等差数列填空题训练及答案word版本
等差数列练习题(打印版)
等差数列练习题(打印版)# 等差数列练习题## 一、选择题1. 已知等差数列的首项为5,公差为3,求第10项的值。
A. 32B. 35C. 38D. 412. 一个等差数列的前5项和为50,首项为2,求公差。
A. 10B. 8C. 6D. 43. 如果等差数列的第3项和第5项的和为26,且首项为a,公差为d,求第4项的值。
A. 13B. 14C. 15D. 16## 二、填空题1. 等差数列\[ a_n = a_1 + (n - 1)d \]中,如果\( a_1 = 10 \),\( d = 2 \),那么第6项\( a_6 \)的值为 \_\_\_\_\_\_。
2. 已知等差数列的前n项和公式为\[ S_n = \frac{n}{2}(2a_1 + (n - 1)d) \],如果\( S_6 = 90 \),\( a_1 = 5 \),求公差\( d \)。
3. 等差数列中,如果第1项和第4项的和为20,第2项和第3项的和为22,求首项\( a_1 \)和公差\( d \)。
## 三、解答题1. 一个等差数列的前10项和为220,首项为12,求公差和第10项的值。
2. 已知等差数列的前n项和公式,如果\( S_{15} = 1170 \),\( a_1 = 8 \),求\( S_{20} \)。
3. 一个等差数列的第1项为3,公差为2,求前20项的和。
## 四、证明题1. 证明:等差数列中,连续三项的和构成的数列也是等差数列。
2. 证明:等差数列的前n项和公式\[ S_n = \frac{n(a_1 + a_n)}{2} \]。
3. 证明:等差数列中,任意两项的等差中项等于它们的算术平均数。
注意:请同学们认真审题,仔细计算,确保答案的准确性。
练习题的目的是帮助大家更好地理解和掌握等差数列的相关知识,希望同学们能够通过练习提高解题能力。
(完整版)经典等差数列练习题(含答案),推荐文档
A.13 项 B.14 项 C.15 项 D.16 项
3.已知等差数列的通项公式为an 3n a, a为常数,则公差 d=( )
4.首项为24 的等差数列从第10 项起开始为正数,则公差d 的取值范围是( )
A. d 8 3
B. d 3
C. 8 d 3 3
D. 8 d 3 3
A.第 22 项 B.第 21 项 C.第 20 项 D.第 19 项 6. 已知数列a,-15,b,c,45 是等差数列,则 a+b+c 的值是( )
4.在等差数列{an}中,若 a4 a6 a8 a10 a12 120 ,则 2a10 a12
.
5.在首项为 31,公差为-4 的等差数列中,与零最接近的项是
6. 如果等差数列 an的第 5 项为 5 ,第 10 项为 5 ,则此数列的第 1个负数项
是第项.
7.已知{an }是等差数列,且 a4 a7 a10 57, a4 a5 a6 a14 77, 若ak 13, 则 k=
2 4 8 16
( 6) 1 1 1 ,,
1 ,
,
1
…….
3 8 15 24 35
2. 成等差数列的四个数的和为 26 ,第二数与第三数之积为 40 ,求这四个数。
3. 已知等差数列{ an }中, a3 a7 16, a4 a6 0, 求{ an }的 通项公式
4. 数列通项公式为 an=n2-5n+4,问(1)数列中有多少项是负数?(2)n 为何值时,an 有最小值?并求出最小值.
5.
在等差数列a
中,公差 d
n
1 ,前100 项的和 S 2
100
45Βιβλιοθήκη ,则 a1a3a
等差数列测试题含答案
等差数列测试题学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.等差数列1+x ,2x +2,5x +1,…的第四项等于( ) A .10B .6C .8D .122.在等差数列{}n a 中,若2810a a +=.,则()24652a a a +-=( ) A .100B .90C .95D .203.已知数列{}n a 是等差数列,数列{}n b 分别满足下列各式,其中数列{}n b 必为等差数列的是( ) A .||n n b a =B .2n n b a =C .1n nb a =D .2nn a b =-4.在等差数列{}n a 中,11a =,513a =,则数列{}n a 的前5项和为( ) A .13B .16C .32D .355.在等差数列{}n a 中,若39717,9a a a +==,则5a =( ) A .6B .7C .8D .96.在等差数列{}n a 中,124a a +=,7828a a +=,则数列的通项公式n a 为( ) A .2nB .21nC .21n -D .22n +7.已知数列{}n a 是等差数列,71320a a +=,则91011a a a ++= ( ) A .36B .30C .24D .18.已知数列{}n a 是首项为2,公差为4的等差数列,若2022n a =,则n = ( ) A .504B .505C .506D .5079.已知数列{}n a 满足13n n a a +=-,127a =,*n ∈N ,则5a 的值为( ) A .12B .15C .39D .4210.已知等差数列{}n a 满足3456790a a a a a ++++=,则28a a +等于( ) A .18B .30C .36D .4511.在等差数列{}n a 中,143,24a a ==,则7a = A .32B .45C .64D .9612.设数列{}n a 是公差为d 的等差数列,若244,6a a ==,则d = ( )A .4B .3C .2D .113.在等差数列{}n a 中,若3712a a +=,则5a =( ) A .4B .6C .8D .1014.在等差数列{}n a 中,若3691215120a a a a a ++++=,则12183a a -的值为( ) A .24B .36C .48D .6015.在等差数列{}n a 中,51340a a +=,则8910a a a ++=( ) A .72B .60C .48D .3616.已知数列{}n a 是等差数列,且66a =,108a =,则公差d =( ) A .12B .23C .1D .2二、填空题17.在数列{}n a 中,12a =,13n n a a +-=则数列{}n a 的通项公式为________________. 18.已知数列{}n a 中,12a =,25a =,212n n n a a a +++=,则100a =________ 19.在等差数列{}n a 中,47a =,2818a a +=,则公差d =__________.20.己知等差数列{}n a 满足:10a =,54a =,则公差d =______;24a a +=_______. 21.已知数列{}n a 对任意的,m n N +∈有mn m n a a a ++=,若12a =,则2019a =_______.参考答案1.C 【解析】 【分析】根据等差中项的性质求出x ,进而求出公差,得出答案. 【详解】解:由题意可得,(1+x )+(5x +1)=2(2x +2) 解得x =1∴这个数列为2,4,6,8,… 故选C. 【点睛】本题考查了等差数列及等差中项的性质. 2.B 【解析】 【分析】利用等差数列的性质,即下标和相等对应项的和相等,得到28465210a a a a a +=+==. 【详解】数列{}n a 为等差数列,28465210a a a a a +=+==,∴()24652a a a +-=2101090-=.【点睛】考查等差数列的性质、等差中项,考查基本量法求数列问题. 3.D 【解析】 【分析】对每一个选项逐一分析判断得解. 【详解】设数列{}n a 的公差为d ,选项A,B,C,都不满足1n n b b --=同一常数,所以三个选项都是错误的;对于选项D ,1112222n n n n n n a a a a d b b -----=-+==-, 所以数列{}n b 必为等差数列. 故选:D 【点睛】本题主要考查等差数列的判定和性质,意在考查学生对这些知识的理解掌握水平,属于基础题. 4.D 【解析】 【分析】直接利用等差数列的前n 项和公式求解. 【详解】数列{}n a 的前5项和为1555)(113)3522a a +=+=(. 故选:D 【点睛】本题主要考查等差数列的前n 项和的计算,意在考查学生对该知识的理解掌握水平,属于基础题. 5.C 【解析】 【分析】通过等差数列的性质可得答案. 【详解】因为3917a a +=,79a =,所以51798a =-=. 【点睛】本题主要考查等差数列的性质,难度不大. 6.C 【解析】 【分析】直接利用等差数列公式解方程组得到答案.【详解】121424a a a d +=⇒+= 7812821328a a a d +=⇒+= 1211,2n n a d a ==⇒-=故答案选C 【点睛】本题考查了等差数列的通项公式,属于基础题型. 7.B 【解析】 【分析】通过等差中项的性质即可得到答案. 【详解】由于71310220a a a +==,故9101110330a a a a ++==,故选B. 【点睛】本题主要考查等差数列的性质,难度较小. 8.C 【解析】 【分析】本题首先可根据首项为2以及公差为4求出数列{}n a 的通项公式,然后根据2022n a =以及数列{}n a 的通项公式即可求出答案。
等差数列前n项和及其应用(可编辑修改word版)
等差数列前n 项和及其应用一.选择题(共8 小题)1.已知数列{a n}的通项公式a n=26﹣2n,要使此数列的前n 项和S n 最大,则n 的值为()A.12 B.13 C.12 或13 D.142.等差数列{a n}的前n 项和为S n,已知a1=13,S3=S11,当S n 最大时,n 的值是()A.5 B.6 C.7 D.83.若{a n}是等差数列,首项公差d<0,a1>0,且a2013(a2012+a2013)<0,则使数列{a n} 的前n 项和S n>0 成立的最大自然数n 是()A.4027 B.4026 C.4025 D.40244.已知数列{a n}为等差数列,其前n 项和为S n,2a7﹣a8=5,则S11 为()A.110 B.55 C.50 D.不能确定5.在等差数列{a n}的前n 项和为S n,若a2+a4+a15 的值为常数,则下列为常数的是()A.S7 B.S8 C.S13 D.S156.设等差数列{a n}的前n 项和为S n,若S23>0,S24<0,则S n 取最大值时n 的值为()A.11 B.12 C.13 D.237.在等差数列{a n}中,,若它的前n 项和S n 有最大值,则当S n>0 时,n 的最大值为()A.11 B.12 C.13 D.148.等差数列{a n}中,a10<0,a11>0 且a11>|a10|,S n 为其前n 项和,则()A.S10<0,S11>0 B.S19<0,S20>0C.S5<0,S6>0 D.S20<0,S21>0二.填空题(共4 小题)9.已知等差数列{a n},{b n}前n 项和分别为S n 和T n,若=,则=.10.设等差数列{a n}的前n 项和为S n,若3a5﹣a1=10,则S13=.11.数列{a n}的前n 项和为S n,且S n=n2﹣n(n∈N*),则通项公式a n=.12.已知两个等差数列{a n}、{b n}的前n 项和分别为S n、T n.且,则=.三.解答题(共4 小题)13.等差数列{a n}的前n 项和为S n,且a3+a5=a4+7,S10=100.(1)求{a n}的通项公式;(2)求满足不等式S n<3a n﹣2 的n 的值.14.记S n 为等差数列{a n}的前n 项和,已知a1=10,S3=24.(1)求{a n}的通项公式;(2)求S n,并求S n 的最大值.15.在等差数列{a n}中,a10=18,前5 项的和S5=﹣15.(1)求数列{a n}的通项公式;(2)求数列{a n}的前n 项和的最小值,并指出何时取最小.16.已知等差数列{a n}中,a1=1,a3=﹣3.(1)求数列{a n}的通项公式;(2)若数列{a n}的前k 项和S k=﹣35,求k 的值.等差数列前n 项和及其应用参考答案与试题解析一.选择题(共8 小题)1.已知数列{a n}的通项公式a n=26﹣2n,要使此数列的前n 项和S n 最大,则n 的值为()A.12 B.13 C.12 或13 D.14【分析】数列{a n}是首项为24,公差为2 的等差数列,从而S n=24n+=﹣n2+25n=﹣(n﹣)2+.由此能求出要使此数列的前n 项和S n 最大,n 的值.【解答】解:∵数列{a n}的通项公式a n=26﹣2n,∴a1=26﹣2=24,d=a n﹣a n﹣1=(26﹣2n)﹣[26﹣2(n﹣1)]=﹣2,∴数列{a n}是首项为24,公差为2 的等差数列,∴S n=24n+=﹣n2+25n=﹣(n﹣)2+.∴要使此数列的前n 项和S n 最大,则n 的值为12 或13.故选:C.【点评】本题考查等差数列的前n 项和最大时项数n 的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.2.等差数列{a n}的前n 项和为S n,已知a1=13,S3=S11,当S n 最大时,n 的值是()A.5 B.6 C.7 D.8【分析】由等差数列的性质可得a7+a8=0,可得该数列的前7 项均为正数,从第8 项开始全为负数,故数列的前7 项和最大,进而可得答案.【解答】解:∵S3=S11,∴S11﹣S3=a4+a5+a6+…+a11=0,故可得(a4+a11)+(a5+a10)+…+(a7+a8)=4(a7+a8)=0,∴a7+a8=0,结合a1=13 可知,该数列的前7 项均为正数,从第8 项开始全为负数,故数列的前7 项和最大,故选:C.【点评】本题考查等差数列的前n 项和,涉及等差数列的性质,从数列自身的特点入手是解决问题的关键,属中档题.3.若{a n}是等差数列,首项公差d<0,a1>0,且a2013(a2012+a2013)<0,则使数列{a n}的前n 项和S n>0 成立的最大自然数n 是()A.4027 B.4026 C.4025 D.4024【分析】由题意可知数列是递减数列,由a2013(a2012+a2013)<0,知a2012>0,a2013<0,由此推得答案.【解答】解:由题意可得数列{a n}单调递减,由a2013(a2012+a2013)<0 可得:a2012>0,a2013<0,|a2012|>|a2013|.∴a2012+a2013>0.则S4025=4025a2013<0,故使数列{a n}的前n 项和S n>0 成立的最大自然数n 是4024.故选:D.【点评】本题考查了等差数列的前n 项和,考查了对递减数列的项的符号的判断,关键在于分清从那一项开始为负值,且判出正负相邻两项和的符号,是中档题.4.已知数列{a n}为等差数列,其前n 项和为S n,2a7﹣a8=5,则S11 为()A.110 B.55 C.50 D.不能确定【分析】利用等差数列的通项公式与性质及其求和公式即可得出.【解答】解:2a7﹣a8=2(a1+6d)﹣(a1+7d)=a1+5d=a6=5,∴.故选:B.【点评】本题考查了等差数列的通项公式与性质及其求和公式,考查了推理能力与计算能力,属于中档题.5.在等差数列{a n}的前n 项和为S n,若a2+a4+a15 的值为常数,则下列为常数的是()A.S7 B.S8 C.S13 D.S15【分析】利用等差数列的通项公式及其性质即可得出.【解答】解:设等差数列{a n}的公差为d,∵a2+a4+a15=3a1+18d=3a7 为常数,∴S13==13a7 为常数.故选:C.【点评】本题考查了等差数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.6.设等差数列{a n}的前n 项和为S n,若S23>0,S24<0,则S n 取最大值时n 的值为()A.11 B.12 C.13 D.23【分析】等差数列{a n}的前n 项和为S n,S23>0,S24<0,从而a12>0,a13<0,由此能求出S n 取最大值时n 的值.【解答】解:等差数列{a n}的前n 项和为S n,S23>0,S24<0,,a12>0,a13<0,∴S n 取最大值时n 的值为:12.故选:B.【点评】本题考查等差数列的前n 项和取最大值时n 的值的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想.7.在等差数列{a n}中,,若它的前n 项和S n 有最大值,则当S n>0 时,n 的最大值为()A.11 B.12 C.13 D.14【分析】公差d<0,首项a1>0,{a n}为递减数列,由等差数列的性质知:2a6=a1+a11>0,a6+a7=a1+a12<0,由此能求出结果.【解答】解:∵数列{a n}是等差数列,它的前n 项和S n 有最大值,∴公差d<0,首项a1>0,{a n}为递减数列,∵<0,∴a6•a7<0,a6+a7<0,由等差数列的性质知:2a6=a1+a11>0,a6+a7=a1+a12<0,∵S n=(a1+a n),∴S n>0 时,n 的最大值为11.故选:A.【点评】本题考查等差数列中满足前n 项和为正的n 的最大值的求法,考查等差数列的性质等基础知识,考查推运算求解能力,考查函数与方程思想,是基础题.8.等差数列{a n}中,a10<0,a11>0 且a11>|a10|,S n 为其前n 项和,则()A.S10<0,S11>0 B.S19<0,S20>0C.S5<0,S6>0 D.S20<0,S21>0【分析】由等差数列的性质可得:S20=>0,S19=19•a10<0.【解答】解:∵等差数列{a n}中,a10<0,a11>0 且a11>|a10|,S n 为其前n 项和,∴由等差数列的性质可得:S20=>0,S19=19•a10<0,故选:B.【点评】本题考查命题真假的判断,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.二.填空题(共4 小题)9.已知等差数列{a n},{b n}前n 项和分别为S n 和T n,若=,则=.