数}1,1min{2x x y -+=,则y 的图象为( )D C B AA BC D9. 反比例函数ky x=的图象经过点(-2,1),则k 的值为_______.10. 已知一个几何体的三视图如图所示,则该几何体是 . 左视图俯视图 11. 如图,将三角板的直角顶点放置在直线AB 上的点O 处.使斜边CD ∥AB ,则∠a 的余弦值为__________.12. 如图,Rt ABC △中,90ACB ∠= ,30CAB ∠=,2BC =,O H ,分别为边AB AC ,的中点,将ABC △绕点B 顺时针旋转120到11A BC △的位置,则整个旋转过程中线段OH 所扫过 部分的面积(即阴影部分面积)为 . 三、解答题(本题共30分,每小题5分)13. 先化简,再求值:2(21)(2)(2)4(1)x x x x x +++--+,其中x =14. 解分式方程: 11322x x x-+=--.15.如图,点A 、B 、C 的坐标分别为(3,3)、(2,1)、(5,1),将△ABC 先向下平移4个单位,得△A 1B 1C 1;再将△A 1B 1C 1沿y 轴翻折,得△A 2B 2C 2. (1)画出△A 1B 1C 1和△A 2B 2C 2; (2)求线段B 2C 长. AH BOC 1O1H 1A1Cy16. 如图,点D 在AB 上,DF 交AC 于点E ,CF AB ∥,AE EC =. 求证:AD CF =.17. 列方程或方程组解应用题为了配合学校开展的“爱护地球母亲”主题活动,初三(1)班提出“我骑车我快乐”的口号. “五一”之后小明不用父母开车送,坚持自己骑车上学. 五月底他对自己家的用车情况进行了统计,5月份所走的总路程比4月份的54还少100千米,且这两个月共消耗93号汽油260升. 若小明家的汽车平均油耗为0.1升/千米,求他家4、5两月各行驶了多少千米.18.如图,矩形ABCD 的边AB 在x 轴上,AB 的中点与原点O 重合,AB =2,AD =1,点Q 的坐标为(0,2). (1)求直线QC 的解析式;(2)点P (a ,0)在边AB 上运动,若过点P 、Q 的直线将矩形ABCD 的周长分成3∶1两部分,求出此时a 的值.AB CD EF四、解答题(本题共20分,每小题5分)19. 如图,在梯形ABCD 中,AD //BC ,BD 是∠ABC 的平分线. (1)求证:AB =AD ;(2)若∠ABC =60°,BC =3AB ,求∠C 的度数 .20. 如图,四边形ABCD 是平行四边形,以AB 为直径的 ⊙O 经过点D ,E 是⊙O 上一点,且∠AED =45︒.(1) 试判断CD 与⊙O 的位置关系,并证明你的结论; (2) 若⊙O 的半径为3,sin ∠ADE =65,求AE 的值.A BCD21.某商店在四个月的试销期内,只销售A ,B 两个品牌的电视机,共售出400台.试销结束后,将决定经销其中的一个品牌.为作出决定,经销人员正在绘制两幅统计图,如图l 和图2. (1)第四个月销量占总销量的百分比是_______; (2)在图2中补全表示B 品牌电视机月销量的折线图;(3)经计算,两个品牌电视机月销量的平均水平相同,请你结合折线的走势进行简要分析,判断该商店应经销哪个品牌的电视机.图1 图222. 如图1是一个三棱柱包装盒,它的底面是边长为10cm 的正三角形,三个侧面都是矩形.现将宽为15cm 的彩色矩形纸带AMCN 裁剪成一个平行四边形ABCD (如图2),然后用这条平行四边形纸带按如图3的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.在图3中,将三棱柱沿过点A 的侧棱剪开,得到如图4的侧面展开图.为了得到裁剪的角度,我们可以根据展开图拼接出符合条件的平行四边形进行研究.(1)请在图4中画出拼接后符合条件的平行四边形; (2)请在图2中,计算裁剪的角度(即∠ABM 的度数).图1图4F E D C BA五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 已知关于x 的一元二次方程2220x ax b ++=,0,0>>b a . (1)若方程有实数根,试确定a ,b 之间的大小关系; (2)若a ∶b =21222x x -=,求a ,b 的值;(3)在(2)的条件下,二次函数222y x ax b =++的图象与x 轴的交点为A 、C (点A 在点C的左侧),与y 轴的交点为B ,顶点为D .