人教版七年级下实数教案

合集下载

人教版七年级数学下册6.3实数实数的运算优秀教学案例

人教版七年级数学下册6.3实数实数的运算优秀教学案例
在过程与方法目标的设计上,我注重培养学生的自主学习能力、合作能力和实践能力。通过复习实数的基本概念,引导学生自主探究实数运算的规则,培养他们的自主学习能力。利用多媒体课件展示实际生活中的运算案例,引导学生运用数形结合的思想方法,体会运算在数学中的重要性,提高他们的合作能力和实践能力。设计具有梯度的练习题,让学生在实践中掌握运算方法,提高运算速度和准确率,培养他们的实践能力。采用小组合作学习的方式,引导学生互相讨论、交流运算方法,分享学习心得,培养他们的合作能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,使他们愿意学习数学,主动学习数学。
2.培养学生克服困难的意志,使他们面对困难时不轻易放弃,勇于尝试。
3.培养学生团队协作的精神,使他们学会与人合作,共同完成任务。
4.培养学生的自主学习能力,使他们学会独立思考,主动探究问题。
在情感态度与价值观目标的设计上,我注重培养学生对数学学科的兴趣和积极性,使他们愿意学习数学,主动学习数学。通过实际案例的引入和练习题的设置,培养学生克服困难的意志,使他们面对困难时不轻易放弃,勇于尝试。采用小组合作学习的方式,培养学生团队协作的精神,使他们学会与人合作,共同完成任务。在教学过程中,关注学生的个体差异,给予他们个性化的指导,培养他们的自主学习能力,使他们学会独立思考,主动探究问题。
三、教学策略
(一)情景创设
1.利用多媒体课件展示实际生活中的运算案例,让学生感知实数运算的实际意义。
2.设计具有情境性的数学问题,激发学生的学习兴趣,引发他们的思考。
3.创设轻松愉快的学习氛围,使学生在愉悦的情感状态下学习实数运算。
在情景创设方面,我注重将实数运算与实际生活相结合,让学生在熟悉的情境中感受运算的重要性。通过多媒体课件展示实际生活中的运算案例,让学生感知实数运算的实际意义,激发他们的学习兴趣。同时,设计具有情境性的数学问题,引发学生的思考,使他们能够主动参与到实数运算的学习中来。此外,我还注重创设轻松愉快的学习氛围,通过幽默的语言、鼓励性的评价等方式,使学生在愉悦的情感状态下学习实数运算。

(人教版)七年级下册数学配套教案:6.3 第1课时 《实数》

(人教版)七年级下册数学配套教案:6.3 第1课时 《实数》

(人教版)七年级下册数学配套教案:6.3 第1课时《实数》一. 教材分析人教版七年级下册数学第6.3节《实数》是学生在掌握了有理数的相关知识后,进一步扩大知识面,认识实数的概念。

本节内容主要包括实数的定义、实数的分类和实数的性质。

通过本节课的学习,学生能够理解实数的概念,掌握实数的分类和性质,为后续的函数、方程等知识的学习打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了有理数的相关知识,具备了一定的数学基础。

但是,对于实数的定义和性质,可能还比较陌生。

因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解和掌握实数的概念和性质。

三. 教学目标1.理解实数的概念,掌握实数的分类和性质。

2.能够运用实数的概念和性质解决一些简单的实际问题。

3.培养学生的逻辑思维能力和数学表达能力。

四. 教学重难点1.实数的定义和性质。

2.实数的分类。

五. 教学方法采用讲授法、引导法、讨论法等教学方法。

通过教师的讲解和引导,学生的思考和讨论,使学生理解和掌握实数的概念和性质。

六. 教学准备1.教师准备教案、PPT等教学资料。

2.学生准备笔记本、文具等学习用品。

七. 教学过程1.导入(5分钟)教师通过复习有理数的相关知识,引导学生思考有理数的局限性,引出实数的概念。

2.呈现(15分钟)教师通过PPT或者黑板,呈现实数的定义、性质和分类。

引导学生理解和记忆实数的概念和性质,掌握实数的分类。

3.操练(15分钟)教师布置一些有关实数的练习题,让学生独立完成。

通过练习,巩固学生对实数的理解和掌握。

4.巩固(10分钟)教师选取一些典型的练习题,进行讲解和分析,帮助学生巩固对实数的理解和掌握。

5.拓展(10分钟)教师引导学生思考实数在实际生活中的应用,让学生举例说明实数在生活中的作用。

6.小结(5分钟)教师对本节课的内容进行小结,强调实数的概念、性质和分类,提醒学生注意实数的应用。

7.家庭作业(5分钟)教师布置一些有关实数的家庭作业,让学生进一步巩固和理解实数的概念和性质。

人教版数学七年级下册教案6.3《 实数》

人教版数学七年级下册教案6.3《 实数》

人教版数学七年级下册教案6.3《实数》一. 教材分析《实数》是人教版数学七年级下册的一章内容,主要介绍了实数的概念、性质和运算。

本章内容包括有理数、无理数和实数的分类,以及实数的运算规则。

通过本章的学习,学生能够理解实数的概念,掌握实数的性质和运算规则,为后续的数学学习打下基础。

二. 学情分析学生在学习本章内容前,已经学习了有理数的概念和运算规则,对数学运算有一定的基础。

但是,学生可能对无理数的概念和性质较为陌生,需要通过实例和讲解来加深理解。

此外,学生可能对实数的分类和运算规则有一定的困惑,需要通过具体的例题和练习来进行巩固。

三. 教学目标1.了解实数的概念和性质,能够对实数进行分类。

2.掌握实数的运算规则,能够进行实数的加减乘除运算。

3.能够运用实数的概念和运算规则解决实际问题。

四. 教学重难点1.实数的分类:有理数、无理数和实数的区别和联系。

2.实数的运算规则:实数的加减乘除运算规则。

五. 教学方法采用问题驱动法和案例教学法,通过提问和举例引导学生思考和探索实数的概念和性质,通过具体的例题和练习来讲解和巩固实数的运算规则。

六. 教学准备1.PPT课件:实数的概念、性质和运算规则的讲解和例题。

2.练习题:针对实数的分类和运算的练习题。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾有理数的概念和运算规则,为新课的学习做好铺垫。

2.呈现(15分钟)讲解实数的概念和性质,通过具体的例子来阐述实数的分类,如有理数、无理数和实数的区别和联系。

3.操练(20分钟)讲解实数的运算规则,通过具体的例题来演示和解释实数的加减乘除运算,引导学生进行思考和提问。

4.巩固(10分钟)学生进行实数的分类和运算的练习,教师进行个别指导和讲解,确保学生能够掌握实数的分类和运算规则。

5.拓展(10分钟)通过实际问题引导学生运用实数的概念和运算规则进行解决问题,培养学生的应用能力和创新思维。

6.小结(5分钟)对本节课的内容进行总结和回顾,强调实数的概念、性质和运算规则的重点和难点。

人教版数学七年级下册教学设计6.3《 实数》

人教版数学七年级下册教学设计6.3《 实数》

人教版数学七年级下册教学设计6.3《实数》一. 教材分析人教版数学七年级下册第6.3节《实数》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统认识的一节内容。

