《实际问题与二次函数》教学设计

合集下载

初中数学教学课例《实际问题与二次函数》课程思政核心素养教学设计及总结反思

初中数学教学课例《实际问题与二次函数》课程思政核心素养教学设计及总结反思

最小值。
本节课是学生学习了二次函数的图像与性质后,把
实际问题转化为数学问题,二次函数化为顶点式后(或
学生学习能 者用公式法),很容易求出最大或者最小值,从而把数
力分析 学知识运用于实践,即是否把实际问题表示为二次函
数,是否能利用二次函数的知识解决实际问题,并对结
果进行解释
教学策略选
情境法,引导法,问题法,练习法
高效的学习有着重要的意义。
本节课中关键的问题就是如何使学生把实际问题 转化为数学问题,二次函数化为顶点式后,很容易求出 最大(或最小)值,从而把数学知识运用于实践,即是 否把实际问题表示为二次函数,是否能利用二次函数的 知识解决实际问题,并对结果进行解释 课例研究综
就是要“把课堂还给学生,让课堂充满活力”;“把 述
创造还给教师,使教育充满智慧”;“把世界引进教室, 使课堂成为现实社会的组成部分”,这是华东师大叶澜 教授几年前说过的话。这让我想起亚里士多德的一句名 言:“告诉我的我会忘记,给我看的我会记住,让我参 与的我会理解。”这句话启示我们,学生参与对于真正
初中数学教学课例《实际问题与二次函数》教学设计及总结 反思
学科
初中数学
教学课例名
《实际问题与二次函数》

内容运用二次函数求实际问题中的最大值或最小
教材分析 值。重难点:探究利用二次函数的最大值(或最小值)
解决实际问题的方法.

1.学生能够分析和表示实际问题中变量之间的二
次函数关系 教学目标
2.学生会运用二次函数求实际问题中的最大值或
择与设计
学生独立思考,并抽学生回答。让学生先独立思考, 教学过程
若有困难,教师给予帮助分析理解
学生说出解题思路,学生先写出证明过程 最后教师板书解题过程。分析:先写出 S 与 L 的函 数关系式,再求出使 S 最大的 L 值。 矩形场地的周长是 60m,一边长为 L,则另一边长 为,场地面积 S= .化简得 s= 画出这个函数的图像. 教师与学生共同分析,寻找解决问题的方法,培养 学生的探索精神,让学生初步感受数学的使用价值. 学生练习,教师点评 学生回顾、讨论回答并谈自己对本堂课的收获

人教版九年级上册22.3实际问题与二次函数(最大利润问题)教案教学设计

人教版九年级上册22.3实际问题与二次函数(最大利润问题)教案教学设计
4.练习:布置一定数量的练习题,巩固学生对最大利润问题的解决方法。
5.总结:对本节课的内容进行总结,强调二次函数在实际问题中的应用。
6.课后作业:布置与最大利润问题相关的作业,让学生在课后进一步巩固所学知识。
教学评价:
1.课堂表现:关注学生在课堂上的参与程度,积极思考、提问的表现。
2.作业完成情况:评价学生对最大利润问题解决方法的掌握程度。
(2)鼓励学生尝试用不同的方法解决同一问题,提高他们的思维灵活性和创新意识。
3.拓展作业:
(1)引导学生关注生活中的最大利润问题,如超市促销、工厂生产等,要求学生运用所学知识进行分析,并提出解决方案。
(2)鼓励学生查找相关资料,了解二次函数在其他领域的应用,如经济学、管理学等。
4.作业要求:
(1)要求学生在作业本上规范书写,保持卷面整洁。
4.通过对最大利润问题的探讨,培养学生的数感和运用数学知识解决实际问题的能力。
(二)过程与方法
1.通过小组合作、讨论交流等形式,培养学生合作探究、解决问题的能力。
2.引导学生运用数学建模的思想,从实际问题中抽象出数学模型,提高学生的数学思维能力。
3.运用数形结合的方法,让学生在解决最大利润问题的过程中,深入理解二次函数的性质和图像。
(2)新课:讲解二次函数在实际问题中的应用,通过例题让学生体会最大利润问题的解决方法。
(3)练习:设计不同难度的练习题,让学生在解决最大利润问题的过程中,巩固所学知识。
(4)总结:对本节课的重点知识进行总结,强调二次函数在实际问题中的应用。
3.教学策略:
(1)关注学生的个体差异,实施分层教学,使每个学生都能在原有基础上得到提高。
三、教学重难点和教学设想
(一)教学重难点

九年级数学上册《实际问题与二次函数》教案、教学设计

九年级数学上册《实际问题与二次函数》教案、教学设计
3.案例分析,总结方法
4.巩固练习,拓展提高
设计具有梯度的练习题,让学生在掌握基本知识的基础上,逐步提高解决问题的能力。同时,布置拓展提高题,激发学生的创新思维,培养其数学素养。
5.反思评价,促进成长
在教学过程中,注重引导学生进行自我反思,评价自己在解决问题过程中的表现。教师应及时给予反馈,肯定学生的优点,指出不足,促进学生不断成长。
四、教学内容与过程
(一)导入新课,500字
在导入新课环节,我将利用生活中的实例来激发学生的兴趣,引导他们思考实际问题与二次函数之间的联系。我会向学生展示一个抛物线形状的拱桥图片,并提出问题:“同学们,你们知道这座拱桥的最大高度是多少吗?我们如何运用二次函数来求解这个问题?”通过这个问题,让学生感受到数学与生活的紧密联系,激发他们的探究欲望。
二、学情分析
九年级的学生已经具备了一定的数学基础和逻辑思维能力,他们已经掌握了二次函数的基本概念、性质和图像,能够解决一些简单的二次函数问题。但在实际问题与二次函数的结合上,学生可能还存在以下问题:一是将实际问题转化为数学模型的能力不足,二是运用二次函数解决实际问题时,缺乏对问题深入分析的能力。此外,部分学生对数学学习的兴趣和自信心有待提高。针对这些情况,教师应注重以下几点:1.引导学生从实际问题中发现数学问题,培养其数学建模能力;2.设计具有挑战性的问题,激发学生的探究欲望,提高其解决问题的能力;3.创设轻松愉快的学习氛围,鼓励学生积极参与,增强其学习数学的自信心。通过有针对性的教学策略,使学生在掌握知识的同时,提高解决问题的能力和学习兴趣。
4.培养学生团结协作、互相帮助的精神,使其在合作中成长,体验团队的力量。
本章节教学设计以实际问题为载体,以二次函数为主线,引导学生运用数学知识解决生活中的问题。在教学过程中,注重培养学生的独立思考、合作交流、创新实践能力,使其在掌握知识的同时,提高综合素质。通过本章节的学习,使学生认识到数学在生活中的重要作用,激发学生学习数学的兴趣,为学生的终身发展奠定基础。