【分析】由等差数列的求和公式和性质可得:=,问题得以解决.【解答】解:=======,故答案为:【点评】本题考查等差数列的求和公式和等差数列的性质,属基础题.10.设等差数列{a n}的前n 项和为S n,若3a5﹣a1=10,则S13=65 .【分析】利用等差数列通项公式求出2a7=10,由此能求出S13 的值.【解答】解:∵等差数列{a n}的前n 项和为S n,3a5﹣a1=10,∴3(a1+4d)﹣a1=2a1+12d=2a7=10,∴S13===.故答案为:65.【点评】本题考查等差数列的前13 项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.1.数列{a n}的前n 项和为S n,且S n=n2﹣n(n∈N*),则通项公式a n= 2n﹣2 .【分析】由已知条件利用能求出结果.【解答】解:∵S n=n2﹣n(n∈N*),∴a1=S1=1﹣1=0,n≥2 时,=(n2﹣n)﹣[(n﹣1)2﹣(n﹣1)]=2n﹣2.当n=1 时,2n﹣2=0=a1,∴a n=2n﹣2.故答案为:2n﹣2.【点评】本题考查数列的通项公式的求法,是基础题,解题时要认真审题,注意公式的灵活运用.12.已知两个等差数列{a n}、{b n}的前n 项和分别为S n、T n.且,则=.【分析】题目给出了两个等差数列的前n 项和的比值,求解两个数列的第11 项的比,可以借助等差数列的前n 项和在n 为奇数时的公式进行转化.【解答】解:因为数列{a n}、{b n}都是等差数列,根据等差中项的概念知数列中的第11 项为数列前21 项的等差中项,所以S21=21a11,T21=21b11,所以.故答案为.【点评】本题主要考查了等差数列的性质和数列的求和.解题的关键是利用了等差数列的前n 项和在n 为奇数时的公式,若n 为奇数,则.三.解答题(共4 小题)13.等差数列{a n}的前n 项和为S n,且a3+a5=a4+7,S10=100.(1)求{a n}的通项公式;(2)求满足不等式S n<3a n﹣2 的n 的值.【分析】(1)由a3+a5=a4+7,S10=100,列出方程组,求出首项和公差,由此能求出{a n} 的通项公式.(2)由a1=1,a n=2n﹣1,求出S n=n2,从而得到n2﹣6n+5<0,由此能求出n 的值.【解答】(本题10 分)解:(1)设数列{a n}的公差为d,由a3+a5=a4+7,得2a1+6d=a1+3d+7,①.…(1 分)由S10=100,得10a1+45d=100,②…(2 分)解得a1=1,d=2,…(4 分)所以a n=a1+(n﹣1)d=2n﹣1.…(5 分)(2)因为a1=1,a n=2n﹣1,所以=n2,…(7 分)由不等式S n<3a n﹣2,得n2<3(2n﹣1)﹣2,所以,n2﹣6n+5<0,解得1<n<5,…(9 分)因为n∈N*,所以n 的值为2,3,4.…(10 分)【点评】本题考查等差数列的通项公式、项数n 的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.14.记S n 为等差数列{a n}的前n 项和,已知a1=10,S3=24.(1)求{a n}的通项公式;(2)求S n,并求S n 的最大值.【分析】(1)设等差数列{a n}的公差为d,由a1=10,S3=24.利用求和公式解得d,即可得出a n.(2)利用求和公式、二次函数的单调性即可得出.【解答】解:(1)设等差数列{a n}的公差为d,∵a1=10,S3=24.∴3×10+d=24,解得d=﹣2.∴a n=10﹣2(n﹣1)=12﹣2n.(2)S n==﹣n2+11n=﹣+.∴当n=5 或 6 时,S n 最大,S n=﹣52+55=30.【点评】本题考查了等差数列的通项公式与求和公式、二次函数的单调性,考查了推理能力与计算能力,属于中档题.15.在等差数列{a n}中,a10=18,前5 项的和S5=﹣15.(1)求数列{a n}的通项公式;(2)求数列{a n}的前n 项和的最小值,并指出何时取最小.【分析】(1)由等差数列{a n}中,a10=18,前5 项的和S5=﹣15,,由此能求出数列{a n}的通项公式.(2)由a1=﹣9,d=3,a n=3n﹣12,知=﹣,由此能求出当n=3 或4 时,前n 项的和S n 取得最小值S3=S4=﹣18.【解答】解:(1)∵等差数列{a n}中,a10=18,前5 项的和S5=﹣15,∴,解得a1=﹣9,d=3,∴a n=3n﹣12.(2)∵a1=﹣9,d=3,a n=3n﹣12,∴==﹣,∴当n=3 或 4 时,前n 项的和S n 取得最小值S3=S4=﹣18.【点评】本题考查等差数列的通项公式和前n 项和公式的灵活运用,是基础题.解题时要认真审题,仔细解答,注意配方法的合理运用.16.已知等差数列{a n}中,a1=1,a3=﹣3.(1)求数列{a n}的通项公式;(2)若数列{a n}的前k 项和S k=﹣35,求k 的值.【分析】(1)根据等差数列的通项公式,先求出d,即可得到答案,(2)根据等差数列的前n 项和公式即可求出.【解答】解:(1)设等差数列{a n}的公差为d,由a1=1,a3=﹣3,得a3=a1+2d,解得d=﹣2,∴a n=a1+(n﹣1)d=1﹣2(n﹣1)=3﹣2n,(2)S k==﹣35,即k2﹣2k﹣35=0,解得k=7 或k=﹣5(舍去)故k=7.【点评】本题考查了等差数列的通项公式和前n 项和公式,属于基础题.。
等差数列性质基础练习题
等差数列性质基础练习题一、填空题1. 等差数列的通项公式为:an = a1 + (n 1)d,其中a1是首项,d是公差,n是项数。
若等差数列的首项为3,公差为2,则第五项的值为______。
2. 在等差数列{an}中,已知a3 = 7,a7 = 19,则公差d为______。
3. 已知等差数列的前三项分别为2,5,8,则第10项的值为______。
4. 等差数列的前n项和公式为:Sn = n(a1 + an)/2,若等差数列的前5项和为35,公差为3,则首项a1的值为______。
5. 在等差数列{an}中,若a4 = 16,a10 = 44,则第8项的值为______。
二、选择题A. an = a1 + (n 1)dB. an = a1 (n 1)dC. an = a1 / (n 1)dD. an = a1 (n 1)dA. 公差为4B. 公差为8C. 公差为12D. 公差为163. 在等差数列{an}中,若a1 = 3,d = 2,则第6项的值为()。
A. 9B. 11C. 13D. 15A. 首项为3B. 首项为5C. 首项为7D. 首项为95. 在等差数列{an}中,若a3 = 6,a7 = 18,则第5项的值为()。
A. 10B. 12C. 14D. 16三、解答题1. 已知等差数列的前4项分别为2,5,8,11,求第10项的值。
2. 在等差数列{an}中,已知a5 = 15,a10 = 35,求首项a1和公差d。
3. 已知等差数列的前7项和为49,公差为3,求第4项的值。
4. 在等差数列{an}中,若a1 = 4,d = 5,求前8项的和。
5. 已知等差数列的前5项和为55,公差为7,求第6项的值。
四、判断题1. 等差数列的任意两项之间的差都是相同的。
()2. 等差数列的通项公式中,n表示项数,而不是项的位置。
()3. 在等差数列中,如果首项为负数,公差为正数,那么数列中的项会逐渐减小。
等差数列与等比数列的类比练习题(带答案)(可编辑修改word版)
(b 1b n)nn + 1 ,则有2n3等差数列与等比数列的类比一、选择题(本大题共 1 小题,共 5.0 分){a } S S =n (a 1 + a n ) 1. 记等差数列 n 的前 n 项和为 n ,利用倒序求和的方法得 n 2 ;类似地,记等比数列{b n }的前 n 项积为T n ,且b n> 0(n ∈ N *),类比等差数列求和的方法,可将T n 表示成关于首项b 1,末项b n 与项数 n 的关系式 为 ( )1. Anb 1b nA. B. 2 C. nb 1b nnb 1b nD. 2 二、填空题(本大题共 9 小题,共 45.0 分)2. 在公差为 d 的等差数列{a n }中有:a n = a m + (n - m )d (m 、n ∈ N + ),类比到公比为 q 的等比数列{b n }中有: .2.b n = b m ⋅ q n - m (m ,n ∈ N * ){a} b = a 1 + 2a 2 + 3a 3 + … + n a n{b }3. 数列 n 是正项等差数列,若 n 1 + 2 + 3 + … + n ,则数列 n 也 为等差数列,类比上述结论,写出正项等比数列{c n },若d n = 则数列{d n }也为等比数列.1(c c 2c 3…c n )1 + 2 + 3 + … + n 3. 1 2 3 n4. 等差数列{a n }中,有a 1 + a 2 + … + a 2n + 1 = (2n + 1)a n + 1,类比以上性质,在等比数列{b n }中,有等式 成立.4.b 1b 2…b 2n + 1 = b 2n + 1T5. 若等比数列{a n }的前 n 项之积为T n T 3n = ( T n ) ;类比可得到以下正确结论:若等差数列的前 n 项之和为S n ,则有 .5. S 3n = 3(S 2n - S n ){a}a 11 + a 12 + … + a 20 = a 1 + a 2 + …a 306. 已知在等差数列 n 中, 10 30 ,则在等比数列{b n }中,类似的结论为10b 11 ⋅ b 12 ⋅ … ⋅ b 20 = 30b 1 ⋅ b 2 ⋅ b 3 ⋅ … ⋅ b 30q S nn7. 在等比数列{a n}中,若a9 = 1,则有a1⋅a2…a n = a1⋅a2…a17- n(n < 17,且n∈N* )成立,类比上述性质,在等差数列{b n}中,若b7 = 0,则有.b1 + b2 + … + b n= b1 + b2 + … + b13- n(n < 13,且n∈ N* )8.设S n是公差为d 的等差数列{a n}的前n 项和,则数列S6 - S3,S9 - S6,S12 - S9是等差数列,且其公差为9d.通过类比推理,可以得到结论:设T n是公比为2 的等比数列{b n}的前n 项积,则数列T6T9T12T3,T6,T9 是等比数列,且其公比的值是.5129.若等差数列{a n}的公差为d,前nS n{ }项的和为,则数列为等差数列,d. {b}公差为2 类似地,若各项均为正数的等比数列n的公比为q,前n 项的积为T n,则数列{nT n}为等比数列,公比为.10. 设等差数列{a n}的前n 项和为S n m,n(m < n),使得S m= S n,则S m + n= 0.类比上述结论,设正项等比数列{b n}的前n 项积为T n,若存在正整数m,n(m < n),使得T m= T n,则T m + n=.10. 1答案和解析【解析】{a} S= n(a1 + a n)1. 解:在等差数列n的前n 项和为n 2 ,因为等差数列中的求和类比等比数列中的乘积,所以各项均为正的等比数列{bn}的前n 项积T n= (b1b n)n,故选:A由等差和等比数列的通项和求和公式及类比推理思想可得结果,在运用类比推理时,通常等差数列中的求和类比等比数列中的乘积.本题考查类比推理、等差和等比数列的类比,搞清等差和等比数列的联系和区别是解决本题的关键.n + 1n + 12. 解:在等差数列{a n }中,我们有a n = a m + (n ‒ m )d ,类比等差数列,等比数列中也是如此,b n = b m ⋅ q n ‒ m(m ,n ∈ N ∗ ).故答案为b n = b m ⋅ q n ‒ m(m ,n ∈ N ∗ ).因为等差数列{a n }中,a n = a m + (n ‒ m )d (m ,n ∈ N + ),即等差数列中任意给出第 m项a m ,它的通项可以由该项与公差来表示,推测等比数列中也是如此,给出第 m 项 b m 和公比,求出首项,再把首项代入等比数列的通项公式中,即可得到结论.本题考查了类比推理,类比推理就是根据两个不同的对象在某些方面的相似之处,从而推出这两个对象在其他方面的也具有的相似之处,是基础题.3. 解: ∵ 根据等差数列构造的新的等差数列是由原来的等差数列的和下标一致的数字 倍的和,除以下标的和,∴ 根据新的等比数列构造新的等比数列, c c 2c 3…c n乘积变化为乘方 1 2 3 n ,1(c c 2c 3…c n ) 1 + 2 + 3 + … + n原来的除法变为开方 1 2 3 n1(c c 2c 3…c n ) 1 + 2 + 3 + … + n故答案为: 1 2 3 n根据等差数列构造的新的等差数列是由原来的等差数列的和下标一致的数字倍的和, 除以下标的和,等比数列要类比出一个结论,只有乘积变化为乘方,除法变为开方, 写出结论.本题考查类比推理,两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象的也具有这类特征,是一个有特殊到特殊的推理.4. 解:把等差数列的通项相加改成等比数列的通项相乘,把结论的相乘的系数改成等比数列的指数,∴ 在等比数列{b n }中有结论b 1b 2…b 2n + 1 = b 2n + 1(n ∈ N + ).故答案为:b 1b 2…b 2n + 1 = b 2n + 1(n ∈ N + ). 利用“类比推理”,把等差数列的通项相加改成等比数列的通项相乘,把结论的相乘的系数改成等比数列的指数,即可得出.本题考查了等比数列的通项公式、类比推理等基础知识与基本技能方法,属于中档题.5. 解:在等差数列中S 3n= S n + (S 2n ‒ S n ) + (S 3n ‒ S 2n ) = (a 1 + a 2 + … + a n ) ++ (S 2n ‒ S n ) + (a 2n + 1 + a 2n + … + a 3n )因为a 1 + a 3n = a 2 + a 3n ‒ 1 = … = a n + a 2n + 1 = a n + 1 + a 2n 所以S n + (S 3n ‒ S 2n ) = 2(S 2n ‒ S n ),所以S 3n = 3(S 2n ‒ S n ). 故答案为:S 3n = 3(S 2n ‒ S n ).本小题主要考查类比推理,由等差和等比数列的通项和求和公式及类比推理思想可得结果.本题考查类比推理、等差和等比数列的类比,搞清等差和等比数列的联系和区别是解决本题的关键.6. 解:等差数列与等比数列的对应关系有:等差数列中的加法对应等比数列中的乘法,等差数列中除法对应等比数列中的开方,故此我们可以类比得到结论:10b 11 ⋅ b 12 ⋅ … ⋅ b 20 = 30b 1 ⋅ b 2 ⋅ b 3 ⋅ … ⋅ b 30. 故答案为:10b 11 ⋅ b 12 ⋅ … ⋅ b 20 = 30b 1 ⋅ b 2 ⋅ b 3 ⋅ … ⋅ b 30.在等差数列中,等差数列的性质m + n = p + q ,则a m + a n = a p + a q ,那么对应的在等比数列中对应的性质是若m + n = p + q ,则b m b n = b p b q .本题考查类比推理,掌握类比推理的规则及类比对象的特征是解本题的关键,本题中由等差结论类比等比结论,其运算关系由加类比乘,解题的难点是找出两个对象特征的对应,作出合乎情理的类比.7. 解:在等比数列中,若a 9 = 1,则a 18 ‒ n ⋅⋅⋅ a 9 ⋅⋅⋅ a n = 1即a 1 ⋅ a 2…a n = a 1 ⋅ a 2…a 17 ‒ n (n < 17,且n ∈ N ∗)成立,利用的是等比性质,若 m + n = 18,则a 18 ‒ n ⋅ a n = a 9 ⋅ a 9 = 1,∴ 在等差数列{b n }中,若b 7 = 0,利用等差数列的性质可知,若m + n = 14,b 14 ‒ n + b n = b 7 + b 7 = 0,∴ b 1 + b 2 + … + b n = b 1 + b 2 + … + b 13 ‒ n (n < 13,且n ∈ N ∗ )故答案为:b 1 + b 2 + … + b n = b 1 + b 2 + … + b 13 ‒ n (n < 13,且n ∈ N ∗).据等差数列与等比数列通项的性质,结合类比的规则,和类比积,加类比乘,由类比规律得出结论即可.本题的考点是类比推理,考查类比推理,解题的关键是掌握好类比推理的定义及等差等比数列之间的共性,由此得出类比的结论即可.T 6 T 9 T 12 T 3,T , T 929 = 5128. 解:由题意,类比可得数列6是等比数列,且其公比的值是 ,故答案为 512.由等差数列的性质可类比等比数列的性质,因此可根据等比数列的定义求出公比即可.本题主要考查等比数列的性质、类比推理,属于基础题目.{a } SS n= a + (n ‒ 1) ⋅ d 9. 解:因为在等差数列 n 中前 n 项的和为 n 的通项,且写成了n1 2. 所以在等比数列{b n }中应研究前 n 项的积为T n 的开 n 方的形式.类比可得nT n = b 1( q )n ‒ 1.其公比为 故答案为 q .S nS nd{ n } n= a 1 + (n ‒ 1) ⋅ 2仔细分析数列 为等差数列,且通项为 的特点,类比可写出对应数 列{nT n }为等比数列的公比.本小题主要考查等差数列、等比数列以及类比推理的思想等基础知识.在运用类比推理时,通常等差数列中的求和类比等比数列中的乘积.10. 解:在由等差数列的运算性质类比推理到等比数列的运算性质时:加减运算类比推理为乘除运算,累加类比为累乘,故由“已知数列{a n }为等差数列,它的前 n 项和为S n ,若存在正整数m ,n (m ≠ n ),使得S m = S n ,则S m + n = 0”.类比推理可得:“已知正项数列{b n }为等比数列,它的前n .项积为T n ,若存在正整数 m ,n .(m ≠ n ),使得T m = T n ,则T m + n = 1.故答案为 1.在类比推理中,等差数列到等比数列的类比推理方法一般为:加减运算类比推理为乘除运算,累加类比为累乘,由“已知数列{a n }为等差数列,它的前 n 项和为S n ,若存q在正整数m ,n (m ≠ n ),使得S m = S n ,则S m + n = 0”.类比推理可得:“已知正项数列 {b n }为等比数列,它的前n .项积为T n ,若存在正整数m ,n .(m ≠ n ),使得T m = T n ,则 T m + n = 1.类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).。