本节内容主要包括实数的定义、实数与数轴的关系以及实数的分类。

通过本节课的学习,使学生了解实数的丰富性和广泛性,培养学生对实数的认识和理解。

二. 学情分析七年级的学生已经掌握了有理数和无理数的基本概念,对数轴也有了一定的认识。

但学生在实数的分类方面可能会存在一定的困难,因此,在教学过程中,需要教师耐心引导,让学生充分理解实数的内涵和外延。

三. 教学目标1.理解实数的定义,掌握实数与数轴的关系。

2.能够对实数进行分类,了解实数的丰富性和广泛性。

3.培养学生的逻辑思维能力和抽象思维能力。

四. 教学重难点1.实数的定义和实数与数轴的关系。

2.实数的分类和各类实数的特征。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题,引导学生思考和探索,激发学生的学习兴趣;通过案例分析,使学生直观地理解实数的概念;通过小组合作学习,培养学生的团队协作能力和表达能力。

六. 教学准备1.准备与实数相关的案例和图片,以便在教学中进行展示和分析。

2.准备实数的分类表格,方便学生理解和记忆。

3.准备数轴的道具或图片,帮助学生直观地理解实数与数轴的关系。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾有理数和无理数的概念,为新课的学习做好铺垫。

例如:“同学们,我们已经学习了有理数和无理数,那么你们能总结一下有理数和无理数的特征吗?”2.呈现(10分钟)教师通过PPT或板书,呈现实数的定义和实数与数轴的关系。

同时,结合案例和图片,使学生直观地理解实数的概念。

例如:“同学们,今天我们要学习的是实数。

实数包括有理数和无理数,它们都可以用数轴上的点来表示。

请大家观察这个数轴,找出一些特殊的点,并试着解释它们的含义。

”3.操练(10分钟)学生分组讨论,根据实数的定义和实数与数轴的关系,对给定的实数进行分类。

人教版七年级下册第六章实数教学设计

人教版七年级下册第六章实数教学设计

人教版七年级下册第六章实数教学设计
一、教学目标
1.知识目标:掌握实数的概念与性质,能够实现实数的加减乘除运算。

2.技能目标:能够应用实数进行简单实际问题的解决。

3.情感目标:培养学生的数学思维能力,提高数学学科的探索性与创造
性。

二、教学重点难点
1.教学重点:实数的概念与性质,实数的加减乘除运算。

2.教学难点:实数概念的理解与应用,实数加减乘除运算的实际应用。

三、教学步骤与方法
1. 激发兴趣,导入新课
通过一些有趣、生动的例子,引导学生认识实数的重要性与价值。

例如,通过一些实际应用情景的分析,让学生感受实数的实际应用之处。

2. 知识的教授
(1) 实数的概念与性质
通过教师讲解实数的定义与性质,以引导学生认识实数的本质特征:即包含所有有理数和无理数。

同时,带领学生感受实数与有理数、无理数之间的关系。

(2) 实数的加减运算
通过举例教学与练习,让学生掌握实数的加减运算,了解不同类型的实数加减操作的不同应用。

包括正数加正数、正数加负数、负数加正数、负数加负数的加减乘除运算。

1。

人教版数学七年级下册第6章第3课实数实数(教案)

人教版数学七年级下册第6章第3课实数实数(教案)
-举例突破:在实数的运算中,可以设计一些具体的例题,如√2与√3的加减运算,指导学生如何进行运算,并解释运算规则。
-直观教学:利用数轴模型,将实数与数轴上的点进行对应,通过动画或实物演示,帮助学生建立直观的几何概念。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《实数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过无法用分数表示的数?”(如足球的面积计算)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索实数的奥秘。
课堂上,我尝试了多种教学方法,比如小组讨论和实验操作,让学生们动手动脑,这样可以提高他们的参与度和兴趣。从学生的反馈来看,这种互动式的学习方式效果不错,他们能够更直观地理解实数与数轴的关系。
然而,我也注意到,在实数的运算环节,尤其是涉及无理数的计算时,学生们还是感到有些困惑。我意识到,我需要提供更多的例题和练习,特别是那些能够逐步引导他们理解无理数运算规则的问题。
人教版数学七年级下册第6章第3课实数实数(教案)
一、教学内容
人教版数学七年级下册第6章第3课实数。本节课将涵盖以下内容:
1.实数的定义:有理数和无理数的统称,包括整数、分数以及无理数。
2.无理数的理解:介绍无理数的概念,如π、√2等,并解释其与有理数的区别。
3.实数的性质:探讨实数的封闭性、可比较性、可运算性等。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与实数相关的实际问题,如无理数的近似计算。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用剪刀和直尺制作一个π的近似计算模型。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。

人教版数学七年级下册《无理数、实数概念》教案1

人教版数学七年级下册《无理数、实数概念》教案1

人教版数学七年级下册《无理数、实数概念》教案1一. 教材分析人教版数学七年级下册《无理数、实数概念》这部分内容,主要让学生了解无理数和实数的概念,理解无理数和实数在数轴上的位置关系,以及它们在数学中的应用。

这部分内容是初中的重要知识,也是高中数学的基础。

二. 学情分析初中的学生已经有了一定的数学基础,但是对于无理数和实数这样的抽象概念,可能还比较难以理解。

因此,在教学过程中,需要引导学生从实际问题中抽象出无理数和实数的概念,并通过具体的例子,让学生感受无理数和实数在生活中的应用。

三. 教学目标1.让学生了解无理数和实数的概念,理解它们在数轴上的位置关系。

2.让学生能够运用无理数和实数的知识,解决实际问题。

3.培养学生抽象思维的能力,提高学生解决问题的能力。

四. 教学重难点1.重难点:无理数和实数的概念,无理数和实数在数轴上的位置关系。

2.难点:无理数和实数在实际问题中的应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中抽象出无理数和实数的概念。

