函数单调性判断零点个数
函数的零点个数问题-含答案

【知识要点】一、方程的根与函数的零点(1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等.(2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点.(3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f ,那么函数()y f x =在区间(,)a b 内至少有一个零点,即存在(,c a b ∈)使得()0f c =,这个c 也就是方程的根.函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f 是函数()y f x =在区间(,)a b 内至少有一个零点的一个充分不必要条件.零点存在性定理只能判断是否存在零点,但是零点的个数则不能通过零点存在性定理确定,一般通过数形结合解决. 二、二分法(1)二分法及步骤对于在区间[,]a b 上连续不断,且满足0)()(<⋅b f a f 的函数()y f x =,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到函数零点近似值的方法叫做二分法. (2)给定精确度ε,用二分法求函数的零点近似值的步骤如下: 第一步:确定区间[,]a b ,验证0)()(<⋅b f a f ,给定精确度ε. 第二步:求区间(,)a b 的中点1x .第三步:计算1()f x :①若1()f x =0,则1x 就是函数的零点;②若1()()0f a f x <,则令1b x = (此时零点01(,)x a x ∈)③若1()()0f x f b <,则令1a x =(此时零点01(,)x x b ∈)第四步:判断是否达到精确度ε即若a b ε-<,则得到零点值a 或b ,否则重复第二至第四步. 三、一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布讨论一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布一般从以下个方面考虑列不等式组: (1)a 的符号; (2)对称轴2bx a=-的位置; (3)判别式的符号; (4)根分布的区间端点的函数值的符号.四、精确度为0.1指的是零点所在区间的长度小于0.1,其中的任意一个值都可以取;精确到0.1指的是零点保留小数点后一位数字,要看小数点后两位,四舍五入. 五、方法总结函数零点问题的处理常用的方法有:(1) 方程法;(2)图像法;(3)方程+图像法. 【方法点评】方法一 方程法使用情景 方程可以直接解出来. 解题步骤 先解方程,再求解.【例1 】已知函数2()32(1)(2)f x x a x a a 区间(1,1)-内有零点,求实数a 的取值范围.【点评】(1)本题如果用其它方法比较复杂,用这种方法就比较简洁.关键是能发现方程能直接解出来.(2)对于含有参数的函数要尝试因式分解,如果不好因式分解,再考虑其它方法.【反馈检测1】函数2()(1)cos f x x x =-在区间[0,4]上的零点个数是( ) A .4 B .5 C .6 D . 7方法二 图像法使用情景一些简单的初等函数或单调性容易求出,比较容易画出函数的图像.解题步骤先求函数的单调性,再画图分析.学科@网【例2】(2017全国高考新课标I理科数学)已知函数2()(2)x xf x ae a e x=+--.(1)讨论()f x的单调性;(2)若()f x有两个零点,求a的取值范围.(2) ①若0,a≤由(1)知()f x至多有一个零点.②若0a>,由(1)知当lnx a=-时,()f x取得最小值,1(ln)1lnf a aa-=-+.(i)当1a=时,(ln)f a-=0,故()f x只有一个零点.(ii)当(1,)a∈+∞时,由于11ln aa-+>0,即(ln)0f a->,故()f x没有零点.(iii)当0,1a∈()时,11ln0aa-+<,即(ln)0f a-<.422(2)(2)2220,f ae a e e----=+-+>-+>故()f x在(,ln)a-∞-只有一个零点.00000000003ln(1),()(2)203ln(1)ln,()n n n nn n f n e ae a n e n naa f xa>-=+-->->->->-∞设正整数满足则由于因此在(-lna,+)有一个零点.综上所述,a的取值范围为(0,1).【点评】(1)本题第2问根据函数的零点个数求参数的范围,用的就是图像法. 由于第1问已经求出了函数的单调性,所以第2问可以直接利用第1问的单调性作图分析. (2) 当0,1a∈()时,要先判断(,ln)a-∞的零点的个数,此时考查了函数的零点定理,(ln)0f a-<,还必须在该区间找一个函数值为正的值,它就是422(2)(2)2220,f ae a e e----=+-+>-+>要说明(2)0f->,这里利用了放缩法,丢掉了42ae ae--+.(3) 当0,1a∈()时,要判断(ln,)a-+∞上的零点个数,也是在考查函数的零点定理,还要在该区间找一个函数值为正的值,它就是03ln(1)n a>-,再放缩证明0()f n >0. (4)由此题可以看出零点定理在高考中的重要性.【例3】已知3x =是函数()()2ln 110f x a x x x =++-的一个极值点. (Ⅰ)求a ;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)若直线y b =与函数()y f x =的图象有3个交点,求b 的取值范围.(Ⅲ)由(Ⅱ)知,()f x 在()1,1-内单调增加,在()1,3内单调减少,在()3,+∞上单调增加,且当1x =或3x =时,()'0f x =所以()f x 的极大值为()116ln 29f =-,极小值为()332ln 221f =- 因此()()21616101616ln 291f f =-⨯>-=()()213211213f e f --<-+=-<所以在()f x 的三个单调区间()()()1,1,1,3,3,-+∞直线y b =有()y f x =的图象各有一个交点,当且仅当()()31f b f <<,因此,b 的取值范围为()32ln 221,16ln 29--【点评】本题第(3)问,由于函数()f x 中没有参数,所以可以直接画图数形结合分析解答.【反馈检测2】已知函数2()1x e f x ax =+,其中a 为实数,常数 2.718e =.(1) 若13x =是函数()f x 的一个极值点,求a 的值; (2) 当4a =-时,求函数()f x 的单调区间;(3) 当a 取正实数时,若存在实数m ,使得关于x 的方程()f x m =有三个实数根,求a 的取值范围.方法三 方程+图像法使用情景函数比较复杂,不容易求函数的单调性.解题步骤先令()0f x =,重新构造方程()()g x h x =,再画函数(),()y g x y h x ==的图像分析解答.【例4】函数()lg cos f x x x =-的零点有 ( ) A .4 个 B .3 个 C .2个 D .1个【点评】(1)本题主要考察零点的个数,但是方程f(x)lg cos 0x x =-=也不好解,直接研究函数的单调性不是很方便,所以先令()lg cos 0f x x x =-=,可化为lg cos x x =,再在同一直角坐标系下画出lg y x =和cos y x =的图像分析解答.(2)方程+图像是零点问题中最难的一种,大家注意理解掌握和灵活应用.【反馈检测3】设函数()()()221ln ,1,02f x x m xg x x m x m =-=-+>. (1)求函数()f x 的单调区间;(2)当1m ≥时,讨论函数()f x 与()g x 图象的交点个数.高中数学常见题型解法归纳及反馈检测第13讲:函数零点个数问题的求解方法参考答案【反馈检测1答案】C【反馈检测2答案】(1)95a =;(2)()f x 的单调增区间是51(1)2-,15(,12+; ()f x 的单调减区间是1(,)2-∞-,15(,12-,5(1)++∞;(3)a 的取值范围是(1,)+∞. 【反馈检测2详细解析】(1)222(21)()(1)xax ax e f x ax -+'=+ 因为13x =是函数()f x 的一个极值点,所以1()03f '=,即12910,935a a a -+==. 而当95a =时,229591521(2)()()59533ax ax x x x x -+=-+=--,可验证:13x =是函数()f x 的一个极值点.因此95a =.(2) 当4a =-时,222(481)()(14)xx x e f x x -++'=-令()0f x '=得24810x x -++=,解得51x =,而12x ≠±.所以当x 变化时,()f x '、()f x 的变化是x1(,)2-∞-15(,1)22-- 512-51(1,)22-15(,1)22+ 512+5(1,)2++∞ ()f x '--++-()f x极小值极大值因此()f x 的单调增区间是51(1)2,15(,12+;()f x 的单调减区间是1(,)2-∞-,15(,1)2--,5(1)+∞;【反馈检测3答案】(1)单调递增区间是(),m+∞, 单调递减区间是()0,m;(2)1.学科@网【反馈检测3详细解析】(1)函数()f x的定义域为()()()()0,,'x m x mf xx+-+∞=.当0x m<<时,()'0f x<,函数()f x单调递减,当x m>时,()'0f x>函数()f x单调递增,综上,函数()f x的单调递增区间是(),m+∞, 单调递减区间是()0,m.(2)令()()()()211ln,02F x f x g x x m x m x x=-=-++->,问题等价于求函数()F x的零点个数,()()()1'x x mF xx--=-,当1m=时,()'0F x≤,函数()F x为减函数,F x有唯一零点,即两函数图象总有一个交点.综上,函数()。
分析函数的单调性与零点

分析函数的单调性与零点函数的单调性与零点是数学中重要的概念和性质之一。
在本文中,我们将深入探讨函数的单调性和零点,并分析它们之间的关系。
一、函数的单调性函数的单调性是指函数在其定义域上的增减性。
我们将函数的单调性分为递增和递减两种情况。
1. 递增函数一个函数在其定义域上递增,意味着当自变量增大时,函数值也会增大。
换句话说,函数的图像在整个定义域上的方向是向上的。
2. 递减函数与递增函数类似,递减函数在其定义域上当自变量增大时,函数值减小。
函数的图像在整个定义域上的方向是向下的。
通过函数的导数可以确定函数的单调性。
当导数恒大于零时,函数递增;当导数恒小于零时,函数递减。
在导数存在的情况下,我们可以通过求导来判断函数的单调性。
二、函数的零点函数的零点是指在函数的定义域范围内,使得函数值等于零的自变量值。
换句话说,函数的零点是函数曲线与x轴相交的点。
通过求解函数的方程,我们可以找到函数的零点。
常见的解方程方法包括化简方程、配凑方程等。
通过求解方程,我们可以得到函数的零点。
三、函数单调性与零点的关系函数的单调性与零点之间存在密切的关系。
1. 单调递增函数与零点对于单调递增函数,如果函数在某一点的函数值为0,则该点为函数的唯一零点。
因为函数递增,函数值从负数逐渐过渡到正数,所以只有一个交点。
2. 单调递减函数与零点对于单调递减函数,对应于函数值为0的点可能有多个。
因为函数递减,在函数值从正数过渡到负数的过程中,可能出现多个交点。
总结起来,对于单调递增函数,零点唯一;对于单调递减函数,零点可能有多个。
四、求解函数的单调性与零点要求解函数的单调性与零点,我们首先需要知道函数的表达式。
对于一些简单的函数,我们可以直接通过观察函数图像来判断函数的单调性和零点。
然而,对于复杂的函数,我们可能需要借助导数的性质来求解。
通过求解函数的导数,我们可以获得函数的单调区间和零点的位置。
当导数在某个区间内恒大于零时,函数在该区间内递增;当导数在某个区间内恒小于零时,函数在该区间内递减。
函数零点的个数问题

2x 2 x
2
2m
2x 2 x 2m2 8
0,利用换元设
t 2x 2x ( t 2 ),则问题转化为只需让方程 t2 2mt 2m2 8 0 存在大于等于 2 的解
即可,故分一个解和两个解来进行分类讨论。设 g t t2 2mt 2m2 8 0 。
(1)若方程有一个解,则有相切(切点 x m 大于等于 2)或相交(其中交点在 x 2 两侧),
3:已知函数
f
x
kx ln x,
2, x x
0
0k
R
,若函数
y
f x k 有三个零点,则实数 k
的取值范围是(
)
A. k 2
B. 1 k 0
C. 2 k 1
D. k 2
思路:函数 y f x k 有三个零点,等价于方程 f x k 有三个不同实数根,进而等
价于 f x 与 y k 图像有三个不同交点,作出 f x 的图像,则 k 的正负会导致 f x 图
A.
ln 3 3
,
1 e
B.
ln 3 9
,
1 3e
C.
ln 3 9
,
1 2e
D.
ln 3 9
,
ln 3 3
思路:
f x
f 3x
f x
f
x 3
,当
x
3,
9
时,
f
x
f
x 3
ln
x 3
,所以
- 4 - / 18
ln x,1 x 3
f
x
ln
x ,3 3
x
,而 g x
9
f
区间 a,b 内至少有函数 f x 的一个零点,即至少有一点 x0 a,b ,使得 f x0 0 。 (1) f x 在a,b 上连续是使用零点存在性定理判定零点的前提
专题10函数零点(原卷版)