等差数列专项训练(附答案) 2份
等差数列专项训练姓名 学号 班级 一、填空题(本大题共14小题,每小题5分,共70分)1、已知等差数列{}n a ,22a =-,64a =,则4a =2、}{n a 是首项1a =1,公差为d =3的等差数列,如果n a =2005,则序号n 等于3、设n S 是等差数列{}n a 的前n 项和,若735S =,则4a =4、已知等差数列{}n a 的公差为2,若34a =,则第12项是5、如果等差数列{}n a 中,34512a a a ++=,那么127...a a a +++=6、设}{n a 是等差数列,若273,13a a ==,则数列}{n a 前8项的和为7、数列{a n },{b n }为等差数列,前n 项和分别为,n n S T ,若322n n S n T n+=,则77a b =8、已知等差数列{}n a 的前n 项和为n S ,且1010S =,2030S =,则30S = 9、数列{}n a 的前n 项和为2=2n S n n +,则数列{}n a 的通项公式n a =10、设等差数列}{n a 的前n 项和为48,8,20n S S S ==若,则11121314a a a a +++= 11、设{}n a 递增等差数列,前三项的和为12,前三项的积为48,则它的首项是 12、等差数列{}1418161042,30,a a a a a a n -=++则中的值为 13、若数列{}n a 满足:119a =,13(*)n n a a n +=-∈N ,则数列{}n a 的前n 项和数值最大时n 的值是 14、已知数列{}n a 中,11a =,且1113()nn n N a a *+=+∈,则10a =二、解答题:15、已知{}n a 为等差数列,且36a =-,60a =。
(Ⅰ)求{}n a 的通项公式;(Ⅱ)若等差数列{}n b 满足18b =-,2123b a a a =++,求{}n b 的前n 项和公式16、已知等差数列{n a }前n 项和为n S ,且72,1063==S a (Ⅰ)求数列{n a }的通项公式 (Ⅱ)若3021-=n n a b ,求数列{}n b 的前n 项和n T17、已知{}n a 是等差数列,其中1425,16a a == (1)求{}n a 的通项; (2)数列{}n a 从哪一项开始小于0; (3)求13519a a a a ++++值。
等差数列及其前n项和Word版含答案
等差数列及其前n 项和【课前回顾】1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.这个常数叫做等差数列的公差,符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.4.与等差数列各项的和有关的性质(1)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也成等差数列,其首项与{a n }首项相同,公差是{a n }公差的12. (2)若{a n }是等差数列,S m ,S 2m ,S 3m 分别为{a n }的前m 项,前2m 项,前3m 项的和,则S m ,S 2m -S m ,S 3m -S 2m 成等差数列.(3)关于等差数列奇数项和与偶数项和的性质. ①若项数为2n ,则S 偶-S 奇=nd ,S 奇S 偶=a na n +1. ②若项数为2n -1,则S 偶=(n -1)a n ,S 奇=na n ,S 奇-S 偶=a n ,S 奇S 偶=n n -1. (4)两个等差数列{a n },{b n }的前n 项和S n ,T n 之间的关系为a n b n=S 2n -1T 2n -1.【课前快练】1.在等差数列{}a n 中,若a 2=4,a 4=2,则a 6=( ) A .-1 B .0 C .1D .6解析:选B ∵{}a n 为等差数列,∴2a 4=a 2+a 6,∴a 6=2a 4-a 2=2×2-4=0.2.(2017·全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8 解析:选A 设等差数列{a n }的公差为d , 因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23, 即(a 1+d )(a 1+5d )=(a 1+2d )2. 又a 1=1,所以d 2+2d =0. 又d ≠0,则d =-2,所以{a n }前6项的和S 6=6×1+6×52×(-2)=-24.3.已知数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,且a 1=1,a 4=4,则a 10=( )A .-45B .-54C.413D.134解析:选A 设等差数列⎩⎨⎧⎭⎬⎫1a n 的公差为d ,由题意可知,1a 4=1a 1+3d =14,解得d =-14,所以1a 10=1a 1+9d =-54,所以a 10=-45. 4.已知等差数列{a n }的公差d ≠0,且a 3+a 9=a 10-a 8,若a n =0,则n =________. 解析:因为a 3+a 9=a 10-a 8,所以a 1+2d +a 1+8d =a 1+9d -(a 1+7d ), 解得a 1=-4d ,所以a n =-4d +(n -1)d =(n -5)d , 令(n -5)d =0(d ≠0),可解得n =5. 答案:55.在等差数列{a n }中,a n >0,a 7=12a 4+4,S n 为数列{a n }的前n 项和,则S 19=________.解析:设等差数列{a n }的公差为d ,由a 7=12a 4+4,得a 1+6d =12(a 1+3d )+4,即a 1+9d =8,所以a 10=8,因此S 19=19(a 1+a 19)2=19×a 10=19×8=152. 答案:152考点一 等差数列的基本运算1.等差数列运算中方程思想的应用(1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.[易错提醒] 在求解数列基本量运算中,要注意公式使用时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意整体代换思想的运用,使运算更加便捷.2.等差数列前n 项和公式的应用方法根据不同的已知条件选用两个求和公式,若已知首项和公差,则使用公式S n =na 1+n (n -1)2d ;若已知通项公式,则使用公式S n =n (a 1+a n )2,同时注意与性质“a 1+a n =a 2+a n -1=a 3+a n -2=…”的结合使用.【典型例题】1.若等差数列{a n }的前5项和S 5=25,且a 2=3,则a 7=( ) A .12 B .13 C .14D .15解析:选B 设等差数列{a n }的公差为d , 由S 5=5(a 2+a 4)2,得5(3+a 4)2=25,解得a 4=7,所以7=3+2d ,解得d =2,所以a 7=a 4+3d =7+3×2=13.2.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:选C 设等差数列{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得d =4.3.(2018·福州质检)设等差数列{a n }的公差d ≠0,且a 2=-d ,若a k 是a 6与a k +6的等比中项,则k =( )A .5B .6C .9D .11解析:选C 因为a k 是a 6与a k +6的等比中项, 所以a 2k =a 6a k +6.又等差数列{a n }的公差d ≠0,且a 2=-d , 所以[a 2+(k -2)d ]2=(a 2+4d )[a 2+(k +4)d ], 所以(k -3)2=3(k +3),解得k =9,或k =0(舍去),故选C.4.设S n 为等差数列{a n }的前n 项和,若a 12=-8,S 9=-9,则S 16=________. 解析:设等差数列{a n }的首项为a 1,公差为d , 由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9×82d =-9,解得⎩⎪⎨⎪⎧a 1=3,d =-1. ∴S 16=16×3+16×152×(-1)=-72.答案:-72考点二 等差数列的判定与证明等差数列的判定与证明方法用定义证明等差数列时,容易漏掉对起始项的检验,从而产生错解.比如,对于满足a n -a n -1=1(n ≥3)的数列{a n }而言并不能判定其为等差数列,因为不能确定起始项a 2-a 1是否等于1.【典型例题】(2018·贵州适应性考试)已知数列{a n }满足a 1=1,且na n +1-(n +1)a n =2n 2+2n . (1)求a 2,a 3;(2)证明数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,并求{a n }的通项公式.[思维路径](1)要求数列的项,可根据已知首项和递推关系式,令n =1,2可解得.(2)证明⎩⎨⎧⎭⎬⎫a n n 是等差数列,其关键应推出a n +1n +1-a n n 为常数,对所给条件进行必要的变形即可.解:(1)由已知,得a 2-2a 1=4, 则a 2=2a 1+4,又a 1=1,所以a 2=6. 由2a 3-3a 2=12,得2a 3=12+3a 2,所以a 3=15.(2)证明:由已知na n +1-(n +1)a n =2n 2+2n , 得na n +1-(n +1)a n n (n +1)=2,即a n +1n +1-a nn=2,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项a 11=1,公差d =2的等差数列.则a nn =1+2(n -1)=2n -1,所以a n =2n 2-n .【针对训练】1.(2018·陕西质检)已知数列{a n }的前n 项和S n =an 2+bn (a ,b ∈R)且a 2=3,a 6=11,则S 7等于( )A .13B .49C .35D .63解析:选B 由S n =an 2+bn (a ,b ∈R)可知数列{a n }是等差数列,所以S 7=7(a 1+a 7)2=7(a 2+a 6)2=49.2.已知数列{a n }中,a 1=2,a n =2-1a n -1(n ≥2,n ∈N *),设b n =1a n -1(n ∈N *).求证:数列{b n }是等差数列.证明:∵a n =2-1a n -1(n ≥2), ∴a n +1=2-1a n.∴b n +1-b n =1a n +1-1-1a n -1=12-1a n-1-1a n -1=a n -1a n -1=1, ∴{b n }是首项为b 1=12-1=1,公差为1的等差数列.考点三 等差数列的性质及前n 项和的最值1.应用等差数列的性质解题的2个注意点(1)如果{a n }为等差数列,m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).因此,若出现a m -n ,a m ,a m +n 等项时,可以利用此性质将已知条件转化为与a m (或其他项)有关的条件;若求a m 项,可由a m =12(a m -n +a m +n )转化为求a m -n ,a m +n 或a m +n +a m -n 的值.(2)要注意等差数列通项公式及前n 项和公式的灵活应用,如a n =a m +(n -m )d ,d =a n -a m n -m,S 2n -1=(2n -1)a n ,S n =n (a 1+a n )2=n (a 2+a n -1)2(n ,m ∈N *)等.2.求等差数列前n 项和S n 最值的2种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)邻项变号法:①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .3.理清等差数列的前n 项和与函数的关系 等差数列的前n 项和公式为S n =na 1+n (n -1)2d 可变形为S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n ,令A =d2,B =a 1-d2,则S n =An 2+Bn .当A ≠0,即d ≠0时,S n 是关于n 的二次函数,(n ,S n )在二次函数y =Ax 2+Bx 的图象上,即为抛物线y =Ax 2+Bx 上一群孤立的点.利用此性质可解决前n 项和S n 的最值问题.【典型例题】1.在等差数列{a n}中,a1=29,S10=S20,则数列{a n}的前n项和S n的最大值为() A.S15B.S16C.S15或S16D.S17解析:选A∵a1=29,S10=S20,∴10a1+10×92d=20a1+20×192d,解得d=-2,∴S n=29n+n(n-1)2×(-2)=-n2+30n=-(n-15)2+225.∴当n=15时,S n取得最大值.2.已知函数f(x)的图象关于直线x=-1对称,且f(x)在(-1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则数列{a n}的前100项的和为() A.-200 B.-100C.-50 D.0[学审题]①由函数的对称性及单调性知f(x)在(-∞,-1)上也单调;②结合函数的性质知a50+a51=-2.解析:选B因为函数f(x)的图象关于直线x=-1对称,又函数f(x)在(-1,+∞)上单调,所以f(x)在(-∞,-1)上也单调,且数列{a n}是公差不为0的等差数列.又f(a50)=f(a51),所以a50+a51=-2,所以S100=100(a1+a100)2=50(a50+a51)=-100.【针对训练】1.(2018·岳阳模拟)在等差数列{a n}中,如果a1+a2=40,a3+a4=60,那么a7+a8=() A.95B.100C.135 D.80解析:选B由等差数列的性质可知,a1+a2,a3+a4,a5+a6,a7+a8构成新的等差数列,于是a7+a8=(a1+a2)+(4-1)[(a3+a4)-(a1+a2)]=40+3×20=100.2.设等差数列{a n}的前n项和为S n,且a1>0,a3+a10>0,a6a7<0,则满足S n>0的最大自然数n的值为()A.6 B.7C.12 D.13解析:选C因为a1>0,a6a7<0,所以a6>0,a7<0,等差数列的公差小于零,又a3+a10=a1+a12>0,a1+a13=2a7<0,所以S12>0,S13<0,所以满足S n>0的最大自然数n的值为12.3.设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项的和为180,S n =324(n >6),则数列{a n }的项数为________.解析:由题意知a 1+a 2+…+a 6=36,① a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216, ∴a 1+a n =36, 又S n =n (a 1+a n )2=324, ∴18n =324,∴n =18. 答案:18【课后演练】1.已知等差数列{a n }的前n 项和为S n ,若a 1=2,a 8+a 10=28,则S 9=( ) A .36 B .72 C .144D .288解析:选B 法一:∵a 8+a 10=2a 1+16d =28,a 1=2, ∴d =32,∴S 9=9×2+9×82×32=72.法二:∵a 8+a 10=2a 9=28,∴a 9=14, ∴S 9=9(a 1+a 9)2=72. 2.若等差数列{a n }的前n 项和为S n ,且满足a 2+S 3=4,a 3+S 5=12,则a 4+S 7的值是( )A .20B .36C .24D .72解析:选C 由a 2+S 3=4及a 3+S 5=12,得⎩⎪⎨⎪⎧ 4a 1+4d =4,6a 1+12d =12,解得⎩⎪⎨⎪⎧a 1=0,d =1,∴a 4+S 7=8a 1+24d =24.3.已知数列{a n }满足a 1=15,且3a n +1=3a n -2.若a k ·a k +1<0,则正整数k =( ) A .21 B .22 C .23D .24解析:选C 由3a n +1=3a n -2⇒a n +1-a n =-23⇒{a n }是等差数列,则a n =473-23n .∵a k ·a k+1<0,∴⎝⎛⎭⎫473-23k ⎝⎛⎭⎫453-23k <0,∴452<k <472,又∵k ∈N *,∴k =23.4.已知数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 2=12,则a 8=( )A .0B .-109C .-181D .121解析:选B 设等差数列{b n }的公差为d ,则d =b 3-b 2=-14,因为a n +1-a n =b n ,所以a 8-a 1=b 1+b 2+…+b 7=7(b 1+b 7)2=7b 4=7×(-2-14)=-112,又a 1=3,所以a 8=-109.5.在数列{a n }中,a 1=3,a n +1=3a na n +3,则a 4=( ) A.34 B .1 C.43D.32解析:选A 依题意得1a n +1=a n +33a n =1a n +13,1a n +1-1a n =13,故数列⎩⎨⎧⎭⎬⎫1a n 是以1a 1=13为首项、13为公差的等差数列,则1a n =13+n -13=n 3,a n =3n ,a 4=34.6.