2.使用多媒体教学,通过动画、图片等形式,让学生更直观地理解无理数和实数。

3.采用小组合作学习的方式,让学生在讨论中巩固无理数和实数的知识。

六. 教学准备1.多媒体教学设备。

2.无理数和实数的教学素材。

3.小组合作学习的指导手册。

七. 教学过程1.导入(5分钟)通过一个实际问题,引出无理数和实数的概念。

问题:如果一个正方形的边长是2,那么它的对角线的长度是多少?2.呈现(10分钟)通过多媒体教学,呈现无理数和实数的定义,以及它们在数轴上的位置关系。

3.操练(10分钟)让学生通过小组合作学习的方式,解决一些与无理数和实数有关的问题。

4.巩固(10分钟)让学生回答一些关于无理数和实数的问题,以巩固他们刚刚学到的知识。

5.拓展(10分钟)让学生通过一些实际的例子,了解无理数和实数在生活中的应用。

6.小结(5分钟)对本节课的内容进行小结,让学生了解他们今天学到了什么。

人教版数学七年级下册6.3《实数》优秀教学案例

人教版数学七年级下册6.3《实数》优秀教学案例
2.运用启发式教学法,引导学生发现实数的性质,培养学生的问题解决能力。
3.采用小组合作学习法,让学生在讨论和交流中,共同完成实数性质的探究,培养学生的合作意识和团队精神。
4.设计丰富的教学活动,让学生在实践中感受实数的性质,提高学生的动手操作能力和实践能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣,使学生树立自信心,相信自己能够掌握实数的知识。
4.引导学生总结实数的性质,培养学生的归纳总结能力,例如“实数的性质有哪些?如何描述有理数和无理数?”
(三)小组合作
1.让学生分组讨论实数的性质,鼓励学生发表自己的观点,培养学生的合作意识和团队精神。
2.设计小组活动,让学生共同探究实数的运算规则,例如“以小组为单位,总结实数的加法、减法、乘法、除法规则。”
在教学设计上,我遵循了由浅入深、循序渐进的原则,将知识点进行合理划分,使得学生能够逐步理解和掌握实数的概念和性质。在教学方法上,我采用了启发式教学法和小组合作学习法,鼓励学生主动发现问题、解决问题,培养学生的合作意识和团队精神。
在教学评价上,我注重过程性评价与终结性评价相结合,全面了解学生的学习情况,及时调整教学策略,提高教学效果。通过本节课的教学,希望学生能够熟练掌握实数的相关知识,提高他们的数学素养。
三、教学策略
(一)情景创设
1.利用生活实例引入实数的概念,例如身高、体重、温度等,让学生感受到实数与生活的紧密联系。
2.通过设计有趣的数学问题,激发学生的学习兴趣,例如“小明身高1.6米,小红身高1.5米,请问小明比小红高多少?”
3.利用多媒体课件展示实数的应用场景,例如在平面直角坐标系中,展示实数表示的点的位置。
4.创设问题情境,引导学生思考实数的性质,例如“为什么实数可以分为有理数和无理数?”

2024实数人教版数学七年级下册教案

2024实数人教版数学七年级下册教案

2024实数人教版数学七年级下册教案一、教学目标1.让学生理解实数的概念,掌握实数的分类及性质。

2.培养学生运用实数解决实际问题的能力。

3.培养学生的逻辑思维能力和空间想象能力。

二、教学重难点重点:实数的概念、分类及性质。

难点:实数的应用。

三、教学准备1.教学课件2.实数相关练习题3.教学道具四、教学过程第一课时:实数的概念1.导入(1)回顾小学阶段学习的自然数、整数、分数、小数等概念。

(2)提出问题:这些数之间有什么关系?它们共同构成了什么?2.讲解(1)介绍实数的概念:实数是包括有理数和无理数在内的数的总称。

(2)讲解实数的分类:有理数(整数、分数)、无理数。

(3)讲解实数的性质:实数具有有序性、稠密性和连续性。

3.互动(1)让学生举例说明实数的分类。

(2)讨论实数的性质在生活中的应用。

4.练习(1)让学生完成教材P1-2的练习题。

(2)讲解答案,纠正错误。

第二课时:实数的性质与应用1.导入(1)回顾上节课学习的实数概念及分类。

(2)提出问题:实数的性质在实际问题中有哪些应用?2.讲解(1)讲解实数的性质在比较大小、估算等方面的应用。

(2)讲解实数的性质在函数、方程等方面的应用。

3.互动(1)让学生举例说明实数的性质在实际问题中的应用。

(2)讨论如何利用实数的性质解决实际问题。

4.练习(1)让学生完成教材P3-4的练习题。

(2)讲解答案,纠正错误。

第三课时:实数的运算1.导入(1)回顾小学阶段学习的四则运算。

(2)提出问题:实数的运算与小学阶段的运算有何异同?2.讲解(1)讲解实数的加、减、乘、除运算规则。

(2)讲解实数的乘方、开方运算规则。

3.互动(1)让学生举例说明实数的运算规则。

(2)讨论如何运用实数的运算规则解决实际问题。

4.练习(1)让学生完成教材P5-6的练习题。

(2)讲解答案,纠正错误。

第四课时:实数的应用1.导入(1)回顾上节课学习的实数运算。

(2)提出问题:实数在现实生活中有哪些应用?2.讲解(1)讲解实数在物理学、化学、生物学等领域的应用。

人教版数学七年级下册6.3《实数的运算》优秀教学案例

人教版数学七年级下册6.3《实数的运算》优秀教学案例
2.鼓励学生相互交流、分享解题思路和方法,培养学生的团队协作能力和沟通能力。
3.教师巡回指导,给予学生必要的提示和帮助,引导学生运用所学的实数运算规则解决问题。
(四)总结归纳
1.教师引导学生对实数运算的规则进行总结归纳,如加减法的交换律、结合律,乘除法的分配律等。
2.强调实数运算在实际生活中的应用,引导学生认识到实数运算的重一、案例背景
本节内容是针对人教版数学七年级下册6.3《实数的运算》进行教学,主要涉及实数的加减乘除、乘方以及平方根等基本运算。学生在学习这部分内容时,需要具备一定的实数概念和基本的数学运算能力。
在实际教学中,我发现许多学生在进行实数运算时,容易出现运算错误,对运算规则理解不透彻,导致解题速度慢,准确率低。针对这一问题,我设计了本节优秀教学案例,旨在帮助学生深入理解实数运算的规则,提高运算速度和准确率,培养学生的数学思维能力。
3.实数的乘方:通过具体的例子,如2^3 = 8,(-2)^2 = 4等,引导学生理解实数乘方运算规则,并让学生在练习中巩固。
4.平方根:通过具体的例子,如√9 = 3,√(-9) = undefined等,引导学生理解平方根的概念和运算规则,并让学生在练习中巩固。
(三)学生小组讨论
1.将学生分成若干小组,每组选定一个具体问题,如计算购物清单的总价、解决实际问题等,让学生在小组内进行讨论和合作。
3.利用多媒体技术,展示实数运算的动画演示,让学生在直观的视觉冲击下,更好地理解和记忆运算规则。
(二)讲授新知
1.实数的加减法:通过具体的例子,如2 + 3 = 5,-2 - 3 = -5等,引导学生理解实数加减法的运算规则,并让学生在练习中巩固。
2.实数的乘除法:通过具体的例子,如2 * 3 = 6,4 / 2 = 2等,引导学生理解实数乘除法的运算规则,并让学生在练习中巩固。

人教版七年级下册数学第6章《实数》优秀教学案例(教案)

人教版七年级下册数学第6章《实数》优秀教学案例(教案)
五、案例亮点
1.生活情境的引入:通过购物小票的实际例子,让学生感受实数在生活中的应用,激发学生的学习兴趣,提高学生的学习积极性。
2.问题导向的教学策略:设计一系列递进式的问题,引导学生逐步深入理解实数的相关知识,培养学生的批判性思维和问题意识。
3.小组合作的学习方式:通过小组讨论和合作任务,培养学生的团队合作精神,提高学生的沟通能力和协作能力。
2.理解实数与数轴的关系,能够利用数轴表示和解释实数。
3.掌握实数的运算方法,包括加法、减法、乘法、除法等,并能进行实数的混合运算。
4.能够运用实数的概念和运算方法解决实际问题,提高学生的应用能力。
(二)过程与方法
1.通过观察、思考、讨论等方式,引导学生主动探索实数的概念和性质。
2.利用数轴作为教学工具,帮助学生直观地理解实数与数轴的关系。
2.利用数轴作为教学工具,帮助学生直观地理解实数与数轴的关系。
3.通过实际例子,让学生体会实数在生活中的应用,提高学生解决实际问题的能力。
4.注重个体差异,给予每个学生充分的思考和表达机会,鼓励学生提出不同观点,培养学生的创新思维。
在教学过程中,我还将注重以下几点:
1.关注学生的学习兴趣,创设有趣的教学情境,激发学生的学习热情。
(四)反思与评价
1.个人反思:在教学过程中,鼓励学生进行个人反思,思考自己在学习实数知识过程中的理解、困惑和收获,如“你觉得自己在实数学习中有哪些收获?还有哪些需要改进的地方?”
2.同伴评价:引导学生相互评价,互相借鉴学习方法和解题思路,如“你觉得他的解题方法怎么样?有没有更好的解决办法?”
3.教师评价:教师对学生的学习情况进行评价,关注学生的知识掌握程度、思维过程和团队合作能力等方面的表现,如“你在这次小组合作中表现得很出色,不仅积极参与讨论,还能够提出有深度的观点。”