《函数零点》专项突破 高考定位函数的零点其实质是相应方程的根,而方程是高考重点考查内容,因而函数的零点亦成为高考命题的热点.其经常与函数的图像、性质等知识交汇命题,以选择、填空题的形式考查可难可易,以大题形式出现,相对较难. 考点解析(1)零点个数的确定(2)二次函数的零点分布(3)零点与函数性质交汇(4)嵌套函数零点的确定(5)复杂函数的零点存在性定理(6)隐零点的处理(7)隐零点的极值点偏移处理 题型解析类型一、转化为二次函数的零点分布例1-1.(2022·全国·高三专题练习)已知f (x )是奇函数并且是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( ) A .14B .18C .78-D .38-练(2022·湖北·黄冈中学模拟预测)若函数2()2a f x x ax =+-在区间(1,1)-上有两个不同的零点,则实数a 的取值范围是( ) A .2(2,)3-B .2(0,)3C .(2,)+∞D .(0,2)例1-2.(2022·湖北恩施·高三其他模拟)设函数()()2x f x x a e =+在R 上存在最小值(其中e 为自然对数的底数,a R ∈),则函数()2g x x x a =++的零点个数为( )A .0B .1C .2D .无法确定类型二、区间零点存在性定理例2-1.(2022·天津二中高三期中)已知函数()ln 1f x x x =-,则()f x 的零点所在的区间是( )A .()0,1B .()1,2C .()2,3D .()3,4练.(2022·天津·大钟庄高中高三月考)函数()2xf x x =+的零点所在的区间为( )A .()2,1--B .()1,0-C .()0,1D .()1,2类型三、利用两图像交点判断函数零点个数例3-1(一个曲线一个直线)14.(2022·黑龙江·哈尔滨三中高三期中(文))设函数222,0()lg ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩,则函数()1y f x =-的零点个数为( ) A .1个 B .2个 C .3个 D .0个练.已知m 、n 为函数()1ln xf x ax x+=-的两个零点,若存在唯一的整数()0,x m n ∈则实数a 的取值范围是( ) A .ln 3,92e e ⎡⎫⎪⎢⎣⎭ B .ln 20,4e ⎛⎫ ⎪⎝⎭ C .0,2e ⎛⎫ ⎪⎝⎭D .ln 2,14e ⎡⎫⎪⎢⎣⎭例3-2(一个曲线一个直线)(2018·浙江·绍兴市柯桥区教师发展中心高三学业考试)已知函数()()()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩,函数()()2g x b f x =--,若函数()()y f x g x =-恰有4个零点,则实数b 的取值范围为_______.例3-3【一个曲线和一个倾斜直线】【2022福建省厦门市高三】已知函数()221,20, ,0,xx x x f x e x ⎧--+-≤<=⎨≥⎩若函数()()g x f x ax a =-+存在零点,则实数a 的取值范围为__________.例3-4(两个曲线)(2022·全国·高三专题练习)函数2π()2sin sin()2f x x x x =+-的零点个数为________.(两个曲线)(2022·四川·高三期中(理))已知定义在R 上的函数()f x 和()1f x +都是奇函数,当(]0,1x ∈时,21()log f x x=,若函数()()sin()F x f x x π=-在区间[1,]m -上有且仅有10个零点,则实数m 的最小值为( ) A .3 B .72C .4D .92(两个曲线)【2022河北省武邑中学高三】若定义在R 上的偶函数()f x 满足()()2f x f x +=,且当[]0,1x ∈时, ()f x x =,则函数()3log y f x x =-的零点个数是( )A . 6个B . 4个C . 3个D . 2个例3-5(直接解出零点)(2022·四川·高三月考(理))函数()25sin sin 1f x x x =--在5π5π,22x ⎡⎤∈-⎢⎥⎣⎦上的零点个数为( ) A .12 B .14 C .16 D .18类型三、利用周期性判断零点个数例3-1.(2022·广东·高三月考)已知定义域为R 的函数()y f x =在[0,10]上有1和3两个零点,且(2)y f x =+与(7)y f x =+都是偶函数,则函数()y f x =在[0,2013]上的零点个数为( ) A .404 B .804C .806D .402例3-2.偶函数()f x 满足()()44f x f x +=-,当(]0,4x ∈时,()()ln 2x f x x=,不等式()()20f x af x +>在[]200,200-上有且只有200个整数解,则实数a 的取值范围是( ) A .1ln6,ln23⎛⎤- ⎥⎝⎦B .1ln2,ln63⎡⎫--⎪⎢⎣⎭C .1ln2,ln63⎛⎤-- ⎥⎝⎦D .1ln6,ln23⎛⎫- ⎪⎝⎭类型四、零点之和例4-1.(2022·全国·高三专题练习(文))已知函数()1sin sin f x x x=+,定义域为R 的函数()g x 满足()()0g x g x -+=,若函数()y f x =与()y g x =图象的交点为()()()112266,,,,,,x y x y x y ⋯,则()61i j i x y =+=∑( )A .0B .6C .12D .24例4-2(2022·新疆·克拉玛依市教育研究所模拟预测(理))已知定义在R 上的奇函数()f x 满足()()2f x f x =-,当[]1,1x ∈-时,()3f x x =,若函数()()()4g x f x k x =--的所有零点为()1,2,3,,i x i n =,当1335k <<时,1nii x==∑( )A .20B .24C .28D .36类型五、等高线的使用例5-1.(2022·福建宁德·高三期中)已知函数()()8sin ,02log 1,2x x f x x x π≤≤⎧=⎨->⎩,若a 、b 、c 互不相等,且()()()f a f b f c ==,则a b c ++的取值范围是___________.例5-2(2022·山西太原·高三期中)设函数22log (1),13()(4),3x x f x x x ⎧-<≤⎪=⎨->⎪⎩,()f x a =有四个实数根1x ,2x ,3x ,4x ,且1234x x x x <<<,则()3412114x x x x ++的取值范围是( )A .109,32⎛⎫ ⎪⎝⎭B .(0,1)C .510,23⎛⎫ ⎪⎝⎭D .3,22⎛⎫ ⎪⎝⎭例5-3(2022·吉林吉林·高三月考(理))()22,01ln ,0x x x f x x x ⎧--≤⎪=⎨+>⎪⎩,若存在互不相等的实数a ,b ,c ,d 使得()()()()f f b f d m a c f ====,则下列结论中正确的为( )①()0,1m ∈;①()122e 2,e 1a b c d --+++∈--,其中e 为自然对数的底数; ①函数()y f x x m =--恰有三个零点. A .①① B .①① C .①① D .①①①例5-4.(2022·辽宁实验中学高三期中)已知函数()266,1ln 1,1x x x f x x x ⎧---≤⎪=⎨+>⎪⎩,若关于x 的方程()f x m =恰有三个不同实数解123x x x <<,则关于n 的方程()()121222356516n x x x x x -+=++-的正整数解取值可能是( ) A .1 B .2 C .3 D .4类型六、嵌套函数零点例6-1.(2022·黑龙江·哈尔滨三中高三期中(理))设函数()32,0lg ,0x x f x x x +≤⎧=⎨>⎩,则函数()()12y f f x =-的零点个数为( )A .1个B .2个C .3个D .4个例6-2.(2022·天津市第四十七中学高三月考)已知函数()2e ,0,0x x f x x x ⎧≤⎪=⎨>⎪⎩,2()2g x x x =-+(其中e 是自然对数的底数),若关于x 的方程(())g f x m =恰有三个不等实根123,,x x x ,且123x x x <<,则12322x x x -+的最大值为___________.例6-3(2022·全国·高三专题练习)设函数()210log 0x x f x x x +≤⎧=⎨>⎩,,,,若函数()()()g x f f x a=-有三个零点,则实数a 的范围为________.例6-4. 已知函数f(x)={e |x−1|,x >0−x 2−2x +1,x ≤0 ,若关于x 的方程f 2(x)−3f(x)+a =0(a ∈R)有8个不等的实数根,则a 的取值范围是( ) A . (0,14) B . (13,3) C . (1,2) D . (2,94)类型七、隐零点处理例7-1.(1)已知函数f(x)=x 2+πcos x ,求函数f(x)的最小值;(2)已知函数()()32213210f x x ax a x a a ⎛⎫=++++> ⎪⎝⎭,若()f x 有极值,且()f x 与()f x '(()f x '为()f x 的导函数)的所有极值之和不小于263-,则实数a 的取值范围是( ) A .(]0,3 B .(]1,3 C .[]1,3 D .[)3,+∞例7-2已知函数()ln()(0)x af x ex a a -=-+>.(1)证明:函数()'f x 在(0,)+∞上存在唯一的零点;(2)若函数()f x 在区间(0,)+∞上的最小值为1,求a 的值.例7-3已知函数()xf x xe =,()lng x x x =+.若()()()21f x g x b x -≥-+恒成立,求b 的取值范围.例7-4已知函数()()22e xx x f a x =-+.(1)讨论函数()f x 的单调性;(2)当1a =时,判断函数()()21ln 2g x f x x x -+=零点的个数,并说明理由.类型八、隐零点之极值点偏离类型一、目标与极值点相关思想:偏离−−→−转化对称 步骤:(1)利用单调性与零点存在定理判定零点个数 (2)确定极值点(3)确定零点所在区域 (4)构造对称函数类型二、目标与极值点不相关 步骤:(1)利用单调性与零点存在定理判定零点个数 (2)确定极值点(3)确定零点所在区域(4)寻找零点之间的关系,消元换元来解决例8-1.(2022·江苏高三开学考试)已知函数()ln af x x x=+(a ∈R )有两个零点.(1)证明:10ea <<. (2)若()f x 的两个零点为1x ,2x ,且12x x <,证明:a x x 221>+.(3)若()f x 的两个零点为1x ,2x ,且12x x <,证明:.121<+x x练、已知函数f(x)=x 2+πcos x. (1)求函数f(x)的最小值;(2)若函数g(x)=f(x)-a 在(0,+∞)上有两个零点x 1,x 2,且x 1<x 2,求证:x 1+x 2<π.练、已知函数21()1xx f x e x-=+. (①)求()f x 的单调区间;(①)证明:当12()()f x f x = 12()x x ≠时,120x x +<练、已知函数f(x)=xe -x .(1)求函数f(x)的单调区间和极值; (2)若x 1≠x 2且f(x 1)=f(x 2),求证:x 1+x 2>2.练、已知函数f(x)=xln x 的图象与直线y =m 交于不同的两点A(x 1,y 1),B(x 2,y 2).求证:x 1x 2<1e 2.练(2022·沙坪坝区·重庆八中)已知函数()222ln f x x ax x =-+(0a >).(1)讨论函数()f x 的单调性;(2)设()2ln g x x bx cx =--,若函数()f x 的两个极值点1x ,2x (12x x <)恰为函数()g x 的两个零点,且()12122x x y x x g '+⎛⎫=- ⎪⎝⎭的取值范围是[)ln31,-+∞,求实数a 的取值范围.练.已知2()4ln f x x x a x =-+.已知函数()f x 有两个极值点12x x ,(12x x <),若123()20f x mx ->恒成立,试求m 的取值范围.。
高中数学讲义:零点存在的判定与证明

零点存在的判定与证明一、基础知识:1、函数的零点:一般的,对于函数()y f x =,我们把方程()0f x =的实数根0x 叫作函数()y f x =的零点。
2、零点存在性定理:如果函数()y f x =在区间[],a b 上的图像是连续不断的一条曲线,并且有()()0f a f b ×<,那么函数()y f x =在区间(),a b 内必有零点,即()0,x a b $Î,使得()00f x =注:零点存在性定理使用的前提是()f x 在区间[],a b 连续,如果()f x 是分段的,那么零点不一定存在3、函数单调性对零点个数的影响:如果一个连续函数是单调函数,那么它的零点至多有一个。
因此分析一个函数零点的个数前,可尝试判断函数是否单调4、几个“不一定”与“一定”(假设()f x 在区间(),a b 连续)(1)若()()0f a f b ×<,则()f x “一定”存在零点,但“不一定”只有一个零点。
要分析()f x 的性质与图像,如果()f x 单调,则“一定”只有一个零点(2)若()()0f a f b ×>,则()f x “不一定”存在零点,也“不一定”没有零点。
如果()f x 单调,那么“一定”没有零点(3)如果()f x 在区间(),a b 中存在零点,则()()f a f b ×的符号是“不确定”的,受函数性质与图像影响。
如果()f x 单调,则()()f a f b ×一定小于05、零点与单调性配合可确定函数的符号:()f x 是一个在(),a b 单增连续函数,0x x =是()f x 的零点,且()0,x a b Î,则()0,x a x Î时,()0f x <;()0,x x b Î时,()0f x >6、判断函数单调性的方法:(1)可直接判断的几个结论:① 若()(),f x g x 为增(减)函数,则()()f x g x +也为增(减)函数② 若()f x 为增函数,则()f x -为减函数;同样,若()f x 为减函数,则()f x -为增函数③ 若()(),f x g x 为增函数,且()(),0f x g x >,则()()f x g x ×为增函数(2)复合函数单调性:判断()()y f g x =的单调性可分别判断()t g x =与()y f t =的单调性(注意要利用x 的范围求出t 的范围),若()t g x =,()y f t =均为增函数或均为减函数,则()()y f g x =单调递增;若()t g x =,()y f t =一增一减,则()()y f g x =单调递减(此规律可简记为“同增异减”)(3)利用导数进行判断——求出单调区间从而也可作出图像7、证明零点存在的步骤:(1)将所证等式中的所有项移至等号一侧,以便于构造函数(2)判断是否要对表达式进行合理变形,然后将表达式设为函数()f x (3)分析函数()f x 的性质,并考虑在已知范围内寻找端点函数值异号的区间(4)利用零点存在性定理证明零点存在例1:函数()23x f x e x =+-的零点所在的一个区间是( )A.1,02æö-ç÷èø B.10,2æöç÷èø C.1,12æöç÷èø D.31,2æöç÷èø思路:函数()f x 为增函数,所以只需代入每个选项区间的端点,判断函数值是否异号即可解:1211234022f e -æöæö-=+×--=-<ç÷ç÷èøèø,()020f =-<11232022f æö=+×-=-<ç÷èø()12310f e e =+-=->()1102f f æö\×<ç÷èø01,12x æö\Îç÷èø,使得()00f x =答案:C例2:函数()()ln 1f x x x =-+的零点所在的大致区间是( )A.31,2æöç÷èø B.3,22æöç÷èøC.()2,eD.(),e +¥思路:先能判断出()f x 为增函数,然后利用零点存在性判定定理,只需验证选项中区间端点函数值的符号即可。
函数零点问题的几种常见求解方法

