大学物理物理题库(下册)

合集下载

大学普通物理((下册))期末考试题

大学普通物理((下册))期末考试题

大学物理学下册考试题1 两根长度相同的细导线分别密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,2R r =,螺线管通过的电流相同为I ,螺线管中的磁感应强度大小R B 、r B ,满足 ( )(A )2R r B B = (B )R r B B = (C )2R r B B = (D )4R r B B =选择(c ) N N r N R N 222='⇒'=ππ2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量为 ( ) (A )22r B π (B )2r B π (C )22cos r B πα (D )—2cos r B πα选择(D )3在图(a )和(b )中各有一半经相同的圆形回路1L 、2L ,圆周有电流1I 、2I ,其分布相同,且均在真空中,但在(b )图中2L 回路外有电流3I ,1P 、2P 为两圆形回路上的对应点,则 ( ) (A )1212,P P L L B dl B dl BB ⋅=⋅=⎰⎰ (B )1212,P P L L B dl B dl BB ⋅≠⋅=⎰⎰ (C )1212,P P L L B dl B dl BB ⋅=⋅≠⎰⎰ (D )1212,P P L L B dl B dl BB ⋅≠⋅≠⎰⎰选择(c )习题11图 习题13图1L1PL 2P3(a)(b)4 在磁感应强度为B的均匀磁场中,有一圆形载流导线,a、b、c、是其上三个长度相等的电流元,则它们所受安培力大小的关系为:选择(c)二,填空题1、如图5所示,几种载流导线在平面分布,电流均为I,他们在o点的磁感应强度分别为(a)(b)(c)图5(a)0()8IRμ向外(b)0()2IRμπ1(1-)向里(c)0()42IRμπ1(1+)向外2 已知一均匀磁场的磁感应强度B=2特斯拉,方向沿X轴正方向,如图所示,c点为原点,则通过bcfe面的磁通量0 ;通过adfe面的磁通量2x0.10x0.40=0.08Wb ,通过abcd面的磁通量0.08Wb 。