(新人教版)数学七年级下册:《实数》教学案

(新人教版)数学七年级下册:《实数》教学案

《实数》教课设计一、教课目的1.会利用结论比较两个实数的大小 .2.会利用运算律进行简单的实数运算,会取无理数的近似值进行计算.二、教课要点和难点1.要点:比较实数大小,进行简单的实数运算 .2.难点:比较实数大小 .三、教课过程(一)基本训练,稳固旧知1. 填空:每一个实数都能够用数轴上的一个来表示,反过来,数轴上的每一个点都表示一个.2.填空:(1)7的相反数是,绝对值是;(2)-7 的相反数是,绝对值是;(3)7的相反数是,绝对值是;(4)-7 的相反数是,绝对值是;(5)7-7 的相反数是,绝对值是;(6)7-7 的相反数是,绝对值是.(二)创建情境,导入新课师:初一的时候,我们学过有理数的很多结论,此刻数的范围从有理数扩大到了实数,本来对有理数来说建立的结论,对实数来说还建立吗?基本上都建立 . 比如,“一个负数的绝对值是它的相反数”,对有理数来说是对的,对实数来说还是对的 . 因此,相关实数的好多结论我们能够直接从有理数那边搬过来 . 上节课我们从有理数那边搬来了三个实数的结论,本节课我们还要从有理数那边搬几个结论来,第一我们来看两个实数怎样比较大小 .(三)试试指导,讲解新课(师出示以下图)-5-4-3-2-1012345师:(指准数轴)学习有理数的时候,我们讲过这样一个事实,数轴上右侧的数总比左侧的数大 . 比如, 4 在 3 的右侧, 4> 3;- 1 在- 4 的右侧,- 1>- 4,等等 . 数的范围从有理数扩大到实数,数轴上右侧的数仍是比左侧的数大吗?(稍停)对实数来说,数轴上右侧的数仍是比左侧的数大 . 依据这一事实,我们得出比较两个实数大小的结论 . (师出示结论 4)结论 4:正数大于 0,0 大于负数,正数大于负数;两个负数,绝对值大的反而小 . 师:请大家把这个结论读一遍(生读) .师:这个结论跟两个有理数比较大小的结论是相同的,它是直接从有理数那边搬过来的 . 下边我们就利用这个结论来比较两个实数的大小 . 例 1:比较以下各组数的大小:(1)5 和24; (2)- 5和- 6 ;(3)-3和-1.8.解: (1)24≈4.9 ,由于 5> 4.9 ,因此 5>24.(2) 5 ≈2.2, 6 ≈2.4,由于 2.2 <2.4 ,因此- 5 >- 6 .(3) 3 ≈1.7,由于 1.7 <1.8 ,因此- 3 >-1.8.(四)尝试练习,回授调理3.填“>”或“<”:(1)310 ;(2)π 3.142; (3)- 8-7 ;(4)-2-1.42 ; (5)2954;(6)23. 13234.判断对错:对的画“√”,错的画“×” .(1)有最小的正有理数.()(2)没有最小的整数.()(3)没有最小的有理数.()(4)没有最小的无理数.()(5)没有最小的实数.()(6)有绝对值最小的实数.()(五)试试指导,讲解新课师:我们知道有理数能够进行加、减、乘、除、乘方运算,相同,实数也能够进行加、减、乘、除、乘方运算,除了这些运算,实数能够进行开平方、开立方运算 . 实数之间怎么进行运算呢?有理数的运算法例和运算性质能够搬到实数的运算中来,也就是说,有理数怎么进行运算,实数就怎么进行运算.(师出示结论 5)结论 5:有理数的运算法例和运算性质,在进行实数运算时仍旧建立.师:大家把结论 5 默读一遍 . (生默读)师:比如,有理数的运算有互换律、联合律、分派律,相同实数的运算也拥有这些运算性质 . 下边我们就来做几道实数计算题 .(师出例 2)例 2:计算以下各式的值:(1)(32) 2 ;(2)332 3 .解: (1)(32) 2 = 3+2- 2 =3+0= 3;(2)33 2 3 =(3+2)3=53.((2) 题板演时,要指出运用了分派律)(师出示例 3)例 3:计算:(1) 5 +π(精准到0.01 );(2)3g 2 .(精准到0.1 ).解: (1) 5 +π≈2.236+3.142≈5.38 ;(2)3g 2 ≈1.73×1.41≈2.4.(教课时需要指出,结果假如要求精准到0.01 ,那么运算过程中取近似值要精确到 0.001 )(六)探,回授5.算:(1)2 2-3 2;(2)2322.====(七)小,部署作:上我学了数的三个,我又学了数的此外两个,数的五个是怎么得来的?基本上都是从有理数那边搬来的 . 有理数能够在数上用点表示,数也能够在数上用点表示;有理数有相反数、,数也有相反数、;有理数怎么比大小,数也怎么比大小;有理数怎么运算,数也怎么运算 .四、板数例 1例 24:⋯⋯5:⋯⋯例 3。

人教版七年级数学下册6.3.2《实数的运算》教学设计

人教版七年级数学下册6.3.2《实数的运算》教学设计

人教版七年级数学下册6.3.2《实数的运算》教学设计一. 教材分析人教版七年级数学下册6.3.2《实数的运算》是学生在掌握了有理数的运算基础上,进一步学习实数的运算。

本节内容主要包括实数的加法、减法、乘法、除法运算,以及实数的乘方、开方运算。

教材通过具体的例子,引导学生掌握实数运算的法则,培养学生的运算能力。

二. 学情分析七年级的学生已经掌握了有理数的运算,对于实数的运算,他们具备了一定的认知基础。

但是,学生在运算过程中,可能会对实数的加减乘除运算规则理解不深,容易出错。

因此,在教学过程中,教师需要通过具体的例子,让学生加深对实数运算规则的理解,提高运算能力。

三. 教学目标1.理解实数的加法、减法、乘法、除法运算规则,掌握实数的乘方、开方运算。

2.能够熟练地进行实数的运算,提高运算速度和准确性。

3.培养学生的逻辑思维能力和问题解决能力。

四. 教学重难点1.实数的加法、减法、乘法、除法运算规则。

2.实数的乘方、开方运算。

五. 教学方法1.采用讲解法,通过讲解实数运算的规则,让学生理解并掌握实数运算的方法。

2.采用例题演示法,通过具体的例子,让学生加深对实数运算规则的理解。

3.采用练习法,让学生在练习中提高实数运算的能力。

4.采用小组讨论法,让学生分组讨论实数运算问题,培养学生的合作能力和解决问题的能力。

六. 教学准备1.准备相关的教学PPT,展示实数运算的规则和例子。

2.准备一些练习题,用于课堂练习和课后作业。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾有理数的运算,为新课的学习做好铺垫。

例如:同学们,我们已经学习了有理数的运算,那么有理数的加法、减法、乘法、除法运算规则是什么?2.呈现(15分钟)教师通过PPT展示实数的加法、减法、乘法、除法运算规则,以及实数的乘方、开方运算。

