高考题汇编-2017年全国高考数学真题--第21题导数
2017-2021年高考真题 导数 解答题全集 (学生版+解析版)
2017-2021年高考真题 导数 解答题全集 (学生版+解析版)1.(2021•新高考Ⅱ)已知函数f (x )=(x ﹣1)e x ﹣ax 2+b .(Ⅰ)讨论f (x )的单调性;(Ⅱ)从下面两个条件中选一个,证明:f (x )恰有一个零点.①12<a ≤e 22,b >2a ; ②0<a <12,b ≤2a .2.(2021•北京)已知函数f (x )=3−2x x 2+a. (1)若a =0,求y =f (x )在(1,f (1))处的切线方程;(2)若函数f (x )在x =﹣1处取得极值,求f (x )的单调区间,以及最大值和最小值.3.(2021•天津)已知a >0,函数f (x )=ax ﹣xe x .(1)求曲线f (x )在点(0,f (0))处的切线方程;(2)证明函数f (x )存在唯一的极值点;(3)若∃a ,使得f (x )≤a +b 对任意的x ∈R 恒成立,求实数b 的取值范围.4.(2021•浙江)设a ,b 为实数,且a >1,函数f (x )=a x ﹣bx +e 2(x ∈R ).(Ⅰ)求函数f (x )的单调区间;(Ⅱ)若对任意b >2e 2,函数f (x )有两个不同的零点,求a 的取值范围;(Ⅲ)当a =e 时,证明:对任意b >e 4,函数f (x )有两个不同的零点x 1,x 2,满足x 2>blnb 2e 2x 1+e 2b . (注:e =2.71828⋯是自然对数的底数)5.(2021•甲卷)设函数f (x )=a 2x 2+ax ﹣3lnx +1,其中a >0.(1)讨论f (x )的单调性;(2)若y =f (x )的图像与x 轴没有公共点,求a 的取值范围.6.(2021•乙卷)已知函数f (x )=ln (a ﹣x ),已知x =0是函数y =xf (x )的极值点.(1)求a ;(2)设函数g (x )=x+f(x)xf(x).证明:g (x )<1.7.(2021•新高考Ⅰ)已知函数f (x )=x (1﹣lnx ).(1)讨论f (x )的单调性;(2)设a ,b 为两个不相等的正数,且blna ﹣alnb =a ﹣b ,证明:2<1a +1b <e .8.(2021•乙卷)已知函数f (x )=x 3﹣x 2+ax +1.(1)讨论f (x )的单调性;(2)求曲线y =f (x )过坐标原点的切线与曲线y =f (x )的公共点的坐标.9.(2021•甲卷)已知a >0且a ≠1,函数f (x )=x a a x (x >0).(1)当a =2时,求f (x )的单调区间;(2)若曲线y =f (x )与直线y =1有且仅有两个交点,求a 的取值范围.10.(2020•新课标Ⅰ)已知函数f (x )=e x ﹣a (x +2).(1)当a =1时,讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.11.(2020•天津)已知函数f (x )=x 3+klnx (k ∈R ),f ′(x )为f (x )的导函数.(Ⅰ)当k =6时,(ⅰ)求曲线y =f (x )在点(1,f (1))处的切线方程;(ⅱ)求函数g (x )=f (x )﹣f ′(x )+9x 的单调区间和极值;(Ⅱ)当k ≥﹣3时,求证:对任意的x 1,x 2∈[1,+∞),且x 1>x 2,有f′(x 1)+f′(x 2)2>f(x 1)−f(x 2)x 1−x 2.12.(2020•海南)已知函数f (x )=ae x ﹣1﹣lnx +lna .(1)当a =e 时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积;(2)若f (x )≥1,求a 的取值范围.13.(2020•北京)已知函数f (x )=12﹣x 2.(Ⅰ)求曲线y =f (x )的斜率等于﹣2的切线方程;(Ⅱ)设曲线y =f (x )在点(t ,f (t ))处的切线与坐标轴围成的三角形的面积为S (t ),求S (t )的最小值.14.(2020•浙江)已知1<a ≤2,函数f (x )=e x ﹣x ﹣a ,其中e =2.71828…为自然对数的底数.(Ⅰ)证明:函数y =f (x )在 (0,+∞)上有唯一零点;(Ⅱ)记x 0为函数y =f (x )在 (0,+∞)上的零点,证明:(ⅰ)√a −1≤x 0≤√2(a −1);(ⅱ)x 0f (e x 0)≥(e ﹣1)(a ﹣1)a .15.(2020•江苏)已知关于x 的函数y =f (x ),y =g (x )与h (x )=kx +b (k ,b ∈R )在区间D 上恒有f (x )≥h (x )≥g (x ).(1)若f (x )=x 2+2x ,g (x )=﹣x 2+2x ,D =(﹣∞,+∞),求h (x )的表达式;(2)若f (x )=x 2﹣x +1,g (x )=klnx ,h (x )=kx ﹣k ,D =(0,+∞),求k 的取值范围;(3)若f (x )=x 4﹣2x 2,g (x )=4x 2﹣8,h (x )=4(t 3﹣t )x ﹣3t 4+2t 2(0<|t |≤√2),D =[m ,n ]⊂[−√2,√2],求证:n ﹣m ≤√7.16.(2020•新课标Ⅲ)设函数f (x )=x 3+bx +c ,曲线y =f (x )在点(12,f (12))处的切线与y 轴垂直.(1)求b ;(2)若f (x )有一个绝对值不大于1的零点,证明:f (x )所有零点的绝对值都不大于1.17.(2020•新课标Ⅱ)已知函数f (x )=sin 2x sin2x .(1)讨论f (x )在区间(0,π)的单调性;(2)证明:|f (x )|≤3√38; (3)设n ∈N *,证明:sin 2x sin 22x sin 24x …sin 22n x ≤3n 4n . 18.(2020•新课标Ⅱ)已知函数f (x )=2lnx +1.(1)若f (x )≤2x +c ,求c 的取值范围;(2)设a >0,讨论函数g (x )=f(x)−f(a)x−a的单调性. 19.(2020•新课标Ⅰ)已知函数f (x )=e x +ax 2﹣x .(1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.20.(2020•新课标Ⅲ)已知函数f (x )=x 3﹣kx +k 2.(1)讨论f (x )的单调性;(2)若f (x )有三个零点,求k 的取值范围.21.(2019•全国)已知函数f (x )=√x (x 2﹣ax ).(1)当a=1时,求f(x)的单调区间;(2)若f(x)在区间[0,2]的最小值为−23,求a.22.(2019•新课标Ⅲ)已知函数f(x)=2x3﹣ax2+b.(1)讨论f(x)的单调性;(2)是否存在a,b,使得f(x)在区间[0,1]的最小值为﹣1且最大值为1?若存在,求出a,b的所有值;若不存在,说明理由.23.(2019•新课标Ⅲ)已知函数f(x)=2x3﹣ax2+2.(1)讨论f(x)的单调性;(2)当0<a<3时,记f(x)在区间[0,1]的最大值为M,最小值为m,求M﹣m的取值范围.24.(2019•浙江)已知实数a≠0,设函数f(x)=alnx+√1+x,x>0.(Ⅰ)当a=−34时,求函数f(x)的单调区间;(Ⅱ)对任意x∈[1e2,+∞)均有f(x)≤√x2a,求a的取值范围.注:e=2.71828…为自然对数的底数.25.(2019•新课标Ⅱ)已知函数f(x)=(x﹣1)lnx﹣x﹣1.证明:(1)f(x)存在唯一的极值点;(2)f(x)=0有且仅有两个实根,且两个实根互为倒数.26.(2019•江苏)设函数f(x)=(x﹣a)(x﹣b)(x﹣c),a,b,c∈R,f′(x)为f(x)的导函数.(1)若a=b=c,f(4)=8,求a的值;(2)若a≠b,b=c,且f(x)和f′(x)的零点均在集合{﹣3,1,3}中,求f(x)的极小值;(3)若a=0,0<b≤1,c=1,且f(x)的极大值为M,求证:M≤4 27.27.(2019•天津)设函数f(x)=lnx﹣a(x﹣1)e x,其中a∈R.(Ⅰ)若a≤0,讨论f(x)的单调性;(Ⅱ)若0<a<1 e,(ⅰ)证明f(x)恰有两个零点;(ⅱ)设x0为f(x)的极值点,x1为f(x)的零点,且x1>x0,证明3x0﹣x1>2.28.(2019•天津)设函数f (x )=e x cos x ,g (x )为f (x )的导函数.(Ⅰ)求f (x )的单调区间;(Ⅱ)当x ∈[π4,π2]时,证明f (x )+g (x )(π2−x )≥0; (Ⅲ)设x n 为函数u (x )=f (x )﹣1在区间(2n π+π4,2n π+π2)内的零点,其中n ∈N ,证明2n π+π2−x n <e −2nπsinx 0−cosx 0. 29.(2019•新课标Ⅰ)已知函数f (x )=2sin x ﹣x cos x ﹣x ,f ′(x )为f (x )的导数.(1)证明:f ′(x )在区间(0,π)存在唯一零点;(2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.30.(2019•新课标Ⅱ)已知函数f (x )=lnx −x+1x−1. (1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =lnx 在点A (x 0,lnx 0)处的切线也是曲线y =e x 的切线.31.(2019•北京)已知函数f (x )=14x 3﹣x 2+x .(Ⅰ)求曲线y =f (x )的斜率为1的切线方程;(Ⅱ)当x ∈[﹣2,4]时,求证:x ﹣6≤f (x )≤x ;(Ⅲ)设F (x )=|f (x )﹣(x +a )|(a ∈R ),记F (x )在区间[﹣2,4]上的最大值为M (a ).