七年级上学期-数学-知识点总结(人教版)
人教版版七年级数学上册知识点总结
人教版版七年级数学上册知识点总结第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形圆柱柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分) 锥圆锥棱锥4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
7、三视图物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
8、多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。
从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n-2)个三角形。
弧:圆上A、B两点之间的部分叫做弧。
扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。
第二章有理数及其运算1、有理数的分类正有理数有理数零有限小数和无限循环小数负有理数整数有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
任何一个有理数都可以用数轴上的一个点来表示。
人教版七年级上册数学知识点总结归纳(最新最全)
七年级数学上册知识点总结第一章有理数1.1 正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数 0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
(3)0表示一个确切的量。
如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。
1.2 有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
3,整数也能化成分数,也是有理数注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数 0 正有理数负整数正分数有理数有理数 0 (0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数3.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
七年级上册数学知识点总结人教版(十五篇)
七年级上册数学知识点总结人教版(十五篇)七年级上册数学知识点总结人教版篇一(一)正负数1.正数:大于0的数。
2.负数:小于0的数。
3.0即不是正数也不是负数。
4.正数大于0,负数小于0,正数大于负数。
(二)有理数1.有理数:由整数和分数组成的数。
包括:正整数、0、负整数,正分数、负分数。
可以写成两个整数之比的形式。
(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。
如:π)2.整数:正整数、0、负整数,统称整数。
3.分数:正分数、负分数。
(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。
(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。
)2.数轴的三要素:原点、正方向、单位长度。
3.相反数:只有符号不同的两个数叫做互为相反数。
0的相反数还是0。
4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数比较大小,绝对值大的反而小。
(四)有理数的加减法1.先定符号,再算绝对值。
2.加法运算法则:同号相加,取相同符号,并把绝对值相加。
异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
一个数同0相加减,仍得这个数。
3.加法交换律:a+b= b+ a 两个数相加,交换加数的位置,和不变。
4.加法结合律:(a+b)+ c = a +(b+ c )三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
5. ab = a +(b)减去一个数,等于加这个数的相反数。
(五)有理数乘法(先定积的符号,再定积的大小)1.同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
2.乘积是1的两个数互为倒数。
3.乘法交换律:ab= ba4.乘法结合律:(ab)c = a (b c)5.乘法分配律:a(b +c)= a b+ ac(六)有理数除法1.先将除法化成乘法,然后定符号,最后求结果。
人教七年级数学上知识点
人教七年级数学上知识点
一、整数及其运算
整数的概念、数轴、绝对值、相反数、加法、减法、乘法、除法及运算法则。
二、平面图形
平面图形的基本概念、直线、线段、射线、角、三角形、四边形、圆等基本图形及其性质。
三、一次函数
一次函数的概念、函数的解析式、函数图象、函数的变化及其含义。
四、数据的收集、整理与分析
数据的调查与应用、频数表、频数直方图、统计量和样本。
五、解方程
一元一次方程的概念和性质,基本解法和应用。
六、数列
数列的概念,等差数列、等比数列,数列的通项公式和前n项和。
七、三角形
三角形的基本性质、三角形的元素、三角形的周长和面积、勾股定理、解决实际问题。