实际问题与二次函数教案

实际问题与二次函数教案

实际问题与二次函数一、学习目标·重点难点1、初步让学生学会用二次函数知识解决实际问题。

2、在问题转化,建摸的过程中,发展合情推理,体会数形结合的思想。

3、通过实际问题,体验数学在生活实际的广泛运用,发展数学思维,激发学生学习热情。

教学重点:用二次函数的知识解决实际问题。

教学难点:建立二次函数数学模型。

教学方法:引导、启发式教学,学生自主学习,合作探索。

二、直击考试·例题解析例1:我们班小红家开了一个商店,某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件,已知该商品的进价为每件40元,如何定价才能使小红的爸爸获得利润最大?分析:1、如何确定函数关系式?2、每件的利润=售价—进价总利润=每件的利润×卖出的总件数3、变量x有范围要求吗?解:调整价格包括涨价和降价两种情况(1)设每件涨价x元,则每件的利润为(60+x-40)元,可卖的商品的件数为(300-10x),此时每星期商品的利润为y元,于是有y=(60+x-40)(300-10x)=-10x2+100x+6000=-10(x-5)2+6250 (其中0≤x≤30)∴当x=5时,y最大=6250元所以在涨价的情况下,每件涨5元即定价为65元/件时利润最大是6250元。

(2)设每件降价x元,则每件的利润为(60-x-40)元,可卖的商品件数为(300+20x),此时每星期商品的利润为y元,于是有y=(60-x-40)(300+20x)=-20x2+100x+6000=-20(x-2.5)2+6125 (其中0≤x≤20)∴当x=2.5时,y最大=6125元所以在降价的情况下,每件降价2.5元即定价为57.5元时,利润最大是6125元。

综合(1) (2)可知,商品的定价为65元时才能使小红的爸爸获得利润最大。

由此题可知,做生意也是有很大的学问。

22.3实际问题与二次函数第一课时教案

22.3实际问题与二次函数第一课时教案

22.3 实际问题与二次函数第1课时 实际问题与二次函数(1)※教学目标※【知识与技能】1.能够分析和表示实际问题中变量之间的二次函数关系.2.会运用二次函数的知识求出实际问题中的最大(小)值.【过程与方法】通过对“矩形面积”、“销售利润”等实际问题的探究,让学生经历数学建模的基本过程,体会建立数学模型的思想.【情感态度】体会二次函数是一类最优化问题的模型,感受数学的应用价值,增强数学的应用意识.【教学重点】通过解决问题,掌握如何应用二次函数来解决生活中的最值问题.【教学难点】分析现实问题中数量关系,从中构建出二次函数模型,达到解决实际问题的目的. ※教学过程※一、复习导入从地面竖直向上抛出一个小球,小球的上升高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是2305h t t =-(0≤t ≤6).小球运动的时间是多少时,小球最高?小球运动中的最大高度是少?提问 (1)图中抛物线的顶点在哪里?(2)这条抛物线的顶点是否是小球预定的最高点?(3)小球运动至最高点的时间是什么时间?(4)通过前面的学习,你认为小球运行轨迹的顶点坐标是什么?二、探索新知探究1 用总长为60m 的篱笆围成矩形场地,矩形面积S 随矩形一边长l 的变化而变化.当l 是多少米时,场地的面积S 最大?分析:先写出S 与l 的函数关系式,再求出使S 最大的l 值.矩形场地的周长是60m ,一边长为l m ,则另一边长为 ,场地的面积S= .化简得S= .当l= 时,S 有最大值 .探究2 某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?(1)设每件涨价x 元,则每星期售出商品的利润y 随之变化.我们先来确定y 随x 变化的函数解析式.涨价x 元时,每星期少卖10x 件,实际卖出()30010x -件,销售额为()60x +· ()30010x -元,买进商品需付()4030010x -元.因此,所得利润()()()60300104030010y x x x =+---,即2101006000y x x =-++,其中,0≤x ≤30.根据上面的函数,填空:当x= 时,y 最大,也就是说,在涨价的情况下,涨价 元,即定价 元时,利润最大,最大利润是 .(2)在降价的情况下,最大利润是多少?请你参考(1)的讨论,自己得出答案. 由(1)(2)的讨论及现在的销售状况,你知道如何定价能使利润最大了吗?三、巩固练习1.如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB 为x 米,面积为S 平方米. (1)求S 与x 的函数关系式及自变量的取值范围;(2)当x 取何值时所围成的花圃面积最大,最大值是多少? 2.鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y (千克)是销售单价x (元)的一次函数,且当x =60时 ,y =80;当x =50时,y =100.在销售过程中,每天还要支付其他费用450元.(1)求出y 与x 的函数关系式,并写出自变量x 的取值范围.(2)求该公司销售该原料日获利W (元)与销售单价x (元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?答案:1.(1) ∵ AB 为x 米,篱笆长为24米,∴ 花圃宽为()244x -米.∴ ()()2244424?06?S x x x x x =+<<-=-.(2)当32b x a =-=时,有最大值24364ac b y a -==(平方米).2.(1)设y kx b =+ .根据题意,得8060,10050.k b k b +⎧⎨=+⎩=解得2,200.k b ∴2200y x =-+(30 ≤x ≤60).(2)23022004()()5022606450W x x x x =+=+-----.(3)()2? 2652000W x =+--.∵30 ≤x ≤60,∴当x =60时,W 有最大值为1950元.∴当销售单价为60元时,该公司日获利最大,为1950元.四、归纳小结通过这节课的学习,你有哪些收获和体会?有哪些地方需要特别注意?※布置作业※从教材习题22.3中选取.※教学反思※二次函数是描述现实世界变量之间关系的重要模型,也是某些单变量最优化的数学模 型,如最大利润、最大面积等实际问题,因此本课时主要结合这两类问题进行了一些探讨.生活中的最优化问题通过数学模型可抽象为二次函数的最值问题,由于学生对于这一转化过程较难理解,因此教学时教师可通过分步设问的方式让学生逐层深入、稳步推出,让学生自主建立数学模型,在这个过程中,教师可通过让学生画图探讨最值.总之,在本课时的教学过程中,要让学生经历数学建模的基本过程,体验探究知识的乐趣.。