若点P (x ,y )是四边形ABCD 边上的点, 试求3x -y 的最大值.图1O E D C B A R Q P 图2O E D C B A 24. 如图1,在△ABC 中,AB =BC =5,AC =6. △ECD 是△ABC 沿CB 方向平移得到的,连结AE ,AC 和BE 相交于点O .(1)判断四边形ABCE 是怎样的四边形,并证明你的结论; (2)如图2,P 是线段BC 上一动点(不与点B 、C 重合),连接PO 并延长交线段AE 于点Q ,QR ⊥BD ,垂足为点R .①四边形PQED 的面积是否随点P 的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED 的面积;②当线段BP 的长为何值时,以点P 、Q 、R 为顶点的三角形与△BOC 相似?25. 如图,已知在平面直角坐标系xOy 中,直角梯形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =AB =2,OC =3,过点B 作BD ⊥BC ,交OA 于点D .将∠DBC 绕点B 按顺时针方向旋转,角的两边分别交y 轴的正半轴、x 轴的正半轴于点E 和F . (1)求经过A 、B 、C 三点的抛物线的解析式;(2)当BE 经过(1)中抛物线的顶点时,求CF 的长;(3)在抛物线的对称轴上取两点P 、Q (点Q 在点P 的上方),且PQ =1,要使四边形BCPQ 的周长最小,求出P 、Q 两点的坐标.北京市西城区2011年初三一模数学试卷一、选择题(本题共32分,每小题4分)1.-2的相反数为().A.2 B.-2 C.12D.-122.上海世博会是我国第一次举办的综合类世界博览会.据统计自2010年5月1日开幕至5月31日,累计参观人数约为8 030 000人.将8 030 000用科学记数法表示应为().A .480310⨯B.580.310⨯C.68.0310⨯ D. 70.80310⨯3.以方程组21y xy x=-+⎧⎨=-⎩的解为坐标的点(,)x y在().A.第一象限B.第二象限C.第三象限D.第四象限4.右图是正方体的展开图,原正方体相对两个面上的数字和最小是().A. 4B. 6C. 7D. 85.有四张形状、大小和质地完全相同的卡片,每张卡片的正面写有一个算式.将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.则抽取的两张卡片上的算式都正确的概率是().A.12B.14C.18D.166.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图.则这组数据的众数和中位数分别是().A.7,7 B.8,7.5C.7,7.5 D.8,67.如图,在梯形ABCD中,AB∥CD,∠A=60°,∠B=30°,若AD=CD=6,则AB的长等于().A.9 B.12C.6+D.188.如图,点A在半径为3的⊙O内,P为⊙O上一点,当∠OP A取最大值时,P A的长等于().A.32BC D.二、填空题(本题共16分,每小题4分)9.分解因式:yxyyx962+-= .14253610.如图,甲、乙两盏路灯相距20米. 一天晚上,当小明从路灯甲走到距路灯乙底部4米处时,发现自己的身影顶部正好接触到路灯乙的底部.已知小明的身高为1.6米,那么路灯甲的高为 米.11. 定义[,,a b c ]为函数2y ax bx c =++的特征数,下面给出特征数为[2m ,14m -,21m -] 的函数的一些结论:①当12m =时,函数图象的顶点坐标是11()24-,;②当1-=m 时,函数在1x >时,y 随x 的增大而减小;③无论m 取何值,函数图象都经过同一个点. 其中所有的正确结论有 .(填写正确结论的序号)12. 如图1,小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形1111D C B A ,正方形1111D C B A 的面积为 ;再把正方形1111D C B A 的各边延长一倍得到正方形2222D C B A (如图2),如此进行下去,正方形n n n n D C B A 的面积为 .(用含有n 的式子表示,n 为正整数) 图1三、解答题(本题共30分,每小题5分) 13.计算:1024sin 60(-︒-14.解不等式组 302(1)33,x x x +>⎧⎨-+⎩,≥ 并判断3=x 是否为该不等式组的解.15. 