第一章电子设备热设计基本知识
第一章电子设备热设计基本知识
c. 辐射换热网络法 任意两表面间的辐射网络如下图所示:
图中Eb1和Eb2分别代表同温度下的表面1和表面2的黑体 辐射力;J1和J2分别为表面1和表面2的有效辐射。
2 传热方程
传热的基本计算公式为:
At
式中:Φ —— 热流量,W; Κ——传热系数,W/(m2·℃); A —— 传热面积,m2;
t / x —— x方向的温度变化率,℃/m。 负号表示热量传递的方向与温度梯度的方向相
反。
无限大平板一维导热
q
tw1 tw2
t r
Φ
tw1 tw2
t R
A
R
A
导热热阻
r
单位面积导热热
阻
t
dx
tw1
dt
Q
tw2
0
x
tw1
Q
tw2
A
图 导热热阻的图示
单层圆筒壁的导热
Φ
2 rlq
tw1 tw2 ln(r2 r1)
P=VI 理论上是可以这样计算的。实际大多是元器件
厂家提供的。第15-19页 1有源器件 2无源器件
有热源如果任由它发热不去考虑散热,那么有 可能温度会超过元器件工作温度。
因此有必要人为构造散热途径。 比如电加热器烧干。 接下来我们看看散热是怎么回事。 热量传递有三种方式:导热;对流和热辐射
一、导热
3.3 冷却方法选择示例
功耗为300W的电子组件,拟将其装在一个248mm×381mm
×432mm的机柜里,放在正常室温的空气中,是否需要对此机柜采 取特殊的冷却措施?是否可以把此机柜设计得再小一些?
引入当量水力半径后所有园管的计算方法与公式均可适用非园 管,只需把园管直径换成当量水力直径。
热设计的基础知识与规范
1.3.9 冷却系统要便于监控与维护
第二章 热设计基础知识
2.1某些基本概念
2.1.1 温升
指机柜内空气温度或元器件温度与环境温度的差。如果忽略温度变化对空气物性
的非线性影响,可以将一般环境温度下(如空调房27℃)测量获得的温升直接加上最
高可能环境温度获得最恶劣环境下的器件近似温度。例如在空调房内测得某器件温升
1.2.2 热量以导热、对流及辐射传递出去,每种形式传递的热量与其热阻成反比;
1.2.3 热量、热阻和温度是热设计中的重要参数;
1.2.4 所有的冷却系统应是最简单又最经济的,并适合于特定的电气和机械、环境条
件,同时满足可靠性要求;
1.2.5 热设计应与电气设计、结构设计、可靠性设计同时进行,当出现矛盾时,应进行
3.1.2 是否有足够的自然对流空间。 元器件与元器件之间,元器件与结构件之间应保持
一定距离,通常至少13mm,以利于空气流动,增强对流换热。一些具体的参考距离尺
第一章 概 述
1.1 热设计的目的
采用适当可靠的方法控制产品内部所有电子元器件的温度,使其在所处的 工作环
境条件下不超过稳定运行要求的最高温度,以保证产品正常运行的安全性,长期运行
的可靠性。
1.2 热设计的基本问题
1.2.1 耗散的热量决定了温升,因此也决定了任一给定结构的温度;
1.3.6 在进行热设计时,应考虑相应的设计余量,以避免使用过程中因工况发生变化而
引起的热耗散及流动阻力的增加。
1.3.7 热设计不能盲目加大散热余量,尽量使用自然对流或低转速风扇等可靠性高的冷
却方式。使用风扇冷却时,要保证噪音指标符合标准要求。
电子产品热设计培训稿
由于体积功率密度很小,而热流密度值与自然空气冷却的最大热 流密度比较接近,所以不需要采取特殊的冷却方法,而依靠空气自然 对流冷却就足够了。
16
三、机箱自然对流热设计 影响自然对流冷却的主要因素
印制板的间距 电子元件耗散功率及布局 自然对流换热表面传热系数 机箱表面和环境空气之间的温差 机箱表面积
(4)各个元器件的参数选择、安装位置与方式必须符合散热要 求。 a、元器件的发热表面与散热表面之间的接触热阻应尽可能小。 b、根据元器件的损耗大小及温升要求确定是否加装散热器。 c、模块的控制回路中尽可能加装温度继电器、压力继电器等热 保护回路, 以提高系统的可靠性。
12
二、热设计的方法
(三)热设计遵循的原则
热阻、系统热阻)。温差越大,热流量就越大。△T=RQ 热阻的单位是℃/W。
6
一、热设计基本知识
热设计的有关概念
(8)热阻网络 热阻的串联、并联或混联形成的热流 路径图。
(9)功耗 电子设备工作时需要电功率,因为元器件 并非完全有效,因而有不少功率转换成热。如果找不 到一条通路来散热,温度就会升高。这个热流量就是 功耗。
0.90
0.90
85
100
115
10
二、热设计的方法
(二)常用冷却方法的选择和设计要求 电子设备的冷却方法包括自然冷却、强迫空气冷却、强迫
液体冷却、蒸发冷却、热电致冷(半导体致冷)、热管传热和其 它冷却方法(如导热模块、冷板技术等)。其中自然冷却、 强迫空气冷却、强迫液体冷却和蒸发冷却是常用的冷却方法。
由于铜皮散热太快,容易造成焊接不良,必须进行隔热设计,常见的隔热设计 方法如图 7 所示。
电子行业电子设备热设计基础
电子行业电子设备热设计基础引言在电子行业中,电子设备的热设计是非常重要的。
随着电子设备的不断发展,其功能越来越强大,性能越来越高,工作时产生的热量也越来越大。
如果电子设备的热量不能有效地散出去,会导致设备过热,影响设备的性能甚至损坏设备。
因此,合理的热设计对于电子设备的可靠性和稳定性至关重要。
本文将介绍电子行业电子设备热设计的基础知识,包括热传导、热辐射、热对流等方面的内容,帮助读者了解电子设备热设计的重要性并掌握一些基本的设计原则和方法。
热传导热传导是指热能通过物质的传导方式传递的过程。
在电子设备中,常见的热传导方式有三种:导热、对流和辐射。
导热导热是通过物质内部的分子或电子的碰撞传递热能的过程。
导热的速度和效率取决于物质的热导率和传热面的接触情况。
为了提高导热效率,我们可以采用导热材料,如铜、铝等,作为散热板或散热片,将其与电子元件紧密接触以增大接触面积。
对流对流是指热量通过流体(如空气)的对流传递的过程。
当电子设备工作时产生的热量无法直接通过导热方式散出去时,就需要依靠对流来进行热散热。
在设计电子设备时,我们需要合理设置散热孔和散热风扇等设备,以增加热量与周围空气的接触面积,提高对流散热效率。
辐射辐射是指热能以电磁辐射的形式传递的过程。
热辐射是无需传递介质的热传递方式,在电子设备中发挥重要作用。
通过合理设置散热片、散热器等辐射表面,可以增大辐射能量的发射和吸收。
此外,还可以利用红外线热成像等技术来监测电子设备中的热辐射情况,及时发现问题并采取相应的措施。
设计原则和方法在进行电子设备热设计时,需要遵循一些基本的设计原则和方法,以确保设备的稳定运行和长寿命。
合理布局在电子设备的布局设计中,需要考虑到热量的产生和散热的位置。
将产热元件和散热结构合理布置,减少热量在设备内部的积聚,有利于热量的迅速散出,提高散热效率。
优化散热结构为了提高散热效果,可以采用散热片、散热器等散热结构来增大热量与周围环境的接触面积。
电子产品热设计原理和原则
冷
d
L
L
热 热 D
D 热
D 冷
d
热 D
2024/4/28
冷 热 D d
热
冷
47
3.是否充分利用导热路径:导热材料将发热器件与机壳相连。 4.是否充分利用辐射散热路径; 5.使用散热器; 6.其他冷却技术:冷管
2024/4/28
48
烟囱效应
如果温度变高,空气就会膨胀。也就是说,如果 体积相同,热空气会变轻。较轻的空气被较重的空 气推开,然后上升。这就是自然对流。
如果用墙壁将又热又轻的空气包围起来,敞开上 下面,可进一步地促进自然对流。这就是烟囱效应。
2024/4/28
49
烟囱效应形成的压差
H
基于烟囱效应的静压[kg/m2] =(外部空气密度[kg/m3]-(内部空气密度[kg/m3])X烟囱高度[m]
空气密度[kg/m3]=0 ℃的空气密度[kg/m3]X273.15/(273.15+气温[℃])
近的规格
2024/4/28
40
散热片的材料和表面处理
材料: 1. 散热要求不高的场合,用铝材; 2. 散热要求高的场合,用铜材; 3. 兼顾成本、散热性能要求,基座用铜,鳍片用铝。