函数零点问题的几种常见求解方法作者:卢杰来源:《中学教学参考·中旬》 2013年第1期湖北十堰市第一中学(442000)卢杰函数零点是函数与导数部分的重要知识,它涉及函数的图像与性质等基本知识,渗透着转化与化归、数形结合、分类讨论、函数与方程等重要思想,体现对学生综合能力的考查.下面对常见的几种函数零点解决办法作些归纳.方法一:解方程法.函数f(x)零点问题可转化为求方程f(x)=0的解,方程几个解就对应函数有几个零点.【例1】函数f(x)=xcosx2在区间[0,4]上零点的个数为().A.4B.5C.6D.7分析:求方程xcosx2=0在区间[0,4]上解的个数,x=0为一个解;x∈(0,4]时,x2∈(0,16],由cosx2=0得x2=kπ+π2 ,k∈Z,k只能取0,1,2,3,4,此时有5个解.综上,解的个数为6,即零点个数为6.选C.方法二:利用零点存在性定理法.如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,并且有f(a)·f(b)<0,那么,y=f(x)在区间(a,b)内有零点.若结合单调性,就能判断零点的个数.【例2】函数f(x)=ex+x-2的零点所在的一个区间是().A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)分析:因为f(0)=e0+0-2=-1<0,f(1)=e1+1-2=e-1>0,所以函数f(x)=ex+x-2的零点所在的一个区间是(0,1).选C.方法三:数形结合法.函数零点、方程的根与函数图象的关系为函数y=F(x)=f(x)-g(x)有零点�方程F(x)=f(x)-g(x)=0有实数根�函数y1=f(x)和y2=g(x)的图像有交点.故可以把函数零点问题转化为两个函数图象的交点问题,有时又需要把方程解的问题转化为函数零点问题,通过图象反映与轴交点的情况.【例4】函数f(x)=lgx-cosx的零点有().A.4个 B.3个 C.2个 D.1个分析:可画出y=lgx和y=cosx的图象,观察得出有3个交点.选B.【例5】函数f(x)=x2-8x+6lnx+m有三个零点,求实数m的取值范围.分析:函数有三个零点等价于图象与x轴有三个不同的交点.f(x)在(0,1)上递增,(1,3)上递减,(3,+∞)上递增.结合f(x)的图象可得f(1)>0且f(3)<0,解得7<m<15-6ln3.以上三种方法是常见的函数零点问题解决办法,前两种方法主要适用于较简单的问题,小题中运用较多;后一种方法有时直接画出函数图象看其与轴交点的个数,有时又必须画两个图象,注意在做题过程中加以区分.(责任编辑金铃)。
讨论函数零点或方程根的个数问题-高考数学专练