如图,在平面直角坐标系xOy 中,一条直线l 与x 轴相交于点A , 与y 轴相交于点(0,2)B ,与正比例函数 y =mx (m ≠0)的图象 相交于点(1,1)P . (1)求直线l 的解析式; (2)求△AOP 的面积.16. 如图,在四边形ABCD 中,AB =BC ,BF 平分∠ABC ,AF ∥DC , 连接AC ,CF . 求证:(1)AF =CF ;(2)CA 平分∠DCF .17. 已知关于x 的一元二次方程)0(0212≠=++a bx ax 有两个相等的实数根,求()()()11122-++-b b a ab 的值.18.某中学就到校的方式问题对初三年级的所有学生进行了一次调查,并将调查结果制成了表格和扇形统计图,请你根据图表信息完成下列各题: (1)补全下表:(2)在扇形统计图中,―步行‖对应的圆心角的度数为 °.四、解答题(本题共20分,每小题5分)19.在2011年春运期间,我国南方发生大范围冻雨灾害,导致某地电路出现故障,该地供电局组织电工进行抢修.供电局距离抢修工地15千米,抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求这两种车每小时分别行驶多少千米.20.如图,四边形ABCD 是边长为9的正方形纸片,B '为CD 边上的点,C B '=3.将纸片沿某条直线折叠,使点B 落在点B '处,点A 的对应点为A ',折痕分别与AD ,BC 边交于点M ,N . (1)求BN 的长;(2)求四边形ABNM 的面积.21.如图,D 是⊙O 的直径CA 延长线上一点,点 B 在⊙O 上, 且AB =AD =AO .(1)求证:BD 是⊙O 的切线;(2)若E 是劣弧BC 上一点,AE 与BC 相交于点F ,△BEF 的面积为8,且cos ∠BF A =32, 求△ACF 的面积.五、解答题(本题共22分,第23题7分,第24题8分,第25题7分) 23.抛物线2y ax bx c =++,a >0,c <0,2360a b c ++=.(1)求证:1023b a +>; (2)抛物线经过点1(,)2P m ,Q (1,)n .① 判断mn 的符号;② 若抛物线与x 轴的两个交点分别为点A 1(,0)x ,点B 2(,0)x (点A 在点B 左侧),请说明116x <,2112x <<.22.我们约定,若一个三角形(记为△A 1)是由另一个三角形(记为△A )通过一次平移,或绕其任一边的中点旋转180°得到的,则称△A 1是由△A 复制的.以下的操作中每一个三角形只可以复制一次,复制过程可以一直进行下去.如图1,由△A 复制出△A 1,又由△A 1复制出△A 2,再由△A 2复制出△A 3,形成了一个大三角形,记作△B .以下各题中的复制均是由△A 开始的,通过复制形成的多边形中的任意相邻两个小三角形(指与△A 全等的三角形)之间既无缝隙也无重叠.(1)图1中标出的是一种可能的复制结果,小明发现△A ∽△B ,其相似比为_________.在图1的基础上继续复制下去得到△C ,若△C 的一条边上恰有11个小三角形(指有一条边在该边上的小三角形),则△C 中含有______个小三角形(2)若△A 是正三角形,你认为通过复制能形成的正多边形是________;(3)请你用两次旋转和一次平移复制形成一个四边形,在图2的方框内画出草图,并仿照图1作出标记.24.如图1,平面直角坐标系xOy中,A,B(4,0).将△OAB绕点O顺时针旋转α角(0°<α<90°)得到△OCD(O,A,B的对应点分别为O,C,D),将△OAB沿x轴负方向...平移m个单位得到△EFG(m>0,O,A,B的对应点分别为E,F,G),α,m的值恰使点C,D,F落在同一反比例函数kyx=(k≠0)的图象上.(1)∠AOB=°,α=°;(2)求经过点A,B,F的抛物线的解析式;(3)若(2)中抛物线的顶点为M,抛物线与直线EF的另一个交点为H,抛物线上的点P满足以P,M,F,A为顶点的四边形的面积与四边形MF AH的面积相等(点P不与点H重合),请直接写出满足条件的点P的个数,并求位于直线EF25.在Rt△ABC中,∠C=90°,D,E分别为CB,CA延长线上的点,BE与AD的交点为P. (1)若BD=AC,AE=CD,在图1中画出符合题意的图形,并直接写出∠APE的度数;(2)若AC,CD,求∠APE的度数.