表面处理: 为提高鳍片外表面的辐射接收性能,将外表做黑化处理 提高鳍片黑度
2024/4/28
41
散热片的安装
安装散热片的注意事项:
Tj
R = Rjc + Rcs + Rsa
Tj ----晶片界面温度,一般115-180 ℃,军用65-80 ℃; Tc ---- 晶片与导热介质界面温度 Ts ----导热介质与散热片界面温度 Ta ----外界为空气35-45 ℃ ,密闭空间或接近其他热源50-60 ℃ Rjc ----晶片到封装外壳热阻 Rcs ----导热介质热阻 R20s2a4/4-/-2-8-散热片热阻
热设计的基础知识
2 热设计的基础知识2.1基本术语2.1.1 热环境设备或元器件的表面温度、外形及黑度,周围流体的种类、温度、压力及速度,每一个元器件的传热通路等情况2.1.2 热特性设备或元器件温升随热环境变化的特性,包括温度、压力和流量分布特征。
2.1.3 热阻热量在热流路径上遇到的阻力,反映介质或介质间的传热能力的大小,表明了1W热量所引起的温升大小,单位为℃/W或K/W,可分为导热热阻,对流热阻,辐射热阻及接触热阻四类(热扩展效应)2.1.4 导热系数表征材料导热性能的参数指标,它表明单位时间、单位面积、负的温度梯度下的导热量,单位为W/m.K或W/m.℃2.1.5 对流换热系数反映两种介质间对流换热过程的强弱,表明当流体与壁面的温差为1 ℃时,在单位时间通过单位面积的热量,单位为W/m2.K或W/m2.℃2.1.6 流阻反映流体流过某一通道时所产生的压力差。
单位帕斯卡或mm.H2O或巴2.1.7 定性温度确定对流换热过程中流体物理性质参数的温度2.1.8 肋片的效率表示某一扩展表面单位面积所能传递的热量与在同样条件下光壁所能传递的热量之比2.1.9 黑度实际物体的辐射力和同温度下黑体的辐射力之比,它取决于物体种类、表面状况、表面温度及表面颜色。
2.1.10 雷诺数R e(Reynlods)雷诺数的大小反映了流体流动时的惯性力与粘滞力的相对大小,雷诺数是说明流体流态的一个相似准则。
2.1.11普朗特数P r(Prandtl)普朗特数是说明流体物理性质对换热影响的相似准则。
2.1.12 格拉晓夫数G r(Grashof)格拉晓夫数反映了流体所受的浮升力与粘滞力的相对大小,是说明自然对流换热强度的一个相似准则,G r越大,表面流体所受的浮升力越大,流体的自然对流能力越强。
2.1.13努谢尔特数N u(Nusseltl)反映出同一流体在不同情况下的对流换热强弱,是一个说明对流换热强弱的相似准则。
2.1.14 传热单元数NTU为无因次量,其数值反映了在给定条件下所需传热面积的大小,是一个反映冷板散热器综合技术经济性能的指标。
电子设备热设计基本知识(ppt 51页)
所发生的流体不规则流动。
对流换热的基本定律
对流换热系数
对流传热系数的数值范围
过程
h/[W(m2k)]
自然对流 空气 水 强迫对流
气体 高压水蒸气
水 水的相变换热
沸腾 蒸汽凝结
1~10 200~1000
20~100 500~3500 1000~15000
2500~3500 5000-25000
电子设备热设计
付桂翠
北京航空航天大学
电子设备热设计
一.热设计基本知识 二.热设计理论基础 三.热设计的方法 四.热分析 五.热试验
热设计基本知识
热对系统可靠性的影响 热设计的目的 热设计的有关概念 热控制的基本形式
热对系统可靠性的影响
高温对大多数元器件将产生严重影响,它导致元器件 性能改变甚至失效,从而引起整个电子设备的故障。
摘自 美空军整体计划分析报告
热量产生的原因
电子设备经受的热应力来源于以下几个方面: (1)工作过程中,功率元件耗散的热量。 (2)电子设备周围的工作环境,通过导热、对流和辐射的形式,将热量传 递给电子设备。 (3)电子设备与大气环境产生相对运动时,各种摩擦引起的增温。
热设计的目的
电子设备的热设计系指利用热传递特性对电子设备的耗 热元件以及整机或系统采用合适的冷却技术和结构设计, 以对它们的温升进行控制,从而保证电子设备或系统正常、 可靠地工作。
热设计目标温度资源约束电子设备结构体积大小等热设计方案热设计工程经验主要散热方法自然冷却强迫冷却冷板冷却散热器辐射散热其它散热方法冷却方法的选择元器件的安装与布局印制电路板的散热设计机箱的结构散热设计权衡分析改进设计满足热设计目标和相关要求满足热设计目标和相关要求热设计报告热分析原理样机热性能评估热设计热设计流程热设计目标的确定热设计目标通常根据设备的可靠性指标与设备的工作环境条件来确定已知设备的可靠性指标依据gjb299b1998电子设备可靠性预计手册中元器件失效率与工作温度之间的关系可以计算出元器件允许的最高工作温度此温度即为热设计目标
热设计的基础知识与规范
2.1.3 热流密度 2
单位面积上的传热量,单位 W/m 。 2.1.4 热阻
热量在热流路径上遇到的阻力,反映介质或介质间的传热能力的大小, 表明了 1W 热量所引起的温升大小,单位为℃/W 或 K/W。用热耗乘以热阻,即可获得该传 热路 径上的温升。
可以用一个简单的类比来解释热阻的意义,换热量相当于电流,温差相当于电 压,则热阻相当于电阻。
(2-2)
222
h---- 对流换热系数,W/m .K 或 W/m .℃; A 对--- 有效对流换热面
积,m
tw---- 热表面温度,℃;
ta---- 冷
却空气温度℃;
R 对流----- 对流热阻, ℃/W
由方程可见,要增强对流换热,可以加大换热系数和换热面积。
2.2.3 辐射的基本方程:
---- 系统黑度, ε1,ε2----分别为高温物体表面(如发热器件)和低温物体表面
第三章 自然对流换热
当发热表面温升为 40℃或更高时,如果热流密度小于 0.04W/cm ,则一般可 以通 过自然对流的方式冷却,不必使用风扇。自然对流主要通过空气受热膨胀产生的浮 升 力使空气不断流过发热表面,实现散热。这种换热方式不需要任何辅助设备,所以 不 需要维护,成本最低。只要热设计和热测试表明系统通过自然对流足以散热,应尽 量 不使用风扇。 3.1 自然对流热设计要考虑的问题
如果设计不当,元器件温升过高,将不得不采用风扇。合理全面的自然对流热 设 计必须考虑如下问题: 3.1.1 元器件布局是否合理。 在布置元器件时,应将不耐热的元件放在靠近进风 口的位 置,而且位于功率大、发热量大的元器件的上游,尽量远离高温元件,以避免辐射 的 影响,如果无法远离,也可以用热屏蔽板(抛光的金属薄板,黑度越小越好)隔 开; 将本身发热而又耐热的元件放在靠近出风口的位置或顶部; 一般应将热流密度高 的元 器件放在边沿与顶部,靠近出风口的位置,但如果不能承受较高温度,也要放在进 风 口附近,注意尽量与其他发热元件和热敏元件在空气上升方向上错开位置;大功率 的 元器件尽量分散布局,避免热源集中; 不同大小尺寸的元器件尽量均匀排列,使 风阻 均布,风量分布均匀。
电子设备热设计基本知识
•热设计的有关概念
•对流:固体表面与流体表面传热的主要方式。 •自然对流:流体的运动是由于流体密度差和温度梯度引起的。
•在自然对流传热中,上部较冷流体与底 部较热流体间的密度差引起流体温升
•热设计的有关概念
•强迫对流:流体的运动是由外力(如风机、风扇或泵)造成的。
•强迫对流
•热设计的有关概念
• 压降:当流体流经固体物质或物体在导管内流动时 ,摩擦、流动面积的限制或方向的突变会阻止这种流动 。结果产生压力损失或压力下降。 • 需要用风机或泵来克服这种压降。流速越高,表面 越不规则,则压降越大。 • 在强迫对流系统中,冷却剂流动通路的几何形状及 系统压降是重要的问题。
热设计的目的
• 电子设备的热设计系指利用热传递特性对电子设备的 耗热元件以及整机或系统采用合适的冷却技术和结构设计 ,以对它们的温升进行控制,从而保证电子设备或系统正 常、可靠地工作。 • 热传递的方式:传导、对流、辐射。 • 一般来说,这三种形式在电子系统的热传输中所占的 比例分别为60%、20%、20%。