讨论函数零点或方程根的个数问题-高考数学专练【方法总结】判断、证明或讨论函数零点个数的方法利用零点存在性定理求解函数热点问题的前提条件为函数图象在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0.①直接法:判断一个零点时,若函数为单调函数,则只需取值证明f (a )·f (b )<0;②分类讨论法:判断几个零点时,需要先结合单调性,确定分类讨论的标准,再利用零点存在性定理,在每个单调区间内取值证明f (a )·f (b )<0.【例题选讲】[例1]已知f (x )=e -x (ax 2+x +1).当a >0时,试讨论方程f (x )=1的解的个数.[破题思路]讨论方程f (x )=1的解的个数,想到f (x )-1的零点个数,给出f (x )的解析式,用f (x )=1构造函数,转化为零点问题求解(或分离参数,结合图象求解).[规范解答]法一:分类讨论法方程f (x )=1的解的个数即为函数h (x )=e x -ax 2-x -1(a >0)的零点个数.而h ′(x )=e x -2ax -1,设H (x )=e x -2ax -1,则H ′(x )=e x -2a .令H ′(x )>0,解得x >ln 2a ;令H ′(x )<0,解得x <ln 2a ,所以h ′(x )在(-∞,ln 2a )上单调递减,在(ln 2a ,+∞)上单调递增.所以h ′(x )min =h ′(ln 2a )=2a -2a ln 2a -1.设m =2a ,g (m )=m -m ln m -1(m >0),则g ′(m )=1-(1+ln m )=-ln m ,令g ′(m )<0,得m >1;令g ′(m )>0,得0<m <1,所以g (m )在(1,+∞)上单调递减,在(0,1)上单调递增,所以g (m )max =g (1)=0,即h ′(x )min ≤0(当m =1即a =12时取等号).①当a =12时,h ′(x )min =0,则h ′(x )≥0恒成立.所以h (x )在R 上单调递增,故此时h (x )只有一个零点.②当a >12时,ln 2a >0,h ′(x )min =h ′(ln 2a )<0,又h ′(x )在(-∞,ln 2a )上单调递减,在(ln 2a ,+∞)上单调递增,又h ′(0)=0,则存在x 1>0使得h ′(x 1)=0,这时h (x )在(-∞,0)上单调递增,在(0,x 1)上单调递减,在(x 1,+∞)上单调递增.所以h (x 1)<h (0)=0,又h (0)=0,所以此时h (x )有两个零点.③当0<a <12时,ln 2a <0,h ′(x )min =h ′(ln 2a )<0,又h ′(x )在(-∞,ln 2a )上单调递减,在(ln 2a ,+∞)上单调递增,又h ′(0)=0,则存在x 2<0使得h ′(x 2)=0.这时h (x )在(-∞,x 2)上单调递增,在(x 2,0)上单调递减,在(0,+∞)上单调递增,所以h (x 2)>h (0)=0,h (0)=0,所以此时f (x )有两个零点.综上,当a =12时,方程f (x )=1只有一个解;当a ≠12且a >0时,方程f (x )=1有两个解.法二:分离参数法方程f (x )=1的解的个数即方程e x -ax 2-x -1=0(a >0)的解的个数,方程可化为ax 2=e x -x -1.当x =0时,方程为0=e 0-0-1,显然成立,所以x =0为方程的解.当x ≠0时,分离参数可得a =e x -x -1x2(x ≠0).设函数p (x )=e x -x -1x 2(x ≠0),则p ′(x )=(e x -x -1)′·x 2-(x 2)′·(e x -x -1)(x 2)2=e x (x -2)+x +2x 3.记q (x )=e x (x -2)+x +2,则q ′(x )=e x (x -1)+1.记t (x )=q ′(x )=e x (x -1)+1,则t ′(x )=x e x .显然当x <0时,t ′(x )<0,函数t (x )单调递减;当x >0时,t ′(x )>0,函数t (x )单调递增.所以t (x )>t (0)=e 0(0-1)+1=0,即q ′(x )>0,所以函数q (x )单调递增.而q (0)=e 0(0-2)+0+2=0,所以当x <0时,q (x )<0,即p ′(x )>0,函数p (x )单调递增;当x >0时,q (x )>0,即p ′(x )>0,函数p (x )单调递增.而当x →0时,p (x →0=e x -12xx →0=(e x -1)′(2x )′x →0=e x 2x →0=12(洛必达法则),当x →-∞时,p (x -∞=e x -12xx →-∞=0,故函数p (x )的图象如图所示.作出直线y =a .显然,当a =12时,直线y =a 与函数p (x )的图象无交点,即方程e x -ax 2-x -1=0只有一个解x =0;当a ≠12且a >0时,直线y =a 与函数p (x )的图象有一个交点(x 0,a ),即方程e x -ax 2-x -1=0有两个解x =0或x =x 0.综上,当a =12时,方程f (x )=1只有一个解;当a ≠12且a >0时,方程f (x )=1有两个解.[注]部分题型利用分离法处理时,会出现“0”型的代数式,这是大学数学中的不定式问题,解决这类问题有效的方法就是洛必达法则.法则1若函数f (x )和g (x )满足下列条件:(1)li m x →a f (x )=0及li m x →a g (x )=0;(2)在点a 的去心邻域内,f (x )与g (x )可导且g ′(x )≠0;(3)li m x →af ′(x )g ′(x )=l .那么li m x →a f (x )g (x )=li m x →a f ′(x )g ′(x )=l .法则2若函数f (x )和g (x )满足下列条件:(1)li m x →a f (x )=∞及li m x →a g (x )=∞;(2)在点a 的去心邻域内,f (x )与g (x )可导且g ′(x )≠0;(3)li m x →a f ′(x )g ′(x )=l .那么li m x →af (x )g (x )=li m x →a f ′(x )g ′(x )=l .[题后悟通]对于已知参数的取值范围,讨论零点个数的情况,借助导数解决的办法有两个.(1)分离参数:得到参数与超越函数式相等的式子,借助导数分析函数的单调区间和极值,结合图形,由参数函数与超越函数的交点个数,易得交点个数的分类情况;(2)构造新函数:求导,用单调性判定函数的取值情况,再根据零点存在定理证明零点的存在性.[例2]设函数f (x )=x 22-k ln x ,k >0.(1)求f (x )的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.[规范解答](1)函数的定义域为(0,+∞).由f (x )=x 22-k ln x (k >0),得f ′(x )=x -k x =x 2-kx.由f ′(x )=0,解得x =k (负值舍去).f ′(x )与f (x )在区间(0,+∞)上随x 的变化情况如下表:x (0,k )k (k ,+∞)f ′(x )-0+f (x )↘k (1-ln k )2↗所以,f (x )的单调递减区间是(0,k ),单调递增区间是(k ,+∞).f (x )在x =k 处取得极小值f (k )=k (1-ln k )2,无极大值.(2)由(1)知,f (x )在区间(0,+∞)上的最小值为f (k )=k (1-ln k )2.因为f (x )存在零点,所以k (1-ln k )2≤0,从而k ≥e ,当k =e 时,f (x )在区间(1,e]上单调递减且f (e)=0,所以x =e 是f (x )在区间(1,e]上的唯一零点;当k >e 时,f (x )在区间(1,e]上单调递减且f (1)=12>0,f (e)=e -k 2<0,所以f (x )在区间(1,e]上仅有一个零点.综上可知,若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.[例3]已知函数f (x )=a ln x +bx(a ,b ∈R ,a ≠0)的图象在点(1,f (1))处的切线斜率为-a .(1)求f (x )的单调区间;(2)讨论方程f (x )=1根的个数.[规范解答](1)函数f (x )的定义域为(0,+∞),f ′(x )=a -b -a ln xx 2,由f ′(1)=a -b =-a ,得b =2a ,所以f (x )=a (ln x +2)x ,f ′(x )=-a (ln x +1)x2.当a >0时,由f ′(x )>0,得0<x <1e ;由f ′(x )<0,得x >1e .当a <0时,由f ′(x )>0,得x >1e ;由f ′(x )<0,得0<x <1e.综上,当a >0时,f (x )a <0时,f (x )的单调递增(2)f (x )=1,即方程a ln x +2a x =1,即方程1a =ln x +2x ,构造函数h (x )=ln x +2x,则h ′(x )=-1+ln x x 2,令h ′(x )=0,得x =1e ,h ′(x )>0,h ′(x )<0,即h (x )h (x )max = e.h (x )单调递减且h (x )=ln x +2x >0,当x 无限增大时,h (x )无限接近0;h (x )单调递增且当x 无限接近0时,ln x +2负无限大,故h (x )负无限大.故当0<1a <e ,即a >1e 时,方程f (x )=1有两个不等实根,当a =1e 时,方程f (x )=1只有一个实根,当a <0时,方程f (x )=1只有一个实根.综上可知,当a >1e 时,方程f (x )=1有两个实根;当a <0或a =1e 时,方程f (x )=1有一个实根;当0<a <1e 时,方程f (x )=1无实根.[例4]已知函数f (x )=e x ,x ∈R .(1)若直线y =kx 与f (x )的反函数的图象相切,求实数k 的值;(2)若m <0,讨论函数g (x )=f (x )+mx 2零点的个数.[规范解答](1)f (x )的反函数为y =ln x ,x >0,则y ′=1x.设切点为(x 0,ln x 0),则切线斜率为k =1x 0=ln x 0x 0,故x 0=e ,k =1e.(2)函数g (x )=f (x )+mx 2的零点的个数即是方程f (x )+mx 2=0的实根的个数(当x =0时,方程无解),等价于函数h (x )=e xx 2(x ≠0)与函数y =-m 图象交点的个数.h ′(x )=e x (x -2)x 3.当x ∈(-∞,0)时,h ′(x )>0,h (x )在(-∞,0)上单调递增;当x ∈(0,2)时,h ′(x )<0,h (x )在(0,2)上单调递减;当x ∈(2,+∞)时,h ′(x )>0,h (x )在(2,+∞)上单调递增.∴h (x )的大致图象如图:∴h (x )在(0,+∞)上的最小值为h (2)=e 24.∴当-m m -e 24,h (x )=e xx 2与函数y =-m 图象交点的个数为1;当-m =e 24,即m =-e 24时,函数h (x )=e xx2与函数y =-m 图象交点的个数为2;当-m m ∈-∞,-e 24时,函数h (x )=e xx 2与函数y =-m 图象交点的个数为3.综上所述,当m ∞g (x )有三个零点;当m =-e 24时,函数g (x )有两个零点;当m ∈-e 24,0时,函数g (x )有一个零点.[例5]已知函数f (x )=-x 3+ax -14,g (x )=e x -e(e 为自然对数的底数).(1)若曲线y =f (x )在(0,f (0))处的切线与曲线y =g (x )在(0,g (0))处的切线互相垂直,求实数a 的值;(2)设函数h (x )x ),f (x )≥g (x ),(x ),f (x )<g (x ),试讨论函数h (x )零点的个数.[规范解答](1)f ′(x )=-3x 2+a ,g ′(x )=e x ,所以f ′(0)=a ,g ′(0)=1,由题意,知a =-1.(2)易知函数g (x )=e x -e 在R 上单调递增,仅在x =1处有一个零点,且x <1时,g (x )<0,又f ′(x )=-3x 2+a ,①当a ≤0时,f ′(x )≤0,f (x )在R f (-1)=34-a >0,即f (x )在x ≤0时必有一个零点,此时y =h (x )有两个零点;②当a >0时,令f ′(x )=-3x 2+a =0,得两根为x 1=-a3<0,x 2=a3>0,则-a3是函数f (x )的一个极小值点,a3是函数f (x )的一个极大值点,而+-14=-2a 3a 3-14<0.现在讨论极大值的情况:+aa 3-14=2a 3a 3-14,当,即a <34时,函数y =f (x )在(0,+∞)上恒小于零,此时y =h (x )有两个零点;当0,即a =34时,函数y =f (x )在(0,+∞)上有一个零点x 0=a 3=12,此时y =h (x )有三个零点;当,即a >34时,函数y =f (x )在(0,+∞)上有两个零点,一个零点小于a3,一个零点大于a 3,若f (1)=a -54<0,即a <54时,y =h (x )有四个零点;若f (1)=a -54=0,即a =54时,y =h (x )有三个零点;若f (1)=a -54>0,即a >54时,y =h (x )有两个零点.综上所述:当a <34或a >54时,y =h (x )有两个零点;当a =34或a =54时,y =h (x )有三个零点;当34<a <54时,y =h (x )有四个零点.[例6]已知函数f (x )=12ax 2-(a +2)x +2ln x (a ∈R ).(1)若a =0,求证:f (x )<0;(2)讨论函数f (x )零点的个数.[破题思路](1)当a =0时,f (x )=-2x +2ln x (x >0),f ′(x )=-2+2x =2(1-x )x,设g (x )=1-x ,根据g (x )的正负可画出f (x )的图象如图(1)所示.(2)f ′(x )=(x -1)(ax -2)x (x >0),令g (x )=(x -1)(ax -2),当a =0时,由(1)知f (x )没有零点;当a >0时,画g (x )的正负图象时,需分2a =1,2a >1,2a <1三种情形进行讨论,再根据极值、端点走势可画出f (x )的图象,如图(2)(3)(4)所示;当a <0时,同理可得图(5).综上,易得f (x )的零点个数.[规范解答](1)当a =0时,f ′(x )=-2+2x =2(1-x )x,由f ′(x )=0得x =1.当0<x <1时,f ′(x )>0,f (x )在(0,1)上单调递增;当x >1时,f ′(x )<0,f (x )在(1,+∞)上单调递减.所以f (x )≤f (x )max =f (1)=-2,即f (x )<0.(2)由题意知f ′(x )=ax -(a +2)+2x =ax 2-(a +2)x +2x =(x -1)(ax -2)x (x >0),当a =0时,由第(1)问可得函数f (x )没有零点.当a >0时,①当2a =1,即a =2时,f ′(x )≥0恒成立,仅当x =1时取等号,函数f (x )在(0,+∞)上单调递增,又f (1)=-12a -2=-12×2-2<0,当x →+∞时,f (x )→+∞,所以函数f (x )在区间(0,+∞)上有一个零点.②当2a >1,即0<a <2时,若0<x <1或x >2a ,则f ′(x )>0,f (x )在(0,1)若1<x <2a ,则f ′(x )<0,f (x )又f (1)=12a -(a +2)+2ln 1=-12a -2<0,则f (1)<0,当x →+∞时,f (x )→+∞,所以函数f (x )③当0<2a <1,即a >2时,若0<x <2a x >1,则f ′(x )>0,f (x )(1,+∞)上单调递增;若2a<x <1,则f ′(x )<0,f (x )因为a >2,所以=-2a -2+2ln 2a <-2a -2+2ln 1<0,又x →+∞时,f (x )→+∞,所以函数f (x )仅有一个零点在区间(1,+∞)上.当2a<0,即a <0时,若0<x <1,f ′(x )>0,f (x )在(0,1)上单调递增;若x >1,f ′(x )<0,f (x )在(1,+∞)上单调递减.当x →0时,f (x )→-∞,当x →+∞时,f (x )→-∞,又f (1)=12a -(a +2)+2ln 1=-12a -2=-a -42.当f (1)=-a -42>0,即a <-4时,函数f (x )有两个零点;当f (1)=-a -42=0,即a =-4时,函数f (x )有一个零点;当f (1)=-a -42<0,即-4<a <0时,函数f (x )没有零点.综上,当a <-4时,函数f (x )有两个零点;当a =-4时,函数f (x )有一个零点;当-4<a ≤0时,函数f (x )没有零点;当a >0时,函数f (x )有一个零点.[题后悟通]解决本题运用了分类、分层的思想方法,表面看起来非常繁杂.但若能用好“双图法”处理问题,可回避不等式f ′(x )>0与f ′(x )<0的求解,特别是含有参数的不等式求解,而从f ′(x )抽象出与其正负有关的函数g (x ),画图更方便,观察图形即可直观快速地得到f (x )的单调性,大大提高解题的效率.[对点训练]1.(2018·全国Ⅱ)已知函数f (x )=13x 3-a (x 2+x +1).(1)若a =3,求f (x )的单调区间;(2)证明:f (x )只有一个零点.1.解析(1)当a =3时,f (x )=13x 3-3x 2-3x -3,f ′(x )=x 2-6x -3.令f ′(x )=0解得x =3-23或x =3+2 3.当x ∈(-∞,3-23)∪(3+23,+∞)时,f ′(x )>0;当x ∈(3-23,3+23)时,f ′(x )<0.故f (x )在(-∞,3-23),(3+23,+∞)单调递增,在(3-23,3+23)单调递减.(2)由于x 2+x +1>0,所以f (x )=0等价于x 3x 2+x +1-3a =0.设g (x )=x 3x 2+x +1-3a ,则g ′(x )=x 2(x 2+2x +3)(x 2+x +1)2≥0,仅当x =0时g ′(x )=0,所以g (x )在(-∞,+∞)单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点.又f (3a -1)=-6a 2+2a -13=--16<0,f (3a +1)=13>0,故f (x )有一个零点.综上,f (x )只有一个零点.2.已知函数f (x )=e x -1,g (x )=x +x ,其中e 是自然对数的底数,e =2.71828….(1)证明:函数h (x )=f (x )-g (x )在区间(1,2)上有零点;(2)求方程f (x )=g (x )的根的个数,并说明理由.2.解析(1)由题意可得h (x )=f (x )-g (x )=e x -1-x -x ,所以h (1)=e -3<0,h (2)=e 2-3-2>0,所以h (1)h (2)<0,所以函数h (x )在区间(1,2)上有零点.(2)由(1)可知h (x )=f (x )-g (x )=e x -1-x -x .由g (x )=x +x 知x ∈[0,+∞),而h (0)=0,则x =0为h (x )的一个零点.又h (x )在(1,2)内有零点,因此h (x )在[0,+∞)上至少有两个零点.h ′(x )=e x -12x -12-1,记φ(x )=e x -12x -12-1,则φ′(x )=e x +14x -32.当x ∈(0,+∞)时,φ′(x )>0,因此φ(x )在(0,+∞)上单调递增,易知φ(x )在(0,+∞)内只有一个零点,则h (x )在[0,+∞)上有且只有两个零点,所以方程f (x )=g (x )的根的个数为2.3.设函数f (x )=ln x +mx,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值;(2)讨论函数g (x )=f ′(x )-x3零点的个数.3.解析(1)由题设,当m =e 时,f (x )=ln x +ex ,则f ′(x )=x -e x2,∴当x ∈(0,e)时,f ′(x )<0,f (x )在(0,e)上单调递减;当x ∈(e ,+∞)时,f ′(x )>0,f (x )在(e ,+∞)上单调递增,∴当x =e 时,f (x )取得极小值f (e)=ln e +ee =2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x 3(x >0),令g (x )=0,得m =-133+x (x >0).设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1).当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点,∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图象(如图),可知,①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点.综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.4.已知函数f (x )=ln x +1ax -1a,a ∈R 且a ≠0.(1)讨论函数f (x )的单调性;(2)当x ∈1e ,e时,试判断函数g (x )=(ln x -1)e x +x -m 的零点个数.4.解析(1)f ′(x )=ax -1ax 2(x >0),当a <0时,f ′(x )>0恒成立,∴函数f (x )在(0,+∞)上单调递增;当a >0时,由f ′(x )>0,得x >1a ;由f ′(x )<0,得0<x <1a ,∴函数f (x )综上所述,当a <0时,函数f (x )在(0,+∞)上单调递增;当a >0时,函数f (x )(2)∵当x ∈1e ,e时,函数g (x )=(ln x -1)e x +x -m 的零点,即当x ∈1e ,e时,方程(ln x -1)e x +x =m 的根.令h (x )=(ln x -1)e x +x ,则h ′(x )ln x -x+1.由(1)知当a =1时,f (x )=ln x +1x -1(1,e)上单调递增,∴当x ∈1e ,e 时,f (x )≥f (1)=0.∴1x+ln x -1≥0在x ∈1e ,e 上恒成立.∴h ′(x )ln x -x +1≥0+1>0,∴h (x )=(ln x -1)e x +x 在x ∈1e ,e上单调递增.∴h (x )min =2e 1e +1e,h (x )max =e.∴当m <-2e 1e+1e或m >e 时,函数g (x )在1e ,e 上没有零点;当-2e 1e+1e≤m ≤e 时,函数g (x )在1e ,e 上有且只有一个零点.5.设函数f (x )=e x -2a -ln(x +a ),a ∈R ,e 为自然对数的底数.(1)若a >0,且函数f (x )在区间[0,+∞)内单调递增,求实数a 的取值范围;(2)若0<a <23,试判断函数f (x )的零点个数.5.解析(1)∵函数f (x )在[0,+∞)内单调递增,∴f ′(x )=e x -1x +a≥0在[0,+∞)内恒成立.即a ≥e -x -x 在[0,+∞)内恒成立.记g (x )=e -x -x ,则g ′(x )=-e -x -1<0恒成立,∴g (x )在区间[0,+∞)内单调递减,∴g (x )≤g (0)=1,∴a ≥1,即实数a 的取值范围为[1,+∞).(2)∵0<a <23,f ′(x )=e x -1x +a (x >-a ),记h (x )=f ′(x ),则h ′(x )=e x +1(x +a )2>0,知f ′(x )在区间(-a ,+∞)内单调递增.又∵f ′(0)=1-1a <0,f ′(1)=e -1a +1>0,∴f ′(x )在区间(-a ,+∞)内存在唯一的零点x 0,即f ′(x 0)=0e x-1x 0+a =0,于是0e x=1x 0+a,x 0=-ln (x 0+a ).当-a <x <x 0时,f ′(x )<0,f (x )单调递减;当x >x 0时,f ′(x )>0,f (x )单调递增.∴f (x )min =f (x 0)=0e x -2a -ln (x 0+a )=1x 0+a -2a +x 0=x 0+a +1x 0+a-3a ≥2-3a ,当且仅当x 0+a =1时,取等号.由0<a <23,得2-3a >0,∴f (x )min =f (x 0)>0,即函数f (x )没有零点.6.已知函数f (x )=ln x -12ax 2(a ∈R ).(1)若f (x )在点(2,f (2))处的切线与直线2x +y +2=0垂直,求实数a 的值;(2)求函数f (x )的单调区间;(3)讨论函数f (x )在区间[1,e 2]上零点的个数.6.解析(1)f (x )=ln x -12ax 2的定义域为(0,+∞),f ′(x )=1x -ax =1-ax 2x ,则f ′(2)=1-4a2.因为直线2x +y +2=0的斜率为-2,所以(-2)×1-4a2=-1,解得a =0.(2)f ′(x )=1-ax 2x ,x ∈(0,+∞),当a ≤0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增;当a >0′(x )>0,>0得0<x <aa ;由f ′(x )<0得x >aa ,所以f (x )综上所述:当a ≤0时,f (x )的单调递增区间为(0,+∞);当a >0时,f (x )(3)由(2)可知,(ⅰ)当a <0时,f (x )在[1,e 2]上单调递增,而f (1)=-12a >0,故f (x )在[1,e 2]上没有零点.(ⅱ)当a =0时,f (x )在[1,e 2]上单调递增,而f (1)=-12a =0,故f (x )在[1,e 2]上有一个零点.(ⅲ)当a >0时,①若aa ≤1,即a ≥1时,f (x )在[1,e 2]上单调递减.因为f (1)=-12a <0,所以f (x )在[1,e 2]上没有零点.②若1<aa ≤e 2,即1e 4≤a <1时,f (x )在1,a a 上单调递增,在a a ,e 2上单调递减,而f (1)=-12a <0,f =-12ln a -12,f (e 2)=2-12a e 4,若f=-12ln a-12<0,即a>1e时,f(x)在[1,e2]上没有零点;若f=-12ln a-12=0,即a=1e时,f(x)在[1,e2]上有一个零点;若f=-12ln a-12>0,即a<1e时,由f(e2)=2-12a e4>0,得a<4e4,此时,f(x)在[1,e2]上有一个零点;由f(e2)=2-12a e4≤0,得a≥4e4,此时,f(x)在[1,e2]上有两个零点;③若aa≥e2,即0<a≤1e4时,f(x)在[1,e2]上单调递增,因为f(1)=-12a<0,f(e2)=2-12a e4>0,所以f(x)在[1,e2]上有一个零点.综上所述:当a<0或a>1e时,f(x)在[1,e2]上没有零点;当0≤a<4e4或a=1e时,f(x)在[1,e2]上有一个零点;当4e4≤a<1e时,f(x)在[1,e2]上有两个零点.。
函数的单调性与零点的求解