《实际问题与二次函数(第2课时)》教学设计【初中数学人教版九年级上册】

《实际问题与二次函数(第2课时)》教学设计【初中数学人教版九年级上册】

第二十二章二次函数22.3实际问题与二次函数教学设计第2课时一、教学目标1.学会将利润问题转化为利润问题.2.掌握用二次函数的知识解决有关的利润问题.二、教学重点及难点重点:利用二次函数的知识对现实问题进行数学分析,即用数学的方式表示问题以及用数学的方法解决问题.难点:从现实问题中建立二次函数模型.三、教学用具多媒体课件。

四、相关资源《市场调查》动画。

五、教学过程【创设情景,揭示课题】问题某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出18件.已知商品的进价为每件40元,如何定价才能使利润最大?【合作探究,形成新知】(1)题目中有几种调整价格的方法?师生活动:教师提出问题,学生回答.小结:调整价格包括涨价和降价两种情况.(2)题目涉及哪些变量?哪一个量是自变量?哪一个量随自变量的变化而变化?哪个量是函数?师生活动:小组合作交流,教师引导学生根据题意设未知数,找出各个量的关系.小结:题目涉及涨价(或降价)与利润两个变量,其中涨价(或降价)是自变量;设每件涨价(或降价)x元,则每星期售出商品的利润y随之变化而变化;y是x的函数.(3)当每件涨价1元时,售价是多少?每星期的销售量是多少?成本是多少?设每件涨价x元,销售额是多少?利润呢?最多能涨多少钱呢?师生活动:一学生回答,全班订正.教师边聆听边板演,不足地方补充总结.小结:当每件涨价1元时,售价是60+1=61元;每星期销售量是300-10=290件,成本是40元;设涨价x元,销售额是(60+x)(300-10x)元,利润是y=(60+x)(300-10x)-40(300-10x)元,即y=-10x2+100x+6 000,其中,0≤x≤30,最多能涨30元.(4)当每件降x元时,售价是多少?每星期的销售量是多少?成本是多少?销售额是多少?利润y呢?师生活动:师生一起完成解答.设每件降价x元时,利润最大,则每星期可多卖18x件,实际卖出(300+18x)件,销售额为(60-x)(300+18x)元,买进商品需付40(300+18x)元.因此,所得利润y=(60-x)(300+18x)-40(300+18x).(5)由以上四个问题,你能解决问题了吗?请试试看.解:设每件涨价x元,则每星期少卖10x件,实际卖出(300-10x)件,销售额为(60+x)(300-10x)元,买进商品需付40(300-10x)元.因此,所得利润为y=(60+x)(300-10x)-40(300-10x),即y=-10x2+100x+6000,其中,0≤x≤30.当定价为60+5=65元时,y有最大值6 250元.设每件降价x元时,利润最大,则每星期可多卖18x件,实际卖出(300+18x)件,销售额为(60-x)(300+18x)元,买进商品需付40(300+18x)元,因此,所得利润y=(60-x)(300+18x)-40(300+18x),即y=-18x2+60x+6 000,其中0≤x≤20.当定价为x=51605833-=元时,y有最大值6 050元.故要使利润最大,应每件定价为65元.设计意图:通过层层设问,引导学生不断思考,积极探索,让学生感受到数学的应用价值.【例题分析,深化提高】例一件工艺品进价为100元,标价135元售出,每天可售出100件.市场调查发现:一件工艺品每降价1元出售,则每天可多售出4件.要使每天获得的利润最大,每件需降价的钱数为( ).A.5元B.10元C.0元D.36元【解析】设每件降价的钱数为x元,每天获利y元,则y=(135-x-100)(100+4x),即y=-4(x-5)2+3600.∵-4<0,∴当x=5时,每天获得的利润最大.故选A.【练习巩固,综合应用】1.出售某种手工艺品,若每个手工艺品获利x元,一天可售出(8-x)个,则当x=元时,一天的利润最大.2.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100-x)件,应如何定价才能使利润最大?3.某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,每天可全部租出;当每辆车的日租金每增加50元时,每天未租出的车将增加1辆;公司平均每日的各项支出共4 800元.设公司每日租出x辆车时,日收益为y元.(日收益=日租金收入-平均每日各项支出)(1)公司每日租出x辆车时,每辆车的日租金为元(用含x的代数式表示);(2)当每日租出多少辆车时,租赁公司的日收益最大?最大是多少元?(3)当每日租出多少辆车时,租赁公司的日收益不盈也不亏?参考答案1.4 2.每件65元3.(1)400+50(20-x )=1 400-50x (0<x ≤20).答案:1 400-50x (0<x ≤20).(2)根据题意,得y =x (-50x +1 400)-4 800=-50x 2+1 400x -4 800=-50(x -14)2+5 000.当x =14时,y 有最大值5 000.∴当每日租出14辆车时,租赁公司的日收益最大,最大值为5 000元.(3)要使租赁公司的日收益不盈也不亏,即y =0.也就是-50(x -14)2+5 000=0.解得x 1=24,x 2=4.∵x =24不合题意,应舍去.∴当每日租出4辆车时,租赁公司的日收益不盈也不亏.设计意图:通过练习,及时反馈学生的学习情况,培养学生把实际问题转化为数学问题的能力,并使学生从中获得成功的体验.六、课堂小结1.一般地,当a >0时,抛物线y =ax 2+bx +c 的顶点是最低点,也就是说,当2b x a=-时,二次函数y =ax 2+bx +c 有最小值244ac b a -. 当a <0时,抛物线y =ax 2+bx +c 的顶点是最高点,也就是说,当2b x a=-时,二次函数y =ax 2+bx +c 有最大值244ac b a -. 2.解决二次函数最值问题的一般步骤:(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,求出二次函数的最大值或最小值.设计意图:总结、归纳学习内容,帮助学生加深对数形结合思想的理解,培养学生的数学应用意识.七、板书设计22.3 实际问题与二次函数(2)1.用二次函数的知识解决利润问题。