当M (a )最小时,求a 的值.32.(2019•新课标Ⅰ)已知函数f (x )=sin x ﹣ln (1+x ),f ′(x )为f (x )的导数.证明:(1)f ′(x )在区间(﹣1,π2)存在唯一极大值点; (2)f (x )有且仅有2个零点.33.(2018•北京)设函数f (x )=[ax 2﹣(4a +1)x +4a +3]e x .(Ⅰ)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ;(Ⅱ)若f (x )在x =2处取得极小值,求a 的取值范围.34.(2018•北京)设函数f (x )=[ax 2﹣(3a +1)x +3a +2]e x .(Ⅰ)若曲线y =f (x )在点(2,f (2))处的切线斜率为0,求a ;(Ⅱ)若f (x )在x =1处取得极小值,求a 的取值范围.35.(2018•新课标Ⅲ)已知函数f (x )=(2+x +ax 2)ln (1+x )﹣2x .(1)若a =0,证明:当﹣1<x <0时,f (x )<0;当x >0时,f (x )>0;(2)若x=0是f(x)的极大值点,求a.36.(2018•新课标Ⅰ)已知函数f(x)=ae x﹣lnx﹣1.(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;(2)证明:当a≥1e时,f(x)≥0.37.(2018•新课标Ⅲ)已知函数f(x)=ax2+x−1e x.(1)求曲线y=f(x)在点(0,﹣1)处的切线方程;(2)证明:当a≥1时,f(x)+e≥0.38.(2018•新课标Ⅱ)已知函数f(x)=e x﹣ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)若f(x)在(0,+∞)只有一个零点,求a.39.(2018•浙江)已知函数f(x)=√x−lnx.(Ⅰ)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8﹣8ln2;(Ⅱ)若a≤3﹣4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.40.(2018•天津)已知函数f(x)=a x,g(x)=log a x,其中a>1.(Ⅰ)求函数h(x)=f(x)﹣xlna的单调区间;(Ⅱ)若曲线y=f(x)在点(x1,f(x1))处的切线与曲线y=g(x)在点(x2,g(x2))处的切线平行,证明x1+g(x2)=−2lnlna lna;(Ⅲ)证明当a≥e 1e时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.41.(2018•江苏)记f′(x),g′(x)分别为函数f(x),g(x)的导函数.若存在x0∈R,满足f(x0)=g(x0)且f′(x0)=g′(x0),则称x0为函数f(x)与g(x)的一个“S 点”.(1)证明:函数f(x)=x与g(x)=x2+2x﹣2不存在“S点”;(2)若函数f(x)=ax2﹣1与g(x)=lnx存在“S点”,求实数a的值;(3)已知函数f(x)=﹣x2+a,g(x)=be xx.对任意a>0,判断是否存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”,并说明理由.42.(2018•新课标Ⅱ)已知函数f(x)=13x3﹣a(x2+x+1).(1)若a =3,求f (x )的单调区间;(2)证明:f (x )只有一个零点.43.(2018•新课标Ⅰ)已知函数f (x )=1x −x +alnx .(1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:f(x 1)−f(x 2)x 1−x 2<a ﹣2.44.(2017•新课标Ⅰ)已知函数f (x )=ae 2x +(a ﹣2)e x ﹣x .(1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.45.(2017•全国)已知函数f (x )=ax 3﹣3(a +1)x 2+12x .(1)当a >0时,求f (x )的极小值;(Ⅱ)当a ≤0时,讨论方程f (x )=0实根的个数.46.(2017•新课标Ⅰ)已知函数f (x )=e x (e x ﹣a )﹣a 2x .(1)讨论f (x )的单调性;(2)若f (x )≥0,求a 的取值范围.47.(2017•天津)设a ∈Z ,已知定义在R 上的函数f (x )=2x 4+3x 3﹣3x 2﹣6x +a 在区间(1,2)内有一个零点x 0,g (x )为f (x )的导函数.(Ⅰ)求g (x )的单调区间;(Ⅱ)设m ∈[1,x 0)∪(x 0,2],函数h (x )=g (x )(m ﹣x 0)﹣f (m ),求证:h (m )h (x 0)<0;(Ⅲ)求证:存在大于0的常数A ,使得对于任意的正整数p ,q ,且p q ∈[1,x 0)∪(x 0,2],满足|p q −x 0|≥1Aq 4. 48.(2017•新课标Ⅱ)设函数f (x )=(1﹣x 2)•e x .(1)讨论f (x )的单调性;(2)当x ≥0时,f (x )≤ax +1,求实数a 的取值范围.49.(2017•山东)已知函数f (x )=x 2+2cos x ,g (x )=e x (cos x ﹣sin x +2x ﹣2),其中e ≈2.71828…是自然对数的底数.(Ⅰ)求曲线y =f (x )在点(π,f (π))处的切线方程;(Ⅱ)令h (x )=g (x )﹣af (x )(a ∈R ),讨论h (x )的单调性并判断有无极值,有极值时求出极值.50.(2017•天津)设a ,b ∈R ,|a |≤1.已知函数f (x )=x 3﹣6x 2﹣3a (a ﹣4)x +b ,g (x )=e x f (x ).(Ⅰ)求f (x )的单调区间;(Ⅱ)已知函数y =g (x )和y =e x 的图象在公共点(x 0,y 0)处有相同的切线,(i )求证:f (x )在x =x 0处的导数等于0;(ii )若关于x 的不等式g (x )≤e x 在区间[x 0﹣1,x 0+1]上恒成立,求b 的取值范围.51.(2017•北京)已知函数f (x )=e x cos x ﹣x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)求函数f (x )在区间[0,π2]上的最大值和最小值. 52.(2017•江苏)已知函数f (x )=x 3+ax 2+bx +1(a >0,b ∈R )有极值,且导函数f ′(x )的极值点是f (x )的零点.(Ⅰ)求b 关于a 的函数关系式,并写出定义域;(Ⅱ)证明:b 2>3a ;(Ⅲ)若f (x ),f ′(x )这两个函数的所有极值之和不小于−72,求实数a 的取值范围.53.(2017•新课标Ⅱ)已知函数f (x )=ax 2﹣ax ﹣xlnx ,且f (x )≥0.(1)求a ;(2)证明:f (x )存在唯一的极大值点x 0,且e ﹣2<f (x 0)<2﹣2. 54.(2017•浙江)已知函数f (x )=(x −√2x −1)e ﹣x (x ≥12). (1)求f (x )的导函数;(2)求f (x )在区间[12,+∞)上的取值范围. 55.(2017•新课标Ⅲ)已知函数f (x )=lnx +ax 2+(2a +1)x .(1)讨论f (x )的单调性;(2)当a <0时,证明:f (x )≤−34a −2.56.(2017•新课标Ⅲ)已知函数f (x )=x ﹣1﹣alnx .(1)若f (x )≥0,求a 的值;(2)设m 为整数,且对于任意正整数n ,(1+12)(1+122)…(1+12n )<m ,求m 的最小值.57.(2017•山东)已知函数f(x)=13x3−12ax2,a∈R,(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;(2)设函数g(x)=f(x)+(x﹣a)cos x﹣sin x,讨论g(x)的单调性并判断有无极值,有极值时求出极值.2017-2021年高考真题 导数 解答题全集(学生版+解析版)参考答案与试题解析1.(2021•新高考Ⅱ)已知函数f (x )=(x ﹣1)e x ﹣ax 2+b .(Ⅰ)讨论f (x )的单调性;(Ⅱ)从下面两个条件中选一个,证明:f (x )恰有一个零点.①12<a ≤e 22,b >2a ; ②0<a <12,b ≤2a .【解答】解:(Ⅰ)∵f (x )=(x ﹣1)e x ﹣ax 2+b ,f '(x )=x (e x ﹣2a ),①当a ≤0时,当x >0时,f '(x )>0,当x <0时,f '(x )<0,∴f (x )在(﹣∞,0)上单调递减,在(0,+∞)上单调递增,②当a >0时,令f '(x )=0,可得x =0或x =ln (2a ),(i )当0<a <12时,当x >0或x <ln (2a )时,f '(x )>0,当ln (2a )<x <0时,f '(x )<0,∴f (x )在(﹣∞,ln (2a )),(0,+∞)上单调递增,在(ln (2a ),0)上单调递减, (ii )a =12时,f '(x )=x (e x ﹣1)≥0 且等号不恒成立,∴f (x )在R 上单调递增,(iii )当a >12时,当x <0或x >ln (2a )时,f '(x )>0,当0<x <ln (2a )时,f '(x )<0,f (x )在(﹣∞,0),(ln (2a ),+∞)上单调递增,在(0,ln (2a ))上单调递减. 