边坡稳定性计算方法

合集下载

岩质边坡稳定性分析计算

岩质边坡稳定性分析计算

岩质边坡稳定性分析计算引言:岩质边坡是指由岩石构成的边坡体,它的稳定性分析是地质工程中的一项重要内容。

本文将围绕岩质边坡的稳定性分析进行详细讨论,包括边坡的力学特性、稳定性分析的方法和计算步骤。

一、岩质边坡力学特性:岩质边坡的力学特性主要包括边坡坡度、岩性、结构构造、地质构造、坡面覆盖物、地下水等。

这些因素对边坡的稳定性有着重要影响。

1.边坡坡度:边坡坡度是指地面或水平面与边坡倾斜线的夹角,是影响边坡稳定性的重要因素。

坡度越大,边坡的稳定性越差。

2.岩性:岩石的强度、粘聚力、内摩擦角等岩性参数对边坡稳定性有着重要影响。

一般来说,岩性较强的边坡稳定性较好。

3.结构构造:边坡中的断层、节理、褶皱等结构构造对边坡的稳定性有着重要影响。

结构面的发育程度和倾角越大,边坡的稳定性越差。

4.地质构造:地质构造包括岩层倾角、层面、节理等,对边坡的稳定性具有重要影响。

地质构造的研究可以帮助我们了解边坡的受力特点和变形规律。

5.坡面覆盖物:坡面覆盖物通常包括土壤、草地、水层等,这些覆盖物的分布情况和特性对边坡的稳定性有着显著影响。

6.地下水:地下水的存在对边坡的稳定性具有重要影响。

当地下水位上升时,边坡会受到水的浸润,导致边坡强度降低,从而增加边坡失稳的可能性。

二、岩质边坡稳定性分析方法:岩质边坡的稳定性分析方法主要有极限平衡法和有限元法两种,下面将对这两种方法进行介绍。

1.极限平衡法:极限平衡法是一种经典的岩质边坡稳定性分析方法,它基于边坡体在其稳定状态下的力学平衡原理进行计算。

这种方法通常将边坡分割为无限小的切割体,并假设切割体沿着内摩擦边界面滑动,从而得到边坡的稳定状态。

2.有限元法:有限元法是一种基于有限元理论进行边坡稳定性分析的方法。

这种方法将边坡体离散为有限数量的单元,通过求解单元之间的位移和应力,得到边坡的稳定状态。

有限元法能够模拟较为复杂的边坡几何形状和边界条件,但计算复杂度较大。

三、岩质边坡稳定性计算步骤:进行岩质边坡稳定性分析计算时,通常需要进行以下步骤:1.边坡参数确定:根据实地调查和实验数据,确定边坡的坡度、坡高、岩石强度参数、结构面参数等。