大学物理(第五版)下册

大学物理(第五版)下册

第9、10章振动与波动习题一、选择题1. 已知四个质点在x 轴上运动, 某时刻质点位移x 与其所受合外力F 的关系分别由下列四式表示(式中a 、b 为正常数).其中不能使质点作简谐振动的力是 [ ] (A) abx F =(B) abx F -=(C) b ax F +-=(D) a bx F /-=2. 如图4-1-5所示,一弹簧振子周期为T .现将弹簧截去一半,仍挂上原来的物体, 则新的弹簧振子周期为 [ ] (A) T (B) 2T (C) 1.4T (D) 0.7T3. 在简谐振动的运动方程中,振动相位)(ϕω+t 的物理意义是 [ ] (A) 表征了简谐振子t 时刻所在的位置 (B) 表征了简谐振子t 时刻的振动状态 (C) 给出了简谐振子t 时刻加速度的方向(D) 给出了简谐振子t 时刻所受回复力的方向角, 然后放手任其作微4. 如图4-1-9所示,把单摆从平衡位置拉开, 使摆线与竖直方向成小的摆动.若以放手时刻为开始观察的时刻, 用余弦函数表示这一振动,则其振动的初相位为[ ] (A) (B) 2π或π23(C) 0 (D) π5. 两质点在同一方向上作同振幅、同频率的简谐振动.在振动过程中, 每当它们经过振幅一半的地方时, 其运动方向都相反.则这两个振动的相位差为 [ ] (A) π (B)π32 (C) π34(D) π54 6. 一质点作简谐振动, 振动方程为)cos(ϕω+=t A x .则在2Tt =(T 为振动周期)时, 质点的速度为 [ ] (A) ϕωsin A - (B) ϕωsin A (C) ϕωcos A - (D) ϕωcos A7. 一物体作简谐振动, 其振动方程为)4πcos(+=t A x ω.则在2Tt = (T 为周期)时, 质点的加速度为 (A) 222ωA - (B) 222ωA (C) 223ωA - (D) 223ωA8. 一质点以周期T 作简谐振动, 则质点由平衡位置正向运动到最大位移一半处的最短时间为 [ ] (A)6T (B) 8T (C) 12T(D) T 127 9. 某物体按余弦函数规律作简谐振动, 它的初相位为2π3, 则该物体振动的初始状态为[ ] (A) x 0 = 0 , v 0 0 (B) x 0 = 0 , v 0<0 (C) x 0 = 0 , v 0 = 0 (D) x 0 = A , v 0 = 010. 有一谐振子沿x 轴运动, 平衡位置在x = 0处, 周期为T , 振幅为A ,t = 0时刻振子过2Ax =处向x 轴正方图4-1-9图4-1-5向运动, 则其运动方程可表示为[ ] (A) )21cos(t A x ω= (B))cos(2t A x ω= (C) )3π2sin(--=T t A x ω (D))3π2cos(-=T t A x ω11. 当一质点作简谐振动时, 它的动能和势能随时间作周期变化.如果ν是质点振动的频率, 则其动能变化的频率为[ ] (A) ν4(B) ν2(C) ν (D)2ν 12. 已知一简谐振动系统的振幅为A , 该简谐振动动能为其最大值一半的位置是 [ ] (A)(B)(C)(D)3. 简谐振动的振幅由哪些因素决定?[ ] (A) 谐振子所受的合外力 (B) 谐振子的初始加速度 (C) 谐振子的能量和力常数(D) 谐振子的放置位置14. 如果两个同方向同频率简谐振动的振动方程分别为π)433cos(73.11+=t x (cm)和π)413cos(2+=t x (cm),则它们的合振动方程为[ ] (A) π)433cos(73.0+=t x (cm) (B) π)413cos(73.0+=t x (cm) (C) π)1273cos(2+=t x (cm) (D) π)1253cos(2+=t x (cm) 15. 两个同方向、同频率、等振幅的谐振动合成, 如果其合成振动的振幅仍不变, 则此二分振动的相位差为 [ ] (A)2π (B) 3π2 (C) 4π (D) π 16. 将一个弹簧振子分别拉离平衡位置1 cm 和2 cm 后, 由静止释放(弹簧形变在弹性范围内), 则它们作谐振动的[ ] (A)周期相同 (B) 振幅相同 (C) 最大速度相同 (D) 最大加速度相同17. 关于振动和波, 下面几句叙述中正确的是 [ ] (A) 有机械振动就一定有机械波 (B) 机械波的频率与波源的振动频率相同(C) 机械波的波速与波源的振动速度相同(D) 机械波的波速与波源的振动速度总是不相等的18. 下列函数f ( x , t )可以用来表示弹性介质的一维波动, 其中a 和b 是正常数.则下列函数中, 表示沿x 轴负方向传播的行波是[ ] (A))sin(),(bt ax A t x f +=(B) )sin(),(bt ax A t x f -= (C) )cos()cos(),(bt ax A t x f =(D) )sin()sin(),(bt ax A t x f =19. 已知一列机械波的波速为u , 频率为ν, 沿着x 轴负方向传播.在x 轴的正坐标上有两个点x 1和x 2.如果x 1<x 2 , 则x 1和x 2的相位差为 [ ] (A) 0 (B))(π221x x u -ν (C) π (D) )(π212x x u-ν20. 已知一平面余弦波的波动方程为)01.05.2π(cos 2x t y -=, 式中 x 、y 均以cm 计.则在同一波线上, 离x =5cm 最近、且与 x = 5cm 处质元振动相位相反的点的坐标为[ ] (A) 7.5 cm (B) 55 cm (C) 105 cm (D) 205 cm21. 若一平面简谐波的波动方程为)cos(cx bt A y -=, 式中A 、b 、c 为正值恒量.则 [ ] (A) 波速为c (B) 周期为b 1 (C) 波长为c π2 (4) 角频率为bπ2 22. 一平面简谐横波沿着Ox 轴传播.若在Ox 轴上的两点相距8λ(其中λ为波长), 则在波的传播过程中, 这两点振动速度的[ ] (A) 方向总是相同 (B) 方向有时相同有时相反 (C) 方向总是相反 (D) 大小总是不相等23. 一简谐波沿Ox 轴正方向传播,t =0时刻波形曲线如图4-1-56所示,其周期为2 s .则P 点处质点的振动速度v 与时间t 的关系曲线为 [ ]24. 平面简谐机械波在弹性介质中传播时, 在传播方向上某介质元在负的最大位移处, 则它的能量是 [ ] (A) 动能为零, 势能最大 (B) 动能为零, 势能为零 (C) 动能最大, 势能最大 (D) 动能最大, 势能为零25. 有两列波在空间某点P 相遇, 某时刻观察到P 点的合振幅等于两列波的振幅之和, 由此可以判定这两列波 [ ] (A) 是相干波 (B) 相干后能形成驻波 (C) 是非相干波 (D) 以上三种情况都有可能26. 已知两相干波源所发出的波的相位差为 , 到达某相遇点P 的波程差为半波长的两倍, 则P 点的合成情况是[ ] (A) 始终加强 (B) 始终减弱(C) 时而加强, 时而减弱, 呈周期性变化(D) 时而加强, 时而减弱, 没有一定的规律27. 两列完全相同的余弦波左右相向而行, 叠加后形成驻波.下列叙述中, 不是驻波特性的是 [ ] (A) 叠加后, 有些质点始终静止不动 (B) 叠加后, 波形既不左行也不右行(C) 两静止而相邻的质点之间的各质点的相位相同(D) 振动质点的动能与势能之和不守恒28. 平面正弦波)π3π5sin(4y t x +=与下面哪一列波相叠加后能形成驻波?[ ] (A) )2325π(2sin 4x t y += (B) )2325π(2sin 4x t y -= (C) )2325π(2sin 4y t x += (D) )2325π(2sin 4yt x -=二、填空题AωsD ωsω-ω-s图4-1-561. 一质点沿x 轴作简谐振动,平衡位置为x 轴原点,周期为T ,振幅为A . (1) 若t =0 时质点过x =0处且向x 轴正方向运动,则振动方程为x =.(2) 若t =0时质点在2Ax =处且向x 轴负方向运动,则质点方程为x =. 2. 一质点沿x 轴作简谐振动, 其振动方程为: π)31π2cos(4-=t x (cm).从t =0时刻起, 直到质点到达2-=x cm 处、且向x 轴正方向运动的最短时间间隔为.3. 一个作简谐振动的质点,其谐振动方程为π)23cos(π1052+⨯=-t x (SI).它从计时开始到第一次通过负最大位移所用的时间为.4. 一质点作简谐振动, 频率为2Hz .如果开始时质点处于平衡位置, 并以-1s m π⋅的速率向x 轴的负方向运动, 则该质点的振动方程为.5. 一谐振动系统周期为0.6s, 振子质量为200g .若振子经过平衡位置时速度为-1s cm 12⋅,则再经0.2s 后该振子的动能为.6.劲度系数为100N ⋅m -1的轻质弹簧和质量为10g 的小球组成一弹簧振子.第一次将小球拉离平衡位置4cm, 由静止释放任其振动; 第二次将小球拉离平衡位置2cm 并给以2m.s -1的初速度任其振动.这两次振动的能量之比为.为-1m N 40⋅的竖直放7. 如图4-2-9所示,将一个质量为20g 的硬币放在一个劲度系数置的弹簧上, 然后向下压硬币使弹簧压缩 1.0cm, 突然释放后, 这个硬币将飞离原来位置的高度为.8. 质量为0.01 kg 的质点作简谐振动, 振幅为0.1m, 最大动能为0.02 J .如果开始时质点处于负的最大位移处, 则质点的振动方程为.9 一物体放在水平木板上,这木板以Hz 2=ν的频率沿水平直线作简谐运动,物体和水平木板之间的静摩擦系数50.0=s μ,物体在木板上不滑动的最大振幅max A =.10. 如果两个同方向同频率简谐振动的振动方程分别为π)3110sin(31+=t x cm 和)π6110sin(42-=t x cm, 则它们的合振动振幅为.11. 已知由两个同方向同频率的简谐振动合成的振动,其振动的振幅为20 cm, 与第一个简谐振动的相位差为6π.若第一个简谐振动的振幅为cm 3.17cm 310=, 则第二个简谐振动的振幅为cm ,两个简谐振动的相位差为.12. 已知一平面简谐波的方程为: )π(2cos λνxt A y -=, 在ν1=t 时刻λ411=x 与λ432=x 两点处介质质点的速度之比是.13. 已知一入射波的波动方程为)4π4πcos(5xt y +=(SI), 在坐标原点x = 0处发生反射, 反射端为一自由端.则对于x = 0和x = 1 m 的两振动点来说, 它们的相位关系是相位差为.14. 有一哨子, 其空气柱两端是打开的, 基频为5000 Hz, 由此可知,此哨子的长度最接近cm .图4-2-915. 已知一平面简谐波沿x 轴正向传播,振动周期T = 0.5 s ,波长λ = 10 m , 振幅A = 0.1m .当t = 0时波源振动的位移恰好为正的最大值.若波源处为原点,则沿波传播方向距离波源为2λ处的振动方程为.当2T t =时,4λ=x 处质点的振动速度为.16. 图4-2-20表示一平面简谐波在t = 2 s 时刻的波形图,波的振幅为 0.2 m ,周期为4s .则图中P 点处质点的振动方程为.17. 一简谐波沿BP 方向传播,它在B 点引起的振动方程为t A y π2cos 11=.另一简谐波沿CP 方向传播,它在C 点引起的振动方程为()ππ2cos 22+=t A y .P 点与B 点相距0.40 m ,与C 点相距0.50 m ,如图4-2-21所示.波速均为u =0.20 m ⋅s -1.则两波在P 的相位差为.18. 如图4-2-22所示,一平面简谐波沿Ox 轴正方向传播,波长为λ,若1P 点处质点的振动方程为)π2cos(1ϕν+=t A y ,则2P 点处质点的振动方程为,与1P 点处质点振动状态相同的那些点的位置是.19. 两相干波源1S 和2S 的振动方程分别是t A y ωcos 1=和π)21(cos 2+=t A y ω.1S 距P 点3个波长,2S 距P 点421个波长.两波在P 点引起的两个振动的相位差的绝对值是.20. 如图4-2-26所示,1S 和2S 为同相位的两相干波源,相距为L ,P 点距1S 为r ;波源1S 在P 点引起的振动振幅为1A ,波源2S 在P 点引起的振动振幅为2A ,两波波长都是λ,则P 点的振幅A =. 三、计算题1. 一质量为10 g 的物体在x 方向作简谐振动,振幅为24 cm ,周期为4 s .当t =0时该物体位于x = 24 cm 处.求:(1) 当t =0.5 s 时物体的位置及作用在物体上力的大小.(2) 物体从初位置到x =-12 cm 处所需的最短时间,此时物体的速度. 系数k =241-m N ⋅,重2. 如图 4-3-5所示,有一水平弹簧振子,弹簧的劲度力F =10 N 向左作用物的质量m =6 kg .最初重物静止在平衡位置上,一水平恒此时撤去力F .当重物于物体,(不计摩擦),使之由水平位置向左运动了0.05 m ,运动到左方最远位置时开始计时,求该弹簧振子的运动方程.3. 如图4-3-12所示,一质点作简谐振动,在一个周期内相继通过距离为12cm 的两点A 、B ,历时2s ,并且在A、B 两点处具有相同的速度;再经过2 s 后,质点又从另一方向通过B点.试求质点运动的周期和振幅.4. 有两个振动方向相同的简谐振动,其振动方程分别为图4-3-5图4-3-12A图4-2-20图4-2-21PB1r 2r ...C12图4-2-26x12图4-2-22(cm)2ππ2cos 3(cm)π)π2cos(421⎪⎭⎫⎝⎛+=+=t x t x (1)求它们的合振动方程;(2)另有一同方向的简谐振动(cm))π2cos(233ϕ+=t x ,问当3ϕ为何值时,31x x +的振幅为最大值?当3ϕ为何值时,31x x +的振幅为最小值?5. 一简谐波,振动周期21=T s ,波长λ =10m ,振幅A = 0.1m. 当t = 0时刻,波源振动的位移恰好为正方向的最大值.若坐标原点和波源重合,且波沿Ox 轴正方向传播,求:(1) 此波的表达式;(2) 41T t =时刻,41λ=x 处质点的位移; (3) 42T t =时刻,41λ=x 处质点振动速度.6 已知一平面简谐波的方程为(SI))24(πcos x t A y +=(1) 求该波的波长λ,频率ν和波速度u 的值;(2) 写出t = 4.2s 时刻各波峰位置的坐标表达式,并求出此时离坐标原点最近的那个波峰的位置; (3) 求t = 4.2s 时离坐标原点最近的那个波峰通过坐标原点的时刻t .7. 有一平面波沿x 轴负方向传播,s 1=t 时的波形如图4-3-23所示,波速1s m 2-⋅=u ,求该波的波函数. 8. 一弦上的驻波方程式为 I)(S )π550cos()π6.1cos (1000.32t x y -⨯=(1) 若将此驻波看作传播方向相反的两列波叠加而成,求两列波的振幅及波速;(2) 求相邻波节之间的距离;(3) 求s 1000.33-⨯=t 时,位于m 625.0=x 处质点的振动速度. 9. 一沿弹性绳的简谐波的波动方程为⎪⎭⎫⎝⎛-=210π2cos x t A y (SI),波在m 11=x 的固定端反射.设传播中无能量损失,反射是完全的.试求:(1) 该简谐波的波长和波速; (2) 反射波的波动方程;(3) 驻波方程,并确定波节的位置.第11章光学练习题一、 选择题11. 如图所示,用厚度为d 、折射率分别为n 1和n 2 (n 1<n 2)的两片透明介质分别盖住杨氏双缝实验中的上下两缝, 若入射光的波长为 , 此时屏上原来的中央明纹处被第三级明纹所占据, 则该介质的厚度为 [] (A) λ3(B)123n n -λ(C) λ2(D)122n n -λ17. 