综上所述:当 a ⩽0 时,f (x ) 在 (﹣∞,0)上单调递减;在 (0,+∞)上 单调递增;当 0<a <12 时,f (x ) 在 (﹣∞,ln (2a )) 和 (0,+∞)上单调递增;在 (ln (2a ),0)上单调递减;当 a =12 时,f (x ) 在 R 上单调递增;当 a >12 时,f (x ) 在 (﹣∞,0)和 (ln (2a ),+∞) 上单调递增;在 (0,ln (2a )) 上单调递减.(Ⅱ)证明:若选①,由 (Ⅰ)知,f (x ) 在 (﹣∞,0)上单调递增,(0,ln (2a ))单调递减,(ln(2a),+∞)上f(x)单调递增.注意到f(−√ba)=(−√b a−1)e−√ba<0,f(0)=b−1>2a−1>0.∴f(x)在(−√ba,0]上有一个零点;f(ln(2a))=(ln(2a)﹣1)⋅2a﹣a⋅ln22a+b>2aln(2a)﹣2a﹣aln22a+2a=aln(2a)(2﹣ln(2a)),由12<a⩽e22得0<ln(2a)⩽2,∴aln(2a)(2﹣ln(2a))⩾0,∴f(ln(2a))>0,当x⩾0 时,f(x)⩾f(ln(2a))>0,此时f(x)无零点.综上:f(x)在R上仅有一个零点.若选②,则由(Ⅰ)知:f(x)在(﹣∞,ln(2a))上单调递增,在(ln(2a),0)上单调递减,在(0,+∞)上单调递增.f(ln(2a))=(ln(2a)﹣1)2a﹣aln22a+b⩽2aln(2a)﹣2a﹣aln22a+2a=aln(2a)(2﹣ln(2a)),∵0<a<12,∴ln(2a)<0,∴aln(2a)(2﹣ln(2a))<0,∴f(ln(2a))<0,∴当x⩽0 时,f(x)⩽f(ln(2a))<0,此时f(x)无零点.当x>0 时,f(x)单调递增,注意到f(0)=b﹣1⩽2a﹣1<0,取c=√2(1−b)+2,∵b<2a<1,∴c>√2>1,又易证e c>c+1,∴f(c)=(c−1)e c−ac2+b>(c−1)(c+1)−ac2+b=(1−a)c2+b−1>12c2+b−1=1−b+1+b−1=1>0,∴f(x)在(0,c)上有唯一零点,即f(x)在(0,+∞)上有唯一零点.综上:f(x)在R上有唯一零点.2.(2021•北京)已知函数f(x)=3−2x x2+a.(1)若a=0,求y=f(x)在(1,f(1))处的切线方程;(2)若函数f(x)在x=﹣1处取得极值,求f(x)的单调区间,以及最大值和最小值.【解答】解:(1)f(x)=3−2xx2的导数为f′(x)=−2x2−2x(3−2x)x4=2x−6x3,可得y=f(x)在(1,1)处的切线的斜率为﹣4,则y=f(x)在(1,f(1))处的切线方程为y﹣1=﹣4(x﹣1),即为y=﹣4x+5;(2)f(x)=3−2xx2+a的导数为f′(x)=−2(x2+a)−2x(3−2x)(x2+a)2,由题意可得f′(﹣1)=0,即8−2a(a+1)2=0,解得a=4,可得f(x)=3−2x x2+4,f′(x)=2(x+1)(x−4) (x2+4)2,当x>4或x<﹣1时,f′(x)>0,f(x)递增;当﹣1<x<4时,f′(x)<0,f(x)递减.函数y=f(x)的图象如右图,当x→﹣∞,y→0;x→+∞,y→0,则f(x)在x=﹣1处取得极大值1,且为最大值1;在x=4处取得极小值−14,且为最小值−1 4.所以f(x)的增区间为(﹣∞,﹣1),(4,+∞),减区间为(﹣1,4);f(x)的最大值为1,最小值为−1 4.3.(2021•天津)已知a>0,函数f(x)=ax﹣xe x.(1)求曲线f(x)在点(0,f(0))处的切线方程;(2)证明函数f(x)存在唯一的极值点;(3)若∃a,使得f(x)≤a+b对任意的x∈R恒成立,求实数b的取值范围.【解答】(1)解:因为f'(x)=a﹣(x+1)e x,所以f'(0)=a﹣1,而f(0)=0,所以在(0,f(0))处的切线方程为y=(a﹣1)x(a>0);(2)证明:令f'(x)=a﹣(x+1)e x=0,则a=(x+1)e x,令g(x)=(x+1)e x,则g'(x)=(x+2)e x,令g'(x)=0,解得x=﹣2,当x∈(﹣∞,﹣2)时,g'(x)<0,g(x)单调递减,当x∈(﹣2,+∞)时,g'(x)>0,g(x)单调递增,当x→﹣∞时,g(x)<0,当x→+∞时,g(x)>0,作出图象所以当a>0时,y=a与y=g(x)仅有一个交点,令g(m)=a,则m>﹣1,且f(m)=a﹣g(m)=0,当x∈(﹣∞,m)时,a>g(m),f'(x)>0,f(x)为增函数;当x∈(m,+∞)时,a<g(m),f'(x)<0,f(x)为减函数;所以x=m时f(x)的极大值点,故f(x)仅有一个极值点;(3)解:由(2)知f(x)max=f(m),此时a=(1+m)e m,(m>﹣1),所以{f(x)﹣a}max=f(m)﹣a=(1+m)e m﹣m﹣me m﹣(1+m)e m=(m2﹣m﹣1)e m (m>﹣1),令h(x)=(x2﹣x﹣1)e x(x>﹣1),若存在a,使f(x)≤a+b对任意的x∈R恒成立,则等价于存在x∈(﹣1,+∞),使得h(x)≤b,即b≥h(x)min,而h'(x)=(x2+x﹣2)e x=(x﹣1)(x+2)e x,(x>﹣1),当x∈(﹣1,1)时,h'(x)<0,h(x)为单调减函数,当x∈(1,+∞)时,h'(x)>0,h(x)为单调增函数,所以h(x)min=h(1)=﹣e,故b≥﹣e,所以实数b的取值范围[﹣e,+∞).4.(2021•浙江)设a,b为实数,且a>1,函数f(x)=a x﹣bx+e2(x∈R).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若对任意b>2e2,函数f(x)有两个不同的零点,求a的取值范围;(Ⅲ)当a=e时,证明:对任意b>e4,函数f(x)有两个不同的零点x1,x2,满足x2>blnb 2e2x1+e2b.(注:e=2.71828⋯是自然对数的底数)【解答】解:(Ⅰ)f′(x)=a x lna﹣b,①当b≤0时,由于a>1,则a x lna>0,故f′(x)>0,此时f(x)在R上单调递增;②当b>0时,令f′(x)>0,解得x>ln blnalna,令f′(x)<0,解得x<ln blnalna,∴此时f(x)在(−∞,ln blnalna)单调递减,在(ln blnalna,+∞)单调递增;综上,当b≤0时,f(x)的单调递增区间为(﹣∞,+∞);当b>0时,f(x)的单调递减区间为(−∞,ln blnalna),单调递增区间为(ln blnalna,+∞);(Ⅱ)注意到x→﹣∞时,f(x)→+∞,当x→+∞时,f(x)→+∞,由(Ⅰ)知,要使函数f(x)有两个不同的零点,只需f(x)min=f(ln blnalna)<0即可,∴a ln blnalna−b⋅ln blnalna+e2<0对任意b>2e2均成立,令t=ln blnalna,则at﹣bt+e2<0,即e tlna﹣bt+e2<0,即e lnblna−b⋅ln blnalna+e2<0,即blna−b⋅ln blnalna+e2<0,∴b−b⋅lnblna+e2lna<0对任意b>2e2均成立,记g(b)=b−b⋅lnblna+e2lna,b>2e2,则g′(b)=1−(ln b lna+b⋅lna b⋅1lna)=ln(lna)−lnb,令g′(b)=0,得b=lna,①当lna>2e2,即a>e2e2时,易知g(b)在(2e2,lna)单调递增,在(lna,+∞)单调递减,此时g(b)≤g(lna)=lna﹣lna•ln1+e2lna=lna•(e2+1)>0,不合题意;②当lna≤2e2,即1<a≤e2e2时,易知g(b)在(2e2,+∞)单调递减,此时g(b)<g(2e2)=2e2−2e2⋅ln 2e2lna+e2lna=2e2﹣2e2[ln(2e2)﹣ln(lna)]+e2lna,故只需2﹣2[ln2+2﹣ln(lna)]+lna≤0,即lna+2ln(lna)≤2+2ln2,则lna≤2,即a≤e2;综上,实数a的取值范围为(1,e2];(Ⅲ)证明:当a=e时,f(x)=e x﹣bx+e2,f′(x)=e x﹣b,令f′(x)=0,解得x=lnb >4,易知f(x)min =f(lnb)=e lnb −b ⋅lnb +e 2=b −blnb +e 2<b −4b +e 2=e 2﹣3b <e 2﹣3e 4=e 2(1﹣3e 2)<0,∴f (x )有两个零点,不妨设为x 1,x 2,且x 1<lnb <x 2,由f(x 2)=e x 2−bx 2+e 2=0,可得x 2=e x 2b +e 2b ,∴要证x 2>blnb 2e 2x 1+e 2b ,只需证e x 2b >blnb 2e 2x 1,只需证e x 2>b 2lnb 2e 2x 1, 而f(2e 2b )=e 2e 2b −2e 2+e 2=e 2e 2b −e 2<e 2e 2−e 2<0,则x 1<2e 2b , ∴要证e x 2>b 2lnb 2e 2x 1,只需证e x 2>blnb ,只需证x 2>ln (blnb ), 而f (ln (blnb ))=e ln(blnb )﹣bln (blnb )+e 2=blnb ﹣bln (blnb )+e 2<blnb ﹣bln (4b )+e 2=b ⋅ln 14+e 2=e 2−bln4<0,∴x 2>ln (blnb ),即得证.5.(2021•甲卷)设函数f (x )=a 2x 2+ax ﹣3lnx +1,其中a >0.(1)讨论f (x )的单调性;(2)若y =f (x )的图像与x 轴没有公共点,求a 的取值范围.