图1 图北京市西城区2011年初三二模试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.3-的倒数是( )A .3B .13-C .3-D .132.2010年,我国国内生产总值(GDP )为58 786亿美元,超过日本,成为世界第二大经济体.58 786用科学记数法表示为( ) A .45.878610⨯ B .55.878610⨯ C .358.78610⨯ D .50.5878610⨯3.⊙O 1的半径为3cm ,⊙O 2的半径为5cm ,若圆心距O 1O 2=2 cm ,则这两圆的位置关系是( ) A .内含 B .外切 C .相交 D .内切4.若一个多边形的内角和是它的外角和的2倍,则这个多边形是 ( ) A .四边形 B .五边形 C .六边形 D .八边形 5.某鞋店试销一种新款女鞋,销售情况如下表所示:鞋店经理最关心的是哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是( ) A .平均数 B .众数 C .中位数 D .方差 6.小明的爷爷每天坚持体育锻炼,一天他步行到离家较远的公园,打了一会儿太极拳后跑步回家.下面的四个函数图象中,能大致反映当天小明的爷爷离家的距离y 与时间x 的函数关系的是( )7.下图的长方体是由A ,B ,C ,D 四个选项中所示的四个几何体拼接而成的,而且这四个几何体都是由4个同样大小的小正方体组成的,那么长方体中,第四部分所对应的几何体应是( )8.在平面直角坐标系xOy 中,点P 在由直线3+-=x y ,直线4y =和直线1x =所围成的区域内或其边界上,点Q 在x 轴上,若点R 的坐标为(2,2)R ,则QP QR +的最小值为( )A B .25+ C . D .4 二、填空题(本题共16分,每小题4分) 9.分解因式 m 3 – 4m = .10.函数21-=x y 中,自变量x 的取值范围是 .11.如图,两同心圆的圆心为O ,大圆的弦AB 与小圆相切,切点为P .若两圆的半径分别为2和1,则弦长AB =;若用阴影部分围成一个圆锥(OA 与OB 重合),则该圆锥的底面半径长为 . 12.对于每个正整数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于A n ,B n 两点,若n n A B 表示这两点间的距离,则n n A B = (用含n 的代数式表示);11222011A B A B A B +++ 的值为 .三、解答题(本题共30分,每小题5分) 13.计算:2273181---⎪⎭⎫ ⎝⎛--- .14.已知:如图,直线AB 同侧两点C ,D 满足,,DBC CAD ∠=∠ AC =BD ,BC 与AD 相交于点E .求证:AE =BE .15.已知:关于x 的一元二次方程2420x x k ++=有两个不相等的实数根. (1)求k 的取值范围;(2)当k 取最大整数值时,用公式法求该方程的解.16.已知 122=+xy x ,215xy y +=,求代数式()22()x y y x y +-+的值.17.如图,一次函数y kx b =+()0≠k 的图象与反比例函数my x=()0≠m 的图象交于(3,1)A -,(2,)B n 两点. (1)求反比例函数和一次函数的解析式; (2)求△AOB 的面积.18.今年3月12日,某校九年级部分学生参加植树节活动,以下是根据本次植树活动的有关数据制作的统计图的一部分.请根据统计图所提供的有关信息,完成下列问题:(1)参加植树的学生共有 人; (2)请将该条形统计图补充完整;(3)参加植树的学生平均每人植树 棵.(保留整数) 四、解答题(本题共20分,每小题5分)19.某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x (辆),购车总费用为y (万元). (1)求y 与x 的函数关系式(不要求写出自变量x 的取值范围);(2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求 出该方案所需费用.20.如图,在梯形ABCD 中,AB ∥DC ,5AD BC ==,10AB =,4CD =,连结并延长BD 到E ,使DE BD =, 作EF AB ⊥,交BA 的延长线于点F . (1)求tan ABD ∠的值;(2)求AF 的长.21.