如图所示,在杨氏双缝实验中, 若用一片厚度为d 1的透光云母片将双缝装置中的上面一个缝挡住; 再用一片厚度为d 2的透光云母片将下面一个缝挡住, 两云母片的折射率均为n , d 1>d 2, 干涉条纹的变化情况是[] (A) 条纹间距减小(B) 条纹间距增大(C) 整个条纹向上移动(D) 整个条纹向下移动18. 如图所示,在杨氏双缝实验中, 若用一片能透光的云母片将双缝装置中的上面一个缝盖住, 干涉条纹的变化情况是 [] (A) 条纹间距增大(B)整个干涉条纹将向上移动(C) 条纹间距减小(D) 整个干涉条纹将向下移动26. 如图(a)所示,一光学平板玻璃A 与待测工件B 之间形成空气劈尖,用波长λ=500nm(1nm = 10-9m)右边条纹的直线部分的切线相切.则工件的上表面缺陷是[] (A) 不平处为凸起纹,最大高度为500 nm(B) 不平处为凸起纹,最大高度为250 nm (C) 不平处为凹槽,最大深度为500 nm (D) 不平处为凹槽,最大深度为250 nm 43. 光波的衍射现象没有声波显著, 这是由于 [] (A) 光波是电磁波, 声波是机械波(B) 光波传播速度比声波大(C) 光是有颜色的 (D) 光的波长比声波小得多53. 在图所示的单缝夫琅禾费衍射实验中,将单缝K[] (A)衍射条纹移动,条纹宽度不变 (B) 衍射条纹移动,条纹宽度变动(C) 衍射条纹中心不动,条纹变宽(D) 衍射条纹不动,条纹宽度不变54. 在图所示的单缝夫琅禾费衍射实验中,将单缝宽度a 稍稍变宽,同时使单缝沿x 轴正向作微小移动,则屏幕E 的中央衍射条纹将 [] (A)变窄,同时上移(B) 变窄,同时下移 (C) 变窄,不移动(D) 变宽,同时上移55. 在图所示的单缝夫琅禾费衍射实验中,将单缝宽度a 稍稍变窄,同时使汇聚透镜L 2沿x 轴正方向作微小移动,则屏幕E 上的中央衍射条纹将[] (A)变宽,同时上移(B) 变宽,同时下移(C)变宽,不移动 (D) 变窄,同时上移56. 一衍射光栅由宽300nm 、中心间距为900nm 的缝构成, 当波长为600nm 的光垂直照射时, 屏幕上最多能观察到的亮条纹数为[] (A) 2条 (B) 3条(C) 4条 (D) 5条57. 白光垂直照射到每厘米有5000条刻痕的光栅上, 若在衍射角ϕ= 30°处能看到某一波长的光谱线, 则该光谱线所属的级次为[] (A) 1 (B) 2 (C) 3 (D) 483. 如图所示,起偏器A 与检偏器B 的偏振化方向相互垂直,偏振片C 位于A 、B 中间且与A 、B 平行,其偏振化方向与A 的偏振化方向成30°夹角. 当强度为I 的自然光垂直射向A 片时,最后的出射光强为 [ ] (A) 0(B)2I(C)8I(D) 以上答案都不对84. 如图所示,一束光强为I 0的自然光相继通过三块偏振片P 1、P 2、P 3后,其出射光的强度为80II =.已知P 1和P 3的偏振化方向相互垂直.若以入射光线为轴转动P 2, 问至少要转过多少角度才能出射光的光强度为零?[ ] (A) 30° (B) 45° (C) 60° (D) 90° 86. 两偏振片堆叠在一起,一束自然光垂直入射其上时没有光线通过.当其中一偏振片慢慢转动时, 投射光强度发生的变化为 [ ] (A) 光强单调增加(B) 光强先增加,后又减小至零 (C) 光强先增加,后减小,再增加(D) 光强先增加,然后减小,再增加,再减小至零 1. 在相同的时间内,一束波长为λ的单色光在空气和在玻璃中[] (A) 传播的路程相等,走过的光程相等 (B)传播的路程相等,走过的光程不相等 (C)传播的路程不相等,走过的光程相等 (D)传播的路程不相等,走过的光程不相2. 真空中波长为 的单色光, 在折射率为n 的均匀透明介质中从a 点沿某一路径传到b 点.若a 、b 两点的相位差为π3,则此路径的长度为[] (A)n23λ (B)nλ3 (C)λ23(D) λn 233. 相干光波的条件是振动频率相同、相位相同或相位差恒定以及[] (A) 传播方向相同 (B) 振幅相同 (C) 振动方向相同 (D) 位置相同4. 如图所示,有两个几何形状完全相同的劈形膜:一个由空气中的玻璃形成玻璃劈形膜; 一个由玻璃中的空气形成空劈形膜.当用相同的单色光分别垂直照射它们时, 从入射光方向观察到干涉条纹间距较大的是[] (A) 玻璃劈形膜(B) 空气劈形膜I AC I1P 3P 2P(C) 两劈形膜干涉条纹间距相同 (D) 已知条件不够, 难以判定5. 用波长可以连续改变的单色光垂直照射一劈形膜, 如果波长逐渐变小, 干涉条纹的变化情况为[] (A) 明纹间距逐渐减小, 并背离劈棱移动 (B) 明纹间距逐渐变小, 并向劈棱移动 (C) 明纹间距逐渐变大, 并向劈棱移动 (D) 明纹间距逐渐变大, 并背向劈棱移动6. 牛顿环实验中, 透射光的干涉情况是[] (A) 中心暗斑, 条纹为内密外疏的同心圆环 (B) 中心暗斑, 条纹为内疏外密的同心圆环 (C) 中心亮斑, 条纹为内密外疏的同心圆环 (D) 中心亮斑, 条纹为内疏外密的同心圆环7. 若用波长为 的单色光照射迈克耳孙干涉仪, 并在迈克耳孙干涉仪的一条光路中放入一厚度为l 、折射率为n 的透明薄片, 则可观察到某处的干涉条纹移动的条数为[] (A)λln )1(4-(B)λln(C)λln )1(2-(D)λln )1(-8. 如图12-1-44所示,波长为 的单色光垂直入射在缝宽为a 的单缝上, 缝后紧靠着焦距为f 的薄凸透镜, 屏置于透镜的焦平面上, 若整个实验装置浸入折射率为n 的液体中,[](A) na f λ(B) na f λ(C) naf λ2(D) anf λ29. 在一光栅衍射实验中,若衍射光栅单位长度上的刻痕数越多, 则在入射光波长一定的情况下, 光栅的[] (A) 光栅常数越小 (B) 衍射图样中亮纹亮度越小 (C) 衍射图样中亮纹间距越小 (D) 同级亮纹的衍射角越小10. 一束平行光垂直入射在一衍射光栅上, 当光栅常数)(b a +为下列哪种情况时(a 为每条缝的宽度, b 为不透光部分宽度) , k = 3, 6, 9, …等级次的主极大均不出现.[] (A) a b a 2=+ (B) a b a 3=+ (C) a b a 4=+(D) a b a 6=+11. 自然光以 60的入射角照射到不知其折射率的某一透明介质表面时,反射光为线偏振光,则[ ] (A) 折射光为线偏振光,折射角为 30 (B) 折射光为部分线偏振光,折射角为 30 (C) 折射光为线偏振光,折射角不能确定 (D) 折射光为部分线偏振光,折射角不能确定 12. 关于光的干涉,下面说法中唯一正确的是[](A) 在杨氏双缝干涉图样中, 相邻的明条纹与暗条纹间对应的光程差为2λ(B) 在劈形膜的等厚干涉图样中, 相邻的明条纹与暗条纹间对应的厚度差为2λ(C) 当空气劈形膜的下表面往下平移2λ时, 劈形膜上下表面两束反射光的光程差将增加2λ(D) 牛顿干涉圆环属于分波振面法干涉 二、 填空题1. 如图12-2-1所示,折射率为2n 、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为1n 和3n ,已知321n n n ><,若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下表面反射的光束(用①与②示意)的光程差是2. 真空中波长 = 400 nm 的紫光在折射率为 n =1.5 的介质中从A 点传到B 点时, 光振动的相位改变了5 , 该光从A 到B 所走的光程为.4. 如图所示,在双缝干涉实验中SS 1=SS 2,用波长为λ的光照射双缝S 1和S 2,通过空气后在屏幕E 上形成干涉条纹.已知P 点处为第三级明条纹,则S 1和S 2到P 点的光程差为 ____________.若将整个装置放于某种透明液体中,P 点为第四级明条纹,则该液体的折射率n = ____________. 5. 两条狭缝相距2mm, 离屏300cm, 用600nm 的光照射时, 干涉条纹的相邻明纹间距为___________mm.6. 将一块很薄的云母片(n = 1.58)覆盖在杨氏双缝实验中的一条缝上,这时屏幕上的中央明纹中心被原来的第7级明纹中心占据.如果入射光的波长λ= 550nm,则该云母片的厚度为___________. 9. 如图所示,在玻璃(折射率n 3 = 1.60)表面镀一层MgF 2(折射n 2=1.38)薄膜作为增透膜.为了使波长为500nm 的光从空气(折射率n 1=1.00)正入射时尽可能减少反射,MgF 2膜的最小厚度应是.10. 用白光垂直照射厚度e =350nm 的薄膜,若膜的折射率n 2=1.4 ,薄膜上面的介质折射率为n 1,薄膜下面的介质折射率为n 3,且n 1<n 2<n 3.则透射光中可看到的加强光的波长为.14. 波长为λ的平行单色光垂直地照射到劈尖薄膜上,劈尖薄膜的折射率为n ,第二级明纹与第五条明纹所对应的薄膜厚度之差是 _____________. 15. 两玻璃片中夹满水(水的折射率34=n )形成一劈形膜, 用波长为λ的单色光垂直照射其上, 若要使某一条纹从明变为暗, 则需将上面一片玻璃向上平移.22. 若在迈克耳孙干涉仪的可动反射镜M 移动0.620mm 的过程中,观察到干涉条纹移动了2300条,则所用光波的波长为.23. 在迈克耳孙干涉仪的一条光路中,放入一折射率为n ,厚度为d 的透明介质薄片,放入后,这条光路的光程改变了.25. 如果单缝夫琅禾费衍射的第一级暗纹发生在衍射角为 30=ϕ的方位上,所用的单色光波长为nm 500=λ,则单缝宽度为.26. 一束平行光束垂直照射宽度为1.0 mm 的单缝上,在缝后放一焦距为2.0 mm 的汇聚透镜.已知位于透镜焦平面处的中央明纹的宽度为2.0 mm ,则入射光波长约为.29 用半波带法讨论单缝衍射暗条纹中心的条件时,与中央明条纹旁第三个暗条纹中心相对应的半波带的数目是__________.30. 平行单色光垂直入射于单缝上,观察夫琅禾费衍射.若屏上P 点处为第三级暗纹,则单缝处波面相应地可划分为___________ 个半波带.若将单缝宽度缩小一半,P 点处将是_________级________纹.36. 一衍射光栅, 狭缝宽为a , 缝间不透明部分宽为b .当波长为600 nm 的光垂直照射时, 在某一衍射角ϕ处出现第二级主极大.若换为400nm 的光垂直入射时, 则在上述衍射角ϕ处出现缺级, b 至少是a 的倍.38. 已知衍射光栅主极大公式(a +b ) sin ϕ=±k λ,k =0,1,2, ….在k =2的方向上第一条缝与第六条缝对应点发出的两条衍射光的光程差∆=_____________.40. 当自然光以58︒角从空气射入到玻璃板表面上时, 若反射光为线偏振光, 则透射光的折射角为_________. 41. 一束自然光入射到空气和玻璃的分界面上, 当入射角为60︒时反射光为完全偏振光, 则此玻璃的折射率为_________.44. 一束由自然光和线偏振光组成的混合光,让它垂直通过一偏振片.若以此入射光束轴旋转偏振片,测得透射光强度的最大值是最小值的7倍;那么入射光束自然光和线偏振光的光强比为_____________ 三、 计算题8. 用白光垂直照射置于空气中的厚度为0.50 μm 的玻璃片.玻璃片的折射率为1.50.在可见光范围内(400 nm ~ 760 nm)哪些波长的反射光有最大限度的增强?13. 图12-3-13所示为一牛顿环装置,设平凸透镜中心恰好与平玻璃接触,透镜凸表面的曲率半径是R =400cm .用单色平行光垂直入射,观察反射光形成的牛顿环,测得第5个明环的半径是0.30 cm .(1) 求入射光的波长;(2) 设图中OA =1.00 cm ,求在半径为OA 的范围内可观察到的明环数目.18. 在某个单缝衍射实验中,光源发出的光含有两种波长1λ和2λ,并垂直入射于单缝上.假如1λ的第一级衍射极小与2λ的第二级衍射极小相重合,试问:(1)这两种波长之间有何关系?(2)在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合?19. 某种单色平行光垂直地入射在一单缝上, 单缝的宽度a = 0.15mm .缝后放一个焦距f = 400 mm 的凸透镜,在透镜的焦平面上,测得中央明条纹两侧的两个第三级暗条纹之间的距离为8.0 mm ,求入射光的波长.30. 一衍射光栅,每厘米有200条透光缝,每条透光缝宽为a = 2⨯10-3 cm ,在光栅后方一焦距f = 1m 的凸透镜.现以nm 600=λ的单色平行光垂直照射光柵,求:(1) 透光缝a 的单缝衍射中央明区条纹宽度; (2)在透光缝a 的单缝衍射中央明纹区内主极大条数.31.波长λ= 600nm 的单色光垂直入射到一光柵上,测得第二级主级大的衍射角为30o ,且第三级是缺级. (1) 光栅常量(a +b )等于多少?(2) 透光缝可能的最小宽度a 等于多少?(3) 在选定了上述(a +b )和a 之后,求在屏幕上可能呈现的全部主极大的级次.36 两个偏振片叠在一起,欲使一束垂直入射的线偏振光经过这两个偏振片之后振动方向转过了90°,且使出射光强尽可能大,那么入射光振动方向和两偏振片的偏振化方向之间的夹角应如何选择?这种情况下的最大出射光强与入射光强的比值是多少?第13章 热力学基础一、选择题2. 对于物体的热力学过程, 下列说法中正确的是[ ] (A) 内能的改变只决定于初、末两个状态, 与所经历的过程无关 (B) 摩尔热容量的大小与所经历的过程无关(C) 在物体内, 若单位体积内所含热量越多, 则其温度越高(D) 以上说法都不对4. 关于功的下列各说法中, 错误的是 [ ] (A) 功是能量变化的一种量度(B) 功是描写系统与外界相互作用的物理量(C) 气体从一个状态到另一个状态, 经历的过程不同, 则对外做的功也不一样 (D) 系统具有的能量等于系统对外做的功5. 理想气体物态方程在不同的过程中有不同的微分表达式, 式T R MmV p d d 表示 [ ] (A) 等温过程 (B) 等压过程(C) 等体过程 (D) 绝热过程 9. 热力学第一定律表明[ ] (A) 系统对外做的功不可能大于系统从外界吸收的热量 (B) 系统内能的增量等于系统从外界吸收的热量(C) 不可能存在这样的循环过程, 在此过程中, 外界对系统所做的功 不等于系统传给外界的热量 (D) 热机的效率不可能等于110. 对于微小变化的过程, 热力学第一定律为d Q = d E d A .在以下过程中, 这三者同时为正的过程是 [ ] (A) 等温膨胀 (B) 等体膨胀 (C) 等压膨胀 (D) 绝热膨胀13. 一定量的理想气体从状态),(V p 出发, 到达另一状态)2,(V p .一次是等温压缩到2V, 外界做功A ;另一次为绝热压缩到2V, 外界做功W .比较这两个功值的大小是 [ ] (A) A >W (B) A = W (C) A <W (D) 条件不够,不能比较19. 同一种气体的摩尔定压热容大于摩尔定容热容, 其原因是 [ ] (A) 膨胀系数不同 (B) 温度不同(C) 气体膨胀需要做功 (D) 分子引力不同28. 一定量的理想气体分别经历了等压、等体和绝热过程后其内能均由E 1变化到E 2.在上述三过程中, 气体的 [ ] (A) 温度变化相同, 吸热相同 (B) 温度变化相同, 吸热不同 (C) 温度变化不同, 吸热相同 (D) 温度变化不同, 吸热也不同30. 一定量的理想气体, 从同一状态出发, 经绝热压缩和等温压缩达到相同体积时, 绝热压缩比等温压缩的终。

