大学物理2,15.第十五章思考题

合集下载

大学物理实验课思考题参考答案

大学物理实验课思考题参考答案

大学物理实验思考题参考答案目录一、转动惯量:二、伏安法与补偿法三、混沌思考题四、半导体PN结五、地磁场六、牛顿环七、麦克尔逊干涉仪八、全息照相九、光电效应十、声速测量十一、用电位差计校准毫安表十二、落球法测量液体的黏度十三、电子束偏转与电子比荷测量十四、铁磁材料磁化特性研究十五、光栅衍射十六、电桥十七、电位差计十八、密立根油滴十九、模拟示波器二十、金属杨氏摸量二十一、导热系数二十二、分光计二十三、集成霍尔传感器特性与简谐振动一、转动惯量:1、由于采用了气垫装置,这使得气垫摆摆轮在摆动过程中受到的空气粘滞阻尼力矩降低至最小程度,可以忽略不计。

但如果考虑这种阻尼的存在,试问它对气垫摆的摆动(如频率等)有无影响?在摆轮摆动中,阻尼力矩是否保持不变?答:如果考虑空气粘滞阻尼力矩的存在,气垫摆摆动时频率减小,振幅会变小。

(或者说对频率有影响,对振幅有影响)在摆轮摆动中,阻尼力矩会越变越小。

2、为什么圆环的内、外径只需单次测量?实验中对转动惯量的测量精度影响最大的是哪些因素?答:圆环的内、外径相对圆柱的直径大很多,使用相同的测量工具测量时,相对误差较小,故只需单次测量即可。

(对测量结果影响大小)实验中对转动惯量测量影响最大的因素是周期的测量。

(或者阻尼力矩的影响、摆轮是否正常、平稳的摆动、物体摆放位置是否合适、摆轮摆动的角度是否合适等)3、试总结用气垫摆测量物体转动惯量的方法有什么基本特点?答:原理清晰、结论简单、设计巧妙、测量方便、最大限度的减小了阻尼力矩。

二、伏安法与补偿法1、利用补偿法测量电阻消除了伏安法的系统误差,还可能存在的误差包括:读数误差、计算产生的误差、仪器误差、导线阻值的影响等或其他。

2、能利用电流补偿电路对电流表内接法进行改进:三、混沌思考题1、有程序(各种语言皆可)、K值的取值范围、图 +5分有程序没有K值范围和图 +2分只有K值范围 +1分有图和K值范围 +2分2、(1)混沌具有内在的随机性:从确定性非线性系统的演化过程看,它们在混沌区的行为都表现出随机不确定性。

大学物理(第二版)第十五章习题答案

大学物理(第二版)第十五章习题答案

第十五章习题15.1 解:介质中的折射率为n ,加入厚度为d 的薄膜,光程的改变为()19n d λ-=所以可以得到:1039958901011 1.530.0110n d λ--⨯⨯=+=+=⨯ 15.2 解:已知条件:6000A λ=,4m D =,垂直入射,两第五级明条纹中心之间的距离为4cm 。

2551022410m D D x d dλλ-=⨯==⨯ 双缝之间的距离:10325101046000100.610m=0.6mm 2410D d x λ---⨯⨯⨯===⨯⨯ 15.3 解:⑴ 双缝之间的距离为:0.2mm d =,缝与屏之间的距离为:1m D = 亮条纹距离零级明条纹中心的位置:D k x d λ=d xk D λ⇒=因为:4000A 8000A λ≤≤,所以可得:115d x k D λ==, 222.5d xk D λ==,即2.55k ≤≤ 第三级明纹:3310.21010106667A 13dx Dk λ--⨯⨯⨯===⨯第四级明纹:3320.21010105000A 14dx Dk λ--⨯⨯⨯===⨯ 第五级明纹:3330.21010104000A 15dx Dk λ--⨯⨯⨯===⨯ ⑵ 20mm x =,可以得到:dxk D λ=,510k ≤≤ 15k =, 33110.21020108000A 15dx Dk λ--⨯⨯⨯===⨯ 26k =,33220.21020106667A 16dx Dk λ--⨯⨯⨯===⨯ 37k =,33320.21020105714A 17dx Dk λ--⨯⨯⨯===⨯ 48k =,33440.21020105000A 18dx Dk λ--⨯⨯⨯===⨯59k =,33550.21020104444A 19dx Dk λ--⨯⨯⨯===⨯ 610k =,33660.21020104000A 110dx Dk λ--⨯⨯⨯===⨯ 15.4 解:设空气的折射率为1n ,氯气的折射率为2n ,两条光路的几何路程分别为:12,r r 。

大学物理实验思考题

大学物理实验思考题

力学和热学电磁学光学近代物理1. 是否可以测摆动一次的时间作周期值?为什么?答:不可以。

因为一次测量随机误差较大,多次测量可减少随机误差。

2. 将一半径小于下圆盘半径的圆盘,放在下圆盘上,并使中心一致,讨论此时三线摆的周期和空载时的周期相比是增大、减小还是不一定?说明理由。

答:当两个圆盘的质量为均匀分布时,与空载时比较,摆动周期将会减小。

因为此时若把两盘看成为一个半径等于原下盘的圆盘时,其转动惯量I0小于质量与此相等的同直径的圆盘,根据公式(3-1-5),摆动周期T0将会减小。

3. 三线摆在摆动中受空气阻尼,振幅越来越小,它的周期是否会变化?对测量结果影响大吗?为什么?答:周期减小,对测量结果影响不大,因为本实验测量的时间比较短。

实验2 金属丝弹性模量的测量1. 光杠杆有什么优点,怎样提高光杠杆测量的灵敏度?答:优点是:可以测量微小长度变化量。

提高放大倍数即适当地增大标尺距离D或适当地减小光杠杆前后脚的垂直距离b,可以提高灵敏度,因为光杠杆的放大倍数为2D/b。

2. 何谓视差,怎样判断与消除视差?答:眼睛对着目镜上、下移动,若望远镜十字叉丝的水平线与标尺的刻度有相对位移,这种现象叫视差,细调调焦手轮可消除视差。

3. 为什么要用逐差法处理实验数据?答:逐差法是实验数据处理的一种基本方法,实质就是充分利用实验所得的数据,减少随机误差,具有对数据取平均的效果。

因为对有些实验数据,若简单的取各次测量的平均值,中间各测量值将全部消掉,只剩始末两个读数,实际等于单次测量。

为了保持多次测量的优越性,一般对这种自变量等间隔变化的情况,常把数据分成两组,两组逐次求差再算这个差的平均值。

实验三,随即误差的统计规律1. 什么是统计直方图? 什么是正态分布曲线?两者有何关系与区别?答:对某一物理量在相同条件下做n次重复测量,得到一系列测量值,找出它的最大值和最小值,然后确定一个区间,使其包含全部测量数据,将区间分成若干小区间,统计测量结果出现在各小区间的频数M,以测量数据为横坐标,以频数M为纵坐标,划出各小区间及其对应的频数高度,则可得到一个矩形图,即统计直方图。

大学物理第15章习题解答

大学物理第15章习题解答

第十五章习题解答1选择题:⑴ B ;⑵ C ;⑶ B ;⑷ B 。

2填空题:⑴ 线偏振光(或完全偏振光,或平面偏振光),光(矢量)振动,偏振化(或透光轴);⑵ 完全偏振光(或线偏振光),垂直; ⑶ ; ⑷ 波动,横波;3计算题:1 自然光入射到两个重叠的偏振片上.如果透射光强为,(1)透射光最大强度的三分之一,(2)入射光强的三分之一,则这两个偏振片透光轴方向间的夹角为多少? 解:(1) max 120131cos 2I I I ==α 又 20max I I =∴ ,601I I = 故 'ο11124454,33cos ,31cos ===ααα. (2) 0220231cos 2I I I ==α ∴ 'ο221635,32cos ==αα2 投射到起偏器的自然光强度为I 0,开始时,起偏器和检偏器的透光轴方向平行.然后使检偏器绕入射光的传播方向转过30°,45°,60°,试分别求出在上述三种情况下,透过检偏器后光的强度是I 0的几倍?解:由马吕斯定律有:0o 2018330cos 2I I I ==, 0ο2024145cos 2I I I ==,0ο2038160cos 2I I I == 所以透过检偏器后光的强度分别是I 0的38,14,18倍。

3 使自然光通过两个偏振化方向夹角为60°的偏振片时,透射光强为I 1,今在这两个偏振片之间再插入一偏振片,它的偏振化方向与前两个偏振片均成30°,问此时透射光I 与I 1之比为多少?解:由马吕斯定律:ο20160cos 2I I =80I =,32930cos 30cos 20ο2ο20I I I == ∴ 194 2.25I I == 4 一束自然光从空气入射到折射率为1.40的液体表面上,其反射光是完全偏振光.试求:(1)入射角等于多少? (2)折射角为多少?解:⑴ 0tan 1.401i =,∴ 'ο02854=i⑵ οο'0903532i γ=-=5 自然光从空气中射向介质,测得布儒斯特角058i =.(1)求介质的折射率和折射角.(2)如果实验在水中进行,水的折射率为 1.33n =水,求这种情况下的布儒斯特角.(3)若介质是透明的,当光从介质射向与空气的分界面时,起偏角是多少?(4)若从空气中射向介质的是振动方向在入射面内的偏振光,仍以058i =入射,问反射光是什么性质的光?解:(1)00tan tan 58 1.6n i ===折射角:οο09032i γ=-=(2)0 1.6tan 1.2031.33i ==,ο050.26i = (3)01tan 0.6251.6i ==,ο032i = (4)无反射光。

大学物理15章习题

大学物理15章习题

⼤学物理15章习题15章习题答案15-3求各图中点P 处磁感应强度的⼤⼩和⽅向。

[解] (a) 因为长直导线对空间任⼀点产⽣的磁感应强度为:()210cos cos 4θθπµ-=aIB对于导线1:01=θ,22πθ=,因此aI B πµ401=对于导线2:πθθ==21,因此02=BaIB B B πµ4021p =+= ⽅向垂直纸⾯向外。

(b) 因为长直导线对空间任⼀点产⽣的磁感应强度为:()210cos cos 4θθπµ-=aIB对于导线1:01=θ,22πθ=,因此rI a I B πµπµ44001==,⽅向垂直纸⾯向内。

对于导线2:21πθ=,πθ=2,因此rI a I B πµπµ44002==,⽅向垂直纸⾯向内。

半圆形导线在P 点产⽣的磁场⽅向也是垂直纸⾯向内,⼤⼩为半径相同、电流相同的圆形导线在圆⼼处产⽣的磁感应强度的⼀半,即rIr=,⽅向垂直纸⾯向内。

所以,rIr I r I r I r I B B B B 4244400000321p µπµµπµπµ+=++=++= (c) P 点到三⾓形每条边的距离都是a d 63=o 301=θ,o 1502=θ每条边上的电流在P 点产⽣的磁感应强度的⽅向都是垂直纸⾯向内,⼤⼩都是()a I d IB πµπµ23150cos 30cos 400000=-=故P 点总的磁感应强度⼤⼩为aIB B πµ29300==⽅向垂直纸⾯向内。

15-4在半径为R 和r 的两圆周之间,有⼀总匝数为N 的均匀密绕平⾯线圈,通有电流I ,⽅向如图所⽰。

求中⼼O 处的磁感应强度。

[解] 由题意知,均匀密绕平⾯线圈等效于通以 I NI 圆盘,设单位长度线圈匝数为nrR Nn -=建⽴如图坐标,取⼀半径为x 厚度为dx 的圆环,其等效电流为:x r R NIx j I d d d -== )(2d 2d d 000r R x xNI xIB -==µµrR r R NIr R x xNIln)(2)(2d d 0000-=-==?µµ所以⽅向垂直纸⾯向外.15-5电流均匀地流过⼀⽆限长薄壁半圆筒,设电流I =5.0A ,圆筒半径 R =m 100.12?如图所⽰。

大学物理实验思考题解答

大学物理实验思考题解答
波节处声压最大,转换成电信号电压最大。所以接收器位于波节处,晶体管电压表显示的电压值是最大值。
2.用逐差法处理数据的优点是什么?
答:逐差法是物理实验中处理数据的一种常用方法,是对等间隔变化的被测物理量的数据,进行逐项或隔项相减,来获得实验结果的数据处理方法。逐差法进行数据处理有很多优点,可以验证函数的表达形式,也可以充分利用所测数据,具有对数据取平均的效果,起到减小随机误差的作用。本实验用隔项逐差法处理数据,减小了测量的随机误差。
实验三衍射光栅
【预习思考题】
1.如何调整分光计到待测状态?
答:(1)调节望远镜适合接收平行光,且其光轴垂直于仪器中心轴;
(2)平行光管能发出平行光,且其光轴垂直于仪器中心轴;
(3)载物台的台面垂直于仪器中心轴。
2.调节光栅平面与入射光垂直时,为什么只调节载物台调平螺钉b、c,而当各级谱线左右两侧不等高时,又只能调节载物台调平螺钉a?
霍尔传感器
【预习思考题】
1.写出调整霍尔式传感器的简明步ห้องสมุดไป่ตู้。
(1)按图6.2-6接线;
(2)差动放大器调零;
(3)接入霍尔式传感器,安装测微头使之与振动台吸合;
(4)上下移动测微头±4mm,每隔0.5mm读取相应的输出电压值。
2.结合梯度磁场分布,解释为什么霍尔片的初始位置应处于环形磁场的中间。
在环形磁场的中间位置磁感应强度B为零。由霍尔式传感器的工作原理可知,当霍尔元件通以稳定电流时,霍尔电压UH的值仅取决于霍尔元件在梯度磁场中的位移x,并在零点附近的一定范围内存在近似线性关系。
实验二声速的测量
【预习思考题】
1.如何调节和判断测量系统是否处于共振状态?为什么要在系统处于共振的条件下进行声速测定?