热设计的有关概念
•(5) 热流密度 • 单位面积的热流量。 •(6) 体积功率密度 • 单位体积的热流量。 •(7) 热阻 • 热量在热流路径上遇到的阻力(内热阻、外热阻、系统热 阻) 。温差越大,热流量就越大。△T=RQ 热阻的单位是 ℃/W。
•热设计的有关概念
•内热阻: • 产生热量的点或区域与器件表面指定点(安装表面)之间的 热阻。晶体管和微电路的内热阻是指结到外壳间的热阻θjc。外 热阻: • 器件上任意参考点(安装表面)与换热器间,或与设备、冷 却流体或环境交界面之间的整个热阻。 •系统热阻: • 设备外表面与周围空间或换热器与冷却流体间的热阻。
•热设计基本考虑
电子热传递原理及热设计基础
一、传热基础 ——热对流(2)
自然对流CFD模型
自然对流示意图
一、传热基础 ——热对流(3)
强制对流CFD模型
强制对流示意图
一、传热基础 ——热对流(4)
对流换热热量计算的主要规律牛顿(L.Newton)冷却定律: Q=hF⊿t
式中:
⊿t [℃]~壁面温度与流体温度之差; h~对流换热系数,是对流换热强度的集中指标。 『 附:常用物质的 h 系数: 』
Á ·
µ ç
ç ÷ ¨ © µ À I£ A£
Á ·
ç ¸ µ Ñ Vab=Va-Vb¨V£ £ © ç è µ ×R=I/Vab£ ··© ¨Å Ä £ ç Ý ¨·£ µ È C£ ¨© ç è Ä ® ª µ ×µ ´ À R=R1 +R2 +… … … … È è Ä ¢ ª ×µ ° À 1/R=1/R1 +1/R2 +… … … …
R[℃/W]~为热阻;
r =RF[m2. ℃/W]~称单位面积热阻; 传热的基本方式有热传导、热辐射和热对流三种。在实 际的传热过程中,它们可能以一种形式出现,也可能是以两 种或三种形式一起出现的复合换热。
一、传热基础 ——热传导(1)
同一物体内部或互相接触的物体之间,当温度不同但没 有相对的宏观位移时的传热方式;
一、传热基础 ——概述
有温差的地方就会有热量传递发生; 对于无内热源的稳定传热过程,传热量(Q或q)和传热温 差⊿t的有如下的关系式: Q=qF=⊿t/ R (W) 或 q=Q/F=⊿t/r (W/m2 ) Q~亦称热流量;
q~亦称热流率或热流密度;
⊿t[℃]~亦称传热推动力; F[m2]~为传热面积;
一、传热基础 ——热设计常用的基本单位换算
电子设备热设计培训资料
n Num c Gr P r m
hc A(t wc t f )
Gr Pr
竖放平 板柱体 水平板 (热面朝上) <109
流态 层流
C
0.59
n
1/4
特征尺寸 高度
>109
<2×107 >2×107
紊流
层流 紊流 层流
0.10
0.54 0.15 0.27
1/3
1/4 1/3 1/4 正方形取边长 圆盘取0.901 狭长条取短边 矩形L=2ab/(a+b)
机壳热设计
• 电子设备的机壳是接受内部热量,并将其散发到周围环境中去的一个重 要组成部分。机壳的热设计在采用自然冷却和一些密封式的电子设备中 显得格外重要。为了说明机壳结构对电子设备温度的影响,可以通过图3 所示的实验装置加以说明。其中热源为80W,位于实验装置的中心位置, 机壳用各种不同结构形式的铝板制成,可进行任意组合,以便满足不同 结构形式的需要,实验装置尺寸为404×304×324mm
接触热阻与表面粗糙度 接触压力的关系
5
W-1· cm2) 接触热阻/(℃·
表面粗糙度/μm
4
3
钢
2
1
铝
0 0.5 1.0 1.5 2.0
接触压力/MPa
对流换热影响因素
流体流动发生的原因(自然对流与强迫对流)
流体流动的状态(层流与紊乱流) 流体的物理性质(导热系数,比热,密度,黏度等) 换热面的几何形状和位置(平板,圆管,肋面
肋效率:
thml ml
热 阻
导热热阻 对流热阻 辐射热阻 接触传热
Rt
kA
( C W )
Rt
电子产品热设计与工程案例分析PPT课件
1.2 热源与热阻
热阻定义:Biblioteka RtT Q( K/W)
外热阻的控制方式: (1)散热
利用空气或液体作为冷却介质,靠自然对流或强制对流方式,带走耗热。 (2)制冷
利用热电冷却、固体升华过程吸热、液氮蒸发过程吸热等方式进行制冷,使设备工作环境温度低于 周围环境温度。 (3)恒温
图中Eb1和Eb2分别代表同温度下的表面1和表面2的黑体辐射力;J1和J2分别为表面1和表面2的有效辐射。
应用例:芯片封装
热阻的电网络模拟 从晶片传到外壳经过5个环节 • 晶片的热阻; • 晶片粘接剂(导热胶)热阻 • 基底(substrate)的热阻 • 基底粘接剂(焊锡)热阻 • 封装(package)的热阻
• 定义3——利用热传递特性,针对耗热对象,采用合适的结构设计和冷却技术,对其温升进行控制, 保证其正常、可靠工作。
1.1 准确认识热设计
➢ 热设计分科界定
(1)热设计(热结构) 在所处环境下,合理设计热传递结构、冷却方法,保障设备内所有元器件不超过最高允
许温度。
(2)热分析(热模拟) 利用数理模型,或通过计算机模拟,在设计阶段获得温度分布,预先发现产品的热缺陷,
自然对流
Nu c(GrPr)n
强迫对流
Rt
1
A
Nu cRemPrn
几个准则数的计算公式及物理意义:
努塞尔数: 雷诺数:
普朗特数: 格拉晓夫数:
Nu
L
对流换热 导热
Re
uL
惯性力 粘性力
Pr
cp
动量扩散 热量扩散
Gr
电子产品热设计原理和原则培训课件
01
服务器热设计案例
Dell PowerEdge R740
02
热设计挑战
服务器内部通常有多颗处理器和多个硬盘,发热量大,且需要保证长时
间稳定运行,对散热要求极高。
03
解决方案
Dell PowerEdge R740采用了高效的风道设计和多风扇散热系统,同时
使用了液冷技术,如冷板式和浸没式液冷,来将热量快速散发出去。
自然散热技术是指利用自然对流和辐射散热的方式,将电子产品的热量传递到周围 环境中。
自然散热技术适用于低功耗、低发热的电子产品,如小型电子设备、遥控器等。
自然散热技术的优点是结构简单、成本低、可靠性高,缺点是散热效果受环境温度 影响较大,散热效率较低。
强制风冷散热技术
强制风冷散热技术是指通过风扇等机 械通风装置,强制将冷空气吹向发热 元件,将热量带走并排放到周围环境 中。
详细描述
导热是热设计中的基本原理之一,主要通过固体材料的晶格结构和自由电子的 运动传递热量。热量从高温向低温传递,传递速率与材料的导热系数成正比。 常见的导热材料包括金属、石墨烯、金刚石等。
对流换热原理
总结词
对流换热是指流体与固体表面之间的热量传递过程,涉及到流体中质点的宏观运 动和流体分子与固体表面之间的微观相互作用。
电子产品热设计的目标与原则
目标
确保电子产品在工作过程中温度 处于安全范围内,防止过热,保 证稳定运行。
原则
合理选择散热方式、优化散热结 构、降低热阻、提高散热效率。
电子产品热设计的基本流程
选择散热方式
根据实际情况选择自然散热、 强制散热或热管散热等散热方 式。
仿真与优化
利用热仿真软件对设计进行仿 真,分析散热效果,并根据仿 真结果进行优化。
华为-热设计培训教材
HUAWEI TECHNOLOGIES CO., LTD.
Huawei Confidential
Page 9
热辐射
塑料外壳表面喷漆,PWB表面会涂敷绿油,表面黑度都可以达到 0.8,这些都有利于辐射散热。对于金属外壳,可以进行一些表面处理 来提高黑度,强化散热。 对辐射散热一个最大错误认识是认为黑色可以强化热辐射,通常散 热器表面黑色处理也助长了这种认识。实际上物体温度低于1800℃时, 有意义的热辐射波长位于0.38~100μm之间,且大部分能量位于红外波 段0.76~20μm范围内,在可见光波段内,热辐射能量比重并不大。颜色 只与可见光吸收相关,与红外辐射无关,夏天人们穿浅色的衣服降低太 阳光中的可见光辐射吸收。因此终端内部可以随意涂敷各种颜色的漆。
HUAWEI TECHNOLOGIES CO., LTD.