大一物理习题及答案 (下)

大一物理习题及答案   (下)
8.在圆柱形空间内有一磁感应强度为 的均匀磁场,如图所示, 的大小以速率dB/d t变化。有一长度为l0的金属棒先后放在磁场的两个不同位置1(a b)和2( ),则金属棒在这两个位置时棒内的磁感应电动势的大小关系为[B]
(A) (B) .
(C) (D)
解:
二. 填空题:
1.一段导线被弯成圆心在O点、半径为R的三段圆弧 、 、 ,它们构成了一个闭合回路, 位于XOY平面内, 和 分别位于另两个坐标面中(如图)。均匀磁场 沿X轴正方向穿过圆弧 与坐标轴所围成的平面。设磁感应强度随时间的变化率为K(K>0),则闭合回路a b c a中
5.如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密绕而成,每厘米绕10匝。当导线中的电流I为2.0A时,测得铁环内的磁感应强度的大小B为1.0T,则可求得铁环的相对磁导率 为(真空磁导率 ):[B]
(A) (B)
(C) (D)63.3
解:n=10匝/cm=1000匝/m
二.填空题:
1.铜的相对磁导率 ,其磁化率 ,它是抗磁性磁介质。 ∴
方向:
或:
(2)取顺时针方向为回路L的正方向.
, 的方向与L的正方向一致;
, 的方向与L的正方向相反.
4.如图所示,有一根长直导线,载有直流电流I,近旁有一个两条对边与它平行并与它共面的矩形线圈,以匀速度 沿垂直于导线的方向离开导线.设t=0时,线圈位于图示位置,求:
(1) 在任意时刻t通过矩形线圈的磁通量.
4.关于稳恒磁场的磁场强度 的下列几种说法哪个是正确的?[C]
(A) 仅与传导电流有关。(还与磁化电流有关)
(B)若闭合曲线内没有包围传导电流,则曲线上各点的 必为零。(闭合曲线外有传导电流)
(C)若闭合曲线上各点 均为零,则该曲线所包围传导电流的代数和为零。

大学物理习题集(下)答案

大学物理习题集(下)答案

一、 选择题1. 对一个作简谐振动的物体,下面哪种说法是正确的? [ C ](A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;(D) 物体处在负方向的端点时,速度最大,加速度为零。

2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为43π,则t=0时,质点的位置在: [ D ](A) 过1x A 2=处,向负方向运动; (B) 过1x A 2=处,向正方向运动;(C) 过1x A 2=-处,向负方向运动;(D) 过1x A 2=-处,向正方向运动。

3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ B ]x o A x ω(A) A/2 ω (B) (C)(D)o ooxxxA x ω ωAxAxA/2 -A/2 -A/2 (3)题4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: [ B ](A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:25. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: [ C ](A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动;(B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; (D) 两种情况都不能作简谐振动。

6. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为: [ C ](4)题(5)题2153(A),or ;A;(B),;A;3326623223(C),or ;A;(D),;A442332ππ±±π±±±π±ππ±±π±±±π±7. 一质点沿x 轴作简谐振动,振动方程为 10.04cos(2)3x t ππ=+(SI ),从t = 0时刻起,到质点位置在x = -0.02 m 处,且向x 轴正方向运动的最短时间间隔为 [ D ](A)s 81; (B) s 61; (C) s 41; (D) s 218. 图中所画的是两个简谐振动的振动曲线,这两个简谐振动叠加后合成的余弦振动的初相为[ C ]xtOx 1x 2(8)题(A) π23; (B) π; (C) π21 ; (D) 0二、 填空题9. 一简谐振动用余弦函数表示,振动曲线如图所示,则此简谐振动的三个特征量为: A=10cm , /6rad /s =ωπ,/3=φπ10. 用40N 的力拉一轻弹簧,可使其伸长20 cm 。

大学物理下册考试题

大学物理下册考试题

一、选择题图示为一轴对称性静电场的E ~r 关系曲线,请指出该电场是由哪种带电体产生的(E 表示电场强度的大小, r 表示离对称轴的距离) ( C )A 、“无限长”均匀带电直线B 、半径为R 的“无限长”均匀带电圆柱体C 、半径为R 的“无限长”均匀带电圆柱面D 、半径为R 的有限长均匀带电圆柱面在点电荷激发的电场中,如以点电荷为心作一个球面,关于球面上的电场,以下说法正确的是 ( A )A 、球面上的电场强度矢量E 处处不等;B 、球面上的电场强度矢量E 处处相等,故球面上的电场是匀强电场;C 、球面上的电场强度矢量E 的方向一定指向球心;D 、球面上的电场强度矢量E 的方向一定沿半径垂直球面向外.下列说法正确的是 ( C )A 、场强大的地方,电势一定高,场强小的地方,电势一定低B 、等势面上各点的场强大小一定相等C 、场强相等的地方,电势梯度一定相等D 、场强为零处,电势一定为零,电势为零处,场强也一定为零直线移在点电荷q +和q -产生的电场中,a 、b 、c 、d 为同一直线上等间距的四个点,若将一点电荷0q +由b 点移到d 点,则电场力 ( A )A 、做正功B 、做负功C 、不做功D 、不能确定如图所示,在C 点放置电荷1q ,A 点放置电荷2q ,S 是包围1q 的封闭曲面,P 点是曲面上的任意一点,今把2q 从A 点移到B 点,则:( D )A 、通过S 面的电通量改变,但P 点的电场强度不变B 、通过S 面的电通量和P 点的电场强度都改变C 、通过S 面的电通量P 点电场强度都不变D 、通过S 面的电通量不变,但P 点的电场强度改变当一个带电导体达到静电平衡时 ( D )A 、表面上电荷密度较大处电势较高B 、表面曲率较大处电势较高C 、导体内部的电势比导体表面的电势高D 、导体内任一点与其表面上任一点的电势差等于零电荷q 在静电场中沿任意闭合曲线移动一周,关于电场力所作的功,正确的叙述是 ( C )A 、若0>q ,则电场力所作的功为正。

大学物理(下)练习题

大学物理(下)练习题

大学物理(下)练习题第十章10-8一均匀带电的半圆形弧线,半径为R ,所带电量为Q ,以匀角速度ω绕轴OO /转动,如图所示,求O 点处的磁感应强度。

解:此题可利用运动电荷产生的磁场计算,也可利用圆电流产生的磁场计算。

以下根据圆电流在轴线产生的磁感应强度来计算的。

如图电荷dq 旋转在O 处产生的磁感应强度为3202R dIr dB μ=3202)sin (2RR Rd θπωθλμ= ⎰πθθπλωμ=020sin 4d B 240ππλωμ=80λωμ= RQπωμ=80 方向沿轴线向上。

10-15一半径为R 的无限长半圆柱面形导体,与轴线上的长直导线载有等值反向的电流I ,如图所示。

试求轴线上长直导线单位长度所受的磁力。

解:此电流结构俯视如图,圆柱面上的电流 与轴线电流反向,反向电流电流相斥,如图,对 称分析可知,合力沿x 轴正向,有θππμ==Rd R IR I BldI dF 20θπμ=d RI 2202=θ=⎰sin dF F θθπμ⎰πd RI 0220sin 2 RI 220πμ=习题 10-8图习题 10-15图x10-16半径为R 的圆形线圈载有电流I 2,无限长载有电流I 1的直导线沿线圈直径方向放置,求圆形线圈所受到的磁力。

解:此电流结构如图,对称分析可知,合力沿x 轴负向,有r I dl I dF πμ=2102θθπμ=Rd R I I cos 2210θθπμ=d II cos 2210=θ=⎰cos dF F θθθπμ=⎰πd I I cos cos 220210⎰πθπμ=202102d II 210I μ=10-19一半径为R 的薄圆盘,放在磁感应强度为B的均匀磁场中,B 的方向与盘面平行,如图所示,圆盘表面的电荷面密度为σ,若圆盘以角速度ω绕其轴线转动,试求作用在圆盘上的磁力矩。

解:圆盘上任一薄层电荷运转时产生的电流为dI ,其对应的磁矩为rdr r rdrr dI dm σω=ππωπσ=π=2222 整个圆盘的磁矩为44R rdr dm m Rσωπ=σω==⎰⎰作用在圆盘上的磁力矩为B m M ⨯====mB mB M 090sin B R 44σωπ,方向垂直纸面向里。

大学物理(下)题库

大学物理(下)题库
2. 在单缝衍射实验中,当缝宽为a时,屏上P点为第三级暗纹,若把缝宽缩小为原来的二分之一,则P点处的条纹变化为第_______级_______纹。
3. 在复色光照射下的单缝衍射图样中,其中某一波长的第3级明纹位置恰与波长λ=600nm的单色光的第2级明纹位置重合,此光波的波长是_______。
4.一束平行单色光垂直入射在一光栅上,若光栅的透光缝宽度与不透明部分宽度相等,则可能看到的衍射光谱的级次为__________。
10: 在作单缝衍射实验时,缝宽为0.6 mm,屏幕距单缝40 cm,用波长为600nm的单色光垂直照射单缝,求屏幕上中央亮纹的宽度及第三级极小到中心点的距离。
11:用白光垂直照射一光栅时,能在30o衍射方向上观察到λ1=6000的第三级明纹,但在该方向上不见λ2=4500的第四级明纹,求光栅常数和最小缝宽。(1=10-10m)
4.用红光和紫光分别做杨氏双缝干涉实验,则所产生的干涉条纹的间距哪种光大?___________.
5. 在硅片上(n1=3.4)生成一层二氧化硅薄膜,并作成劈尖形状,如图。二氧化硅的折射率n2= 1.5,今用波长=590nm的单色光垂直照射到二氧化硅上,则劈尖边缘(棱边)是____纹,现共看到5个亮条纹,且膜的最厚处恰为亮条纹,则膜的厚度为_________。
一定量的理想气体,从a状态(2P1,V1)经历如图所示的直线过程到b状态(P1,2V1),则ab过程中系统作功A=___________,内能改变ΔE=___________。
计算题
设一动力暖气装置,由一台卡诺热机和一台卡诺制冷机组合而成。热机靠燃料燃烧时释放的热量工作并向暖气系统中的水放热。同时,热机带动制冷机。制冷机自天然蓄水池中吸热,也向暖气系统放热。假定热机锅炉的温度为t1=2100C,天然蓄水池中水的温度为t2=150C,暖气系统的温度为t3=600C,热机从燃料燃烧时获得热量2.1×107J,计算暖气系统所得热量。