大学物理答案第15章

大学物理答案第15章

第十五章 机械振动15-1 已知一简谐振动的振幅m 1022-⨯=A ,周期T =0.5s, 初相4/πϕ=.试写出振动方程;并作出该振动的x-t ,v -t ,a-t 曲线.分析 振动方程的基本形式为)cos(ϕω+=t A x .通过作曲线, 进一步了解v 、a表达式的意义以及x 、v 、a 间的相位关系.解 rad/s 4 rad/s 5.022πππω===T振动方程为m)4/4cos(1022ππ+⨯=-t xx15-2 一弹簧支持的椅子构成在太空测量人体失重状态下质量的装置——人体称重器.飞船进入空间轨道时,宇航员坐在椅子上测出振动周期.(1)如m '为宇航员的质量,m 为人体称重器中的有效质量(如椅子等),试证明mkT m -='224π其中T 是振动周期,k 是弹簧的劲度系数;(2)现k =605.6 N/m ,椅子空着时的振动周期T =0.9015 s, 求有效质量m ;(3)在太空,宇航员坐在椅子上, 测出振动周期为2.299s, 求宇航员在失重状态下的质量.分析 当宇宙飞船在空间轨道上绕地球旋转自由运行时,地球对飞船及飞船上所有物体的引力就是使它们作圆周轨道运动的向心力,于是飞船及飞船上所有物体如果处于相对静止状态,相互之间就不存在作用力,就不能用地面上通常使用的质量或重量测量仪器进行测量.考虑到无外力作用时,弹簧振子振动周期决定于弹簧劲度系数以及物体质量,如果已知弹簧劲度系数,通过测量振动周期可测出物体质量.解 (1) 弹簧振子系统振动周期为km m T +'=π2 (1)宇航员的质量为 m kT m -='224π(2) 椅子空着时,0='m ,由(1)式得kg 66.12kg 6.605142.349015.042222=⨯⨯==πkT m(3) kg 50.68kg 66.12kg 142.34299.26.60542222=-⨯⨯=-='m kT m π15-3 一质量为0.20kg 的质点作简谐振动,其振动方程为 x =0.60cos(5t -π/2), 其中x 以m 为单位, t 以s 为单位.求:(1)质点的初速度;(2)质点在正向位移一半处所受的力.分析 物体振动速度tx d d =v , 物体所受恢复力x m ma F 2ω-==,方向指向平衡位置.解 (1)据已知)2/5(60.0π-=t x ,得t t t A tx 5cos 3)2/5sin(560.0)sin(d d =-⨯-=+-==πϕωωv当t=0时,得 v 0=3 m/s(2) 正向最大位移一半处,x =0.30 m ,所受的力为N 5.1N 3.052.022-=⨯⨯-=-==x m ma F ω方向指向平衡位置.15-4 一物体沿x 轴作简谐振动,振幅为0.12m ,周期为2s ,当t =0时,位移为0.06m ,且向x 轴正方向运动.求(1)该物体的振动方程;(2)t =0.5s 时,物体的位置、速度、加速度;(3)在x =-0.06m 处,且向x 轴负方向运动时,物体的速度、加速度,以及物体从这一位置回到平衡位置所需的时间.分析 求解振动方程的难点是确定振动物体的初相ϕ.初相取决于计时起点t =0时物体的位置和速度.确定初相可用三角函数法或旋转矢量法.解 (1) 已知振幅为A = 0.12 m ,角频率为πππω===222Trad/s ,t = 0时初始位置和初速度分别为x 0=A cos ϕ =0.06 (1)v 0=ϕωsin A - >0 (2)从(1)式得2112.006.0cos 0===Ax ϕ得 33ππϕ或-=从(2)式得0sin <ϕ,所以应取3/πϕ-=此外,由t = 0时初始位置和初速度可以确定其旋转矢量如图15-4所示,即3/πϕ-=.振动方程为m)3/cos(12.0ππ-=t x(2) t =0.5s 时, x =)3/cos(12.0ππ-t =0.104 mv m/s188.0)3/sin(12.0-=--=πππt22m/s03.1)3/cos(12.0-=--=πππt a(3) 在1x =-0.06 m 处,物体向x 轴负向运动时,设1t t =,则06.0)3/cos(11-=-=ππt A x m (3)v 1)3/sin(1ππω--=t A < 0 (4)从(3)式得 2112.006.0)3/cos(11-=-==-Ax t ππ解得 ππππππn n t 2322323/1+-+=-或 (n =0,1,2…)又从(4)式得 0)3/sin(1>-ππt 应取 ππππn t 2323/1+=- (n =0,1,2…)故 )12(1+=n tm/s 592.0 m/s 326.0211=-= a v设回到平衡位置时2t t =,则0)3/cos(22=-=ππt A x (5)v 2)3/sin(2ππω--=t A >0 (6)从(5)式得 ππππn t 2233/2+=-或ππππn t 223/2+=- (n =1,2…)从(6)式得 )3/sin(2ππ-t <0 应取 ππππn t 2233/2+=- (n =1,2…)65)12(2++=n t回到平衡位置所需时间 s 83.0s 6512==-=t t t ∆15-5 一个质点作简谐振动,其振动方程为x =0.24cos(πt /2+π/3)m ,其中x 以m 计, t 以s 计.试用旋转矢量法求出质点由初始状态运动到 x =-0.12m, v <0状态所需的最短时间.分析 根据振动方程,当0t =0时旋转矢量A 与Ox 于x =-0.12m, v <0状态时,A 32π,如图15-5所示.因此,从0t 位置转到新位置偏转3/π解 如图15-5所示, t '时刻的相位为πϕ32=A 沿逆时针方向从0t 位置转过角度3/π所需的时间为s 32231=÷ππ15-6 作简谐振动的单摆在一个周期内的几个运动状态如图15-6所示.(1)若以(a )图所示的状态为计时起点;(2)若以(b )图所示的状态为计时起点,问单摆的初相位和其它各图所示状态的相位各为何值?分析 应从本题得出的结论是: 初相与计时起点(即初始条件)有关; 相位与与计时起点无关而与振动物体的瞬时状态有关.解 (1)以图(a )状态为计时起点,t =0时m m cos θϕθθ==得0=ϕ,因此对图(b)有0)cos(=+=ϕωθθt m (1)0)sin(d d <+-=ϕωωθθt tm(2)从(1)式得 2πϕω±=+t从(2)式得 )s i n (ϕω+t >0 所以图(b)的相位应取 2)(πϕω=+t同理,对图(c) πϕω=+)(t 对图(d)3)(πϕω=+t0cos ==ϕθθm (3)0sin d d <-=ϕωθθm t(4)(3)式(4)式联立,解得 2πϕ=同理,对图(c) πϕω=+)(t 对图(d) 23)(πϕω=+t对图(a) 0)(=+ϕωt15-7 一物块在水平面上作简谐振动,振幅为0.1m ,在距平衡位置0.06m 处速度为0.4m/s ,(1)求振动周期;(2)当速度为±0.12m/s 时,位移为多少?(3)若有另一物体置于该振动物块之上,当物块运动至端点时正好滑动,问摩擦系数μ为多大?分析 当所讨论问题涉及物体正好要滑动的条件时,由于物体尚未滑动,所受摩擦力仍为静摩擦力,静摩擦力方向与物体运动趋势方向相反.解 (1)设物块的振动方程为)cos(1.0ϕω+=t x物块位于06.01=x m 时, 速度v 1= 0.4m/s, 即x 1=A )cos(ϕω+t =0.06 m (1) v 1=)sin(ϕωω+-t A =0.4 m/s (2)以上两式平方相加, 代入A =0.1m ,解得 5=ωrad/s 26.12==ωπT s(2)由 v 2=)sin(ϕωω+-t A =±0.12 得 24.0)sin( =+ϕωt971.0)(sin 1)cos(2±=+-±=+ϕωϕωt t 则位移为x 2=0.1)cos(ϕω+t =±9.7×10-2m(3)物块运动至端点时正好物体开始滑动,即最大恢复力等于最大静摩擦力,物块受力如图15-7所示,因最大静摩擦力mg F μ=f ,最大恢复力A m F 2max ω=,得mg A m μω=226.08.91.05 22=⨯==gA ωμ15-8 一个轻弹簧在60N 的拉力作用下可伸长30cm , 将一物体悬挂在弹簧下端,并在它上面放一小物体,它们的总质量为4kg , 待其静止后再把物体向下拉10cm , 然后释放. 问(1)此小物体是停在振动物体上还是离开它? (2)如果使放在振动物体上的小物体与振动物体分离, 则振幅A 需满足什么条件? 二者在何位置开始分离?分析 根据胡克定律,由弹簧在外力作用下的形变量可以求出弹簧的劲度系数.当两物体脱离接触时,它们之间的正压力等于零,以此为条件可以判断小物体是否停在振动物体上. 解 (1) 根据胡克定律,得N/m 200N/m 3.060Δ===lF k由定义得 rad/s50rad/s 4200===mk ω弹簧、物体和小物体组成一个弹簧振子系统,把物体下拉10cm 后释放,故该弹簧振子的振幅为A =0.1m .设小物体质量为m ,小物体随系统一起运动,最大加速度为A a 2ω=,小物体受力情况如图15-8所示,当达最高点时,所受物体的正压力有最小值,即Am ma F mg N 2ω==+ (1)当A =0.1m 时,得 N 2.192=-=-=kA mg A m mg F N ω 即F N > 0 ,因而小物体仍停留在振动物体上.(2) 两物体脱离接触条件为0N =F ,代入(1)式得m196.0m 508.92==='ωgA即振幅大于0.196m ,两物体将在平衡位置上方分离,分离的位置即在0.196m 处.15-9 如图15-9(a )所示,在一个倾角为θ的光滑斜面上,固连一原长为L ,劲度系数为k ,质量忽略不计的弹簧,弹簧与质量为m 的重物相连,求重物作简谐振动的平衡位置和周期.分析 平衡位置是系统所受合外力为零的位置. 在建立振动方程时,一般都把取平衡位置为坐标原点.放在斜面上的弹簧振子处于静止状态时,物体所受弹簧的弹性力与重力沿斜面向下的分量大小相等,方向相反.解 弹簧和物体组成一个弹簧振子系统.物体受力情况如图15-9(b )所示.设在平衡位置弹簧的伸长量为0x ,有0sin 0=-kx mg θ 解得 k mg x θsin 0=即处于平衡位置时弹簧长度为0x L +. 根据定义,弹簧振子系统作简谐振动的角频率为mk =ω周期为 km T π2=15-10 如图15-10(a)所示,密度计玻璃管的直径为d ,浮在密度为ρ的液体中.若在竖直方向轻轻推一下,任其自由振动,试证明:若不计液体的沾滞阻力,密度计的运动是简谐振动;设密度计的质量为m , 试求振动周期.分析 若物体运动为简谐振动,应该具有如下特征:物体所受合外力与位移成正比而方向相反,即加速度与位移成正比而方向相反;或者位移是时间的余弦F F(a) (b)图15-9函数或正弦函数.解 密度计受力分析如图15-10(b)所示.设密度计截面积为S , 当处于平衡状态时,设浸入水中部分高度为h , 浮力则为ghS F ρ=B ,有0=-ghS mg ρ(1) 取平衡位置为坐标原点,向下为x 轴正向,当密度计向下位移为x 时,有22d d )(t xm S x h g mg =+-ρ (2) 由(1)和(2)式得gxS t x m ρ-=22d d 即加速度与位移成正比而方向相反,因此运动为简谐振动,且有g m dT mg d mgS ρππρρω4 2===15-11 如图15-11,劲度系数为k 的轻弹簧上端与质量为m 的平板相连,下端与地固连.另一质量为m '的物体,从h 高处自由落下,与平板发生完全非弹性碰撞后一起运动. 若以平板开始运动为计时起点,取向下为坐标正向,求振动的周期,振幅和初相位.分析 m '与m 发生完全非弹性碰撞后一起运动,与轻弹簧组成振动系统, 平衡位置是(m '+ m )所受合外力为零的位置,并选取为坐标原点.以发生碰撞后平板开始运动为计时起点,此时平板m 的坐标就是系统的初位移0x ,碰后(m '+ m )的共同速度v 0就是系统的初速度,而且可以依据碰撞中动量守恒求出.解 m '自由下落, 以gh 2的速度与m 发生完全非弹性碰撞,设碰后m '+ m 的共同速度为v 0,方向向下,应用动量守恒定律,得)(2m m gh m +'='v 0v 0mm gh m +''=2m '、m和弹簧组成振动系统,设m '+m 所受合外力为零时,弹簧的压缩量为x ∆,此位置是系统的平衡位置,则有0Δ)(=-+'x k g m m (1)取系统的平衡位置为坐标原点,向下为x 轴正向,当m '+m 位移为x 时,有d d )()()(22tx m m x x k g m m +'=+-+'∆ (2)由(1)和(2)式得0d d 22=+'+x mm k t x且有 km m T mm k +'=+'=πω2取m '与m 相碰的瞬间为振动的初始时刻t =0,有mm gh m kmg x +''=-=2 00v即 kmg A x -==ϕcos 0 (3)mm gh m A +''=-=2sin 0ϕωv (4)(3)与(4)式联立,得振动的周期和初相位分别为)(212020gm m kh kg m x A +'+'=⎪⎭⎫ ⎝⎛+=ωvgm m kh mm x )(2tan 0+''=-=ωϕv又因ϕ , 0 , 000><v x 在第三象限,则)(2 tanarc πϕ++''=gm m kh mm15-12 弹簧下端挂一物体后,弹簧伸长量为2108.9-⨯m , 若令物体上下振动,(1)求振动周期;(2)使其在平衡位置上方0.1m 处由静止开始运动,求振幅、初相及振动方程.(3)使其在平衡位置以0.8m/s 向上的初速度开始运动,求振幅、初相及振动方程.分析 计算结果表明,同一系统在不同初始条件下的振动方程不同. 解 (1)设挂上物体达平衡时弹簧的伸长量为x ∆, 根据胡克定律和平衡条件有mgx k =∆由定义得 10===xgmk ∆ω rad/s 63.02==gx T ∆πs(2)如图15-12所示,取平衡位置为坐标原点, 向上为x 轴正向.初始条件为: t =0时, x 0=0.1m v 0=0,即1.0cos 0==ϕA x (1)0sin 0=-=ϕωA v (2) 由(1)和(2)式联立解得m 1.01.022020==⎪⎭⎫ ⎝⎛+=ωv x A0=ϕ振动方程为 t x 10cos 1.0= m(3) 初始条件为:t =0时,x 0=0 v 0=0.8,即cos 0==ϕA x (3)08.0sin 0>=-=ϕωA v (4)由(3)和(4)式联立解得A =2020⎪⎭⎫ ⎝⎛+ωv x 0.08m从(3)式得 2πϕ=或 23πϕ=从(4)式得 0sin <ϕ 所以取 23πϕ=振动方程为 )2310cos(08.0π+=t x m15-13 如图15-13(a )所示的弹簧,其一端固定在天花板上,另一端挂着质量都是1.0kg 的两个物体A 和B .