已知:如图,BD 为⊙O 的直径,点A 是劣弧BC 的中点,AD 交BC 于点E ,连结AB .(1)求证:2AB AE AD =⋅;(2)过点D 作⊙O 的切线,与BC 的延长线交于点F , 若AE =2,ED =4,求EF 的长.22.如图1,若将△AOB 绕点O 逆时针旋转180°得到△COD ,则△AOB ≌△COD .此时,我们称△AOB 与△COD 为“8字全等型”.借助“8字全等型”我们可以解决一些图形的分割与拼接问题.例如:图2中,△ABC 是锐角三角形且AC >AB ,点E 为AC 中点,F 为BC 上一点且BF ≠FC (F 不与B ,C 重合),沿EF 将其剪开,得到的两块图形恰能拼成一个梯形.请分别按下列要求用直线将图2中的△ABC 重新进行分割,画出分割线及拼接后的图形. (1)在图3中将△ABC 沿分割线剪开,使得到的两块图形恰能拼成一个平行四边形;(2)在图4中将△ABC 沿分割线剪开,使得到的三块图形恰能拼成一个矩形,且其中的两块为直角三角形;(3)在图5中将△ABC 沿分割线剪开,使得到的三块图形恰能拼成一个矩形,且其中 的一块为钝角三角形.五、解答题(本题共22分,第23题7分,第24题7分,第8分)23.阅读下列材料:若关于x 的一元二次方程20ax bx c ++=()0≠a 的两个实数根分别为x 1,x 2,则12bx x a +=-,12c x x a⋅=. 解决下列问题:已知:a ,b ,c 均为非零实数,且a >b >c ,关于x 的一元二次方程20ax bx c ++=有两个实数根,其中一根为2.(1)填空:42a b c ++ 0,a 0,c 0;(填“>”,“<”或“=”)(2)利用阅读材料中的结论直接写出方程20ax bx c ++=的另一个实数根(用含a ,c 的代数式表示);(3)若实数m 使代数式2am bm c ++的值小于0,问:当x =5m +时,代数式2ax bx c ++的值是否为正数?写出你的结论并说明理由.24.如图1,在Rt △ABC 中,∠C =90°,AC =9cm ,BC =12cm .在Rt △DEF 中,∠DFE =90°,EF=6cm ,DF =8cm .E ,F 两点在BC 边上,DE ,DF 两边分别与AB 边交于G ,H 两点. 现固定△ABC 不动,△DEF 从点F 与点B 重合的位置出发,沿BC 以1cm/s 的速度向点C 运动,点P 从点F 出发,在折线FD —DE 上以2cm/s 的速度向点E 运动.△DEF 与点P 同时出发,当点E 到达点C 时,△DEF 和点P 同时停止运动.设运动的时间是t (单位:s ),t >0. (1)当t =2时,PH= cm ,DG = cm ; (2)t 为多少秒时△PDE 为等腰三角形?请说明理由; (3)t 为多少秒时点P 与点G 重合?写出计算过程; (4)求tan ∠PBF 的值(可用含t 的代数式表示).25.如图1,在平面直角坐标系xOy 中,以y 轴正半轴上一点(0,)A m (m 为非零常数)为端点,作与y 轴正方向夹角为60°的射线l ,在l 上取点B ,使AB =4k (k 为正整数),并在l 下方作∠ABC =120°,BC=2OA ,线段AB ,OC 的中点分别为D ,E . (1)当m =4,k =1时,直接写出B ,C 两点的坐标;(2)若抛物线212y x x m k =-++的顶点恰好为D 点,且DE=求抛物线的解析式及此时cos ∠ODE 的值;(3)当k =1时,记线段AB ,OC 的中点分别为D 1,E 1,当k =3时,记线段AB ,OC 的中点分别为D 3,E 3,求直线13E E 的解析式及四边形1331D D E E 的面积(用含m 的代数式表示).海淀区九年级第二学期期中测评数学一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.的倒数是()A. 2B.C.D.2.2010年2月12日至28日,温哥华冬奥会官方网站的浏览量为275 000 000人次. 将275 000 000用科学记数法表示为()A. B. C. D.3.右图是某几何体的三视图,则这个几何体是()A. 圆柱B. 正方体C. 球D. 圆锥4.一个多边形的内角和是外角和的2倍,则这个多边形的边数为()A. 5B.6C. 7D.85.一个布袋中有4个除颜色外其余都相同的小球,其中3个白球,1个红球.从袋中任意摸出1个球是白球的概率是()A.B.C.D.6.