【解答】解:(1)f ′(x )=2a 2x +a −3x =2a 2x 2+ax−3x =(2ax+3)(ax−1)x ,x >0, 因为a >0,所以−32a <0<1a ,所以在(0,1a )上,f ′(x )<0,f (x )单调递减, 在(1a ,+∞)上,f ′(x )>0,f (x )单调递增. 综上所述,f (x )在(0,1a )上单调递减,在(1a ,+∞)上f (x )单调递增. (2)由(1)可知,f (x )min =f (1a )=a 2×(1a )2+a ×1a −3ln 1a +1=3+3lna , 因为y =f (x )的图像与x 轴没有公共点,所以3+3lna >0,所以a >1e ,所以a 的取值范围为(1e,+∞).6.(2021•乙卷)已知函数f (x )=ln (a ﹣x ),已知x =0是函数y =xf (x )的极值点.(1)求a ;(2)设函数g (x )=x+f(x)xf(x).证明:g (x )<1. 【解答】(1)解:由题意,f (x )的定义域为(﹣∞,a ),令t (x )=xf (x ),则t (x )=xln (a ﹣x ),x ∈(﹣∞,a ),则t '(x )=ln (a ﹣x )+x •−1a−x =ln(a −x)+−x a−x ,因为x =0是函数y =xf (x )的极值点,则有t '(0)=0,即lna =0,所以a =1, 当a =1时,t '(x )=ln(1−x)+−x 1−x =ln(1−x)+−11−x +1,且t '(0)=0,因为t ''(x )=−11−x +−1(1−x)2=x−2(1−x)2<0,则t '(x )在(﹣∞,1)上单调递减,所以当x ∈(﹣∞,0)时,t '(x )>0,当x ∈(0,1)时,t '(x )<0,所以a =1时,x =0是函数y =xf (x )的一个极大值点.综上所述,a =1;(2)证明:由(1)可知,xf (x )=xln (1﹣x ),要证x+f(x)xf(x)<1,即需证明x+ln(1−x)xln(1−x)<1,因为当x ∈(﹣∞,0)时,xln (1﹣x )<0,当x ∈(0,1)时,xln (1﹣x )<0,所以需证明x +ln (1﹣x )>xln (1﹣x ),即x +(1﹣x )ln (1﹣x )>0,令h (x )=x +(1﹣x )ln (1﹣x ),则h '(x )=(1﹣x )⋅−11−x +1−ln(1−x),所以h '(0)=0,当x ∈(﹣∞,0)时,h '(x )<0,当x ∈(0,1)时,h '(x )>0,所以x =0为h (x )的极小值点,所以h (x )>h (0)=0,即x +ln (1﹣x )>xln (1﹣x ),故x+ln(1−x)xln(1−x)<1, 所以x+f(x)xf(x)<1.7.(2021•新高考Ⅰ)已知函数f(x)=x(1﹣lnx).(1)讨论f(x)的单调性;(2)设a,b为两个不相等的正数,且blna﹣alnb=a﹣b,证明:2<1a+1b<e.【解答】(1)解:由函数的解析式可得f'(x)=1﹣lnx﹣1=﹣lnx,∴x∈(0,1),f′(x)>0,f(x)单调递增,x∈(1,+∞),f′(x)<0,f(x)单调递减,则f(x)在(0,1)单调递增,在(1,+∞)单调递减.(2)证明:由blna﹣alnb=a﹣b,得−1aln1a+1b ln1b=1b−1a,即1a (1−ln1a)=1b(1−ln1b),由(1)f(x)在(0,1)单调递增,在(1,+∞)单调递减,所以f(x)max=f(1)=1,且f(e)=0,令x1=1a,x2=1b,则x1,x2为f(x)=k的两根,其中k∈(0,1).不妨令x1∈(0,1),x2∈(1,e),则2﹣x1>1,先证2<x1+x2,即证x2>2﹣x1,即证f(x2)=f(x1)<f(2﹣x1),令h(x)=f(x)﹣f(2﹣x),则h′(x)=f′(x)+f′(2﹣x)=﹣lnx﹣ln(2﹣x)=﹣ln[x(2﹣x)]在(0,1)单调递减,所以h′(x)>h′(1)=0,故函数h(x)在(0,1)单调递增,∴h(x1)<h(1)=0.∴f(x1)<f(2﹣x1),∴2<x1+x2,得证.同理,要证x1+x2<e,(法一)即证1<x2<e﹣x1,根据(1)中f(x)单调性,即证f(x2)=f(x1)>f(e﹣x1),令φ(x)=f(x)﹣f(e﹣x),x∈(0,1),则φ'(x)=﹣ln[x(e﹣x)],令φ′(x0)=0,x∈(0,x0),φ'(x)>0,φ(x)单调递增,x∈(x0,1),φ'(x)<0,φ(x)单调递减,又0<x<e时,f(x)>0,且f(e)=0,故limx→0φ(x)=0,φ(1)=f(1)﹣f(e﹣1)>0,∴φ(x)>0恒成立,x1+x2<e得证,(法二)f(x1)=f(x2),x1(1﹣lnx1)=x2(1﹣lnx2),又x1∈(0,1),故1﹣lnx1>1,x1(1﹣lnx1)>x1,故x1+x2<x1(1﹣lnx1)+x2=x2(1﹣lnx2)+x2,x2∈(1,e),令g(x)=x(1﹣lnx)+x,g′(x)=1﹣lnx,x∈(1,e),在(1,e)上,g′(x)>0,g(x)单调递增,所以g(x)<g(e)=e,即x2(1﹣lnx2)+x2<e,所以x1+x2<e,得证,则2<1a+1b<e.8.(2021•乙卷)已知函数f(x)=x3﹣x2+ax+1.(1)讨论f(x)的单调性;(2)求曲线y=f(x)过坐标原点的切线与曲线y=f(x)的公共点的坐标.【解答】解:(1)f′(x)=3x2﹣2x+a,△=4﹣12a,①当△≤0,即a≥13时,由于f′(x)的图象是开口向上的抛物线,故此时f′(x)≥0,则f(x)在R上单调递增;②当△>0,即a<13时,令f′(x)=0,解得x1=1−√1−3a3,x2=1+√1−3a3,令f′(x)>0,解得x<x1或x>x2,令f′(x)<0,解得x1<x<x2,∴f(x)在(﹣∞,x1),(x2,+∞)单调递增,在(x1,x2)单调递减;综上,当a≥13时,f(x)在R上单调递增;当a<13时,f(x)在(−∞,1−√1−3a3),(1+√1−3a3,+∞)单调递增,在(1−√1−3a3,1+√1−3a3)单调递减.(2)设曲线y=f(x)过坐标原点的切线为l,切点为(x0,x03−x02+ax0+1),f′(x0)= 3x02−2x0+a,则切线方程为y−(x03−x02+ax0+1)=(3x02−2x0+a)(x−x0),将原点代入切线方程有,2x 03−x 02−1=0,解得x 0=1,∴切线方程为y =(a +1)x ,令x 3﹣x 2+ax +1=(a +1)x ,即x 3﹣x 2﹣x +1=0,解得x =1或x =﹣1,∴曲线y =f (x )过坐标原点的切线与曲线y =f (x )的公共点的坐标为(1,a +1)和(﹣1,﹣a ﹣1).9.(2021•甲卷)已知a >0且a ≠1,函数f (x )=x a a x (x >0). (1)当a =2时,求f (x )的单调区间;(2)若曲线y =f (x )与直线y =1有且仅有两个交点,求a 的取值范围.【解答】解:(1)a =2时,f (x )=x 22x , f ′(x )=2x⋅2x −2x ln2⋅x 2(2x )2=x(2−xln2)2x =ln2⋅x(2ln2−x)2x , 当x ∈(0,2ln2)时,f ′(x )>0,当x ∈(2ln2,+∞)时,f ′(x )<0, 故f (x )在(0,2ln2)上单调递增,在(2ln2,+∞)上单调递减.(2)由题知f (x )=1在(0,+∞)有两个不等实根,f (x )=1⇔x a =a x ⇔alnx =xlna ⇔lnx x =lna a , 令g (x )=lnx x ,g ′(x )=1−lnx x 2,g (x )在(0,e )上单调递增,在(e ,+∞)上单调递减,又lim x→0g (x )=﹣∞,g (e )=1e ,g (1)=0,lim x→+∞g (x )=0, 作出g (x )的图象,如图所示:由图象可得0<lna a <1e ,解得a >1且a ≠e ,即a 的取值范围是(1,e )∪(e ,+∞).10.(2020•新课标Ⅰ)已知函数f (x )=e x ﹣a (x +2).(1)当a =1时,讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.【解答】解:由题意,f (x )的定义域为(﹣∞,+∞),且f ′(x )=e x ﹣a .(1)当a =1时,f ′(x )=e x ﹣1,令f ′(x )=0,解得x =0.∴当x ∈(﹣∞,0)时,f ′(x )<0,f (x )单调递减,当x ∈(0,+∞)时,f ′(x )>0,f (x )单调递增.∴f (x )在(﹣∞,0)上单调递减,在(0,+∞)上单调递增;(2)当a ≤0时,f ′(x )=e x ﹣a >0恒成立,f (x )在(﹣∞,+∞)上单调递增,不合题意;当a >0时,令f ′(x )=0,解得x =lna ,当x ∈(﹣∞,lna )时,f ′(x )<0,f (x )单调递减,当x ∈(lna ,+∞)时,f ′(x )>0,f (x )单调递增.∴f (x )的极小值也是最小值为f (lna )=a ﹣a (lna +2)=﹣a (1+lna ).又当x →﹣∞时,f (x )→+∞,当x →+∞时,f (x )→+∞.∴要使f (x )有两个零点,只要f (lna )<0即可,则1+lna >0,可得a >1e .综上,若f (x )有两个零点,则a 的取值范围是(1e ,+∞). 11.(2020•天津)已知函数f (x )=x 3+klnx (k ∈R ),f ′(x )为f (x )的导函数.(Ⅰ)当k =6时,(ⅰ)求曲线y =f (x )在点(1,f (1))处的切线方程;(ⅱ)求函数g (x )=f (x )﹣f ′(x )+9x 的单调区间和极值;(Ⅱ)当k ≥﹣3时,求证:对任意的x 1,x 2∈[1,+∞),且x 1>x 2,有f′(x 1)+f′(x 2)2>f(x 1)−f(x 2)x 1−x 2.