大学物理下考试题及答案

大学物理下考试题及答案

大学物理下考试题及答案一、选择题(每题2分,共20分)1. 根据麦克斯韦方程组,电磁波在真空中的传播速度是多少?A. 100m/sB. 300m/sC. 1000m/sD. 3×10^8 m/s答案:D2. 一个物体的动能是其势能的两倍,如果物体的总能量是E,那么它的势能U是多少?A. E/2B. E/3C. 2E/3D. E答案:B3. 在理想气体状态方程PV=nRT中,P代表的是:A. 温度B. 体积C. 压力D. 气体常数答案:C4. 下列哪个现象不是由量子力学效应引起的?A. 光电效应B. 原子光谱C. 超导现象D. 布朗运动答案:D5. 一个电子在电场中受到的电场力大小是1.6×10^-19 N,如果电子的电荷量是1.6×10^-19 C,那么电场强度E是多少?A. 1 N/CB. 10 N/CC. 100 N/CD. 1000 N/C答案:A6. 根据狭义相对论,一个物体的质量m与其静止质量m0之间的关系是:A. m = m0B. m = m0 / sqrt(1 - v^2/c^2)C. m = m0 * sqrt(1 - v^2/c^2)D. m = m0 * (1 - v^2/c^2)答案:C7. 一个物体从静止开始自由下落,其下落的高度h与时间t之间的关系是:A. h = 1/2 gt^2B. h = gt^2C. h = 2gtD. h = gt答案:A8. 在双缝干涉实验中,相邻的明亮条纹之间的距离是相等的,这种现象称为:A. 单缝衍射B. 多缝衍射C. 双缝干涉D. 薄膜干涉答案:C9. 一个电路中的电阻R1和R2并联,总电阻Rt可以用以下哪个公式计算?A. Rt = R1 + R2B. Rt = R1 * R2 / (R1 + R2)C. Rt = 1 / (1/R1 + 1/R2)D. Rt = (R1 * R2) / (R1 + R2)答案:C10. 根据热力学第一定律,一个系统吸收了100 J的热量,同时对外做了50 J的功,那么系统的内能增加了多少?A. 50 JB. 100 JC. 150 JD. 200 J答案:B二、填空题(每题2分,共20分)11. 光的粒子性质在________现象中得到了体现。

大学物理下复习题(附答案)

大学物理下复习题(附答案)

大学物理下复习题(附答案)第一章填空题自然界中只存在正负两种电荷,同种电荷相互排斥,异种电荷相互吸引。

()对自然界中只存在正负两种电荷,同种电荷相互吸引,异种电荷相互排斥。

()错电荷电量是量子化的。

()对物体所带电量可以连续地取任意值。

()错物体所带电量只能是电子电量的整数倍。

()对库仑定律只适用于真空中的点电荷。

()对电场线稀疏处的电场强度小。

()对电场线稀疏处的电场强度大。

()错静电场是有源场。

()对静电场是无源场。

()错静电场力是保守力。

()对静电场力是非保守力。

()错静电场是保守力场。

()对静电场是非保守力场。

()错电势是矢量。

()错电势是标量。

()对等势面上的电势一定相等。

()对沿着电场线的方向电势降落。

()对沿着电场线的方向电势升高。

()错电场中某点场强方向就是将点电荷放在该点处所受电场力的方向。

()错电场中某点场强方向就是将正点电荷放在该点处所受电场力的方向。

()对电场中某点场强方向就是将负点电荷放在该点处所受电场力的方向。

()错电荷在电场中某点受到电场力很大,该点场强E一定很大。

()错电荷在电场中某点受到电场力很大,该点场强E不一定很大。

()对在以点电荷为中心,r为半径的球面上,场强E处处相等。

()错在以点电荷为中心,r为半径的球面上,场强E大小处处相等。

()对如果在高斯面上的E处处为零,肯定此高斯面内一定没有净电荷。

()对根据场强与电势梯度的关系可知,在电势不变的空间电场强度为零。

()对如果高斯面内没有净电荷,肯定高斯面上的E处处为零。

()错正电荷由A移到B时,外力克服电场力做正功,则B点电势高。

对导体达到静电平衡时,导体内部的场强处处为零。

()对第一章填空题已一个电子所带的电量的绝对值e= C。

1.602*10-19或1.6*10-19真空中介电常数值为=0ε C 2.N -1.m -2。

8.85*10-12 真空中有一无限长带电直棒,电荷线密度为λ,其附近一点P 与棒的距离为a ,则P 点电场强度E 的大小为 。

大学物理下考试题及答案

大学物理下考试题及答案

大学物理下考试题及答案一、选择题(每题5分,共20分)1. 光在真空中的传播速度是:A. 3×10^8 m/sB. 2×10^8 m/sC. 1×10^8 m/sD. 4×10^8 m/s答案:A2. 根据牛顿第二定律,力和加速度的关系是:A. F=maB. F=mvC. F=m/aD. F=a/m答案:A3. 一个物体从静止开始做匀加速直线运动,其位移与时间的关系为:A. s = 1/2at^2B. s = 1/2vtC. s = 1/2atD. s = vt答案:A4. 在理想气体状态方程中,压强、体积、温度的关系是:A. PV = nRTB. PV = nTC. PV = nRD. PV = n答案:A二、填空题(每题5分,共20分)1. 根据能量守恒定律,一个物体的动能和势能之和在任何情况下都______。

答案:保持不变2. 电场强度的定义式为______。

答案:E = F/q3. 根据库仑定律,两点电荷之间的力与它们电荷量的乘积成正比,与它们距离的平方成反比,其公式为______。

答案:F = kQq/r^24. 光的折射定律表明,入射角和折射角之间的关系为______。

答案:n1sinθ1 = n2sinθ2三、简答题(每题10分,共40分)1. 简述波粒二象性的概念。

答案:波粒二象性是指微观粒子如电子、光子等,既表现出波动性,也表现出粒子性。

在某些实验条件下,它们表现出波动性,如干涉和衍射现象;而在另一些实验条件下,它们表现出粒子性,如光电效应和康普顿散射。

2. 什么是电磁感应定律?请给出其数学表达式。

答案:电磁感应定律描述了变化的磁场在导体中产生电动势的现象。

其数学表达式为ε = -dΦ/dt,其中ε是感应电动势,Φ是磁通量,t是时间。

3. 简述热力学第一定律的内容。

答案:热力学第一定律,也称为能量守恒定律,指出在一个封闭系统中,能量既不能被创造也不能被消灭,只能从一种形式转换为另一种形式。

大学物理(下)练习题及答案

大学物理(下)练习题及答案

xyoa•••a-(0,)P y qq-大学物理(下)练习题第三编 电场和磁场 第八章 真空中的静电场1.如图所示,在点((,0)a 处放置一个点电荷q +,在点(,0)a -处放置另一点电荷q -。

P 点在y 轴上,其坐标为(0,)y ,当y a ?时,该点场强的大小为(A) 204q y πε; (B) 202q y πε;(C)302qa y πε; (D)304qa y πε.[ ]2.将一细玻璃棒弯成半径为R 的半圆形,其上半部均匀分布有电量Q +, 下半部均匀分布有电量Q -,如图所示。

求圆心o 处的电场强度。

3.带电圆环的半径为R ,电荷线密度0cos λλφ=,式中00λ>,且为常数。

求圆心O 处的电场强度。

4.一均匀带电圆环的半径为R ,带电量为Q ,其轴线上任一点P 到圆心的距离为a 。

求P 点的场强。

5.关于高斯定理有下面几种说法,正确的是(A) 如果高斯面上E r处处为零,那么则该面内必无电荷;(B) 如果高斯面内无电荷,那么高斯面上E r处处为零;(C) 如果高斯面上E r处处不为零,那么高斯面内必有电荷;(D) 如果高斯面内有净电荷,那么通过高斯面的电通量必不为零; (E) 高斯定理仅适用于具有高度对称性的电场。

[ ]6.点电荷Q 被闭合曲面S 所包围,从无穷远处引入另一点电荷q 至曲面S 外一点,如图所示,则引入前后(A) 通过曲面S 的电通量不变,曲面上各点场强不变;(B) 通过曲面S 的电通量变化,曲面上各点场强不变;(C) 通过曲面S 的电通量变化,曲面上各点场强变化;(D) 通过曲面S 的电通量不变,曲面上各点场强变化。

[ ]7.如果将带电量为q 的点电荷置于立方体的一个顶角上,则通过与它不相邻的每个侧面的电场强度通量为xq g S Q g(A)06q ε; (B) 012q ε; (C) 024q ε; (D) 048q ε. [ ]8.如图所示,A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上的电荷面密度721.7718A C m σ--=-⨯⋅,B 面上的电荷面密度723.5418B C m σ--=⨯⋅。