人教版九年级数学上册22.3实际问题与二次函数(3)1优秀教学案例

人教版九年级数学上册22.3实际问题与二次函数(3)1优秀教学案例
4.教师对小组讨论过程进行指导和评价,确保学生能够从合作中获得充分的提升。
(四)总结归纳
1.教师引导学生对所学知识进行总结归纳,帮助他们建立完整的知识体系;
2.学生通过总结归纳,巩固所学知识,提高他们的自我认知能力;
3.教师对学生的总结归纳进行评价,关注他们的进步和成长,激发他们的学习动力。
(五)作业小结
4.引导学生发现二次函数在实际问题中的应用规律,培养他们的实践能力。
(三)学生小组讨论
1.教师提出具有挑战性和开放性的课题,让学生在小组内进行讨论和合作交流;
2.引导学生运用所学知识,分析问题、解决问题,提高他们的实践能力和团队协作精神;
3.鼓励学生分享自己的观点和思考,培养他们的表达能力和批判性思维;
人教版九年级数学上册22.3实际问题与二次函数(3)1优秀教学案例
一、案例背景
本案例背景以人教版九年级数学上册22.3实际问题与二次函数(3)1为例,旨在通过实际问题引导学生理解和掌握二次函数的性质和应用。在教学过程中,我以生活实际为载体,设计了一系列具有代表性的例题和练习,让学生在解决实际问题的过程中,深化对二次函数的理解,提高运用数学知识解决实际问题的能力。
在案例背景中,我充分考虑了学生的年龄特点和知识水平,以符合九年级学生的认知发展需求。在教学设计上,我注重启发式教学,引导学生通过观察、分析、归纳和推理,探索二次函数的性质和实际应用。同时,我还关注学生的个体差异,提供不同难度的题目,让每个学生都能在数学学习中找到适合自己的路径,从而提高他们的自信心和积极性。
4.教师对小组合作过程进行指导和评价,确保学生能够从合作中获得充分的提升。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,总结学习经验和方法,提高他们的自我认知能力;

《22.3 实际问题与二次函数》教学设计教学反思-2023-2024学年初中数学人教版12九年级上册

《22.3 实际问题与二次函数》教学设计教学反思-2023-2024学年初中数学人教版12九年级上册

《实际问题与二次函数》教学设计方案(第一课时)一、教学目标1. 理解二次函数的概念,掌握其一般形式。

2. 能够根据实际问题建立二次函数模型,解决相关问题。

3. 培养运用二次函数解决实际问题的意识和能力。

二、教学重难点1. 教学重点:理解二次函数的概念,掌握其应用。

2. 教学难点:将实际问题转化为二次函数模型。

三、教学准备1. 准备教学用具:黑板、白板、笔、几何图形模型等。

2. 搜集与二次函数相关的实际问题,制作课件。

3. 布置学生预习课本,准备参与课堂的讨论。

4. 复习一次函数的知识,为新课做铺垫。

四、教学过程:本节课是《实际问题与二次函数》教学设计方案(第一课时),以下是具体的教学过程:1. 导入新课:首先,我会向学生介绍本节课的主题——实际问题与二次函数,并解释二次函数在解决实际问题中的重要性。

通过一些简单的实际问题,引导学生认识到二次函数的应用广泛性,激发他们的学习兴趣。

2. 案例分析:通过具体的案例分析,让学生了解如何将实际问题转化为二次函数问题,以及如何利用二次函数解决实际问题。

案例应该涵盖各种不同类型的实际问题,如销售问题、最值问题、规划问题等,以便学生能够全面掌握。

3. 小组讨论:将学生分成若干小组,让他们讨论身边的实际问题,并尝试将其转化为二次函数问题。

这有助于培养学生的思维能力和团队协作精神。

在讨论过程中,教师需要给予适当的指导,帮助学生解决困惑。

4. 课堂互动:鼓励学生提出自己的问题和观点,与教师和其他同学进行交流。

通过互动环节,教师可以了解学生的学习情况,及时调整教学策略。

5. 总结归纳:在课堂结束前,对所学内容进行总结归纳,强调二次函数在解决实际问题中的关键点和注意事项。

同时,引导学生反思自己的学习成果,鼓励他们将所学知识应用到实际生活中。

6. 布置作业:根据本节课的内容,为学生布置一些相关的作业题,以巩固所学知识。

作业内容应该包括理论题和实践题两种类型,以便学生能够全面掌握二次函数的应用。

实际问题与二次函数—教学设计及点评(获奖版)

实际问题与二次函数—教学设计及点评(获奖版)