已知数列{a n }满足a n +1-a n =2,a 1=-5,则|a 1|+|a 2|+…+|a 6|=( ) A .9 B .15 C .18D .30解析:选C 由a n +1-a n =2可得数列{a n }是等差数列,公差d =2,又a 1=-5,所以a n =2n -7,所以|a 1|+|a 2|+|a 3|+|a 4|+|a 5|+|a 6|=5+3+1+1+3+5=18.7.(2016·北京高考)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.解析:∵a 3+a 5=2a 4,∴a 4=0. ∵a 1=6,a 4=a 1+3d ,∴d =-2. ∴S 6=6a 1+6×(6-1)2d =6×6-30=6.答案:68.等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为________.解析:∵⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5. 答案:S 59.若等差数列{a n }的前17项和S 17=51,则a 5-a 7+a 9-a 11+a 13=________.解析:因为S 17=a 1+a 172×17=17a 9=51,所以a 9=3. 根据等差数列的性质知a 5+a 13=a 7+a 11, 所以a 5-a 7+a 9-a 11+a 13=a 9=3. 答案:310.在等差数列{a n }中,公差d =12,前100项的和S 100=45,则a 1+a 3+a 5+…+a 99=________.解析:因为S 100=1002(a 1+a 100)=45,所以a 1+a 100=910, a 1+a 99=a 1+a 100-d =25,则a 1+a 3+a 5+…+a 99=502(a 1+a 99)=502×25=10. 答案:1011.已知S n 是数列{a n }的前n 项和,且S n +1=S n +a n +3,a 4+a 5=23,则S 8=( ) A .72 B .88 C .92D .98解析:选C 法一:由S n +1=S n +a n +3,得a n +1-a n =3,故数列{a n }是公差为3的等差数列,又a 4+a 5=23=2a 1+7d =2a 1+21,∴a 1=1,S 8=8a 1+8×72d =92.法二:由S n +1=S n +a n +3,得a n +1-a n =3,故数列{a n }是公差为3的等差数列,S 8=8(a 1+a 8)2=8(a 4+a 5)2=92. 12.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增一十三里;驽马初日行九十七里,日减半里,良马先至齐,复还迎驽马,二马相逢,问:几日相逢( )A .8日B .9日C .12日D .16日解析:选B 设n 日相逢,则依题意得103n +n (n -1)2×13+97n +n (n -1)2×⎝⎛⎭⎫-12=1125×2,整理得n 2+31n -360=0, 解得n =9(负值舍去),故选B.13.等差数列{a n }的前n 项和为S n ,其中n ∈N *,则下列命题错误的是( ) A .若a n >0,则S n >0 B .若S n >0,则a n >0C .若a n >0,则{S n }是单调递增数列D .若{S n }是单调递增数列,则a n >0解析:选D 由等差数列的性质可得:∀n ∈N *,a n >0,则S n >0,反之也成立.a n >0,d >0,则{S n }是单调递增数列.因此A 、B 、C 正确.对于D ,{S n }是单调递增数列,则d >0,而a n >0不一定成立.14.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由题意,当且仅当n =8时S n 有最大值,可得⎩⎪⎨⎪⎧ d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧ d <0,7+7d >0,7+8d <0,解得-1<d <-78. 答案:⎝⎛⎭⎫-1,-78 15.设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m =________. 解析:因为等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3, 所以a m =S m -S m -1=2,a m +1=S m +1-S m =3,数列的公差d =1,a m +a m +1=S m +1-S m -1=5,即2a 1+2m -1=5,所以a 1=3-m .由S m =(3-m )m +m (m -1)2×1=0, 解得m =5.答案:516.已知数列{a n }的前n 项和为S n ,且S n =2n -1(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =log 4a n +1,求{b n }的前n 项和T n .解:(1)当n ≥2时,a n =S n -S n -1=2n -1, 当n =1时,a 1=2-1=1,满足a n =2n -1, ∴数列{a n }的通项公式为a n =2n -1(n ∈N *). (2)由(1)得,b n =log 4a n +1=n +12, 则b n +1-b n =n +22-n +12=12, ∴数列{b n }是首项为1,公差d =12的等差数列,∴T n =nb 1+n (n -1)2d =n 2+3n 4. 17.已知递增等差数列{a n }的前n 项和为S n ,且a 2a 3=15,S 4=16.(1)求数列{a n }的通项公式以及S n 的表达式;(2)若数列{b n }满足:b 1=1,b n +1-b n =1a n a n +1,求数列{b n }的通项公式. 解:(1)设数列{a n }的公差为d (d >0), 则⎩⎪⎨⎪⎧ a 2a 3=(a 1+d )(a 1+2d )=15,S 4=4a 1+6d =16, 解得⎩⎪⎨⎪⎧ a 1=1,d =2或⎩⎪⎨⎪⎧a 1=7,d =-2(舍去), ∴a n =1+2(n -1)=2n -1,S n =n (1+2n -1)2=n 2,n ∈N *. (2)由(1)知,b n +1-b n =1a n a n +1=1(2n -1)(2n +1)=12⎛⎭⎫12n -1-12n +1, b n -b 1=(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -3-12n -1=12⎝⎛⎭⎫1-12n -1=n -12n -1(n ≥2),∴b n =3n -22n -1. 当n =1时,b 1=1也符合上式, ∴b n =3n -22n -1(n ∈N *). 18.已知数列{a n }满足,a n +1+a n =4n -3(n ∈N *).(1)若数列{a n }是等差数列,求a 1的值;(2)当a 1=2时,求数列{a n }的前n 项和S n . 解:(1)法一:∵数列{a n }是等差数列, ∴a n =a 1+(n -1)d ,a n +1=a 1+nd . 由a n +1+a n =4n -3,得a 1+nd +a 1+(n -1)d =4n -3, ∴2dn +(2a 1-d )=4n -3,即2d =4,2a 1-d =-3,解得d =2,a 1=-12. 法二:在等差数列{a n }中,由a n +1+a n =4n -3, 得a n +2+a n +1=4(n +1)-3=4n +1,∴2d =a n +2-a n =4n +1-(4n -3)=4,∴d =2.又∵a 1+a 2=2a 1+d =2a 1+2=1,∴a 1=-12. (2)由题意知,①当n 为奇数时, S n =a 1+a 2+a 3+…+a n=a 1+(a 2+a 3)+(a 4+a 5)+…+(a n -1+a n )=2+4[2+4+…+(n -1)]-3×n -12=2n 2-3n +52. ②当n 为偶数时,S n =a 1+a 2+a 3+…+a n =(a 1+a 2)+(a 3+a 4)+…+(a n -1+a n ) =1+9+…+(4n -7)=2n 2-3n 2. 综上,S n =⎩⎨⎧2n 2-3n +52,n 为奇数,2n 2-3n 2,n 为偶数.。
2020届高三文科数学总复习习题:6.2 等差数列及其前n项和 Word版含答案
§6.2等差数列及其前n项和【考点集训】考点一等差数列的定义及通项公式1.(2018陕西咸阳12月模拟,7)《张丘建算经》卷上一题大意为今有女善织,日益功疾,且从第二天起,每天比前一天多织相同量的布,现在一月(按30天计)共织布390尺,最后一天织布21尺,则该女第一天共织多少布?()A.3尺B.4尺C.5尺D.6尺答案C2.(2017安徽淮南一模,15)已知数列{a n}满足递推关系式a n+1=2a n+2n-1(n∈N*),且为等差数列,则λ的值是.答案-13.(2018河南开封定位考试,17)已知数列{a n}满足a1=,且a n+1=.(1)求证:数列是等差数列;(2)若b n=a n a n+1,求数列{b n}的前n项和S n.解析(1)证明:∵a=,∴=,n+1∴-=.∴数列是以2为首项,为公差的等差数列.(2)由(1)知a n=,∴b n==4-,∴S n=4--…-=4-=.考点二等差数列的性质(2019届湖北宜昌模拟,6)已知数列{a}满足=25·,且a2+a4+a6=9,则lo(a5+a7+a9)=()nA.-3B.3C.-D.答案A考点三等差数列的前n项和1.(2018安徽安庆调研,5)等差数列{a n}中,已知S15=90,那么a8=()A.12B.4C.3D.6答案D2.(2017河南部分重点中学二联,6)设S n是公差不为零的等差数列{a n}的前n项和,且a1>0,若S5=S9,则当S n最大时,n=()A.6B.7C.10D.9答案B3.(2019届福建龙岩永定区模拟,10)已知等差数列{a n},{b n}的前n项和分别为S n和T n,且=,则=()A.B.C.D.答案 D炼技法 【方法集训】方法1 等差数列的判定与证明的方法(2019届福建三明模拟,17)已知数列{a n }中,a n =2n-1. (1)证明:数列{a n }是等差数列;(2)若数列{a n }的前n 项和S n =25,求n.解析 (1)证明:∵a n+1-a n =2(n+1)-1-(2n-1)=2,a 1=1, ∴数列{a n }是等差数列,首项为1,公差为2. (2)由(1)得数列{a n }的前n 项和S n =n+ -×2=n 2,由S n =25得n 2=25,又n>0,解得n=5.方法2 等差数列前n 项和的最值问题的解决方法1.(2019届江西高安模拟,11)已知数列{a n }是等差数列,其前n 项和为S n ,满足a 1+3a 2=S 6,给出下列结论:(1)a 7=0;(2)S 13=0;(3)S 7最小;(4)S 5=S 8.其中正确结论的个数是( )A.1B.2C.3D.4答案 C2.(2019届福建龙岩新罗区模拟,12)已知等差数列{a n }的公差为-2,前n 项和为S n ,a 3,a 4,a 5为某三角形的三边长,且该三角形有一个内角为120°,若S n ≤S m 对任意的n ∈N *恒成立,则实数m=( ) A.7 B.6 C.5D.4答案 B3.(2019届福建龙岩新罗区模拟,16)等差数列{a n }中,S n 是它的前n 项和,且S 6<S 7,S 6>S 8,给出下列结论: ①数列{a n }的公差d<0;②S 9<S 6;③S 14<0;④S 7一定是S n 中的最大值. 其中正确的是 (填序号). 答案 ①②③④过专题【五年高考】A 组 统一命题·课标卷题组考点一 等差数列的定义及通项公式(2016课标全国Ⅱ,17,12分)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6.(1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2. 解析 (1)设数列{a n }的公差为d,由题意有2a 1+5d=4,a 1+5d=3. 解得a 1=1,d=.(3分) 所以{a n }的通项公式为a n =.(5分) (2)由(1)知,b n =.(6分) 当n=1,2,3时,1≤<2,b n =1; 当n=4,5时,2<<3,b n =2;当n=6,7,8时,3≤<4,bn=3;当n=9,10时,4<<5,bn=4.(10分)所以数列{bn}的前10项和为1×3+2×2+3×3+4×2=24.(12分)考点二等差数列的性质(2015课标Ⅱ,5,5分)设Sn 是等差数列{an}的前n项和.若a1+a3+a5=3,则S5=()A.5B.7C.9D.11答案A考点三等差数列的前n项和1.(2015课标Ⅰ,7,5分)已知{a n}是公差为1的等差数列,S n为{a n}的前n项和.若S8=4S4,则a10=()A. B. C.10 D.12答案B2.(2014课标Ⅱ,5,5分)等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=()A.n(n+1)B.n(n-1)C. D.-答案A3.(2018课标全国Ⅱ,17,12分)记S n为等差数列{a n}的前n项和,已知a1=-7,S3=-15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.解析(1)设{an}的公差为d,由题意得3a1+3d=-15.由a1=-7得d=2.所以{an}的通项公式为a n=2n-9.(2)由(1)得S n=n2-8n=(n-4)2-16.所以当n=4时,Sn取得最小值,最小值为-16.B组自主命题·省(区、市)卷题组考点一等差数列的定义及通项公式1.(2016浙江,8,5分)如图,点列{A n},{B n}分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n≠A n+2,n∈N*,|B n B n+1|=|B n+1B n+2|,B n≠B n+2,n∈N*.(P≠Q表示点P与Q不重合)若d n=|A n B n|,S n为△A n B n B n+1的面积,则()A.{S n}是等差数列B.{}是等差数列C.{d n}是等差数列D.{}是等差数列答案A2.(2014辽宁,9,5分)设等差数列{a n}的公差为d.若数列{}为递减数列,则()A.d>0B.d<0C.a1d>0D.a1d<0答案D3.(2015北京,16,13分)已知等差数列{a n}满足a1+a2=10,a4-a3=2.(1)求{a n}的通项公式;(2)设等比数列{b n}满足b2=a3,b3=a7.问:b6与数列{a n}的第几项相等?解析(1)设等差数列{an}的公差为d.因为a4-a3=2,所以d=2.又因为a1+a2=10,所以2a1+d=10,故a1=4.所以an=4+2(n-1)=2n+2(n=1,2,…).(2)设等比数列{b n}的公比为q.因为b2=a3=8,b3=a7=16,所以q=2,b1=4.所以b6=4×26-1=128.由128=2n+2得n=63.所以b6与数列{an}的第63项相等.4.(2014浙江,19,14分)已知等差数列{a n}的公差d>0.设{a n}的前n项和为S n,a1=1,S2·S3=36.(1)求d及S n;(2)求m,k(m,k∈N*)的值,使得a m+a m+1+a m+2+…+a m+k=65.解析(1)由题意知(2a1+d)(3a1+3d)=36,将a1=1代入上式解得d=2或d=-5.因为d>0,所以d=2.从而an=2n-1,S n=n2(n∈N*).(2)由(1)得a m+a m+1+a m+2+…+a m+k=(2m+k-1)(k+1),所以(2m+k-1)(k+1)=65.由m,k∈N*知2m+k-1≥k+1>1,故-所以考点二等差数列的性质1.(2014重庆,2,5分)在等差数列{a n}中,a1=2,a3+a5=10,则a7=()A.5B.8C.10D.14答案B2.(2015陕西,13,5分)中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为. 答案5考点三等差数列的前n项和1.(2017浙江,6,4分)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案C2.(2015安徽,13,5分)已知数列{a n}中,a1=1,a n=a n-1+(n≥2),则数列{a n}的前9项和等于.答案27C组教师专用题组考点一等差数列的定义及通项公式1.(2013安徽,7,5分)设S n为等差数列{a n}的前n项和,S8=4a3,a7=-2,则a9=()A.-6B.-4C.-2D.2答案A2.(2014陕西,14,5分)已知f(x)=,x≥0,若f1(x)=f(x),f n+1(x)=f(f n(x)),n∈N+,则f2014(x)的表达式为.答案f2014(x)=3.(2015福建,17,12分)等差数列{a n}中,a2=4,a4+a7=15.(1)求数列{a n}的通项公式;(2)设b n=-+n,求b1+b2+b3+…+b10的值.解析(1)设等差数列{an}的公差为d.由已知得解得所以an=a1+(n-1)d=n+2.(2)由(1)可得b n=2n+n.所以b1+b2+b3+…+b10=(2+1)+(22+2)+(23+3)+…+(210+10)=(2+22+23+...+210)+(1+2+3+ (10)=--+=(211-2)+55=211+53=2101.4.(2013课标Ⅰ,17,12分)已知等差数列{a n}的前n项和S n满足S3=0,S5=-5.(1)求{a n}的通项公式;(2)求数列-的前n项和.解析(1)设{an}的公差为d,则S n=na1+- d.由已知可得-解得a1=1,d=-1.故{an}的通项公式为a n=2-n.(2)由(1)知-=--=---,从而数列-的前n项和为--+-+…+---=-.5.