Huawei Confidential
Page 14
1、认识器件热阻
JEDEC芯片封装的热性能参数: 热阻参数
θja,结(即芯片)到空气环境的热阻:θja=(Tj-Ta)/P θjc,结(即芯片)到封装外壳的热阻:θjc=(Tj-Tc)/P θjb,结(即芯片)到PCB的热阻:θjb=(Tj-Tb)/P 热性能参数 ψjt,结到封装顶部的热参数: ψjt =(Tj-Tt)/P ψjb,结到封装底部的热参数: ψjb =(Tj-Tb)/P
热量传递过程中,温度差是过程的动力,好象电学中的电压,换热 量是被传递的量,好像电学中的电流,因而上式中的分母可以用电学中 的电阻概念来理解成导热过程的阻力,称为热阻(thermal resistance), 单位为℃/W, 其物理意义就是传递 1W 的热量需要多少度温差。在热设 计中将热阻标记为R或θ。δ/(λA)是导热热阻, 1/αA是对流换热热阻。 器件的资料中一般都会提供器件的Rjc和Rja热阻,Rjc是器件的结到壳的 导热热阻;Rja是器件的结到壳导热热阻和壳与外界环境的对流换热热阻 之和。这些热阻参数可以根据实验测试获得,也可以根据详细的器件内 部结构计算得到。根据这些热阻参数和器件的热耗,就可以计算得到器 件的结温。
电子设备热设计(第一章)Thermal Design of Electronic Equipment
Since heat transfer by conduction is directly proportional to a material's thermal conductivity, temperature gradient, and cross-sectional area, we can nd the temperature rise in an application by: qL -------k Ac
T
1.1.3
RADIATION
Radiation is the only mode of heat transfer that can occur through a vacuum and is dependent on the temperature of the radiating surface. Although researchers do not yet understand all of the physical mechanisms of radiative heat transfer, it appears to be the result of electromagnetic waves and photonic motion. The quantity of heat transferred by radiation between two bodies having temperatures of T1 and T2 is found by qr where: qr amount of heat transferred by radiation (W) emissivity of the radiating surface (highly reective 0, highly absorptive 1.0) Stefan-Boltzmann constant (5.67 10 8 W/m2 K4) shape factor between surface area of body 1 and body 2 ( 1.0) surface area of radiation (m2) surface temperature of body 1 (K) surface temperature of body 2 (K) F 1,2 A ( T 1
热设计基础
【技术讲座】热设计基础(一):热即是“能量”,一切遵循能量守恒定律在开发使用电能的电子设备时,免不了与热打交道。
“试制某产品后,却发现设备发热超乎预料,而且利用各种冷却方法都无法冷却”,估计很多读者都会有这样的经历。
如果参与产品开发的人员在热设计方面能够有共识,便可避免这一问题。
下面举例介绍一下非专业人士应该知道的热设计基础知识。
“直径超过13cm,体积庞大,像换气扇一样。
该风扇可独立承担最大耗电量达380W的PS3的散热工作”。
以上是刊登在2006年11月20日刊NE Academy专题上的“PlayStation3”(PS3)拆解报道中的一句话。
看过PS3内像“风扇”或“换气扇”一样的冷却机构,估计一定会有人感到惊讶。
“怎么会作出这种设计?”“这肯定是胡摸乱撞、反复尝试的结果。
”“应该运用了很多魔术般的最新技术。
”“简直就是胡来……”大家可能会产生这样的印象,但事实上并非如此。
PS3的冷却机构只是忠实于基础,按照基本要求累次设计而成。
既没有胡摸乱撞,也不存在魔术般的最新技术。
(点击放大)在大家的印象里,什么是“热设计”呢?是否认为像下图一样,是“一个接着一个采取对策”的工作呢?其实,那并不能称为是“热设计”,而仅仅是“热对策”,实际上是为在因热产生问题之后,为解决问题而采取的措施。
如果能够依靠这些对策解决问题,那也罢了。
但是,如果在产品设计的阶段,其思路存在不合理的地方,无论如何都无法冷却,那么,很可能会出现不得不重新进行设计的最糟糕的局面。
而这种局面,如果能在最初简单地估算一下,便可避免发生。
这就是“热设计”。
正如“设计”本身的含义,是根据产品性能参数来构想应采用何种构造,然后制定方案。
也可称之为估计“大致热量”的作业。
虽说如此,但这其实并非什么高深的话题。
如果读一下这篇连载,学习几个“基础知识”,制作简单的数据表格,便可制作出能适用于各种情况的计算书,甚至无需专业的理科知识。
第1章从“什么是热”这一话题开始介绍。
电子产品的热设计方法
电子产品的热设计方法(一)2007-05-03 14:51:28 字号:大中小为什么要进行热设计?高温对电子产品的影响:绝缘性能退化;元器件损坏;材料的热老化;低熔点焊缝开裂、焊点脱落.温度对元器件的影响:一般而言,温度升高电阻阻值降低;高温会降低电容器的使用寿命;高温会使变压器、扼流圈绝缘材料的性能下降, 一般变压器、扼流圈的允许温度要低于95C;温度过高还会造成焊点合金结构的变化—IMC增厚,焊点变脆,机械强度降低;结温的升高会使晶体管的电流放大倍数迅速增加,导致集电极电流增加,又使结温进一步升高,最终导致组件失效.热设计的目的控制产品内部所有电子元器件的温度,使其在所处的工作环境条件下不超过标准及规范所规定的最高温度.最高允许温度的计算应以元器件的应力分析为基础,并且与产品的可靠性要求以及分配给每一个元器件的失效率相一致.在本次讲座中将学到那些内容风路的布局方法、产品的热设计计算方法、风扇的基本定律及噪音的评估方法、海拔高度对热设计的影响及解决对策、热仿真技术、热设计的发展趋势.授课内容风路的设计方法 20分钟产品的热设计计算方法 40分钟风扇的基本定律及噪音的评估方法 20分钟海拔高度对热设计的影响及解决对策 20分钟热仿真技术、热设计的发展趋势 50分钟概述风路的设计方法 :通过典型应用案例,让学员掌握风路布局的原则及方法.产品的热设计计算方法 :通过实例分析,了解散热器的校核计算方法、风量的计算方法、通风口的大小的计算方法.风扇的基本定律及噪音的评估方法:了解风扇的基本定律及应用;了解噪音的评估方法.海拔高度对热设计的影响及解决对策:了解海拔高度对风扇性能的影响、海拔高度对散热器及元器件的影响,了解在热设计如何考虑海拔高度对热设计准确度的影响.热仿真技术:了解热仿真的目的、要求,常用热仿真软件介绍.热设计的发展趋势:了解最新散热技术、了解新材料.风路设计方法自然冷却的风路设计设计要点机柜的后门(面板)不须开通风口.底部或侧面不能漏风.应保证模块后端与机柜后面门之间有足够的空间.机柜上部的监控及配电不能阻塞风道,应保证上下具有大致相等的空间.对散热器采用直齿的结构,模块放在机柜机架上后,应保证散热器垂直放置,即齿槽应垂直于水平面.对散热器采用斜齿的结构,除每个模块机箱前面板应开通风口外,在机柜的前面板也应开通风口.风路设计方法自然冷却的风路设计设计案例风路设计方法自然冷却的风路设计典型的自然冷机柜风道结构形式风路设计方法强迫冷却的风路设计设计要点如果发热分布均匀, 元器件的间距应均匀,以使风均匀流过每一个发热源.如果发热分布不均匀,在发热量大的区域元器件应稀疏排列,而发热量小的区域元器件布局应稍密些,或加导流条,以使风能有效的流到关键发热器件.如果风扇同时冷却散热器及模块内部的其它发热器件,应在模块内部采用阻流方法,使大部分的风量流入散热器.进风口的结构设计原则:一方面尽量使其对气流的阻力最小,另一方面要考虑防尘,需综合考虑二者的影响.风道的设计原则风道尽可能短,缩短管道长度可以降低风道阻力;尽可能采用直的锥形风道,直管加工容易,局部阻力小;风道的截面尺寸和出口形状,风道的截面尺寸最好和风扇的出口一致,以避免因变换截面而增加阻力损失,截面形状可为园形,也可以是正方形或长方形;风路设计方法强迫冷却的风路设计典型结构风路设计方法强迫冷却的风路设计电源系统典型的风道结构-吹风方式风路设计方法热设计的基础理论自然对流换热大空间的自然对流换热Nu=C(Gr.Pr)n.定性温度: tm=(tf+tw)/2定型尺寸按及指数按下表选取热设计的基础理论自然对流换热有限空间的自然对流换热垂直封闭夹层的自然对流换热问题分为三种情况:(1) 在夹层内冷热壁的两股流道边界层能够相互结合,形成环流;(2) 夹层厚度δ与高度之比δ/h>0.3时,冷热的自然对流边界层不会相互干扰,也不会出现环流,可按大空间自然对流换热计算方法分别计算冷热的自然对流换热;(3) 冷热壁温差及厚度均较小,以厚度为定型尺寸的Gr=(Bg△tδ3)/υ3<2000时,通过夹层的热量可按纯导热过程计算.