当物体静止时,弹簧伸长量为2108.9-⨯m , 如果物体B 突然脱落掉下,不计弹簧质量,(1)求物体A 的振动周期;(2)若从物体B 脱落时开始计时,求物体A 的振幅、初相和振动方程.分析 虽然弹簧下悬挂着两物体,但由于物体B 脱落,振动系统实为弹簧和 物体A 组成. 据题意, 物体B 脱落之时t=0,因此物体A 的位置为系统的初始位置,且物体B 从静止状态脱落,系统初速度为0.解 物体B 脱落之前,两个物体A 和B 处于重力和弹簧的弹性力作用下的平衡状态,弹簧伸长量为m 108.9Δ2-⨯=l ,则l k mg Δ2=N/m200N/m 108.98.912Δ22=⨯⨯⨯==-lmg k物体B 脱落后,物体A 和弹簧组成弹簧振子系统,设平衡位置处弹簧伸长量为0l ,则 00=-kl mg (1) 取平衡位置为坐标原点,向下为x 轴正向,如图15-13(b )所示,当物体A 位移x 时,应用牛顿第二定律,得220d d )(tx ml x k mg =-- (2)由(1)和(2)式得22d d tx mkx =-由定义得 rad/s2100.1200===mk ω s44.02==ωπT0=t 时,物体B 脱落,有m 109.4ΔΔ200-⨯==-=-=kmg kmg l l l x即 m 109.4cos 20-⨯==ϕA x (3) 0sin 0=-=ϕωA v (4)(3)和(4) 式联立解得 2220109.4)(-⨯=+=ωv x A m从(3)式0=ϕ,满足(4)式, 所以 0=ϕ振动方程为 t x 210cos 109.42-⨯= m讨论: (1)我们现在是取向下为x 轴正向,如果取向上为正,则初相为π,振动方程有所不同.这就是解题中强调要给出坐标取向的理由.(2)如果A 、B 质量不等,例如A B m m 2=,会有不同的l Δ值,则初始条件0x 不同,将导致振动特征参量的改变.15-14 如图15-14(a )所示,一质量可忽略的盘挂在劲度系数为k 的轻弹簧之下,一质量为m 的物体自h 高处自由下落至盘中,并与盘粘在一起作简谐振动. 设m =0.1kg ,k =4.9 N/m ,h =0.3m ,若以物体刚落至盘中时为计时起点,求系统的振动方程.解 如图15-14(b), 弹簧、质量为m 的物体和盘组成振动系统.取平衡位置为坐标原点, 向上为x 轴正向.平衡时弹簧伸长为0l l-,平衡方程为)(0=--l l k mg(1)当盘的位移为x 时,应用牛顿第二定律,得220d d )(tx ml x l k mg=-+- (2)由(1)和(2)式,得 22d d tx mkx=-由定义得71.09.4===mk ω rad/s质量为m 的物体与盘相碰时, t =0,弹簧伸长量为m 2.0m 9.48.91.0k0=⨯-=-=mg x相碰时,物体下落速度为gh 2,忽略盘质量,应用动量守恒定律,碰后物与盘的共同速度方向向下,大小为m/s 3.2m/s 3.08.922=⨯⨯==gh v即 x 0=ϕcos A =0.2 m (3)ϕωsin 0A -=v <0 (4)(3)和(4)式联立解得220)(ωv +=x A =0.4 m从(3)式得21cos 0==Ax ϕ,3πϕ±=.从(4)式得0sin >ϕ,所以应取3πϕ=振动方程为 )37cos(4.0π+=t xm15-15 单摆长为l ,小球质量为m ,带有电荷+q ,悬挂在场强大小为E 、方向由左向右的均匀电场中,如图15-15(a )所示.(1)求小球处在平衡位置时悬线与竖直向下方向所成的角;(2)假设单摆对平衡位置的偏角很小,求单摆的周期.分析 由于带电小球受到均匀电场的电场力作用,合外力为零的平衡位置将与铅垂位置有一偏角.解 (1)如图15-15(b )所示, 小球受重力m g 、静电力E q 和张力F T 作用,设平衡位置偏角为0θ,则0cos 0T =-θF mgsin 0T =-qE F θmg qEarctan 0=θ (1) (2)当摆线从平衡位置偏离θ角时,与铅垂位置偏角为)(0θθ+,应用牛顿第二定律,得小球切向运动微分方程为2220200d d d )(d )sin()cos(tmltmlmg qE θθθθθθθ=+=+-+ (2)由(1)式可得0tan θmg qE =代入(2)式,得2200d d ]cos )sin(sin )[cos(cos tmlmg θθθθθθθθ=+-+应用三角函数公式,得θθθsin cos d d 022l g t-=当θ很小时,θθ≈sin,得θωθθθ222cos d d -=-=l g t表明角加速度与角位移成正比,且方向相反,因此小球作简谐振动,并得222222222 cos Eq gm ml T mlEq gm l g +=+==πθω15-16 劲度系数分别为1k 和2k 的两根弹簧串在一起,竖直地悬挂着,下面挂一质量为m 的小球,作成一个在竖直方向振动的弹簧振子.试求其振动周期.分析 这是两根弹簧串联(首尾相连)的问题.处理这类连接体问题仍要用隔离物体法.当两弹簧质量均可忽略时,无论处于运动或静止状态,两弹簧中的弹性力相等,并等于相互作用力. 解 两根串联弹簧和小球组成振动系统. 隔离物体,对小球作受力分析如图15-16所示.取平衡位置为坐标原点,向下为x 轴正向.设平衡时弹簧1的伸长量为10x ,弹簧2的伸长量为20x ,小球受力平衡方程为101=-x k mg (1)两弹簧连接处相互作用力等大而反向,即0202101=-x k x k (2)小球相对于平衡位置下移x 时,设弹簧1伸长量为1x ,弹簧2伸长量为2x ,应用牛顿第二定律,得2211d d tx mx k mg =- (3)两弹簧连接处相互作用力等大而反向,即2211x k x k =,因201021x x x x x ++=+,得 )(20102121x x x k k k x +++=代入(3)式得 22212101d d )(tx mx k k k x k mg =++- (4)由(1)和(4)式,得222121d d tx mx k k k k =+-表明加速度与位移成正比,且方向相反,因此小球作简谐振动,并得)(2 )(21212121k k k k m T k k m k k +=+=πω15-17 两弹簧劲度系数分别为1k =1N/m , 2k =3N/m .在光滑的水平面上将此二弹簧分别连接到质量为m =0.1kg 的物体的两端,弹簧的其余两端分别固定在支柱1P 及2P 上,如图15-17所示.今使物体有一向右初位移m10320-⨯=x ,向右初速度m/s10402-⨯=v ,(1)试证物体作简谐振动;(2)求振动方程(设物体在振动中,两弹簧始终处于被拉伸状态).分析 当物体运动时,两弹簧的形变量大小相同,并等于物体的位移量. 解 以物体为研究对象, 受力如图15-17所示. 设平衡时两弹簧伸长量分别为1l 、2l ,有2211l k l k = (1) 取平衡位置为坐标原点,向右为x轴正向.当物体向右位移为x 时,应用牛顿第二定律,得221122d d )( )(tx mx l k x l k =+-- (2)由(1)和(2)式得2221d d )(-tx mx k k =+由定义,得 r a d /s102rad/s 1.0421==+=mk k ω已知t =0时, m/s 1040 m 1032020--⨯=⨯=v x即 ϕcos 0A x = = m 1032-⨯ (3)v 0= ϕωsin A - >0 (4)(3)和(2)式联立,解得220)(ωv +=x A =2×10-2m从(3)式得23cos 0==Ax ϕ,6πϕ±=,从(4)式得ϕsin <0,则应取6πϕ-=所以振动方程为 m )6102cos(1022π-⨯=-t x15-18 已知某简谐振动的振动曲线如图15-18(a),试求此简谐振动的振动方程.分析 振动曲线是振动物体位移x 与时间t 的关系曲线.从振动曲线上可得出振幅和初始条件.由图15-18(a)可以看出,当t 稍大于零时,物体将向x 轴负向运动,所以物体初速度v 0< 0.由旋转矢量图可以比较容易地确定振动的角频率,即旋转矢量1s 内转过的角度便是角频率.解 由图15-18(a)看出,A = 2 m ,32πϕ=.t =1s 时的位移和速度分别为)cos(1ϕω+=t A x = 0 (1)v 1= )sin(ϕωω+-t A <0 (2)(1)式给出cos )(ϕω+t = 0,得2)(πϕω=+t ,显然满足(2)式,即为1s 时的相位.旋转矢量图如图15-18(b)所示,t =0时的旋转矢量为)0(=t A ,可以看出,1s 内A 沿逆时针方向转过的角度即角频率为rad/s61123ππππω=++=振动方程为 )32611cos(2ππ+=t xm15-19 (1)、(2)两个简谐振动的周期相同,振动曲线如图15-19.求(1)、(2)两个简谐振动的相位差. 分析 根据振动曲线可以判断指定点的相位.若两振动的相位差012>-ϕϕ,通常说,振动2的相位比振动1超前或振动1的相位比振动2落后.解 从图15-19知,振动(1)的初始条件是10cos ϕA x ==0 (1)v 0= 0sin 1>-ϕωA (2)由(1)式得 21πϕ±=由(2)式得 0sin 1<ϕ 则振动(1)的初相应取 21πϕ-=振动(2)的初始条件是20cos ϕA x = =A (3)v 0= 2sin ϕωA -=0 (4)由(3)式得02=ϕ,满足(4)式,即为振动(2)的初相.因两振动的角频率相同, 所以振动(1)与振动(2)相位差为2π-, 且振动(1)比振动(2)相位落后2π.15-20 一质量为0.1kg 的物体作振幅为0.01m 的简谐振动,最大加速度为0.042m/s .试求(1)振动的周期;(2)总的振动能量;(3)物体在何处时,其动能和势能相等?分析 作简谐振动的弹簧振子系统机械能守恒, 动能和势能都随时间周期变化且相互转换,这是系统运动过程中只有重力、弹性力等保守力作功,外力和非保守内力不作功的条件下才成立的.实际的振动系统起码要受到阻力作用, 因而必定有能量的损耗,系统机械能不守恒.解 (1)由A a m 2ω= 得s 14.3s 04.001.022===ππma A T(2)总振动能量为J102J 01.004.01.02121215-m22⨯=⨯⨯⨯===A maAm E ω(3)设动能和势能相等时, 物体距平衡位置x 远, 则 2P 21kx E =又由 mk E E E ===2k P , 21ω得 m 1007.7m 04.01.001.010235--⨯=⨯⨯⨯==mma EA x15-21 质点作简谐振动,已知振动频率为ν, 则振动动能变化的频率为多少?当其位移为振幅的一半时,其动能为总能量的几分之几?分析 只要大致勾画出k E -t 和x-t 曲线轮廓,便可得出动能变化频率与振动频率间关系.解 振动动能为)]2(2cos 1[41 )2(sin 2122222k t A m t A m E πνωπνω-==所以振动动能变化频率为ν2,k E -t 曲线如图15-21所示.当 A x 21=时, 振动势能为)21(41)2(2122p kA A k E ==此时振动动能为)21(43)21(4121222P k kA kA kA E E E =-=-= 即为总能量的3/4.15-22 两同方向简谐振动,其振动方程分别为)4110cos(106, )4310cos(1052221ππ+⨯=+⨯=--t x t x式中x 以m 为单位,t 以s 为单位.(1)求合振动的振幅和初相;(2)若另有一同方向简谐振动)10cos(10723ϕ+⨯=-t x ,问 ϕ为何值时,合振动 31x x +的振幅为最大; 又 ϕ为何值时,合振动 32x x +的振幅为最小?(3)用旋转矢量法表示(1)、(2)的结果.分析 先体会给出的两个振动方程,哪里体现了同方向?哪里体现了同频率?作两个同方向同频率振动合成,最简单的方法是旋转矢量法(不妨也尝试一下解析法),只要画出了合成矢量,简单的几何关系便给出合振动的振幅及初相.本题的另一部分是讨论振动加强减弱条件,这为后面讨论机械波、光波的干涉加强减弱作舖垫.解 (1)如图15-22,两矢量间夹角为2π所以合振动振幅m 107.81 m106522222221--⨯=⨯+=+=A A A合振动初相8484465 tanarc 0'=+=πϕ(2) 合振动A 再与第三个振动合成.据振动叠加条件, πϕϕk 21±=-时合振动有极大值,即ππϕk 243±=(k =0,1,2…)当πϕϕ)12(1+±=-k 时合振动有极小值, 即ππϕ)12(43+±=k (k =0,1,2…)15-23 有两个同方向同频率的简谐振动,其合振动的振幅为0.2m ,相位与第一振动的相位差为π61,若第一振动的振幅为1103-⨯m ,用旋转矢量法求第二振动的振幅及第一、第二两个振动的相位差.分析 本题与上题相反, 为已知合振动求分振动. 解 作旋转矢量如图15-23所示,由几何关系得m1.030cos 212122=︒-+=AA A A A再由)cos(2122122212ϕϕ-++=A A A A A 解得20)cos(1212πϕϕϕϕ=-=-15-24 示波管的电子束受到两个互相垂直的电场的作用,若电子在两个方向上的位移分别为t A x ωcos =和)cos(ϕω+=t A y .求在0=ϕ、30=ϕ、90=ϕ各种情况下,电子在荧光屏上的轨道方程,并分别说明电子沿轨道的运动方向.分析 这是两个频率相同、振动方向相互垂直简谐振动的合成. 解 轨道方程为)(sin )cos(21221221222212ϕϕϕϕ-=--+A A xy Ay Ax因 A A A ===-2112 ϕϕϕϕϕ2222sin cos 2A xy y x =-+当0=ϕ时,得x=y ,为一过原点的直线.说明电子沿直线作往返运动.当 30=ϕ时,得 222413Axy y x =-+为一椭圆,且运动方程为)30cos(cos+==t A y t A x ωω当 90=t ω时,电子位于)21,0(A -处,此后瞬间x <0, y <0,电子位于第三象限内,表明电子顺时针转动.当 90=ϕ时,得 222A y x =+ 为一圆.且运动方程为)90cos(cos+==t A y t A x ωω当0=t ω时, 电子位于)0, (A 处, 此后瞬间x >0, y <0,电子位于第四象限内, 表明电子仍顺时针转动.。