(2013江西,17,12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知sin Asin B+sin Bsin C+cos2B=1.(1)求证:a,b,c成等差数列;(2)若C=,求的值.解析(1)证明:由已知得sin Asin B+sin Bsin C=2sin2B,因为sin B≠0,所以sin A+sin C=2sin B,由正弦定理,有a+c=2b,即a,b,c成等差数列.(2)由C=,c=2b-a及余弦定理得(2b-a)2=a2+b2+ab,即有5ab-3b2=0,所以=.考点二 等差数列的性质(2013辽宁,4,5分)下面是关于公差d>0的等差数列{a n }的四个命题: p 1:数列{a n }是递增数列; p 2:数列{na n }是递增数列; p 3:数列是递增数列; p 4:数列{a n +3nd}是递增数列.其中的真命题为( ) A.p 1,p 2 B.p 3,p 4 C.p 2,p 3 D.p 1,p 4 答案 D考点三 等差数列的前n 项和1.(2014天津,5,5分)设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1=( ) A.2B.-2C.D.-答案 D2.(2014重庆,16,13分)已知{a n }是首项为1,公差为2的等差数列,S n 表示{a n }的前n 项和.(1)求a n 及S n ;(2)设{b n }是首项为2的等比数列,公比q 满足q 2-(a 4+1)q+S 4=0.求{b n }的通项公式及其前n 项和T n . 解析 (1)因为{a n }是首项a 1=1,公差d=2的等差数列,所以a n =a 1+(n-1)d=2n-1. 故S n =1+3+…+(2n-1)== -=n 2. (2)由(1)得a 4=7,S 4=16.因为q 2-(a 4+1)q+S 4=0,即q 2-8q+16=0,所以(q-4)2=0,从而q=4. 又因为b 1=2,{b n }是公比q=4的等比数列,所以b n =b 1q n-1=2×4n-1=22n-1. 从而{b n }的前n 项和T n =- -= (4n-1). 3.(2013浙江,19,14分)在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列.(1)求d,a n ;(2)若d<0,求|a 1|+|a 2|+|a 3|+…+|a n |.解析 (1)由题意得5a 3·a 1=(2a 2+2)2,即d 2-3d-4=0.故d=-1或d=4.所以a n =-n+11,n ∈N *或a n =4n+6,n ∈N *.(2)设数列{a n }的前n 项和为S n .因为d<0,由(1)得d=-1,a n =-n+11,所以当n ≤11时, |a 1|+|a 2|+|a 3|+…+|a n |=S n =-n 2+n.当n ≥12时,|a 1|+|a 2|+|a 3|+…+|a n |=-S n +2S 11=n 2-n+110. 综上所述,|a 1|+|a 2|+|a 3|+…+|a n | = --【三年模拟】时间:45分钟 分值:60分一、选择题(每小题5分,共35分)1.(2018河南开封定位考试,5)等差数列{a n }的前n 项和为S n ,且a 1+a 5=10,S 4=16,则数列{a n }的公差为( ) A.1 B.2 C.3 D.4 答案 B2.(2017辽宁六校协作体期中,8)已知等差数列{a n},{b n}的前n项和分别为S n,T n,若对于任意的正整数n,都有=-,则-+=()A. B. C. D.答案A3.(2018云南玉溪模拟,9)若{a n}是等差数列,公差d<0,a1>0,且a2013(a2012+a2013)<0,则使数列{a n}的前n项和S n>0成立的最大正整数n是()A.4027B.4026C.4025D.4024答案D4.(2017广东惠州二调,7)设S n是等差数列{a n}的前n项和,若=,则=()A.1B.-1C.2D.答案A5.(2019届河北唐山模拟,8)已知数列{a n}的前n项和S n=2+λa n,且a1=1,则S5=()A.27B.C.D.31答案C6.(2019届浙江温州模拟,9)已知{a n},{b n}均为等差数列,且a2=4,a4=6,b3=3,b7=9,由{a n},{b n}的公共项组成新数列{c n},则c10=()A.18B.24C.30D.36答案C7.(2019届河北唐山模拟,6)设{a n}是任意等差数列,它的前n项和、前2n项和与前4n项和分别为X,Y,Z,则下列等式中恒成立的是()A.2X+Z=3YB.4X+Z=4YC.2X+3Z=7YD.8X+Z=6Y答案D二、填空题(共5分)8.(2018四川德阳一模,7)我国古代数学名著《张邱建算经》中有“分钱问题”:今有与人钱,初一人与三钱,次一人与四钱,次一人与五钱,以次与之,转多一钱,与讫,还敛聚与均分之,人得一百钱,问人几何?意思是:将钱分给若干人,第一人给3钱,第二人给4钱,第三人给5钱,以此类推,每人比前一人多给1钱,分完后,再把钱收回平均分给各人,结果每人分得100钱,问有多少人?则题中的人数是.答案195三、解答题(共20分)9.(2018广东惠州一调,17)已知等差数列{a n}的公差不为0,前n项和为S n(n∈N*),S5=25,且S1,S2,S4成等比数列.(1)求a n与S n;(2)设b n=,求证:b1+b2+b3+…+b n<1.解析(1)设等差数列{a}的公差为d(d≠0),n则由S=25可得a3=5,即a1+2d=5①,5又S,S2,S4成等比数列,且S1=a1,S2=2a1+d,S4=4a1+6d,1所以(2a+d)2=a1(4a1+6d),整理得2a1d=d2,1因为d≠0,所以d=2a②,1联立①②,解得a=1,d=2,1所以a=1+2(n-1)=2n-1,S n=-=n2.n(2)证明:由(1)得b n==-,所以b1+b2+b3+…+b n=-+-+…+-=1-.又∵n∈N*,∴1-<1.∴b1+b2+b3+…+b n<1.10.(2019届河北曲周模拟,17)等差数列{a n}中,公差d<0,a2+a6=-8,a3a5=7.(1)求{a n}的通项公式;(2)记T n为数列{b n}前n项的和,其中b n=|a n|,n∈N*,若T n≥1464,求n的最小值.解析(1)∵等差数列{an}中,公差d<0,a2+a6=-8,∴a2+a6=a3+a5=-8,又∵a3a5=7,∴a3,a5是一元二次方程x2+8x+7=0的两个根,且a3>a5,解方程x2+8x+7=0,得a3=-1,a5=-7,∴--解得a1=5,d=-3.∴a n=5+(n-1)×(-3)=-3n+8.(2)由(1)知{a n}的前n项和S n=5n+-×(-3)=-n2+n.∵b n=|a n|,∴b1=5,b2=2,b3=|-1|=1,b4=|-4|=4,当n≥3时,bn=|a n|=3n-8.当n<3时,T1=5,T2=7;当n≥3时,Tn=-S n+2S2=-+14.∵T n≥1464,∴T n=-+14≥1464,即(3n-100)(n+29)≥0,解得n≥,∴n的最小值为34.。
等差数列练习题及答案精选全文
可编辑修改精选全文完整版等差数列练习题一、选择题1、等差数列{}n a 中,10120S =,那么110a a +=( )A. 12B. 24C. 36D. 482、已知等差数列{}n a ,219n a n =-,那么这个数列的前n 项和n s ( ) A.有最小值且是整数 B. 有最小值且是分数 C. 有最大值且是整数 D. 有最大值且是分数3、已知等差数列{}n a 的公差12d =,8010042=+++a a a ,那么=100S A .80 B .120C .135D .160.4、已知等差数列{}n a 中,6012952=+++a a a a ,那么=13S A .390 B .195 C .180 D .1205、从前180个正偶数的和中减去前180个正奇数的和,其差为( )A. 0B. 90C. 180D. 360 6、等差数列{}n a 的前m 项的和为30,前2m 项的和为100,则它的前3m 项的和为( )A. 130B. 170C. 210D. 2607、在等差数列{}n a 中,62-=a ,68=a ,若数列{}n a 的前n 项和为n S ,则( )A.54S S <B.54S S =C. 56S S <D. 56S S =8、一个等差数列前3项和为34,后3项和为146,所有项和为390,则这个数列的项数为( )A. 13B. 12C. 11D. 109、记n S 为等差数列{}n a 的前n 项和,若4562448a a S +==,,则{}n a 的公差为()A .1B .2C .4D .810.已知S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( )A .B .5C .7D .9二.填空题1、等差数列{}n a 中,若638a a a =+,则9s = .2、等差数列{}n a 中,若232n S n n =+,则公差d = .3、在小于100的正整数中,被3除余2的数的和是4、已知等差数列{}n a 的公差是正整数,且a 4,126473-=+-=⋅a a a ,则前10项的和S 10=5、一个等差数列共有10项,其中奇数项的和为252,偶数项的和为15,则这个数列的第6项是6、两个等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,若337++=n n T S n n ,则88a b = .7.设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________.三.解答题1、 在等差数列{}n a 中,40.8a =,11 2.2a =,求515280a a a +++.2、设等差数列{}n a 的前n 项和为n S ,已知312a =,12S >0,13S <0, ①求公差d 的取值范围; ②1212,,,S S S 中哪一个值最大?并说明理由.3、己知}{n a 为等差数列,122,3a a ==,若在每相邻两项之间插入三个数,使它和原数列的数构成一个新的等差数列,求: (1)原数列的第12项是新数列的第几项?(2)新数列的第29项是原数列的第几项?4、设等差数列}{n a 的前n项的和为S n ,且S 4 =-62, S 6 =-75,求:(1)}{n a 的通项公式a n 及前n项的和S n ; (2)|a 1 |+|a 2 |+|a 3 |+……+|a 14 |.5、n S 为数列{n a }的前n 项和.已知n a >0,2n n a a +n a 2=错误!未找到引用源。
等差数列基础测试题(附详细答案)
等差数列:1、已知等差数列{a n }的首项a 1=1,公差d =2,则a 4等于( )A .5B .6C .7D .92、已知{a n }为等差数列,a 2+a 8=12,则a 5等于( )A .4B .5C .6D .73、在数列{a n }中,若a 1=1,a n +1=a n +2(n ≥1),则该数列的通项公式a n =( )A .2n +1B .2n -1C .2nD .2(n -1)4、等差数列{a n }的公差为d ,则数列{ca n }(c 为常数且c ≠0)( )A .是公差为d 的等差数列B .是公差为cd 的等差数列C .不是等差数列D .以上都不对5、在等差数列{a n }中,a 1=21,a 7=18,则公差d =( )A.12B.13C .-12D .-136、在等差数列{a n }中,a 2=5,a 6=17,则a 14=( )A .45B .41C .39D .377、若数列{a n }是等差数列,且a 1+a 4=45,a 2+a 5=39,则a 3+a 6=( )A .24B .27C .30D .338、下面数列中,是等差数列的有( )①4,5,6,7,8,… ②3,0,-3,0,-6,… ③0,0,0,0,…④110,210,310,410,… A .1个 B .2个C .3个D .4个二、填空题(共20,每小题5分)9、在等差数列{a n }中,a 10=10,a 20=20,则a 30=________.10、△ABC 三个内角A 、B 、C 成等差数列,则B =__________.11、在等差数列{a n }中,若a 7=m ,a 14=n ,则a 21=________.三、解答题(共70分)12、在等差数列{a n }中,已知a 5=10,a 12=31,求它的通项公式.(10分)13、在等差数列{a n }中,(1)已知a 5=-1,a 8=2,求a 1与d ;(2)已知a 1+a 6=12,a 4=7,求a 9.14、已知{a n }是等差数列,且a 1+a 2+a 3=12,a 8=16.(12分)(1)求数列{a n }的通项公式;答案:一、选择题1-5 CCBBC 6-8BDB二、填空题13、解析:法一:d =a 20-a 1020-10=20-1020-10=1,a 30=a 20+10d =20+10=30. 法二:由题意可知,a 10、a 20、a 30成等差数列,所以a 30=2a 20-a 10=2×20-10=30. 答案:3014、解析:∵A 、B 、C 成等差数列,∴2B =A +C . 又A +B +C =180°,∴3B =180°,∴B =60°. 答案:60°15、解析:∵a 7、a 14、a 21成等差数列,∴a 7+a 21=2a 14,a 21=2a 14-a 7=2n -m . 答案:2n -m三、解答题17、解:由a n =a 1+(n -1)d 得⎩⎪⎨⎪⎧ 10=a 1+4d 31=a 1+11d ,解得⎩⎪⎨⎪⎧a 1=-2d =3. ∴等差数列的通项公式为a n =3n -5.18、解:(1)由题意,知⎩⎪⎨⎪⎧ a 1+(5-1)d =-1,a 1+(8-1)d =2. 解得⎩⎪⎨⎪⎧ a 1=-5,d =1. (2)由题意,知⎩⎪⎨⎪⎧ a 1+a 1+(6-1)d =12,a 1+(4-1)d =7. 解得⎩⎪⎨⎪⎧a 1=1,d =2. ∴a 9=a 1+(9-1)d =1+8×2=17.19、解:(1)∵a 1+a 2+a 3=12,∴a 2=4,∵a 8=a 2+(8-2)d ,∴16=4+6d ,∴d =2, ∴a n =a 2+(n -2)d =4+(n -2)×2=2n .(2)a 2=4,a 4=8,a 8=16,…,a 2n =2×2n =4n . 当n >1时,a 2n -a 2(n -1)=4n -4(n -1)=4.∴{b n }是以4为首项,4为公差的等差数列. ∴b n =b 1+(n -1)d =4+4(n -1)=4n .。
等差数列基础练习题及详细答案
等差数列基础习题一.选择题1.已知等差数列{a n}中,a3=9,a9=3,则公差d的值为()A.B.1C.D.﹣12.已知数列{a n}的通项公式是a n=2n+5,则此数列是()A.以7为首项,公差为2的等差数列B.以7为首项,公差为5的等差数列C.以5为首项,公差为2的等差数列D.不是等差数列3.在等差数列{a n}中,a1=13,a3=12,若a n=2,则n等于()A.23 B.24 C.25 D.264.等差数列{a n}的前n项和为S n,已知S3=6,a4=8,则公差d=()A.一1 B.2C.3D.一25.两个数1与5的等差中项是()A.1B.3C.2D.6.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是()A.﹣2 B.﹣3 C.﹣4 D.﹣57.等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()A.1B.2C.3D.48.数列的首项为3,为等差数列且,若,,则=()A.0B.8C.3D.119.设S n为等差数列{a n}的前n项和,若满足a n=a n﹣1+2(n≥2),且S3=9,则a1=()A.5B.3C.﹣1 D.110.如果数列{a n}是等差数列,则()A.a1+a8>a4+a5B.a1+a8=a4+a5C.a1+a8<a4+a5D.a1a8=a4a5 11.设S n是等差数列{a n}的前n项和,若=()A.1B.﹣1 C.2D.12.已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于()A . ﹣1B . 1C . 3D . 713.已知S n 为等差数列{a n }的前n 项的和,a 2+a 5=4,S 7=21,则a 7的值为( )A . 6B . 7C . 8D . 914.已知数列{a n }为等差数列,a 1+a 3+a 5=15,a 4=7,则s 6的值为( )A . 30B . 35C . 36D . 2415.等差数列{a n }的公差d <0,且,则数列{a n }的前n 项和S n 取得最大值时的项数n 是( )A . 5B . 6C . 5或6D . 6或7二.填空题1.如果数列{a n }满足:= _________ .2.如果f (n+1)=f (n )+1(n=1,2,3…),且f (1)=2,则f (100)= _________ .3. 已知等差数列{}n a 的前m 项和为30, 前2m 项和为100, 则前3m 项和为____.4.等差数列{}n a 中, 1a <0,最小,若n s s s ,4525=则n=______三解答题1.已知等差数列{n a }中,,0,166473=+-=a a a a 求{n a }前n 项和n s .2.等差数列{}n a 的前n 项和记为n S ,已知102020,410a S ==,(1)求数列{}n a 的通项公式;(2)若S n =135,求以n .一.选择题(共15小题)1.已知等差数列{a n}中,a3=9,a9=3,则公差d的值为()A.B.1C.D.﹣1考点:等差数列.专题:计算题.分析:本题可由题意,构造方程组,解出该方程组即可得到答案.解答:解:等差数列{a n}中,a3=9,a9=3,由等差数列的通项公式,可得解得,即等差数列的公差d=﹣1.故选D点评:本题为等差数列的基本运算,只需构造方程组即可解决,数基础题.2.