边坡稳定性计算方法

边坡稳定性计算方法

一、边坡宁静性估计要领之阳早格格创做正在边坡宁静估计要领中,常常采与完全的极限仄稳要领去举止领会.根据边坡分歧破裂里形状而有分歧的领会模式.边坡得稳的破裂里形状按土量战成果分歧而分歧,细粒土或者砂性土的破裂里多呈直线形;细粒土或者粘性土的破裂里多为圆弧形;滑坡的滑动里为不准则的合线或者圆弧状.那里将主要介绍边坡宁静性领会的基根源基本理以及正在某些鸿沟条件下边坡宁静的估计表里战要领.(一)直线破裂里法所谓直线破裂里是指边坡损害时其破裂里近似仄里,正在断里近似直线.为了简化估计那类边坡宁静性领会采与直线破裂里法.能产死直线破裂里的土类包罗:均量砂性土坡;透火的砂、砾、碎石土;主要由内摩揩角统造强度的挖土.图 9 - 1 为一砂性边坡示企图,坡下 H ,坡角β,土的容沉为γ,抗剪度指标为c、φ .如果倾角α的仄里AC 里为土坡损害时的滑动里,则可领会该滑动体的宁静性.沿边坡少度目标截与一个单位少度动做仄里问题领会.已知滑体ABC沉 W,滑里的倾角为α,隐图9-1 砂性边坡受力示企图然,滑里 AC上由滑体的沉量W= γ(Δ ABC)爆收的下滑力T战由土的抗剪强度爆收的抗滑力Tˊ分别为:T=W · sina战则此时边坡的宁静程度或者仄安系数可用抗滑力与下滑力去表示,即为了包管土坡的宁静性,仄安系数F s 值普遍不小于 1.25 ,特殊情况下可允许减小到 1.15 .对付于C=0 的砂性土坡或者是指边坡,其仄安系数表白式则形成从上式不妨瞅出,当α =β时,F s 值最小,证明边坡表面一层土最简单滑动,那时当 F s =1时,β=φ,标明边坡处于极限仄稳状态.此时β角称为戚止角,也称安眠角. 别的,山区逆层滑坡或者坡积层沿着基岩里滑动局里普遍也属于仄里滑动典型.那类滑坡滑动里的深度与少度之比往往很小.当深少比小于 0.1时,不妨把它当做一个无限边坡举止领会.图 9-2表示一无限边坡示企图,滑动里位子正在坡里下H深度处.与一单位少度的滑动土条举止领会,效率正在滑动里上的剪应力为,正在极限仄稳状态时,损害里上的剪应力等于土的抗剪强度,即得式中N s =c/ γ H 称为宁静系数.通过宁静果数不妨决定α战φ关系.当c=0 时,即无粘性土.α =φ,与前述领会相共.二圆弧条法根据洪量的瞅测标明,粘性土自然山坡、人为挖筑或者启掘的边坡正在损害时,破裂里的形状多呈近似的圆弧状.粘性土的抗剪强度包罗摩揩强度战粘散强度二个组成部分.由于粘散力的存留,粘性土边坡不会像无粘性土坡一般沿坡里表面滑动.根据土体极限仄稳表里,不妨导出均量粘那坡的滑动里为对付数螺线直里,形状近似于圆柱里.果此,正在工程安排中常假定滑动里为圆弧里.建坐正在那一假定上宁静领会要领称为圆弧滑动法战圆弧条分法.1. 圆弧滑动法1915 年瑞典彼得森( K.E.Petterson )用圆弧滑动法领会边坡的宁静性,以去该法正在各国得到广大应用,称为瑞典圆弧法.图 9 - 3 表示一均量的粘性土坡. AC 为大概的滑动里,O为圆心,R 为半径.假定边坡损害时,滑体ABC正在自沉W 效率下,沿AC绕O 面完全转化.滑动里 AC 上的力系有:督促边坡滑动的滑能源矩 M s =W · d ;抵挡边坡滑动的抗滑力矩,它该当包罗由粘散力爆收的抗滑力矩M r =c ·AC · R ,别的还应有由摩揩力所爆收的抗滑力矩,那里假定φ= 0 .边坡沿AC的仄安系数F s 用效率正在 AC里上的抗滑力矩战下滑力矩之比表示,果此有那便是完全圆弧滑动估计边坡宁静的公式,它只适用于φ= 0 的情况.图9-3 边坡完全滑动 2. 瑞典条分法前述圆弧滑动法中不思量滑里上摩揩力的效率,那是由于摩揩力正在滑里的分歧位子其目标战大小皆正在改变.为了将圆弧滑动法应用于φ> 0 的粘性土,正在圆弧法领会粘性土坡宁静性的前提上,瑞典教者 Fellenius 提出了圆弧条领会法,也称瑞典条分法.条会法便是将滑动土体横背分成若搞土条,把土条当成刚刚塑体,分别供效率于各土条上的力对付圆心的滑能源矩战抗滑力矩,而后按式( 9-5 )供土坡的宁静仄安系数.采与分条法估计边坡的仄安系数F ,如图 9 - 4 所示,将滑动土体分成若搞土条.土条的宽度越小,估计细度越下,为了预防估计过于烦琐,并能谦足安排央供,普遍与宽为 2 ~ 6m 并应采用滑体形状变戚战土层分界面动做分条的界限.于任性第 i条上的效率力如下.图9-4 瑞典条分法(1)土条的自.其中γ 为土的容得,为土条的断里里积.将沿其断里积的形心效率至圆弧滑里上并领会成笔直滑里的法背分力战切于滑里的切背分力,由图 9 - 4 ( b )可知:隐然,是推动土体下滑的力.但是如果第 i 条们于滑弧圆心铅垂线的载侧(坡足一边),则起抗滑效率.对付于起抗滑效率的切背分力采与标记 T ′表示.果效率线能过滑弧圆心 O 面力矩为整,对付边坡不起滑动效率,但是决断着滑里上抗剪强度的大小.(2)滑里上的抗滑力 S ,目标与滑动目标好异.根据库仑公式应有S=N i tanφ+cl i .式中l i 为第i条的滑弧少.(3)土条的二个正里存留着条块间的效率力.效率正在 i条块的力,除沉力中,条块正里 ac战bd 效率有法背力P i 、 P i+1 ,切背力H i 、H i+1 .如果思量那些条间力,则由静力仄稳圆程可知那是一个超静定问题.要使问题得解,由二个大概的道路:一是扬弃刚刚体仄稳的观念,把土当搞变形骸,通过对付土坡举止应力变形领会,不妨估计出滑动里上的应力分散,果此不妨不必用条分法而是用有限元要领.另一道路是仍以条分法为前提,但是对付条块间的效率力做一些不妨交受的简化假定.Fellenius 假定不计条间力的效率,便是将土条二侧的条件力的合力近似天瞅成大小相等、目标好异、效率正在共效率里上.本量上,每一土条二侧的条间力是不仄衡的,但是体味标明,土条宽度不大时,正在土坡宁静领会中,忽略条间力的效率对付估计截止的效率不隐著.将效率正在各段滑弧上的力对付滑动圆心与矩,并分别将抗滑效率、下滑效率的力矩相加得出用正在所有滑弧上的抗滑力矩以及滑能源矩的总战,即将抗滑力矩与下滑力矩之比定义为土坡的宁静仄安系数,即那便是瑞典条分法宁静领会的估计公式.该法应用的时间很少,散集了歉富的工程体味,普遍得到的仄安系数偏偏矮,即偏偏于仄安,故暂时仍旧是工程上时常使用的要领.(三)毕肖普法从前述瑞典条分法不妨瞅出,该要领的假定不利害常透彻的,它是将不仄衡的问题按极限仄稳的要领去思量而且已能思量灵验应力下的强度问题.随着土力教教科的不竭死少,很多教者全力于条分法的矫正.一是着沉探索最伤害滑位子的逆序,二是对付基原假定做些建改战补充.但是直到毕肖普( A.N.Bishop )于 1955 年担出了仄安系数新定义,条分法那五要领才爆收了量的飞跃.毕肖普将边坡宁静仄安系数定义为滑动里上土的抗剪强度τ f 与本量爆收的剪应力τ之比,即(9-7)那一仄安系数定义的核心正在于一是不妨充分思量灵验应力下的抗剪经常;二是充分思量了土坡宁静领会中土的抗剪强度部散收挥的本量情况.那一观念不公使其物理意思越收透彻,而且使用范畴更广大,为以去非圆弧滑动领会及土条分界里上条间力的百般思量办法提供了有得条件.由图 9 - 5 所示圆弧滑动体内与出土条i举止领会,则土条的受力如下:1.土条沉W i 引起的切背反力T i 战法背反力N i ,分别效率正在该分条核心处2.土条的侧百分别效率有法背力P i 、Pi+1 战切背力H i 、H i+1 .由土条的横背静力仄稳条件有∑ F z ,即图9-5 毕肖普法条块效率力领会(9-8)当土条已损害时,滑弧上土的抗剪强度只收挥了一部分,毕肖普假定其什与滑里上的切背力相仄稳,那里思量仄安系数的定义,且ΔH i =H i+1 -H i 即(9-9)将( 9 - 9 )式代科( 9 - 8 )式则有令(9-10)则(9-11)思量所有滑动土体的极限仄稳条件,些时条间力P i 战 H i 成对付出现,大小相等、目标好异,相互对消.果此惟有沉力W i 战切背力T i 对付圆心爆收力矩,由力矩仄稳知(9-12)将( 9 - 11 )式代进( 9 - 9 )式再代进( 9 - 12 )式,且d i =Rsinθ i ,别的,土条宽度不大时, b i =l i cosθ i ,经整治简化可止毕肖普边坡宁静仄安系数的一致公式(9-13)式中ΔH i 仍是已知量.毕肖普进一步假定ΔH i =0 于是上式进一步简化为(9-14)如果思量滑里上孔隙火压力 u 的效率并采与灵验应力强度指标,则上式可改写为(9-15)从式中不妨瞅出,参数m θi 包罗有仄安系数 F s ,果此不克不迭交供出仄安系数,而需采与试算法迭代供解F s 值.为了便于迭代估计,已体例成m θ~θ关系直线,如图 9 - 6 所示.试算时,可先假定 F s = 1.0 ,由图 9 - 6 查出各θ i 所对付应的值.代进( 9 - 14 )式中,供得边坡的仄安系数 F s ′.若 F s ′与F s 之好大于确定的缺面,用F s ′查m θi ,再次估计出仄安系数 F s 值,如是反复迭代估计,直至前后二次估计出仄安系数F s ′值,如是反复迭代估计,直至前后二次估计的仄安系数非常交近,谦足确定细度的央供为止.常常迭代经常支敛的,普遍只消 3 ~ 4 次即可谦足细度.与瑞典条分法相比,简化毕肖普法是正在不思量条块间切背力的前提下,谦足力多边形关合条件,便是道,隐含着条块间有火仄力的效率,虽然正在公式中火仄效率力并已出现.所以它的特性是:(1)谦足完全力矩仄稳条件;(2)谦足各条块力的多边形关合条件,但是不谦足条块的力矩仄稳条件;(4)假设条块间效率力惟有法背力不切背力;(4)谦足极限仄稳条件.毕肖普法由于思量了条块间火仄力的效率,得到的仄安系数较瑞典条分法略下一些.。