四名运动员参加了射击预选赛,他们成绩的平均环数及其方差如表所示.如果选出一个成绩较好且状态稳定的人去参赛,那么应选()A.甲B.乙C.丙D.丁7.把代数式分解因式,结果正确的是()A.B.C.D.8. 如图,点、是以线段为公共弦的两条圆弧的中点,. 点、分别为线段、上的动点. 连接、,设,,下列图象中,能表示与的函数关系的图象是()A. B.C. D.二、填空题(本题共16分,每小题4分)9.函数的自变量的取值范围是.10.如图,⊙O的半径为2,点为⊙O上一点,弦于点,,则_____.11.若代数式可化为,则的值是 .12. 如图,+1个边长为2的等边三角形有一条边在同一直线上,设△的面积为,△的面积为,…,△的面积为,则= ;=____ (用含的式子表示).三、解答题(本题共30分,每小题5分)13.计算: . 14.解方程:.15. 如图, △和△均为等腰直角三角形,, 连接、.求证: .16. 已知:,求代数式的值.17. 已知:如图,一次函数与反比例函数的图象在第一象限的交点为.(1)求与的值;(2)设一次函数的图像与轴交于点,连接,求的度数.18. 列方程(组)解应用题:2009年12月联合国气候会议在哥本哈根召开.从某地到哥本哈根,若乘飞机需要3小时,若乘汽车需要9小时.这两种交通工具平均每小时二氧化碳的排放量之和为70千克,飞机全程二氧化碳的排放总量比汽车的多54千克,分别求飞机和汽车平均每小时二氧化碳的排放量.四、解答题(本题共20分,第19题5分,第20题5分,第21题6分,第22题4分)19.已知:如图,在直角梯形中,∥,,于点O,,求的长.20.已知:如图,⊙O为的外接圆,为⊙O的直径,作射线,使得平分,过点作于点.(1)求证:为\⊙O的切线;(2)若,,求⊙O的半径.21.2009年秋季以来,我国西南地区遭受了严重的旱情,某校学生会自发组织了“保护水资源从我做起”的活动. 同学们采取问卷调查的方式,随机调查了本校150名同学家庭月人均用水量和节水措施情况.以下是根据调查结果做出的统计图的一部分.图1 图2请根据以上信息解答问题:(1)补全图1和图2;(2)如果全校学生家庭总人数约为3000人,根据这150名同学家庭月人均用水量,估计全校学生家庭月用水总量.22.阅读:如图1,在和中,,,、、、四点都在直线上,点与点重合.连接、,我们可以借助于和的大小关系证明不等式:().证明过程如下:∵∴∵,∴.即.∴.∴.解决下列问题:(1)现将△沿直线向右平移,设,且.如图2,当时,.利用此图,仿照上述方法,证明不等式:().(2)用四个与全等的直角三角形纸板进行拼接,也能够借助图形证明上述不等式.请你画出一个示意图,并简要说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海淀区九年级第二学期期末练习数 学参考答案及评分标准 2011.6说明: 合理答案均可酌情给分,但不得超过原题分数 一、选择题(本题共32分,每小题4分)二、填空题(本题共16分,每小题4分)注:第12题答对一个给2分,答对两个给4分 三、解答题(本题共30分,每小题5分) 13.解:原式3=--1 …….……………………..4分 2=-.…….……………………..5分14.解:方程两边同时乘以(2)(2)x x +-方程可化为: 3(2)2(2)3(2)(2)x x x x x -++=+-,…….……………………..2分即 223624312x x x x -++=-. ∴ 4x =.…….……………………..4分经检验:4x =是原方程的解. ∴原方程的解是4x =.…….……………………..5分15. 证明:∵AE ⊥BC 于E , AF ⊥CD 于F ,∴90AEB AFD ∠=∠=︒, …….……………………..1分 ∵菱形ABCD ,∴AB =AD , B D ∠=∠.…….……………………..3分在Rt △EBA 和Rt △FDA 中, ,,.AEB AFD B D AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△EBA ≌△FDA . …….……………………..4分 ∴AE =AF .…….……………………..5分16.解:∵2()(2)(2)x y x y y x ----=(2)(2)x y x y x y ---+ …….……………………..1分 (2)y x y =-,…….……………………..2分又∵32y x y+=, ∴32x y y-=. …….