同时,通过具体的例子,让学生加深对实数运算规则的理解。

3.操练(10分钟)教师提出一些实数运算的题目,让学生在课堂上进行练习。

人教版数学七年级下册6.3实数的概念优秀教学案例

人教版数学七年级下册6.3实数的概念优秀教学案例
五、案例亮点
1.生活情境导入:通过学生熟悉的生活场景,如购物、长。
2.数形结合教学:利用数轴这一直观工具,让学生在数轴上表示实数,感受实数与数轴的关系,提高学生的空间想象能力,加深对实数概念的理解。
3.小组合作学习:组织学生进行小组讨论和合作,让学生在小组内共同探究实数的性质和运算,培养学生的团队协作能力,提高学生的沟通能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣,使学生感受到数学与生活的紧密联系,提高学生对数学的学习积极性。
2.培养学生勇于探究、实事求是的精神,使学生在面对实数问题时,能够积极思考、不断尝试,从而解决问题。
3.培养学生团队协作的能力,使学生在小组合作中学会倾听、沟通、协作,培养学生的社会适应能力。
4.问题驱动学习:通过设计具有启发性的问题,引导学生思考实数的性质,激发学生的问题解决能力,培养学生的批判性思维。
5.多元化评价体系:在教学过程中,采用多种评价方式,如课堂提问、作业批改、测试等,及时了解学生的学习情况,给予有针对性的指导和建议,关注学生的个体差异,促进学生的全面发展。
在教学过程中,我充分关注学生的个体差异,针对不同层次的学生设置不同难度的教学目标,让每个学生都能在课堂上找到自己的位置,充分参与到学习中。对于学生在学习过程中遇到的问题,我及时进行反馈和指导,帮助学生建立正确的实数观念。
二、教学目标
(一)知识与技能
1.理解实数的定义,掌握实数与数轴的关系,能够正确表示实数在数轴上的位置。
在教学过程中,我将密切关注学生的学习动态,根据学生的反馈和实际情况,灵活运用教学策略,确保教学目标的实现。同时,注重培养学生的学习能力,使学生在实数的学习中不断成长。
四、教学内容与过程
(一)导入新课