大学物理学下册答案第15章

大学物理学下册答案第15章

大学物理学下册答案第15章第15章量子物理一个选择题15-1下列物体中属于绝对黑体的是[](a)不辐射可见光的对象(b)不辐射任何光的对象(c)不能反射可见光的对象(d)不能反射任何光的对象解决方案:选择(d)。

绝对黑体可以吸收100%的入射光,所以它不能反射任何光。

15-2用频率为?的单色光照射某种金属时,逸出光电子的最大动能为ek;若改用频率为2?的单色光照射此金属,则逸出光电子的最大初动能为[](a) 2ek(b)2h??ek(c)h??ek(d)h??EK解决方案:选择(d)。

通过EK?Hw、埃克?2h??w、得到了逃逸光电子的最大初始动能ek'?hv?(hv?w)?hv?ek。

15-3金属产生的光电效应的红极限波长是多少?0,现在波长为?(??0)单色光照射金属,金属释放的电子动量(质量me)为[](a)h/?(b)h/?0(c)2mehc??0(d)2mehc?0hc1hc212hc(?0°)2.mv?解决方案:选择(c)。

通过HV?mevm?Hv0,VM?,相对长度单位?2.M02e0那么p?mevm?2mehc(?0??)??0。

15-4根据玻尔的氢原子理论,氢原子在第一轨道和第三轨道上的电子运动速率V1/V3之比为[](a)1/3(b)1/9(c)3(d)912月13日。

6e12132解决方案:选择(c)。

是的??将2和N分别替换为1和3,得到??2.9.因为1ne312mv32此v1?3.v315-5将处于第一激发态的氢原子电离,需要的最小能量为[](a)13.6ev(b)3.4ev(c)1.5ev(d)0ev解:选(b)。

由en??13.6,第一激发态n?2,得e2??3.4ev,设氢原子2n电离需要的能量为e2',当e2?e2'?0时,氢原子发生电离,得e2'?3.4ev,因此最小能量为3.4ev。

15-6关于不确定的关系?十、二甲苯?有几种理解,其中正确的一种是[](1)粒子的动量无法确定(2)粒子的坐标无法确定(3)粒子的动量和坐标不可能同时确定(4)不确定度关系不仅适用于电子和光子,也适用于其他粒子(a)(1),(2)(b)(2),(4)(c)(3),(4)(d)(4),(1)溶液:选择(c)。