热设计的基础理论自然对流换热有限空间的自然对流换热水平夹层的自然对流换热问题分为三种情况:(1) 热面朝上,冷热面之间无流动发生,按导热计算;(2) 热面朝下,对气体Gr.Pr<1700,按导热计算;(3) 有限空间的自然对流换热方程式:Nu=C(Gr.Pr)m(δ/h)n定型尺寸为厚度δ,定性温度为冷热壁面的平均温度Tm=(tw1+tw2 )热设计的基础理论流体受迫流动换热管内受迫流动换热管内受迫流动的特征表现为:流体流速、管子入口段及温度场等因素对换热的影响.入口段:流体从进入管口开始需经历一段距离后管两侧的边界层才能够在管中心汇合,这时管断面流速分布及流动状态才达到定型.这段距离称为入口段.入口段管内流动换热系数是不稳定的,所以计算平均对流换热系数应对入口段进行修正.在紊流时,如果管长与管内径之比L/d>50则可忽略入口效应,实际上多属于此类情况.管内受迫层流换热准则式:Nu=0.15Re0.33 Pr0.43Gr0.1(Pr/Prw)0.25管内受迫紊流换热准则式:tw>tf Nu=0.023Re0.8 Pr0.4.tw<tf Nu=0.023Re0.8 Pr0.3热设计的基础理论流体动力学基础流量与断面平均流速流量:单位时间内流过过流断面的流体数量.如数量以体积衡量称为体积流量Q;单位为m3/s(CFM);如数量用重量衡量称为重量流量G,单位为Kg/s.二者的关系为:G=γQ断面平均流速:由于流体的粘性,过流断面上各点的流速分布不均匀,根据流量相等原则所确定的均匀流速称为断面平均流速.单位m/s(CFM)V=Q/A湿周与水力半径湿周:过流断面上流体与固体壁面相接触的周界长度.用x表示,单位m.水力半径:总流过过流断面面积A与湿周x之比称为水力半径,应符号R表示,单位M.恒定流连续性方程对不可压缩流体:V1A1=V2A2.对可压缩流体 : ρ1V1A1=ρ1V2A2热设计的基础理论流体动力学基础恒定流能量方程对理想流体:Z+p/γ+v2/2g=常数实际流体:由于粘性作为会引起流动阻力,流体阻力与流体流动方向相反作负功,使流体的总能量不断衰减,每个断面的Z+p/y+v2/2g≠常数,假设流体从断面1到断面2的能量损失为hw,则元流的能量方程式为:Z1+p1/γ+v12/2g=Z2+p2/γ+v22/2g+hw 热设计的基础理论流体动力学基础流体流动的阻力:由于流体的粘性和固体边界的影响,使流体在流动过程中受到阻力,这个阻力称为流动阻力,可分为沿程阻力和局部阻力两种.沿程阻力:在边界沿程不变的区域,流体沿全部流程的摩檫阻力.局部阻力:在边界急剧变化的区域,如断面突然扩大或突然缩小、弯头等局部位置,是流体的流体状态发生急剧变化而产生的流动阻力.层流、紊流与雷诺数层流:流体质点互不混杂,有规则的层流运动.Re=Vde/ν<2300 层流紊流:流体质点相互混杂,无规则的紊流运动.显然层流状态下只存在粘性引起的摩檫阻力,而紊流状态下除摩檫阻力外还存在由于质点相互碰撞、混杂所造成的惯性阻力,因此紊流的阻力较层流阻力大的多.Re=Vde/ν<2300 紊流热设计的基础理论流体动力学基础管内层流沿程阻力计算(达西公式)hf=λ(L/de)(ρV2/2)λ-沿程阻力系数,λ=64/Re管内紊流沿程阻力计算hf=λ(L/de)(ρV2/2)λ=f(Re,ε/d),即紊流时沿程阻力系数不仅与雷诺数有关,还与相对粗糟度ε有关. 尼古拉兹采用人工粗糟管进行试验得出了沿程阻力系数的经验公式:紊流光滑区:4000<Re<105, λ采用布拉修斯公式计算:λ=0.3164/Re 0.25热设计的基础理论流体动力学基础非园管道沿程阻力的计算引入当量水力半径后所有园管的计算方法与公式均可适用非园管,只需把园管直径换成当量水力直径.de=4A/x局部阻力hj=ξρV2/2ξ-局部阻力系数突然扩大: 按小面积流速计算的局部阻力系数:ζ1=(1-A1/A2)按大面积流速计算的局部阻力系数:ζ2=(1-A2/A1)突然缩小: 可从相关的资料中查阅经验值.电子产品的热设计方法(二)2007-05-03 14:53:24 字号:大中小散热器的设计方法散热器设计的步骤通常散热器的设计分为三步1:根据相关约束条件设计处轮廓图.2:根据散热器的相关设计准则对散热器齿厚、齿的形状、齿间距、基板厚度进行优化.3:进行校核计算.散热器的设计方法自然冷却散热器的设计方法考虑到自然冷却时温度边界层较厚,如果齿间距太小,两个齿的热边界层易交叉,影响齿表面的对流,所以一般情况下,建议自然冷却的散热器齿间距大于12mm,如果散热器齿高低于10mm,可按齿间距≥1.2倍齿高来确定散热器的齿间距.自然冷却散热器表面的换热能力较弱,在散热齿表面增加波纹不会对自然对流效果产生太大的影响,所以建议散热齿表面不加波纹齿.自然对流的散热器表面一般采用发黑处理,以增大散热表面的辐射系数,强化辐射换热.由于自然对流达到热平衡的时间较长,所以自然对流散热器的基板及齿厚应足够,以抗击瞬时热负荷的冲击,建议大于5mm以上.散热器的设计方法强迫冷却散热器的设计方法在散热器表面加波纹齿,波纹齿的深度一般应小于0.5mm.增加散热器的齿片数.目前国际上先进的挤压设备及工艺已能够达到23的高宽比,国内目前高宽比最大只能达到8.对能够提供足够的集中风冷的场合,建议采用低温真空钎焊成型的冷板,其齿间距最小可到2mm.采用针状齿的设计方式,增加流体的扰动,提高散热齿间的对流换热系数.当风速大于1m/s(200CFM)时,可完全忽略浮升力对表面换热的影响.散热器的设计方法在一定冷却条件下,所需散热器的体积热阻大小的选取方法在一定的冷却体积及流向长度下,确定散热器齿片最佳间距的大小的方法不同形状、不同的成型方法的散热器的传热效率比较散热器的相似准则数及其应用方法相似准则数的定义散热器的相似准则数及其应用方法相似准则数的应用散热器的基板的优化方法不同风速下散热器齿间距选择方法不同风速下散热器齿间距选择方法优化散热器齿间距的经验公式及评估风速变化对热阻的影响的经验公式辐射换热的考虑原则如果物体表面的温度低于50℃,可忽略颜色对辐射换热的影响.因为此时辐射波长相当长,处于不可见的红外区.而在红外区,一个良好的发射体也是一个良好的吸收体,发射率和吸收率与物体表面的颜色无关.对于强迫风冷,由于散热表面的平均温度较低,一般可忽略辐射换热的贡献.如果物体表面的温度低于50℃,可不考虑辐射换热的影响.辐射换热面积计算时,如表面积不规则,应采用投影面积.即沿表面各部分绷紧绳子求得的就是这一投影面积,如图所示.辐射传热要求辐射表面必须彼此可见.热设计的计算方法冷却方式的选择方法确定冷却方法的原则在所有的冷却方法中应优先考虑自然冷却,只有在自然冷却无法满足散热要求时,才考虑其它冷却.冷却方式的选择方法1:根据温升在40℃条件下各种冷却方式的热流密度或体积功率密度值的范围来确定冷却方式,具有一定的局限性.热设计的计算方法冷却方式的选择方法冷却方式的选择方法2:根据热流密度与温升要求,按图2所示关系曲线选择,此方法适应于温升要求不同的各类设备的冷却热设计的计算方法冷却方式的选择方法冷却方式的选择方法案例某电子设备的功耗为300W,机壳的几何尺寸为248×381×432mm,在正常大气压下,若设备的允许温升为40℃,试问采用那种冷却方法比较合理?计算热流密度:q=300/2(2.48×2.2.48+2.48×4.32+2.2.81×4.32)=0.04W/cm2 当△t=40℃,q=0.04W/cm2时,其交点正好落在自然冷却范围内,所有采用自然冷却方法就可以满足要求.若设备的温升有严格限制,假设只允许10℃,由图2可以看出,需强迫风冷才能满足要求.机箱的热设计计算密封机箱WT=1.86(Ss+4St/3+2Sb/2)Δt 1.25+4ζεTm3ΔT对通风机箱WT=1.86(Ss+4St/3+2Sb/2)Δt 1.25+4ζεTm3ΔT+1000uAΔT 对强迫通风机箱WT=1.86(Ss+4St/3+2Sb/2)Δt 1.25+4ζεTm3ΔT+ 1000QfΔT 自然冷却时进风口面积的计算在机柜的前面板上开各种形式的通风孔或百叶窗,以增加空气对流,进风口的面积大小按下式计算:Sin=Q/(7.4×10-5 H×Δt 1.5)s-通风口面积的大小,cm2Q-机柜内总的散热量,WH-机柜的高度,cm,约模块高度的1.5-1.8倍,Δt=t2-t1-内部空气t2与外部空气温度 t1 之差, ℃ 出风口面积为进风口面积的1.5-2倍强迫风冷出风口面积的计算模块有风扇端的通风面积:Sfan=0.785(φin2-φhub2)无风扇端的通风面积S=(1.1-1.5) Sfan系统在后面板(后门)上与模块层对应的位置开通风口,通风口的面积大小应为: S=(1.5-2.0)(N×S模块)N---每层模块的总数S模块---每一个模块的进风面积热设计的计算方法通风面积计算的案例[案例] 铁道信号电源机柜模块及系统均为自然冷却,每层模块的散热量为360W,模块的高度为7U,进出口温差按20℃计算,机柜实际宽度为680mm,试计算每层进出风口的面积?H按2倍模块的高度计算,即H=2×7U=14U进风口的面积按下式计算:Sin=Q/(7.4×10-5×H×△t1.5)=360/(7.4×10-5×14 ×4.44×201.5)=875 cm2进风口高度h机柜的宽度按B=680mm计,则进风口的高度为:H=Sin/B=875/68=128.7mmb 出风口面积SoutSout=(1.5-2.0)Sin=2×875=1750 cm2热设计的计算方法实际冷却风量的计算方法q`=Q/(0.335△T)q`---实际所需的风量,M3/hQ----散热量,W△T-- 空气的温升,℃,一般为10-15℃.