22.3 实际问题与二次函数(第3课时)一、内容与内容解析1. 内容构建二次函数模型,利用二次函数的图象与性质解决抛物线形问题.2. 内容解析二次函数是描述现实世界变量关系的重要数学模型,运用二次函数可以解决许多实际问题,例如生活中的抛物线形问题.本节课是在学生学习二次函数的图象和性质的基础上,借助二次函数图象和性质研究抛物线形的实际问题.通过探究抛物线形拱桥问题,引导学生分析问题和解决问题,在解决问题的过程中将数学模型思想逐步细化,体会运用函数观点解决实际问题的作用,体会建立函数模型的过程和方法.基于以上分析,确定本节课的重点是:从实际问题中抽象出抛物线并通过建立平面直角坐标系解决实际问题.二、目标和目标解析1. 目标(1)能够从抛物线形问题中建立二次函数模型.(2)能够利用二次函数模型解决抛物线形问题,体会二次函数在解决实际问题中的作用.2. 目标解析达成目标(1)的标志是:学生会借助平面直角坐标系得到二次函数模型,并体会适当建系可以优化解题.达成目标(2)的标志是:学生通过经历探索抛物线形问题,进一步体验如何从实际问题中抽象出二次函数模型,结合二次函数已有知识综合运用来解决解决实际问题.三、教学问题诊断分析学生已经学习了二次函数的定义、图象和性质,学习了列方程、不等式和函数解决实际问题,这为本节课的学习奠定了基础,但运用二次函数的知识解决实际问题要求学生能选取适当的平面直角坐标系的二次函数模型分析问题和解决问题,对于学生来说,完成这一过程难度较大.基于以上分析,本节课的难点:将实际问题转化成二次函数问题.四、教学过程设计1. 创设情境引出问题情境:展示蕴含抛物线的建筑南宁大桥、南宁永和大桥、凌铁大桥、柳州官塘大桥等,引出课题.设计意图:结合生活背景,让学生体会抛物线与实际生活的联系,激发学生的学习兴趣.2. 复习旧知,做好铺垫设计意图:学生体会解析式与图象的对应关系,感受抛物线与坐标系相对位置不一样,它们所对应的解析式也不一样,体会抛物线(形)与函数解析式(数)的对应关系,为解决探究3中的问题做好铺垫.3. 从形入手,探究问题探究3:如图是抛物线形拱桥,当拱顶离水面2 m,水面宽 4 m. 水面下降 1 m,水面宽度增加多少?问题1:同学们通过审题,你发现了哪些重要信息?教师结合希沃白板,将重要信息涉及的图形,从原图中分离出来.问题2:求水面宽度增加多少,需要进行计算,这些计算与抛物线形密切相关,我们应该如何处理?设计意图:引导学生通过建立直角坐标系,构建数学模型(二次函数模型),并体会直角坐标系是数形结合的重要数学工具.活动:小组合作:运用所学知识,解决这道实际问题.(要求每组有2种不同的建立直角坐标系方法)师生活动:小组汇报,教师点评(结合课本进行点评,注意书写过程中建系是否有文字说明,建系文字说明是否严谨,待定系数法书写是否规范,结论书写是否规范)设计意图:展示学生学生的解题思路,并对学生书写中的易错点进行点评分析.4. 适当建系,优化解题问题3:以上5种不同的建系方法,你觉得哪种简单?为什么?师生活动:学生回答,老师总结.①5种建系方法不同,但结果是相同的,建立不同坐标系,所得到的解析式复杂程度也不一样,由此可见,建立适当的坐标系,可以使抛物线的解析式简单,从而减少运算量;②建立直角坐标系的基本原则:关注图形的对称性,以对称轴为坐标轴;关注特殊点,以特殊点为坐标原点.设计意图:引导学生总结归纳,对解决问题的基本策略进行反思,让学生积累和总结经验,培养学生概括和归纳的能力,养成良好的数学思维习惯.5. 总结提升,提炼方法问题4:你能总结解决抛物线形问题的一般方法和解决步骤吗?抛物线形问题二次函数模型线段长实际问题的解设计意图:使学生对解决此类问题有一个系统化的步骤,强化数学与实际生活的紧密联系,加深“数形结合思想”和“数学建模思想”在解决问题中的重要作用.6. 巩固训练,拓展思维某公园草坪的防护栏是由100段形状相同的抛物线形组成,为了牢固起见,每段护栏中需要间距4dm 加设一根不锈钢的支柱,防护栏的最高点距底部5dm(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A、50mB、100mC、160mD、200m设计意图:巩固本节课所学内容,再次体会通过建立二次函数模型解决实际问题的重要性,加深对二次函数的认识,体会数学与实践的联系.7. 小结(1)这节课学习了用什么知识解决哪类问题?(2)解决问题的一般步骤是什么?应注意哪些问题?转译数学方法回译实际问题数学问题数学模型数学模型的解实际问题的解设计意图:通过小结,归纳提升,加强学习反思,帮助学生养成系统整理知识的习惯.8. 作业布置某桥梁建筑公司需在两山之间的峡谷上架设一座公路桥,桥下是一条宽100m的河流,河面距所要架设的公路桥的高度是50m,根据各方面的条件分析,专家认为抛物线是最好的选择,按照专家的建议,设计一座横跨峡谷的公路桥.设计意图:考察学生对本节课所学内容的理解和掌握程度,体会二次函数模型的应用价值.建立直角坐标系线段与坐标相互转化待定系数法抽象人教版《实际问题与二次函数(第3课时)》课例点评南宁市天桃实验学校吴立志本节课教学有六个环节:创设情境,引出问题环节结合生活背景,让学生体会抛物线与实际生活的联系;复习旧知,做好铺垫环节学生体会解析式与图象的对应关系;从形入手,探究问题环节引导学生通过建立直角坐标系,构建数学模型(二次函数模型);适当建系,优化解题环节引导学生总结归纳,让学生积累和总结经验;总结提升,提炼方法环节使学生对解决此类问题有一个系统化的步骤;巩固训练,拓展思维环节巩固本节课所学内容,加深对二次函数的认识,体会数学与实践的联系;教学过程设计合理,课堂结构完整,教学思路清晰,过程循序渐进,为“抛物线形”的产生提供自然合理的背景,激发学生深入思考,获得解决问题的方案。

《实际问题与二次函数(自由落体问题)》教学设计

《实际问题与二次函数(自由落体问题)》教学设计

《实际问题与二次函数(自由落体问题)》教学设计教学任务分析教学流程安排教学过程设计问题与情境师生活动设计意图[活动1]创设情景引入新课问题:如图,以40m /s的速度将小球沿与地面成30°角的方向出击时,球的飞行路线将是一条抛物线。

如果不考虑空气阻力,球的飞行高度h (单位:m)与飞行时间t (单位s)之间具有的关系2520tth-=考虑以下问题:(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?(3)球的飞行高度能否达到20.5m?为什么?(4)球从飞到落地要用多少时间?通过问题引入,学生能从实际出发建立方程思想这个问题是能和一元二次方程联系到一起的,引导学生建立方程思想将函数问题转化为方程问题来解决[活动2]讲解例题巩固练习问题2从地面竖直向上抛出一小球,小球的高度h(单位m)与小球运动时间t(单位s)之间的关系式是2530tth-=.小球的运动时间是多少时,小球最高?小球运动中的最大高度是多少?问题3要修建一个圆形喷水池,池中心竖直安装一根水管,在水管的顶端安一个喷通过问题2的探究,培养学生二次函数与实际问题相结合的建模思想,并体会自变量取值范围在实际问题中的作用问题3培养学生能根据实际问题建立适当的坐标系,解水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管应多长?问题4抛物线形拱桥,当水面在l时,拱顶离水面2m,水面宽4m。

水面下降1m,水面宽度增加多少?当x=0时,y=2.25,也就是说,水管应长2.25米分析如图,以AB的垂直平分线为y轴,以过点O的y轴的垂线为x轴,建立了直角坐标系.这时,拱桥所在的抛物线的顶点在原点,对称轴是y轴,开口向下,所以可设它的函数关系式是)0(2<=aaxy.此时只需抛物线上的一个点就能求出抛物线的函数关系式.解由题意,得点B的坐标为(2,2)又因为点B在抛物线上,将它的坐标代入)0(2<=aaxy,得222⨯=-a所以21-=a因此,函数关系式是221xy-=.当水面下降1m时,水面的纵坐标为y=-3∴决实际问题问题4可以作为课堂练习,与问题3相同类型板书设计。

实际问题与二次函数教案

实际问题与二次函数教案

课题:实际问题与二次函数(一)教学目标1.知识与技能:使学生会根据题意将实际问题转化为二次函数的问题来解决,会根据题意列出二次函数表达式、会求出自变量的取值范围、会使用二次函数的性质解决问题。

2. 过程与方法:经历将实际问题转化成二次函数的问题的过程完成由感性理解到理性理解的转变,实现理解上的升华。

3.情感态度与价值观:让学生体会数学与人类社会生活的密切联系,理解数学的应用价值;会建立二次函数的数学模型,进一步培养学生探索、创新、转化的水平。

(二).教学重点:根据具体的实际问题列出二次函数表达式、求出自变量的取值范围、并使用二次函数的性质解决问题。

(三).教学难点:准确的根据具体的实际问题列出二次函数表达式、求出自变量的取值范围、并使用二次函数的性质解决问题。

(四).教学方法:引导、分析、讨论、讲解、归纳(五).教学过程:一.创设问题情境,引入新课前面我们理解了二次函数,研究了它的图象与性质,今天将应用它去解决一些实际问题。