……………………..3分将32x y y-=代入上式,得(2) 3.y x y -= ∴当32y x y+=时,代数式2()(2)(2)x y x y y x ----的值为3. …….……………………..5分17.解:(1)∵ 直线y x b =-+经过点(2,1)A ,∴ 12b =-+.…….……………………..1分 ∴ 3b =.…….……………………..2分(2)∵ M 是直线3y x =-+上异于A 的动点,且在第一象限内.∴ 设M (a ,3a -+),且03a <<. 由MN ⊥x 轴,AB x ⊥轴得,MN=3a -+,ON=a ,AB =1,2OB =. ∵ MON △的面积和AOB △的面积相等,∴()1132122a a -+=⨯⨯. 3分解得:11a =,22a =(不合题意,舍). 4分∴ M (1,2).5分18.解:(1)由租用甲种汽车x 辆,则租用乙种汽车(8x -)辆. …….……………………..1分由题意得:290,100.4030(8)1020(8)x x x x +-⎧⎨+-⎩≥≥ …….……………………..3分 解得:56x ≤≤.…….……………………..4分即共有2种租车方案:第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆. …….……………………..5分 19.解:作DE //AC ,交BC 的延长线于点E ,作DF ⊥BE,垂足为F.…….……………………..1分∵AD //BC ,∴四边形ACED 为平行四边形.∴AD=CE=3,BE=BC+CE=8.…….……………………..2分∵AC ⊥BD , ∴DE ⊥BD.∴△BDE 为直角三角形 ,90.BDE ∠=︒ ∵∠DBC =30°,BE =8,∴4,DE BD == …….……………………..4分在直角三角形BDF 中∠DBC =30°,BADCEF∴DF=. …….……………………..5分20.(1)证明:连结OC.∵CD是O⊙的切线,∴OC⊥CD.∴90OCM∠=︒.…….……………………..1分∵//CD AB,∴180OCM COA∠+∠=︒.∵AM⊥CD,∴90AMC∠=︒.∴在四边形OAMC中90OAM∠=︒ .∵OA为O⊙的半径,∴AM是O⊙的切线. …….……………………..2分(2)连结OC,BC.∵CD是O⊙的切线,∴OC⊥CD.∴90OCM∠=︒.∵AM⊥CD,∴90AMC∠=︒.∴//OC AM.∴12∠=∠.∵OA= OC,∴32∠=∠. 即BAC CAM∠=∠. …….……………………..3分易知90ACB∠=︒,∴BAC CAM△∽△. …….……………………..4分∴AB ACAC AM=.即224AC AB AM=⋅=.∴AC=. …….……………………..5分21.解:(1)800,400,40;…….……………………..3分(2)2010,2100. …….……………………..5分注:本题一空一分22.解:(1)如图,当C、D是边AO,OB的中点时,点E、F都在边AB上,且CF AB⊥.∵OA=OB=8,∴OC=AC=OD=4.∵90AOB∠=︒,∴CD=. …….……………………..1分CD1图2图在Rt ACF △中, ∵45A ∠=︒,∴CF =∴16CDEF S ==矩形.…….……………………..2分(2)设,CD x CF y ==.过F 作FH AO ⊥于H . 在Rt COD △中,∵4tan 3CDO ∠=, ∴43sin ,cos 55CDO CDO ∠=∠=.∴45CO x =.…….……………………..3分∵90FCH OCD ∠+∠=︒, ∴FCH CDO ∠=∠. ∴3cos .5HC y FCH y =⋅∠=∴45FH y . ∵AHF △是等腰直角三角形, ∴45AH FH y ==. ∴AO AH HC CO =++. ∴74855y x +=. ∴1(404)7y x =-.…….……………………..4分易知2214(404)[(5)25]77CDEF S xy x x x ==-=---矩形,∴当5x =时,矩形CDEF 面积的最大值为1007. …….……………………..5分 23.解:(1)由题意可知,∵(32)4(3)90m m m ∆=---=>,…….……………………..1分即0.∆>∴方程总有两个不相等的实数根.…….……………………..2分(2)由求根公式,得(32)32m x m --±=.