确定风扇的型号经验公式:按照1.5-2倍的裕量选择风扇的最大风量:q=(1.5-2)q` 按最大风量选择风扇型号.热设计的计算方法实际冷却风量的计算方法案例:10K UPS主功率管部分的实际总损耗为800W,空气温升按15℃考虑,请选择合适的风扇.实际所须风量为:q`=Q/(0.335△t)=800/(0.335×15)=159.2m3/h按照2倍的裕量选择风扇的最大风量:q=2q`=2×159.2=318.4m3/h下表风扇为可选型号热设计的计算方法型材散热器的计算散热器的热阻散热器的热阻是从大的方面包括三个部分.RSA=R对+R导+ R辐R对=1/(hc F1)F1--对流换热面积(m), hc –对流换热系数(w/m2.k)R辐--辐射换热热阻 ,对强迫风冷可忽略不计对自然冷却 R辐=1/(4бεTm3)R导=R 基板+R肋导=δ/(λF2)+((1/η)-1)R对流λ--导热系数,w/m.h.℃δ-- 散热器基板厚度(m)η-- 肋效率系数F2--基板的导热面积(m)F2=0.785*(d+δ)2d- 发热器件的当量直径(m)热设计的计算方法型材散热器的计算对流换热系数的计算自然对流垂直表面hcs=1.414(△t/L)0.25 ,w/m.k式中: △t--散热表面与环境温度的平均温升,℃L--散热表面的特征尺寸,取散热表面的高,m 水平表面,热表面朝上hct=1.322(△t/L)0.25 ,w/m.k式中: △t--散热表面与环境温度的平均温升,℃L--散热表面的特征尺寸,取L=2(长×宽)/(长+宽),m 水平表面,热表面朝下hcb=0.661(△t/L)0.25 ,w/m.k式中: △t--散热表面与环境温度的平均温升,℃L--散热表面的特征尺寸,取L=2(长×宽)/(长+宽),m电子产品的热设计方法(三)2007-05-03 14:54:08 字号:大中小热设计的计算方法型材散热器的计算对流换热系数的计算强迫对流层流 Ref<105hc=(1.1-1.4) λ空气 0.66Ref 0.5/L湍流 Ref>105hc=(1.1-1.4) λ空气 0.032Ref 0.8/L肋片效率对直齿肋:η=th(mb)/(mb))m=(2 hc/λδ0)δ0:肋片根部厚度(m)b. 肋高(m)热设计的计算方法型材散热器的计算散热器的流阻计算散热器的流阻包括沿程阻力损失及局部阻力损失△P=hf+hj=λf•L/de•ρV22/2+ζρV22/2λ f --沿程阻力系数L--流向长度(m)de--当量水利直径(m),de=4A流通/湿周长V--断面流速(m/s)沿程阻力系数计算λ f层流区:Re=Vd/υ≤2300λf=64/Re紊统光滑区 4000<Re<105 λf=0.3164/Re0.25υ--运动粘度系数(m2/s),从文献中查找热设计的计算方法型材散热器的计算散热器的流阻计算局面阻力系数ζ突然扩大按小面积流速计算的局部阻力系数:ζ1=(1-A1A2)按大面积流速计算的局部阻力系数: ζ2=(1-A2/A1)突然缩小可从相关的资料中查阅经验值.热设计的计算方法型材散热器的计算【案例】散热器DXC-616(天津铝合金厂编号),截面图略,散热器的截面积为77.78cm2,周长为2.302m,单位长度的重量为21KG/m.风扇采用PAPST 4656Z ,风扇功率19W,最大风量为160m3/h,压头为70Pa.风道阻力曲线的计算入口面积:Fin=0.785×D2 =0.785×0.1192=0.01116m2流通面积:Ff=Fin-Fc=0.01116-0.007778=3.338×10-3m2水力直径: de=4Ff/x=4×3.338×10-3/2.302=5.8×10-3m 由于风速较低,一般最大不会超过6m/s,雷诺数<2300,沿程阻力系数按下式计算:λ=64/Re=64 ν/Vde沿程阻力按下式计算:hf=λ(L/de)(ρV2/2)=(64 ν/Vde)(L/de)(ρV2/2)=(64×16.96×10-6×0.24/(V×0.00582))(ρV2/2)=(8.07/V)(ρV2/2)局部阻力按下式计算:hj=ξρV2/2对于突然缩小,A2/A1=0.003338/0.01116=0.3,查表得ξ=0.38总阻力损失 H=hf+ hj=(0.38+8.07/V )(ρV2/2)热设计的计算方法型材散热器的计算【案例】续确定风扇的工作点10KVA UPS 的选择风扇为PAPST 4656Z,我们把风道曲线与风扇的曲线进行叠加,其交点即为风扇的工作点,给工作点对应的风速为5m/s,压力为35Pa.散热器的校核计算雷诺数Ref=V×L/ν=5×0.24/16.96×10-6=5.6604×104努谢尔特数: Nuf=0.66Ref0.5=0.66(5.6604×104)0.5=157对流换热系数:hc=1.4λNuf/L=21.7w/m.km=(2 hc/λδ)0.5=9.82ml=9.82×0.03=0.295,查得:η=0.96该散热器的最大散热量为(散热器台面温升按最大40℃考虑):Q=hcF△t η=460.4W计算结果表面,散热器及风扇选型是合理的.热设计的计算方法冷板的计算方法传热计算确定空气流过冷板后的温升:t=Q/qmCp确定定性温度 tf=(2ts+t1+t2)/4, 冷板台面温度 ts为假定值设定冷板的宽度为b,则通道的横截面积为Ac ,Ac=b×Ac0确定定性温度下的物性参数(μ、Cp、ρ、Pr).流体的质量流速和雷诺数 G=qm/Af Re=deG/μ根据雷诺数确定流体的状态(层流或紊流), Re<1800, 层流, Re>105, 湍流根据流体的状态(层流或紊流)计算考尔本数JRe<1800,层流 J=6/Re 0.98 Re>105,湍流 J=0.023/Re 0.2也可以根据齿形及雷诺数从GJB/Z 27-92 图12-18查得热设计的计算方法冷板的计算方法传热计算计算冷板的换热系数: h= JGCpPr2/3计算肋片的效率 m=(2h/λδ)0.5,ηf=th(ml)/ml(也可以根据ml值查相应的图表得到肋片效率)计算冷板的总效率:忽略盖板及底版的效率,总效率为:A=At+Ar+Ab, η0=1-Ar(1-ηf)/A计算传热单元数 NTU=hη0A/qmCp计算冷板散热器的台面温度ts=(eNTUt2-t1)/(eNTU-1)热设计的计算方法冷板的计算方法流体流动阻力计算计算流通面积与冷板横截面积之比ζ=Af/Ac查空气进入冷板时入口的损失系数Kc=f(Re,ζ): 根据雷诺数Re及ζ从GJB/Z 27-92 图12-16及图12-16查得查摩擦系数f=f(Re,ζ): 根据雷诺数Re从GJB/Z 27-92 图12-18查得计算流动阻力△P=G2[(Kc+1-ζ2)+2(ρ2/ρ1-1)+fρ1A/(Afρm)-(1-ζ2-Ke)ρ1/ρ2]/(2ρ1)热设计的计算方法冷板的计算方法判断准则确定是否满足ts<[ts],如果不满足,需增大换热面积或增大空气流量.确定是否满足△P<[△P],如果不满足,需减小冷板的阻力(如选择阻力较小的齿形、增大齿解决等)或重新选择压头较大的风扇热设计的计算方法冷板的计算方法案例:10KVA UPS 冷板散热器,器件的损耗为870.5W,要求冷板散热器台面温升小于30℃(在40℃的环境温度下).冷板散热器的截面图略梯形小通道面积:Ai=(3.8+2.6)×9.5/2=30.4mm2每排有29个梯形小通道,共22排,n=29×22=638个基板厚度为:9mm总的流通面积Af =30.4×29×22=0.0193952 m2冷板的横截面积Ac=120×120×2=0.0288 m2水力半径:de=4Afi/х=4×30.4/(2×9.5+3.8+2.6)=4.787mm热设计的计算方法冷板的计算方法【案例】续确定风扇的工作点Re=de G/μ=deqm/μAf在40℃空气的物性参数为: μ=19.1×10-6kg/m.s, ρ1=1.12kg/m3 Re=(4.787×10-3×1.12×0.30483 qm1/(60×19.1×10-6×0.0193952) =6.831 qm1(qm1的单位为:CFM)ζ=Af/Ac=0.0193952/0.0288=0.673热设计的计算方法冷板的计算方法【案例】续先忽略空气密度的变化,不同流量的流阻计算如下表所示:我们把两个NMB4715的风扇流量相加,静压不变,得出两个风扇并联后的静压曲线,再把上表的数据绘制成风道曲线并与风扇静压曲线进行画在同一张图上,其交点即为风扇的工作点,即为(170CFM,0.13in.H2O),工作点对应的风速为4.14m/s.热设计的计算方法冷板的计算方法【案例】续空气流过冷板后的温升空气口温度为40 ℃,ρ1=1.12kg/m3,Cp=1005.7J/kg. ℃μ=19.1×10-6kg/m.s, Pr=0.699质量流量qm=0.080231×1.12=0.08986kg/s△t= Q/qmCp=870.5/0.08986×1005.7=9.63 ℃定性温度: tf=(2ts+t1+t2)= (2×80+40+49.63)/4=62.4℃按定性温度查物性得: ρ1=1.06kg/m3,Cp=1005.7J/kg.℃μ=20.1×10-6kg/m.s,Pr=0.696换热系数质量流速 G=qm/Af=4.14×1.12=4.64kg/m2.s雷诺数 Re=deG/μ=4.787×10-3×4.64/(20.1×10-6)=1105.1层流J=6/Re 0.98=6/1105.10.98=6.25×10-3h= JGCpPr-2/3=6.25×10-3×4.64×1005.7×0.696-2/3 =37.14W/m2.