已知数列{a n}的通项公式是a n=2n+5,则此数列是()A.以7为首项,公差为2的等差数列B.以7为首项,公差为5的等差数列C.以5为首项,公差为2的等差数列D.不是等差数列考点:等差数列.专题:计算题.分析:直接根据数列{a n}的通项公式是a n=2n+5求出首项,再把相邻两项作差求出公差即可得出结论.解答:解:因为a n=2n+5,所以a1=2×1+5=7;a n+1﹣a n=2(n+1)+5﹣(2n+5)=2.故此数列是以7为首项,公差为2的等差数列.故选A.点评:本题主要考查等差数列的通项公式的应用.如果已知数列的通项公式,可以求出数列中的任意一项.3.在等差数列{a n}中,a1=13,a3=12,若a n=2,则n等于()A.23 B.24 C.25 D.26考点:等差数列.专题:综合题.分析:根据a1=13,a3=12,利用等差数列的通项公式求得d的值,然后根据首项和公差写出数列的通项公式,其等于2得到关于n的方程,求出方程的解即可得到n的值.解答:解:由题意得a3=a1+2d=12,把a1=13代入求得d=﹣,则a n=13﹣(n﹣1)=﹣n+=2,解得n=23故选A点评:此题考查学生灵活运用等差数列的通项公式化简求值,是一道基础题.4.等差数列{a n}的前n项和为S n,已知S3=6,a4=8,则公差d=()A.一1 B.2C.3D.一2考点:等差数列.专题:计算题.分析:根据等差数列的前三项之和是6,得到这个数列的第二项是2,这样已知等差数列的;两项,根据等差数的通项公式,得到数列的公差.解答:解:∵等差数列{a n}的前n项和为S n,S3=6,∴a2=2∵a4=8,∴8=2+2d∴d=3,故选C.点评:本题考查等差数列的通项,这是一个基础题,解题时注意应用数列的性质,即前三项的和等于第二项的倍,这样可以简化题目的运算.5.两个数1与5的等差中项是()A.1B.3C.2D.考点:等差数列.专题:计算题.分析:由于a,b的等差中项为,由此可求出1与5的等差中项.解答:解:1与5的等差中项为:=3,故选B.点评:本题考查两个数的等差中项,牢记公式a,b的等差中项为:是解题的关键,属基础题.6.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是()A.﹣2 B.﹣3 C.﹣4 D.﹣5考点:等差数列.专题:计算题.分析:设等差数列{a n}的公差为d,因为数列前六项均为正数,第七项起为负数,所以,结合差为整数进而求出数列的公差.解答:解:设等差数列{a n}的公差为d,所以a6=23+5d,a7=23+6d,又因为数列前六项均为正数,第七项起为负数,所以,因为数列是公差为整数的等差数列,所以d=﹣4.故选C.点评:解决此类问题的关键是熟练掌握等差数列的通项公式,并且结合正确的运算.7.(2012•福建)等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()A.1B.2C.3D.4考点:等差数列的通项公式.专题:计算题.分析:设数列{a n}的公差为d,则由题意可得2a1+4d=10,a1+3d=7,由此解得d的值.解答:解:设数列{a n}的公差为d,则由a1+a5=10,a4=7,可得2a1+4d=10,a1+3d=7,解得d=2,故选B.点评:本题主要考查等差数列的通项公式的应用,属于基础题.8.数列的首项为3,为等差数列且,若,,则=(c)A.0B.8C.3D.119.设S n为等差数列{a n}的前n项和,若满足a n=a n﹣1+2(n≥2),且S3=9,则a1=()A.5B.3C.﹣1 D.1考点:等差数列的通项公式.专题:计算题.分析:根据递推公式求出公差为2,再由S3=9以及前n项和公式求出a1的值.解答:解:∵a n=a n﹣1+2(n≥2),∴a n﹣a n﹣1=2(n≥2),∴等差数列{a n}的公差是2,由S3=3a1+=9解得,a1=1.故选D.点评:本题考查了等差数列的定义,以及前n项和公式的应用,即根据代入公式进行求解.10.(2005•黑龙江)如果数列{a n}是等差数列,则()A.a1+a8>a4+a5B.a1+a8=a4+a5C.a1+a8<a4+a5D.a1a8=a4a5考点:等差数列的性质.分析:用通项公式来寻求a1+a8与a4+a5的关系.解答:解:∵a1+a8﹣(a4+a5)=2a1+7d﹣(2a1+7d)=0∴a1+a8=a4+a5∴故选B点评:本题主要考查等差数列通项公式,来证明等差数列的性质.11.(2004•福建)设S n是等差数列{a n}的前n项和,若=()A.1B.﹣1 C.2D.考点:等差数列的性质.专题:计算题.分析:充分利用等差数列前n项和与某些特殊项之间的关系解题.解答:解:设等差数列{a n}的首项为a1,由等差数列的性质可得a1+a9=2a5,a1+a5=2a3,∴====1,故选A.点评:本题主要考查等差数列的性质、等差数列的前n项和公式以及等差中项的综合应用,已知等差数列{a n}的前n项和为S n,则有如下关系S2n﹣1=(2n﹣1)a n.12.(2009•安徽)已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于()A.﹣1 B.1C.3D.7考点:等差数列的性质.专题:计算题.分析:根据已知条件和等差中项的性质可分别求得a3和a4的值,进而求得数列的公差,最后利用等差数列的通公式求得答案.解答:解:由已知得a1+a3+a5=3a3=105,a2+a4+a6=3a4=99,∴a3=35,a4=33,∴d=a4﹣a3=﹣2.∴a20=a3+17d=35+(﹣2)×17=1.故选B点评:本题主要考查了等差数列的性质和等差数列的通项公式的应用.解题的关键是利用等差数列中等差中项性质求得a3和a4.13.已知S n为等差数列{a n}的前n项的和,a2+a5=4,S7=21,则a7的值为()A.6B.7C.8D.9考点:等差数列的性质.专题:计算题.分析:由a2+a5=4,S7=21根据等差数列的性质可得a3+a4=a1+a6=4①,根据等差数列的前n项和公式可得,,联立可求d,a1,代入等差数列的通项公式可求解答:解:等差数列{a n}中,a2+a5=4,S7=21根据等差数列的性质可得a3+a4=a1+a6=4①根据等差数列的前n项和公式可得,所以a1+a7=6②②﹣①可得d=2,a1=﹣3所以a7=9故选D点评:本题主要考查了等差数列的前n项和公式及等差数列的性质的综合应用,属于基础试题.14.已知数列{a n}为等差数列,a1+a3+a5=15,a4=7,则s6的值为()A.30 B.35 C.36 D.24考点:等差数列的性质.专题:计算题.分析:利用等差中项的性质求得a3的值,进而利用a1+a6=a3+a4求得a1+a6的值,代入等差数列的求和公式中求答案.解答:解:a1+a3+a5=3a3=15,∴a3=5∴a1+a6=a3+a4=12∴s6=×6=36故选C点评:本题主要考查了等差数列的性质.特别是等差中项的性质.15.(2012•营口)等差数列{a n}的公差d<0,且,则数列{a n}的前n项和S n取得最大值时的项数n是()A.5B.6C.5或6 D.6或7考点:等差数列的前n项和;等差数列的通项公式.专题:计算题.分析:由,知a1+a11=0.由此能求出数列{a n}的前n项和S n取得最大值时的项数n.解答:解:由,知a1+a11=0.∴a6=0,故选C.点评:本题主要考查等差数列的性质,求和公式.要求学生能够运用性质简化计算.二.填空题(共4小题)1.如果数列{a n}满足:=.考点:数列递推式;等差数列的通项公式.专题:计算题.分析:根据所给的数列的递推式,看出数列是一个等差数列,根据所给的原来数列的首项看出等差数列的首项根据等差数列的通项公式写出数列,进一步得到结果.解答:解:∵根据所给的数列的递推式∴数列{}是一个公差是5的等差数列,∵a1=3,∴=,∴数列的通项是∴故答案为:点评:本题看出数列的递推式和数列的通项公式,本题解题的关键是确定数列是一个等差数列,利用等差数列通项公式写出通项,本题是一个中档题目.2.如果f(n+1)=f(n)+1(n=1,2,3…),且f(1)=2,则f(100)=101.考点:数列递推式;等差数列的通项公式.专题:计算题.分析:由f(n+1)=f(n)+1,x∈N+,f(1)=2,依次令n=1,2,3,…,总结规律得到f(n)=n+1,由此能够出f(100).解答:解:∵f(n+1)=f(n)+1,x∈N+,f(1)=2,∴f(2)=f(1)+1=2+1=3,f(3)=f(2)+1=3+1=4,f(4)=f(3)+1=4+1=5,…∴f(n)=n+1,∴f(100)=100+1=101.故答案为:101.点评:本题考查数列的递推公式的应用,是基础题.解题时要认真审题,仔细解答.3. 已知等差数列{}n a的前m项和为30, 前2m项和为100, 则前3m项和为2104.等差数列{}n a 中, 1a <0,最小,若n s s s ,4525=则n=____35__三.解答题 2.已知等差数列{n a }中,,0,166473=+-=a a a a 求{n a }前n 项和n s .答案: S n=n 2-9n 或S n =-n 2+9n2.等差数列{}n a 的前n 项和记为n S ,已知102020,410a S ==,(1)求数列{}n a 的通项公式;(2)若S n =135,求以n .答案. a n =n+10,n=9。
等差数列填空题训练及答案word版本
等差数列填空题训练作业一、填空题(本大题共20小题,共100.0分)1. 设数列{a n},{b n}都是等差数列,若a 1+b 1=7,a 3+b 3=21,则a 5+b 5= ______ .2. 在等差数列{a n}中,a 1+a 3+a 5=9,a 2+a 4+a 6=15,则数列{a n}的前10项的和等于______ .3. 等差数列{a n},{b n}的前n项和分别为S n、T n,若= ,则= ______ .4. 若2、a、b、c、9成等差数列,则c-a= ______ .5. 在等差数列{a n}中,a 1=7,公差为d,前n项和为S n,当且仅当n=8时S n取得最大值,则d的取值范围为______ .6. 若等差数列满足,则当▲时,的前项和最大.7. 已知等比数列{a n}中,各项都是正数,且成等差数列,则等于____________.8. 若等差数列{a n}的前5项和S 5=25,且a 2=3,则a 7=____________.9. 已知数列{a n}的前n项和S n=n 2-9n,则其通项a n=____________;若它的第k项满足5<a k<8,则k=____________.10. 设等差数列{a n}的前n项和为S n,若S 3=9,S 6=36,则a 7+a 8+a 9=____________.11. 等差数列{a n} 中a 1+a 9+a 2+a 8=20,则a 3+a 7=____________.12. 设等差数列{a n}的前n项和为S n,若S 8=32,则a 2+2a 5+a 6= ______ .13. 已知等差数列{a n}中,满足S 3=S 10,且a 1>0,S n是其前n项和,若S n取得最大值,则n= ______ .14. 已知函数221()1f xxx-=+,则111()()()(0)(1)(3)(7)(9)973f f f f f f f f+++++++= .15. 设S n是等差数列{a n}的前n项和,a 12=-8,S 9=-9,则S 16=____________.16. 已知等差数列的前项和为,若,则___________17. 设等差数列{a n}、{b n}的前n项和分别为S n、T n,若对任意自然数n都有= ,则+的值为____________.18. 设a 1,d为实数,首项为a 1,公差为d的等差数列{a n}的前n项和为S n,满足S 5S 6+15=0,则d的取值范围是____________.19. 等差数列{a n}的前n项和为S n,且a 4-a 2=8,a 3+a 5=26.记T n= ,如果存在正整数M,使得对一切正整数n,T n≤M都成立,则M的最小值是____________.20. 若{a n}是等差数列,首项a 1>0,a 2012+a 2013>0,a 2012•a 2013<0,则使前n项和S n>0成立的最大自然数n是____________.等差数列填空题训练参考答案【答案】1. 352. 803.4.5. (-1,- )6.87.8. 139. 2n-10;810. 4511. 1012. 1613. 6或714.115. -7216.717.18.19. 220. 2012【解析】1.解:∵数列{a n},{b n}都是等差数列,∴设数列{a n}的公差为d 1,设数列{b n}的公差为d 2,∴a 3+b 3=a 1+b 1+2(d 1+d 2)=21,而a 1+b 1=7,可得2(d 1+d 2)=21-7=14.∴a 5+b 5=a 3+b 3+2(d 1+d 2)=21+14=35故答案为:35根据等差数列的通项公式,可设数列{a n}的公差为d 1,数列{b n}的公差为d 2,根据a 1+b 1=7,a 3+b 3=21,可得2(d 1+d 2)=21-7=14.最后可得a 5+b 5=a 3+b 3+2(d 1+d 2)=2+14=35.本题给出两个等差数列首项之和与第三项之和,欲求它们的第五项之和,着重考查了等差数列的概念与通项公式和等差数列的性质,属于基础题.2.解:∵在等差数列{a n}中a 1+a 3+a 5=9,a 2+a 4+a 6=15,∴a 1+a 3+a 5=3a 3=9,a 2+a 4+a 6=3a 4=15,∴a 3=3,a 4=5,公差d=5-3=2,a 1=3-2×2=-1,∴前10项的和S 10=10×(-1)+ ×2=80,故答案为:80.由题意可求出数列的首项和公差,代入求和公式计算可得.本题考查等差数列的求和公式,求出数列的首项和公差是解决问题的关键,属基础题.3.解:∵在等差数列中S 2n-1=(2n-1)•a n,∴ ,,则= ,又∵ = ,∴ =即=故答案为:本题考查的知识点是等差数列的性质及等差数列的前n项和,由等差数列中S 2n-1=(2n-1)•a n,我们可得,,则= ,代入若= ,即可得到答案.在等差数列中,S 2n-1=(2n-1)•a n,即中间项的值,等于所有项值的平均数,这是等差数列常用性质之一,希望大家牢固掌握.4.解:由等差数列的性质可得2b=2+9,解得b= ,又可得2a=2+b=2+ = ,解之可得a= ,同理可得2c=9+ = ,解得c= ,故c-a= - = =故答案为:由等差数列的性质可得2b=2+9,解之可得b值,再由等差中项可得a,c的值,作差即可得答案.本题考查等差数列的性质和通项公式,属基础题.5.解:∵S n =7n+ ,当且仅当n=8时S n取得最大值,∴ ,即,解得:,综上:d的取值范围为(-1,- ).根据题意当且仅当n=8时S n取得最大值,得到S 7<S 8,S 9<S 8,联立得不等式方程组,求解得d的取值范围.本题主要考查等差数列的前n项和公式,解不等式方程组,属于中档题.6.由等差数列性质可得=3>0,所以>0,又因为,所以,所以等差数列前8项为正数,从第9项开始为负数.所以当8时,的前项和最大.故答案为8.7.解:成等差数列,∴a 3=a 1+2a 2,∴q 2-2q-1=0,∴q=1+ ,q=1- (舍去)∴ = = =q 2=3+2故答案为:3+28.解:依题意可得,d=2,a 1=1∴a 7=1+6×2=13故答案为:139.解:∵S n=n 2-9n,∴当n=1时,a 1=s 1=-8;当n≥2时,a n=s n-s n-1=n 2-9n-[(n-1) 2-9(n-1)]=2n-10,∵a 1也适合a n=2n-10,∴a n=2n-10;令5<2k-10<8,解得7.5<k<9,∵k∈N +,∴k=8,故答案为2n-10;8.10.解:a 4+a 5+a 6=S 6-S 3=36-9=27,a 4+a 5+a 6=(a 1+3d)+(a 2+3d)+(a 3+3d)=(a 1+a 2+a 3)+9d=S 3+9d=9+9d=27,所以d=2,则a 7+a 8+a 9=(a 1+6d)+(a 2+6d)+(a 3+6d)=S 3+18d=9+36=45.故答案为:4511.解:∵a 1+a 9+a 2+a 8=(a 1+a 9)+(a 2+a 8)=2(a 3+a 7)=20,∴a 3+a 7=10.故答案为:1012.解:∵S 8=32,∴ =32,可得a 4+a 5=a 1+a 8=8.则a 2+2a 5+a 6=2(a 4+a 5)=2×8=16,故答案为:16.S 8=32,可得=32,可得a 4+a 5=a 1+a 8.利用a 2+2a 5+a 6=2(a 4+a 5)即可得出.本题考查了等差数列的通项公式性质及其前n项和公式,考查了推理能力与计算能力,属于中档题.13.解:∵等差数列{a n}中,满足S 3=S 10,且a 1>0,∴S 10-S 3=7a 7=0,∴a 7=0,∴递减的等差数列{a n}中,前6项为正数,第7项为0,从第8项开始为负数,∴S n取得最大值,n=6或7故答案为:6或7由题意易得a 7=0,进而可得数列{a n}中,前6项为正数,第7项为0,从第8项开始为负数,易得结论.本题考查等差数列前n项和的最值,从数列项的正负入手是解决问题的关键,属基础题.14.试题分析:观察所求值的式子,先计算,因此原式=.考点:分组求和.15.解:S 9= (a 1+a 9)×9=-9,又有a 1+a 9=2a 5,可得,a 5=-1,由等差数列的性质可得,a 1+a 16=a 5+a 12,则S 16= (a 1+a 16)×16= (a 5+a 12)×16=-72.16.根据题意可得:,由等差数列的性质可得:,所以。
等差数列试题及答案
等差数列试题及答案
等差数列试题及答案
等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。
以下是等差数列试题及答案,欢迎阅读。
一.选择题:本大题共6小题,每小题4分,共24分,在每小题给出的四个选项中只有一项是符合题目要求的,把它选出来填在题后的.括号内.
1. 是数列中的第()项.