首先我们一起来作一个简要的回顾:1.二次函数y=a(x-h)2+k的图象与性质:①当a>0时,抛物线y=a(x-h)2+k的开口向___,顶点为()它是抛物线上的最___点,函数y当自变量x=____时有最___值____.②当a<0时,抛物线y=a(x-h)2+k的开口向___,顶点为()它是抛物线上的最___点,函数y当自变量x=____时有最___值____.2.二次函数y=ax2+bx+c的图象与性质:①当a>0时,抛物线y=ax2+bx+c的开口向___,顶点为()它是抛物线上的最___点,函数y当自变量x=____时有最___值____________.②当a<0时,抛物线y=ax2+bx+c的开口向___,顶点为()它是抛物线上的最___点,函数y当自变量x=____时有最___值____________.由此可知,确定了一个二次函数的解析式,我们就能够根据其性质求出相对应的函数的最大(小)值。

教学设计 实际问题与二次函数

教学设计 实际问题与二次函数

初中数学第11届年会优秀课教学设计学校:中学姓名:教学设计课题:26.3.3 实际问题与二次函数一、内容和内容解析内容:实际问题与二次函数(人民教育出版《社义务教育课程标准实验教科书数学》)九年级下册第二十六章第三节第三课时。

内容解析(宏观与微观两方面):二次函数的学习是以已学函数“一次函数”,“反比例函数”内容为基础的,本章通过探讨二次函数与一元二次方程的关系,再次展示函数与方程的联系,深化学生对一元二次方程的认识,另一方面又可以运用一元二次方程解决二次函数的有关问题,并且作为一种数学模型,二次函数对探索具体问题中的数量关系和变化规律有着重大的意义。

“二次函数”蕴涵着变化与对应的思想,在具体的教学活动中还渗透着数形结合思想和函数思想,本章第三节内容安排了三个探究:利润问题是通过数量的变化规律得到二次函数的关系式,再求解函数的最值,图形问题是通过有关线段之间的关系建立函数关系式,再求函数的最值。

而本节内容有所不同的是通过抛物线的图象来解决抛物线形的实际问题,为解决实际问题又提供了新的解题策略。

教学重点:用函数知识解决实际问题二、目标和目标解析目标:基础知识:掌握二次函数的表达式,进一步体会二次函数的意义。

基本技能:初步学会用二次函数分析和解决实际问题。

基本的思想方法:学生通过同伴互助,在实际问题转化为函数问题的过程中,体会函数思想和数形结合思想,和合作成长的快乐。

基本的数学活动经验:解决现实生活中的形如抛物线形的实际问题,可建立平面直角坐标系,利用二次函数的知识来解决,同时建立合适的平面直角坐标系,可以简化运算,通过平移坐标系或图象,也可以使运算简化。

目标解析:(1)经历把抛物线形问题抽象转化为二次函数问题的过程,进一步熟练掌握二次函数解析式的各种求法。

(2)形成解决抛物线形实际问题的基本策略,体验解决问题策略的多样性,将实际问题通过图象,建立合适的平面直角坐标系,转化为二次函数问题,进一步体会数形结合思想和函数思想。

实际问题与二次函数教学设计

实际问题与二次函数教学设计

人教版《实际问题与二次函数(第2课时)》教学设计【教材分析】本节的问题涉及求函数的最大值,要先求出函数的解析式,再求出使用函数值最大的自变量值,在此问题的基础上引出直接根据函数解析式求二次函数的最大值或最小值的结论,即当0>a 时,函数有最小值,并且当a b x 2-=,a b ac y 442-=最小值;当0<a 时,函数有最大值,并且当a b x 2-=,a b ac y 442-=最大值.得出此结论后,就能够直接使用此结论求二次函数的最大值或最小值。

接下来,学生通过探究并解决三个问题进一步体会用二次函数解决实际问题。

在探究1中,某商品价格调整,销售会随之变化。

调整价格包括涨价与降价两种情况,一般来讲,商品价格上涨,销量会随之下降;商品价格下降,销售会随之增加,这两种情况都会导致利润的变化。

教科书首先分析涨价的情况,在此题中,设涨价x 元,则能够确定销售量随x 变化的函数式。

由此得出销售额、单件利润随x 变化的函数式,进而得出利润随x 变化的函数式,由这个函数求出最大利润则由学生自己完成。

【学情分析】学生已经学习了二次函数的定义、图象和性质,学习了列代数式,列方程解应用题,这些内容的学习为本节课奠定了基础,使学生具备了一定的建模水平,但使用二次函数的知识解决实际问题要求学生能比较灵活的使用知识,对学生来说要完成这个建模过程难度较大。

【教学目标】智能与水平:1、能够从实际问题中抽象出二次函数,并使用二次函数的知识解决实际问题。

2、与已有知识综合使用来解决实际问题,加深对二次函数的理解,体会数学与实际的联系。

3、通过数学建模思想、转化思想、函数思想、数形结合思想的综合使用,提升学生的数学水平。

过程与方法:1、经历探索具体问题中数量关系和变化规律的过程,并进一步体验如何从实际问题中抽象出数学模型。

2、注意二次函数和一元二次方程、不等式的联系和相互转化,及其在实际问题中的综合使用,重视对知识综合应用水平的培养。

实际问题与二次函数教案

实际问题与二次函数教案

实际问题与二次函数课时1教案教学目标:1.学生能够将生活中的实际问题转化为数学问题。

2.学生会运用二次函数的相关知识解决实际问题。

教学重点:1.利用顶点坐标公式求二次函数的最大值、最小值。

2.通过分析,找出变量之间的函数关系式。

教学难点:自变量的范围和列函数关系式。

教材分析:本节课中关键的问题就是如何使学生把实际问题转化为数学问题,二次函数化为顶点式后,很容易求出最大值于最小值,从而把数学知识运用于实践,即是否把实际问题表示为二次函数,是否能利用二次函数的知识解决实际问题,并对结果进行解释。

学生分析:九年级的学生思维活跃、开放,所以应促进学生之间的相互合作交流,共同探索,培养和提高学生全新的思维能力,探索规律的能力。

教学方法:情境创设→问题引出→复习旧知→问题解决→变式应用→归纳总结教学过程:一、情境创设:投篮最高点问题二、问题引出:从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h= 30t - 5t 2(0≤t≤6),小球的运动时间是多少时,小球最高?小球运动的最大高度是多少?三、复习巩固:1.二次函数y=ax2+bx+c的图象是一条 ,它的对称轴是,顶点坐标是 .当a>0时,抛物线开口向 ,有最点,函数有最值,是;当a<0时,抛物线开口向 ,有最点,函数有最值,是。