℃ 肋片效率 m=(2h/λδ)0.5=(2×37.14/(180 ×0.001))0.5=20.3ml=20.3×0.11=2.23ηf=th(ml)/ml=th(2.23)/2.23=0.433传热单元数:NTU=hη0A/qmCp=37.14×0.433×3.241 =0.5772冷板的表面温度: Ts=(eNTUt2-t1)/(eNTU-1)=61.9 ℃<70℃冷板设计方案满足散热要求.风扇的基本定律及噪音的评估方法风扇定律风扇的基本定律及噪音的评估方法风扇的噪音问题风扇产生的噪音与风扇的工作点或风量有直接关系,对于轴流风扇在大风量,低风压的区域噪音最小,对于离心风机在高风压,低风量的区域噪音最小,这和风扇的最佳工作区是吻合的.注意不要让风扇工作在高噪音区.风扇进风口受阻挡所产生的噪音比其出风口受阻挡产生的噪音大好几倍,所以一般应保证风扇进风口离阻挡物至少30mm的距离,以免产生额外的噪音.对于风扇冷却的机柜,在标准机房内噪音不得超过55dB,在普通民房内不得超过65dB.风扇的基本定律及噪音的评估方法风扇的噪音问题对于不得不采用大风量,高风压风扇从而产生较大噪音的情况,可以在机柜的进风口、出风口、前后门内侧、风扇框面板、侧板等处在不影响进风的条件下贴吸音材料,吸音效果较好的材料主要是多孔介质,如玻璃棉,厚度越厚越好.有时由于没有合适的风机而选择了转速较高的风机,在保证设计风量的条件下,可以通过调整风机的电压或其它方式降低风扇的转速,从而降低风扇的噪音.相应的噪音降低变化按下式计算:N2 = N1 + 50 log10 (RPM2/RPM1)风扇的基本定律及噪音的评估方法风扇的噪音问题【案例】:一电源模块采用一个轴流风扇进行冷却,为了有效抑止噪音,要求风扇只有在监控点的温度高于85℃才全速运转,其余情况风扇必须半速运转.已知风扇全速运转时转速为2000RMP,噪音为40db,求在半速运转时风扇的噪音为多少?如果已知全速运转时风扇的工作点为(50CFM,0.3IN.H2O),试求风扇在半速运转时的工作点.解:根据风扇定律N2 = N1 + 50 log10 (RPM2/RPM1)=40+50 log10 (1000/2000) =24.9dbP2 =P1 (RPM2/RPM1)2=0.3(1000/2000)2=0.075 IN.H2OCFM2 = CFM1 (RPM2/RPM1)=50(1000/2000)=25CFM海拔高度对热设计的影响及解决对策海拔高度对自然冷却条件的热设计要求对于自然对流,其传热机理是由于冷却空气吸热后其密度减小,迫使重力场中的空气上升而形成冷热空气的对流而产生热量传递.由于随着海拔高度的增加,空气的密度逐渐减小,空气上升的能力也就减少,自然对流换热的能力减弱.自然对流换热能力的变化最终体现在对流换热系数的变化上,根据美国斯坦伯格的经验公式,如果忽略空气温度的变化,可按下式计算海拔高度对自然对流的影响强弱.hc(高空)=hc(海平面)(ρ高空/ρ海平面)0.5=hc(海平面) (p高空/p海平面)0.5hc(高空),hc(海平面)-分别为高空及海平面的自然对流换热系数,W/m.k ρ高空,ρ海平面-分别为高空及海平面的空气密度,Kg/m3p高空,p海平面-分别为高空及海平面的空气压力,帕斯卡海拔高度对热设计的影响及解决对策海拔高度对强迫冷却条件的热设计要求海拔高度对强迫风冷影响的机理是由于随着海拔高度的增加,空气密度减小,。
电子设备热设计基础(电子部讲课做讲义用1)
需要用风机或泵来克服这种压降。流速越高,表面
越不规则,则压降越大。
在强迫对流系统中,冷却剂流动通路的几何形状及
系统压降是重要的问题。
热设计的有关概念
辐射:是真空中进行传热的唯一方式,它是量子从热体
(辐射体)到冷体(吸收体)的转移。
例如接近火炉坐能感到热。
热路与电路
R1
R=U/I
U Rt1
I
R2
R3
自然对流 natural
对流方式
强迫对流 forced
层流:流线有规则,大都发生在贴近
壁面附近的流层。 (导热产生的换热为主)
紊流:层流底层以外(边界层以外)
所发生的流体不规则流动。
对流换热的基本定律
对流换热系数
对流传热系数的数值范围
过 程 h/[W(m2k)] 1~10 200~1000 20~100 500~3500 1000~15000 2500~3500 5000-25000 自然对流 空气 水 强迫对流 气体 高压水蒸气 水 水的相变换热 沸腾 蒸汽凝结
隔热材料保温, 可控式恒温 ,关键技术是温度的控制 (4)热管传热
热设计理论基础-传热学
传热的基本方式有三种:传导、对流和辐射、一般来
说,这三种形式在电子系统的热传输中分别占60%,20%
和20%。
导
热
因物质的原子和分子之间的随机运动而导致的从高能 级→低能级的一种能量传输过程。简单地说:导热的产生 必需具备二个条件: t 和相互接触。 导热的基本定律:Fourier 定律
S—应力比或降额因子。
热设计目标的确定
工程上为简便计算,通常采用元器件经降额设计 后允许的最高温度值做为热设计目标。 双极型数字电路降额准则
电子产品热设计
电子产品有效的功率输出要比电路工作所需输入的功率小得多。
多余的功率大部分转化为热而耗散。
当前电子产品大多追求缩小尺寸、增加元器件密度,这种情况导致了热量的集中,因此需要采用合理的热设计手段,进行有效的散热,以便产品在规定的温度极限内工作。
热设计技术就是指利用热的传递条件,通过冷却措施控制电子产品内部所有元器件的温度,使其在产品所在的工作条件下,以不超过规定的最高温度稳定工作的设计技术。
一、电子产品热设计的目的电子产品在工作时会产生不同程度的热能,尤其是一些功耗较大的元器件,如变压器、大功率晶体管、电力电子器件、大规模集成电路、功率损耗大的电阻等,实际上它们是一个热源,会使产品的温度升高。
在温度发生变化时,几乎所有的材料都会出现膨胀或收缩现象,这种膨胀或收缩会引起零件间的配合、密封及内部的应力问题。
温度不均引起的局部应力集中是有害的,金属结构在加热或冷却循环作用下会产生应力,从而导致金属因疲劳而毁坏。
另外,对于电子产品而言,元器件都有一定的工作温度范围,如果超过其温度极限,会引起电子产品工作状态的改变,缩短使用寿命,甚至损坏,导致电子产品不能稳定、可靠地工作。
电子产品热设计的主要目的就是通过合理的散热设计,降低产品的工作温度,控制电子产品内部所有元器件的温度,使其在所处的工作环境温度下,以不超过规定的最高允许温度正常工作,避免高温导致故障,从而提高产品的可靠性。
二、电子产品散热系统简介热传递的三种基本方式是传导、对流和辐射,对应的散热方式为:传导散热、对流散热和辐射散热。
典型的散热系统介绍如下:(1)自然冷却系统自然冷却系统是指电子产品所产生的热量通过传导、对流、辐射三种方式自然地散发到周围的空气中(环境温度略微升高),再通过空调等其他设备降低环境温度,达到散热的目的。
此类散热系统的设计原则是:尽可能减少传递热阻,增加产品中的对流风道和换热面积,增大产品外表的辐射面积。
自然冷却是最简单、最经济的冷却方法"旦散热量不大,一般用于热流密度不大的产品中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、自然对流换热的简化计算
对在海平面采用空气自然冷却的多数电子元器 件或小型设备(任意方向的尺寸小于600mm),可以 采用以下简化公式进行计算
/ A 2.5Ct1.25 / D0.25
式中2; C —— 系数,由表2-1查得; D —— 特征尺寸,m;
Δt —— 热流体与冷流体之间的温差,℃。
热量传递的三种基本方式:导热、对流和辐射
传热过程和传热系数
1 传热过程的定义:两流体间通过固体壁面进行的换热 2 传热过程包含的传热方式: 导热、对流、热辐射
图墙壁的散热
辐射换热、 对流换热、 热传导
3 一维稳态传热过程中的热量传递 忽略热辐射换热,则
二、对流
可分为自然对流和强迫对流两大类
对流换热采用牛顿冷却公式计算
hc A(tw t f )
式中:hc —— 对流换热系数,W/(m2·℃); A —— 对流换热面积,m2; tw —— 热表面温度,℃; tf —— 冷却流体温度,℃。
对流换热热阻:
Φ t t
1 (hA) Rh q t t
六、强迫空气冷却是一种较好的冷却方法。若电子 元器件之间的空间有利于空气流动或可以安装散 热器时,就可以采用强迫空气冷却。
七、直接液体冷却适用于体积功率密度较高的元器 件 或设备。直接液体冷却要求冷却剂与元器件 相容,其典型热阻为每平方厘米1.25℃/W。直接 强迫液体冷却的热阻为每平方厘米0.03℃/W。
1 h rh
Rh 1 (hA) [ C W ]
rh 1 h [m2C W ]
强制对流 自然对流
hd
Nu
Nu CRem Pr n Nu C(Gr Pr )n
柯尔朋传热因子 紧凑式换热面
j Nu Pr 1/3 Re
j CRem
h jucp Pr 2/3
表面换热系数计算
一、自然对流换热的准则方程
tw1 tw2 R
2 l
W
长度为 l 的圆筒 壁的导热热阻
接触热阻
实际固体表面不是理想平整的,所以两固体表面直接接触的界 面容易出现点接触,或者只是部分的而不是完全的和平整的面 接触 —— 给导热带来额外的热阻
减小散热器与器件之间的接触热阻
影响接触热阻的因素较多,迄今没有一个普遍适用 的经验公式加以归纳,因此工程设计中都是根据实验或 参考实测数据来选择接触热阻。
3.3 冷却方法选择示例
功耗为300W的电子组件,拟将其装在一个248mm×381mm
×432mm的机柜里,放在正常室温的空气中,是否需要对此机柜采 取特殊的冷却措施?是否可以把此机柜设计得再小一些?