(整理)边坡稳定性计算方法

(整理)边坡稳定性计算方法

一、边坡稳定性计算方法在边坡稳定计算方法中,通常采用整体的极限平衡方法来进行分析。

根据边坡不同破裂面形状而有不同的分析模式。

边坡失稳的破裂面形状按土质和成因不同而不同,粗粒土或砂性土的破裂面多呈直线形;细粒土或粘性土的破裂面多为圆弧形;滑坡的滑动面为不规则的折线或圆弧状。

这里将主要介绍边坡稳定性分析的基本原理以及在某些边界条件下边坡稳定的计算理论和方法。

(一)直线破裂面法化计算这类边坡稳定性分析采用直线破裂面法。

能形成直线破裂面的土类包括:均质砂性土坡;透水的砂、砾、碎石土;主要由内摩擦角控制强度的填土。

图 9 - 1 为一砂性边坡示意图,坡高 H ,坡角β,土的容重为γ,抗剪度指标为c、φ。

如果倾角α的平面AC面为土坡破坏时的滑动面,则可分析该滑动体的稳定性。

沿边坡长度方向截取一个单位长度作为平面问题分析。

图9-1 砂性边坡受力示意图已知滑体ABC重 W,滑面的倾角为α,显然,滑面 AC上由滑体的重量W= γ(ΔABC)产生的下滑力T和由土的抗剪强度产生的抗滑力Tˊ分别为:T=W · sina和则此时边坡的稳定程度或安全系数可用抗滑力与下滑力来表示,即为了保证土坡的稳定性,安全系数F s 值一般不小于 1.25 ,特殊情况下可允许减小到 1.15 。

对于C=0 的砂性土坡或是指边坡,其安全系数表达式则变为从上式可以看出,当α =β时,F s 值最小,说明边坡表面一层土最容易滑动,这时当 F s =1时,β=φ,表明边坡处于极限平衡状态。

此时β角称为休止角,也称安息角。

此外,山区顺层滑坡或坡积层沿着基岩面滑动现象一般也属于平面滑动类型。

这类滑坡滑动面的深度与长度之比往往很小。

当深长比小于 0.1时,可以把它当作一个无限边坡进行分析。

图 9-2表示一无限边坡示意图,滑动面位置在坡面下H深度处。

取一单位长度的滑动土条进行分析,作用在滑动面上的剪应力为,在极限平衡状态时,破坏面上的剪应力等于土的抗剪强度,即得式中N s =c/ γ H 称为稳定系数。

边坡稳定性设计计算

边坡稳定性设计计算

边坡稳定性计算一、基本资料土力学指标:天然容重(KN/m3)塑限(%)液限(%)含水量(%)粘聚力(kPa)内摩擦角(。

)tanφ18 14 27 19 19 28 0.53171二、稳定性验算公路按一级公路标准,双向四车道,设计车速为80km/h,路基宽度为24.5m,荷载为车辆重力标准值550KN,中间带取2m,车道宽度3.75m,硬路肩2.5m,土路肩0.75m,进行最不利布载时对左右各布3辆车。

路堤横断面图如下:1)将标准车重转换成土柱高度,按下列公式计算:ℎ0= NQ BLγ公式中:L按《公路丁程技术标准》(JTG BOl)规定对千标准车辆荷载取 12. 8m。