【解答】解:(I )(i )当k =6时,f (x )=x 3+6lnx ,故f ′(x )=3x 2+6x,∴f ′(1)=9,∵f (1)=1,∴曲线y =f (x )在点(1,f (1))处的切线方程为y ﹣1=9(x ﹣1),即9x ﹣y ﹣8=0.(ii )g (x )=f (x )﹣f ′(x )+9x =x 3+6lnx ﹣3x 2+3x,x >0,∴g ′(x )=3x 2﹣6x +6x −3x 2=3(x−1)3(x+1)x 2,令g ′(x )=0,解得x =1, 当0<x <1,g ′(x )<0, 当x >1,g ′(x )>0,∴函数g (x )在(0,1)上单调递减,在(1,+∞)上单调递增, x =1是极小值点,极小值为g (1)=1,无极大值 证明:(Ⅱ)由f (x )=x 3+klnx ,则f ′(x )=3x 2+kx, 对任意的x 1,x 2∈[1,+∞),且x 1>x 2,令x 1x 2=t ,t >1,则(x 1﹣x 2)[f ′(x 1)+f ′(x 2)]﹣2[f (x 1)﹣f (x 2)]=(x 1﹣x 2)(3x 12+kx 1+3x 22+kx 2)﹣2(x 13﹣x 23+klnx 1x 2),=x 13﹣x 23﹣3x 12x 2+3x 1x 22+k (x 1x 2−x 2x 1)﹣2klnx 1x 2,=x 23(t 3﹣3t 2+3t ﹣1)+k (t −1t−2lnt ),① 令h (x )=x −1x −2lnx ,x >1, 当x >1时,h ′(x )=1+1x2−2x =(1−1x )2>0, ∴h (x )在(1,+∞)单调递增,∴当t >1,h (t )>h (1)=0,即t −1t −2lnt >0, ∵x 2≥1,t 3﹣3t 2+3t ﹣1=(t ﹣1)3>0,k ≥﹣3,∴x 23(t 3﹣3t 2+3t ﹣1)+k (t −1t −2lnt )≥t 3﹣3t 2+3t ﹣1﹣3(t −1t −2lnt )=t 3﹣3t 2+6lnt +3t −1,②,由(Ⅰ)(ii )可知当t ≥1时,g (t )>g (1) 即t 3﹣3t 2+6lnt +3t >1,③,由①②③可得(x 1﹣x 2)[f ′(x 1)+f ′(x 2)]﹣2[f (x 1)﹣f (x 2)]>0, ∴当k ≥﹣3时,对任意的x 1,x 2∈[1,+∞),且x 1>x 2,有f′(x 1)+f′(x 2)2>f(x 1)−f(x 2)x 1−x 2.12.(2020•海南)已知函数f (x )=ae x ﹣1﹣lnx +lna .(1)当a=e时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;(2)若f(x)≥1,求a的取值范围.【解答】解:(1)当a=e时,f(x)=e x﹣lnx+1,∴f′(x)=e x−1 x,∴f′(1)=e﹣1,∵f(1)=e+1,∴曲线y=f(x)在点(1,f(1))处的切线方程为y﹣(e+1)=(e﹣1)(x﹣1),当x=0时,y=2,当y=0时,x=−2e−1,∴曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积S=12×2×2e−1=2e−1.(2)方法一:由f(x)≥1,可得ae x﹣1﹣lnx+lna≥1,即e x﹣1+lna﹣lnx+lna≥1,即e x﹣1+lna+lna+x﹣1≥lnx+x=e lnx+lnx,令g(t)=e t+t,则g′(t)=e t+1>0,∴g(t)在R上单调递增,∵g(lna+x﹣1)≥g(lnx)∴lna+x﹣1≥lnx,即lna≥lnx﹣x+1,令h(x)=lnx﹣x+1,∴h′(x)=1x−1=1−x x,当0<x<1时,h′(x)>0,函数h(x)单调递增,当x>1时,h′(x)<0,函数h(x)单调递减,∴h(x)≤h(1)=0,∴lna≥0,∴a≥1,故a的范围为[1,+∞).方法二:由f(x)≥1可得ae x﹣1﹣lnx+lna≥1,x>0,a>0,即ae x﹣1﹣1≥lnx﹣lna,设g(x)=e x﹣x﹣1,∴g′(x)=e x﹣1>0恒成立,∴g(x)在(0,+∞)单调递增,∴g(x)>g(0)=1﹣0﹣1=0,∴e x﹣x﹣1>0,即e x>x+1,再设h(x)=x﹣1﹣lnx,∴h′(x)=1−1x=x−1x,当0<x<1时,h′(x)<0,函数h(x)单调递减,当x>1时,h′(x)>0,函数h(x)单调递增,∴h(x)≥h(1)=0,∴x﹣1﹣lnx≥0,即x﹣1≥lnx∴e x﹣1≥x,则ae x﹣1≥ax,此时只需要证ax≥x﹣lna,即证x(a﹣1)≥﹣lna,当a≥1时,∴x(a﹣1)>0>﹣lna恒成立,当0<a<1时,x(a﹣1)<0<﹣lna,此时x(a﹣1)≥﹣lna不成立,综上所述a的取值范围为[1,+∞).方法三:由题意可得x∈(0,+∞),a∈(0,+∞),∴f′(x)=ae x﹣1−1 x,易知f′(x)在(0,+∞)上为增函数,①当0<a<1时,f′(1)=a﹣1<0,f′(1a )=a e1a−1−a=a(e1a−1−1)>0,∴存在x0∈(1,1a)使得f′(x0)=0,当x∈(1,x0)时,f′(x)<0,函数f(x)单调递减,∴f(x)<f(1)=a+lna<a<1,不满足题意,②当a≥1时,e x﹣1>0,lna>0,∴f(x)≥e x﹣1﹣lnx,令g(x)=e x﹣1﹣lnx,∴g′(x)=e x﹣1−1 x,易知g′(x)在(0,+∞)上为增函数,∵g′(1)=0,∴当x∈(0,1)时,g′(x)<0,函数g(x)单调递减,当x∈(1,+∞)时,g′(x)>0,函数g(x)单调递增,∴g(x)≥g(1)=1,即f(x)≥1,综上所述a的取值范围为[1,+∞).方法四:∵f(x)=ae x﹣1﹣lnx+lna,x>0,a>0,∴f′(x)=ae x﹣1−1x,易知f′(x)在(0,+∞)上为增函数,∵y=ae x﹣1在(0,+∞)上为增函数,y=1x在0,+∞)上为减函数,∴y=ae x﹣1与y=1x在0,+∞)上有交点,∴存在x0∈(0,+∞),使得f′(x0)=a e x0−1−1x0=0,则a e x0−1=1x0,则lna+x0﹣1=﹣lnx0,即lna=1﹣x0﹣lnx0,当x∈(0,x0)时,f′(x)<0,函数f(x)单调递减,当x∈(x0,+∞)时,f′(x)>0,函数f(x)单调递增,∴f(x)≥f(x0)=a e x0−1−lnx0+lna=1x0−lnx0+1﹣x0﹣lnx0=1x−2lnx0+1﹣x0≥1∴1x0−2lnx0﹣x0≥0设g(x)=1x−2lnx﹣x,易知函数g(x)在(0,+∞)上单调递减,且g(1)=1﹣0﹣1=0,∴当x∈(0,1]时,g(x)≥0,∴x0∈(0,1]时,1x0−2lnx0﹣x0≥0,设h(x)=1﹣x﹣lnx,x∈(0,1],∴h′(x)=﹣1−1x<0恒成立,∴h(x)在(0,1]上单调递减,∴h(x)≥h(1)=1﹣1﹣ln1=0,当x→0时,h(x)→+∞,∴lna≥0=ln1,∴a≥1.方法五:f(x)≥1等价于ae x﹣1﹣lnx+lna≥1,该不等式恒成立.当x=1时,有a+lna≥1,其中a>0.设g(a)=a+lna﹣1,则g'(a)=1+1a>0,则g(a)单调递增,且g(1)=0.所以若a+lna≥1成立,则必有a≥1.∴下面证明当a≥1时,f(x)≥1成立.设h(x)=e x﹣x﹣1,∴h′(x)=e x﹣1,∴h(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增,∴h(x)≥h(0)=1﹣0﹣1=0,∴e x﹣x﹣1≥0,即e x≥x+1,把x换成x﹣1得到e x﹣1≥x,∵x﹣1≥lnx,∴x﹣lnx≥1.∴f(x)=ae x﹣1﹣lnx+lna≥e x﹣1﹣lnx≥x﹣lnx≥1,当x=1时等号成立.综上,a≥1.13.(2020•北京)已知函数f(x)=12﹣x2.(Ⅰ)求曲线y=f(x)的斜率等于﹣2的切线方程;(Ⅱ)设曲线y=f(x)在点(t,f(t))处的切线与坐标轴围成的三角形的面积为S(t),求S(t)的最小值.【解答】解:(Ⅰ)f(x)=12﹣x2的导数f′(x)=﹣2x,令切点为(m,n),可得切线的斜率为﹣2m=﹣2,∴m=1,∴n=12﹣1=11,∴切线的方程为y=﹣2x+13;(Ⅱ)曲线y=f(x)在点(t,f(t))处的切线的斜率为k=﹣2t,切线方程为y﹣(12﹣t2)=﹣2t(x﹣t),令x=0,可得y=12+t2,令y=0,可得x=12t+6t,∴S(t)=12•|12t+6t|•(12+t2),由S(﹣t)=S(t),可知S(t)为偶函数,不妨设t>0,则S(t)=14(t+12t)(12+t2),∴S′(t)=14(3t2+24−144t2)=34•(t2−4)(t2+12)t2,由S′(t)=0,得t=2,当t>2时,S′(t)>0,S(t)递增;当0<t<2时,S′(t)<0,S(t)递减,则S(t)在t=2和﹣2处取得极小值,且为最小值32,所以S(t)的最小值为32.14.(2020•浙江)已知1<a≤2,函数f(x)=e x﹣x﹣a,其中e=2.71828…为自然对数的底数.(Ⅰ)证明:函数y=f(x)在(0,+∞)上有唯一零点;(Ⅱ)记x0为函数y=f(x)在(0,+∞)上的零点,证明:(ⅰ)√a−1≤x0≤√2(a−1);(ⅱ)x0f(e x0)≥(e﹣1)(a﹣1)a.【解答】证明:(Ⅰ)∵f(x)=e x﹣x﹣a=0(x>0),∴f′(x)=e x﹣1>0恒成立,∴f(x)在(0,+∞)上单调递增,∵1<a≤2,∴f(2)=e2﹣2﹣a≥e2﹣4>0,又f(0)=1﹣a<0,∴函数y=f(x)在(0,+∞)上有唯一零点.