A. B. C. D.
2.若数列的通项公式为,则此数列是()
A.公差为的等差数列
B. 公差为的等差数列
C.首项为的等差数列
D. 公差为的等差数列
3.若,则“ ”是“ 成等差数列”的()
A.充分不必要条件
B. 必要不充分条件
C. 充要条件
D. 既不充分也不必要条件
4.等差数列的一个通项公式为()
A. B. C. D.
5.首项为的等差数列从第项起开始为正数,则公差的取值范围是()
A. B. C. D.
6.若是等差数列,则,,,,,是()
A.一定不是等差数列
B. 一定是递增数列
C.一定是等差数列
D. 一定是递减数列
二.填空题:本大题共4小题,每小题4分,共16分,把正确答案写在题中横线上.
7.等差数列中,,,则 .
8.等差数列中,,,则 .
9.已知等差数列中,的等差中项为,的等差中项为,则 .
10.如果等差数列的第项为,第项为,则此数列的第个负数项是第项.
【整合提高】
参考答案:
1.C
2.A
3.C
4.D
5.D
6.C
7.10
8.21
9. 10.8。
等差数列与前n项和练习试题(可编辑修改word版)
等差数列与前n项和练习试题(可编辑修改word版)第1 讲等差数列及其前n 项和⼀、填空题1.在等差数列{a n}中,a3+a7=37,则a2+a4+a6+a8=.2.设等差数列{a }的前n 项和为S ,若S4 -S3=1,则公差为.n n12 93.在等差数列{a n}中,a1>0,S4=S9,则S n取最⼤值时,n=.4.在等差数列{a n}中,若a1+a4+a7=39,a3+a6+a9=27,则S9=. 5.设等差数列{a n}的公差为正数,若a1+a2+a3=15,a1a2a3=80,则a11+a12+a13=.6.已知数列{a n}的前n 项和为S n=2n2+pn,a7=11.若a k+a k+1>12,则正整数k 的最⼩值为.7.已知数列{a n}满⾜递推关系式a n=2a n+2n-1(n∈N*),且a n+λ为等差数{ 2n }+1列,则λ的值是.8.已知数列{a n}为等差数列,S n为其前n 项和,a7-a5=4,a11=21,S k=9,则k=.10.已知f(x)是定义在R 上不恒为零的函数,对于任意的x,y∈R,都有f(x·y)=xf(y)+yf(x)成⽴.数列{a n}满⾜a n=f(2n)(n∈N*),且a1=2.则数列的通项公式a n=.⼆、解答题1.已知等差数列{a n}的前三项为a-1,4,2a,记前n 项和为S n.(1)设S k=2 550,求a 和k 的值;(2)设b n=S n,求b +b +b +…+b 的值.3 7 114n-1n12.已知数列{a n}的通项公式为a n=2n,若a3,a5分别为等差数列{b n}的第3 项和第5 项,试求数列{b n}的通项公式及前n 项和S n.13.在等差数列{a n}中,公差d>0,前n 项和为S n,a2·a3=45,a1+a5=18.(1)求数列{a n}的通项公式;(2)令b n=S n(n∈N*),是否存在⼀个⾮零常数c,使数列{b n}也为等差数列?n+c若存在,求出c 的值;若不存在,请说明理由.第2 讲等⽐数列及其前n 项和⼀、填空题1.设数列{a n2}前n项和为S n,a1=t,a2=t2,S n+2-(t+1)S n+1+tS n=0,则{a n}是数列,通项a n=.解析由S n+2-(t+1)S n+1+tS n=0,得S n+2-S n+1=t(S n+1-S n),所以a n+2=ta,所以a n+2=t,⼜a2=t,n+1a n+1 a1所以{a n}成等⽐数列,且a n=t·t n-1=t n.答案等⽐t n2.等⽐数列{a }的前n 项和为S 8a +a =0,则S6=.n n, 2 5S34 2 2 2 8 8 解∵8a 2+a 5=8a 1q +a 1q 4=a 1q (8+q 3)=0 ∴q =-2∴S 6=1-q 6=1+q 3=-7.S 3 1-q 3 答案-73. 数列{a n }为正项等⽐数列,若 a 2=2,且 a n +a n +1=6a n -1(n ∈N ,n ≥2),则此数列的前 4 项和 S 4= .解析由 a 1q =2,a 1q n -1+a 1q n =6a 1q n -2,得 q n -1+q n =6q n -2,所以 q 2+q =6.⼜ q >0,所以 q =2,a 1=1.所以 S =a 11-q 4=1-24=15.1-q 1-2答案 154. 已知等⽐数列{a n }的前 n 项和 S n =t ·5n -2-1,则实数 t 的值为.5解析∵a 1=S 1=1t -1,a 2=S 2-S 1=4t ,a 3=S 3-S 2=4t ,∴由{a n }是等⽐数 5 5 5 列知 4t 2= 1t 1 ×4t ,显然 t≠0,所以 t =5.(5 ) (5- )5答案 55. 已知各项都为正数的等⽐数列{a n }中,a 2·a 4=4,a 1+a 2+a 3=14,则满⾜ a n ·a n +1·a n +2≥1的最⼤正整数 n 的值为.8解析由等⽐数列的性质,得 4=a 2·a 4=a 32(a 3>0),所以 a 3=2,所以 a 1+a 2=14-a 3=12,于是由Error!解得Error!所以 a n =8·(1)n -1=(1)n -4. 于是由 a n ·a n +1·a n +2=a n +3 1=(1)3(n -3)=(1)n -3≥1,得 n -3≤1,即 n ≤4.33答案 46.在等⽐数列{a n }中,a n >0,若 a 1·a 2·…·a 7·a 8=16,则 a 4+a 5 的最⼩值为.解析由已知 a 1a 2·…·a 7a 8=(a 4a 5)4=16,所以 a 4a 5=2,⼜ a 4+a 5≥2 a 4a 5=2 2(当且仅当 a 4=a 5=答案 2 2时取等号).所以 a 4+a 5 的最⼩值为 2 2.7. 已知递增的等⽐数列{a }中,a +a =3,a ·a =2,则a 13=.n 2 8 3 7a 10解析∵{a n }是递增的等⽐数列,∴a 3a 7=a 2a 8=2,⼜∵a 2+a 8=3,∴a 2,a 8 是⽅程 x 2-3x +2=0 的两根,则 a 2=1,a 8=2,∴q 6= a 8=2,∴q 3=a 22,∴a 13=q 3= 2.a 10答案8. 设 1=a 1≤a 2≤…≤a 7,其中 a 1,a 3,a 5,a 7 成公⽐为 q 的等⽐数列,a 2,a 4,a 6成公差为 1 的等差数列,则 q 的最⼩值为.解析由题意知 a 3=q ,a 5=q 2,a 7=q 3 且 q ≥1,a 4=a 2+1,a 6=a 2+2 且a 2≥1,那么有 q 2≥2 且 q 3≥3.故 q ≥3 3,即 q 的最⼩值为3 3. 答案⼆、解答题11.在等差数列{a n }中,a 2+a 7=-23,a 3+a 8=-29.(1) 求数列{a n }的通项公式;(2) 设数列{a n +b n }是⾸项为 1,公⽐为 c 的等⽐数列,求{b n }的前 n 项和 S n .解 (1)设等差数列{a n }的公差是 d .依题意 a 3+a 8-(a 2+a 7)=2d =-6,从⽽ d =-3.22nn由 a 2+a 7=2a 1+7d =-23,解得 a 1=-1. 所以数列{a n }的通项公式为 a n =-3n +2.(2)由数列{a n +b n }是⾸项为 1,公⽐为 c 的等⽐数列,得 a n +b n =c n -1,即-3n +2+b n =c n -1,所以 b n =3n -2+c n -1.所以 S n =[1+4+7+…+(3n -2)]+(1+c +c 2+…+c n -1) =n3n -1+(1+c +c 2+…+c n -1). 2从⽽当 c =1 时,S =n 3n -1+n =3n 2+n . 2 2当 c ≠1 时,S n =n3n -1+1-c n . 2 1-c12. 设各项均为正数的等⽐数列{a n }的前 n 项和为 S n ,S 4=1,S 8=17.(1)求数列{a n }的通项公式;( 2)是否存在最⼩的正整数 m ,使得 n ≥m 时,a n >2 011恒成⽴?若存在,求15出 m ;若不存在,请说明理由.解 (1)设{a }的公⽐为 q ,由 S =1,S =17 知 q ≠1,所以得a1q 4-1=1, n48a 1q 8-1=17. q-1q -1相除得q 8-1=17,解得 q 4=16.所以 q =2 或 q =-2(舍去). q 4-1由 q =2 可得 a = 1 ,所以 a =2n -1.1n15 15 (2)由 a =2n -1>2 011,得 2n -1>2 011,⽽ 210<2 011<211,所以 n -1≥11, 1515即 n ≥12.2 011恒成⽴.因此,存在最⼩的正整数m=12,使得n≥m 时,a n>1513.已知公差⼤于零的等差数列{a n}的前n项和为S n,且满⾜a2·a4=65,a1+a5=18.(1)求数列{a n}的通项公式a n.(2)若1<i<21,a1,a i,a21是某等⽐数列的连续三项,求i 的值;(3)是否存在常数k,使得数列{S n+kn}为等差数列?若存在,求出常数k;若不存在,请说明理由.解(1)因为a1+a5=a2+a4=18,⼜a2·a4=65,所以a2,a4是⽅程x2-18x+65=0 的两个根.⼜公差d>0,所以a2<a4.所以a2=5,a4=13. 所以Error!解得a1=1,d=4.所以a n=4n-3.(2)由1<i<21,a1,a i,a21是某等⽐数列的连续三项,所以a1·a21=a2i,即1·81=(4i-3)2,解得i=3.(3)由(1)知,S n=n·1+n n-1·4=2n2-n.2假设存在常数k,使数列{ S n+kn}为等差数列,由等差数列通项公式,可设S n+kn=an+b,得2n2+(k-1)n=an2+2abn+b 恒成⽴,可得a=2,b=0,k=1.所以存在k=1 使得{ S n+kn}为等差数列.第3 讲等差数列、等⽐数列与数列求和⼀、填空题1.设{a n}是公差不为0 的等差数列,a1=2 且a1,a3,a6成等⽐数列,则{a n}的前 n 项和 S n = .解析由题意设等差数列公差为 d ,则 a 1=2,a 3=2+2d ,a 6=2+5d .⼜∵a 1,a 3,a 6 成等⽐数列,∴a 32=a 1a 6,即(2+2d )2=2(2+5d ),整理得 2d 2-d =0.∵ d ≠0,∴d =1,∴S =na +n n -1d =n 2+7n .n 12 2 4 4答案 n 24 42. 数列{a n }的通项公式a n=1,若前 n 项的和为 10,则项数为.n + n +1解析∵a n =答案 1201= n + n +1n +1- n ,∴S n = n +1-1=10,∴n =120.3. 已知等差数列{a n }的前 n 项和为 S n ,a 5=5,S 5=15,则数列{ 1}的前 100a n a n +1项和为.解析∵a =5,S =15,∴5a 1+a 5=15,即 a =1.5512 ∴d =a 5-a 1=1,∴a =n .∴ 1 =1 =1- 1 .设数列 1 的前5-1n 项和为 T n .na n a n +1 n n +1 nn +1{a n a n +1}∴T 100=(1-1)+(1+…+(1 )=1- 1 =100.2 3 答案 100101100 101 101 1014.已知数列{a n },{b n }都是等差数列,a 1=5,b 1=7,且 a 20+b 20=60.则{a n +b n } 的前 20 项的和为.解析由题意知{a n +b n }也为等差数列,所以{a n +b n }的前 20 项和为:S 20= 20a 1+b 1+a 20+b 20=20 × 5+7+60=720.2 22 -- 1c d n22 1 an a n+1答案7205.已知等⽐数列{a n}的前n项和S n=2n-1,则a12+a2+…+a n2=.解析当n=1 时,a1=S1=1,当n≥2 时,a n=S n-S n-1=2n-1-(2n-1-1)=2n-1,⼜∵a1=1 适合上式.∴a n=2n-1,∴a n2=4n-1.∴数列{a n2}是以a21=1 为⾸项,以4 为公⽐的等⽐数列.∴a12+a2+…+a n2=1·1-4n=1(4n-1).答案1(4n-1)31-4 36.定义运算:|a b|=ad-bc,若数列{a}满⾜|a1 1|=1 且| 3 3 |=12(n∈N*),则a3=,数列{a n}的通项公式为a n=.解析由题意得a1-1=1,3a n+1-3a n=12 即a1=2,a n+1-a n=4.∴{a n}是以2 为⾸项,4 为公差的等差数列,∴a n=2+4(n-1)=4n-2,a3=4×3-2=10.答案10 4n-27.在等⽐数列{a n}中,a1=1,a4=-4,则公⽐q=;|a1|+|a2|+…+|a n|=2.解析∵a 4=q3=-8,∴q=-2.∴a =1·(-2)n-1,na1 21n1-2∴|a n|=2n-2,∴|a1|+|a2|+…+|a n|=2 =2n-1-1.1-2 2 答案-2 2n-1-128.已知S n是等差数列{a n}的前n 项和,且S11=35+S6,则S17的值为.解析因S11=35+S6,得11a1+11 × 10d=35+6a1+6 × 5d,即a1+8d=2 27,所以S17=17a1+17 × 16d=17(a1+8d)=17×7=119.2答案1199.等差数列{a n}的公差不为零,a4=7,a1,a2,a5成等⽐数列,数列{T n}满⾜条件T n=a2+a4+a8+…+a2n,则T n=.解析设{a n}的公差为d≠0,由a1,a2,a5成等⽐数列,得a2=a1a5,即(7-2d)2=(7-3d)(7+d)所以d=2 或d=0(舍去).所以a n=7+(n-4)×2=2n-1.⼜a2n=2·2n-1=2n+1-1,故T n=(22-1)+(23-1)+(24-1)+…+(2n+1-1)=(22+23+…+2n+1)-n=2n+2-n-4.答案2n+2-n-410.数列{a n}的通项公式a n=2n-1,如果b n=2n,那么{b n}的前n 项和a n+a n+1为.解析b n=2n n=2n+1-1-2n-1,a n+a n+1所以b1+b2+…+b n=22-1-2-1+23-1-22-1+…+-2n-1=2n+1-1-1.答案⼆、解答题2n+1-1-111.已知{a n}为等差数列,且a3=-6,a6=0.2n+1-1n (1) 求{a n }的通项公式;(2) 若等⽐数列{b n }满⾜ b 1=-8,b 2=a 1+a 2+a 3,求{b n }的前 n 项和公式.解 (1)设等差数列{a n }的公差为 d . 因为 a 3=-6,a 6=0,所以Error!解得 a 1=-10,d =2. 所以 a n =-10+(n -1)·2=2n -12. (2)设等⽐数列{b n }的公⽐为 q .因为 b 2=a 1+a 2+a 3=-24,b 1=-8,所以-8q =-24,即 q =3. 所以{b }的前 n 项和公式为 S =b 1 1-q n =4(1-3n ).n n 1-q13.记公差 d ≠0 的等差数列{a n }的前 n 项和为 S n ,已知 a 1=2+ 2,S 3=12+3(1) 求数列{a n }的通项公式 a n 及前 n 项和 S n .(2) 已知等⽐数列{b nk },b n + 2=a n ,n 1=1,n 2=3,求 n k .(3) 问数列{a n }中是否存在互不相同的三项构成等⽐数列,说明理由.解 (1)因为 a 1=2+所以 d =2.2,S 3=3a 1+3d =12+3 2,所以 a n =a 1+(n -1)d =2n + 2,S =n a 1+a n =n 2+( 22+1)n . (2) 因为 b n =a n -所以 bn k =2n k .2=2n ,2.⼜因为数列{bn }的⾸项bn =b =2,公⽐q=b 3=3,k 1 1b1 所以bn k=2·3k-1.所以2n k=2·3k-1,则n k=3k-1.(3)假设存在三项a r,a s,a t成等⽐数列,则a2s=a r·a t,即有(2s+2)2=(2r+2)(2t+2),整理得(rt-s2) 2=2s-r-t.若rt-s2≠0,则2=2s-r-t,rt-s2因为r,s,t∈N*,所以2s-r-t是有理数,这与rt-s22为⽆理数⽭盾;若rt-s2=0,则2s-r-t=0,从⽽可得r=s=t,这与r综上可知,不存在满⾜题意的三项a r,a s,a t.。
(完整word版)等差数列基础练习题
等差数列·基础练习题一、填空题1. 等差数列8,5,2,…的第20项为___________.2. 在等差数列中已知a 1=12, a 6=27,则d=___________3. 在等差数列中已知13d =-,a 7=8,则a 1=_______________ 4. 2()a b +与2()a b -的等差中项是________________— 5. 等差数列—10,—6,-2,2,…前___项的和是54 6. 正整数前n 个数的和是___________7. 数列{}n a 的前n 项和23n S n n -=,则n a =___________二、选择题8. 若lg2,lg(21),lg(23)x x -+成等差数列,则x 的值等于( )A.0B. 2log 5 C 。