八、比例与相似
比例的概念、比例的性质、比例的应用、相似的概念、相似三角形的性质及其应用。
九、两点间的距离与中点
两点间距离公式、平面直角坐标系、中点公式。
十、几何变换
平移、旋转、翻折及其组合。
以上是人教七年级数学上的基本知识点,学生们在学习过程中需要深入掌握,从而能够进行更深入的应用和解决实际问题。
希望本文对广大师生有所帮助,祝大家学习进步!。
人教版初中七年级上数学知识点总结
七年级数学(上)知识点 人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一. 知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
人教版七年级上册数学知识点总结
人教版七年级上册数学知识点总结人教版七年级上册数学知识点整式的加减一、代数式1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
2、用数值代替代数式里的字母,按照代数式里的运算关系计算得出的结果,叫做代数式的值。
二、整式1、单项式:(1)由数和字母的乘积组成的代数式叫做单项式。
(2)单项式中的数字因数叫做这个单项式的系数。
(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2、多项式(1)几个单项式的和,叫做多项式。
(2)每个单项式叫做多项式的项。
(3)不含字母的项叫做常数项。
3、升幂排列与降幂排列(1)把多项式按x的指数从大到小的顺序排列,叫做降幂排列。
(2)把多项式按x的指数从小到大的顺序排列,叫做升幂排列。
三、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。
2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
合并同类项:(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。
(2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
(3)合并同类项步骤:a.准确的找出同类项。
b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。
c.写出合并后的结果。
(4)在掌握合并同类项时注意:a.如果两个同类项的系数互为相反数,合并同类项后,结果为0.b.不要漏掉不能合并的项。
c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
说明:合并同类项的关键是正确判断同类项。
3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
(完整版)人教版七年级数学上册知识点归纳
第一章 有理数1.1 正数和负数(1)正数:大于0的数;负数:小于0的数;(2)0既不是正数,也不是负数;(3)在同一个问题中,分别用正数和负数表示的量具有相反的意义;(4)-a 不一定是负数,+a 也不一定是正数;(5)自然数:0和正整数统称为自然数;(6)a>0 ⇔ a 是正数; a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a <0 ⇔ a 是负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.1.2 有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数;(2)正整数、0、负整数统称为整数;(3)有理数的分类:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (4)数轴:规定了原点、正方向、单位长度的一条直线;(即数轴的三要素)(5)一般地,当a 是正数时,则数轴上表示数a 的点在原点的右边,距离原点a 个单位长度;表示数-a 的点在原点的左边,距离原点a 个单位长度;(6)两点关于原点对称:一般地,设a 是正数,则在数轴上与原点的距离为a 的点有两个,它们分别在原点的左右,表示-a 和a ,我们称这两个点关于原点对称;(7)相反数:只有符号不同的两个数称为互为相反数;(8)一般地,a 的相反数是-a ;特别地,0的相反数是0;(9)相反数的几何意义:数轴上表示相反数的两个点关于原点对称;(10)a 、b 互为相反数⇔a+b=0 ;(即相反数之和为0)(11)a 、b 互为相反数⇔1-=b a 或1-=ab ;(即相反数之商为-1) (12)a 、b 互为相反数⇔|a|=|b|;(即相反数的绝对值相等)(13)绝对值:一般地,在数轴上表示数a 的点到原点的距离叫做a 的绝对值;(|a|≥0)(14)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;(15)绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a (16)0a 1a a>⇔= ; 0a 1a a <⇔-=;(17)有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。
人教版七年级数学上册知识点总结