(Ⅱ)(i)f(x0)=0,∴e x0−x0﹣a=0,∴√a−1≤x0≤√2(a−1),∴e x0−x0−1≤x02≤2(e x0−x0−1),令g(x)=e x﹣x﹣1﹣x2(0<x<2),h(x)=e x﹣x﹣1−x22,(0<x<2),一方面,h′(x)=e x﹣1﹣x=h1(x),ℎ1′(x)=e x−1>0,∴h′(x)>h′(0)=0,∴h(x)在(0,2)单调递增,∴h(x)>h(0)=0,∴e x﹣x﹣1−x22>0,2(ex﹣x﹣1)>x2,另一方面,1<a≤2,∴a﹣1≤1,∴当x0≥1时,√a−1≤x0成立,∴只需证明当0<x<1时,g(x)=e x﹣x﹣1﹣x2≤0,∵g′(x)=e x﹣1﹣2x=g1(x),g1'(x)=e x﹣2=0,∴x=ln2,当x∈(0,ln2)时,g1'(x)<0,当x∈(ln2,1)时,g1'(x)>0,∴g′(x)<max{g′(0),g′(1)},g′(0)=0,g′(1)=e﹣3<0,∴g′(x)<0,∴g(x)在(0,1)单调递减,∴g(x)<g(0)=0,∴e x﹣x﹣1<x2,综上,e x0−x0−1≤x02≤2(e x0−x0−1),∴√a−1≤x0≤√2(a−1).(ii)要证明x0f(e x0)≥(e﹣1)(a﹣1)a,只需证x0f(x0+a)≥(e﹣1)(a﹣1)a,由(i)得只需证e√a−1+a−√a−1−2a≥(e﹣1)a√a−1,∵e x≥1+x+12x2,∴只需证1+12(√a−1+a)2﹣a≥(e﹣1)a√a−1,只需证a2−(√a−1)2−2(e﹣2)a√a−1≥0,即证√a−1−√a−1a≥2(e﹣2),∵√a−1=√a−1+√a−1∈[2,+∞),∴√a−1−√a−1a≥2−12=32≥2(e−2),∴x0f(e x0)≥(e﹣1)(a﹣1)a.15.(2020•江苏)已知关于x的函数y=f(x),y=g(x)与h(x)=kx+b(k,b∈R)在区间D上恒有f(x)≥h(x)≥g(x).(1)若f(x)=x2+2x,g(x)=﹣x2+2x,D=(﹣∞,+∞),求h(x)的表达式;(2)若f(x)=x2﹣x+1,g(x)=klnx,h(x)=kx﹣k,D=(0,+∞),求k的取值范围;(3)若f(x)=x4﹣2x2,g(x)=4x2﹣8,h(x)=4(t3﹣t)x﹣3t4+2t2(0<|t|≤√2),D=[m,n]⊂[−√2,√2],求证:n﹣m≤√7.【解答】解:(1)由f(x)=g(x)得x=0,又f′(x)=2x+2,g′(x)=﹣2x+2,所以f′(0)=g′(0)=2,所以,函数h(x)的图象为过原点,斜率为2的直线,所以h(x)=2x,经检验:h(x)=2x,符合任意,(2)h(x)﹣g(x)=k(x﹣1﹣lnx),设φ(x)=x﹣1﹣lnx,设φ′(x)=1−1x=x−1x,在(1,+∞)上,φ′(x)>0,φ(x)单调递增,在(0,1)上,φ′(x)<0,φ(x)单调递减,所以φ(x)≥φ(1)=0,所以当h(x)﹣g(x)≥0时,k≥0,令p(x)=f(x)﹣h(x)所以p(x)=x2﹣x+1﹣(kx﹣k)=x2﹣(k+1)x+(1+k)≥0,得,当x=k+1≤0时,即k≤﹣1时,f(x)在(0,+∞)上单调递增,所以p(x)>p(0)=1+k≥0,k≥﹣1,所以k=﹣1,当k+1>0时,即k>﹣1时,△≤0,即(k+1)2﹣4(k+1)≤0,解得﹣1<k≤3,综上,k∈[0,3].(3)①当1≤t≤√2时,由g(x)≤h(x),得4x2﹣8≤4(t3﹣t)x﹣3t4+2t2,整理得x2﹣(t3﹣t)x+3t4−2t2−84≤0,(*)令△=(t3﹣t)2﹣(3t4﹣2t2﹣8),则△=t6﹣5t4+3t2+8,记φ(t)=t6﹣5t4+3t2+8(1≤t≤√2),则φ′(t)=6t5﹣20t3+6t=2t(3t2﹣1)(t2﹣3)<0,恒成立,所以φ(t)在[1,√2]上是减函数,则φ(√2)≤φ(t)≤φ(1),即2≤φ(t)≤7,所以不等式(*)有解,设解为x1≤x≤x2,因此n﹣m≤x2﹣x1=√△≤√7.②当0<t<1时,f(﹣1)﹣h(﹣1)=3t4+4t3﹣2t2﹣4t﹣1,设v (t )=3t 4+4t 3﹣2t 2﹣4t ﹣1,则v ′(t )=12t 3+12t 2﹣4t ﹣4=4(t +1)(3t 2﹣1), 令v ′(t )=0,得t =√33, 当t ∈(0,√33)时,v ′(t )<0,v (t )是减函数, 当t ∈(√33,1)时,v ′(t )>0,v (t )是增函数, v (0)=﹣1,v (1)=0, 则当0<t <1时,v (t )<0,则f (﹣1)﹣h (﹣1)<0,因此﹣1∉(m ,n ), 因为[m ,n ]⊆[−√2,√2],所以n ﹣m ≤√2+1<√7,③当−√2≤t <0时,因为f (x ),g (x )为偶函数,因此n ﹣m ≤√7也成立, 综上所述,n ﹣m ≤√7.16.(2020•新课标Ⅲ)设函数f (x )=x 3+bx +c ,曲线y =f (x )在点(12,f (12))处的切线与y 轴垂直. (1)求b ;(2)若f (x )有一个绝对值不大于1的零点,证明:f (x )所有零点的绝对值都不大于1.【解答】(1)解:由f (x )=x 3+bx +c ,得f ′(x )=3x 2+b , ∴f ′(12)=3×(12)2+b =0,即b =−34;(2)证明:法一、设x 0为f (x )的一个零点,根据题意,f(x 0)=x 03−34x 0+c =0,且|x 0|≤1,则c =−x 03+34x 0,且|x 0|≤1, 令c (x )=−x 3+34x (﹣1≤x ≤1), ∴c ′(x )=−3x 2+34=−3(x +12)(x −12), 当x ∈(﹣1,−12)∪(12,1)时,c ′(x )<0,当x ∈(−12,12)时,c ′(x )>0 可知c (x )在(﹣1,−12),(12,1)上单调递减,在(−12,12)上单调递增.又c (﹣1)=14,c (1)=−14,c (−12)=−14,c (12)=14,∴−14≤c ≤14.设x 1 为f (x )的零点,则必有f(x 1)=x 13−34x 1+c =0, 即−14≤c =−x 13+34x 1≤14,∴{4x 13−3x 1−1=(x 1−1)(2x 1+1)2≤04x 13−3x 1+1=(x 1+1)(2x 1−1)2≥0,得﹣1≤x 1≤1, 即|x 1|≤1.∴f (x )所有零点的绝对值都不大于1. 法二、由(1)可得,f (x )=x 3−34x +c . f ′(x )=3x 2−34=3(x +12)(x −12), 可得当x ∈(﹣∞,−12)∪(12,+∞)时,f ′(x )>0,当x ∈(−12,12)时,f ′(x )<0,则f (x )在(﹣∞,−12),(12,+∞)上单调递增,在(−12,12)上单调递减.且f (﹣1)=c −14,f (−12)=c +14,f (12)=c −14,f (1)=x +14,若f (x )的所有零点中存在一个绝对值大于1的零点x 0,则f (﹣1)>0或f (1)<0. 即c >14或c <−14.当c >14时,f (﹣1)=c −14>0,f (−12)=c +14>0,f (12)=c −14>0,f (1)=c +14>0,又f (﹣4c )=﹣64c 3+3c +c =4c (1﹣16c 2)<0,由零点存在性定理可知,f (x )在(﹣4c ,﹣1)上存在唯一一个零点. 即f (x )在(﹣∞,﹣1)上存在唯一零点,在(1,+∞)上不存在零点. 此时f (x )不存在绝对值不大于1的零点,与题设矛盾;当c <−14时,f (﹣1)=c −14<0,f (−12)=c +14<0,f (12)=c −14<0,f (1)=c +14<0,又f (﹣4c )=64c 3+3c +c =4c (1﹣16c 2)>0,由零点存在性定理可知,f (x )在(1,﹣4c )上存在唯一一个零点. 即f (x )在(1,+∞)上存在唯一零点,在(﹣∞,1)上不存在零点.。
【K12高考数学】2017年高考真题分类汇编(理数):专题2导数(解析版)
2017年高考真题分类汇编(理数):专题2导数一、单选题(共3题;共6分)1、(2017•浙江)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A、B、C、D、2、(2017•新课标Ⅱ)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A、﹣1B、﹣2e﹣3C、5e﹣3D、13、(2017•新课标Ⅲ)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()A、﹣B、C、D、1二、解答题(共8题;共50分)4、(2017•浙江)已知函数f(x)=(x﹣)e﹣x(x≥).(Ⅰ)求f(x)的导函数;(Ⅱ)求f(x)在区间[,+∞)上的取值范围.5、(2017•山东)已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数.(13分)(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;(Ⅱ)令h(x)=g(x)﹣af(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.6、(2017•北京卷)已知函数f(x)=e x cosx﹣x.(13分)(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.7、(2017·天津)设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数.