B为荷载横向分布宽度 (m)表示如下:B=Nb+(N-1)m+d其中:N为车辆数,取6;m为相邻两车的轮距,取1.3m ;d为轮胎着地宽度,取0.6m。

即:B = 6×1.8+(6-1)×1.3+0.6 = 17.9m因此ℎ0=NQBLγ=6×55017.9×12.8×18=0.8m2)计算高度HH = h0+H1+H2 =0.8+7+8 =15.8m3)计算平均坡度I已知上部坡度为1:1.25,下部坡度为1:1.5,台阶宽为2m,由已知数据可得平均坡度I为:I =(0.8+7+8):(8.75+2+12)=1:1.44 =1:1.5查规范得β1=26°、β2=35°三、按4.5H法确定滑动圆心辅助线,并绘制不同位置的滑动曲线1)滑动曲线过路基左边缘3/4处,将圆弧范围土体分成8块,如下:(从右往左分为5100×7+5450×1,8块)为4375×8,8块)右往左分为3600×7+3675×1,8块)4)滑动曲线过路基左边缘3/16处,将圆弧范围土体分成8块,如下:(从右往左分为3400×7+3543×1,8块)5)滑动曲线过路基左边缘1/8处,将圆弧范围土体分成8块,如下:(从右往左分为3300×7+2712×1,8块)6)由此可得出5个滑动面的K值,并作图如下:各个滑动面K值数据由上表可见K3曲线为极限的滑动面。

边坡岩体稳定性分析的计算方法

边坡岩体稳定性分析的计算方法

边坡岩体稳定性分析的计算方法边坡岩体稳定性分析是地质工程设计工作中十分重要的一部分,是评价和研究边坡岩体稳定性的重要方法之一。

随着地质工程的发展,计算机技术的发展和应用,计算边坡岩体稳定性的方法也在不断发展和完善。

本文介绍了边坡岩体稳定性分析的计算方法,以及计算边坡岩体稳定性的重要步骤和要素。

二、边坡岩体稳定性的计算方法1.计算要求计算边坡岩体稳定性的要求是首先进行岩体的力学性质分析,确定岩体的抗剪强度和抗压强度,以及岩体的尺寸、形状、排列结构和构造;随后确定边坡的几何形状参数和水文地质因素,以及重力作用体系的参数;最后,按照边坡分析方法进行计算,确定边坡岩体的稳定系数。

2.计算过程(1)岩体力学性质分析。

首先分析岩体的抗剪强度和抗压强度,其次施加水平和垂直运动,确定岩体的变形特性;(2)边坡几何形状分析。

确定边坡的几何形状参数,包括坡度、坡面宽度、坡面长度等,同时确定水文地质因素,如雨水、渗水、地下水等;(3)重力作用体系分析。

确定边坡岩体的重力作用体系,包括自重、滑移压力、地下水压力、渗水压力等;(4)运用边坡分析方法计算边坡岩体的稳定性。

可以采用等效滑动面法、艾里克斯准则、薛定谔方程等方法,计算边坡岩体的稳定性。

三、边坡岩体稳定性分析的要素1.岩体力学特性岩体的抗剪强度和抗压强度是影响边坡岩体稳定性的主要因素之一。

岩体的抗剪强度可以通过抗拉强度、抗折强度等相关试验来测定,而抗压强度可以通过抗压强度试验、岩石试验等来确定。

2.边坡几何参数边坡几何参数是指边坡的坡度、坡面宽度、坡面长度等参数,这些参数是影响边坡岩体稳定性的重要因素。

一般来说,边坡坡度越陡,边坡稳定性越低;坡面宽度、坡面长度越小,边坡稳定性越低。

3.水文地质条件水文地质条件是指边坡周围的雨水、渗水、地下水等情况,这些条件也是影响边坡岩体稳定性的重要因素。

一般来说,边坡周围有大量雨水、地下水时,边坡稳定性就会变差。

4.重力作用体系重力作用体系是指边坡岩体受到的重力、滑移压力、地下水压力、渗水压力等因素的综合作用,这也是影响边坡岩体稳定性的重要因素。

边坡稳定性计算方法

边坡稳定性计算方法

A
C c
B a
b
D
E. Hoek等人提出了一种确
定楔体稳定系数的方法——
E. Hoek图解法。
____________________________ 第十二页,共五十八页。
楔形体滑坡的E. Hoek图解法
E. Hoek法是将边坡面、坡顶面和两个结构面绘制在赤平极射投影 图上,4个圆弧有5个交点,分别代表了5条线,各线之间的夹角可在图
• 边坡内有确定的滑面及竖直张裂逢
_______________________________________________________________________________________
• 边坡内没有确定的滑面,滑面需经分析求得
_____________________________________________________________________________________________________________
力就范其1.1可 对对。目5内 外,工以稳通排排前三程土土判定过,场场级的断系抗边边边建影出 数滑坡坡坡筑响边 的力稳等物坡 大与定因取岩 小滑分素1体作动析.0确所出力5的。定处了(结,的规或果对状定抗通一态。滑常级,力用建这矩边筑就与坡物是滑稳取边动定1坡.力系2<>>5稳121矩数,000定)来二性级的表分建1比示.211析筑~较.。.321物。.5规,取 《露天煤矿工程设计规范》(GB 50197-94)
危险,另一个可能 是安全的。 Wsinψ
不超过柱体的底缘即:
h
Wsin tanb
Wcos
h
Wcosψ
W
ψ
第十六页,共五十八页。