∴ 31x m =-或1x =.…….……………………..3分∵ m >0, ∴ 311m>-. ∵ 12x x >,CB∴ 12311x x m==-,. …….……………………..4分∴ 2111.3x y x m -==- 即1(0)y m m=->为所求.…….……………………..5分(3)在同一平面直角坐标系中分别画出1(0)y m m=->与(0)y m m =->的图象. …….……………………..6分 由图象可得,由图象可得 当01m <≤时,y m -≤.…….……………………..7分24.解:过B 作BC ⊥x 轴于C .∵ 等边三角形OAB 的一个顶点为A ∴ OB =OA =2,AC =OC =1,∠BOC ∴ BC =tan 60OC ︒=∴ B (1.分设经过O 、A 、B 三点的抛物线的 解析式为:2(1)y a x =-将A (2,0)代入得:2(21)a -解得a =.∴经过O 、A 、B 21)y x =-即2y =+.分(2)依题意分为三种情况: (ⅰ) 当以OA 、OB 为边时, ∵ OA=OB ,∴ 过O 作OQ ⊥AB 交抛物线于Q . 则四边形OAQB 是筝形,且∠QOA= 作QD ⊥x 轴于D ,QD=OD tan QOD ∠,设Q ()2,x +,则2tan30x +=︒.解得:53x =.∴Q 53⎛ ⎝⎭.…….……………………..3分(ⅱ) 当以OA 、AB 为边时,由对称性可知Q13⎛ ⎝⎭.…….……………………..4分(ⅲ) 当以OB 、AB 为边时,抛物线上不存在这样的点Q 使BOQA 为筝形.…….…………..5分∴Q 53⎛ ⎝⎭或13⎛ ⎝⎭.(3)点Q 在M 内.由等边三角形性质可知OAB △的外接圆圆心M 是(2)中BC 与OQ 的交点, 当Q 53⎛ ⎝⎭时,∵MC ∥QD , ∴△OMC ∽△OQD . ∴MC OC QD OD=.∴OC QD MC OD ⋅==∴M ⎛ ⎝⎭.∴ MQ=.又BM =, ∴Q 53⎛ ⎝⎭在M 内. …….……………………..6分当Q 53⎛ ⎝⎭时,由对称性可知点Q 在M 内. 综述,点Q 在M 内. …….……………………..7分25.解:(1)45;…….……………………..2分(2)如图2,以A 为顶点AB 为边在ABC △外作BAE ∠=60°,并在AE 上取AE =AB ,连结BE 和CE .∵ACD △是等边三角形, ∴AD =AC ,DAC ∠=60°. ∵BAE ∠=60°,∴DAC ∠+BAC ∠=BAE ∠+BAC ∠. 即EAC ∠=BAD ∠.∴EAC △≌BAD △.…….……………………..3分∴EC =BD.∵BAE ∠=60°,AE =AB=3,AEBCD2图∴AEB △是等边三角形,∴EBA ∠=60°, EB = 3,…….……………………..4分∵30ABC ∠=︒, ∴90EBC ∠=︒.∵90EBC ∠=︒,EB =3,BC =4, ∴EC =5.∴BD =5. …….……………………..5分 (3)DAC ∠=2ABC ∠成立.…….……………………..6分以下证明:如图3,过点B 作BE ∥AH ,并在BE 上取BE =2AH ,连结EA ,EC . 并取BE 的中点K ,连结AK . ∵AH BC ⊥于H , ∴90AHC ∠=︒. ∵BE ∥AH , ∴90EBC ∠=︒.∵90EBC ∠=︒,BE =2AH , ∴222224EC EB BC AH BC =+=+. ∵2224BD AH BC =+, ∴EC =BD.∵K 为BE 的中点,BE =2AH , ∴BK =AH. ∵BK ∥AH ,∴四边形AKBH 为平行四边形. 又∵90EBC ∠=︒, ∴四边形AKBH 为矩形. ∴90AKB ∠=︒.∴AK 是BE 的垂直平分线. ∴AB =AE.∵AB =AE ,EC =BD ,AC =AD, ∴EAC △≌BAD △.…….……………………..7分∴EAC BAD ∠=∠.∴EAC EAD BAD EAD ∠-∠=∠-∠. 即EAB DAC ∠=∠.∵90EBC ∠=︒,ABC ∠为锐角, ∴90ABC EBA ∠=︒-∠. ∵AB =AE, ∴EBA BEA ∠=∠. ∴1802EAB EBA ∠=︒-∠. ∴EAB ∠=2ABC ∠.∴DAC ∠=2ABC ∠.…….……………………..8分3图AB CDEK。

相关文档
最新文档