大学物理下册习题及答案

大学物理下册习题及答案

大学物理下册习题及答案热力学(一)一、选择题:1、如图所示,当汽缸中的活塞迅速向外移动从而使汽缸膨胀时,气体所经历的过程(A)是平衡过程,它能用P—V图上的一条曲线表示.(B)不是平衡过程,但它能用P—V图上的一条曲线表示.(C)不是平衡过程,它不能用P—V图上的一条曲线表示.(D)是平衡过程,但它不能用P—V图上的一条曲线表示. [ ]2、在下列各种说法中,哪些是正确的? [ ](1)热平衡就是无摩擦的、平衡力作用的过程.(2)热平衡过程一定是可逆过程.(3)热平衡过程是无限多个连续变化的平衡态的连接.(4)热平衡过程在P—V图上可用一连续曲线表示.(A)(1)、(2)(B)(3)、(4)(C)(2)、(3)、(4)(D)(1)、(2)、(3)、(4)3、设有下列过程: [ ](1)用活塞缓慢的压缩绝热容器中的理想气体.(设活塞与器壁无摩擦)(2)用缓慢地旋转的叶片使绝热容器中的水温上升.(3)冰溶解为水.(4)一个不受空气阻力及其它摩擦力作用的单摆的摆动.其中是逆过程的为(A)(1)、(2)、(4)(B)(1)、(2)、(3)(C)(1)、(3)、(4)(D)(1)、(4)4、关于可逆过程和不可逆过程的判断: [ ](1)可逆热力学过程一定是准静态过程.(2)准静态过程一定是可逆过程.(3)不可逆过程就是不能向相反方向进行的过程.(4)凡有摩擦的过程,一定是不可逆过程.以上四种判断,其中正确的是(A)(1)、(2)、(3)(B)(1)、(2)、(4)(C)(2)、(4)(D)(1)、(4)5、在下列说法中,哪些是正确的? [ ](1)可逆过程一定是平衡过程.(2)平衡过程一定是可逆的.(3)不可逆过程一定是非平衡过程.(4)非平衡过程一定是不可逆的.(A)(1)、(4)(B)(2)、(3)(C)(1)、(2)、(3)、(4)(D)(1)、(3)6、置于容器内的气体,如果气体内各处压强相等,或气体内各处温度相同,则这两种情况下气体的状态[ ](A)一定都是平衡态.(B)不一定都是平衡态.(C)前者一定是平衡态,后者一定不是平衡态.(D)后者一定是平衡态,前者一定不是平衡态.7、气体在状态变化过程中,可以保持体积不变或保持压强不变,这两种过程 [ ](A)一定都是平衡过程.(B)不一定是平衡过程.(C)前者是平衡态,后者不是平衡态.(D)后者是平衡态,前者不是平衡态.8、一定量的理想气体,开始时处于压强,体积,温度分别为P1、V1、T1,的平衡态,后来变到压强、体积、温度分别为P2、V2、T2的终态.若已知V2 > V1, 且T2 = T1 , 则以下各种说法正确的是: [ ](A)不论经历的是什么过程,气体对外净做的功一定为正值.(B)不论经历的是什么过程,气体从外界净吸的热一定为正值.(C)若气体从始态变到终态经历的是等温过程,则气体吸收的热量最少.(D)如果不给定气体所经历的是什么过程,则气体在过程中对外净做功和外界净吸热的正负皆无法判断.二、填空题:1、在热力学中,“作功”和“传递热量”有着本质的区别,“作功”是通过__________来完成的; “传递热量”是通过___________来完成的.2、设在某一过程P中,系统由状态A变为状态B,如果______________________________________________________,则过程P为可逆过程;如果______________________________________________________则过程P为不可逆过程.3、同一种理想气体的定压摩尔热容C p大于定容摩尔热容C v,其原因是_____________________________________________________________________.4、将热量Q传给一定量的理想气体,(1)若气体的体积不变,则热量转化为________________________________.(2)若气体的温度不变,则热量转化为________________________________.(3)若气体的压强不变,则热量转化为________________________________.5、常温常压下,一定量的某种理想气体(可视为刚性分子自由度为i),在等压过程中吸热为Q,对外作功为A,内能增加为ΔE,则A / Q = ____________. ΔE / Q = _____________.6、3 mol的理想气体开始时处在压强P1 = 6 at m、温度T1 = 500K的平衡态.经过一个等温过程,压强变为P2 = 3 atm.该气体在等温过程中吸收的热量为Q = _____________J.(摩尔气体常量R = 8.31 J•mol-1•K-1)7、2 mol单原子分子理想气体,经一等容过程后,温度从200K上升到500K,若该过程为准静态过程,气体吸收的热量为_________;若为不平衡过程,气体吸收的热量为___________.8、卡诺制冷机,其低温热源温度为T2 = 300 K,高温热源温度为T1 = 450 K,每一循环从低温热源吸收Q2 = 400 J.已知该制冷机的制冷系数为1212TTTAQw-==(式中A为外界对系统作的功),则每一循环中外界必须作功A = _________.三、计算题:1、有1 mol刚性多原子分子的理想气体,原来的压强为1.0 atm ,温度为27˚C,若经过一绝热过程,使其压强增加到16 atm .试求:(1)气体内能的增量;(2)在该过程中气体所作的功;(3)终态时,气体的分子数密度.(1 atm = 1.013×105 Pa,玻耳滋曼常数k = 1.38×10-23J•K-1摩尔气体常量R=8.31J•mol-1•K-1)2、如图所示,a b c d a为1 mol单原子分子理想气体的循环过程,求:(1)气体循环一次,在吸热过程中从外界共吸收的热量;(2)气体循环一次对外做的净功;(3)证明Ta Tc = T b T d.3、一气缸内盛有一定量的单原子理想气体.若绝热压缩使其容积减半,问气体分子的平均速率为原来的几倍?热力学(二)1、理想气体向真空作绝热膨胀. [ ](A)膨胀后,温度不变,压强减小.(B)膨胀后,温度降低,压强减小.(C)膨胀后,温度升高,压强减小.(D)膨胀后,温度不变,压强不变.2、氦、氮、水蒸气(均视为理想气体),它们的摩尔数相同,初始状态相同,若使他们在体积不变情况下吸收相等的热量,则 [ ](A)它们的温度升高相同,压强增加相同.(B)它们的温度升高相同,压强增加不相同.(C)它们的温度升高不相同,压强增加不相同.(D)它们的温度升高不相同,压强增加相同.3、一个绝热容器,用质量可忽略的绝热板分成体积相等的两部分.两边分别装入质量相等、温度相同的H2和O2.开始时绝热板P固定.然后释放之,板P将发生移动(绝热板与容器壁之间不漏气且摩擦可以忽略不计),在达到新的平衡位置后,若比较两边温度的高低,则结果是:[ ](A)H2比O2温度高.(B)O2比H2温度高.(C)两边温度相等且等于原来的温度.(D)两边温度相等但比原来的温度降低了.4、如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为Po,右边为真空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是[ ](A)Po (B)Po/2 (C)2 r / Po (D)Po/2 r ( r = Cp / Cv )5、1 mol理想气体从P-V图上初态a分别经历如图所示的(1)或(2)过程到达末态b.已知Ta < Tb,则这两过程中气体吸收的热量Q1和Q2的关系是 [ ](A)Q1 > Q2 > 0 (B)Q2 > Q1 > 0 (C)Q2 < Q1 < 0(D)Q1 < Q2 < 0 (E)Q1 = Q2 > 06、有两个相同的容器,容积固定不变,一个盛有氦气,另一个盛有氢气(看成刚性分子理想气体),它们的温度和压强都相等,现将5 J的热量传给氢气,使氢气温度升高,如果使氦气也升高同样的温度,则应向氦气传递的热量是 [ ](A)6 J (B)5 J(C)3 J (D)2 J7、一定量的理想气体经历acb过程时吸热200 J.则经历acbda过程时,吸热为(A)–1200 J (B)–1000 J(C)–700 J (D)1000 J [ ]8、对于室温下的双原子分子理想气体,在等压膨胀的情况下,系统对外所作的功与从外界吸收的热量之比A / Q等于 [ ](A)1 / 3 (B)1 / 4(C)2 / 5 (D)2 / 79、如果卡诺热机的循环曲线所包围的面积从图中的a b c d a增大为a b’c’d a,那么循环ab cda与a b’c’da所作的净功和热机效率变化情况是: [ ](A)净功增大,效率提高. (B)净功增大,效率降低.(C)净功和效率都不变. (D)净功增大,效率不变.一、填空题:1、如图所示,已知图中画不同斜线的两部分分别为S1和S2,那么(1)如果气体的膨胀过程为a—1—b,则气体对外做功A= ;(2)如果气体进行a—2—b—1—a的循环过程,则它对外做功A =2、已知1 mol的某种理想气体(可视为刚性分子),在等压过程中温度上升1 K,内能增加了20.78 J,则气体对外做功为__________,气体吸收热量为__________.3、刚性双原子分子的理想气体在等压下膨胀所作的功为A,则传递给气体的热量为___ ____________.4、热力学第二定律的克劳修斯叙述是:_________________________________________;开尔文叙述是____________________________________________.5、从统计的意义来解释:不可逆过程实质上是一个________________________________________的转变过程.一切实际过程都向着____________________________________________的方向进行.6、由绝热材料包围的容器被隔板隔为两半,左边是理想气体,右边是真空.如果把隔板撤去,气体将进行自由膨胀过程,达到平衡后气体的温度_________(升高、降低或不变),气体的熵___________(增加、减小或不变).二、计算题:1、一定量的单原子分子理想气体,从A态出发经等压过程膨胀到B态,又经绝热过程膨胀到C态,如图所示.试求这全过程中气体对外所作的功,内能的增量以及吸收的热量.2、如果一定量的理想气体,其体积和压强依照V = a / 的规律变化,其中a为已知常数.试求:(1)气体从体积V1膨胀到V2所作的功;(2)体积为V1时的温度T1与体积为V2时的温度T2之比.3、一卡诺热机(可逆的),当高温热源的温度为127°C、低温热源温度为27°C时,其每次循环对外作净功8000 J.今维持低温热源的温度不变,提高高温热源温度,使其每次循环对外作净功10000 J.若两个卡诺循环都工作在相同的两条绝缘线之间,试求:(1)第二个循环热机的效率;(2)第二个循环的高温热源的温度.4、一定量的刚性双原子分子的理想气体,处于压强P1= 10 atm、温度T1 = 500K的平衡态,后经历一绝热过程达到压强P2 = 5 atm、温度为T2的平衡态.求T2.热力学(三)一、选择题1、设高温热源的热力学温度是低温热源的热力学温度的n倍,则理想气体在一次卡诺循环中,传给低温热源的热量是从高温热源吸取的热量的(A) n倍 (B) n–1倍(C) 倍 (D) 倍 [ ]2、一定量理想气体经历的循环过程用V-T曲线表示如题2图,在此循环过程中,气体从外界吸热的过程是(A) A→B (B) B→C(C) C→A (D) B→C和C→A [ ]3、所列题3图分别表示某人设想的理想气体的四个循环过程,请选出其中一个在物理上可能实现的循环过程的图的标号. [ ]V P (A)P (B)绝热绝热C B 等温等容等容O V O 等温 VP 等压(C)P (D)A 等温绝热绝热绝热绝热O T O V O V题图题3图4、理想气体卡诺循环过程的两条绝热线下的面积大小(图中阴影部分),分割为S1和S2,则二者的大小关系是(A) S1 > S2 (B) S1 = S2(C) S1 < S2 (D) 无法确定 [ ]PS2 S1V.对此说法,有如下几种评论,哪种是正确的?(A) 不违反热力学第一定律,但违反热力学第二定律.(B) 不违反热力学第二定律,但违反热力学第一定律.(C) 不违反热力学第一定律,也不违反热力学第二定律.(D) 违反热力学第一定律,也违反热力学第二定律. [ ]6、一绝热容器被隔板分成两半,一半是真空,另一半是理想气体,若把隔板抽出,气体将进行自由膨胀,达到平衡后(A) 温度不变,熵增加. (B) 温度升高,熵增加.(C) 温度降低,熵增加. (D) 温度不变,熵不变. [ ]7、一定量的理想气体向真空作绝热自由膨胀,体积由V1增至V2,在此过程中气体的(A) 内能不变,熵增加. (B) 内能不变,熵减少.(C) 内能不变,熵不变. (D) 内能增加,熵增加. [ ]8、给定理想气体,从标准状态 (P0,V0,T0)开始作绝热膨胀,体积增大到3倍,膨胀后温度T、压强P与标准状态时T0、P0之关系为 (γ为比热比) [ ](A) T = ( ) r T0 ; P = ( ) r-1 P0. (B) T = ( ) r-1 T0 ; P = ( ) r P0.(C) T = ( ) -r T0 ; P = ( ) r-1 P0. (D) T = ( ) r-1 T0 ; P = ( ) -r P0.一、填空题:1、在P-V图上(1) 系统的某一平衡态用来表示;(2) 系统的某一平衡过程用来表示;(3) 系统的某一平衡循环过程用来表示.2、P-V图上的一点,代表;P-V图上任意一条曲线,表示;3、一定量的理想气体,从P-V图上状态A出发,分别经历等压、等温、绝热三种过程,由体积V1膨胀到体积V2,试画出这三种过程的P—V图曲线,在上述三种过程中:(1)气体对外作功最大的是过程;(2) 气体吸热最多的是过程;V2( 均视为刚性分子的理想气体),它们的质量比为m1:m2E1:E2 = ,如果它们分别在等压过程中吸收了相同的热量,则它们对外作功之比为A1:A2 = .(各量下角标1表示氢气,2表示氦气)5、质量为2.5 g的氢气和氦气的混合气体,盛于某密闭的气缸里 ( 氢气和氦气均视为刚性分子的理想气体),若保持气缸的体积不变,测得此混合气体的温度每升高1K,需要吸收的热量等于2.25 R ( R为摩尔气体常量).由此可知,该混合气体中有氢气 g,氦气 g;若保持气缸内的压强不变,要使该混合气体的温度升高1K,则该气体吸收的热量为 . (氢气的M mol = 2×10 -3 kg,氦气的M mol = 4×10 -3 kg)6、一定量理想气体,从A状态 (2P1,V1) 经历如图所示的直线过程变到B状态 (P1,2V1),则AB过程中系统作功A = ;内能改变△E = .第6题图第7题图7、如图所示,理想气体从状态A出发经ABCDA循环过程,回到初态A点,则循环过程中气体净吸的热量Q = .8、有一卡诺热机,用29kg空气为工作物质,工作在27℃的高温热源与–73℃的低温热源之间,此热机的效率η= .若在等温膨胀的过程中气缸体积增大2.718倍,则此热机每一循环所作的功为 .(空气的摩尔质量为29×10-3kg·mol-1)二、计算题:1、一定量的某种理想气体,开始时处于压强、体积、温度分别为P0 = 1.2×106 P0,V0 = 8.31×10-3m3,T0 = 300K的初态,后经过一等容过程,温度升高到T1 = 450 K,再经过一等温过程,压强降到P = P0的末态.已知该理想气体的等压摩尔热容与等容摩尔热容之比C P/C V=5/3,求:(1)该理想气体的等压摩尔热容C P和等容量摩尔热容C V.(2)气体从始态变到末态的全过程中从外界吸收的热量.2、某理想气体在P-V图上等温线与绝热线相交于A点,如图,已知A点的压强P1=2×105P0,体积V1 = 0.5×10-3 m3,而且A点处等温线斜率与绝热线斜率之比为0.714,现使气体从A点绝热膨胀至B点,其体积V2 = 1×10-3 m3,求(1) B 点处的压强;(2) 在此过程中气体对外作的功.3、1 mol单原子分子的理想气体,经历如图所示的可逆循环,联结AC两点的曲线III的方程为P = P0 V2 / V20,A点的温度为T0.(1)试以T0,R表示I、II、III过程中气体吸收的热量.(2)求此循环的效率.(提示:循环效率的定义式η= 1– Q2 / Q1, Q1循环中气体吸收的热量,Q2为循环中气体放出的热量).气体动理论 (一)一、选择题:1、一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为P1和P2,则两者的大小关系是:(A) P1 > P2 (B) P1 < P2(C) P1 = P2 (D) 不确定的. [ ]2、若理想气体的体积为V,压强为P,温度为T,一个分子的质量为m,k为玻耳兹曼常量,R为摩尔气体常量,则该理想气体的分子数为:(A) PV / m . (B) PV/(KT).(C) PV / (RT). (D) PV/(mT). [ ]3、有一截面均匀的封闭圆筒,中间被一光滑的活塞分隔成两边,如果其中的一边装有0.1kg某一温度的氢气,为了使活塞停留在圆筒的正中央,则另一边应装入同一温度的氧气质量为:[ ](A) 1 / 16 kg (B) 0.8 kg(C) 1.6 kg (D) 3.2 kg4、在一密闭容器中,储有A、B、C三种理想气体,处于平衡状态,A种气体的分子数密度为n1,它产生的压强为P1,B种气体的分子数密度为2 n1,C种气体的分子数密度为3 n1,则混合气体的压强P为(A) 3 P1 (B) 4 P1(C) 5 P1 (D) 6 P1 [ ]5、一定量某理想气体按PV2 = 恒量的规律膨胀,则膨胀后理想气体温度(A) 将升高 (B) 将降低(C) 不变 (D)升高还是降低,不能确定 [ ]6、如图所示,两个大小不同的容器用均匀的细管相连,管中有一水银滴作活塞,大容器装有氧气,小容器装有氢气,当温度相同时,水银滴静止于细管中央,试问此时这两种气体的密度哪个大?(A)氧气的密度大. (B)氢气的密度大.(C)密度一样大. (D)无法判断. [ ]一、填空题:1、对一定质量的理想气体进行等温压缩,若初始时每立方米体积内气体分子数为1.96×1024,当压强升高到初值的两倍时,每立方米体积内气体分子数应为 .2、在推导理想气体压强公式中,体现统计意义的两条假设是:(1) ;(2) .3、某理想气体在温度为27℃和压强为1.0×10-2 atm情况下,密度为11.3 g / m3,则这气体的摩尔质量M= .(摩尔气体常量R = 8.31 J·mol-1·K-1)mol4、在定压下加热一定量的理想气体,若使其温度升高1K时,它的体积增加了0.005倍,则气体原来的温度是 .5、下面给出理想气体状态方程的几种微分形式,指出它们各表示什么过程.(1) p d V = (M / M mol) R d T表示过程.(2) V d p = (M / M mol) R d T表示过程.(3) p d V + V d p = 0 表示过程.6、氢分子的质量3.3×10 –24 g,如果每秒有1023个氢分子沿着与容器器壁的法线成45°角的方向以105cm·s-1的速率撞击在2.0 cm 2 面积上(碰撞是完全弹性的),则此氢气的压强为 .7、一气体分子的质量可以根据该气体的定容比热容来计算,氩气的定容比热容Cv = 0.314 kJ·kg-1·K-1,则氩原子的质量m = .(1 k c a l = 4.18×103 J)8、分子物理是研究的学科,它应用的基本方法是方法.9、解释下列分子运动论与热力学名词:(1) 状态参量:;(2) 微观量:;(3) 宏观量:;二、计算题:1、黄绿光的波长是5000 Å (1 Å =10-10m),理想气体在标准状态下,以黄绿光的波长为边长的立方体内有多少个分子?(玻耳兹曼常量k = 1.38×10 -23J·K-1)2、两个相同的容器装有氢气,以一细玻璃管相连通,管中用一滴水银作活塞,如图所示,当左边容器的温度为0℃,而右边容器的温度为20℃时,水银滴刚好在管的中央,试问,当左边容器温度由0℃增到5℃,而右边容器温度由20℃增到30℃时,水银滴是否会移动?如何移动?3、假设地球大气层由同种分子构成,且充满整个空间,并设各处温度T相等.试根据玻璃尔兹曼分布律计算大气层分子的平均重力势能εp.(已知积分公式 X n e -ax d x = n !/ a n+1)热力学(一) (答案)一、 1.C 2.B 3.D 4.D 5.A 6.B 7.B 8.D二、 1.物体作宏观位移,分子之间的相互作用.2.能使系统进行逆向变化,回复状态,而且周围一切都回复原状.系统不能回复到初;态;或者系统回复到初态时,周围并不能回复原状.3.在等压升温过程中,气体要膨胀而作功,所以要比气体等体升温过程多吸收一部分热量.4.(1)气体的内能,(2)气体对外所做的功,(3)气体的内能和对外所做的功5.2/i+2,i/i+2 6.8.64×103 7.7.48×103 J ,7.48×103 J8.200J热力学(二)答案一、1.A 2.C 3.B 4.B 5.A 6.C 7.B 8.D 9.D二、1.S1+S2,-S1 2. 8.31J, 29.09J 3.7A/24、不可能把热量从低温物体自动传到高温物体而不引起外界变化不可能制造出这样循环工作的热机,它只从单一热源吸热来作功,而不放出热量给其他物体,或者说不使外界发生任何变化.5. 从概率较小的状态到概率较大的状态,状态概率增大(或熵增大)6.不变; 增加热力学(三)答案一、1、C 2、A 3、B 4、B 5、C 6、A 7、A 8、D二、1、一个点,一条曲线,一条封闭线 2、(参看1题)3、等压,等压 4、1:2,5:3,5:7 5、1.5,1,3.25R 6、23P 1V 1,0 7、1.62×104J 8、33.3%,831×105J气体动理论(一)答案一、1.C 2. B 3.C 4.D 5.B 6.A二、1、3.92×1024 2、(1)沿空间各方向运动的分子数相等;(2)v x 2=v y 2=v z 23、27.9g/mol4、200K5、等压,等容,等温6、2.33×103 Pa7、6.59×10-26 kg8、物体热现象和热运动规律、统计9、(1)描述物体运动状态的物理量;(2)表征个别分子状况的物理量,如分子大小、质量、速度等;(3)表征大量分子集体特征的物理量,如P 、V 、T 、C 等.气体动理论(二) 答案。