平面、折线滑动法边坡稳定性计算书

平面、折线滑动法边坡稳定性计算书

平面、折线滑动法边坡稳定性计算书计算依据:1、《建筑基坑支护技术规程》JGJ120-20122、《建筑边坡工程技术规范》GB50330-20023、《建筑施工计算手册》江正荣编著一、基本参数边坡稳定计算方式折线滑动法边坡工程安全等级三级边坡边坡土体类型填土土的重度γ(KN/m3) 20土的内摩擦角φ(°)15 土的粘聚力c(kPa) 12边坡高度H(m) 11.862 边坡斜面倾角α(°)40坡顶均布荷载q(kPa) 0.2二、边坡稳定性计算计算简图滑动面参数滑动面序号滑动面倾角θi(°)滑动面对应竖向土条宽度bi(m)1 35 5.672 35 5.63 35 5.67土条面积计算:R1=(G1+qb1)cosθ1×tanφ+c×l1=(156.213+0.2×2.803)×cos(35°)×tg(15°)+12×6.922=117.474 kN/mT1=(G1+ qb1)sinθ1 =(156.213+0.2×2.803)×sin(35°)=89.922 kN/mR2=(G2+qb2)cosθ2×tanφ+c×l2=(131.759+0.2×0)×cos(35°)×tg(15°)+12×6.836=110.952 kN/mT2=(G2+ qb2)sinθ2 =(131.759+0.2×0)×sin(35°)=75.574 kN/mR3=(G3+qb3)cosθ3×tanφ+c×l3=(44.652+0.2×0)×cos(35°)×tg(15°)+12×6.922=92.865kN/mT3=(G3+ qb3)sinθ3 =(44.652+0.2×0)×sin(35°)=25.611 kN/mK s=(∑R iψiψi+1...ψn-1+R n)/(∑T iψiψi+1...ψn-1+T n),(i=1,2,3,...,n-1)第i块计算条块剩余下滑推力向第i+1计算条块的传递系数为:ψi=cos(θi-θi+1)-sin(θi-θi+1)×tanφiK s=(∑R iψiψi+1...ψn-1+R n)/(∑T iψiψi+1...ψn-1+T n)=(117.474×1×1+110.952×1+92.865)/(89.922×1×1+75.574×1+25.611)=1.681≥1.25满足要求!。

基槽边坡稳定性计算

基槽边坡稳定性计算

基槽边坡稳定性计算:本工程其坡面的土质基本为砂砾土的亚园砾土,属无粘性土边坡。

在土坡上的分力有土坡下滑趋势的剪切力T、单元土自重G、阻止土体下滑的抗剪力Tf,而阻止土体下滑的抗剪力Tf则为土方单元体自重在坡面法线方向的分力N引起的摩擦力,即Tf=Ntanα=G×cosβ×tanα。

抗滑力和滑动力的比值为安全系数K=Tf/T= G×cosβ×tanα/Gsinβ= tanα/ tanβ,由此可见从理论上讲当坡角小于土方内摩擦角时(β<α)K>1土坡是稳定的,一般性土坡为保证土坡稳定安全系数取值为K>1.3-1.5,所以查中砂园砾内摩擦角为45度,则tan45=1,tanβ=5.2/10=0.52 K= tanα/ tanβ=1/0.52=1.92>1.3-1.5(安全)结论是安全稳定的。

与3#楼相邻基槽边坡稳定性计算:与三号楼边坡高度为5.55m,三号楼基础宽为13.50m,坡角至坡顶水平距离为3m,三号楼压重为(钢筋80Kg/平米、混凝土0.5×2400=1200Kg/平米,1200+80=1280×14层=17920 Kg/平米)17920 Kg/平米=179.2KN/平米,坡面为砂砾土指标为天然自重γ=19 KN,内摩擦角为38度,粘聚力0Kpa。

1、基坑剖面如图所示。

2、取滑动园弧,下端通过坡角A点,上端通过3#楼基础边缘B 点,加入3#楼共14层自重和一层工作面施工荷载7KN=186.2KN 进行验算此土坡的稳定性,取半径R=21m。

3、取土条宽B=1/10R=2.1m4、土条编号:作园心O点的垂线,垂直线处为0条,依次编号为1-9条。

5、计算AB弧长L:设园心∠AOB=α由sinα/2=AB/2/R=0.517,得α=62.26L=αЛR/180=62.26×3.14×21/180=22.816、3#楼压重179.2KN+施工荷载7KN=186.2KN分布在6个土条上,每个土条为31.2KN。

边坡稳定性计算

边坡稳定性计算

计算中给出三种不同的圆心搜索范围,用遗传 进化算法计算结果如下:
结论:
遗传进化算法模拟了生物遗传进化过程, 克服了传统方法容易陷入局部极小值的缺点, 是一种全局优化算法。
参考文献: 参考文献:
1、 杨学堂、王飞 ,边坡稳定性评价方法及发展趋势 ,岩土工程
技术 ,2004,18(2):103~106 2、 I.B.DONALD,边坡稳定性的有限元评价,西北水资源与水工 程,1996,7(3):89~95 3、 孙涛、顾波,边坡稳定性分析方法评述,岩土工程界,5 (11):48~50 4、 陈新民,罗国煜。基于经验的边坡稳定性灰色系统分析与评 价。岩土工程学报,1999,21(5):638~641 5、肖专文、张奇志,遗传进化算法在边坡稳定性分析中的应用 , 岩土工程学报 ,1998,18(1):43~46
一、定量分析法
1,极限平衡分析方法 极限平衡分析方法计算简便,是目前最 常用方法.它是通过分析在临界破坏状态下, 土体外力与内部强度所提供抗力之间的平衡, 计算土体在自身和外力作用下的土体稳定程 度.目前已有的极限平衡分析方法有:斯宾塞 法,毕肖普条分法,简布法,沙尔玛法和楔体 极限平衡分析法等等。其缺点是在力学上作了 一些简化假设。
4,遗传进化算法 ,
遗传进化算法是一种新发展起来的全局搜索 算法。此法首先随机生成一组模型,将模型的 每个参数表示为二进位制数码,然后对种群内 各模型根据具体问题所给的目标函数决定其生 存概率,来进行优胜劣汰,再把剩下的较优的 个体进行交换和变异,最终完成一次最种群的 繁殖,反复循环,来模拟生物进化规律。它的 特点是在检索了少部分搜索空间后便能迅速的 收敛于最有解。该方法模拟了生物遗传进化的 过程,克服了传统方法容易陷入局部极小值的 缺点,是一种全局优化算法。