(Ⅰ)求g(x)的单调区间;(Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0;(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,x0)∪(x0,2],满足|﹣x0|≥.8、(2017•江苏)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(Ⅰ)求b关于a的函数关系式,并写出定义域;(Ⅱ)证明:b2>3a;(Ⅲ)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.9、(2017•新课标Ⅰ卷)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(12分)(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.10、(2017•新课标Ⅱ)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(Ⅰ)求a;(Ⅱ)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.11、(2017•新课标Ⅲ)已知函数f(x)=x﹣1﹣alnx.(Ⅰ)若f(x)≥0,求a的值;(Ⅱ)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值.答案解析部分一、单选题1、【答案】D【考点】函数的图象,函数的单调性与导数的关系【解析】【解答】解:由当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,则由导函数y=f′(x)的图象可知:f(x)先单调递减,再单调递增,然后单调递减,最后单调递增,排除A,C,且第二个拐点(即函数的极大值点)在x轴上的右侧,排除B,故选D【分析】根据导数与函数单调性的关系,当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,根据函数图象,即可判断函数的单调性,然后根据函数极值的判断,即可判断函数极值的位置,即可求得函数y=f(x)的图象可能2、【答案】A【考点】导数的运算,利用导数研究函数的单调性,利用导数研究函数的极值【解析】【解答】解:函数f(x)=(x2+ax﹣1)e x﹣1,可得f′(x)=(2x+a)e x﹣1+(x2+ax﹣1)e x﹣1,x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,可得:﹣4+a+(3﹣2a)=0.解得a=﹣1.可得f′(x)=(2x﹣1)e x﹣1+(x2﹣x﹣1)e x﹣1,=(x2+x﹣2)e x﹣1,函数的极值点为:x=﹣2,x=1,当x<﹣2或x>1时,f′(x)>0函数是增函数,x∈(﹣2,1)时,函数是减函数,x=1时,函数取得极小值:f(1)=(12﹣1﹣1)e1﹣1=﹣1.故选:A.【分析】求出函数的导数,利用极值点,求出a,然后判断函数的单调性,求解函数的极小值即可.3、【答案】C【考点】利用导数研究函数的单调性,导数在最大值、最小值问题中的应用,函数的零点与方程根的关系,函数的零点【解析】【解答】解:因为f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)=﹣1+(x﹣1)2+a(e x﹣1+)=0,所以函数f(x)有唯一零点等价于方程1﹣(x﹣1)2=a(e x﹣1+)有唯一解,等价于函数y=1﹣(x﹣1)2的图象与y=a(e x﹣1+)的图象只有一个交点.①当a=0时,f(x)=x2﹣2x≥﹣1,此时有两个零点,矛盾;②当a<0时,由于y=1﹣(x﹣1)2在(﹣∞,1)上递增、在(1,+∞)上递减,且y=a(e x﹣1+)在(﹣∞,1)上递增、在(1,+∞)上递减,所以函数y=1﹣(x﹣1)2的图象的最高点为A(1,1),y=a(e x﹣1+)的图象的最高点为B(1,2a),由于2a<0<1,此时函数y=1﹣(x﹣1)2的图象与y=a(e x﹣1+)的图象有两个交点,矛盾;③当a>0时,由于y=1﹣(x﹣1)2在(﹣∞,1)上递增、在(1,+∞)上递减,且y=a(e x﹣1+)在(﹣∞,1)上递减、在(1,+∞)上递增,所以函数y=1﹣(x﹣1)2的图象的最高点为A(1,1),y=a(e x﹣1+)的图象的最低点为B(1,2a),由题可知点A与点B重合时满足条件,即2a=1,即a=,符合条件;综上所述,a=,故选:C.【分析】通过转化可知问题等价于函数y=1﹣(x﹣1)2的图象与y=a(e x﹣1+)的图象只有一个交点求a的值.分a=0、a<0、a>0三种情况,结合函数的单调性分析可得结论.二、解答题4、【答案】解:(Ⅰ)函数f(x)=(x﹣)e﹣x(x≥),导数f′(x)=(1﹣••2)e﹣x﹣(x﹣)e﹣x=(1﹣x+)e﹣x=(1﹣x)(1﹣)e﹣x;(Ⅱ)由f(x)的导数f′(x)=(1﹣x)(1﹣)e﹣x,可得f′(x)=0时,x=1或,当<x<1时,f′(x)<0,f(x)递减;当1<x<时,f′(x)>0,f(x)递增;当x>时,f′(x)<0,f(x)递减,且x≥⇔x2≥2x﹣1⇔(x﹣1)2≥0,则f(x)≥0.由f()=e,f(1)=0,f()=e,即有f(x)的最大值为e,最小值为f(1)=0.则f(x)在区间[,+∞)上的取值范围是[0,e].【考点】简单复合函数的导数,利用导数研究函数的单调性,导数在最大值、最小值问题中的应用【解析】【分析】(Ⅰ)求出f(x)的导数,注意运用复合函数的求导法则,即可得到所求;(Ⅱ)求出f(x)的导数,求得极值点,讨论当<x<1时,当1<x<时,当x>时,f(x)的单调性,判断f(x)≥0,计算f(),f(1),f(),即可得到所求取值范围.5、【答案】解:(Ⅰ)f(π)=π2﹣2.f′(x)=2x﹣2sinx,∴f′(π)=2π.∴曲线y=f(x)在点(π,f(π))处的切线方程为:y﹣(π2﹣2)=2π(x﹣π).化为:2πx﹣y﹣π2﹣2=0.(Ⅱ)h(x)=g(x)﹣af(x)=e x(cosx﹣sinx+2x﹣2)﹣a(x2+2cosx)h′(x)=e x(cosx﹣sinx+2x﹣2)+e x(﹣sinx﹣cosx+2)﹣a(2x﹣2sinx)=2(x﹣sinx)(e x﹣a)=2(x﹣sinx)(e x﹣e lna).令u(x)=x﹣sinx,则u′(x)=1﹣cosx≥0,∴函数u(x)在R上单调递增.∵u(0)=0,∴x>0时,u(x)>0;x<0时,u(x)<0.(i)a≤0时,e x﹣a>0,∴x>0时,h′(x)>0,函数h(x)在(0,+∞)单调递增;x<0时,h′(x)<0,函数h(x)在(﹣∞,0)单调递减.∴x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.(ii)a>0时,令h′(x)=2(x﹣sinx)(e x﹣e lna)=0.解得x1=lna,x2=0.①0<a<1时,x∈(﹣∞,lna)时,e x﹣e lna<0,h′(x)>0,函数h(x)单调递增;x∈(lna,0)时,e x﹣e lna>0,h′(x)<0,函数h(x)单调递减;x∈(0,+∞)时,e x﹣e lna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极小值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].②当a=1时,lna=0,x∈R时,h′(x)≥0,∴函数h(x)在R上单调递增.③1<a时,lna>0,x∈(﹣∞,0)时,e x﹣e lna<0,h′(x)>0,函数h(x)单调递增;x∈(0,lna)时,e x﹣e lna<0,h′(x)<0,函数h(x)单调递减;x∈(lna,+∞)时,e x﹣e lna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].综上所述:a≤0时,函数h(x)在(0,+∞)单调递增;x<0时,函数h(x)在(﹣∞,0)单调递减.x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.0<a<1时,函数h(x)在x∈(﹣∞,lna)是单调递增;函数h(x)在x∈(lna,0)上单调递减.当x=0时,函数h(x)取得极小值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].当a=1时,lna=0,函数h(x)在R上单调递增.a>1时,函数h(x)在(﹣∞,0),(lna,+∞)上单调递增;函数h(x)在(0,lna)上单调递减.当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].【考点】导数的加法与减法法则,导数的乘法与除法法则,函数的单调性与导数的关系,利用导数研究函数的单调性,利用导数研究函数的极值,利用导数研究曲线上某点切线方程【解析】【分析】(Ⅰ)f(π)=π2﹣2.f′(x)=2x﹣2sinx,可得f′(π)=2π即为切线的斜率,利用点斜式即可得出切线方程.(Ⅱ)h(x)=g(x)﹣af(x)=e x(cosx﹣sinx+2x﹣2)﹣a(x2+2cosx),可得h′(x)=2(x﹣sinx)(e x﹣a)=2(x﹣sinx)(e x﹣e lna).令u(x)=x﹣sinx,则u′(x)=1﹣cosx≥0,可得函数u(x)在R上单调递增.