函数的单调性与零点的求解函数是数学中的重要概念,可以描述数值之间的关系。
函数的单调性和零点的求解是函数研究中的两个重要方面。
本文将围绕这两个主题展开讨论,分析其概念、性质以及求解方法。
一、函数的单调性函数的单调性是指函数在定义域内的取值随自变量的增减而增减的性质。
具体来说,如果函数的导数恒大于零(或恒小于零),则函数在该定义域内是递增(或递减)的。
我们可以通过以下步骤判断函数的单调性:1. 求导:首先对函数进行求导,得到函数的导函数。
2. 导函数的符号:判断导函数在定义域内的符号。
如果导函数恒大于零,则函数递增;如果导函数恒小于零,则函数递减。
3. 拐点与间断点:在定义域内,如果函数存在拐点或间断点,则函数的单调性会发生改变。
二、零点的求解函数的零点是指函数在定义域内,使得函数取零值的自变量值。
求解函数的零点可以采用以下方法:1. 试探法:通过尝试不同的自变量值,判断函数是否取零值。
这种方法适用于函数较为简单、定义域不太复杂的情况。
2. 图像法:绘制函数的图像,并观察函数与x轴的交点,即为函数的零点。
这种方法适用于函数的图像容易绘制的情况。
3. 迭代法:通过迭代计算的方式,逼近函数的零点。
常见的迭代方法包括二分法、牛顿法等。
4. 解方程法:将函数等式转化为方程,并求解方程,得到函数的零点。
这种方法适用于可以通过方程求解的函数。
三、实际应用函数的单调性和零点的求解在实际问题中有广泛的应用。
以经济学为例,通过分析边际成本和边际收益的关系,可以判断生产过程的单调性,并进而优化资源配置。
同时,通过求解方程或者利用迭代法,可以计算经济模型中的平衡点。
另外,在物理学中,通过研究函数的单调性可以了解物体运动的趋势和速度变化。
例如,当加速度恒大于零时,物体的运动是匀加速的;当加速度恒小于零时,物体的运动则是减速的。
零点的求解可以帮助我们找到物体的停止位置或平衡状态的条件。
总结函数的单调性和零点的求解是数学中重要而实用的内容。
零点存在性定理

零点存在性定理前⾔函数的零点对于函数y =f (x )(x ∈D ),把使得f (x )=0的实数x 叫做函数y =f (x )(x ∈D )的零点.简⾔之,零点不是点,是实数;零点是函数对应的⽅程f (x )=0的根。
有关零点的⼏个结论(1).若连续不断的函数f (x )在定义域上是单调函数,则f (x )⾄多有⼀个零点,也可能没有零点,⽐如f (x )=2x 单调递增,但没有零点。
(2).连续不断的函数,其相邻两个零点之间的所有函数值保持同号。
⽐如函数f (x )=−(x −1)⋅(x −2),在1<x <2时,函数值f (x )都是正值。
(3).连续不断的函数图象通过零点时,函数值可能变号,如y =x 3在零点x =0处两侧的函数值不同;也可能不变号,如y =x 2在零点x =0处两侧的函数值相同。
重要转化函数y =f (x )=h (x )−g (x )有零点[数的⾓度]⟺函数y =f (x )与x 轴有交点[形的⾓度]⟺⽅程f (x )=0有实根[数的⾓度]⟺函数y =h (x )与函数y =g (x )的图像有交点[形的⾓度]具体应⽤时务必注意对函数f (x )的有效拆分,⽐如函数f (x )=lnx −x +2,拆分为①h (x )=lnx 和g (x )=x −2,或者拆分为②h (x )=lnx −2和g (x )=x ,都⽐拆分为③h (x )=ln x −x 和g (x )=2要强的多。
当拆分为①②时,我们都可以轻松的画出其图像,但是拆分为③时,要画出函数h (x )的图像,就需要导数参与。
这时候,我们也就能理解有时候选择⽐努⼒更重要。
拆分原则:尽可能的拆分为我们学过的基本初等函数或初等函数,这样的拆分是上上策。
零点存在性定理如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的⼀条曲线,并且有f (a )⋅f (b )<0,那么,函数y =f (x )在区间(a ,b )内⾄少有⼀个零点,即⾄少存在⼀个c ∈(a ,b ),使得f (c )=0,这个c 也就是⽅程f (x )=0的根.定理的理解需要注意:①零点存在性定理的使⽤有两个条件必须同时具备,其⼀在区间[a ,b ]上连续,其⼆f (a )⋅f (b )<0,缺⼀不可;⽐如,函数f (x )=1x在区间[−1,1]上满⾜f (−1)⋅f (1)<0,但是其在区间[−1,1]没有零点,原因是不满⾜第⼀条;再⽐如函数f (x )=2x ,在区间[−1,1]上满⾜连续,但是其在区间[−1,1]没有零点,原因是不满⾜第⼆条;②零点存在性定理只能判断函数的变号零点,不能判断不变号零点。
函数单调性的判断或证明方法

函数单调性的判断或证明方法函数的单调性是指函数在定义域上的递增或递减的性质。
在数学中,我们通常使用以下方法来判断或证明函数的单调性:微分法、判别式法、几何意义法等。
接下来,我会分别详细介绍这些方法。
1.微分法:微分法是判断函数单调性的常用方法,它利用函数的导数来判断函数的增减性。
一个函数在区间上递增,等价于该函数在区间上的导数大于等于0;同理,一个函数在区间上递减,等价于该函数在区间上的导数小于等于0。
具体步骤如下:(1)首先,计算函数的导函数;(2)然后,求出导函数的零点(即求出导数为0的点);(3)最后,根据零点在定义域上的分布情况,判断函数的单调性。
举个例子,假设有函数f(x)=x^2,我们来判断其在定义域上的单调性。
首先,求导得到f'(x)=2x;然后,求出f'(x)=0时的解,即2x=0,解得x=0;最后,根据零点在定义域上的分布情况:当x<0时,f'(x)<0;当x>0时,f'(x)>0。
因此,函数f(x)=x^2在定义域上是递增的。
2.判别式法:判别式法是判断函数单调性的另一种方法,它利用函数的判别式,可以快速判断函数的单调性。
对于一元二次函数f(x) = ax^2 + bx + c,其中a ≠ 0,判断其单调性时,可以根据判别式Δ = b^2 - 4ac的正负性进行判断。
具体步骤如下:(1)首先,计算判别式Δ;(2)然后,根据Δ的正负性,判断函数的单调性:-当Δ>0时,函数在定义域上是先增后减或先减后增的;-当Δ=0时,函数在定义域上是单调递减或单调递增的;-当Δ<0时,函数在定义域上是单调递增或单调递减的。
举个例子,假设有函数f(x)=x^2-3x+2,我们来判断其在定义域上的单调性。
首先,计算判别式Δ=(-3)^2-4*1*2=1;然后,根据Δ>0,我们知道函数在定义域上是先增后减或先减后增的。
3.几何意义法:几何意义法是判断函数单调性的另一种方法,它通过分析函数的图像来判断函数的单调性。
函数的单调性求解技巧

函数的单调性求解技巧函数的单调性是指函数在定义域上的增减性质,也就是函数图像的上升或下降趋势。
在数学中,确定函数的单调性是解决不等式和优化问题的重要步骤。
本文将介绍一些常用的技巧和方法,帮助读者更好地求解函数的单调性。
一、导数法求解函数的单调性最常用的方法就是使用导数。
利用导数可以确定函数的增减性。
具体步骤如下:1.求函数的导数。
设函数为f(x),则求导得到f'(x)。
2.求出f'(x)的零点。
零点即为f(x)的增减区间的分界点。
3.根据f'(x)的正负确定f(x)的单调性。
当f'(x)>0时,f(x)在该区间上单调递增;当f'(x)<0时,f(x)在该区间上单调递减。
例如,求解函数f(x) = x^2 + 3x + 2的单调性:1.求导得到f'(x) = 2x + 3。
2.令f'(x) = 0,解得x = -3/2。
3.当x < -3/2时,f'(x) < 0,函数f(x)在该区间上单调递减;当x > -3/2时,f'(x) > 0,函数f(x)在该区间上单调递增。
二、二阶导数法除了使用一阶导数外,还可以通过二阶导数的正负确定函数的凹凸性,从而进一步确定函数的单调性。
1.求函数的二阶导数。
设函数为f(x),求导得到f''(x)。
2.求出f''(x)的零点。
零点即为f(x)的拐点。
3.根据f''(x)的正负确定f(x)的凹凸性。
当f''(x)>0时,f(x)在该区间上为凹函数,即函数图像上凹;当f''(x)<0时,f(x)在该区间上为凸函数,即函数图像下凸。
4.进一步根据一阶导数f'(x)的正负确定f(x的单调性。
当f''(x)>0且f'(x)>0时,f(x)在该区间上单调递增;当f''(x)>0且f'(x)<0时,f(x)在该区间上单调递减。
高考常考题- 函数的零点问题(含解析)

函数的零点问题一、题型选讲题型一 、运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。
作图与根分布综合的题目,其中作图是通过分析函数的单调性和关键点来进行作图,在作图的过程中还要注意渐近线的细节,从而保证图像的准确。
例1、(2019苏州三市、苏北四市二调)定义在R 上的奇函数f (x )满足f (x +4)=f (x ),且在区间[2,4)上⎩⎨⎧<≤-<≤-=43,432,2)(x x x x x f 则函数x x f y log 5)(-=的零点的个数为 例2、(2017苏锡常镇调研)若函数f (x )=⎩⎪⎨⎪⎧12x-1,x <1,ln xx 2,x ≥1,)则函数y =|f (x )|-18的零点个数为________.例3、【2018年高考全国Ⅲ卷理数】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________. 题型二、函数零点问题中参数的范围已知函数零点的个数,确定参数的取值范围,常用的方法和思路:(1) 直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2) 分离参数法:先将参数分离,转化成求函数值域问题加以解决,解法2就是此法.它的本质就是将函数转化为一个静函数与一个动函数的图像的交点问题来加以处理,这样就可以通过这种动静结合来方便地研究问题.(3) 数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图像,然后数形结合求解.例4、(2020届山东省枣庄、滕州市高三上期末)已知ln ,1()(2),1x x f x f x k x ≥⎧=⎨-+<⎩若函数()1y f x =-恰有一个零点,则实数k 的取值范围是( ) A .(1,)+∞B .[1,)+∞C .(,1)-∞D .(,1]-∞例5、(2020·全国高三专题练习(文))函数()()22log ,1,1,1,x x f x f x x ≥⎧=⎨+<⎩,若方程()2f x x m =-+有且只有两个不相等的实数根,则实数m 的取值范围是 ( ) A .(),4-∞B .(],4-∞C .()2,4-D .(]2,4-例6、【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是 A .1(,)(22,)2-∞-+∞ B .1(,)(0,22)2-∞-C .(,0)(0,22)-∞ D .(,0)(22,)-∞+∞例7、【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则A .a <–1,b <0B .a <–1,b >0C .a >–1,b <0D .a >–1,b >0例8、(2020·浙江学军中学高三3月月考)已知函数2(4),53()(2),3x x f x f x x ⎧+-≤<-=⎨-≥-⎩,若函数()()()1g x f x k x =-+有9个零点,则实数k 的取值范围是( )A .1111,,4664⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭B .1111,,3553⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭C .11,64⎛⎫⎪⎝⎭D .11,53⎛⎫ ⎪⎝⎭例9、(2020届浙江省杭州市第二中学高三3月月考)已知函数()()2,22,2,x f x f x x ≤<=-≥⎪⎩()2g x kx =+,若函数()()()F x f x g x =-在[)0,+∞上只有两个零点,则实数k 的值不可能为A .23- B .12-C .34-D .1-二、达标训练1、(2019·山东师范大学附中高三月考)函数()312xf x x ⎛⎫=- ⎪⎝⎭的零点所在区间为( ) A .()1,0-B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .()1,22、【2018年高考全国Ⅰ卷理数】已知函数()e 0ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)3、(2020届浙江省“山水联盟”高三下学期开学)已知,a b ∈R ,函数(),0(),0x x a e ax x f x x x ⎧++≤=⎨>⎩,若函数()y f x ax b =--恰有3个零点,则( ) A .1,0a b >>B .1,0a b ><C .1,0a b <>D .1,0a b <<4、(2020届山东实验中学高三上期中)设定义在R 上的函数()f x 满足()()2f x f x x -+=,且当0x ≤时,()f x x '<.己知存在()()()220111122x x f x x f x x ⎧⎫∈-≥---⎨⎬⎩⎭,且0x 为函数()x g x e a=-(,a R e ∈为自然对数的底数)的一个零点,则实数a 的取值可能是( ) A .12BC .2e D5、(2020届山东师范大学附中高三月考)已知函数(01)()2(1)x f x x x⎧<≤⎪=⎨>⎪⎩,若方程()f x x a =-+有三个不同的实根,则实数a 的取值范围是________.6、【2018年高考浙江】已知λ∈R ,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.7、【2020届江苏省南通市如皋市高三下学期二模】已知函数()222,01,03x x ax a x f x e ex a x x⎧++≤⎪=⎨-+>⎪⎩,若存在实数k ,使得函数()y f x k =-有6个零点,则实数a 的取值范围为__________.一、题型选讲题型一 、运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。
专题02 函数的零点个数问题、隐零点及零点赋值问题(学生版) -25年高考数学压轴大题必杀技系列导数