物理学教程(第二版)课后答案15

物理学教程(第二版)课后答案15

第十五章 狭义相对论15-1 有下列几种说法:(1) 两个相互作用的粒子系统对某一惯性系满足动量守恒,对另一个惯性系来说,其动量不一定守恒;(2) 在真空中,光的速度与光的频率、光源的运动状态无关;(3) 在任何惯性系中,光在真空中沿任何方向的传播速率都相同.其中哪些说法是正确的? ( )(A) 只有(1)、(2)是正确的 (B) 只有(1)、(3)是正确的(C) 只有(2)、(3)是正确的 (D) 三种说法都是正确的分析与解 物理相对性原理和光速不变原理是相对论的基础.前者是理论基础,后者是实验基础.按照这两个原理,任何物理规律(含题述动量守恒定律)对某一惯性系成立,对另一惯性系也同样成立.而光在真空中的速度与光源频率和运动状态无关,从任何惯性系(相对光源静止还是运动)测得光速均为3×108m·s-1 .迄今为止,还没有实验能推翻这一事实.由此可见,(2)(3)说法是正确的,故选(C).15-2 按照相对论的时空观,判断下列叙述中正确的是( )(A) 在一个惯性系中两个同时的事件,在另一惯性系中一定是同时事件(B) 在一个惯性系中两个同时的事件,在另一惯性系中一定是不同时事件(C) 在一个惯性系中两个同时又同地的事件,在另一惯性系中一定是同时同地事件(D) 在一个惯性系中两个同时不同地的事件,在另一惯性系中只可能同时不同地(E) 在一个惯性系中两个同时不同地事件,在另一惯性系中只可能同地不同时分析与解 设在惯性系S中发生两个事件,其时间和空间间隔分别为Δt和Δx,按照洛伦兹坐标变换,在S′系中测得两事件时间和空间间隔分别为 和 讨论上述两式,可对题述几种说法的正确性予以判断:说法(A)(B)是不正确的,这是因为在一个惯性系(如S系)发生的同时(Δt=0)事件,在另一个惯性系(如S′系)中是否同时有两种可能,这取决于那两个事件在S系中发生的地点是同地(Δx=0)还是不同地(Δx≠0).说法(D)(E)也是不正确的,由上述两式可知:在S系发生两个同时(Δt=0)不同地(Δx≠0)事件,在S′系中一定是既不同时(Δt′≠0)也不同地(Δx′≠0),但是在S系中的两个同时同地事件,在S′系中一定是同时同地的,故只有说法(C)正确.有兴趣的读者,可对上述两式详加讨论,以增加对相对论时空观的深入理解.15-3 有一细棒固定在S′系中,它与Ox′轴的夹角θ′=60°,如果S′系以速度u 沿Ox方向相对于S系运动,S系中观察者测得细棒与Ox 轴的夹角( )(A) 等于60° (B) 大于60° (C) 小于60°(D) 当S′系沿Ox正方向运动时大于60°,而当S′系沿Ox负方向运动时小于60°分析与解 按照相对论的长度收缩效应,静止于S′系的细棒在运动方向的分量(即Ox轴方向)相对S系观察者来说将会缩短,而在垂直于运动方向上的分量不变,因此S系中观察者测得细棒与Ox 轴夹角将会大于60°,此结论与S′系相对S系沿Ox 轴正向还是负向运动无关.由此可见应选(C).15-4 一飞船的固有长度为L,相对于地面以速度v1作匀速直线运动,从飞船中的后端向飞船中的前端的一个靶子发射一颗相对于飞船的速度为v2的子弹.在飞船上测得子弹从射出到击中靶的时间间隔是( ) (c 表示真空中光速)(A) (B) (C) (D)分析与解 固有长度是指相对测量对象静止的观察者所测,则题中L、v2以及所求时间间隔均为同一参考系(此处指飞船)中的三个相关物理量,求解时与相对论的时空观无关.故选(C).讨论 从地面测得的上述时间间隔为多少?建议读者自己求解.注意此处要用到相对论时空观方面的规律了.15-5 设S′系以速率v=0.60c相对于S系沿xx′轴运动,且在t=t′=0时,x=x′=0.(1)若有一事件,在S系中发生于t=2.0×10-7s,x=50m 处,该事件在S′系中发生于何时刻?(2)如有另一事件发生于S系中t=3.0×10-7s,x=10m处,在S′系中测得这两个事件的时间间隔为多少?分析 在相对论中,可用一组时空坐标(x,y,z,t)表示一个事件.因此,本题可直接利用洛伦兹变换把两事件从S系变换到S′系中.解 (1) 由洛伦兹变换可得S′系的观察者测得第一事件发生的时刻为 (2) 同理,第二个事件发生的时刻为所以,在S′系中两事件的时间间隔为15-6 设有两个参考系S和S′,它们的原点在t=0和t′=0时重合在一起.有一事件,在S′系中发生在t′=8.0×10-8s,x′=60m,y′=0,z′=0处,若S′系相对于S系以速率v=0.6c沿xx′轴运动,问该事件在S系中的时空坐标各为多少?分析 本题可直接由洛伦兹逆变换将该事件从S′系转换到S系.解 由洛伦兹逆变换得该事件在S系的时空坐标分别为y =y′=0z =z′=015-7 一列火车长0.30 km(火车上观察者测得),以100 km·h-1的速度行驶,地面上观察者发现有两个闪电同时击中火车的前后两端.问火车上的观察者测得两闪电击中火车前后两端的时间间隔为多少?分析 首先应确定参考系,如设地面为S系,火车为S′系,把两闪电击中火车前后端视为两个事件(即两组不同的时空坐标).地面观察者看到两闪电同时击中,即两闪电在S系中的时间间隔Δt=t2-t1=0.火车的长度是相对火车静止的观察者测得的长度(注:物体长度在不指明观察者的情况下,均指相对其静止参考系测得的长度),即两事件在S′系中的空间间隔Δx′=x′2-x′1=0.30×103 m.S′系相对S系的速度即为火车速度(对初学者来说,完成上述基本分析是十分必要的).由洛伦兹变换可得两事件时间间隔之间的关系式为(1)(2)将已知条件代入式(1)可直接解得结果.也可利用式(2)求解,此时应注意,式中为地面观察者测得两事件的空间间隔,即S系中测得的火车长度,而不是火车原长.根据相对论,运动物体(火车)有长度收缩效应,即.考虑这一关系方可利用式(2)求解.解1 根据分析,由式(1)可得火车(S′系)上的观察者测得两闪电击中火车前后端的时间间隔为负号说明火车上的观察者测得闪电先击中车头x′2处.解2 根据分析,把关系式代入式(2)亦可得与解1相同的结果.相比之下解1较简便,这是因为解1中直接利用了=0.30 km这一已知条件.15-8 在惯性系S中,某事件A发生在x1处,经过2.0 ×10-6s后,另一事件B发生在x2处,已知x2-x1=300 m.问:(1) 能否找到一个相对S系作匀速直线运动的参考系S′,在S′系中,两事件发生在同一地点?(2) 在S′系中,上述两事件的时间间隔为多少?分析 在相对论中,从不同惯性系测得两事件的空间间隔和时间间隔有可能是不同的.它与两惯性系之间的相对速度有关.设惯性系S′以速度v 相对S系沿x 轴正向运动,因在S系中两事件的时空坐标已知,由洛伦兹时空变换式,可得(1)(2) 两事件在S′系中发生在同一地点,即x′2-x′1=0,代入式(1)可求出v值以此作匀速直线运动的S′系,即为所寻找的参考系.然后由式(2)可得两事件在S′系中的时间间隔.对于本题第二问,也可从相对论时间延缓效应来分析.因为如果两事件在S′系中发生在同一地点,则Δt′为固有时间间隔(原时),由时间延缓效应关系式可直接求得结果.解 (1) 令x′2-x′1=0,由式(1)可得 (2) 将v值代入式(2),可得这表明在S′系中事件A先发生.15-9 设在正负电子对撞机中,电子和正电子以速度0.90c 相向飞行,它们之间的相对速度为多少?分析 设对撞机为S系,沿x轴正向飞行的正电子为S′系.S′系相对S系的速度v=0.90c,则另一电子相对S系速度u x=-0.90c,该电子相对S′系(即沿x轴正向飞行的电子)的速度u′x即为题中所求的相对速度.在明确题目所述已知条件及所求量的物理含义后,即可利用洛伦兹速度变换式进行求解.解 按分析中所选参考系,电子相对S′系的速度为式中负号表示该电子沿x′轴负向飞行,正好与正电子相向飞行.讨论 若按照伽利略速度变换,它们之间的相对速度为多少?15-10 设想有一粒子以0.050c的速率相对实验室参考系运动.此粒子衰变时发射一个电子,电子的速率为0.80c,电子速度的方向与粒子运动方向相同.试求电子相对实验室参考系的速度.分析 这是相对论的速度变换问题.取实验室为S系,运动粒子为S′系,则S′系相对S系的速度v=0.050c.题中所给的电子速率是电子相对衰变粒子的速率,故u′x=0.80c.解 根据分析,由洛伦兹速度逆变换式可得电子相对S系的速度为15-11 设在宇航飞船中的观察者测得脱离它而去的航天器相对它的速度为1.2×108m·s-1i.同时,航天器发射一枚空间火箭,航天器中的观察者测得此火箭相对它的速度为1.0×108m·s-1i.问:(1) 此火箭相对宇航飞船的速度为多少?(2) 如果以激光光束来替代空间火箭,此激光光束相对宇航飞船的速度又为多少?请将上述结果与伽利略速度变换所得结果相比较,并理解光速是运动体的极限速度.分析 该题仍是相对论速度变换问题.(2)中用激光束来替代火箭,其区别在于激光束是以光速c相对航天器运动,因此其速度变换结果应该与光速不变原理相一致.解 设宇航飞船为S系,航天器为S′系,则S′系相对S系的速度v=1.2 ×108m·s-1,空间火箭相对航天器的速度为u′x=1.0×108m·s-1,激光束相对航天器的速度为光速c.由洛伦兹变换可得:(1) 空间火箭相对S系的速度为(2) 激光束相对S系的速度为即激光束相对宇航飞船的速度仍为光速c,这是光速不变原理所预料的.如用伽利略变换,则有u x=c+v>c.这表明对伽利略变换而言,运动物体没有极限速度,但对相对论的洛伦兹变换来说,光速是运动物体的极限速度.15-12 以速度v沿x方向运动的粒子,在y 方向上发射一光子,求地面观察者所测得光子的速度.分析 设地面为S系,运动粒子为S′系.与上题不同之处在于,光子的运动方向与粒子运动方向不一致,因此应先求出光子相对S系速度u的分量u x、u y和u z,然后才能求u的大小和方向.根据所设参考系,光子相对S′系的速度分量分别为u′x=0,u′y=c,u′z=0.解 由洛伦兹速度的逆变换式可得光子相对S系的速度分量分别为所以,光子相对S系速度u的大小为速度u与x 轴的夹角为讨论 地面观察者所测得光子的速度仍为c,这也是光速不变原理的必然结果.但在不同惯性参考系中其速度的方向却发生了变化.15-13 在惯性系S中观察到有两个事件发生在同一地点,其时间间隔为4.0 s,从另一惯性系S′中观察到这两个事件的时间间隔为6.0 s,试问从S′系测量到这两个事件的空间间隔是多少?设S′系以恒定速率相对S系沿xx′轴运动.分析 这是相对论中同地不同时的两事件的时空转换问题.可以根据时间延缓效应的关系式先求出S′系相对S系的运动速度v,进而得到两事件在S′系中的空间间隔Δx′=vΔt′(由洛伦兹时空变换同样可得到此结果).解 由题意知在S系中的时间间隔为固有的,即Δt =4.0s,而Δt′=6.0 s.根据时间延缓效应的关系式,可得S′系相对S系的速度为两事件在S′系中的空间间隔为15-14 在惯性系S中,有两个事件同时发生在xx′轴上相距为1.0×103m的两处,从惯性系S′观测到这两个事件相距为2.0×103m,试问由S′系测得此两事件的时间间隔为多少?分析 这是同时不同地的两事件之间的时空转换问题.由于本题未给出S′系相对S系的速度v,故可由不同参考系中两事件空间间隔之间的关系求得v,再由两事件时间间隔的关系求出两事件在S′系中的时间间隔.解 设此两事件在S系中的时空坐标为(x1,0,0,t1)和(x2,0,0,t2 ),且有x2-x1 =1.0×103m,t2-t1=0.而在S′系中,此两事件的时空坐标为(x′1,0,0,t′1)和(x′2,0,0,t′2),且|x′2-x′1| =2.0×103m,根据洛伦兹变换,有(1)(2)由式(1)可得将v值代入式(2),可得15-15 若从一惯性系中测得宇宙飞船的长度为其固有长度的一半,试问宇宙飞船相对此惯性系的速度为多少? (以光速c表示)解 设宇宙飞船的固有长度为l0,它相对于惯性系的速率为v,而从此惯性系测得宇宙飞船的长度为,根据洛伦兹长度收缩公式,有可解得v=0.866 c15-16 一固有长度为4.0 m 的物体,若以速率0.60c 沿x轴相对某惯性系运动,试问从该惯性系来测量,此物体的长度为多少?解 由洛伦兹长度收缩公式15-17 若一电子的总能量为5.0MeV,求该电子的静能、动能、动量和速率.分析 粒子静能E0是指粒子在相对静止的参考系中的能量,,式中为粒子在相对静止的参考系中的质量.就确定粒子来说,E0和m0均为常数(对于电子,有m0=9.1 ×10-31kg,E0=0.512 MeV).本题中由于电子总能量E>E0,因此,该电子相对观察者所在的参考系还应具有动能,也就具有相应的动量和速率.由相对论动能定义、动量与能量关系式以及质能关系式,即可解出结果.解 电子静能为 电子动能为 E k=E-E0=4.488 MeV由,得电子动量为由可得电子速率为15-18 一被加速器加速的电子,其能量为3.00 ×109eV.试问:(1) 这个电子的质量是其静质量的多少倍? (2) 这个电子的速率为多少?解 (1) 由相对论质能关系和可得电子的动质量m与静质量m0之比为 (2) 由相对论质速关系式可解得可见此时的电子速率已十分接近光速了.15-19 在电子偶的湮没过程中,一个电子和一个正电子相碰撞而消失,并产生电磁辐射.假定正负电子在湮没前均静止,由此估算辐射的总能量E.分析 在相对论中,粒子的相互作用过程仍满足能量守恒定律,因此辐射总能量应等于电子偶湮没前两电子总能之和.按题意电子偶湮没前的总能只是它们的静能之和.解 由分析可知,辐射总能量为15-20 如果将电子由静止加速到速率为0.10c,需对它作多少功?如将电子由速率为0.80c加速到0.90c,又需对它作多少功?分析 在相对论力学中,动能定理仍然成立,即,但需注意动能E k 不能用表示.解 由相对论性的动能表达式和质速关系可得当电子速率从增加到时,电子动能的增量为根据动能定理,当v1=0,v2=0.10c时,外力所作的功为当v1=0.80 c,v2=0.90 c时,外力所作的功为由计算结果可知,虽然同样将速率提高0.1c,但后者所作的功比前者要大得多,这是因为随着速率的增大,电子的质量也增大.。

大学物理下第15章-12

大学物理下第15章-12

A 媒质2、 折射率n2 u2t r D
· ·· ·u F ·
2
sin i u1 n2 const . sin r u2 n1
c c 光波 u1 ,u2 折射波传播方向 n1 n2
得到
n1 sin i n2 sin r
—— 折射定律
光密媒质光疏媒质时,折射角r >入射角 i n1(大) n2(小) i r i = iC n1(大) n2(小) r = 90
Ek Ep ,Ek Ep const .
振动系统是孤立系统,与外界无能量交换。 波动质元: 每一质元的振动动能和弹性势能在任一点、任何时 刻都具有相同的相位、相同的数值; 每个质元的总能量都是时间的函数,因为它们不 断地与周围媒质交换能量。
1 x 2 2 2 波的能量密度 ΔEp Ek ΔV A sin (t ) 2 u
S
三. 平面波和球面波的振幅
1. 平面波的振幅 平面简谐波
x y A cos (t ) u 两个面的平均能流分别为
v
p1
S
波传播方向
p2
S
1 2 p1 w1uS 2 A1 uS A1、A2分别为两 2 个面处波的振幅 1 2 2 p2 w2uS A2 uS 2 若:介质不吸收波的能量 p1 p2
2 2
tan 0
2r1 2r2 A1 cos( 10 ) A2 cos( 20 )
A1 sin( 10
2r1
) A2 sin( 20
2r2
r2 r1
)
)
r2 r1 A A1 A2 2 A1 A2 cos( 20 10 2 )

大学物理实验思考题答案解析

大学物理实验思考题答案解析

大学物理实验思考题答案实验一:用三线摆测物体的转动惯量1. 是否可以测摆动一次的时间作周期值?为什么?答:不可以。

因为一次测量随机误差较大,多次测量可减少随机误差。

2. 将一半径小于下圆盘半径的圆盘,放在下圆盘上,并使中心一致,讨论此时三线摆的周期和空载时的周期相比是增大、减小还是不一定?说明理由。

答:当两个圆盘的质量为均匀分布时,与空载时比较,摆动周期将会减小。

因为此时若把两盘看成为一个半径等于原下盘的圆盘时,其转动惯量I0小于质量与此相等的同直径的圆盘,根据公式(3-1-5),摆动周期T0将会减小。

3. 三线摆在摆动中受空气阻尼,振幅越来越小,它的周期是否会变化?对测量结果影响大吗?为什么?答:周期减小,对测量结果影响不大,因为本实验测量的时间比较短。

[实验二]金属丝弹性模量的测量1. 光杠杆有什么优点,怎样提高光杠杆测量的灵敏度?本帖隐藏的内容需要回复才可以浏览答:优点是:可以测量微小长度变化量。

提高放大倍数即适当地增大标尺距离D或适当地减小光杠杆前后脚的垂直距离b,可以提高灵敏度,因为光杠杆的放大倍数为2D/b。

2. 何谓视差,怎样判断与消除视差?答:眼睛对着目镜上、下移动,若望远镜十字叉丝的水平线与标尺的刻度有相对位移,这种现象叫视差,细调调焦手轮可消除视差。

3. 为什么要用逐差法处理实验数据?答:逐差法是实验数据处理的一种基本方法,实质就是充分利用实验所得的数据,减少随机误差,具有对数据取平均的效果。

因为对有些实验数据,若简单的取各次测量的平均值,中间各测量值将全部消掉,只剩始末两个读数,实际等于单次测量。

为了保持多次测量的优越性,一般对这种自变量等间隔变化的情况,常把数据分成两组,两组逐次求差再算这个差的平均值。

[实验三]随机误差的统计规律1. 什么是统计直方图? 什么是正态分布曲线?两者有何关系与区别?本帖隐藏的内容需要回复才可以浏览答:对某一物理量在相同条件下做n次重复测量,得到一系列测量值,找出它的最大值和最小值,然后确定一个区间,使其包含全部测量数据,将区间分成若干小区间,统计测量结果出现在各小区间的频数M,以测量数据为横坐标,以频数M为纵坐标,划出各小区间及其对应的频数高度,则可得到一个矩形图,即统计直方图。

大学物理2,15.第十五章思考题

大学物理2,15.第十五章思考题

1、一束光垂直入射在偏振片上,以入射光线为轴转动偏振片,观察通过偏振片后的光强变化过程。

如果观察到光强不变,则入射光是什么光如果观察到明暗交替变化,有时出现全暗,则入射光是什么光如果观察到明暗交替变化,但不出现全暗,则入射光是什么光 【答案:自然光;完全偏振光;部分偏振光】详解:当一束光垂直入射在偏振片上时,以入射光线为轴转动偏振片,如果观察到通过偏振片后的光强不发生变化,入射光是由自然光;如果观察到光强有明暗交替变化,并且有时出现全暗,则入射光是完全偏振光;如果观察到光强有明暗交替变化,但不出现全暗,则入射光是部分偏振光。

2、一束光是自然光和线偏振光的混合光,让它垂直通过一个偏振片。

若以此入射光束为轴旋转偏振片,测得透射光强度最大值是最小值的5倍,那么入射光束中自然光与线偏振光的光强比值为多少 【答案:1/2】详解:设该光束中自然光和线偏振光的强度分别为I 1和I 2。

当以此入射光束为轴旋转偏振片时,透射光强度的最大值和最小值分别为21max 21I I I +=1min 21I I = 依题意有I max =5I min ,即12121521I I I ⨯=+ 解之得2121=I I 即入射光束中自然光与线偏振光的光强比值等于1/2。