人教版七年级数学上册知识点总结第一章有理数1.有理数: (1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数; (2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数. 例:把下列各数填在相应额大括号内:1,-0.1,-789,25,0,-20,-3.14,-590,76正整数集{ …}; 非负整数集{ …}; 自然数集{ …}; 非负数集{ …} 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 例:数轴上与表示-2的点的距离为三个单位的点有_ _个, 他们分别表示的有理数是 _和_ _。
3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. (4)相反数的商为-1. (5)相反数的绝对值相等 4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ;(3)0a 1aa >⇔= ;0a 1aa <⇔-=;(4) |a|是重要的非负数,即|a|≥0; 5.有理数比大小:(1)正数永远比0大,负数永远比0小; (2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小; (4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差, 绝对值越小,越接近标准。
人教版七年级上册数学必背知识点归纳总结
人教版七年级上册数学必背知识点归纳总结
第一章有理数
1.有理数的分类:正有理数、0、负有理数
2.有理数的运算:加法、减法、乘法、除法、乘方
3.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0
4.有理数的大小比较:大于号、小于号、等于号
5.有理数的运算律:交换律、结合律、分配律
第二章代数式
1.代数式的定义:用字母表示数的式子
2.代数式的值:把字母代入式子中所得的结果
3.代数式的分类:整式、分式、根式
4.代数式的化简:同类项合并、加减法运算、幂的乘方、去括号、括号内运算
5.代数式的计算:加减法、乘除法、幂的运算
第三章图形与几何初步
1.角的概念:锐角、直角、钝角、平角、周角
2.角的度量:度量单位、度量工具、度量方法
3.角的分类:按角度大小分类、按方向分类
4.直线的性质:两点确定一条直线、经过两点有且只有一条直线
5.线段的性质:两点之间线段最短、线段长度不改变方向。
人教版七年级上册数学知识点总结
人教版七年级上册数学知识点总结一、有理数1. 有理数的概念有理数是指可以表示为分数的数,即整数、分数、有限小数和循环小数的总称。
有理数可以用分数形式表示,分子为整数,分母为自然数。
2. 有理数的大小比较有理数的大小比较可利用坐标轴表示。
在数轴上,数越往右,数值越大;数越往左,数值越小。
3. 有理数的加减法有理数的加减法规则与整数的运算一样。
同号两数相加、异号两数相减,要先取绝对值,再按两数同号加、异号减的原则进行加减法操作。
4. 有理数的乘除法有理数的乘法和除法规则与整数的运算法则一致,同号相乘得正数,异号相乘得负数;除数不等于零时,正数除以正数得正数,负数除以负数也得正数。
5. 有理数的混合运算将有理数的加减法、乘除法结合起来进行运算,按照运算的先乘除后加减的原则进行混合运算。
6. 有理数的应用有理数在生活中的应用非常广泛,如计量、比较、计算等方面。
二、代数1. 代数式、字母、代数式的值代数式是由数字、字母和运算符号组成的式子。
字母是未知数,代数式的值是指将字母用具体的数代入代数式中去求得的结果。
2. 代数表达式的加减法代数表达式的加减法要进行相同字母项合并,并按照合并的原则进行加减法操作。
3. 代数表达式的乘法代数表达式的乘法是指将代数式进行分配率展开,并用分配率原理进行乘法运算。
4. 代数表达式的除法代数表达式的除法是指先找出最高次项,再按照最高次项进行除法操作,得到商和余数。
5. 代数式的应用代数式在生活中的应用非常广泛,如方程、不等式、数列等方面。
三、方程1. 一元一次方程一元一次方程是指未知数的最高次项是一次的方程。
2. 解一元一次方程解一元一次方程的方法有两种,分别是移项法和等价变形法,可以通过逆运算的原理来解决方程。
3. 一元一次方程的应用一元一次方程在生活中的应用非常广泛,如比例问题、配比问题、运动问题等方面。
四、集合1. 集合的概念集合是包含一组确定对象的整体,其中的对象称为元素。
人教版七年级数学上册各章知识点总结
0
。
注意:①|a|≥0即对任意有理数a,它的绝对值是非负数
②绝对值最小数为0 -
6
(5)、有理数数的比较: ①在数轴上表示的两个数右边的总 比左边的大。
②两个正数比较大小,绝对值大的数大; 两个负数绝对值大的反而小。
③正数都大于零,负数都小于零,正数大于负数。
④作差法:a-b>0↔a>b
⑤作商法:a/b>1,b>0↔a>b
3分配律:一个数于两个数的和相乘,等于把这个数分别于这两个 数相乘,再把积相加。a(b+c)= ab+ac 。
-
10
倒数:①乘积为1的两个数互为倒数。 ②零没有倒数 ③互为倒数的两个数的符号相同
(2)有理数除法法则: 1、除以一个不等于0的数,等于乘这个数的
.
2、两数相除,同号得
把绝对值相
。
,异号得
说明:去分母时,易漏乘方程左、 右两边代数式中的某些项.
-
25
8:方程的检验 检验某数是否为原方程的解,应将该 数分别代入原方程左边和右边,看两 边的值是否相等.
注意:应代入原方程的左、右两边分别计 算,不能代入变形后的方程的左边和右边.