6.3.1+实数的概念+教案-2023-2024学年人教版数学七年级下册

6.3.1+实数的概念+教案-2023-2024学年人教版数学七年级下册

第1课时实数的概念教学设计课题实数的概念授课人素养目标1.理解无理数的概念,会判断一个数是否为无理数.2.理解有理数和无理数的概念,会把实数进行分类.3.理解实数与数轴的关系,并进行相关运用.4.理解实数范围内的相反数、绝对值的意义.教学重点 1.理解无理数的概念,会判断一个数是否为无理数.2.理解有理数和无理数的概念,会把实数进行分类.教学难点理解实数与数轴的关系,并进行相关运用.教学活动教学步骤师生活动活动一:复习回顾,问题引入设计意图学生回忆有理数及无限不循环小数的概念,为学习实数做铺垫.【回顾导入】请同学们回顾下面这两个问题:什么是有理数?有理数怎样分类?什么是无限不循环小数?无限不循环小数都有哪些形式?答:小数位数无限,且小数部分不循环的小数叫做无限不循环小数.很多数的平方根和立方根都是无限不循环小数.【教学建议】教师指定学生代表作答.活动二:问题引入,探究新知设计意图通过探究有理数的形式引入无理数的概念,将数系扩充至实数,达到整体认识,形成知识迁移.探究点1实数的概念及分类(教材P53探究)我们知道有理数包括整数和分数,请把下列分数写成小数的形式,你有什么发现?答:我们发现,上面的分数都可以写成有限小数或无限循环小数的形式,即问题1任何有限小数或无限循环小数都可以化为分数吗?为什么?答:可以.因为如果把整数看成小数点后是0的小数,那么任何一个有理数都可以写成有限小数或无限循环小数的形式.反过来,任何有限小数或无限循环小数也都是有理数,即可以化为分数(整数可以看作分母为1的分数).【教学建议】学生交流讨论,自主探究,教师归纳、订正.先通过复习有理数的概念,再经过类比学习的方法引入无理数的概念,体会两者之间的区别,最后给出实数的概念,层层设问,发展学生的自学意识.教学步骤师生活动设计意图通过具体实例,让学生直观感受无理数可用数轴上的点表示,从而深化扩展到实数与数轴上的点的一一对应关系.问题2我们学过的所有数都能化成这种形式吗?若不能,请举例说明.答:不能.如√2,√3这样的无限不循环小数.概念引入:无限不循环小数又叫做无理数.常见的无理数的形式有:①开方开不尽的数,如√2,-√33等;②π及含π的式子,如π,2+π等;③结构特殊且不循环的小数,如1.01001000100001…(相邻的两个1之间依次多一个0).概念引入:有理数和无理数统称实数.问题3仿照有理数的分类,你能对实数进行分类吗?【对应训练】1.下列说法正确的是(D )A.正实数和负实数统称为实数B.正数、0和负数统称为有理数C.带根号的数和分数统称为实数D.无理数和有理数统称为实数2.把下列各数分别填入相应的大括号中:探究点2 实数与数轴上的点的对应关系我们知道,每个有理数都可以用数轴上的点来表示.无理数是否也可以用数轴上的点表示出来呢?(1)(教材P54探究)如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′对应的数是多少?注意强调:无限小数既可能是有理数,也可能是无理数,因为无限小数有无限循环和无限不循环两种形式.实数分类时类比有理数的分类,让学生尝试分类,体会无理数的特征.在自主探究的过程中,发展学生的类比思想和分类思想.分类原则是不重不漏,且有时分类的数会同时属于多个集合,此时更应注意不要漏写.【教学建议】学生在讨论合作的基础上动手操作,教师利用多媒体课件进行动态演示,并对学生讨论交流的结果进行总结.教学步骤师生活动设计意图通过具体练习使学生体会到相反数和绝对值的意义同样适合于实数.答:从图中可以看出,OO′的长是这个圆的周长π,所以点O′对应的数是π.(2)如图,以单位长度为边长画一个正方形,以原点为圆心,正方形对角线长为半径画弧,与正半轴的交点就表示√2,与负半轴的交点就表示-√2.为什么?答:在学习算术平方根的估算时,我们知道,用两个面积为1的小正方形剪拼成一个面积为2的大正方形,这个大正方形的边长就是小正方形的对角线长,因此图中正方形的对角线长是√2.所以以原点为圆心,以小正方形的对角线为半径画弧,与数轴的两个交点分别表示数√2,-√2.事实上,每一个无理数都可以用数轴上的一个点表示出来.总结:当数的范围从有理数扩充到实数后,实数与数轴上的点是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.与规定有理数的大小一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大.【对应训练】1.教材P56练习第1题.2.如图,面积为5的正方形ABCD的顶点A在数轴上,且点A表示的数为1,若点E在数轴上(点E在点A左侧),且AD=AE,则点E所表示的数为(D )A.√5B.-√5C.-√5-1D.-√5+1探究点3实数的相反数、绝对值思考(教材P54思考)(1)√2的相反数是-√2,-π的相反数是π,0的相反数是0;(2)|√2|=√2,|-π|=π,|0|=0.你能得出实数的相反数和绝对值的意义吗?相反数的意义:数a的相反数是-a,这里a表示任意一个实数.绝对值的意义:一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.注意使学生感受在数的范围扩充到实数后,有理数与数轴上的点不是一一对应的,而实数才是.【教学建议】教师可引导学生通过复习有理数的相反数、绝对值,类比得出实数的相反数、绝对值.教师只需引导,以学生为主体,讨论交流,发展学由上可知,有理数关于相反数和绝对值的意义同样适合于实数. 例1(教材P55例1)(1)分别写出-√6,π-3.14的相反数;(2)指出-√5,1-√33各是什么数的相反数;(3)求√−643的绝对值;(4)已知一个数的绝对值是√3,求这个数. 解:(1)因为-(-√6)=√6,-(π-3.14)=3.14-π,所以,-√6,π-3.14的相反数分别为√6,3.14-π.(2)因为-(√5)=-√5,-(√33-1)=1-√33,所以,-√5,1-√33分别是√5,√33-1的相反数.(3)因为√−643=−√64 3= -4,所以|√−643| = |-4| = 4.(4)因为|√3|=√3,|-√3|=√3,所以绝对值为√3的数是3或-√3. 【对应训练】1~2.教材P56练习第2~3题. 3.填表:生认知的类比迁移能力.应使学生明确,在数的范围扩充至实数后,数的绝对值的最小值依然是0,因为绝对值都是非负实数.活动三:重点突破,综合探究 设计意图 强化巩固对于实数与数轴上的点的一一对应关系的理解,并能在实践中灵活运用,解决综合类型题目.例2如图,数轴上A ,B 两点表示的数分别为√2和5.1,则A ,B 两点之间表示整数的点共有( C ) A.6个 B.5个 C.4个 D.3个 【对应训练】如图,在数轴上点A 表示数a ,点B 表示数b ,且a ,b 满足|a +3|+(b -6)2=0.(1)点A 表示的数为 -3,点B 表示的数为6; (2)若点C 表示的数的绝对值为√2,求点C 到点B 的距离.解:若点C 表示的数的绝对值为√2,则点C 表示的数为√2或-2, 当点C 表示的数为√2时,点C 到点B 的距离为6-√2; 当点C 表示的数为-√2时,点C 到点B 的距离为6+√2. 【教学建议】学生分组交流,讨论作答.鼓励学生动手操作,画图描点,有助于厘清思路.此类题目较好地将知识进行了综合,并有一定的拓展,能培养学生大胆尝试、勇于探索的精神,提高学生的思维能力.活动四:随堂训练,课堂总结【随堂训练】随堂训练见《创优作业》“随堂小练”册子相应课时训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:什么是无理数?什么是实数?实数怎么分类?数轴上的点与什么数是一一对应的?实数的相反数、绝对值的意义是什么? 【知识结构】1.实数分类的注意事项:对实数分类时,应先对某些数进行化简,然后根据最后结果进行分类.例如,√25=5,它既是整数,也是自然数,更是有理数,应根据其性质将它填入符合的集合里,可能会同属于多个集合,这样才能做到不重不漏.另外,填入集合的数必须是原数,即√25,而不是化简后得到的5.2.数轴上的点与实数的关系:【作业布置】1.教材P57习题6.3第1,2,3,7,9题.2.相应课时训练.教学步骤师生活动板书设计教学反思本节课学习了实数的有关概念和实数的分类,把我们所学过的数在有理数的基础上扩充到实数,在此基础上,明确了实数与数轴上的点的一一对应的关系,并指出求相反数和绝对值的方法在实数范围内同样适用.学习中要求学生结合有理数理解实数的有关概念,同时要注意两个地方:一是所有的分数都是有理数,如227;二是形如π2,π3等之类的含有π的数不是分数,而是无理数.解题时注意:①关于数轴原点对称即为求该数的相反数;②数轴上两点之间的距离即为求两点所表示的实数的差的绝对值.例如图,数轴上A,B两点表示的数分别是-1和√3,点B关于点A的对称点为C,求点C所表示的实数.分析:首先结合数轴和已知条件可以求出线段AB的长度,然后利用对称的性质即可求出点C所表示的实数.解:因为数轴上A,B两点表示的数分别为-1和√3,所以点B到点A的距离为1+√3.则点C到点A的距离也为1+√3.设点C表示的实数为x,则点A到点C的距离为-1-x,所以-1-x=1+√3,所以x=-2-√3.所以点C所表示的实数为-2-√3.例1如图,一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点A表示-2,设点B所表示的数为m.(1)实数m的值是2-√2;(2)求|m+1|+|m-1|的值;(3)在数轴上还有C,D两点分别表示实数c和d,且有|2c+d|与√d2−16互为相反数,求2c-3d的平方根.解:(2)因为m=2-√2,则m+1>0,m-1<0,所以|m+1|+|m-1|=m+1+1-m=2.(3)因为|2c+d|与√d2−16互为相反数,所以|2c+d|+√d2−16=0,所以|2c+d|=0,且√d2−16=0,所以c=-2,d=4,或c=2,d=-4.①当c=-2,d=4时,2c-3d=-16,无平方根;②当c=2,d=-4时,2c-3d=16,所以2c-3d的平方根为±4.综上,2c-3d的平方根为±4.例2如图①是由8个同样大小的立方体组成的魔方,体积为8.(1)求出这个魔方的棱长;(2)图①中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长;(3)把正方形ABCD放到数轴上,如图②,使得点A与表示-1的点重合,那么点D在数轴上表示的数为-1-√2.分析:(1)根据立方体的体积公式,直接求棱长即可;(2)根据棱长,求出每个小立方体的棱长,进而可得小正方形的对角线,即阴影部分图形的边长,即可得解;(3)用点A表示的数减去边长即可得解.解:(1)设魔方的棱长为x,则x3=8,所以x=2.(2)因为棱长为2,所以魔方的每个面的面积为22=4.=2.易知正方形ABCD的面积为42所以正方形ABCD的边长为√2.。

人教版数学七年级下册6.3《实数》教学设计

人教版数学七年级下册6.3《实数》教学设计

人教版数学七年级下册6.3《实数》教学设计一. 教材分析人教版数学七年级下册6.3《实数》是学生在掌握了有理数知识的基础上,进一步学习实数的定义、性质和运算。

本节内容是整个初中数学的重要基础,对学生来说是全新的概念。

教材从学生的实际出发,通过引入无理数的概念,让学生感受实数的广泛性,进而引入实数的概念,使学生对实数有一个直观的认识。

二. 学情分析学生在学习本节内容前,已经掌握了有理数的知识,对数的运算、大小比较等有一定的基础。

但实数是一个全新的概念,与有理数有很大的区别。

学生在学习过程中,可能对无理数的概念、实数的性质和运算产生困惑。

因此,在教学过程中,要注重引导学生从实际出发,理解实数的定义,掌握实数的性质和运算。

三. 教学目标1.了解实数的定义,掌握实数的性质和运算。

2.能够运用实数解决实际问题,提高解决问题的能力。

3.培养学生的抽象思维能力,提高学生的数学素养。

四. 教学重难点1.实数的定义和性质。

2.实数的运算。

五. 教学方法1.情境教学法:通过生活实例,引导学生从实际出发,理解实数的定义和性质。

2.互动教学法:引导学生参与课堂讨论,提高学生的思维能力和解决问题的能力。

3.实践操作法:通过大量的练习,让学生掌握实数的运算方法。

六. 教学准备1.准备相关的生活实例,用于导入新课。

2.准备PPT,展示实数的性质和运算。

3.准备练习题,巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活实例,如计算房屋面积、身高、体重等,引导学生从实际出发,了解无理数的概念。