专题2 函数的零点个数问题、隐零点及零点赋值问题函数与导数一直是高考中的热点与难点,函数的零点个数问题、隐零点及零点赋值问题是近年高考的热点及难点,特别是隐零点及零点赋值经常成为导数压轴的法宝.(一) 确定函数零点个数1.研究函数零点的技巧用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合来解决.对于函数零点个数问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.但需注意探求与论证之间区别,论证是充要关系,要充分利用零点存在定理及函数单调性严格说明函数零点个数.2. 判断函数零点个数的常用方法(1)直接研究函数,求出极值以及最值,画出草图.函数零点的个数问题即是函数图象与x 轴交点的个数问题.(2)分离出参数,转化为a =g (x ),根据导数的知识求出函数g(x )在某区间的单调性,求出极值以及最值,画出草图.函数零点的个数问题即是直线y =a 与函数y =g (x )图象交点的个数问题.只需要用a 与函数g (x )的极值和最值进行比较即可.3. 处理函数y =f (x )与y =g (x )图像的交点问题的常用方法(1)数形结合,即分别作出两函数的图像,观察交点情况;(2)将函数交点问题转化为方程f (x )=g (x )根的个数问题,也通过构造函数y =f (x )-g (x ),把交点个数问题转化为利用导数研究函数的单调性及极值,并作出草图,根据草图确定根的情况.4.找点时若函数有多项有时可以通过恒等变形或放缩进行并项,有时有界函数可以放缩成常数,构造函数时合理分离参数,避开分母为0的情况.【例1】(2024届河南省湘豫名校联考高三下学期考前保温卷数)已知函数()()20,ex ax f x a a =¹ÎR .(1)求()f x 的极大值;(2)若1a =,求()()cos g x f x x =-在区间π,2024π2éù-êúëû上的零点个数.【解析】(1)由题易得,函数()2ex ax f x =的定义域为R ,又()()()22222e e 2e e e x xx xxax x ax ax ax ax f x ---===¢,所以,当0a >时,()(),f x f x ¢随x 的变化情况如下表:x(),0¥-0()0,22()2,¥+()f x ¢-0+0-()f x ]极小值Z极大值]由上表可知,()f x 的单调递增区间为()0,2,单调递减区间为()(),0,2,¥¥-+.所以()f x 的极大值为()()2420e af a =>.当a<0时,()(),f x f x ¢随x 的变化情况如下表:x(),0¥-0()0,22()2,¥+()f x ¢+0-0+()f x Z 极大值]极小值Z由上表可知,()f x 的单调递增区间为()(),0,2,¥¥-+,单调递减区间为()0,2.所以()f x 的极大值为()()000f a =<.综上所述,当0a >时,()f x 的极大值为24ea;当a<0时,()f x 的极大值为0.(2)方法一:当1a =时,()2e x xf x =,所以函数()()2cos cos e x xg x f x x x =-=-.由()0g x =,得2cos e xx x =.所以要求()g x 在区间π,2024π2éù-êúëû上的零点的个数,只需求()y f x =的图象与()cos h x x =的图象在区间π,2024π2éù-êúëû上的交点个数即可.由(1)知,当1a =时,()y f x =在()(),0,2,¥¥-+上单调递减,在()0,2上单调递增,所以()y f x =在区间π,02éù-êúëû上单调递减.又()cos h x x =在区间π,02éù-êúëû上单调递增,且()()()()()1e 1cos 11,001cos00f h f h -=>>-=-=<==,所以()2e x xf x =与()cos h x x =的图象在区间π,02éù-êúëû上只有一个交点,所以()g x 在区间π,02éù-êúëû上有且只有1个零点.因为当10a x =>,时,()20ex x f x =>,()f x 在区间()02,上单调递增,在区间()2,¥+上单调递减,所以()2e x xf x =在区间()0,¥+上有极大值()2421e f =<,即当1,0a x =>时,恒有()01f x <<.又当0x >时,()cos h x x =的值域为[]1,1-,且其最小正周期为2πT =,现考查在其一个周期(]0,2π上的情况,()2ex x f x =在区间(]0,2上单调递增,()cos h x x =在区间(]0,2上单调递减,且()()0001f h =<=,()()202cos2f h >>=,所以()cos h x x =与()2ex x f x =的图象在区间(]0,2上只有一个交点,即()g x 在区间(]0,2上有且只有1个零点.因为在区间3π2,2æùçúèû上,()()0,cos 0f x h x x >=£,所以()2e x xf x =与()cos h x x =的图象在区间3π2,2æùçúèû上无交点,即()g x 在区间3π2,2æùçúèû上无零点.在区间3π,2π2æùçúèû上,()2ex x f x =单调递减,()cos h x x =单调递增,且()()3π3π002π1cos2π2π22f h f h æöæö>><<==ç÷ç÷èøèø,,所以()cos h x x =与()2ex x f x =的图象在区间3π,2π2æùçúèû上只有一个交点,即()g x 在区间3π,2π2æùçúèû上有且只有1个零点.所以()g x 在一个周期(]0,2π上有且只有2个零点.同理可知,在区间(]()*2π,2π2πk k k +ÎN 上,()01f x <<且()2e xx f x =单调递减,()cos h x x =在区间(]2π,2ππk k +上单调递减,在区间(]2ππ,2π2πk k ++上单调递增,且()()()02π1cos 2π2πf k k h k <<==,()()()2ππ01cos 2ππ2ππf k k h k +>>-=+=+()()()02ππ1cos 2ππ2ππf k k h k <+<=+=+,所以()cos h x x =与()2ex x f x =的图象在区间(]2π,2ππk k +和2ππ,2π2π]k k ++(上各有一个交点,即()g x 在(]2π,2024π上的每一个区间(]()*2π,2π2πk k k +ÎN 上都有且只有2个零点.所以()g x 在0,2024π](上共有2024π220242π´=个零点.综上可知,()g x 在区间π,2024π2éù-êúëû上共有202412025+=个零点.方法二:当1a =时,()2e x xf x =,所以函数()()2cos cos ex x g x f x x x =-=-.当π,02éùÎ-êúëûx 时,()22sin 0e x x x g x x -=¢+£,所以()g x 在区间π,02éù-êúëû上单调递减.又()π0,002g g æö-><ç÷èø,所以存在唯一零点0π,02x éùÎ-êúëû,使得()00g x =.所以()g x 在区间π,02éù-êúëû上有且仅有一个零点.当π3π2π,2π,22x k k k æùÎ++ÎçúèûN 时,20cos 0ex x x ><,,所以()0g x >.所以()g x 在π3π2π,2π,22k k k æù++ÎçúèûN 上无零点.当π0,2x æùÎçèû时,()22sin 0exx x g x x -=¢+>,所以()g x 在区间π0,2æöç÷èø上单调递增.又()π00,g 02g æö<>ç÷èø,所以存在唯一零点.当*π2π,2π,2x k k k æùÎ+ÎçúèûN 时,()22sin exx x g x x ¢-=+,设()22sin e x x x x x j -=+,则()242cos 0exx x x x j -=+¢+>所以()g x ¢在*π2π,2π,2k k k æù+ÎçúèûN 上单调递增.又()π2π0,2π+02g k g k æö¢<>ç÷èø¢,所以存在*1π2π,2π,2x k k k æùÎ+ÎçúèûN ,使得()10g x ¢=.即当()12π,x k x Î时,()()10,g x g x <¢单调递减;当1π,2π2x x k æùÎ+çúèû时,()()10,g x g x >¢单调递增.又()π2π0,2π02g k g k æö<+>ç÷èø,所以()g x 在区间*π2π,2π,2k k k æù+ÎçúèûN 上有且仅有一个零点所以()g x 在区间π2π,2π,2k k k æù+ÎçúèûN 上有且仅有一个零点.当3π2π,2π2π,2x k k k æùÎ++ÎçúèûN 时,()22sin exx x g x x ¢-=+,设()22sin e x x x x x j -=+,则()242cos 0e xx x x x j -=+¢+>所以()g x ¢在3π2π,2π2π,2k k k æù++ÎçúèûN 上单调递增.又()3π2π0,2π2π02g k g k æö+<+<ç÷¢¢èø,所以()g x 在区间3π2π,2π2π,2k k k æù++ÎçúèûN 上单调递减:又()3π2π0,2π2π02g k g k æö+>+<ç÷èø,所以存在唯一23π2π,2π2π2x k k æöÎ++ç÷èø,使得()20g x =.所以()g x 在区间3π2π,2π2π,2k k k æù++ÎçúèûN 上有且仅有一个零点.所以()g x 在区间(]2π,2π2π,k k k +ÎN 上有两个零点.所以()g x 在(]0,2024π上共有2024π220242π´=个零点.综上所述,()g x 在区间π,2024π2éù-êúëû上共有202412025+=个零点.(二) 根据函数零点个数确定参数取值范围根据函数零点个数确定参数范围的两种方法1.直接法:根据零点个数求参数范围,通常先确定函数的单调性,根据单调性写出极值及相关端点值的范围,然后根据极值及端点值的正负建立不等式或不等式组求参数取值范围;2.分离参数法:首先分离出参数,然后利用求导的方法求出构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围,分离参数法适用条件:(1)参数能够分类出来;(2)分离以后构造的新函数,性质比较容易确定.【例2】(2024届天津市民族中学高三下学期5月模拟)已知函数()()ln 2f x x =+(1)求曲线()y f x =在=1x -处的切线方程;(2)求证:e 1x x ³+;(3)函数()()()2h x f x a x =-+有且只有两个零点,求a 的取值范围.【解析】(1)因为()12f x x ¢=+,所以曲线()y f x =在=1x -处的切线斜率为()11112f -==-+¢,又()()1ln 120f -=-+=,所以切线方程为1y x =+.(2)记()e 1x g x x =--,则()e 1xg x ¢=-,当0x <时,()0g x ¢<,函数()g x 在(),0¥-上单调递减;当0x >时,()0g x ¢>,函数()g x 在()0,¥+上单调递增.所以当0x =时,()g x 取得最小值()00e 10g =-=,所以()e 10xg x x =--³,即e 1x x ³+.(3)()()()()()2ln 22,2h x f x a x x a x x =-+=+-+>-,由题知,()()ln 220x a x +-+=有且只有两个不相等实数根,即()ln 22x a x +=+有且只有两个不相等实数根,令()()ln 2,22x m x x x +=>-+,则()()()21ln 22x m x x -+=+¢,当2e 2x -<<-时,()0m x ¢>,()m x 在()2,e 2--上单调递增;当e 2x >-时,()0m x ¢<,()m x 在()e 2,¥-+上单调递减.当x 趋近于2-时,()m x 趋近于-¥,当x 趋近于+¥时,()m x 趋近于0,又()1e 2ef -=,所以可得()m x 的图象如图:由图可知,当10ea <<时,函数()m x 的图象与直线y a =有两个交点,所以,a 的取值范围为10,e æöç÷èø.(三)零点存在性赋值理论及应用1.确定零点是否存在或函数有几个零点,作为客观题常转化为图象交点问题,作为解答题一般不提倡利用图象求解,而是利用函数单调性及零点赋值理论.函数赋值是近年高考的一个热点, 赋值之所以“热”, 是因为它涉及到函数领域的方方面面:讨论函数零点的个数(包括零点的存在性, 唯一性); 求含参函数的极值或最值; 证明一类超越不等式; 求解某些特殊的超越方程或超越不等式以及各种题型中的参数取值范围等,零点赋值基本模式是已知 f (a ) 的符号,探求赋值点 m (假定 m < a )使得 f (m ) 与 f (a ) 异号,则在 (m ,a ) 上存在零点.2.赋值点遴选要领:遴选赋值点须做到三个确保:确保参数能取到它的一切值; 确保赋值点 x 0 落在规定区间内;确保运算可行三个优先:(1)优先常数赋值点;(2)优先借助已有极值求赋值点;(3)优先简单运算.3.有时赋值点无法确定,可以先对解析式进行放缩,再根据不等式的解确定赋值点(见例2解法),放缩法的难度在于“度”的掌握,难度比较大.【例3】(2024届山东省烟台招远市高考三模)已知函数()()e x f x x a a =+ÎR .(1)讨论函数()f x 的单调性;(2)当3a =时,若方程()()()1f x x xm f x x f x -+=+-有三个不等的实根,求实数m 的取值范围.【解析】(1)求导知()1e xf x a =¢+.当0a ³时,由()1e 10xf x a ¢=+³>可知,()f x 在(),¥¥-+上单调递增;当a<0时,对()ln x a <--有()()ln 1e 1e0a xf x a a --=+>+×=¢,对()ln x a >--有()()ln 1e 1e 0a x f x a a --=+<+×=¢,所以()f x 在()(,ln a ¥ù---û上单调递增,在())ln ,a ¥é--+ë上单调递减.综上,当0a ³时,()f x 在(),¥¥-+上单调递增;当a<0时,()f x 在()(,ln a ¥ù---û上单调递增,在())ln ,a ¥é--+ë上单调递减.(2)当3a =时,()3e xf x x =+,故原方程可化为3e 13e 3e xx xx m x +=++.而()23e 13e 3e 3e 3e 3e 3e x x x x x x xx x x x x x x +-=-=+++,所以原方程又等价于()23e 3e xx x m x =+.由于2x 和()3e3e xxx +不能同时为零,故原方程又等价于()23e 3e x x xm x =×+.即()()2e 3e 90x x x m x m --×-×-=.设()e xg x x -=×,则()()1e xg x x -=-×¢,从而对1x <有()0g x ¢>,对1x >有()0g x ¢<.故()g x 在(],1-¥上递增,在[)1,+¥上递减,这就得到()()1g x g £,且不等号两边相等当且仅当1x =.然后考虑关于x 的方程()g x t =:①若0t £,由于当1x >时有()e 0xg x x t -=×>³,而()g x 在(],1-¥上递增,故方程()g x t =至多有一个解;而()110eg t =>³,()0e e t g t t t t --=×£×=,所以方程()g x t =恰有一个解;②若10e t <<,由于()g x 在(],1-¥上递增,在[)1,+¥上递减,故方程()g x t =至多有两个解;而由()()122222e2e e 2e 2e 12e 22x x x x xxx x g x x g g -------æö=×=×××=××£××=×ç÷èø有1222ln 1ln 222ln 2e2e t t g t t -×-æö£×<×=ç÷èø,再结合()00g t =<,()11e g t =>,()22ln 2ln 2e ln e 1t>>=,即知方程()g x t =恰有两个解,且这两个解分别属于()0,1和21,2ln t æöç÷èø;③若1t e=,则()11e t g ==.由于()()1g x g £,且不等号两边相等当且仅当1x =,故方程()g x t =恰有一解1x =.④若1e t >,则()()11eg x g t £=<,故方程()g x t =无解.由刚刚讨论的()g x t =的解的数量情况可知,方程()()2e 3e 90x x x m x m --×-×-=存在三个不同的实根,当且仅当关于t 的二次方程2390t mt m --=有两个不同的根12,t t ,且110,e t æöÎç÷èø,21,e t ¥æùÎ-çúèû.一方面,若关于t 的二次方程2390t mt m --=有两个不同的根12,t t ,且110,e t æöÎç÷èø,21,e t ¥æùÎ-çúèû,则首先有()20Δ93694m m m m <=+=+,且1212119e e m t t t -=£<.故()(),40,m ¥¥Î--È+, 219e m >-,所以0m >.而方程2390t mt m--=,两解符号相反,故只能1t =,2t =23e m >这就得到203e m ->³,所以22243e m m m æö->+ç÷èø,解得219e 3e m <+.故我们得到2109e 3em <<+;另一方面,当2109e 3e m <<+时,关于t 的二次方程2390t mt m --=有两个不同的根1t =,2t 22116e 13319e 3e 9e 3e 2et +×+×++===,2t 综上,实数m 的取值范围是210,9e 3e æöç÷+èø.(四)隐零点问题1.函数零点按是否可求精确解可以分为两类:一类是数值上能精确求解的,称之为“显零点”;另一类是能够判断其存在但无法直接表示的,称之为“隐零点”.2.利用导数求函数的最值或单调区间,常常会把最值问题转化为求导函数的零点问题,若导数零点存在,但无法求出,我们可以设其为0x ,再利用导函数的单调性确定0x 所在区间,最后根据()00f x ¢=,研究()0f x ,我们把这类问题称为隐零点问题. 注意若)(x f 中含有参数a ,关系式0)('0=x f 是关于a x ,0的关系式,确定0x 的合适范围,往往和a 的范围有关.【例4】(2024届四川省成都市实验外国语学校教育集团高三下学期联考)已知函数()e xf x =,()ln g x x =.(1)若函数()()111x h x ag x x +=---,a ÎR ,讨论函数()h x 的单调性;(2)证明:()()()()1212224x f x f x g x -->-.(参考数据:45e 2.23»,12e 1.65»)【解析】(1)由题意()()1ln 1,11x h x a x x x +=-->-,所以()()22,11ax a h x x x -+¢=>-,当0a =时,()0h x ¢>,所以()h x 在()1,+¥上为增函数;当0a ¹时,令()0h x ¢=得21x a=-,所以若0a >时,211a-<,所以()0h x ¢>,所以()h x 在()1,+¥上为增函数,若0<a 时,211a ->,且211x a<<-时,()0h x ¢>,21x a >-时,()0h x ¢<,所以()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数,综上:当0a ³时,()h x 在()1,+¥上为增函数,当0<a 时,()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数;(2)()()()()1212224x f x f x g x -->-等价于()2121e e 2ln 204x x x x ---+>,设()()2121e e 2ln 24x x F x x x =---+,则()()()222e 2e 12e e 2e e x x x x x x x x x x F x x x x x-+--¢=--==,因为0x >,所以e 10x x +>,设()e 2x x x j =-,则()()10e xx x j ¢=+>,则()x j 在()0,¥+上单调递增,而()4544e 20,1e 2055j j æö=-<=->ç÷èø,所以存在04,15x æöÎç÷èø,使()00x j =,即00e 2xx =,所以00ln ln 2x x +=,即00ln ln 2x x =-,当00x x <<时,()0F x ¢<,则()F x 在()00,x 上单调递减,当0x x >时,()0F x ¢>,则()F x 在()0,x +¥上单调递增,所以()()00200min 121e e 2ln 24x x F x x x =---+()000220001421212ln 22222ln 224x x x x x x =---++=-+-+,设()21422ln 22,15m t t t t æö=-+-+<<ç÷èø,则()3220m t t ¢=+>,则()m t 在4,15æöç÷èø上单调递增,42581632ln 222ln 20516580m æö=-+-+=->ç÷èø,则()min 0F x >,则不等式()2121e e 2ln 204x x x x ---+>恒成立,即不等式()()()()1212224x f x f x g x -->-成立.【例1】(2024届山西省晋中市平遥县高考冲刺调研)已知函数()πln sin sin 10f x x x =++.(1)求函数()f x 在区间[]1,e 上的最小值;(2)判断函数()f x 的零点个数,并证明.【解析】(1)因为()πln sin sin 10f x x x =++,所以1()cos f x x x ¢=+,令()1()cos g x f x x x ==+¢,()21sin g x x x-¢=-,当[]1,e Îx 时,()21sin 0g x x x =--<¢,所以()g x 在[]1,e 上单调递减,且()11cos10g =+>,()112π11e cos e<cos 0e e 3e 2g =++=-<,所以由零点存在定理可知,在区间[1,e]存在唯一的a ,使()()0g f a a =¢=又当()1,x a Î时,()()0g x f x =¢>;当(),e x a Î时,()()0g x f x =¢<;所以()f x 在()1,x a Î上单调递增,在(),e x a Î上单调递减,又因为()ππ1ln1sin1sinsin1sin 1010f =++=+,()()ππe ln e sin e sin1sin e sin 11010f f =++=++>,所以函数()f x 在区间[1,e]上的最小值为()π1sin1sin10f =+.(2)函数()f x 在()0,¥+上有且仅有一个零点,证明如下:函数()πln sin sin 10f x x x =++,()0,x ¥Î+,则1()cos f x x x¢=+,若01x <£,1()cos 0f x x x+¢=>,所以()f x 在区间(]0,1上单调递增,又()π1sin1sin010f =+>,11πππ1sin sin 1sin sin 0e e 1066f æö=-++<-++=ç÷èø,结合零点存在定理可知,()f x 在区间(]0,1有且仅有一个零点,若1πx <£,则ln 0,sin 0x x >³,πsin010>,则()0f x >,若πx >,因为ln ln π1sin x x >>³-,所以()0f x >,综上,函数()f x 在()0,¥+有且仅有一个零点.【例2】(2024届江西省九江市高三三模)已知函数()e e (ax axf x a -=+ÎR ,且0)a ¹.(1)讨论()f x 的单调性;(2)若方程()1f x x x -=+有三个不同的实数解,求a 的取值范围.【解析】(1)解法一:()()e eax axf x a -=-¢令()()e e ax axg x a -=-,则()()2e e0ax axg x a -+¢=>()g x \在R 上单调递增.又()00,g =\当0x <时,()0g x <,即()0f x ¢<;当0x >时,()0g x >,即()0f x ¢>()f x \在(),0¥-上单调递减,在()0,¥+上单调递增.解法二:()()()()e 1e 1e e e ax ax ax ax axa f x a -+-=-=¢①当0a >时,由()0f x ¢<得0x <,由()0f x ¢>得0x >()f x \在(),0¥-上单调递减,在()0,¥+上单调递增②当0a <时,同理可得()f x 在(),0¥-上单调递减,在()0,¥+上单调递增.综上,当0a ¹时,()f x 在(),0¥-上单调递减,在()0,¥+上单调递增.(2)解法一:由()1f x x x -=+,得1e e ax ax x x --+=+,易得0x >令()e e x xh x -=+,则()()ln h ax h x =又()e e x xh x -=+Q 为偶函数,()()ln h ax h x \=由(1)知()h x 在()0,¥+上单调递增,ln ax x \=,即ln xa x=有三个不同的实数解.令()()2ln 1ln ,x x m x m x x x -=¢=,由()0m x ¢>,得0e;x <<由()0m x ¢<,得e x >,()m x \在(]0,e 上单调递增,在()e,¥+上单调递减,且()()110,e em m ==()y m x \=在(]0,1上单调递减,在(]1,e 上单调递增,在()e,¥+上单调递减当0x →时,()m x ¥→+;当x →+¥时,()0m x →,故10ea <<解得10e a -<<或10e a <<,故a 的取值范围是11,00,e e æöæö-Èç÷ç÷èøèø解法二:由()1f x x x -=+得1e e ax ax x x --+=+,易得0x >令()1h x x x -=+,则()h x 在()0,1上单调递减,在()1,¥+上单调递增.由()()e axh h x =,得e ax x =或1e ax x -=两边同时取以e 为底的对数,得ln ax x =或ln ax x =-,ln ax x \=,即ln xa x=有三个不同的实数解下同解法一.【例3】(2024届重庆市第一中学校高三下学期模拟预测)已知函数31()(ln 1)(0)f x a x a x =++>.(1)求证:1ln 0x x +>;(2)若12,x x 是()f x 的两个相异零点,求证:211x x -<【解析】(1)令()1ln ,(0,)g x x x x =+Î+¥,则()1ln g x x ¢=+.令()0g x ¢>,得1ex >;令()0g x ¢<,得10e x <<.所以()g x 在10,e æöç÷èø上单调递减,在1,e ¥æö+ç÷èø上单调递增.所以min 11()10e e g x g æö==->ç÷èø,所以1ln 0x x +>.(2)易知函数()f x 的定义域是(0,)+¥.由()(ln f x a x =+,可得()a f x x ¢=.令()0f x ¢>得x >()0f x ¢<得0<所以()0f x ¢>在æççè上单调递减,在¥ö+÷÷ø上单调递增,所以min 3()ln 333a a f x f a æö==++ç÷èø.①当3ln 3033a aa æö++³ç÷èø,即403e a <£时,()f x 至多有1个零点,故不满足题意.②当3ln 3033a a a æö++<ç÷èø,即43e a >1<<.因为()f x 在¥ö+÷÷ø上单调递增,且(1)10f a =+>.所以(1)0f f ×<,所以()f x 在¥ö+÷÷ø上有且只有1个零点,不妨记为1x 11x <<.由(1)知ln 1x x>-,所以33221(1)0f a a a a a æö=+>+=>ç÷ç÷èø.因为()f x 在æççè0f f <×<,所以()f x 在æççè上有且只有1个零点,记为2x 2x <<211x x <<<<2110x x -<-<.同理,若记12,x x öÎÎ÷÷ø则有2101x x <-<综上所述,211x x -<.【例4】(2022高考全国卷乙理)已知函数()()ln 1e xf x x ax -=++(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若()f x 在区间()()1,0,0,-+¥各恰有一个零点,求a 取值范围.的【解析】(1)当1a =时,()ln(1),(0)0e xxf x x f =++=,所以切点为(0,0),11(),(0)21ex xf x f x -¢¢=+=+,所以切线斜率为2所以曲线()y f x =在点(0,(0))f 处的切线方程为2y x =.(2)()ln(1)e x ax f x x =++,()2e 11(1)()1e (1)ex x xa x a x f x x x +--¢=+=++,设()2()e 1xg x a x=+-1°若0a >,当()2(1,0),()e 10x x g x a x Î-=+->,即()0f x ¢>所以()f x 在(1,0)-上单调递增,()(0)0f x f <=故()f x 在(1,0)-上没有零点,不合题意,2°若10a -……,当,()0x Î+¥时,()e 20xg x ax ¢=->所以()g x 在(0,)+¥上单调递增,所以()(0)10g x g a >=+…,即()0f x ¢>所以()f x 在(0,)+¥上单调递增,()(0)0f x f >=,故()f x 在(0,)+¥上没有零点,不合题意.3°若1a <-,(1)当,()0x Î+¥,则()e 20x g x ax ¢=->,所以()g x 在(0,)+¥上单调递增,(0)10,(1)e 0g a g =+<=>,所以存在(0,1)m Î,使得()0g m =,即()0¢=f m .当(0,),()0,()x m f x f x ¢Î<单调递减,当(,),()0,()x m f x f x ¢Î+¥>单调递增,所以当(0,),()(0)0x m f x f Î<=,当,()x f x →+¥→+¥,所以()f x 在(,)m +¥上有唯一零点,又()f x 在(0,)m 没有零点,即()f x 在(0,)+¥上有唯一零点,(2)当()2(1,0),()e 1xx g x a xÎ-=+-,()e2xg x ax ¢=-,设()()h x g x ¢=,则()e 20x h x a ¢=->,所以()g x ¢在(1,0)-上单调递增,1(1)20,(0)10eg a g ¢¢-=+<=>,所以存(1,0)n Î-,使得()0g n ¢=当(1,),()0,()x n g x g x ¢Î-<单调递减当(,0),()0,()x n g x g x ¢Î>单调递增,()(0)10g x g a <=+<,在又1(1)0eg -=>,所以存在(1,)t n Î-,使得()0g t =,即()0f t ¢=当(1,),()x t f x Î-单调递增,当(,0),()x t f x Î单调递减有1,()x f x →-→-¥而(0)0f =,所以当(,0),()0x t f x Î>,所以()f x 在(1,)t -上有唯一零点,(,0)t 上无零点,即()f x 在(1,0)-上有唯一零点,所以1a <-,符合题意,综上得()f x 在区间(1,0),(0,)-+¥各恰有一个零点,a 的取值范围为(,1)-¥-.【例5】(2024届辽宁省凤城市高三下学期考试)已知函数()1e ln xf x x x x -=--.(1)求函数()f x 的最小值;(2)求证:()()1e e e 1ln 2xf x x x +>---éùëû.【解析】(1)因为函数()1e ln x f x x x x -=--,所以()()()11111e 11e x x f x x x x x --æö=+--=+-çè¢÷ø,记()11e,0x h x x x -=->,()121e 0x h x x-¢=+>,所以()h x 在()0,¥+上单调递增,且()10h =,所以当01x <<时,()0h x <,即()0f x ¢<,所以()f x 在()0,1单调递减;当1x >时,()0h x >,即()0f x ¢>,所以()f x 在()1,¥+单调递增,且()10f ¢=,所以()()min 10f x f ==.(2)要证()()1e e e 1ln 2xf x x x éù+>---ëû,只需证明:()11e ln 02xx x --+>对于0x >恒成立,令()()11e ln 2xg x x x =--+,则()()1e 0xg x x x x¢=->,当0x >时,令1()()e xm x g x x x=¢=-,则21()(1)e 0xm x x x =+¢+>,()m x 在(0,)+¥上单调递增,即()1e xg x x x=¢-在(0,)+¥上为增函数,又因为222333223227e e033238g éùæöæöêú=-=-<ç÷ç÷êøøëû¢úèè,()1e 10g =¢->,所以存在02,13x æöÎç÷èø使得()00g x ¢=,由()0200000e 11e 0x x x g x x x x ¢-=-==,得020e 1xx =即0201x e x =即0201x e x =即002ln x x -=,所以当()00,x x Î时,()1e 0xg x x x=¢-<,()g x 单调递减,当()0,x x ¥Î+时,()1e 0xg x x x=¢->,()g x 单调递增,所以()()()0320000000022min0122111e ln 2222x x x x x x g x g x x x x x -++-==--+=++=,令()3222213x x x x x j æö=++-<<ç÷èø,则()22153223033x x x x j æö=++=++>ç÷èø¢,所以()x j 在2,13æöç÷èø上单调递增,所以()0220327x j j æö>=>ç÷èø,所以()()()002002x g x g x x j ³=>,所以()11e ln 02xx x --+>,即()()1e e e 1ln 2xf x x x éù+>---ëû.1.(2024届湖南省长沙市第一中学高考最后一卷)已知函数()()e 1,ln ,xf x xg x x mx m =-=-ÎR .(1)求()f x 的最小值;(2)设函数()()()h x f x g x =-,讨论()hx 零点的个数.2.(2024届河南省信阳市高三下学期三模)已知函数()()()ln 1.f x ax x a =--ÎR (1)若()0f x ³恒成立,求a 的值;(2)若()f x 有两个不同的零点12,x x ,且21e 1x x ->-,求a 的取值范围.3.(2024届江西省吉安市六校协作体高三下学期5月联考)已知函数()()1e x f x ax a a -=--ÎR .(1)当2a =时,求曲线()y f x =在1x =处的切线方程;(2)若函数()f x 有2个零点,求a 的取值范围.4.(2024届广东省茂名市高州市高三第一次模拟)设函数()e sin x f x a x =+,[)0,x Î+¥.(1)当1a =-时,()1f x bx ³+在[)0,¥+上恒成立,求实数b 的取值范围;(2)若()0,a f x >在[)0,¥+上存在零点,求实数a 的取值范围.5.(2024届河北省张家口市高三下学期第三次模)已知函数()ln 54f x x x =+-.(1)求曲线()y f x =在点(1,(1))f 处的切线方程;(2)证明:3()25f x x>--.6.(2024届上海市格致中学高三下学期三模)已知()e 1xf x ax =--,a ÎR ,e 是自然对数的底数.(1)当1a =时,求函数()y f x =的极值;(2)若关于x 的方程()10f x +=有两个不等实根,求a 的取值范围;(3)当0a >时,若满足()()()1212f x f x x x =<,求证:122ln x x a +<.7.(2024届河南师范大学附属中学高三下学期最后一卷)函数()e 4sin 2x f x x l l =-+-的图象在0x =处的切线为3,y ax a a =--ÎR .(1)求l 的值;(2)求()f x 在(0,)+¥上零点的个数.8.(2024年天津高考数学真题)设函数()ln f x x x =.(1)求()f x 图象上点()()1,1f 处的切线方程;(2)若()(f x a x ³在()0,x Î+¥时恒成立,求a 的值;(3)若()12,0,1x x Î,证明()()121212f x f x x x -£-.9.(2024届河北省高三学生全过程纵向评价六)已知函数()ex axf x =,()sin cosg x x x =+.(1)当1a =时,求()f x 的极值;(2)当()0,πx Î时,()()f x g x £恒成立,求a 的取值范围.10.(2024届四川省绵阳南山中学2高三下学期高考仿真练)已知函数()()1ln R f x a x x a x=-+Î.(1)讨论()f x 的零点个数;(2)若关于x 的不等式()22ef x x £-在()0,¥+上恒成立,求a 的取值范围.11.(2024届四川省成都石室中学高三下学期高考适应性考试)设()21)e sin 3x f x a x =-+-((1)当a =()f x 的零点个数.(2)函数2()()sin 22h x f x x x ax =--++,若对任意0x ³,恒有()0h x >,求实数a 的取值范围12.(2023届云南省保山市高三上学期期末质量监测)已知函数()2sin f x ax x =-.(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)当0x >时,()cos f x ax x ³恒成立,求实数a 的取值范围.13.(2024届广东省揭阳市高三上学期开学考试)已知函数()()212ln 1R 2f x x mx m =-+Î.(1)当1m =时,证明:()1f x <;(2)若关于x 的不等式()()2f x m x <-恒成立,求整数m 的最小值.14.(2023届黑龙江省哈尔滨市高三月考)设函数(1)若,,求曲线在点处的切线方程;(2)若,不等式对任意恒成立,求整数k 的最大值.15.(2023届江苏省连云港市高三学情检测)已知函数.(1)判断函数零点的个数,并证明;(2)证明:.322()33f x x ax b x =-+1a =0b =()y f x =()()1,1f 0a b <<1ln 1x k f f x x +æöæö>ç÷ç÷-èøèø()1,x Î+¥21()e xf x x=-()f x 2e ln 2cos 0x x x x x --->。
高中数学讲义:函数零点的个数问题