-
26
第四章 图形认识初步
-
27
1、几何图形:我们把实物中抽象出来的各种 图形叫做几何图形。几何图形分为平面图形 和立体图形。
(4)单项式与多项式统称整式。
(分母含有字母的代数式不是整式)
-
18
2. 同类项:所含字母相同,并且相同字母的指数也相同的项 叫做同类项。几个常数项也是同类项。
3.把多项式中的同类项合并成一项,叫做合并同类项
合并同类项法则:合并同类项后,所得项的系数是合并前各同类 项的系数的和,且字母部分不变。
人教版初中七年级上数学知识点总结
七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一. 知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a . 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
人教版七年级上册数学知识点总结归纳
七年级数学上册知识点总结第一章有理数1.1 正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a 就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
(3)0表示一个确切的量。
如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。
1.2 有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
3,整数也能化成分数,也是有理数注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数0 正有理数负整数正分数有理数有理数0(0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数3.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
(完整版)人教版初一数学知识点总结
七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一. 知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a . 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
人教版七年级上册数学知识点总结
人教版七年级上册数学知识点总结
1.整数相关知识点
整数的概念:整数由正整数、负整数和0组成。
整数的比较:可以使用数轴和大小比较法来比较整数的大小。
整数的加减法:同号相加,异号相减,结果的符号由绝对值大的数决定。
整数的乘除法:同号相乘得正,异号相乘得负;整数除法的商仍然是整数。
2.有理数相关知识点
有理数的概念:有理数是可以表示为两个整数的比值的数。
有理数的表示形式:常见的有理数表示形式有分数和小数。
有理数的加减法:对于相同符号的有理数,直接加减绝对值并保持符号;对于异号有理数,先取绝对值后进行加减,结果的符号由绝对值大的数决定。
3.几何相关知识点
点、线、面的概念:点是没有长度、宽度和高度的;线是由无数个点按一定方向连成的;面是由无数个线组成的。
4.平面图形相关知识点
二维坐标系:由x轴和y轴组成,并规定了原点O和正方向。
点与坐标:每个点在二维坐标系中有唯一的坐标表示。
直线的表示:直线可以通过两个点的坐标表示,也可以通过斜率和截距表示。
5.数据统计与概率知识点
统计图表:包括条形图、折线图、饼图等,用于展示数据分布和比较。
概率:指某件事情发生的可能性,通常用分数或百分数表示。
以上是人教版七年级上册数学的主要知识点总结,希望对同学们的学习有所帮助。
人教版初一数学上册知识点归纳总结
七年级数学上册期末总复习第一章有理数1.有理数:1凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数,整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;不是有理数;2有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数3注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性; 4自然数 0和正整数; a >0 a 是正数; a <0 a 是负数;a ≥0 a 是正数或0 a 是非负数; a ≤ 0 a 是负数或0 a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度数轴的三要素的一条直线.3.相反数:1只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; 2注意: a-b+c 的相反数是-a-b+c= -a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;3相反数的和为0 a+b=0 a 、b 互为相反数.4相反数的商为-1.5相反数的绝对值相等w w w .x k b o m4.绝对值:1正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离; 2 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧≤-≥=)0()0(a a a a a ; 3 0a 1a a>⇔= ; 0a 1a a<⇔-=;4 |a|是重要的非负数,即|a|≥0,非负性;5.