进而引出实数的概念,让学生对实数有一个直观的认识。

2.呈现(10分钟)通过PPT展示实数的性质和运算,让学生对实数有一个全面的认识。

主要包括实数的定义、性质(如正实数、负实数、零实数等)和运算(如加法、减法、乘法、除法等)。

3.操练(10分钟)让学生进行实数运算的练习,巩固所学知识。

可以设置一些具有挑战性的题目,让学生在解决问题过程中,加深对实数运算的理解。

2024年人教版七年级数学下册教案

2024年人教版七年级数学下册教案

2024年人教版七年级数学下册教案第一章实数第一节实数的概念一、教学目标1.理解实数的定义,掌握实数的分类。

2.能够运用实数的性质解决简单问题。

3.培养学生的数感和逻辑思维能力。

二、教学重难点1.重点:实数的定义及分类。

2.难点:实数的性质及其应用。

三、教学过程1.导入通过提问方式引导学生回顾小学阶段学习的自然数、整数、分数等概念,引导学生思考这些数的共同点和不同点。

2.新课讲解(1)实数的定义:实数是包括有理数和无理数的数集。

(2)实数的分类:有理数和无理数。

(3)实数的性质:实数具有稠密性、连续性、有序性等。

3.案例分析通过具体案例,让学生了解实数的应用,如测量、计算等。

4.练习巩固(1)判断下列数是否为实数:2,-3,$\frac{1}{2}$,$\sqrt{2}$。

(2)将下列数分类:1,-1,$\frac{1}{2}$,$\sqrt{2}$,$2.5$。

5.课堂小结四、作业布置1.复习实数的定义、分类和性质。

2.完成课后练习题。

第二节实数的运算一、教学目标1.掌握实数的四则运算。

2.能够运用实数运算解决实际问题。

3.培养学生的运算能力和解决问题的能力。

二、教学重难点1.重点:实数的四则运算。

2.难点:实数运算在实际问题中的应用。

三、教学过程1.导入通过提问方式引导学生回顾小学阶段学习的四则运算,引导学生思考实数运算与小学阶段运算的区别。

2.新课讲解(1)实数的四则运算:加法、减法、乘法、除法。

(2)实数运算的法则:先乘除后加减,同级运算从左到右依次进行。

(3)实数运算的注意事项:注意符号、括号等。

3.案例分析通过具体案例,让学生了解实数运算在实际问题中的应用,如测量、计算等。

4.练习巩固(1)计算:$2+3\cdot4-5\div2$。

(2)解方程:$x+2=5$。

5.课堂小结四、作业布置1.复习实数运算的法则和注意事项。

2.完成课后练习题。

第二章二元一次方程第一节二元一次方程的概念一、教学目标1.理解二元一次方程的定义。

人教版七年级数学下册6.3.1《实数的概念》教学设计

人教版七年级数学下册6.3.1《实数的概念》教学设计

人教版七年级数学下册6.3.1《实数的概念》教学设计一. 教材分析人教版七年级数学下册6.3.1《实数的概念》是学生在掌握了有理数的基础上,进一步对实数进行学习。

本节内容主要介绍实数的概念,包括实数的定义、实数的性质等。

教材通过实例和问题,引导学生理解实数的意义,并能够运用实数进行简单的运算和解决问题。

二. 学情分析学生在学习本节内容前,已经掌握了有理数的概念和运算方法,具备一定的数学基础。

但实数概念相对抽象,学生可能存在一定的理解难度。

因此,在教学过程中,需要结合学生的实际情况,通过实例和问题,引导学生理解和掌握实数的概念。

三. 教学目标1.理解实数的定义,掌握实数的性质。

2.能够运用实数进行简单的运算和解决问题。

3.培养学生的抽象思维能力,提高学生的数学素养。

四. 教学重难点1.实数的定义和性质。

2.实数的运算方法。

五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。

通过问题引导学生思考,实例帮助学生理解,小组合作促进学生交流和讨论。

六. 教学准备1.教材、PPT等相关教学资料。

2.实例和问题。

3.小组合作学习分组。

七. 教学过程1. 导入(5分钟)通过提问方式引导学生回顾有理数的概念和性质,为新课的学习做好铺垫。

例如:“同学们,我们已经学习了有理数,那么有理数能表示所有的数吗?还有哪些数是有理数无法表示的?”2. 呈现(15分钟)利用PPT展示实数的定义和性质,结合实例进行讲解。

例如,通过数轴展示实数,解释实数包括有理数和无理数,以及实数的性质如大小关系、加减乘除等。

3. 操练(15分钟)让学生进行实数的运算练习,巩固所学知识。

例如,给出一些实数的运算题目,让学生独立完成,然后集体讲解答案。

4. 巩固(10分钟)通过问题和小测验的形式,巩固学生对实数的理解和掌握。

例如,提出一些关于实数的问题,让学生回答,或者让学生解决一些实际问题,运用实数进行计算。

5. 拓展(10分钟)引导学生思考实数在实际生活中的应用,拓展学生的思维。

人教版数学七年级下册6.3实数教学设计

人教版数学七年级下册6.3实数教学设计
人教版数学七年级下册6.3实数教学设计
一、教学目标
(一)知识与技能
1.理解实数的概念,掌握实数的分类,包括有理数和无理数,以及它们在数轴上的表示方法。
2.学会实数的四则运算,特别是对无理数的运算规则,如开平方、开立方等,并能够准确计算。
3.能够运用实数知识解决实际问题,如计算物体的长度、面积、体积等,体会数学在生活中的应用。
3.讲解实数的四则运算规则,特别是无理数的运算方法。通过实例演示,让学生掌握无理数的运算步骤。
(三)学生小组讨论
1.将学生分成若干小组,每组选择一个无理数,如π、√3等,讨论其在生活中的应用,以及在数学中的运算规则。
2.各小组汇报讨论成果,分享无理数的有趣故事和运算技巧。其他小组可进行补充和提问,共同探讨实数的奥秘。
3.举例说明:如π(圆周率)和√2(根号2)等,它们是无限不循环的小数,无法精确表示为分数。从而引出无理数的概念。
(二)讲授新知
1.详细讲解实数的定义,包括有理数和无理数两部分。通过数轴模型,让学生直观地理解实数的概念。
2.介绍无理数的性质和特点,如无法精确表示为分数、无限不循环等。讲解无理数在生活中的应用,如建筑、科学计算等。
4.完成拓展练习:研究实数在科学、技术、工程等领域的应用,并撰写一篇小短文,分享你的发现和感悟。这有助于激发学生对数学学科的兴趣,提高他们的综合素质。
5.与家长共同探讨实数知识在实际生活中的应用,让家长了解孩子的学习内容,增进亲子沟通。请同学们向家长介绍实数的概念和运算规则,并举例说明。
6.预习下一节课的内容,为学习更高级的数学知识做好准备。鼓励同学们提前了解相关知识,培养自主学习能力。
4.通过实数的学习,提高学生的逻辑思维能力和数学运算能力,为学习更高层次的数学知识打下基础。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧−−−−−→←;___00;.;00:,负数有一个负的立方根正数有一个正的立性质定义立方根开立方的算术平方根是的正的平方根正数性质定义算术平方根负数没有平方根的平方根是们互为相反数根一个正数有两个平方性质定义平方根开平方开方乘方互为逆运算a 第六章 实数 姓名知识点:有理数 1 .概念:(1) 有限小数:小数部分的位数是有限的小数。