表2-3为某些典型接触面的接触热阻值。
半导体功率器件安装于散热器上的接触热阻值可 参考表2-4查取。
工程中常用的减小接触热阻的主要措施:
⑴ 加大接触表面之间的压力;
⑵ 提高两个接触面的加工精度;
⑶ 接触表面之间加导热衬垫或导热脂、导热膏 等;
⑷ 在结构强度许可的条件下,选用软的金属材 料制作散热器或器件的壳体。
Δt —— 换热表面与流体(空气)的温差,℃。
2-1
表
自 然 对 流 准 则 方 程 中 的 和 值
Cn
强迫对流换热的准则方程
管内流动及沿平板流动的准则方程
管内受迫流动换热 管内受迫流动的特征表现为:流体流速、管子入口段及温度场
等因素对换热的影响。 入口段:入口段管内流动换热系数是不稳定的,所以计算平均
hf=λ (L/de)(ρ V2/2)
λ =f(Re,ε /d),即紊流时沿程阻力系数不仅与雷诺数有关, 还与相对粗糟度ε 有关。 尼古拉兹采用人工粗糟管进行试验 得出了沿程阻力系数的经验公式:
紊流光滑区:4000<Re<105, λ 采用布拉修斯公式计算: λ =0.3164/Re 0.25
非园管道沿程阻力的计算
t / x —— x方向的温度变化率,℃/m。 负号表示热量传递的方向与温度梯度的方向相
反。
无限大平板一维导热
q
tw1 tw2
t r
Φ
tw1 tw2
t R
A
R
A
导热热阻
r
单位面积导热热
阻
t
dx
tw1
dt
Q
tw2
0
x
tw1
Q
tw2
A
图 导热热阻的图示
单层圆筒壁的导热
Φ
2 rlq
tw1 tw2 ln(r2 r1)
图 两黑体表面间的辐射换热
辐射换热计算方程
两物体表面之间的辐射换热计算公式为:
xt
5.67 1
AF12 xt
1 1 1
T1 100
4
T2 100
4
1 2
式中: T1、 T2 —— 物体1和物体2表面的绝对温度, K; ε1、 ε2 —— 物体1和物体2的表面黑度; εxt —— 系统黑度; A —— 物体辐射换热表面积, m2;
四、利用金属导热是最基本的传热方法,其热路容 易控制。而辐射换热则需要比较高的温差,且传 热路径不容易控制。对流换热需要较大的面积, 在安装密度较高的设备内部难以满足要求。
五、大多数小型电子元器件最好采用自然冷却方法。 自然对流冷却表面的最大热流密度为0.039W/cm2。 有些高温元器件的热流密度可高达0.078W/cm2。
引入当量水力半径后所有园管的计算方法与公式均可适用非园 管,只需把园管直径换成当量水力直径。
de=4A/x
局部阻力
hj=ξ ρ V2/2
ξ -局部阻力系数 突然扩大: 按小面积流速计算的局部阻力系数:ζ 1=(1-A1/A2) 按大面积流速计算的局部阻力系数 :ζ 2=(1-
A2/A1) 突然缩小: 可从相关的资料中查阅经验值。
八、直接沸腾冷却适用于体积功率密度很高的设 备或元器件,其热阻值为每平方厘0.006℃/W。
九、热电致冷是一种产生负热阻的致冷技术。优 点是不需要外界动力、且可靠性高;缺点是重 量大、效率低。
十、热管是一种传热效率很高的传热器件,其传 热性能比相同的金属导热要高几十倍,且两端 的温差很小。应用热管时,主要问题是如何减 小热管两端接触界面上的热阻。
Nu CRan
式中:Nu —— 努谢尔特数,Nu=hD/λ; Ra —— 瑞利数,Ra=Gr·Pr; Gr —— 格拉晓夫数,Gr=βgρ2D3Δt/μ2; Pr —— 普朗特数;
C、n —— 由表2-1查得,定性温度取壁面温度与流体温度的算术平均值; h —— 自然对流换热系数, W/(m2·℃); D —— 特征尺寸, m; λ —— 流体的导热系数, W/(m·℃); β —— 流体的体积膨胀系数, ℃-1; g —— 重力加速度, m/s2; ρ —— 流体的密度, kg/m3; μ —— 流体的动力粘度, Pa·s;
P=VI 理论上是可以这样计算的。实际大多是元器件
厂家提供的。第15-19页 1有源器件 2无源器件
有热源如果任由它发热不去考虑散热,那么有 可能温度会超过元器件工作温度。
因此有必要人为构造散热途径。 比如电加热器烧干。 接下来我们看看散热是怎么回事。 热量传递有三种方式:导热;对流和热辐射
一、导热
第一章 电子设备热设计基本知识
一热源和耗散功率
电子设备只要通电就有发热,是热源,其 产生的热量等于功率的耗散。耗散功率(发 热功率)是热设计的基础。可以采用试验和 理论计算来确定。一般都增加安全系数,保 守取值,适当取高些。
热设计一般是取最恶劣工况:最高环境温 度和最大热耗散的情况下设计。
耗散功率计算:
k
1
1
1
1
rh1 r rh2
h1 h2
单位热阻或面积热阻
传热系数[W m2K,] 是表征传热过程强烈程度的标尺,
不是物性参数,与过程有关。
热电模拟
热电模拟网络
利用热电模拟的概念,可以解决稳态和瞬态 的传热计算。恒温热源等效于理想的恒压源。 恒定的热流源等效为理想的电流源。导热、对 流和辐射换热的区域均可用热阻来处理。热沉 等效于“接地”,所有的热源和热回路均与其 相连接,形成热电模拟网络。
冷却方式的选择方法
确定冷却方法的原则
在所有的冷却方法中应优先考虑自然冷却,只有在自然冷却无法满 足散热要求时,才考虑其它冷却。
冷却方式的选择方法1:根据温升在40℃条件下各种冷却方式的热流
密度或体积功率密度值的范围来确定冷却方式,具有一定的局限性,如
图1所示。
0.04
自然冷却
最大0.08
强迫风冷
三、辐射
辐射能以电磁波的形式传递
任意物体的辐射能力可用下式计算
A 0T 4
式中:ε —— 物体的表面黑度; σ0 —— 斯蒂芬—玻尔兹曼常数,5.67×10-8 W/(m2·K4); A —— 辐射表面积,m2; T —— 物体表面的热力学温度,K。
T1
T2
T14
T24
q12 (T14 T24)
对流换热热阻:
Rt
1 hc A
3冷却方法的选择
3.1冷却方法的分类 3.2冷却方法的选择 3.3冷却方法选择示例
3.1 冷却方法的分类
按冷却剂与被冷元件之间的配置关系
a. 直接冷却 b. 间接冷却
按传热机理
a. 自然冷却(包括导热、自然对流和辐射换热的单独 作用或两种以上 换热形式的组合)
b. 强迫冷却(包括强迫风冷和强迫液体冷却等) c. 蒸发冷却 d. 热电致冷 e. 热管传热 f. 其它冷却方法
图一维稳态传热过程
左侧对流换热热阻
Rh1
1 Ah1
固体的导热热阻
R
A
右侧对流换热热阻
Rh1