有理数比大小:1正数永远比0大,负数永远比0小;2正数大于一切负数;3两个负数比较,绝对值大的反而小;4数轴上的两个数,右边的数总比左边的数大;5-1,-2,+1,+4,,以上数据表示与标准质量的差,绝对值越小,越接近标准.6.倒数:乘积为1的两个数互为倒数;注意:0没有倒数; 若ab=1 a 、b 互为倒数; 若ab=-1 a 、b 互为负倒数.等于本身的数汇总:相反数等于本身的数:0倒数等于本身的数:1,-1绝对值等于本身的数:正数和0平方等于本身的数:0,1立方等于本身的数:0,1,-1.7. 有理数加法法则:1同号两数相加,取相同的符号,并把绝对值相加;2异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;3一个数与0相加,仍得这个数.8.有理数加法的运算律:1加法的交换律:a+b=b+a ;2加法的结合律:a+b+c=a+b+c.9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+-b.10 有理数乘法法则:1两数相乘,同号得正,异号得负,并把绝对值相乘;2任何数与零相乘都得零;3几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正.11 有理数乘法的运算律:1乘法的交换律:ab=ba;2乘法的结合律:abc=abc;3乘法的分配律:ab+c=ab+ac .简便运算12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能a.做除数,无意义即13.有理数乘方的法则:1正数的任何次幂都是正数;2负数的奇次幂是负数;负数的偶次幂是正数;14.乘方的定义:1求相同因式积的运算,叫做乘方;2乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;3a 2是重要的非负数,即a 2≥0;若a 2+|b|=0 a=0,b=0;4正数的任何次幂都是正数,0的任何次幂都是0;负数的奇次幂是负数,负数的偶次幂是正数.5据规律 ⇒⎪⎪⎭⎪⎪⎬⎫⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===100101101.01.0222底数的小数点移动一位,平方数的小数点移动二位. 15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数即1≤a<10,这种记数法叫科学记数法.10的指数=整数位数-1, 整数位数=10的指数+116.近似数的精确位:一个近似数,四舍五入到哪一位,就说这个近似数精确到那一位.17.混合运算法则:先乘方,后乘除,最后加减; 注意:不省过程,不跳步骤.18.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.常用于填空,选择.第二章 整式的加减1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式.2.单项式的系数与次数:单项式中的数字因数,称单项式的系数要包括前面的符号;单项式中所有字母指数的和,叫单项式的次数只与字母有关.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;5.⎩⎨⎧多项式单项式整式 整式是代数式,但是代数式不一定是整式.6.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项与系数无关,与字母的排列顺序无关.7.合并同类项法则:系数相加,字母与字母的指数不变.8.去添括号法则:去添括号时,若括号前边是“+”号,括号里的各项都不变号; 若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:一找:标记;二“+”务必用+号开始合并三合:合并10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大或从大到小排列起来,叫做按这个字母的升幂排列或降幂排列.第三章 一元一次方程1.等式:用“=”号连接而成的式子叫等式.2.等式的性质:等式性质1:等式两边都加上或减去同一个数或式子,结果仍相等; 等式性质2:等式两边都乘以或除以同一个不为零的数,结果仍相等.3.方程:含未知数的等式,叫方程方程是含有未知数的等式,但等式不一定是方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”.5.移项:把等式一边的某项变号后移到另一边叫移项.移项的依据是等式性质1移项变号.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式: ax+b=0x是未知数,a、b是已知数,且a≠0.8.一元一次方程解法的一般步骤:化简方程----------分数基本性质去分母----------同乘不漏乘最简公分母去括号----------注意符号变化移项----------变号留下靠前合并同类项--------合并后符号w w w .x k b o m系数化为1---------除前面10.