边坡稳定性计算

边坡稳定性计算
计算方法
采用极限平衡法和数值分析法相结合的方法进行计算。
稳定性分析
通过计算得到安全系数为1.05,表明该边坡处于临界稳定 状态,需采取加固措施进行治理。加固措施包括锚杆格构 护坡、预应力锚索等。
05
CATALOGUE
边坡稳定性加固措施与建议
加固措施类型及原理
支挡结构加固
通过挡土墙、抗滑桩等支挡结构,承担边坡的土压力,阻止边坡 滑动。
研究成果总结
1 2 3
边坡稳定性计算模型
成功构建了考虑多种因素的边坡稳定性计算模型 ,提高了预测精度。
数值分析方法
发展了基于有限元、离散元等数值分析方法的边 坡稳定性计算技术,实现了复杂条件下边坡稳定 性的快速评估。
实时监测技术
将实时监测技术应用于边坡稳定性计算中,实现 了对边坡变形、渗流等过程的实时监测和预警。
排水系统加固
设置排水沟、截水沟等,排除地表水和地下水,降低边坡土体的含 水量,提高边坡稳定性。
加筋土加固
在边坡土体中加入拉筋或加筋材料,提高土体的抗剪强度和整体性 ,增加边坡的稳定性。
加固措施选择与优化
选择原则
根据边坡的地质条件、工程要求 、施工条件等因素,选择经济合 理、技术可行的加固措施。
优化方向
01
边坡类型
ห้องสมุดไป่ตู้
岩质边坡,高度20m,由砂岩和泥岩互层构成,坡度1:1。
02
计算方法
采用数值分析法中的有限元法进行计算。
03
稳定性分析
通过计算得到安全系数为1.15,表明该边坡在天然状态下处于基本稳定
状态,但在开挖或爆破等扰动作用下可能会发生局部失稳或崩塌。
实例三:复杂条件下边坡稳定性计算

边坡稳定性计算方法

边坡稳定性计算方法
____________________________________
___________________________________
边坡稳定性计算
煤炭系统规定
边坡岩体可能处于相对静止状态,或者处于极限平衡状态,或者处于运动状态。处于相对静止状态的边坡是稳定的;处于运动状态的边坡岩体称为滑坡体,边坡岩体的运动过程称为滑坡。
在进行稳定性计算时,通常将滑体分为若干条块(可以用竖直界面划分,也可以用倾斜界面划分)。
双折滑面
任意曲面
____________________
____________________
边坡岩体被纵横交错的地质断裂面切割,由这些断裂面形成的滑面,往往不是平面或圆弧等规则形状的,而是具某一曲折形状。
楔形体滑坡的E. Hoek图解法
楔形体滑坡的E. Hoek图解法
楔体的稳定系数为:
根据测得的角度,求出楔体的几何形状参数: 如果Ca=Cb=C、φa=φb=φ,又没有水的情况下:
用赤平极射投影定量地分析边坡的稳定性的方法称为球投影法。
基本知识 摩擦锥 摩擦圆 广义摩擦锥 裂隙组的摩擦圆 平面滑坡分析 折面滑坡分析 楔体滑坡分析
_____________________________________________________________________________________________________________
_______________________________________________________________________________________
曲折滑面滑坡的稳定性计算
________________定性计算1

瑞典条分法计算边坡稳定性

瑞典条分法计算边坡稳定性

说明:
1、本边坡计算采用瑞典条分法计算;
2、以边坡坡脚为圆心建立坐标系;
3、本边坡计算,需要输入的基本参数有:边坡高度、边坡角度、滑动圆弧圆心坐标、土层重度、土的有效粘聚力、内摩擦角,水头高、各土层厚度、附加荷载情况等;
4、其他计算因子可根据实际工程情况调整;
5、土条宽度建议采用(0.05——0.1)R(滑动圆半径);本人经验在一般土条宽度越小,Ks值也会偏小;本边坡计算只作为计算范本,实际计算时应按要求调整;
6、有效内摩擦角:考虑地下水;当通过不同地层时,按土条中线位置在相应的土层来确定的;
7、有效粘聚力:考虑地下水;当通过不同地层时,按土条中线位置在相应的土层来确定的;
8、地下水水头高h wi 取土条中点数值,故水压U i=γw h wi b i。

边坡稳定性计算

边坡稳定性计算

**处(段)边坡稳定性验算一、工点概况例1、在进场便道LK0+200处左侧有一段长35米,高路堤填方段,填土高度5m(高边坡),安全评估存在滑移的可能。

例2、在拌合站东侧有一段挖方高边坡,挖方高度6米,坡度为1:0.6,安全评估存在塌方的可能,存在安全隐患,此区域(路基填土)为粘性土,目前边坡坡度为1;1.5,边坡为梯形边坡,施工时分层填筑。

根据查相关资料及试验分析,其力学指标为:(说明具体位置及工点土质和地形描述,前提是安全评估此处不稳定)土力学指标:二、边坡稳定性验算1、填方边坡稳定性验算便道按双向两车道,设计车速为40km/h,路基宽度为7.5m,荷载为车辆重力标准值550KN,车道宽度3.75m,进行最不利布载时对左右各布1辆车。

路堤横断面图如下:将标准车重转换成土柱高度,按下列公式计算:公式中:L---纵向分布长度(等于汽车后轴轮胎的总距),即L=3+1.4+7.0+1.4+0.2=13mB---横向分布车辆轮胎最外缘间总距,即B=Nb+(N-1)m+Δ其中:N为车辆数,取6m为相邻两车的轮距,取1.3mΔ为轮胎着地宽度,取0.6m即B=2*1.8+1.3+0.6=5.5m因此h0=2*550/(19*5.5*13)=0.81m按4.5H法确定滑动圆心辅助线,坡度为1:1.5,因此查规范得β1=26°,β2=35°。

滑动面图如下:若土体仅有粘结力,则滑动面圆心为I点,滑动面如上图所示根据公式K=F/T=(Gcosα*tanф+CL)/Gsinα式中:F—滑动面的抗滑力,KN;T--滑动面的下滑力,KN;G—土体重力路基顶面车辆换算土层荷载之和α—滑动面对水平面的倾斜角,(°);ф路堤填料的内摩擦角,(°);C—路堤填料的粘结力,KPa;L—滑动面的长度。

本计算不考虑内摩擦角,根据公式算得K=2.22﹥1.25经验算边坡坡率为1:1.5为稳定的边坡坡率2、挖方边坡稳定性验算路堑横断面图如下(一般为侧边坡)按 4.5H法确定滑动圆心辅助线,坡度为1:1.0,因此查规范得β1=28°,β2=37°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、边坡稳定性计算方法在边坡稳定计算方法中,通常采用整体的极限平衡方法来进行分析。