大学物理复习题(下)

大学物理复习题(下)

大学物理复习题(下册)第八章 振 动一.单项选择题1、一个轻质弹簧竖直悬挂,弹簧系数为k ,簧的下端悬挂一质量为m 的物体。

则此系统作简谐振动时振动的固有角频率为( )A .k m =ωB .k m =ωC .m k =ωD .mk =ω 2、一质点作简谐振动,其振动表达式为x=0.02cos(4)2t π+π(SI),则其周期和t=0.5s 时的相位分别为( )A .2s 2πB .2s π25C .0.5s 2πD .0.5s π25 3、一弹簧振子作简谐振动,初始时具有动能0.6J ,势能0.2J 。

1.5个周期后,弹簧振子振动的总能量E=( )A .0.2JB .0.4JC .0.6JD .0.8J4、简谐振动的运动方程为x=Acos (ωt+ϕ),相应的x 一t曲线如图所示,则其初相ϕ为( )A.2π-B.0C.2πD.π 5、质点作简谐振动,振动方程x=0.06cos(3πt-2π)(SI)。

质点在t=2s 时的相位为( ) A .61π B .31π C .21π D .65π 6、简谐振动的位移曲线x —t ,速度曲线V 一t ,加速度曲线a-t 在图中依次表示为( )A .曲线I 、II 、IIIB .曲线II 、I 、IIIC .曲线III 、II 、ID .曲线I 、III 、II7、两个同方向简谐振动的运动学方程分别为x 1=2×10-2cos ⎪⎭⎫ ⎝⎛π+3t 10(SI) x 2=2×10-2cos ⎪⎭⎫ ⎝⎛π-3t 10(SI) 则合振动的运动学方程为( )A .x=4×10-2cos ⎪⎭⎫ ⎝⎛+π3210t (SI) B .x=4×10-2cos10t(SI) C .x=2×10-2cos ⎪⎭⎫ ⎝⎛+π3210t (SI) D .x=2×10-2cos10t(SI) 8、一个单摆,其摆长为l ,悬挂物体的质量为m ,则该振动系统的周期为( )。

大学物理(下)期末复习题

大学物理(下)期末复习题

练习 一一、选择题:1. 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1<R 2),小球带电Q ,大球带电-Q ,下列各图中哪一个正确表示了电场的分布 ( D )(A) (B) (C) (D)2. 如图所示,任一闭合曲面S 内有一点电荷q ,O 为S面内的P 点移到T 点,且OP =OT ,那么(A) 穿过S 面的电通量改变,O 点的场强大小不变; (B) 穿过S 面的电通量改变,O 点的场强大小改变; (C) 穿过S 面的电通量不变,O 点的场强大小改变; (D) 穿过S 面的电通量不变,O 点的场强大小不变。

3. 在边长为a 的正立方体中心有一个电量为q 的点电荷,则通过该立方体任一面的电场强度通量为 ( )12121221(A) q /ε0 ; (B) q /2ε0 ; (C) q /4ε0 ; (D) q /6ε0。

4. 如图所示,a 、b 、c 是电场中某条电场线上的三个点,由此可知 ( ) (A) E a >E b >E c ; (B) E a <E b <E c ; (C) U a >U b >U c ; (D) U a <U b <U c 。

5. 关于高斯定理的理解有下面几种说法,其中正确的是 ( )(A) 如果高斯面内无电荷,则高斯面上E处处为零;(B) 如果高斯面上E处处不为零,则该面内必无电荷; (C) 如果高斯面内有净电荷,则通过该面的电通量必不为零;(D) 如果高斯面上E处处为零,则该面内必无电荷。

二、填空题:1. 如图所示,边长分别为a 和b 的矩形,其A 、B 、C 三个顶点上分别放置三个电量均为q 的点电荷,则中心O 点的场强为 方向 。

2. 内、外半径分别为R 1、R 2的均匀带电厚球壳,电荷体密度为ρ。

则,在r <R 1的区域内场强大小为 ,在R 1<r <R 2的区域内场强大小为 ,在r >R 2的区域内场强大小为 。

大学物理学专业《大学物理(下册)》期末考试试卷A卷 附答案

大学物理学专业《大学物理(下册)》期末考试试卷A卷 附答案

大学物理学专业《大学物理(下册)》期末考试试卷A卷附答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。

2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。

一、填空题(共10小题,每题2分,共20分)1、图示曲线为处于同一温度T时氦(原子量4)、氖(原子量20)和氩(原子量40)三种气体分子的速率分布曲线。

其中曲线(a)是________气分子的速率分布曲线;曲线(c)是________气分子的速率分布曲线。

2、刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成______,与刚体本身的转动惯量成反比。

(填“正比”或“反比”)。

3、均匀细棒质量为,长度为,则对于通过棒的一端与棒垂直的轴的转动惯量为_____,对于通过棒的中点与棒垂直的轴的转动惯量_____。

4、两个相同的刚性容器,一个盛有氧气,一个盛氦气(均视为刚性分子理想气体)。

开始他们的压强和温度都相同,现将3J的热量传给氦气,使之升高一定的温度。

若使氧气也升高同样的温度,则应向氧气传递的热量为_________J。

5、四根辐条的金属轮子在均匀磁场中转动,转轴与平行,轮子和辐条都是导体,辐条长为R,轮子转速为n,则轮子中心O与轮边缘b之间的感应电动势为______________,电势最高点是在______________处。

6、长为的匀质细杆,可绕过其端点的水平轴在竖直平面内自由转动。

如果将细杆置与水平位置,然后让其由静止开始自由下摆,则开始转动的瞬间,细杆的角加速度为_____,细杆转动到竖直位置时角加速度为_____。

7、反映电磁场基本性质和规律的积分形式的麦克斯韦方程组为:()。

①②③④试判断下列结论是包含于或等效于哪一个麦克斯韦方程式的.将你确定的方程式用代号填在相应结论后的空白处。

(1) 变化的磁场一定伴随有电场;__________________(2) 磁感线是无头无尾的;________________________(3) 电荷总伴随有电场.__________________________8、一长直导线旁有一长为,宽为的矩形线圈,线圈与导线共面,如图所示. 长直导线通有稳恒电流,则距长直导线为处的点的磁感应强度为___________;线圈与导线的互感系数为___________。

大学物理下册最终版 习题、例题、概念

大学物理下册最终版 习题、例题、概念

R2
(R23 R13 ) 3 0r 2
dr
2 0
(R22Βιβλιοθήκη R12 ) 。612-2.若将 27 个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大
水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损
失.)
解:设小水滴半径为 r、电荷 q;大水滴半径为 R、电荷为 Q=27 q.27 个小水滴聚成大水
14-8.一橡皮传输带以速度 v 匀速向右运动,如图所示,橡皮带上均匀带有电荷, 电荷面密度为 。 (1)求像皮带中部上方靠近表面一点处的磁感应强度
B 的大小; (2)证明对非相对论情形,运动电荷的速度 v 及它所
产生的磁场
B
和电场
E
之间满足下述关系:
B
1 c2
v
E
(式中
c
1 )。 00
解:(1)如图,垂直于电荷运动方向作一个闭合回路 abcda ,考虑到橡皮带上等
qa 4 0ra
qb 4 0rb
┄①,再由系统电荷为 Q,有:qa
qb
Q ┄②两式联立得:qa
Qa , ab
qb
Qb ab

(2)根据电容的定义: C Q Q (或 C Q Q ),将(1)结论代入,有:
U
qa
U
qb
4 0a
4 0b
C 4 0 (a b) 。
d
13-3.面积为 S 的平行板电容器,两板间距为 d ,求:(1)插入厚度为 3 ,相对介电常数
ω 是角频率, I0 和ω都是常量。在长直导线旁平行放置一矩形线圈,线圈面
积与直导线在同一平面内 。已知线圈长为 l,宽为 b,线圈近直线的一边离直

大学物理(下)试试题库

大学物理(下)试试题库

大学物理(下)试题库第九章 静电场知识点1:电场、电场强度的概念 1、、【 】下列说法不正确的是:A : 只要有电荷存在,电荷周围就一定存在电场;B :电场是一种物质;C :电荷间的相互作用是通过电场而产生的;D :电荷间的相互作用是一种超距作用。

2、【 】 电场中有一点P ,下列说法中正确的是:A : 若放在P 点的检验电荷的电量减半,则P 点的场强减半;B :若P 点没有试探电荷,则P 点场强为零;C : P 点的场强越大,则同一电荷在P 点受到的电场力越大;D : P 点的场强方向为就是放在该点的电荷受电场力的方向 3、【 】关于电场线的说法,不正确的是: A : 沿着电场线的方向电场强度越来越小; B : 在没有电荷的地方,电场线不会中止;C : 电场线是人们假设的,用以形象表示电场的强弱和方向,客观上并不存在:D :电场线是始于正电荷或无穷远,止于负电荷或无穷远。

4、【 】下列性质中不属于静电场的是: A :物质性; B :叠加性;C :涡旋性;D :对其中的电荷有力的作用。

5、【 】在坐标原点放一正电荷Q ,它在P 点(x=+1, y=0)产生的电场强度为E.现在,另外有一个负电荷-2Q ,试问应将它放在什么位置才能使P 点的电场强度等于零? (A) x 轴上x>1. (B) x 轴上0<x<1.(C) x 轴上x<0. (D) y 轴上y>06、真空中一点电荷的场强分布函数为:E= ___________________。

7、半径为R ,电量为Q 的均匀带电圆环,其圆心O 点的电场强度E=_____ 。

8、【 】两个点电荷21q q 和固定在一条直线上。

相距为d ,把第三个点电荷3q 放在21,q q 的延长线上,与2q 相距为d ,故使3q 保持静止,则(A )212q q = (B )212q q -=(C )214q q -= (D )2122q q -=9、如图一半径为R 的带有一缺口的细圆环,缺口长度为d (d<<R), 环上均匀带有正电,电荷为q ,则圆心O 处的场强大小E =__________,场强方向为___________ 。

大学物理(下册)习题与答案

大学物理(下册)习题与答案

大学物理练习册物理教研室遍热力学(一)一、选择题:1、如图所示,当汽缸中的活塞迅速向外移动从而使汽缸膨胀时,气体所经历的过程(A)是平衡过程,它能用P—V图上的一条曲线表示。

(B)不是平衡过程,但它能用P—V图上的一条曲线表示。

(C)不是平衡过程,它不能用P—V图上的一条曲线表示。

(D)是平衡过程,但它不能用P—V图上的一条曲线表示。

[ ]2、在下列各种说法中,哪些是正确的?[ ](1)热平衡就是无摩擦的、平衡力作用的过程。

(2)热平衡过程一定是可逆过程。

(3)热平衡过程是无限多个连续变化的平衡态的连接。

(4)热平衡过程在P—V图上可用一连续曲线表示。

(A)(1)、(2)(B)(3)、(4)(C)(2)、(3)、(4)(D)(1)、(2)、(3)、(4)3、设有下列过程:[ ](1)用活塞缓慢的压缩绝热容器中的理想气体。

(设活塞与器壁无摩擦)(2)用缓慢地旋转的叶片使绝热容器中的水温上升。

(3)冰溶解为水。

(4)一个不受空气阻力及其它摩擦力作用的单摆的摆动。

其中是逆过程的为(A)(1)、(2)、(4)(B)(1)、(2)、(3)(C)(1)、(3)、(4)(D)(1)、(4)4、关于可逆过程和不可逆过程的判断:[ ](1)可逆热力学过程一定是准静态过程。

(2)准静态过程一定是可逆过程。

(3)不可逆过程就是不能向相反方向进行的过程。

(4)凡有摩擦的过程,一定是不可逆过程。

以上四种判断,其中正确的是(A)(1)、(2)、(3)(B)(1)、(2)、(4)(C)(2)、(4)(D)(1)、(4)5、在下列说法中,哪些是正确的?[ ](1)可逆过程一定是平衡过程。