列一元一次方程解应用题:1读题分析法:…………多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数⎧⎨⎩式,得到方程.2画图分析法: ………… 多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系可把未知数看做已知量,填入有关的代数式是获得方程的基础.11.列方程解应用题的常用公式:1行程问题: 路程=速度·时间 时间路程速度= 速度路程时间=; 2工程问题:工作量=工作效率·工作时间 工时工作量工效= 工效工作量工时=; 工程问题常用等量关系: 先做的+后做的=完成量w w w .x k b o m3顺水逆水问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度; 顺水逆水问题常用等量关系: 顺水路程=逆水路程4商品利润问题: 售价=定价10几折 , %100⨯-=成本成本售价利润率; 利润问题常用等量关系: 售价-进价=利润5配套问题:6分配问题第四章 图形初步认识一多姿多彩的图形立体图形:棱柱、棱锥、圆柱、圆锥、球等. 1、几何图形 平面图形:三角形、四边形、圆、多边形等.⎧⎨⎩主视图---------从正面看2、几何体的三视图 左视图---------从左边看 俯视图---------从上面看 1会判断简单物体棱柱、圆柱、圆锥、球的三视图.2能根据三视图描述基本几何体或实物原型.3、立体图形的平面展开图1同一个立体图形按不同的方式展开,得到的平现图形不一样的.2了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.4、点、线、面、体1几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.2点动成线,线动成面,面动成体.二直线、射线、线段经过两点有一条直线,并且只有一条直线.简单地:两点确定一条直线.3、画一条线段等于已知线段1度量法2用尺规作图法4、线段的长短比较方法1度量法2叠合法3圆规截取法5、线段的中点二等分点、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点.图形:A M B符号:若点M 是线段AB 的中点,则AM=BM=21AB,AB=2AM=2BM.6、线段的性质两点的所有连线中,线段最短.简单地:两点之间,线段最短.7、两点的距离连接两点的线段的长度叫做两点的距离距离是线段的长度,而不是线段本身.8、点与直线的位置关系1点在直线上或者直线经过点 2点在直线外或者直线不经过点. 三角1、角:有公共端点的两条射线所组成的图形叫做角.1=60=3600, 1=60; 1=601, 1=601=360011度量法2叠合法6、角的四则运算角的和、差、倍、分及其近似值7、画一个角等于已知角1借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.2借助量角器能画出给定度数的角.3用尺规作图法.8、角的平分线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线若OB 是AOC 的平分线,则AOB=BOC=21AOC, AOC=2AOB =2BOC.9、互余、互补1若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.2若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.3∠1的余角可以用90°-∠1表示;∠1的补角可以用180°-∠1表示.4余角的性质:同角等角的余角相等; 补角的性质:同角等角的补角相等.10、方向角 1正方向2南或北写在前面,东或西写在后面 北偏东、北偏西、南偏东、南偏西东 西 北 南 东北 西北 西南东南 北偏北偏南偏南偏。
人教版数学七年级上册知识点总结
人教版数学七年级上册知识点总结第一章有理数知识点总结正数: 大于0的数叫做正数。
1.概念负数: 在正数前面加上负号“—”的数叫做负数。
注: 0既不是正数也不是负数, 是正数和负数的分界线, 是整数, 一、正数和负数自然数, 有理数。
(不是带“—”号的数都是负数, 而是在正数前加“—”的数。
)2.意义: 在同一个问题上, 用正数和负数表示具有相反意义的量。
有理数: 整数和分数统称有理数。
1.概念整数: 正整数、0、负整数统称为整数。
分数: 正分数、负分数统称分数。
(有限小数与无限循环小数都是有理数。
)注: 正数和零统称为非负数, 负数和零统称为非正数, 正整数和零统称为非负整数, 负整数和零统称为非正整数。
2.分类: 两种二、有理数⑴按正、负性质分类: ⑵按整数、分数分类:正有理数正整数正整数有理数正分数整数0零有理数负整数负有理数负整数分数正分数负分数负分数3.数集内容了解1.概念: 规定了原点、正方向、单位长度的直线叫做数轴。
三要素: 原点、正方向、单位长度2.对应关系: 数轴上的点和有理数是一一对应的。
三、数轴比较大小: 在数轴上, 右边的数总比左边的数大。
3.应用求两点之间的距离: 两点在原点的同侧作减法, 在原点的两侧作加法。
(注意不带“+”“—”号)代数: 只有符号不同的两个数叫做相反数。
1.概念(0的相反数是0)几何: 在数轴上, 离原点的距离相等的两个点所表示的数叫做相反数。
2.性质: 若a与b互为相反数, 则a+b=0, 即a=-b;反之,若a+b=0, 则a与b互为相反数。
四、相反数两个符号: 符号相同是正数, 符号不同是负数。