3、一束光强为I 0的自然光相继通过三个偏振片P 1、P 2、P 3后,出射光的光强为 。

已知P 1和P 2的偏振化方向相互垂直,若以入射光线为轴旋转P 2,要使出射光的光强为零,P 2最少要转过多大的角度【答案:45°】详解:由于P 1和P 2的偏振化方向相互垂直,而自然光相继通过三个偏振片后的光强不等于零,说明自然光通过偏振片的顺序为P 1、P 3、P 2。

如图所示,设偏振片P 1和P 3的夹角为,由马吕斯定律得出射光强为)09(cos cos 2220θθ-=I I θ2sin 820I= 由于I = ,代入上式解得45=θ要使出射光强为零,应使P 2和P 3的偏振化方向垂直,因此P 2最少要转过的角度也等于45°。

大学物理(华中科技版)第15章习题答案

大学物理(华中科技版)第15章习题答案

习 题15-1解:由马吕斯定律,得102201002014932930cos 30cos 28860cos 2I I I I I I I I I ====⇒==又有 即透射光强为第一此透射光强的9/4.15-2解:(1)由马吕斯定律有33arccos 31cos 62131cos 2112010max max 1201=⇒==⇒===ααα则因为透射光强的最大值I I I I I I I (2) 332arccos 32cos 31cos 222202201=⇒===ααα则I I I15-3解:设入射光中自然光强为0I ,线偏振光光强为1I ,则总光强为10I I I +=,当光束通过一偏振片时,先偏振光被吸收,最小光强为自然光光强的一半,即 0min 21I I = 最大光强是线偏振光光强与自然光光强的一半之和,就是线偏振光的偏振化方向与偏振片的透射方向同。

即 10max 21I I I += 2/5/6212110010min max ==+=I I I I I I I 即入射光中自然光和线偏振光的强度之比为5/2.15-4解:当光由水射向玻璃时,水的折射率为1n ,玻璃的折射率为2n ,据布儒斯特定律 61.20376.0arctan 376.0tan 12==⇒==b b n n θθ 当光由玻璃射向水时, 39.6966.2arctan 66.2tan 21=='⇒=='b bn n θθ 可见两角度互余。

15-5解:(1)据题意,当反射光为线偏振光时,折射角与入射角互余,即 583290=-=r θ入射角(2)由布儒斯特定律,6.158tan 158tan 2212==⇒==n n n n15-6解:提图参考教材图15—14,由图可知通过第一各偏振片单色自然光变成与P1偏振方向相同的线偏振光,而此线偏振光通过拨片后,分成两相互垂直的线偏振光,其中包括与波晶片光轴平行的非寻常光(其振幅为e E )和与光轴垂直的寻常光(振幅为O E ),这两束偏振光中却只有平行于P2透射方向的分量2e E 和2o E 能透过,且透射光满足相干条件。