(2) 无限小数:小数部分的位数是无限的小数。

(3) 循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断重复出现,这样的小数叫做循环小数。

例如: 0.333 …, 5.32727 …等等。

注意 :循环小数是无限小数,也称作无限循环小数。

2.⎩⎨⎧分数整数有理数,因为整数和分数都可以写成有限小数或无限循环小数,所以有理数也可以分类为有限小数和无限循环小数。

无理数1.无理数:无限不循环小数叫做无理数。

2.无理数的特征:(1)无理数的小数部分位数不限; (2)无理数的小数部分不循环,不能表示成分数的形式。

◆常见的几种无理数:①根号型:如35,2等开方开不尽的数。

②圆周率π型:如2π,π-1等。

③构造型:如1.121121112…等无限不循环小数。

④三角函数型:如sin60°,cos45°等。

对无理数的估算:◆记住常用的:414.12≈,732.13≈,236.25≈实数有理数和无理数统称为实数。

实数的分类:由以上学到的,我们可以对实数进行分类 1.按定义:2.按符号:实数分为正实数,零,负分数。

3.实数的性质:在实数范围内,相反数、绝对值、倒数的意义,和在有理数范围内是一样的。

数轴上的每一个点都可以用一个实数来表示;反过来,每一个实数都可以在数轴上找到表示它的点。

(实数与数轴上的点一一对应。

) 4.实数大小比较的方法:1.有理数大小的比较法则在实数范围内同样适用,即:法则1:在数轴上表示的两个实数,右边的数总比左边的数大。

法则2:正实数都大于0,负实数都小于0;正实数大于一切负实数;两个负实数,绝对值大的反而小。

①平方比较法 ②作差比较法 ③求商法④倒数法⑤估算法⑥移动因式法(穿墙术)⑦ 取特值验证法 5.实数化简公式:=⋅b a ( ) (a ≥0,b ≥0); =ba( ) (a ≥0,b >0)平方根、立方根、算数平方根的概念2a 与()a a =2的区别及化简。

a 的性质:双重非负性。

例1、x 取何值时,下列各式在实数范围内有意义。

⑴ ⑵⑶⑷例2、设等式在实数范围内成立。

其中,m 、x 、y 是互不相等的三个实数,求代数式的值。

下面两道练习题,同学们不妨试试。

1.x 取何值时,下列各式在实数范围内有意义。

⑴⑵ ⑶()222--x ⑷()112+-x2.若y=,试求(4x -2y )2010的值。

例题3:(1)如果a 15b 15 a b -=____. (2)已知:m 17n 178m -n.例题4:(1)已知:()02422=-++++-z y x y x , 求()xyz 的平方根(2)已知:322+-+-=x x y ,求x y 的平方根;例题5:在实数范围内,下列各式一定不成立的有( ) 21a +1a -23a -32a-12a -=0.A.1个B.2个C.3个D.4个例6:如图,数轴上表示1、2的对应点为A 、B ,点B 关于点A 的对称点为C , 则点C 所表示的数是( )(也可用中点坐标公式2)(21x x x +=中点)A 、2-1B 、1-2C 、2-2D 、2-2 例7.(2009年江苏省中考题)下面是按一定规律排列的一列数:第1个数:11122-⎛⎫-+ ⎪⎝⎭;第2个数:2311(1)(1)1113234⎛⎫⎛⎫---⎛⎫-+++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; 第3个数:234511(1)(1)(1)(1)11111423456⎛⎫⎛⎫⎛⎫⎛⎫-----⎛⎫-+++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; ……第n 个数:232111(1)(1)(1)111112342n n n -⎛⎫⎛⎫⎛⎫----⎛⎫-++++ ⎪⎪⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭.那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是( ) A .第10个数B .第11个数C .第12个数D .第13个数例8.11x x --2()x y =+,则x -y 的值为( )A .-1B .1C .2D .3 例9.(鄂州市中考题)为了求2008322221++++ 的值,可令S =2008322221++++ ,则2S =20094322222++++ ,因此2S-S =122009-,所以2008322221++++ =122009-.仿照以上推理计算出20093255551+++++ 的值是( )A .152009- B.152010- C.4152009- D.4152010-例10.(枣庄市中考题)a 是不为1的有理数,我们把11a-称为a 的差倒数....如:2的差倒数是1112=--,1-的差倒数是111(1)2=--.已知113a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依此类推,则2009a = .例11. 已知:M a a b =++-82是a +8的算术数平方根,N b a b =--+324是b -3立方根,求M N +的平方根。

练习:1. 已知x y x y +=-=-234323,,求x y +的算术平方根与立方根。

2. 若一个正数a 的两个平方根分别为x +1和x +3,求a 2005的值。

例12. 比较a aa 、、1的大小。

例13. 已知有理数a 满足20042005-+-=a a a ,求a -20042的值。

例14. 借助计算器计算下列各题:(1)112-(2)111122-(3)111111222-(4)111111112222- 仔细观察上面几道题及其计算结果,你能发现什么规律?你能解释这一规律吗?例15、已知:y=)1(32++-b a ,当a 、b 取不同的值时,y 也有不同的值.当y 最小时,求b a的非算术平方根.(即负的平方根)例16、化简:|a+2|-|2a -3|(零点分段讨论法)《实数》测试卷 班级 _______ 姓名 ________一、选择题1、下列说法不正确的是( ) A 、251的平方根是15± B 、-9是81的一个平方根 C 、0.2的算术平方根是0.04 D 、-27的立方根是-3 2、若a 的算术平方根有意义,则a 的取值范围是( )A 、一切数B 、正数C 、非负数D 、非零数 3、若x 是9的算术平方根,则x 是( )A 、3B 、-3C 、9D 、81 4、在下列各式中正确的是( )A 、2)2(-=-2 B 、=3 C 、16=8 D 、22=25、估计76的值在哪两个整数之间( )A 、75和77B 、6和7C 、7和8D 、8和9 6、下列各组数中,互为相反数的组是( )A 、-2与2)2(- B 、-2和38- C 、-21与2 D 、︱-2︱和2 7、在-2,4,2,3.14,327-,5π,这6个数中,无理数共有( ) A 、4个 B 、3个 C 、2个 D 、1个 8、下列说法正确的是( )A 、数轴上的点与有理数一一对应B 、数轴上的点与无理数一一对应C 、数轴上的点与整数一一对应D 、数轴上的点与实数一一对应 9、以下不能构成三角形边长的数组是( )A 、1,5,2B 、3,4,5C 、3,4,5D 、32,42,5210、若有理数a 和b 在数轴上所表示的点分别在原点的右边和左边,则2b -︱a -b ︱等于( ) A 、a B 、-a C 、2b +a D 、2b -a二、填空题11、81的平方根是__________,1.44的算术平方根是__________。

12、一个数的算术平方根等于它本身,则这个数应是__________。

13、38-的绝对值是__________。

14、比较大小:27____42。

15、若36.25=5.036,6.253=15.906,则253600=__________。

16、若10的整数部分为a ,小数部分为b ,则a =________,b =_______。

三、解答题17、327-+2)3(--31- 18、33364631125.041027-++---19、求下列各式中的x(1)4x 2-16=0 (2)27(x -3)3=-6420、若5a +1和a -19是数m 的平方根,求m 的值。

21、已知a 31-和︱8b -3︱互为相反数,求(ab )2-27 的值。

22、已知2a -1的平方根是±3,3a +b -1的算术平方根是4,求a +2b 的值。

23、已知m 是313的整数部分,n 是13的小数部分,求m -n 的值。

相关文档
最新文档