根据边坡不同破裂面形状而有不同的分析模式。

边坡失稳的破裂面形状按土质和成因不同而不同,粗粒土或砂性土的破裂面多呈直线形;细粒土或粘性土的破裂面多为圆弧形;滑坡的滑动面为不规则的折线或圆弧状。

这 里将主要介绍边坡稳定性分析的基本原理以及在某些边界条件下边坡稳定的计算理论和方法。

(一)直线破裂面法所谓直线破裂面是指边坡破坏时其破裂面近似平面,在断面近似直线。

为了简化计算这类边坡稳定性分析采用直线破裂面法。

能形成直线破裂面的土类包括:均质砂性土坡;透水的砂、砾、碎石土;主要由内摩擦角控制强度的填土。

图9 - 1为一砂性边坡示意图,坡高 H ,坡角3 ,土的容重为 Y ,抗剪 度指标为C 、 ©。

如果倾角a 的平面AC 面为土坡破坏时的滑动面,则可分析该滑 动体的稳定性。

已知滑体 ABC 重W ,滑面的倾角为 a ,显然,滑面AC 上由滑体的重量 v= Y (A ABC 产生的下滑力T 和由土的抗剪强度产生的抗滑力T ,分别为:T=W -sina和;1 ! ' I I £ L : •二二 E 丨「・_则此时边坡的稳定程度或安全系数 一:可用抗滑力与下滑力来表示,即- T' W cos cs tan 4-e /巧=— -- ----------------JTWsm a为了保证土坡的稳定性,安全系数 F s 值一般不小于1.25 ,特殊情况下可允许减小到 1.15 。

对于C =0的砂性土坡或是指边坡,其安全系数表达式则变为W cos a • tan 爭 _ tan 弔 W ssn a tan a从上式可以看出,当a = 3时,F s 值最小,说明边坡表面一层土最容易滑动,这时沿边坡长度方向截取一个单位长度作为平面问题分析。

图9-1砂性边坡受力示意图tan当F s =1时,B = ©,表明边坡处于极限平衡状态。

此时B角称为休止角,也称安息角。

此外,山区顺层滑坡或坡积层沿着基岩面滑动现象一般也属于平面滑动类型。

这类滑坡滑动面的深度与长度之比往往很小。

当深长比小于0.1时,可以把它当作一个无限边坡进行分析图9-2表示一无限边坡示意图,滑动面位置在坡面下H深度处。

取一单位长度的滑动土条进行分析,作用在滑动面上的剪应力为二二匚.二二,在极限平衡状态时,破坏面上的剪应力等于土的抗剪强度,即2洒coSGSin a-c +yH cos Gtan©YHcosasiria—=JVfe = cos (tan oc —tan得k式中N s =C/ Y H称为稳定系数。

通过稳定因数可以确定a和$关系。

当C=0时,即无粘性土。

a = ©,与前述分析相同二圆弧条法根据大量的观测表明,粘性土自然山坡、人工填筑或开挖的边坡在破坏时,破裂面的形状多呈近似的圆弧状。

粘性土的抗剪强度包括摩擦强度和粘聚强度两个组成部分。

由于粘聚力的存在,粘性土边坡不会像无粘性土坡一样沿坡面表面滑动。

根据土体极限平衡理论,可以导岀均质粘这坡的滑动面为对数螺线曲面,形状近似于圆柱面。

因此,在工程设计中常假定滑动面为圆弧面。

建立在这一假定上稳定分析方法称为圆弧滑动法和圆弧条分法。

1.圆弧滑动法1915年瑞典彼得森(K.E.Petterson )用圆弧滑动法分析边坡的稳定性,以后该法在各国得到广泛应用,称为瑞典圆弧法图9 - 3表示一均质的粘性土坡。

AC为可能的滑动面,0为圆心,R为半径。

假定边坡破坏时,滑体ABC在自重W作用下,沿AC绕0点整体转动。

滑动面AC 上的力系有:促使边坡滑动的滑动力矩M s =W -d ;抵抗边坡滑动的抗滑力矩,它应该包括由粘聚力产生的抗滑力矩M r =c AC -R,此外还应有由摩擦力所产生的抗滑力矩,这里假定$ = 0 o边坡沿AC的安全系数F s用作用在AC面上的抗滑力矩和下滑力矩之比表示,因此有_抗滑力矩_肠_~涓动力矩琢7图9-3边坡整体滑动Fl2.瑞典条分法这就是整体圆弧滑动计算边坡稳定的公式,它只适用于$ = 0的情况。

前述圆弧滑动法中没有考虑滑面上摩擦力的作用, 这是由于摩擦力在滑面的不同位置其方向和大小都在改变。

为了将圆弧滑动法应用于$0的粘性土,在圆弧法分析粘性土坡稳定性的基础上,瑞典学者 Fellenius 提出了圆弧条分析法,也称瑞典条分法。

条会法就是将滑动土体竖向分成若干土条,把土条当成刚塑体,分别求作用于各土条上的力对圆心的滑动力矩和抗滑力矩,然后按式(9-5 )求土坡的稳定安全系数。

采用分条法计算边坡的安全系数 F ,如图9 - 4所示,将滑动土体分成若干土条。

土条的宽度越小,计算精度越高,为了避免计算过于繁C6)图9-4瑞典条分法(1) 土条的自-‘匚。

其中Y 为土的容得,'为土条的断面面积。

将 ’;:沿其断面积的形心作用至圆弧滑面上并分解成垂直滑面的法向分力’:和切于滑面的切向分力 •.,由图9 - 4( b )可知:显然,••是推动土体下滑的力。

但如果第 i 条们于滑弧圆心铅垂线的载侧(坡脚一边),则 ••起抗滑作用。

对于起抗滑作用的切向分力采用符号T '表示。

因,;作用线能过滑弧圆心0点力矩为零,对边坡不起滑动作用,但「决定着滑面上抗剪强度的大小。

(2) 滑面上的抗滑力 S ,方向与滑动方向相反。

根据库仑公式应有 S =N i tan +cl i 。

式中l i 为第i 条的滑弧长。

(3) 土条的两个侧面存在着条块间的作用力。

作用在 i 条块的力,除重力「夕卜,条块侧面ac 和bd 作用有法向力 P i 、 P i+1 ,切向力i 、H i+1。

如果考虑这些条间力,则由静力平衡方程可知这是一个超静定问题。

要使问题得解,由两个可能的途径:一是抛弃刚体平衡的概念,把土当做变形体,通过对土坡进行应力变形分析,可以计算出滑动面上的应力分布,因此可以不必用条分法而是用有限元方法。