大学物理1215单元课后习题答案详解

大学物理1215单元课后习题答案详解

第四篇 气体动理论 热力学基础求解气体动理论和热力学问题的基本思路和方法热运动包含气体动理论和热力学基础两部分.气体动理论从物质的微观结构出发,运用统计方法研究气体的热现象,通过寻求宏观量与微观量之间的关系,阐明气体的一些宏观性质和规律.而热力学基础是从宏观角度通过实验现象研究热运动规律.在求解这两章习题时要注意它们处理问题方法的差异.气体动理论主要研究对象是理想气体,求解这部分习题主要围绕以下三个方面:(1) 理想气体物态方程和能量均分定理的应用;(2) 麦克斯韦速率分布率的应用;(3)有关分子碰撞平均自由程和平均碰撞频率.热力学基础方面的习题则是围绕第一定律对理想气体的四个特殊过程(三个等值过程和一个绝热过程)和循环过程的应用,以及计算热力学过程的熵变,并用熵增定理判别过程的方向.1.近似计算的应用一般气体在温度不太低、压强不太大时,可近似当作理想气体,故理想气体也是一个理想模型.气体动理论是以理想气体为模型建立起来的,因此,气体动理论所述的定律、定理和公式只能在一定条件下使用.我们在求解气体动理论中有关问题时必须明确这一点.然而,这种从理想模型得出的结果在理论和实践上是有意义的.例如理想气体的内能公式以及由此得出的理想气体的摩尔定容热容2/m V,iR C =和摩尔定压热容()2/2m P,R i C +=都是近似公式,它们与在通常温度下的实验值相差不大,因此,除了在低温情况下以外,它们还都是可以使用的.在实际工作时如果要求精度较高,摩尔定容热容和摩尔定压热容应采用实验值.本书习题中有少数题给出了在某种条件下m V,C 和m P,C 的实验值就是这个道理.如习题中不给出实验值,可以采用近似的理论公式计算.2.热力学第一定律解题过程及注意事项热力学第一定律E W Q Δ+=,其中功⎰=21d V V V ρW ,内能增量T R i M m E Δ2Δ⋅=.本章习题主要是第一定律对理想气体的四个特殊过程(等体、等压、等温、绝热)以及由它们组成的循环过程的应用.解题的主要过程:(1) 明确研究对象是什么气体(单原子还是双原子),气体的质量或物质的量是多少? (2) 弄清系统经历的是些什么过程,并掌握这些过程的特征.(3) 画出各过程相应的p -V 图.应当知道准确作出热力学过程的p -V 图,可以给出一个比较清晰的物理图像.(4) 根据各过程的方程和状态方程确定各状态的参量,由各过程的特点和热力学第一定律就可计算出理想气体在各过程中的功、内能增量和吸放热了.在计算中要注意Q 和W 的正、负取法.3.关于内能的计算理想气体的内能是温度的单值函数,是状态量,与过程无关,而功和热量是过程量,在两个确定的初、末状态之间经历不同的过程,功和热量一般是不一样的,但内能的变化是相同的,且均等于()12m V,ΔT T C Mm E -=.因此,对理想气体来说,不论其经历什么过程都可用上述公式计算内能的增量.同样,我们在计算某一系统熵变的时候,由于熵是状态量,以无论在始、末状态之间系统经历了什么过程,始、末两个状态间的熵变是相同的.所以,要计算始末两状态之间经历的不可逆过程的熵变,就可通过计算两状态之间可逆过程熵变来求得,就是这个道理.4.麦克斯韦速率分布律的应用和分子碰撞的有关讨论深刻理解麦克斯韦速率分布律的物理意义,掌握速率分布函数f (v )和三种统计速率公式及物理意义是求解这部分习题的关键.三种速率为M RT /2P =v ,M RT π/8=v ,M RT /32=v .注意它们的共同点都正比于M T /,而在物理意义上和用途上又有区别.P v 用于讨论分子速率分布图.v 用于讨论分子的碰撞;2v 用于讨论分子的平均平动动能.解题中只要抓住这些特点就比较方便.根据教学基本要求,有关分子碰撞内容的习题求解比较简单,往往只要记住平均碰撞频率公式v n d Z 22=和平均自由程n d Z λ2π2/1/==v ,甚至只要知道n Z ⋅∝v ,n /1∝λ及M T /∝v 这种比值关系就可求解许多有关习题.第十二章 气体动理论12 -1 处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们( )(A) 温度,压强均不相同 (B) 温度相同,但氦气压强大于氮气的压强(C) 温度,压强都相同 (D) 温度相同,但氦气压强小于氮气的压强 分析与解 理想气体分子的平均平动动能23k /kT =ε,仅与温度有关.因此当氦气和氮气的平均平动动能相同时,温度也相同.又由物态方程nkT p =,当两者分子数密度n 相同时,它们压强也相同.故选(C). 12 -2 三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,方均根速率之比()()()4:2:1::2/12C 2/12B 2/12A =v v v ,则其压强之比C B A ::p p p 为( )(A) 1∶2∶4 (B) 1∶4∶8(C) 1∶4∶16 (D) 4∶2∶1分析与解 分子的方均根速率为M RT /3=2v ,因此对同种理想气体有3212C 2B 2A ::::T T T =v v v ,又由物态方程nkT ρ,当三个容器中分子数密度n 相同时,得16:4:1::::321321==T T T p p p .故选(C). 12 -3 在一个体积不变的容器中,储有一定量的某种理想气体,温度为0T 时,气体分子的平均速率为0v ,分子平均碰撞次数为0Z ,平均自由程为0λ ,当气体温度升高为04T 时,气体分子的平均速率v 、平均碰撞频率Z 和平均自由程λ分别为( ) (A) 004,4,4λλZ Z ===0v v (B) 0022λλ===,,Z Z 0v v (C) 00422λλ===,,Z Z 0v v (D) 0042λλ===,,Z Z 0v v 分析与解 理想气体分子的平均速率M RT π/8=v ,温度由0T 升至04T ,则平均速率变为0v 2;又平均碰撞频率v n d Z 2π2=,由于容器体积不变,即分子数密度n 不变,则平均碰撞频率变为0Z 2;而平均自由程n d λ2π2/1=,n 不变,则珔λ也不变.因此正确答案为(B).12 -4 已知n 为单位体积的分子数,()v f 为麦克斯韦速率分布函数,则()v v d nf 表示( )(A) 速率v 附近,dv 区间内的分子数(B) 单位体积内速率在v v v d +~区间内的分子数(C) 速率v 附近,dv 区间内分子数占总分子数的比率(D) 单位时间内碰到单位器壁上,速率在v v v d ~+ 区间内的分子数 分析与解 麦克斯韦速率分布函数()()v v d /d N N f =,而v /N n =,则有()V N nf /d d =v v .即表示单位体积内速率在v v v d ~+ 区间内的分子数.正确答案为(B).12 -5 一打足气的自行车内胎,在C 07o1.=t 时,轮胎中空气的压强为Pa 100451⨯=.p ,则当温度变为C 037o2.=t 时,轮胎内空气的压强2p 2p 为多少?(设内胎容积不变)分析 胎内空气可视为一定量的理想气体,其始末状态均为平衡态,由于气体的体积不变,由理想气体物态方程RT Mm pV =可知,压强p 与温度T 成正比.由此即可求出末态的压强.解 由分析可知,当K 15310037152732...=+=T ,轮胎内空气压强为Pa 1043451122⨯==./T p T p可见当温度升高时,轮胎内气体压强变大,因此,夏季外出时自行车的车胎不宜充气太足,以免爆胎.12 -6 有一个体积为35m 1001⨯.的空气泡由水面下m 050.深的湖底处(温度为C 4o )升到湖面上来.若湖面的温度为C 017o.,求气泡到达湖面的体积.(取大气压强为Pa 10013150⨯=.p ) 分析 将气泡看成是一定量的理想气体,它位于湖底和上升至湖面代表两个不同的平衡状态.利用理想气体物态方程即可求解本题.位于湖底时,气泡内的压强可用公式gh p p ρ+=0求出, 其中ρ为水的密度( 常取33m kg 1001⋅⨯=.ρ).解 设气泡在湖底和湖面的状态参量分别为(p 1 ,V 1 ,T 1 )和(p 2 ,V 2 ,T 2 ).由分析知湖底处压强为gh ρp gh ρp p +=+=021,利用理想气体的物态方程222111T V p T V p = 可得空气泡到达湖面的体积为()3510120121212m 1011.6//-⨯=+==T p V T gh ρp T p V T p V12 -7 氧气瓶的容积为32m 1023-⨯.,其中氧气的压强为Pa 10317⨯.,氧气厂规定压强降到Pa 10016⨯.时,就应重新充气,以免经常洗瓶.某小型吹玻璃车间,平均每天用去3m 400.压强为Pa 100115⨯.的氧气,问一瓶氧气能用多少天? (设使用过程中温度不变)分析 由于使用条件的限制,瓶中氧气不可能完全被使用.为此,可通过两条不同的思路进行分析和求解:(1) 从氧气质量的角度来分析.利用理想气体物态方程RT Mm pV =可以分别计算出每天使用氧气的质量3m 和可供使用的氧气总质量(即原瓶中氧气的总质量1m 和需充气时瓶中剩余氧气的质量2m 之差),从而可求得使用天数()321m m m n /-=.(2) 从容积角度来分析.利用等温膨胀条件将原瓶中氧气由初态(Pa 1030171⨯=.p , 321m 1023-⨯=.V )膨胀到需充气条件下的终态(Pa 1000162⨯=.p ,2V 待求),比较可得2p 状态下实际使用掉的氧气的体积为12V V -.同样将每天使用的氧气由初态(Pa 1001153⨯=.p ,33m 400.=V )等温压缩到压强为p 2的终态,并算出此时的体积V′2 ,由此可得使用天数应为()212V V V n '-=/. 解1 根据分析有RT V Mp m RT V Mp m RT V Mp m /;/;/333222111===则一瓶氧气可用天数()()5.9//33121321===-=V p V p p m m m n解2 根据分析中所述,由理想气体物态方程得等温膨胀后瓶内氧气在压强为Pa 1000162⨯=.p 时的体积为 2112p V p V /=每天用去相同状态的氧气容积2332p V p V /='则瓶内氧气可用天数为()()5.9//33121212=-='-=V p V p p V V V n12 -8 设想太阳是由氢原子组成的理想气体,其密度可当作是均匀的.若此理想气体的压强为Pa 1035114⨯..试估计太阳的温度.(已知氢原子的质量Pa 1067127H -⨯=.m ,太阳半径kg 1067127H -⨯=.m ,太阳质量kg 1099130S ⨯=.m )分析 本题可直接运用物态方程nkT p =进行计算.解 氢原子的数密度可表示为()⎥⎦⎤⎢⎣⎡⋅==3S H S H S π34//R m m V m m n S 根据题给条件,由nkT p = 可得太阳的温度为()K 1016.13/π4/7S 3S H ⨯===k m R pm nk p T说明 实际上太阳结构并非本题中所设想的理想化模型,因此,计算所得的太阳温度与实际的温度相差较大.估算太阳(或星体)表面温度的几种较实用的方法在教材第十五章有所介绍.12 -9 一容器内储有氧气,其压强为Pa 100115⨯.,温度为27 ℃,求:(1)气体分子的数密度;(2) 氧气的密度;(3) 分子的平均平动动能;(4) 分子间的平均距离.(设分子间均匀等距排列)分析 在题中压强和温度的条件下,氧气可视为理想气体.因此,可由理想气体的物态方程、密度的定义以及分子的平均平动动能与温度的关系等求解.又因可将分子看成是均匀等距排列的,故每个分子占有的体积为30d V =,由数密度的含意可知n V /10=,d 即可求出.解 (1) 单位体积分子数325m 10442⨯==./kT p n(2) 氧气的密度-3m kg 301⋅===.//RT pM V m ρ(3) 氧气分子的平均平动动能J 102162321k -⨯==./kT ε(4) 氧气分子的平均距离m 10453193-⨯==./n d通过对本题的求解,我们可以对通常状态下理想气体的分子数密度、平均平动动能、分子间平均距离等物理量的数量级有所了解.12 -10 2.0×10-2 kg 氢气装在4.0×10-3 m 3 的容器内,当容器内的压强为3.90×105Pa 时,氢气分子的平均平动动能为多大?分析 理想气体的温度是由分子的平均平动动能决定的,即23k /kT =ε.因此,根据题中给出的条件,通过物态方程pV =m/MRT ,求出容器内氢气的温度即可得k ε.解 由分析知氢气的温度mRMPV T =,则氢气分子的平均平动动能为 ()8932323k ./===mR pVMk kT ε12 -11 温度为0 ℃和100 ℃时理想气体分子的平均平动动能各为多少?欲使分子的平均平动动能等于1eV ,气体的温度需多高?解 分子在0℃和100 ℃时平均平动动能分别为J 10655232111-⨯==./kT εJ 10727232122-⨯==./kT ε由于1eV =1.6×10-19 J ,因此,分子具有1eV 平均平动动能时,气体温度为K 10737323k ⨯==./k T ε这个温度约为7.5 ×103 ℃.12 -12 某些恒星的温度可达到约1.0 ×108K ,这是发生聚变反应(也称热核反应)所需的温度.通常在此温度下恒星可视为由质子组成.求:(1) 质子的平均动能是多少? (2) 质子的方均根速率为多大?分析 将组成恒星的大量质子视为理想气体,质子可作为质点,其自由度 i =3,因此,质子的平均动能就等于平均平动动能.此外,由平均平动动能与温度的关系2/32/2kT m =v ,可得方均根速率2v .解 (1) 由分析可得质子的平均动能为 J 1007.22/32/3152k -⨯===kT m εv(2) 质子的方均根速率为1-62s m 1058.132⋅⨯==mkT v 12 -13 试求温度为300.0 K 和2.7 K(星际空间温度)的氢分子的平均速率、方均根速率及最概然速率.分析 分清平均速率v 、方均根速率2v 及最概然速率p v 的物理意义,并利用三种速率相应的公式即可求解.解 氢气的摩尔质量M =2 ×10-3kg·mol -1 ,气体温度T 1 =300.0K ,则有 1-31s m 1078.18⋅⨯==M πRT v 1-312s m 1093.13⋅⨯==M RT v 1-31p s m 1058.12⋅⨯==MRT v 气体温度T 2=2.7K 时,有 1-31s m 1069.18⋅⨯==M πRT v 1-322s m 1083.13⋅⨯==MRT v1-31p s m 1050.12⋅⨯==MRT v 12 -14 如图所示,Ⅰ、Ⅱ两条曲线分别是氢气和氧气在同一温度下的麦克斯韦分子速率分布曲线.试由图中数据求:(1)氢气分子和氧气分子的最概然速率;(2) 两种气体所处的温度;(3) 若图中Ⅰ、Ⅱ分别表示氢气在不同温度下的麦克斯韦分子速率分布曲线.则哪条曲线的气体温度较高?分析 由MRT 1p 2=v 可知,在相同温度下,由于不同气体的摩尔质量不同,它们的最概然速率v p 也就不同.因22O H M M <,故氢气比氧气的v p 要大,由此可判定图中曲线Ⅱ所标v p =2.0 ×103 m·s -1 应是对应于氢气分子的最概然速率.从而可求出该曲线所对应的温度.又因曲线Ⅰ、Ⅱ所处的温度相同,故曲线Ⅰ中氧气的最概然速率也可按上式求得.同样,由M RT2p =v 可知,如果是同种气体,当温度不同时,最概然速率v p 也不同.温度越高,v p 越大.而曲线Ⅱ对应的v p 较大,因而代表气体温度较高状态.解 (1) 由分析知氢气分子的最概然速率为()13H p s m 100.222H 2-⋅⨯==M RT v利用M O2 /M H2 =16 可得氧气分子最概然速率为()()12H p O p s m 100.54/22-⋅⨯==v v (2) 由M RT2p =v 得气体温度K 1081.42/22p⨯==R M T v (3) Ⅱ代表气体温度较高状态.12 -15 日冕的温度为2.0 ×106K ,所喷出的电子气可视为理想气体.试求其中电子的方均根速率和热运动平均动能.解 方均根速率16e2s m 105.93-⋅⨯==m kT v 平均动能J 10142317k -⨯==./kT ε 12 -16 在容积为2.0 ×10-3m 3 的容器中,有内能为6.75 ×102J 的刚性双原子分子某理想气体.(1) 求气体的压强;(2) 设分子总数为5.4×1022 个,求分子的平均平动动能及气体的温度.分析 (1) 一定量理想气体的内能RT i M m E 2=,对刚性双原子分子而言,i =5.由上述内能公式和理想气体物态方程pV =mM RT 可解出气体的压强.(2)求得压强后,再依据题给数据可求得分子数密度,则由公式p =nkT 可求气体温度.气体分子的平均平动动能可由23k /kT ε=求出.解 (1) 由RT i M m E 2=和pV =mM RT 可得气体压强 ()Pa 1035125⨯==./iV E p(2) 分子数密度n =N/V ,则该气体的温度()()Pa 106235⨯===.//nk pV nk p T气体分子的平均平动动能为J 104972321k -⨯==./kT ε12 -17温度相同的氢气和氧气,若氢气分子的平均平动动能为6.21×10-21J ,试求(1) 氧气分子的平均平动动能及温度;(2) 氧气分子的最概然速率. 分析 (1) 理想气体分子的平均平动动能23k /kT ε=,是温度的单值函数,与气体种类无关.因此,氧气和氢气在相同温度下具有相同的平均平动动能,从而可以求出氧气的温度.(2) 知道温度后再由最概然速率公式M RT 2p =v 即可求解v p . 解 (1) 由分析知氧气分子的平均平动动能为J 102162321k -⨯==./kT ε,则氧气的温度为:K 30032k ==k εT /(2) 氧气的摩尔质量M =3.2 ×10-2 kg·mol -1 ,则有 12p s m 1095.32-⋅⨯==M RTv12 -18 声波在理想气体中传播的速率正比于气体分子的方均根速率.问声波通过氧气的速率与通过氢气的速率之比为多少? 设这两种气体都是理想气体并具有相同的温度.分析 由题意声波速率u 与气体分子的方均根速率成正比,即2v ∝u ;而在一定温度下,气体分子的方均根速率M /12∝v ,式中M 为气体的摩尔质量.因此,在一定温度下声波速率M u /1∝.解 依据分析可设声速M A u /1=,式中A 为比例常量.则声波通过氧气与氢气的速率之比为2502222O H O H .==M M u u12 -19 已知质点离开地球引力作用所需的逃逸速率为gr v 2=,其中r 为地球半径.(1) 若使氢气分子和氧气分子的平均速率分别与逃逸速率相等,它们各自应有多高的温度;(2) 说明大气层中为什么氢气比氧气要少.(取r =6.40 ×106 m)分析 气体分子热运动的平均速率MπRT 8=v ,对于摩尔质量M 不同的气体分子,为使v 等于逃逸速率v ,所需的温度是不同的;如果环境温度相同,则摩尔质量M 较小的就容易达到逃逸速率.解 (1) 由题意逃逸速率gr 2=v ,而分子热运动的平均速率M πRT 8=v .当v v = 时,有RMrg πT 4= 由于氢气的摩尔质量13H mol kg 10022--⋅⨯=.M ,氧气的摩尔质量12O mol kg 10232--⋅⨯=.M ,则它们达到逃逸速率时所需的温度分别为K 10891K,101815O 4H 22⨯=⨯=..T T(2) 根据上述分析,当温度相同时,氢气的平均速率比氧气的要大(约为4倍),因此达到逃逸速率的氢气分子比氧气分子多.按大爆炸理论,宇宙在形成过程中经历了一个极高温过程.在地球形成的初期,虽然温度已大大降低,但温度值还是很高.因而,在气体分子产生过程中就开始有分子逃逸地球,其中氢气分子比氧气分子更易逃逸.另外,虽然目前的大气层温度不可能达到上述计算结果中逃逸速率所需的温度,但由麦克斯韦分子速率分布曲线可知,在任一温度下,总有一些气体分子的运动速率大于逃逸速率.从分布曲线也可知道在相同温度下氢气分子能达到逃逸速率的可能性大于氧气分子.故大气层中氢气比氧气要少.12 -20 容积为1m 3 的容器储有1mol 氧气,以v =10m·s -1 的速度运动,设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能.试求气体的温度及压强各升高了多少.分析 容器作匀速直线运动时,容器内分子除了相对容器作杂乱无章的热运动外,还和容器一起作定向运动.其定向运动动能(即机械能)为m v 2/2.按照题意,当容器突然停止后,80%定向运动动能转为系统的内能.对一定量理想气体内能是温度的单值函数,则有关系式:()T R M m mv E Δ25%80Δ2⋅=⋅=成立,从而可求ΔT .再利用理想气体物态方程,可求压强的增量. 解 由分析知T R M m m E Δ252/8.0Δ2⋅==v ,其中m 为容器内氧气质量.又氧气的摩尔质量为12m ol kg 1023--⋅⨯=.M ,解得ΔT =6.16 ×10-2 K当容器体积不变时,由pV =mRT/M 得Pa 51.0ΔΔ==T VR M m p 12 -21 有N 个质量均为m 的同种气体分子,它们的速率分布如图所示.(1) 说明曲线与横坐标所包围的面积的含义;(2) 由N 和0v 求a 值;(3) 求在速率0v /2到30v /2 间隔内的分子数;(4) 求分子的平均平动动能.分析 处理与气体分子速率分布曲线有关的问题时,关键要理解分布函数()v f 的物理意义. ()v v d /d N N f =,题中纵坐标()v v d /d N Nf =,即处于速率v 附近单位速率区间内的分子数.同时要掌握()v f 的归一化条件,即()1d 0=⎰∞v v f .在此基础上,根据分布函数并运用数学方法(如函数求平均值或极值等),即可求解本题.解 (1) 由于分子所允许的速率在0 到20v 的范围内,由归一化条件可知图中曲线下的面积()1d 0=⎰∞v v f 即曲线下面积表示系统分子总数N .(2 ) 从图中可知, 在0 到0v 区间内,()0/v v v a Nf ;而在0 到20v 区间,()αNf =v .则利用归一化条件有v v v v v ⎰⎰+=000200d d v v a a N (3) 速率在0v /2到30v /2间隔内的分子数为12/7d d Δ2/300000N a a N =+=⎰⎰v v v v v v v (4) 分子速率平方的平均值按定义为()v v f v v v d /d 02022⎰⎰∞∞==N N 故分子的平均平动动能为20220302K 3631d d 2121000v v v v v v v v v v m N a N a m m ε=⎥⎦⎤⎢⎣⎡+==⎰⎰ 12 -22 试用麦克斯韦分子速率分布定律导出方均根速率和最概然速率. 分析 麦克斯韦分子速率分布函数为()⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=kT m kT m f 2exp π2π4222/3v v v 采用数学中对连续函数求自变量平均值的方法,求解分子速率平方的平均值,即⎰⎰=N Nd d 22v v , 从而得出方均根速率.由于分布函数较复杂,在积分过程中需作适当的数学代换.另外,最概然速率是指麦克斯韦分子速率分布函数极大值所对应的速率,因而可采用求函数极值的方法求得.解 (1) 根据分析可得分子的方均根速率为2/1242/302/1022d 2exp π2π4/d ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎰⎰∞v v v v v kT m kT m N N N令222/x kT m =v ,则有2/12/12/104273.13d 2π42⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡=⎰∞-m RT m kT x e x m kT x v(2) 令()0d d =v v f ,即 02exp 222exp 2π2π42222/3=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛kT m kT m kT m T k m v v v v v 得 2/12/141.12⎪⎭⎫ ⎝⎛≈⎪⎭⎫ ⎝⎛==m RT m kT P v v12 -23 导体中自由电子的运动可看作类似于气体分子的运动(故称电子气).设导体中共有N 个自由电子,其中电子的最大速率为v F (称为费米速率).电子在速率v v v d ~+之间的概率为()()⎪⎩⎪⎨⎧>>>=v v v v v v 0,0 d π4d F 2A N A N N (1)画出分布函数图;(2) 用N 、v F 定出常数A ;(3) 证明电子气中电子的平均动能53F /εε=,其中22F F /mv =ε.分析 理解速率分布函数的物理意义,就不难求解本题.速率分布函数()vv d d 1N N f =,表示在v 附近单位速率区间的粒子数占总粒子数的百分比.它应满足归一化条件()()⎰⎰=∞F 00d d v v v v v f f , 因此根据题给条件可得()v v ~f 的函数关系,由此可作出解析图和求出A .在()v v ~f 函数关系确定的情况下,由()v v v v d 22f ⎰=可以求出v2 ,从而求出2/2v m ε=. 解 (1) 由题设可知,电子的速率分布函数()()()⎪⎩⎪⎨⎧>>>=F F 2 00 π4v v v v v v N A f ,其分布函数图如图所示. (2) 利用分析中所述归一化条件,有1d π4F02=⎰v v v NA 得 3F π4/3v N A = (3) ()53d N 4ππd 2F 20022F v v v v v v v v ===⎰⎰∞f 5/32/F 2εm ε==v12 -24 一飞机在地面时,机舱中的压力计指示为Pa 100115⨯.,到高空后压强降为Pa 101184⨯..设大气的温度均为27.0 ℃.问此时飞机距地面的高度为多少?(设空气的摩尔质量为2.89 ×10-2 kg·mol -1 )分析 当温度不变时,大气压强随高度的变化主要是因为分子数密度的改变而造成.气体分子在重力场中的分布满足玻耳兹曼分布.利用地球表面附近气压公式()kT mgh p p /ex p 0-=,即可求得飞机的高度h .式中p 0 是地面的大气压强.解 飞机高度为 ()()m 1093.1/ln /ln 300⨯===p p MgRT p p mg kT h 12 -25 在压强为Pa 1001.15⨯下,氮气分子的平均自由程为6.0×10-6cm,当温度不变时,在多大压强下,其平均自由程为1.0mm 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、一束光垂直入射在偏振片上,以入射光线为轴转动偏振片,观察通过偏振片后的光强变化过程。