2.二次函数y=-5x²+30x的对称轴是直线,顶点坐标是 .当x= 时,函数有最____值,是 .注:找函数y=-5x²+30x和h= 30t - 5t 2(0≤t≤6)的联系和区别,然后过渡到问题解决。

四、问题解决:从地面竖直向上抛出一个小球,小球的上升高度h(单位m)与小球运动时间t(单位:s)的关系式是h= 30t - 5t 2.小球运动的时间是多少时,小球最高?小球运动中的最大高度是少?分析:首先理解题意,把实际问题转化成数学问题后,知道解此题就是求h= 30t - 5t 2的顶点坐标即可.解: ∵ 小球的高度 h 、运动时间 t 的关系式:h= 30t - 5t 2 (0≤t ≤6)∴ ∴五、类比引入:例1:用总长为60m 的篱笆围成矩形场地,矩形面积S 随矩形一边长l 的变化而变化。

新听课记录2024秋季九年级人教版数学上册第二十二章二次函数《实际问题与二次函数》

新听课记录2024秋季九年级人教版数学上册第二十二章二次函数《实际问题与二次函数》

教学设计:新2024秋季九年级人教版数学上册第二十二章二次函数《实际问题与二次函数》一、教学目标(核心素养)1、知识与技能:学生能够理解并掌握将实际问题转化为二次函数问题的方法,能够建立并求解二次函数模型解决实际问题,如最大化利润、最小化成本、求解最佳方案等。

2、数学思维:培养学生的数学建模能力,通过实际问题的分析与解决,提升学生的逻辑思维、抽象思维和问题解决能力,加强数形结合的思想。

3、情感态度:激发学生对数学应用的兴趣,增强学生对数学与实际生活联系的认识,培养学生的创新意识和探索精神。

二、教学重点•掌握将实际问题转化为二次函数问题的基本步骤和方法。

•理解和应用二次函数模型解决实际问题。

三、教学难点•如何准确识别问题中的变量关系,建立合适的二次函数模型。

•理解和分析二次函数模型中的参数含义,以及它们对问题解决的影响。

四、教学资源•多媒体课件(包含实际问题案例、二次函数模型建立与求解过程演示)。

•实物教具(如模拟经营游戏道具,用于模拟经营问题)。

•实际问题案例集、练习题册。

•小组合作学习任务单。

五、教学方法•问题引导法:通过提出实际问题,引导学生思考并探索解决方案。

•探究学习法:鼓励学生小组合作,自主探究如何将实际问题转化为二次函数问题并求解。

•讲解与演示法:教师结合多媒体课件,讲解建模步骤和求解方法,并进行实例演示。

•练习巩固法:通过分层次练习,巩固所学知识,提高解题能力。

六、教学过程1. 导入新课(5分钟)•情境导入:展示一个贴近学生生活的实际问题(如商家如何定价以最大化利润),引发学生思考和讨论。

•引出主题:引导学生认识到这类问题可以通过建立二次函数模型来解决,从而引出本节课的主题——实际问题与二次函数。

2. 新课教学(30分钟)•知识点讲解(10分钟):•简要回顾二次函数的基本概念和性质。

•讲解将实际问题转化为二次函数问题的一般步骤:识别变量、建立关系式、确定参数、形成模型。

•案例分析(15分钟):•案例一:商家定价问题。

22.3 实际问题与二次函数(第一课时)(教学设计)九年级数学上册同步备课系列(人教版)

22.3 实际问题与二次函数(第一课时)(教学设计)九年级数学上册同步备课系列(人教版)

22.3 实际问题与二次函数(第一课时) 教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》九年级上册(以下统称“教材”)第二十二章“二次函数”22.3 实际问题与二次函数(第一课时),内容包括:利用二次函数解决抛掷问题与几何图形最值.2.内容解析二次函数是描述现实世界变量之间关系的重要数学模型,将实际问题中的变量关系转化为二次函数后,就可以利用二次函数的图象和性质加以解决,其关键是从实际问题中抽象出数学模型.本节课是在学生学习二次函数的图象和性质的基础上,借助于二次函数的图象研究二次函数的最小(大)值,并运用这个结论解决相关的实际问题.以现实生活为背景,通过对投掷、跳水、跳远、拱桥、隧道等抛物线的探究,建立合理的平面直角坐标系,利用待定系数法确定二次函数的表达式是解决此类问题的关键.通过探究矩形面积与矩形一边长两个变量之间的关系,让学生体会运用函数观点解决实际问题的作用,初步体验建立函数模型的过程和方法.基于以上分析,确定本节课的教学重点是:从实际问题中抽象出二次函数关系并运用二次函数的最小(大)值解决实际问题.二、目标和目标解析1.目标1)会求二次函数y =ax 2+bx +c 的最小(大)值.2)能够从实际问题中抽象出二次函数关系,并运用二次函数及性质解决最小(大)值等实际问题. 2.目标解析达成目标1)的标志是:学生会借助于二次函数的图象得到在二次函数顶点处取得最小(大)值的结论,理解当x =-2ba时,函数有最小(大)值244ac b a -.达成目标2)的标志是:学生通过经历探索具体问题中数量关系和变化规律的过程,进一步体验如何从实际问题中抽象出二次函数模型,结合实际问题研究二次函数,将二次函数的最小(大)值的结论和已有知识综合运用来解决实际问题.三、教学问题诊断分析学生已经学习了二次函数的定义、图象和性质,学习了列方程、不等式和函数解决实际问题,这为本节课的学习奠定了基础.但运用二次函数的知识解决实际问题要求学生能选取适当的用来描述变量之间关系的函数分析问题和解决问题,对学生来说,要完成这一过程难度较大.基于以上分析,本节课的教学难点是:将实际问题抽象出数学模型,并利用二次函数解决实际问题.四、教学过程设计(一)复习巩固[问题]通过配方,写出下列抛物线的开口方向、对称轴、顶点坐标、说出两个函数的最大值、最小值分别是多少?1)y=6x2+12x 2)y=-4x2+8x-10师生活动:教师提出问题,学生回答.【设计意图】复习回顾二次函数y=ax2+bx+c的图象特征和性质,为本节课学习利用二次函数解决抛掷问题与几何图形最值进行铺垫.(二)探究新知【问题】从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=30t-5t2(0≤t≤6).小球的运动时间是多少时,小球最高?小球运动中的最大高度是多少?师:这个问题研究的是哪两个变量之间的关系?生:小球运动的高度h和小球运动的时间t两个变量之间的关系.师:结合题目内容,你觉得小球的运动时间与小球的高度有什么样的关系?生:小球运动的高度随小球的运动时间的变化而变化.师:小球的运动时间是多少时,小球最高呢?生:结合已学二次函数知识回答问题.师生活动:教师引导学生,得出如下结论:画出函数的图像h=30t-5t2(0≤t≤6),可以看出这个函数图象是一条抛物线的一部分。