另一途径是仍以 条分法为基础,但对条块间的作用力作一些可以接受的简化假定。

Fellenius 假定不计条间力的影响,就是将土条两侧的条件力的合力近似地看成大小相等、方向相反、作用在同作用面上。

实际上,每一土条 两侧的条间力是不平衡的,但经验表明,土条宽度不大时,在土坡稳定分析中,忽略条间力的作用对计算结果的影响不显著。

将作用在各段滑弧上的力对滑动圆心取矩, 并分别将抗滑作用、下滑作用的力矩相加得出用在整个滑弧上的抗滑力矩以及滑动力矩的总和,琐,并能满足设计要求,一般取宽为2〜6m 并应选择滑体外形变休和土层分界点作为分条的界限。

于任意第 i 条上的作用力如下Z旳二R•〔工十为叽w十y T将抗滑力矩与下滑力矩之比定义为土坡的稳定安全系数,即_込呱_眞叫兀叫十兀叫伽1驭十兀门= T^7= 卫也工%+为弘皿巒+送丁‘P E乙片这就是瑞典条分法稳定分析的计算公式。

该法应用的时间很长,积累了丰富的工程经验,一般得到的安全系数偏低,即偏于安全,故目前仍然是工程上常用的方法。

(三)毕肖普法从前述瑞典条分法可以看岀,该方法的假定不是非常精确的,它是将不平衡的问题按极限平衡的方法来考虑并且未能考虑有效应力下的强度问题。

随着土力学学科的不断发展,不少学者致力于条分法的改进。

一是着重探索最危险滑位置的规律,二是对基本假定作些修改和补充。

但直到毕肖普(A.N.Bishop )于1955年担出了安全系数新定义,条分法这五方法才发生了质的飞跃。

毕肖普将边坡稳定安全系数定义为滑动面上土的抗剪强度T与实际产生的剪应力T之比,即r(9-7 )这一安全系数定义的核心在于一是能够充分考虑有效应力下的抗剪总是;二是充分考虑了土坡稳定分析中土的抗剪强度部分发挥的实际情况。

这一概念不公使其物理意义更加明确,而且使用范围更广泛,为以后非圆弧滑动分析及土条分界面上条间力的各种考虑方式提供了有得条件。

由图9 —5所示圆弧滑动体内取出土条i进行分析,则土条的受力如下:1. 土条重W i引起的切向反力T i和法向反力N i : 分别作用在该分条中心处2. 土条的侧百分别作用有法向力P i 、P i+1和切向力H i 、H i+1 。

将(9 - 9 )式代科(9 - 8 )式则有N i (cos 0i + -cos 直4-sin 0i• tan 0sin • tan 叭■) = W i■+ AH.-(9-10 )1 elN,=—展 + 也比-—sin qj% % (9-11)考虑整个滑动土体的极限平衡条件,些时条间力P i和H i成对出现,大小相等、方向相反,相互抵消。

因此只有重力W i产生力矩,由力矩平衡知和切向力T i对圆心(9-12)将(9 - 11 )式代入(9 - 9 )式再代入(9 - 12 )式,且d i =Rsin Q,此外,土条宽度不大时,b i =l i cos 0i 肖普边坡稳定安全系数的普遍公式,经整理简化可行毕由土条的竖向静力平衡条件有刀F z ,即图9-5毕肖普法条块作用力分析叭.+ - T\ sin 出-3Z s uos % = Q(9-8)当土条未破坏时,滑弧上土的抗剪强度只发挥了一部分,毕肖普假定其什与滑面上的切向力相平衡,这里考虑安全系数的定义,且即△ H i = H i+1 -H i(9-9)丄(皿如趴十6右)式中△ H i 仍是未知量。

毕肖普进一步假定A H i =0于是上式进一步简化为远丄%F — ----------5乞叭迪令m 9包含有安全系数 F s ,因此不能接求出安全系数, 而需采用试算法迭代求解—6所示。

用力只有法向力没有切向力;(4)满足极限平衡条件。

毕肖普法由于考虑了条块间水平力的作用,得到的安全系数较瑞典条分法略高一些。

亡心+ (吧+ 'itan 欧(9-13)如果考虑滑面上孔隙水压力 u 的影响并采用有效应力强度指标,则上式可改写为(9-15)试算时,可先假定 所对应的值。

代入(s 。

若F s 与F s再次计算岀安全系数 两次计算岀安全系数F s = 1.0,由图9 — 6查出各 9 —14 )式中,求得边坡的安全系数F s 查m如是反复迭代计算,直至前后 如是反复迭代计算,直至前后满足规定精度的要求为止。

通 3〜4次即可满足精度。

之差大于规定的误差,用F s 值, F s 值, 两次计算的安全系数非常接近, 常迭代总是收敛的,一般只要9 i ,与瑞典条分法相比,简化毕肖普法是在不考虑条块间切向力 的前提下,满足力多边形闭合条件,就是说,隐含着条块间有 水平力的作用,虽然在公式中水平作用力并未出现。

所以它的特点是:(1)满足整体力矩平衡条件;(2)满足各条块力的多边 形闭合条件,但不满足条块的力矩平衡条件;(4)假设条块间作(9-14)从式中可以看出,参数9〜9关系曲线,如图 9 F s 值。

相关文档
最新文档