如果观察到光强不变,则入射光是什么光?如果观察到明暗交替变化,有时出现全暗,则入射光是什么光?如果观察到明暗交替变化,但不出现全暗,则入射光是什么光?【答案:自然光;完全偏振光;部分偏振光】详解:当一束光垂直入射在偏振片上时,以入射光线为轴转动偏振片,如果观察到通过偏振片后的光强不发生变化,入射光是由自然光;如果观察到光强有明暗交替变化,并且有时出现全暗,则入射光是完全偏振光;如果观察到光强有明暗交替变化,但不出现全暗,则入射光是部分偏振光。

2、一束光是自然光和线偏振光的混合光,让它垂直通过一个偏振片。

若以此入射光束为轴旋转偏振片,测得透射光强度最大值是最小值的5倍,那么入射光束中自然光与线偏振光的光强比值为多少?【答案:1/2】详解:设该光束中自然光和线偏振光的强度分别为I 1和I 2。

当以此入射光束为轴旋转偏振片时,透射光强度的最大值和最小值分别为21max 21I I I +=1min 21I I = 依题意有I max =5I min ,即 12121521I I I ⨯=+ 解之得2121=I I 即入射光束中自然光与线偏振光的光强比值等于1/2。

3、一束光强为I 0的自然光相继通过三个偏振片P 1、P 2、P 3后,出射光的光强为0.125I 0 。

已知P 1和P 2的偏振化方向相互垂直,若以入射光线为轴旋转P 2,要使出射光的光强为零,P 2最少要转过多大的角度?【答案:45°】详解:由于P 1和P 2的偏振化方向相互垂直,而自然光相继通过三个偏振片后的光强不等于零,说明自然光通过偏振片的顺序为P 1、P 3、P 2。

如图所示,设偏振片P 1和P 3的夹角为θ,由马吕斯定律得出射光强为 )09(cos cos 2220θθ-= I I θ2sin 820I = 由于I =0.125I 0 ,代入上式解得 45=θ要使出射光强为零,应使P 2和P 3的偏振化方向垂直,因此P 2最少要转过的角度也等于45°。

4、一束光强为I 0的自然光垂直穿过两个偏振片,且这两个偏振片的偏振化方向的夹角成45°角,则穿过两个偏振片后的光强是I 0的多少倍?【答案:1/4】详解:由马吕斯定律得光强为I 0的自然光垂直穿过两个偏振片后的光强为45cos 220I I =40I = 即穿过两个偏振片后的光强是I 0的1/4倍。

5、三个偏振片P 1,P 2与P 3堆叠在一起,P 1与P 3的偏振化方向相互垂直,P 2与P 1的偏振化方向间的夹角为30°。

强度为I 0的自然光垂直入射于偏振片P 1,并依次透过偏振片P 1、P 2与P 3,则通过三个偏振片后的光强是I 0的多少倍?【答案:3/32】详解:由马吕斯定律得光强为I 0的自然光垂直穿过这三个偏振片后的光强为)3090(cos 30cos 2220 -=I I 0323I = 即穿过这三个偏振片后的光强是I 0的3/32倍。

6、两个偏振片堆叠在一起,一束自然光垂直入射其上时没有光线通过。

当其中一个偏振片慢慢转动180°时,透射光强度将发生怎样的变化?【答案:光强先增加,达到最大值后又减小至零】详解:一束自然光垂直入射两个堆叠的偏振片上时没有光线通过,说明这两个偏振片的偏振化方向相互垂直。

当其中一个偏振片慢慢转动90°时,透射光强度逐渐增大到最大值。

该偏振片沿原方向继续慢慢转动90°时,透射光强度将逐渐减小到0。

因此,当其中一个偏振片慢慢转动180°时,透射光强度将先增加,达到最大值后又减小至零。

图15-327、使光强为I 0的平面偏振光先后通过两个偏振片P 1和P 2。

P 1和P 2的偏振化方向与原入射光光矢量振动方向的夹角分别是α 和90°,则通过这两个偏振片后的光强I 是多少? 【答案:α2sin 4120I 】 详解:依题意,由马吕斯定律得光强为I 0的平面偏振光先后通过这两个偏振片后的光强为)90(cos cos 220αα-= I I α2sin 4120I = 8、要使一束线偏振光通过偏振片之后振动方向转过90°,至少需要让这束光通过几块理想偏振片?在此情况下,透射光强最大是原来光强的多少倍?【答案:3;1/4】详解:由图可以看出,要使一束线偏振光通过偏振片之后振动方向转过90°,至少需要让这束光通过3块理想偏振片。

由马吕斯定律得透射光强为 )90(cos 212α-= I I )90(cos cos 22αα-= I α2sin 4I = 可见,当1sin 2=α时,透射光强最大,其值为 4max 2I I = 9、如图15-8所示,P 1、P 2为偏振化方向夹角为α 的两个偏振片。

光强为I 0的平行自然光垂直入射到P 1表面上,则通过P 2的光强等于多少?如果在P 1、P 2之间插入第三个偏振片P 3,则通过P 2的光强发生了变化。

实验发现,以光线为轴旋转P 2,使其偏振化方向旋转θ 角后,发生消光现象,从而可以推算出P 3的偏振化方向与P 1的偏振化方向之间的夹角α' 等于多少? (假设题中所涉及的角均为锐角,并且α' <α。

) 【答案:α20cos 2I ; 90)(-+αθ或)(90αθ+- 】 详解:由于P 1、P 2偏振化方向夹角为α ,因此通过P 2的光强为 α20cos 2I I =在P 1、P 2之间插入第三个偏振片后,使P 2旋转角度θ后发生消光现象,则必有P 2与P 3的偏振化方向垂直。

由于题中所涉及的角均为锐角,并且α' <α,因此得到如图所示的两种图15-8振幅投影图。

在图(a)的情况下,由几何关系得P 3与P 1的偏振化方向之间的夹角为90)(-+='αθα 在图(b )的情况下,有)(90αθα+-='1、如图15-20所示,一束自然光从空气射向一块平板玻璃,设入射角等于布儒斯特角i 0,则在界面2的反射光是不是线偏振光?如果是线偏振光, 其光矢量的振动方向如何?【答案:反射光是不是线偏振光;光矢量的振动方向垂直于入射面】详解:自然光从空气射向平板玻璃时入射角等于布儒斯特角i 0设与此对应的折射角为r 0,则必有 9000=+r i由光的折射定律得 00sin sin r n i =当光入射在平板玻璃的界面2上时,入射角等于r 0,设与此对应的折射角为r ,由光的折射定律得 r r n sin sin 0=比较两个折射定律,有r = i 0,因此90000=+=+i r r r即在界面2的反射光与折射光也是垂直的,入射角也是布儒斯特角,反射光必然是线偏振光,其光矢量的振动方向垂直于入射面。

图15-32 2P P 2 (a )P 2 (b )图15-202、如图15-21所示,如果从一池静水的表面反射出来的太阳光是线偏振光,那么太阳光的仰角大致等于多少度?该反射光的光矢量的振动方向如何?已知水的折射率为1.33。

【答案:37°;垂直于入射面】详解:由布儒斯特定律得布儒斯特角为 n i arctan 0=33.1arctan = 53=因此太阳光的仰角为 37900=-=i 仰角此时反射光光矢量的振动方向垂直于入射面。

3、自然光以60°的入射角照射在某两种介质交界面时,反射光为完全线偏振光,则折射光是什么光?折射角等于多少度?【答案:部分偏振光;30°】详解:折射光是部分偏振光。

由于反射光为完全线偏振光,因此i 0+r =90°,由此解得折射角为30900=-=i r4、某种透明介质对于空气的临界角等于45°,光从空气射向此介质时的布儒斯特角等于多少?【答案:54.7°】详解:由于这种透明介质对空气的临界角等于45°,因此这种透明介质的折射率为45sin 1sin 1==C n 2= 当光从空气射向此介质时的布儒斯特角为n i arctan 0=2arctan = 7.54=5、一束自然光从空气投射到玻璃表面上,当折射角为30°时,反射光是完全偏振光,则此玻璃板的折射率等于多少?【答案:1.73】详解:一束自然光从空气投射到玻璃表面上,当反射光是完全偏振光时,其入射角等于布儒斯特角,由于布儒斯特角与折射角的和等于90°,而折射角等于30°,因此布儒斯特角等于60°。

该玻璃板的折射率为0tan i n = 60tan ==1.73图15-216、一束平行的自然光以60°角入射到平玻璃表面上。

如果反射光是完全偏振的,则透射光的折射角是多少度?玻璃的折射率等于多少?【答案:30°;1.73】详解:由于反射光是完全偏振光,因此i 0+r =90°,由此解得折射角为30900=-=i r由布儒斯特定律得该玻璃的折射率为0tan i n = 60tan ==1.737、如图15-22所示,一束自然光入射到折射率分别为n 1和n 2的两种介质的交界面上,发生反射和折射。

测得反射光是完全偏振光,那么折射角r 的值为多少? 【答案:12arctan 2πn n -】 详解:由于反射光是完全偏振光,因此入射角是布儒斯特角。

由布儒斯特定律得 120arctan n n i = 由于这时反射光与折射光垂直,因此折射角为02πi r -=12arctan 2πn n -= 8、一束平行的线偏振光在真空中的波长为589nm ,垂直入射到方解石晶体上,晶体的光轴与表面平行,如图15-23所示。

已知方解石晶体对该单色o 光和e 光的折射率分别为1.658、1.486。

方解石晶体中寻常光的波长和非常光的波长分别等于多少?【答案:355.2 nm ;396.4 nm 】详解:方解石晶体中o 光和e 光的波长分别为o o n λλ=658.1589=)nm (2.355= ee n λλ=486.1589=)nm (4.396=1、圆偏振光通过四分之一波片后的出射光是什么偏振光?图15-22图15-23【答案:线偏振光】详解:由于形成圆偏振光的互相垂直的线偏振光的光程差为λ/4,圆偏振光通过四分之一波片后又产生了λ/4的光程差,这两个线偏振光的光程差变为λ/2,它们合成的结果为线偏振光。

2、在两个偏振化方向正交的偏振片之间平行于偏振片插入一块厚度为l 的双折射晶片,晶片对o 光、e 光的折射率分别为n o 和n e 。

晶片光轴平行于晶面且与第一偏振片的偏振化方向之间有一个夹角。

一束单色自然光垂直入射于系统,则通过第二块偏振片射出的两束光的振幅大小有什么关系?它们之间的相位差等于多少? 【答案:相等;ππ2+-λln n e o 】详解:由偏振光的干涉知识可知,这种情况下通过第二块偏振片射出的两束光的振幅大小相等。

相关文档
最新文档