(2)平衡过程一定是可逆的。

(3)不可逆过程一定是非平衡过程。

(4)非平衡过程一定是不可逆的。

(A)(1)、(4)(B)(2)、(3)(C)(1)、(2)、(3)、(4)(D)(1)、(3)6、置于容器的气体,如果气体各处压强相等,或气体各处温度相同,则这两种情况下气体的状态 [ ](A )一定都是平衡态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学物理下册物理选择题库真空中的静电场1、一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元dS的一个带电量为ds σ的电荷元,在球面内各点产生的电场强度(A)处处为零. (B)不一定都为零.(C)处处不为零. (D)无法判定 .2、在边长为a的正方体中心处放置一电量为Q的点电荷,则正方体顶角处的电场强度的大小为:(A)2012a Qπε. (B)206a Q πε. (C)203a Qπε. (D)20a Qπε. 3、如图示,直线MN长为2l ,弧OCD是以N点为中心,l 为半径的半圆弧,N点有正电荷+q,M点有负电荷-q.今将一试验电荷+q 0从O点出发沿路径OCDP移到无穷远处,设无穷远处电势为零,则电场力作功(A)A<0 且为有限常量.(B)A>0 且为有限常量 .(C)A=∞.(D)A=0.第3题图 第4题图 4、图中实线为某电场中的电力线,虚线表示等势(位)面,由图可看出:(A)EA >EB >EC ,UA >UB >UC .(B)EA <EB <ECA <UB <UC . (C)EA >EB >ECA <UB <UC . (D)EA <EB <ECA >UB >UC . 5、真空中有两个点电荷M、N,相互间作用力为F,当另一点电荷Q移近这两个点电荷时,M、N两点电荷之间的作用力F(A)大小不变,方向改变. (B)大小改变,方向不变.(C)大小和方向都不变. (D)大小和方向都改变.6、电量之比为1∶3∶5的三个带同号电荷的小球A、B、C,保持在一条直线上,相互间距离比小球直径大得多.若固定A、C不动,改变B的位置使B所受电场力为零时,AB与BC 的比值为(A)5. (B)1/5. (C)5. (D)51.7、关于电场强度与电势之间的关系,下列说法中,哪一种是正确的?(A)在电场中,场强为零的点,电势必为零 .(B)在电场中,电势为零的点,电场强度必为零 .(C)在电势不变的空间,场强处处为零 .(D)在场强不变的空间,电势处处相等8、在空间有一非均匀电场,其电力线分布如图所示.在电场中作一半径为R的闭合球面S,已知通过球面上某一面元ΔS 的电场强度通量为ΔΦe ,则通过该球面其余部分的电场强度通量为(A)e ∆Φ-. (B)e S R ∆Φ∆24π. (C)e S S R ∆Φ∆∆-24π. (D)0第8题图 第9题图 9、一电量为-q的点电荷位于圆心O处,A、B、C、D为同一圆周上的四点,如图所示.现将一试验电荷从A点分别移动到B、C、D各点,则(A)从A到B,电场力作功最大.(B)从A到C,电场力作功最大.(C)从A到D,电场力作功最大.(D)从A到各点,电场力作功相等.10、在边长为a的正方体中心处放置一电量为Q的点电荷,设无穷远处为电势零点,则在一个侧面的中心处的电势为:(A)a Q04πε. (B)a Q 02πε. (C)a Q 0πε. (D)a Q022πε.11、在边长为a的正方体中心处放置一点电荷Q,设无穷远处为电势零点,则在正方体顶角处的电势为:(A)a Q034πε. (B)a Q 032πε. (C)a Q 06πε. (D)aQ012πε 12. 如图所示,O点是两个相同的点电荷所在处连线的中点,P点为中垂线上的一点,则O、P两点的电势和场强大小有如下关系: (A)p P E E U U >>00,. (B)p P E E U U <<00,. (C)p P E E U U <>00,. (D)p P E E U U ><00,.第12题图 第14题图13、根据高斯定理的数学表达式 0εq s d E S ∑=⋅⎰ 可知下述各种说法中,正确的是: (A)闭合面内的电荷代数和为零时,闭合面上各点场强一定为零.(B)闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零. (C)闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.(D)闭合面上各点场强均为零时,闭合面内一定处处无电荷.14、 一带电量为-q的质点垂直射入开有小孔的两带电平行板之间,如图所示.两平行板之间的电势差为U,距离为d,则此带电质点通过电场后它的动能增量等于(A)-qU/d . (B)+qU.(C)-qU. (D)qU/d15、真空中有一电量为Q的点电荷,在与它相距为r的a点处有一试验电荷q.现使试验电荷q从a点沿半圆弧轨道运动到b点,如图所示.则电场力作功为(A)24220r r Qq ππε⋅. (B)r r Qq 2420πε.(C)r r Qq ππε204. (D) 0.第15题图 第16题图 16、一电场强度为E 的均匀电场,E 的方向与X轴正向平行,如图所示.则通过图中一半径为R的半球面的电场强度通量为 (A)E R 2π. (B)E R 221π.(C)E R 22π. (D)0.17、关于电场强度定义式0q F E=,下列说法中哪个是正确的? (A)场强E 的大小与试探电荷q 0的大小成反比. (B)对场中某点,试探电荷受力F 与q 0的比值不因q 0而变. (C)试探电荷受力F 的方向就是场强E 的方向.(D)若场中某点不放试探电荷q 0,则F =0,从而E =0.18、一带电体可作为点电荷处理的条件是(A)电荷必须呈球形分布.(B)带电体的线度很小.(C)带电体的线度与其它有关长度相比可忽略不计.(D)电量很小.19、高斯定理 0ερdV s d E s V ⎰⎰=⋅(A)适用于任何静电场.(B)只适用于真空中的静电场.(C)只适用于具有球对称性、轴对称性和平面对称性的静电场.(D)只适用于虽然不具有(C)中所述的对称性、但可以找到合适的高斯面的静电场.20、两个同心均匀带电球面,半径分别为Ra 和Rb (Ra <Rb )所带电量分别为Qa 和Qb .设某点与球心相距r,当Ra <r<Rb 时,该点的电场强度的大小为:(A)2041r Q Q b a +⋅πε. (B)2041r Q Q b a -⋅πε.(C))(41220b b a R Q r Q +⋅πε. (D)2041r Q a ⋅πε. 21、半径为r的均匀带电球面1,带电量为q;其外有一同心的半径为R的均匀带电球面2,带电量为Q,则此两球面之间的电势差U1-U2为:(A))11(40R r q-πε. (B))11(40r R q -πε. (C))(410R Q r q -πε. (D)r q 04πε. 22、已知一高斯面所包围的体积内电量代数和∑qi =0,则可肯定:(A)高斯面上各点场强均为零.(B)穿过高斯面上每一面元的电通量均为零.(C)穿过整个高斯面的电通量为零.(D)以上说法都不对.23、 有四个等量点电荷在OXY平面上的四种不同组态,所有点电荷均与原点等距.设无穷远处电势为零 , 则原点O处电场强度和电势均为零的组态是24. 在静电场中,有关静电场的电场强度与电势之间的关系,下列说法中正确的是: (A)场强大的地方电势一定高.(B)场强相等的各点电势一定相等.(C)场强为零的点电势不一定为零.(D)场强为零的点电势必定是零.25、 正方形的两对角上,各置电荷Q,在其余两对角上各置电荷q,若Q所受合力为零,则Q与q的大小关系为(A)q Q 22-=. (B)q Q 2-=.(C)q Q 4-=. (D)q Q 2-=.有导体和介质的静电场1. 关于高斯定理,下列说法中哪一个是正确的? (A)高斯面内不包围自由电荷,则面上各点电位移矢量D 为零. (B)高斯面上处处D 为零,则面内必不存在自由电荷. (C)高斯面的D 通量仅与面内自由电荷有关.(D)以上说法都不正确.2. 关于静电场中的电位移线,下列说法中,哪一种是正确的?(A)起自正电荷,止于负电荷,不形成闭合线,不中断.(B)任何两条电位移线互相平行.(C)起自正自由电荷,止于负自由电荷,任何两条电位移线在无自由电荷的空间不相交.(D)电位移线只出现在有电介质的空间.3. 两个半径相同的金属球,一为空心,一为实心,把两者各自孤立时的电容值加以比较,则(A)空心球电容值大. (B)实心球电容值大.(C)两球电容值相等. (D)大小关系无法确定.4. C1和C2两空气电容器串联以后接电源充电.在电源保持联接的情况下,在C2中插入一电介质板,则(A)C1极板上电量增加,C2极板上电量增加.(B)C1极板上电量减少,C2极板上电量增加.(C)C1极板上电量增加,C2极板上电量减少.(D)C1极板上电量减少,C2极板上电量减少.第4题图 第5题图 5. C1和C2两空气电容器串联起来接上电源充电.然后将电源断开,再把一电介质板插入C1中,则(A)C1上电势差减小,C2上电势差增大.(B)C1上电势差减小,C2上电势差不变.(C)C1上电势差增大,C2上电势差减小.(D)C1上电势差增大,C2上电势差不变.6. C1和C2两空气电容器并联以后接电源充电.在电源保持联接的情况下,在C1中插入一电介质板,则(A)C1极板上电量增加,C2极板上电量减少.(B)C1极板上电量减少,C2极板上电量增加.(C)C1极板上电量增加,C2极板上电量不变.(D)C1极板上电量减少,C2极板上电量不变.第6题图 第7题图 7. C1和C2两空气电容器,把它们串联成一电容器组.若在C1中插入一电介质板,则(A)C1的电容增大,电容器组总电容减小.(B)C1的电容增大,电容器组总电容增大.(C)C1的电容减小,电容器组总电容减小.(D)C1的电容减小,电容器组总电容增大.8. 有两个带电不等的金属球,直径相等,但一个是空心,一个是实心的.现使它们互相接触,则这两个金属球上的电荷(A)不变化. (B)平均分配.(C)空心球电量多. (D)实心球电量多.9. 在空气平行板电容器中,平行地插上一块各向同性均匀电介质板,如图所示.当电容器充电后,若忽略边缘效应,则电介质中的场强E 与空气中的场强0E 相比较,应有 (A)0E E >,两者方向相同.(B)0E E =,两者方向相同.(C)0E E <,两者方向相同.(D)0E E <,两者方向相反.第9题图10. 两个半径不同带电量相同的导体球,相距很远.今用一细长导线将它们连接起来,则: (A)各球所带电量不变.(B)半径大的球带电量多.(C)半径大的球带电量少.(D)无法确定哪一个导体球带电量多.真空中的稳定磁场1.一铜条置于均匀磁场中,铜条中电子流的方向如图所示.试问下述哪一种情况将会发生?(A)在铜条上a、b两点产生一小电势差,且Ua >Ub .(B)在铜条上a、b两点产生一小电势差,且Ua <Ub .(C)在铜条上产生涡流.(D)电子受到洛仑兹力而减速.第1题图 第2题图 2. 边长为l 的正方形线圈,分别用图示两种方式通以电流I(其中ab、cd与正方形共面),在这两种情况下,线圈在其中心产生的磁感应强度的大小分别为 (A)0021==B B ,.(B)l I B B πμ/220021==,.(C)0/22201==B l I B ,πμ.(D)l I B l I B πμπμ/22/220201==,.3. 一电荷量为q的粒子在均匀磁场中运动,下列哪种说法是正确的?(A)只要速度大小相同,粒子所受的洛仑兹力就相同.(B)在速度不变的前提下,若电荷q变为-q,则粒子受力反向,数值不变. (C)粒子进入磁场后,其动能和动量都不变.(D)洛仑兹力与速度方向垂直,所以带电粒子运动的轨迹必定是圆.4. 两个同心圆线圈,大圆半径为R,通有电流I1;小圆半径为r,通有电流I2,方向如图.若r<<R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为(A)R r I I 22210πμ. (B)R r I I 22210μ.(C)r R I I 22210πμ. (D)0第4题图 第5题图 5. 如图所示,在磁感应强度为B的均匀磁场中,有一圆形载流导线,a、b、c是其上三个长度相等的电流元,则它们所受安培力大小的关系为(A)Fa >Fb >Fc . (B)Fa <Fb <Fc .(C)Fb >Fc >Fa . (D)Fa >Fc >Fb .6. 电流由长直导线1沿切向经a点流入一个电阻均匀分布的圆环,再由b点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流强度为I,圆环的半径为R,且a、b和圆心O在同一直线上.设长直载流导线1、2和圆环分别在O点产生的磁感应强度为1B ,2B ,3B ,则圆心处磁感应强度的大小(A)B=0,因为B1=B2=B3=0.(B)B=0,因为虽然B1≠0,B2≠0,但021=+B B, B3=0.(C)B≠0,因为B1≠0,B2≠0,B3≠0. (D)B≠0,因为虽然B3=0,但021=+B B .第6题图 第7题图 7. 在图(a)和(b)中各有一半径相同的圆形回路L1、L2,圆周内有电流I1、I2,其分布相同,且均在真空中,但在(b)图中L2回路外有电流I3,P1、P2为两圆形回路上的对应点,则: (A)2121,P L L P B B l d B l d B =⋅=⋅⎰⎰ (B)2121,P L L P B B l d B l d B =⋅≠⋅⎰⎰ . (C)2121,P L L P B B l d B l d B ≠⋅=⋅⎰⎰ . (D)2121,P L L P B B l d B l d B ≠⋅=⋅⎰⎰ . 8. 一电子以速度v 垂直地进入磁感应强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将(A)正比于B,反比于v 2. (B)反比于B,正比于v 2.(C)正比于B,反比于v . (D)反比于B,反比于v .第8题图 第9题图 9.把轻的正方形线圈用细线挂在载流直导线AB的附近,两者在同一平面内,直导线AB固定,线圈可以活动.当正方形线圈通以如图所示的电流时线圈将 (A)不动.(B)发生转动,同时靠近导线AB.(C)发生转动,同时离开导线AB.(D)靠近导线AB.(E)离开导线AB.10. 两根载流直导线相互正交放置,如图所示.I1沿Y轴的正方向流动,I2沿Z轴负方向流动.若载流I1的导线不能动,载流I2的导线可以自由运动,则载流I2的导线开始运动的趋势是(A)沿X方向平动. (B)以X为轴转动.(C)以Y为轴转动. (D)无法判断.第10题图 第11题图 11. 在匀强磁场中,有两个平面线圈,其面积A1=2A2,通有电流I1=2I2,它们所受的最大磁力矩之比M1/M2等于(A)1. (B)2.(C)4. (D)1/4.12. 如图,无限长直载流导线与正三角形载流线圈在同一平面内,若长直导线固定不动,则载流三角形线圈将(A)向着长直导线平移. (B)离开长直导线平移.(C)转动. (D)不动.13. 取一闭合积分回路L,使三根载流导线穿过它所围成的面.现改变三根导线之间的相互间隔,但不越出积分回路,则 (A)回路L内的∑I不变,L上各点的B 不变. (B)回路L内的∑I不变,L上各点的B 改变. (C)回路L内的∑I改变,L上各点的B 不变.(D)回路L内的∑I改变,L上各点的B 改变.14. 四条平行的无限长直导线,垂直通过边长为a=20cm的正方形顶点,每条导线中的电流都是I=20A,这四条导线在正方形中心O点产生的磁感应强度为 -(A)0=B . (B)T B 4104.0-⨯=.(C)T B 4108.0-⨯=. (D)T B 4106.1-⨯=.第14题图第15题图15.如图,匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是(A)ab边转入纸内,cd边转出纸外.(B)ab边转出纸外,cd边转入纸内.(C)ad边转入纸内,bc边转出纸外.(D)ad边转出纸外,bc边转入纸内.16.一个电流元l id位于直角坐标系原点,电流沿Z轴方向,空间点P(x,y,z)的磁感应强度沿x轴的分量是:(A)0;(B)-23222)()4(zyxdliy++πμ;(C)-23222)()4(zyxdlix++πμ;(D)-)()4(222zyxdliy++πμ.17. 图为四个带电粒子在O点沿相同方向垂直于磁力线射入均匀磁场后的偏转轨迹的照片.磁场方向垂直纸面向外,轨迹所对应的四个粒子的质量相等,电量大小也相等,则其中动能最大的带负电的粒子的轨迹是(A)Oa.(B)Ob.(C)Oc.(D)Od.第17题图第18题图18.把轻的导线圈用线挂在磁铁N极附近,磁铁的轴线穿过线圈中心,且与线圈在同一平面内,如图所示.当线圈内通以如图所示方向的电流时,线圈将(A)不动.(B)发生转动,同时靠近磁铁.(C)发生转动,同时离开磁铁.(D)不发生转动,只靠近磁铁.(E)不发生转动,只离开磁铁.19. 磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R,x坐标轴垂直圆筒轴线,原点在中心轴线上,图(A)~(E)哪一条曲线表示B-x的关系?20. 有一由N匝细导线绕成的平面正三角形线圈,边长为a,通有电流I,置于均匀外磁场B 中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩Mm 值为:(A)232IB Na . (B)432IB Na .(C)0260sin 3IB Na . (D)0.21. 如图,两根直导线ab和cd沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I从a端流入而从d端流出,则磁感应强度B 沿图中闭合路径L的积分⎰⋅L l d B 等于(A)μ0I . (B)μ0I/3.(C)μ0I/4. (D)2μ0I /3.第21题图 第23题图22. 若要使半径为4⨯10-3m 的裸铜线表面的磁感应强度为7.5⨯10-5T ,则铜线中需要通过的电流为(A)0.14A. (B) 1.4A.(C)14A. (D) 2.8A.23. 如图所示带负电的粒子束垂直地射入两磁铁之间的水平磁场,则:(A)粒子以原有速度在原来的方向上继续运动.(B)粒子向N极移动.(C)粒子向S极移动.(D)粒子向上偏转.(E)粒子向下偏转.24. 若空间存在两根无限长直载流导线,空间的磁场分布就不具有简单的对称性,则该磁场分布(A)不能用安培环路定理来计算.(B)可以直接用安培环路定理求出.(C)只能用毕奥-萨伐尔-拉普拉斯定律求出.(D)可以用安培环路定理和磁感应强度的叠加原理求出. 25. 图示一测定水平方向匀强磁场的磁感应强度B (方向见图)的实验装置.位于竖直面内且横边水平的矩形线框是一个多匝的线圈.线框挂在天平的右盘下,框的下端横边位于待测磁场中.线框没有通电时,将天平调节平衡;通电后,由于磁场对线框的作用力而破坏了天平的平衡,须在天平左盘中加砝码m才能使天平重新平衡.若待测磁场的磁感应强度增为原来的3倍,而通过线圈的电流减为原来的1/2,磁场和电流方向保持不变,则要使天平重新平衡,其左盘中加的砝码质量应为(A)6m. (B)3m/2.(C)2m/3. (D)m/6.(E)9m/2.第25题图有介质时的稳恒磁场1. 关于稳恒磁场的磁场强度H 的下列几种说法中哪个是正确的? (A)H 仅与传导电流有关. (B)若闭合曲线内没有包围传导电流,则曲线上各点的H 必为零. (C)若闭合曲线上各点H 均为零,则该曲线所包围传导电流的代数和为零.(D)以闭合曲线L为边缘的任意曲面的H 通量均相等.2. 图示为载流铁芯螺线管,其中哪个图画得正确?(即电源的正负极,铁芯的磁性,磁力线方向相互不矛盾.)第3题图 3. 附图中,M、P、O由软磁材料制成的棒,三者在同一平面内,当K闭合后, (A)M的左端出现N极. (B)P的左端出现N极.(C)O的右端出现N极. (D)P的右端出现N极.4. 磁介质有三种,用相对磁导率μr 表征它们各自的特性时,(A)顺磁质μr >0,抗磁质μr <0,铁磁质μr >>1.(B)顺磁质μr >1,抗磁质μr =1,铁磁质μr >>1.(C)顺磁质μr >1,抗磁质μr <1,铁磁质μr >>1.(D)顺磁质μr >0,抗磁质μr <0,铁磁质μr >1.5. 用细导线均匀密绕成长为l 、半径为a (l>>a )、总匝数为N的螺线管,管内充满相对磁导率为μr 的均匀磁介质.若线圈中载有稳恒电流I,则管中任意一点的(A)磁感应强度大小为B=μ0μr NI .(B)磁感应强度大小为B=μr NI /l(C)磁场强度大小为H=μ0NI /l .(D)磁场强度大小为H=NI /l .电磁感应1. 在一中空圆柱面上绕有两个完全相同的线圈aa'和bb', 当线圈aa'和bb'如图(1)绕制及联结时,ab间自感系数为L1; 如图(2)彼此重叠绕制及联结时,ab间自感系数为L2.则(A)L1=L2=0. (B)L1=L2≠0.(C)L1=0,L2≠0. (D)L1≠0,L2=0.第1题图 第2题图 2. 面积为S和2S的两圆线圈1、2如图放置,通有相同的电流I.线圈1的电流所产生的通过线圈2的磁通用Φ21表示,线圈2的电流所产生的通过线圈1的磁通用Φ12表示,则Φ21和Φ12的大小关系为:(A)Φ21=2Φ12. (B)Φ21=Φ12/2.(C)Φ21=Φ12. (D)Φ21>Φ12.3. 一根长度为L的铜棒,在均匀磁场B 中以匀角速度ω旋转着,B 的方向垂直铜棒转动的平面,如图.设t=0时,铜棒与Ob成θ角,则在任一时刻t这根铜棒两端之间的感应电动势是:(A)ωL2Bcos(ωt+θ). (B)[ωL2Bcosωt]/2.(C)2ωL2Bcos(ωt+θ).(D)ωL2B.(E)ωL2B/2.第3题图第5题图4.用线圈的自感系数L来表示载流线圈磁场能量的公式W m=LI2/2(A)只适用于无限长密绕螺线管.(B)只适用于单匝圆线圈.(C)只适用于一个匝数很多,且密绕的螺线环.(D)适用于自感系数L一定的任意线圈.5. 有甲乙两个带铁芯的线圈如图所示.欲使乙线圈中产生图示方向的感生电流i,可以采用下列哪一种办法?(A)接通甲线圈电源.(B)接通甲线圈电源后,减少变阻器的阻值.(C)接通甲线圈电源后,甲乙相互靠近.(D)接通甲线圈电源后,抽出甲中铁芯.6.一矩形线框长为a宽为b,置于均匀磁场中,线框绕OO'轴,以匀角速度ω旋转(如图所示).设t=0时,线框平面处于纸面内,则任一时刻感应电动势的大小为(A)t abBωcos 2(B)abBω.(C)tabBωωcos21.(D)tabBωωcos(E)tabBωωsin第6题图第7题图7.如图所示的电路中,A、B是两个完全相同的小灯泡,其内阻r>>R,L是一个自感系数相当大的线圈,其电阻与R相等.当开关K接通和断开时,关于灯泡A和B的情况下面哪一种说法正确?(A)K接通时,IA>IB.(B)K接通时,IA=IB.(C)K断开时,两灯同时熄灭.(D)K断开时,IA=IB.8.两根无限长平行直导线载有大小相等方向相反的电流I,I以dI/dt的变化率增长,一矩形线圈位于导线平面内(如图),则:(A)线圈中无感应电流.(B)线圈中感应电流为顺时针方向.(C)线圈中感应电流为逆时针方向.(D)线圈中感应电流方向不确定.第8题图第9题图9.如图,两个线圈P和Q并联地接到一电动势恒定的电源上.线圈P的自感和电阻分别是线圈Q的两倍,线圈P和Q之间的互感可忽略不计.当达到稳定状态后,线圈P的磁场能量与Q的磁场能量的比值是(A)4.(B)2.(C)1.(D)1/2.10.如图,M、N为水平面内两根平行金属导轨,ab与cd为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使ab向右平移时,cd(A)不动.(B)转动.(C)向左移动.(D)向右移动.第10题图第11题图11.如图,矩形区域为均匀稳恒磁场,半圆形闭合导线回路在纸面内绕轴O作逆时针方向匀角速转动,O点是圆心且恰好落在磁场的边缘上,半圆形闭合导线完全在磁场外时开始计时.图(A)─(D)的 -t函数图象中哪一条属于半圆形导线回路中产生的感应电动势?12.在如图所示的装置中,把静止的条形磁铁从螺线管中按图示情况抽出时(A)螺线管线圈中感生电流方向如A点处箭头所示.(B)螺线管右端感应呈S极.(C)线框EFGH从图下方粗箭头方向看去将逆时针旋转.(D)线框EFGH从图下方粗箭头方向看去将顺时针旋转.第12题图 第13题图 13. 如图,导体棒AB在均匀磁场B中绕通过C点的垂直于棒长且沿磁场方向的轴OO'转动(角速度ω 与B 同方向),BC的长度为棒长的1/3.则(A)A点比B点电势高. (B)A点与B点电势相等.(C)A点比B点电势低. (D)有稳恒电流从A点流向B点.14. 一个圆形线环,它的一半放在一分布在方形区域的匀强磁场B中,另一半位于磁场之外,如图所示.磁场B 的方向垂直指向纸内.欲使圆线环中产生逆时针方向的感应电流,应使(A)线环向右平移. (B)线环向上平移.(C)线环向左平移. (D)磁场强度减弱.第14题图 第17题图 15. 在真空中一个通有电流的线圈a 所产生的磁场内有另一个线圈b,a 和b相对位置固定.若线圈b中没有电流通过,则线圈b与a 间的互感系数:(A)一定为零. (B)一定不为零.(C)可以不为零. (D)是不可能确定的.16. 一块铜板放在磁感应强度正在增大的磁场中时,铜板中出现涡流(感应电流),则涡流将(A)加速铜板中磁场的增加. (B)减缓铜板中磁场的增加.(C)对磁场不起作用. (D)使铜板中磁场反向. 17. 如图,长度为l 的直导线ab在均匀磁场B 中以速度v 移动,直导线ab中的电动势为(A)Blv . (B)αsin Blv .(C)αcos Blv . (D)0.18. 尺寸相同的铁环与铜环所包围的面积中,通以相同变化率的磁通量,环中: (A) 感应电动势不同.(B) 感应电动势相同,感应电流相同.(C) 感应电动势不同,感应电流相同.(D) 感应电动势相同,感应电流不同.19. 在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作如图所示的三种不同方向的平动时,线圈中的感应电流(A)以情况Ⅰ中为最大.(B)以情况Ⅱ中为最大.(C)以情况Ⅲ中为最大.(D)在情况Ⅰ和Ⅱ中相同.第19题图第22题图20.一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是(A)线圈绕自身直径轴转动,轴与磁场方向平行.(B)线圈绕自身直径轴转动,轴与磁场方向垂直.(C)线圈平面垂直于磁场并沿垂直磁场方向平移.(D)线圈平面平行于磁场并沿垂直磁场方向平移.21. 自感为0.25H的线圈中,当电流在(1/16)s内由2A均匀减小到零时,线圈中自感电动势的大小为:(A)7.8 ×10-3V.(B)2.0 V.(C)8.0 V.(D)3.1 ×10-2V.22. 如图所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感应电流i,下列哪一种情况可以做到?(A)载流螺线管向线圈靠近.(B)载流螺线管离开线圈.(C)载流螺线管中电流增大.(D)载流螺线管中插入铁芯.23. 真空中一根无限长直细导线上通有电流强度为I的电流,则距导线垂直距离为a的空间某点处的磁能密度为(A)2)2(21aIπμμ(B)2)2(21aIπμμ(C)2)2(21Iaμπ(D)2)2(21aIμμ24. 如图所示,闭合电路由带铁芯的螺线管,电源,滑线变阻器组成.问在下列哪一种情况下可使线圈中产生的感应电动势与原电流I的方向相反.(A)滑线变阻器的触点A向左滑动.(B)滑线变阻器的触点A向右滑动.(C)螺线管上接点B向左移动(忽略长螺线管的电阻).(D)把铁芯从螺线管中抽出.25. 将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则(A)铜环中有感应电动势,木环中无感应电动势.(B)铜环中感应电动势大,木环中感应电动势小.(C)铜环中感应电动势小,木环中感应电动势大.(D)两环中感应电动势相等.光的干涉1. 在真空中波长为λ的单色光,在折射率为n的透明介质中从A沿某路径传播到B,若A、B两点位相差为3 ,则此路径AB的光程为(A)1.5λ.(B)1.5nλ.(C)3λ.(D)1.5λ/n2. 在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中(A)传播的路程相等,走过的光程相等.(B)传播的路程相等,走过的光程不相等.(C)传播的路程不相等,走过的光程相等.(D)传播的路程不相等,走过的光程不相等.3. 用白光光源进行双缝实验,若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则(A)干涉条纹的宽度将发生改变.(B)产生红光和蓝光的两套彩色干涉条纹.(C)干涉条纹的亮度将发生改变.(D)不产生干涉条纹.4. 在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A)使屏靠近双缝.(B)使两缝的间距变小.(C)把两个缝的宽度稍微调窄.(D)改用波长较小的单色光源5. 在迈克耳孙干涉仪的一条光路中,放入一折射率为n,厚度为d的透明薄片,放入后,这条光路的光程改变了(A)2(n-1)d.(B)2nd.(C)2(n-1)d+λ/2.(D)nd.(E)(n-1)d.6. 在双缝干涉实验中,光的波长为600nm(1nm=10-9m),双缝间距为2mm,双缝与屏的间距为300cm.在屏上形成的干涉图样的明条纹间距为(A)4.5 mm.(B)0.9 mm.(C)3.1 mm(D)1.2 mm.7. 在迈克尔逊干涉仪的一支光路中,放入一片折射率为n的透明介质薄膜后,测出两束光的光程差的改变量为一个波长λ,则薄膜的厚度是(A)λ/2.(B)λ/(2n).(C)λ/n.(D)λ/2(n-1)8. 如图,S1、S2是两个相干光源,它们到P点的距离分别为r1和r2.路径S1P垂直穿过一块厚度为t1,折射率为n1的介质板,路径S2P垂直穿过厚度为t2,折射率为n2的另一介质板,其余部分可看作真空,这两条路径的光程差等于(A)(r2+n2t2)-(r1+n1t1)(B)[r2+(n2-1)t2]-[r1+(n1-1)]t1(C)(r2-n2t2)-(r1-n1t1)(D)n2t2-n1t1。

相关文档
最新文档