32 D.0或329。
在等差数列{}n a 中31140a a +=,则45678910a a a a a a a -+++-+的值为( )A 。
84B 。
72 C.60 . D.4810. 在等差数列{}n a 中,前15项的和1590S = ,8a 为( )A.6 B 。
3 C 。
12 D.411。
等差数列{}n a 中, 12318192024,78a a a a a a ++=-++=,则此数列前20下昂的和等于A 。
160 B.180 C.200 D 。
22012。
在等差数列{}n a 中,若34567450a a a a a ++++=,则28a a +的值等于( )A 。
45B 。
75 C.180 D.30013. 设n S 是数列{}n a 的前n 项的和,且2n S n =,则{}n a 是( )A 。
等比数列,但不是等差数列 B.等差数列,但不是等比数列C 。
等差数列,且是等比数列D 。
既不是等差数列也不是等比数列 14. 数列3,7,13,21,31,…的通项公式是( ) A 。
41n a n =- B. 322n a n n n =-++ C. 21n a n n =++ D.不存在 三、计算题15。
等差数列练习题(带解析)
等差数列练习题一、单选题(共10题;共0分)1.数列前项和为,,,,若,则=()A. B. C. D.2.在数列中,,则的值为()A.−2B.C.D.3.数列,,,,的第14项是A. B. C. D.4.已知数列的前n项和为,且,则数列的通项公式为A. B. C. D.5.已知数列{a n}满足a1=1,,则254是该数列的()A.第14项B.第12项C.第10项D.第8项6.等比数列{a n}的前n项和为S n,己知S2=3,S4=15,则S3=( )A.7B.-9C.7或-9D.7.等差数列的前项和为,若,则()A. B. C. D.8.《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布585尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺9.将正整数按如图所示的规律排列下去,且用表示位于从上到下第行,从左到右n列的数,比如,若,则有()A. B.C. D.10.世界上最古老的数学著作《莱茵德纸草书》中有一道这样的题目:把磅面包分给个人,使每人所得成等差数列,且使较大的两份之和的是较小的三份之和,则最小的份为()A.磅B.磅C.磅D.磅二、填空题(共10题;共0分)11.观察如图中各多边形图案,每个图案均由若干个全等的正六边形组成,记第个图案中正六边形的个数是.由,,,…,可推出________.12.两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作,第2个五角形数记作,第3个五角形数记作,第4个五角形数记作,……,若按此规律继续下去,若,则________.13.某种平面分形图如图所示,一级分形图是由一点出发的三条线段,长度相等,两两夹角为120°;二级分形图是在一级分形图的每条线段末端出发再生成两条长度为原来的线段,且这两条线段与原线段两两夹角为120°,……,依此规律得到n级分形图.则n级分形图中共有________条线段.14.已知圆的有条弦,且任意两条弦都彼此相交,任意三条弦不共点,这条弦将圆分成了个区域,(例如:如图所示,圆的一条弦将圆分成了2(即)个区域,圆的两条弦将圆分成了4(即)个区域,圆的3条弦将圆分成了7(即)个区域),以此类推,那么与之间的递推式关系为:________.15.如图,数表满足:第n行首尾两数均为n;(2)表中递推关系类似杨辉三角,记第n(n>1)行第2个数为a(n).根据表中上下两行数据关系,可以求得当n≥2时,a(n)=________.16.数列由,确定,则________.17.已知数列满足,,,则 ________.18.已知等比数列中,则其前3项的和的取值范围是________.19.(2018•北京)设是等差数列,且a1=3, a2+a5= 36,则的通项公式为________20.数列满足, ,数列的前项和为=________.三、解答题(共4题;共0分)21.已知等差数列的首项,公差,前项和为,.(1)求数列的通项公式;(2)设数列前项和为,求.22.在数列中,,.(1)求证:数列是等差数列;(2)求数列的前n项和.23.在数列中,,,设.(1)证明:数列是等比数列,并求的通项公式;(2)求的前项和.24.设正项数列的前项和为,且满足,,.(1)求数列的通项公式;(2)若正项等比数列满足,,且,数列的前项和为,求证.等差数列练习题答案部分第 1 题:【答案】C【解析】【解答】由题意有:当时,,两式作差可得:,由于,故,即数列的奇数项、偶数项分别构成一个公差为3的等差数列,,据此可得,则数列的通项公式为:,,,加2后能被3整除,则.故答案为:C.【分析】本题利用对n进行分类讨论,再利用S求a的方法求出第k项,从而求出k的值。
等差数列练习题
等差数列练习题一、填空题1. 已知等差数列的首项为3,公差为2,则第五项是______。
2. 在等差数列{an}中,若a1=1,a10=37,则公差d=______。
3. 等差数列的前三项分别为1,3,7,则第n项的通项公式为______。
4. 等差数列的前n项和为S_n,若S_5=35,则S_10=______。
5. 已知等差数列的通项公式为a_n=3n7,则第8项是______。
二、选择题1. 已知等差数列的前三项分别为a1,a+1,2a+1,则a的值为()A. 1B. 2C. 3D. 42. 在等差数列{an}中,若a1=1,公差d=2,则第10项是()A. 17B. 19C. 21D. 233. 已知等差数列的前5项和为25,前10项和为100,则公差d为()A. 2B. 3C. 4D. 54. 等差数列的通项公式为a_n=2n+1,则第6项与第11项的差为()A. 5B. 10C. 15D. 205. 若等差数列的前n项和为S_n,且S_2,S_4S_2,S_6S_4成等差数列,则公差d为()A. 1B. 2C. 3D. 4三、解答题1. 已知等差数列的首项为5,公差为3,求第10项。
2. 在等差数列{an}中,若a1=2,a3=8,求第n项的通项公式。
3. 已知等差数列的前5项和为35,公差为2,求首项。
4. 等差数列的通项公式为a_n=4n3,求前10项和。
5. 已知等差数列的前n项和为S_n=3n^2+n,求第7项。
四、应用题1. 一个等差数列的前三项分别为2,5,8,求这个数列的前10项和。
2. 一个运动员进行跳远训练,第一次跳2.5米,以后每次增加0.2米,那么他第六次跳远的成绩是多少?3. 一家工厂的工人工资按等差数列递增,第一个月工资为2000元,第五个月工资为2600元,求第十个月的工资。
4. 在一个等差数列中,前5项和为25,后5项和为65,求这个数列的公差。
5. 一辆汽车以每小时10公里的速度行驶,如果每行驶2小时,速度增加5公里/小时,那么汽车行驶12小时后的速度是多少?五、证明题1. 证明:若一个等差数列的首项为a1,公差为d,则这个数列的第n项是a_n = a1 + (n1)d。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列填空题训练作业一、填空题(本大题共20小题,共100.0分)1. 设数列{a n},{b n}都是等差数列,若a 1+b 1=7,a 3+b 3=21,则a 5+b 5= ______ .2. 在等差数列{a n}中,a 1+a 3+a 5=9,a 2+a 4+a 6=15,则数列{a n}的前10项的和等于______ .3. 等差数列{a n},{b n}的前n项和分别为S n、T n,若= ,则= ______ .4. 若2、a、b、c、9成等差数列,则c-a= ______ .5. 在等差数列{a n}中,a 1=7,公差为d,前n项和为S n,当且仅当n=8时S n取得最大值,则d的取值范围为______ .6. 若等差数列满足,则当▲时,的前项和最大.7. 已知等比数列{a n}中,各项都是正数,且成等差数列,则等于____________.8. 若等差数列{a n}的前5项和S 5=25,且a 2=3,则a 7=____________.9. 已知数列{a n}的前n项和S n=n 2-9n,则其通项a n=____________;若它的第k项满足5<a k<8,则k=____________.10. 设等差数列{a n}的前n项和为S n,若S 3=9,S 6=36,则a 7+a 8+a 9=____________.11. 等差数列{a n} 中a 1+a 9+a 2+a 8=20,则a 3+a 7=____________.12. 设等差数列{a n}的前n项和为S n,若S 8=32,则a 2+2a 5+a 6= ______ .13. 已知等差数列{a n}中,满足S 3=S 10,且a 1>0,S n是其前n项和,若S n取得最大值,则n= ______ .14. 已知函数221()1f xxx-=+,则111()()()(0)(1)(3)(7)(9)973f f f f f f f f+++++++= .15. 设S n是等差数列{a n}的前n项和,a 12=-8,S 9=-9,则S 16=____________.16. 已知等差数列的前项和为,若,则___________17. 设等差数列{a n}、{b n}的前n项和分别为S n、T n,若对任意自然数n都有= ,则+的值为____________.18. 设a 1,d为实数,首项为a 1,公差为d的等差数列{a n}的前n项和为S n,满足S 5S 6+15=0,则d的取值范围是____________.19. 等差数列{a n}的前n项和为S n,且a 4-a 2=8,a 3+a 5=26.记T n= ,如果存在正整数M,使得对一切正整数n,T n≤M都成立,则M的最小值是____________.20. 若{a n}是等差数列,首项a 1>0,a 2012+a 2013>0,a 2012•a 2013<0,则使前n项和S n>0成立的最大自然数n是____________.等差数列填空题训练参考答案【答案】1. 352. 803.4.5. (-1,- )6.87.8. 139. 2n-10;810. 4511. 1012. 1613. 6或714.115. -7216.717.18.19. 220. 2012【解析】1.解:∵数列{a n},{b n}都是等差数列,∴设数列{a n}的公差为d 1,设数列{b n}的公差为d 2,∴a 3+b 3=a 1+b 1+2(d 1+d 2)=21,而a 1+b 1=7,可得2(d 1+d 2)=21-7=14.∴a 5+b 5=a 3+b 3+2(d 1+d 2)=21+14=35故答案为:35根据等差数列的通项公式,可设数列{a n}的公差为d 1,数列{b n}的公差为d 2,根据a 1+b 1=7,a 3+b 3=21,可得2(d 1+d 2)=21-7=14.最后可得a 5+b 5=a 3+b 3+2(d 1+d 2)=2+14=35.本题给出两个等差数列首项之和与第三项之和,欲求它们的第五项之和,着重考查了等差数列的概念与通项公式和等差数列的性质,属于基础题.2.解:∵在等差数列{a n}中a 1+a 3+a 5=9,a 2+a 4+a 6=15,∴a 1+a 3+a 5=3a 3=9,a 2+a 4+a 6=3a 4=15,∴a 3=3,a 4=5,公差d=5-3=2,a 1=3-2×2=-1,∴前10项的和S 10=10×(-1)+ ×2=80,故答案为:80.由题意可求出数列的首项和公差,代入求和公式计算可得.本题考查等差数列的求和公式,求出数列的首项和公差是解决问题的关键,属基础题.3.解:∵在等差数列中S 2n-1=(2n-1)•a n,∴ ,,则= ,又∵ = ,∴ =即=故答案为:本题考查的知识点是等差数列的性质及等差数列的前n项和,由等差数列中S 2n-1=(2n-1)•a n,我们可得,,则= ,代入若= ,即可得到答案.在等差数列中,S 2n-1=(2n-1)•a n,即中间项的值,等于所有项值的平均数,这是等差数列常用性质之一,希望大家牢固掌握.4.解:由等差数列的性质可得2b=2+9,解得b= ,又可得2a=2+b=2+ = ,解之可得a= ,同理可得2c=9+ = ,解得c= ,故c-a= - = =故答案为:由等差数列的性质可得2b=2+9,解之可得b值,再由等差中项可得a,c的值,作差即可得答案.本题考查等差数列的性质和通项公式,属基础题.5.解:∵S n =7n+ ,当且仅当n=8时S n取得最大值,∴ ,即,解得:,综上:d的取值范围为(-1,- ).根据题意当且仅当n=8时S n取得最大值,得到S 7<S 8,S 9<S 8,联立得不等式方程组,求解得d的取值范围.本题主要考查等差数列的前n项和公式,解不等式方程组,属于中档题.6.由等差数列性质可得=3>0,所以>0,又因为,所以,所以等差数列前8项为正数,从第9项开始为负数.所以当8时,的前项和最大.故答案为8.7.解:成等差数列,∴a 3=a 1+2a 2,∴q 2-2q-1=0,∴q=1+ ,q=1- (舍去)∴ = = =q 2=3+2故答案为:3+28.解:依题意可得,d=2,a 1=1∴a 7=1+6×2=13故答案为:139.解:∵S n=n 2-9n,∴当n=1时,a 1=s 1=-8;当n≥2时,a n=s n-s n-1=n 2-9n-[(n-1) 2-9(n-1)]=2n-10,∵a 1也适合a n=2n-10,∴a n=2n-10;令5<2k-10<8,解得7.5<k<9,∵k∈N +,∴k=8,故答案为2n-10;8.10.解:a 4+a 5+a 6=S 6-S 3=36-9=27,a 4+a 5+a 6=(a 1+3d)+(a 2+3d)+(a 3+3d)=(a 1+a 2+a 3)+9d=S 3+9d=9+9d=27,所以d=2,则a 7+a 8+a 9=(a 1+6d)+(a 2+6d)+(a 3+6d)=S 3+18d=9+36=45.故答案为:4511.解:∵a 1+a 9+a 2+a 8=(a 1+a 9)+(a 2+a 8)=2(a 3+a 7)=20,∴a 3+a 7=10.故答案为:1012.解:∵S 8=32,∴ =32,可得a 4+a 5=a 1+a 8=8.则a 2+2a 5+a 6=2(a 4+a 5)=2×8=16,故答案为:16.S 8=32,可得=32,可得a 4+a 5=a 1+a 8.利用a 2+2a 5+a 6=2(a 4+a 5)即可得出.本题考查了等差数列的通项公式性质及其前n项和公式,考查了推理能力与计算能力,属于中档题.13.解:∵等差数列{a n}中,满足S 3=S 10,且a 1>0,∴S 10-S 3=7a 7=0,∴a 7=0,∴递减的等差数列{a n}中,前6项为正数,第7项为0,从第8项开始为负数,∴S n取得最大值,n=6或7故答案为:6或7由题意易得a 7=0,进而可得数列{a n}中,前6项为正数,第7项为0,从第8项开始为负数,易得结论.本题考查等差数列前n项和的最值,从数列项的正负入手是解决问题的关键,属基础题.14.试题分析:观察所求值的式子,先计算,因此原式=.考点:分组求和.15.解:S 9= (a 1+a 9)×9=-9,又有a 1+a 9=2a 5,可得,a 5=-1,由等差数列的性质可得,a 1+a 16=a 5+a 12,则S 16= (a 1+a 16)×16= (a 5+a 12)×16=-72.16.根据题意可得:,由等差数列的性质可得:,所以。
17.解:∵{a n},{b n}为等差数列,∴ + = + = = .∵ = = = = ,∴ + = .故答案为18.解:因为S 5S 6+15=0,所以(5a 1+10d)(6a 1+15d)+15=0,整理得2a 12+9a 1d+10d 2+1=0,此方程可看作关于a 1的一元二次方程,它一定有根,故有△=(9d) 2-4×2×(10d 2+1)=d 2-8≥0,整理得d 2≥8,解得d≥2 ,或d≤-2则d的取值范围是.故答案案为:.19.解:∵{a n}为等差数列,由a 4-a 2=8,a 3+a 5=26,可解得S n=2n 2-n,∴T n=2- ,若T n≤M对一切正整数n恒成立,则只需T n的最大值≤M即可.又T n=2- <2,∴只需2≤M,故M的最小值是2.故答案为220.解:∵等差数列{a n},首项a 1>0,a 2012+a 2013>0,a 2012•a 2013<0,∴a 2012>0,a 2013<0.∴S 4024= =2012(a 2012+a 2013)>0,S 4025= =4025a 2013<0,∴使前n项和S n>0成立的最大自然数n是4024.故答案为:4024.。