函数零点的个数问题一、知识点讲解与分析:1、零点的定义:一般地,对于函数()()y f x x D =Î,我们把方程()0f x =的实数根x 称为函数()()y f x x D =Î的零点2、函数零点存在性定理:设函数()f x 在闭区间[],a b 上连续,且()()0f a f b <,那么在开区间(),a b 内至少有函数()f x 的一个零点,即至少有一点()0,x a b Î,使得()00f x =。
(1)()f x 在[],a b 上连续是使用零点存在性定理判定零点的前提(2)零点存在性定理中的几个“不一定”(假设()f x 连续)① 若()()0f a f b <,则()f x 的零点不一定只有一个,可以有多个② 若()()0f a f b >,那么()f x 在[],a b 不一定有零点③ 若()f x 在[],a b 有零点,则()()f a f b 不一定必须异号3、若()f x 在[],a b 上是单调函数且连续,则()()()0f a f b f x <Þ在(),a b 的零点唯一4、函数的零点,方程的根,两图像交点之间的联系设函数为()y f x =,则()f x 的零点即为满足方程()0f x =的根,若()()()f x g x h x =-,则方程可转变为()()g x h x =,即方程的根在坐标系中为()(),g x h x 交点的横坐标,其范围和个数可从图像中得到。
由此看来,函数的零点,方程的根,两图像的交点这三者各有特点,且能相互转化,在解决有关根的问题以及已知根的个数求参数范围这些问题时要用到这三者的灵活转化。
(详见方法技巧)二、方法与技巧:1、零点存在性定理的应用:若一个方程有解但无法直接求出时,可考虑将方程一边构造为一个函数,从而利用零点存在性定理将零点确定在一个较小的范围内。
例如:对于方程ln 0x x +=,无法直接求出根,构造函数()ln f x x x =+,由()110,02f f æö><ç÷èø即可判定其零点必在1,12æöç÷èø中2、函数的零点,方程的根,两函数的交点在零点问题中的作用(1)函数的零点:工具:零点存在性定理作用:通过代入特殊值精确计算,将零点圈定在一个较小的范围内。
高三数学函数零点的判定定理知识点