九年级数学实际问题与二次函数教学设计

九年级数学实际问题与二次函数教学设计

《实际问题与二次函数》教学设计教学目标1. 会求二次函数y=ax2+bx+c的最小(大)值.2. 能够从实际问题中抽象出二次函数关系,并使用二次函数及性质解决最小(大)值等实际问题.3. 能根据实际问题建立二次函数的关系式,并探求出在何时刻,实际问题能取得理想值,增强学生解决具体问题的水平.教学重点1. 根据不同条件设自变量x求二次函数的关系式和建立适宜的直角坐标系.2. 求二次函数y=ax2+bx+c的最小(大)值.教学难点将实际问题转化成二次函数问题教学过程一、创设情境,引入新课某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?请大家带着以下几个问题读题(1)题目中有几种调整价格的方法?(2)题目涉及到哪些变量?哪一个量是自变量?哪些量随之发生了变化?分析:调整价格包括涨价和降价两种情况先来看涨价的情况:⑴设每件涨价x元,则每星期售出商品的利润y也随之变化,我们先来确定y与x的函数关系式。

涨价x元时则每星期少卖件,实际卖出件,销额为元,买进商品需付元所以,所得利润为元解这类题目的一般步骤(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,使用公式法或通过配方求出二次函数的最大值或最小值。

二、合作探究,当堂巩固1.在2006年青岛崂山北宅樱桃节前夕,某果品批发公司为指导今年的樱桃销售,对往年的市场销售情况实行了调查统计,得到如下数据:(1)在如图的直角坐标系内,作出各组有序数对(x,y)所对应的点.连接各点并观察所得的图形,判断y与x之间的函数关系,并求出y与x之间的函数关系式;(2)若樱桃进价为13元/千克,试求销售利润P(元)与销售价x (元/千克)之间的函数关系式,并求出当x取何值时,P的值最大?三、质疑再探,拓展提升某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元实行批量生产。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实际问题与二次函数(教学设计)
162 团中学高文君
第1课时如何获得最大利润
【学情分析】
学生已经学习了二次函数的概念、图象和性质。

这些内容为学习二次函数的应用提供知识支持,又学习了列代数式,列方程解应用题,这些应用性质的内容为本节课的学习提供了建模能力的基础,但是作为建立二次函数模型区解决实际问题,带有很强的综合性、灵活性, 对学生的要求较高。

【教学目标】
1. 能够分析和确定实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值;
2. 经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系;
3. 通过实际问题的解决,逐步领会二次函数的应用价值和实际意义;通过小组合作,交流讨论和探索,建立合作和探索意识,激发学习的兴趣和欲望。

【教学重难点】
1. 探究利用二次函数的最大值(或最小值)解决实际问题的方法;
2. 如何将实际问题转化为二次函数的问题。

【教学方法】启发引导,小组讨论
【教学过程】一【复习旧知,引入新课】
1 . 二次函数y ax
2 bx c的图象是一条_______________ ,它的对称轴是__________ ,顶点坐标
是. 当a>0时,抛物线开口向,有最点,函数有最______________________________ 值,是 _______ ;当a<0时,抛物线开口向,有最 ____________ 点,函数有最 _______ 值,
2.二次函数y 2x2 8x 9的对称轴是____________ ,顶点坐标是—」当x= _______ 时,函数有最
值,是 _____ 。

【设计意图】在前几节课的学习中,我们已经学习了二次函数的图象和性质,这节课首先复习二次函数的相关内容,唤起学生对二次函数的记忆。

二、【试一试,我能行】
问题.已知某商品的进价为每件40元。

现在的售价是每件60元,每星期可卖出300件。

市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件。

如何定价才能使利润最大?
1、本题中的变量是什么?
2、学生对商品利润问题的理解:每件的利润=售价一进价
总利润=每件的利润X卖出的总件数
总利润=销售额一进货额
3 、学生对两个变量的理解。

师生共同分析:(1)销售额为多少?(2)进货额为多少?
(3)利润y与每件涨价x元的函数关系式是什么?
(4)变量x的取值范围如何确定?
(5)如何求解最值?
设每件涨价x元,则每星期售出商品的利润y也随之变化,我们先确定y与x的函数关系式。


价x元时,则实际售价 ________ 元,每件利润______ 元,件数 ______ ,因此,所得总利润为 _____ 元。

解:设每件涨价为x元时获得的总利润为y元.
y =(60-40+ x)(300-10 x)
= 10(x 5)2 6250 (0 < x< 30)(怎样确定x的取值范围)
当x=5时,y的最大值是6250.
设每件降价x元,则每星期售出商品的利润y也随之变化,我们先确定y与x的函数关系式。

降价x元时,则实际售价 ________ 元,每件利润______ 元,件数 ______ ,因此,所得总利润为 _____ 元。

(学生独立思考,然后分组讨论,如何用函数模型将解决问题,教师帮助学生解决问题) 解:设每件降价x元时的总利润为y元
y=(60-40-x)(300+20x)
2
=20(x 2.5) 6125 ( 0< x< 20)
所以定价为60-2.5=57.5时利润最大,最大值为6125元.
(学生独立思考,然后分组讨论,如何用函数模型将解决问题,教师帮助学生解决问题)
【设计意图】本问题是一道较复杂的市场营销问题,让学生体会函数模型在同一个问题中的
不同情况下可以是不同的,培养学生分类讨论的数学思想和方法以及考虑问题的完整性。

三、【课堂练习,解决问题】
某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件。

根据销售经验,提高单价会导致销售的减少,即销售单价每提高1元,销售量相应减少20件。

售价提高多少元时,才能在半个月内获得最大利润?学生独立分析完成,板书解题过程。

解设售价提高x元,半个月内获得的利润为y元,则
2
y= (x+30-20) (400-20x) = 20x 200x 4000 (0 < x< 20)
当x=5时,y最大=4500
答:当售价提高5元时,半月内可获最大利润4500元。

四【课堂小结】
通过本节课的学习我的收获是?
1. 知识方面
2. 思想方法:建模思想
实际问题数学模型
实际问题的解答
转化为数学问题
回归实际问题 ----------------------------------- ►数学结论
五【布置作业】:P26 1、2、6。

相关文档
最新文档