3.多重符号的化简多个符号: 三个或三个以上的符号的化简, 看负号的个数, 当“—”号的个数是偶数个时, 结果取正号当“—”号的个数是奇数个时, 结果取负号1.概念: 乘积为1的两个数互为倒数。
(倒数是它本身的数是±1;0没有倒数)五、倒数2.性质若a与b互为倒数, 则a·b=1;反之, 若a·b=1, 则a与b互为倒数。
人教版初一数学上册知识点归纳总结(精华版)
第一章有理数1.有理数: (1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数. 2.数轴:数轴是规定了原点、正方向、单位长度(数轴的三要素)的一条直线. 3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是-(a-b+c)= -a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. (4)相反数的商为-1. (5)相反数的绝对值相等 4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ; (3)0a 1aa >⇔= ;0a 1aa <⇔-=;(4) |a|是重要的非负数,即|a|≥0,非负性; 5.有理数比大小:(1)正数永远比0大,负数永远比0小; (2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册
第一章有理数
1.1 正数和负数
①正数:大于0 的数。
②负数:在正数前加上符号“-”(负)的数,即小于0 的数。
③注意:0 既不是正数,也不是负数。
1.2 有理数
①有理数:整数和分数的统称。
整数:正整数、0、负整数;分数:正分数、负分数。
②数轴:用一条直线上的点表示数,这条直线叫做数轴。
三要素:原点、方向、单位长度。
③相反数:只有符号不同的两个数。
0 的相反数是0。
若a 与b 互为相反数,则a+b=0。
④绝对值:表示数轴上的点到原点的距离。
|a | ≥0。
两个负数比较大小,绝对值大的反而小。
去绝对值符号,若a≥0,则|a |=a;若a<0,则|a |=﹣a。
1.3 有理数的加减法
①加法法则(同号、异号、与0 相加)、运算律(交换律、结合律)。
②减法法则:减去一个数,等于加上这个数的相反数。
加减混合运算:统一成加法。
1.4 有理数的乘除法
①乘法法则(符号、与0 相乘)、运算律(交换律、结合律、分配律)。
②倒数:乘积是1 的两个数
③除法法则(符号、0):除以一个不等于0 的数,等于乘这个数的倒数。
(注:除数不为0)
加减乘除混合运算:如无括号,先乘除,后加减。
1.5 有理数的乘方
乘方:求n 个相同因数的积的运算。
它的结果叫做幂(底数,指数)。
正数的任何次幂都是正数,0 的任何正整数次幂都是0。
负数的奇次幂是负数,负数的偶次幂是正数。
科学记数法:a×10n,1≤a<10,n是正整数。
近似数:四舍五入,数位顺序表(小数点左边是个位,
右边是十分位)。
有理数混合运算顺序:1、先乘方,再乘除,最后加减;2、同级运算,从左到右进行;3、如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
第二章整式的加减
2.1 整式单项式:系数、次
数。
多项式:项、次数。
常数项:不含字母的项。
2.2 整式的加减同类项:所含字母相同,并且相同字母的指数也
相同的项。
合并同类项:所得项的系数是合并前各同类项的系数的和,字母连同它的指数不变。
去括号:若
括号外是+ ,可以直接去掉;若括号外是﹣,去括号后,各项符号要与原来的相反。
整式加减运算法则:若有括号,先去括号,再合并同类项。
第三章一元一次方程
3.1 从算式到方程
方程:先设字母表示未知数,然后根据问题中的相等关系,写出含有未知数的等式。
一元一次方程:只含有一个未知数,未知数的次数都是1,等号两边都是整式。
等式的性质(同加,同减,同乘,同除一个不为0 的数,结果仍相等。
)
3.2 解一元一次方程(一)——合并同类项与移项
流程:移项——合并同类项——系数化为1。
例题:5x-9 = 6x+3
移项:
5x-6x = 3+9
合并同类项:
-x = 12
系数化为1:
x = -12
3.3 解一元一次方程(二)——去括号与去分母流程:去分母——去
括号——移项——合并同类项——系数化为1
↓ 方程两边乘各分
母的最小公倍数
3.4 实际问题与一元一次方程
设未知数,列方程解方程检验实际问题→一元一次方程→一元一次方程的解(X=a)→实际问题的答案关键:正确分析问题中的相等关系。
第四章几何图形初步
4.1 几何图形
立体图形:各部分不都在同一平面内。
(展开图)平面图形:各部分都在同一平面内。
点:线和线相交的地方。
线:面和面相交的地方。
面:分为平面和曲面。
体:几何体的简称。
4.2 直线、射线、线段
基本事实:经过两点有一条直线,并且只有一条直线。
﹤=﹥两点确定一条直线。
(相交,交点)尺规作图:用无刻度的直尺和圆规作图。
(中点)
基本事实:两点的所有连线中,线段最短。
﹤=﹥两点之间,线段最短。
(两点的距离)
4.3 角有公共端点的两条射线组成的图形叫做角。
(一种基本的几何图形)
度量单位:度、分、秒,60 进制。
(量角器)
角的比较:1、运用量角器;2、把它们的一条边叠合在一起,通过观察另外一条边来比较。
角的平分线、余角、补角(性质:同角的补角相等,余角也相等。
)。
4.4 课题学习设计制作长方体形状的包装纸盒观察、讨论——设计、制作——
交流、比较——评价、小结——巩固、提高。