⾼三数学函数零点的判定定理知识点 函数零点问题是⾼等数学中的重要问题,⾼中数学课程中有基本的介绍,下⾯是店铺给⼤家带来的⾼三数学函数零点的判定定理知识点,希望对你有帮助。
⾼三数学函数零点的判定定理知识点(⼀) 函数零点存在性定理: ⼀般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的⼀条曲线,并且有f(a)。
f(b)<o,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=O,这个c也就是f(x)=0的根。
特别提醒:(1)根据该定理,能确定f(x)在(a,b)内有零点,但零点不⼀定唯⼀。
(2)并不是所有的零点都可以⽤该定理来确定,也可以说不满⾜该定理的条件,并不能说明函数在(a,b)上没有零点,例如,函数f(x) =x2-3x +2有f(0)·f(3)>0,但函数f(x)在区间(0,3)上有两个零点。
(3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a)。
f(b)<0,则fx)在(a,b)上有唯⼀的零点。
函数零点个数的判断⽅法: (1)⼏何法:对于不能⽤求根公式的⽅程,可以将它与函数y =f(x)的图象联系起来,并利⽤函数的性质找出零点。
特别提醒:①“⽅程的根”与“函数的零点”尽管有密切联系,但不能混为⼀谈,如⽅程x2-2x +1 =0在[0,2]上有两个等根,⽽函数f(x)=x2-2x +1在[0,2]上只有⼀个零点 ②函数的零点是实数⽽不是数轴上的点。
(2)代数法:求⽅程f(x)=0的实数根。
⾼三数学函数零点的判定定理知识点(⼆) 判断函数零点个数的常⽤⽅法 (1)解⽅程法:令f(x)=0,如果能求出解,则有⼏个解就有⼏个零点。
(2)零点存在性定理法:利⽤定理不仅要判断函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点。
函数单调性的判定方法最全

函数单调性的判定方法最全函数的单调性是描述函数在整个定义域上的增减趋势的特性。
判定函数单调性是数学分析中的重要内容之一,对于函数的应用和推导都有着重要的影响。
本文将介绍函数单调性的判定方法,包括函数的基本概念、单调函数的定义、单调性的判定方法以及一些特殊函数的单调性判定。
一、函数的基本概念函数是一种特殊的关系,用于将一个集合中的元素与另一个集合中的元素进行对应。
函数通常用f(x)表示,其中x是自变量,f(x)是因变量。
二、单调函数的定义单调函数是指函数在定义域上的取值随自变量的增大而单调增加(或单调减少)的函数。
具体来说,如果对于定义域上的任意两个数a和b,若a<b,则有f(a)≤f(b)(或f(a)≥f(b)),则函数f(x)称为递增函数(或递减函数)。
三、单调性的判定方法1.导数判定法:对于可导函数,通过计算导数可以判断函数的单调性。
如果函数的导数恒大于零,则函数单调递增;如果导数恒小于零,则函数单调递减。
2.一阶导数和二阶导数判定法:如果函数在定义域上的一阶导数恒大于零(或恒小于零),而二阶导数恒小于零(或恒大于零),则函数单调递增(或递减)。
3.函数值比较法:对于定义域上的两个不同的数a和b,如果f(a)>f(b),则函数单调递增;如果f(a)<f(b),则函数单调递减。
4.零点判定法:如果函数在定义域上恒大于零(或恒小于零),则函数单调递增(或递减)。
5.不等式判定法:对于定义域上的任意两个数a和b,如果对于任意x∈[a,b],有f'(x)≥0,则函数单调递增;如果对于任意x∈[a,b],有f'(x)≤0,则函数单调递减。
四、特殊函数的单调性判定1.幂函数:当指数n为正偶数时,函数在整个定义域上单调递增;当指数n为负偶数时,函数在整个定义域上单调递减;当指数n为正奇数时,函数在整个定义域上单调递增;当指数n为负奇数时,函数在整个定义域上单调递减。
2.指数函数:当底数a大于1时,函数在整个定义域上单调递增;当底数a大于0且小于1时,函数在整个定义域上单调递减。