由u(0)=0,可得x>0时,u(x)>0;x<0时,u(x)<0.对a分类讨论:a≤0时,0<a<1时,当a=1时,a>1时,利用导数研究函数的单调性极值即可得出.6、【答案】(1)解:函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0,切点为(0,e0cos0﹣0),即为(0,1),曲线y=f(x)在点(0,f(0))处的切线方程为y=1;(2)解:函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,令g(x)=e x(cosx﹣sinx)﹣1,则g(x)的导数为g′(x)=e x(cosx﹣sinx﹣sinx﹣cosx)=﹣2e x•sinx,当x∈[0,],可得g′(x)=﹣2e x•sinx≤0,即有g(x)在[0,]递减,可得g(x)≤g(0)=0,则f(x)在[0,]递减,即有函数f(x)在区间[0,]上的最大值为f(0)=e0cos0﹣0=1;最小值为f()=e cos﹣=﹣.【考点】利用导数求闭区间上函数的最值,利用导数研究曲线上某点切线方程【解析】【分析】(1.)求出f(x)的导数,可得切线的斜率和切点,由点斜式方程即可得到所求方程;(2.)求出f(x)的导数,再令g(x)=f′(x),求出g(x)的导数,可得g(x)在区间[0,]的单调性,即可得到f(x)的单调性,进而得到f(x)的最值.7、【答案】(Ⅰ)解:由f(x)=2x4+3x3﹣3x2﹣6x+a,可得g(x)=f′(x)=8x3+9x2﹣6x﹣6,进而可得g′(x)=24x2+18x﹣6.令g′(x)=0,解得x=﹣1,或x=.当x变化时,g′(x),g(x)的变化情况如下表:x(﹣∞,﹣1)(﹣1,)(,+∞)g′(x)+﹣+g(x)↗↘↗所以,g(x)的单调递增区间是(﹣∞,﹣1),(,+∞),单调递减区间是(﹣1,).(Ⅱ)证明:由h(x)=g(x)(m﹣x0)﹣f(m),得h(m)=g(m)(m﹣x0)﹣f(m),h(x0)=g(x0)(m﹣x0)﹣f(m).令函数H1(x)=g(x)(x﹣x0)﹣f(x),则H′1(x)=g′(x)(x﹣x0).由(Ⅰ)知,当x∈[1,2]时,g′(x)>0,故当x∈[1,x0)时,H′1(x)<0,H1(x)单调递减;当x∈(x0,2]时,H′1(x)>0,H1(x)单调递增.因此,当x∈[1,x0)∪(x0,2]时,H1(x)>H1(x0)=﹣f(x0)=0,可得H1(m)>0即h(m)>0,令函数H2(x)=g(x0)(x﹣x0)﹣f(x),则H′2(x)=g′(x0)﹣g(x).由(Ⅰ)知,g(x)在[1,2]上单调递增,故当x∈[1,x0)时,H′2(x)>0,H2(x)单调递增;当x∈(x0,2]时,H′2(x)<0,H2(x)单调递减.因此,当x∈[1,x0)∪(x0,2]时,H2(x)>H2(x0)=0,可得得H2(m)<0即h(x0)<0,.所以,h(m)h(x0)<0.(Ⅲ)对于任意的正整数p,q,且,令m=,函数h(x)=g(x)(m﹣x0)﹣f(m).由(Ⅱ)知,当m∈[1,x0)时,h(x)在区间(m,x0)内有零点;当m∈(x0,2]时,h(x)在区间(x0,m)内有零点.所以h(x)在(1,2)内至少有一个零点,不妨设为x1,则h(x1)=g(x1)(﹣x0)﹣f()=0.由(Ⅰ)知g(x)在[1,2]上单调递增,故0<g(1)<g(x1)<g(2),于是|﹣x0|=≥=.因为当x∈[1,2]时,g(x)>0,故f(x)在[1,2]上单调递增,所以f(x)在区间[1,2]上除x0外没有其他的零点,而≠x0,故f()≠0.又因为p,q,a均为整数,所以|2p4+3p3q﹣3p2q2﹣6pq3+aq4|是正整数,从而|2p4+3p3q﹣3p2q2﹣6pq3+aq4|≥1.所以|﹣x0|≥.所以,只要取A=g(2),就有|﹣x0|≥.【考点】利用导数研究函数的单调性,利用导数研究函数的极值,不等式的证明,函数的零点【解析】【分析】(Ⅰ)求出函数的导函数g(x)=f′(x)=8x3+9x2﹣6x﹣6,求出极值点,通过列表判断函数的单调性求出单调区间即可.(Ⅱ)由h(x)=g(x)(m﹣x0)﹣f(m),推出h(m)=g(m)(m﹣x0)﹣f(m),令函数H1(x)=g(x)(x﹣x0)﹣f(x),求出导函数H′1(x)利用(Ⅰ)知,推出h(m)h(x0)<0.(Ⅲ)对于任意的正整数p,q,且,令m=,函数h(x)=g(x)(m﹣x0)﹣f(m).由(Ⅱ)知,当m∈[1,x0)时,当m∈(x0,2]时,通过h(x)的零点.转化推出|﹣x0|=≥=.推出|2p4+3p3q﹣3p2q2﹣6pq3+aq4|≥1.然后推出结果.8、【答案】(Ⅰ)解:因为f(x)=x3+ax2+bx+1,所以g(x)=f′(x)=3x2+2ax+b,g′(x)=6x+2a,令g′(x)=0,解得x=﹣.由于当x>﹣时g′(x)>0,g(x)=f′(x)单调递增;当x<﹣时g′(x)<0,g(x)=f′(x)单调递减;所以f′(x)的极小值点为x=﹣,由于导函数f′(x)的极值点是原函数f(x)的零点,所以f(﹣)=0,即﹣+﹣+1=0,所以b=+(a>0).因为f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,所以f′(x)=3x2+2ax+b=0有两个不等的实根,所以4a2﹣12b>0,即a2﹣+>0,解得a>3,所以b=+(a>3).(Ⅱ)证明:由(1)可知h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),由于a>3,所以h(a)>0,即b2>3a;(Ⅲ)解:由(1)可知f′(x)的极小值为f′(﹣)=b﹣,设x1,x2是y=f(x)的两个极值点,则x1+x2=,x1x2=,所以f(x1)+f(x2)=++a(+)+b(x1+x2)+2=(x1+x2)[(x1+x2)2﹣3x1x2]+a[(x1+x2)2﹣2x1x2]+b(x1+x2)+2=﹣+2,又因为f(x),f′(x)这两个函数的所有极值之和不小于﹣,所以b﹣+﹣+2=﹣≥﹣,因为a>3,所以2a3﹣63a﹣54≤0,所以2a(a2﹣36)+9(a﹣6)≤0,所以(a﹣6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a﹣6≤0,解得a≤6,所以a的取值范围是(3,6].【考点】导数的运算,利用导数研究函数的单调性,利用导数研究函数的极值,导数在最大值、最小值问题中的应用【解析】【分析】(Ⅰ)通过对f(x)=x3+ax2+bx+1求导可知g(x)=f′(x)=3x2+2ax+b,进而再求导可知g′(x)=6x+2a,通过令g′(x)=0进而可知f′(x)的极小值点为x=﹣,从而f(﹣)=0,整理可知b=+(a>0),结合f(x)=x3+ax2+bx+1(a >0,b∈R)有极值可知f′(x)=0有两个不等的实根,进而可知a>3.(Ⅱ)通过(1)构造函数h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),结合a>3可知h(a)>0,从而可得结论;(Ⅲ)通过(1)可知f′(x)的极小值为f′(﹣)=b﹣,利用韦达定理及完全平方关系可知y=f(x)的两个极值之和为﹣+2,进而问题转化为解不等式b﹣+﹣+2=﹣≥﹣,因式分解即得结论.9、【答案】(1)解:由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x ﹣1,当a=0时,f′(x)=2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+)(e x﹣),令f′(x)=0,解得:x=ln,当f′(x)>0,解得:x>ln,当f′(x)<0,解得:x<ln,∴x∈(﹣∞,ln)时,f(x)单调递减,x∈(ln,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x﹣)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数;(2)由f(x)=ae2x+(a﹣2)e x﹣x=0,有两个零点,由(1)可知:当a>0时,f(x)=0,有两个零点,则f(x)min=a+(a﹣2)﹣ln,=a()+(a﹣2)×﹣ln,=1﹣﹣ln,由f(x)min<0,则1﹣﹣ln<0,整理得:a﹣1+alna<0,设g(a)=alna+a﹣1,a>0,g′(a)=lna+1+1=lna+2,令g′(a)=0,解得:a=e﹣2,当a∈(0,e﹣2),g′(a)<0,g(a)单调递减,当a∈(e﹣2,+∞),g′(a)>0,g(a)单调递增,g(a)min=g(e﹣2)=e﹣2lne﹣2+e﹣2﹣1=﹣﹣1,由g(1)=1﹣1﹣ln1=0,∴0<a<1,a的取值范围(0,1).【考点】导数的运算,利用导数研究函数的单调性,利用导数求闭区间上函数的最值,函数零点的判定定理【解析】【分析】(1.)求导,根据导数与函数单调性的关系,分类讨论,即可求得f (x)单调性;(2.)由(1)可知:当a>0时才有个零点,根据函数的单调性求得f(x)最小值,由f(x)min<0,g(a)=alna+a﹣1,a>0,求导,由g(a)min=g(e﹣2)=e﹣2lne﹣2+e﹣2﹣1=﹣﹣1,g(1)=0,即可求得a的取值范围.10、【答案】(Ⅰ)解:因为f(x)=ax2﹣ax﹣xlnx=x(ax﹣a﹣lnx)(x>0),则f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,因为h′(x)=a﹣,且当0<x<时h′(x)<0、当x>时h′(x)>0,所以h(x)min=h(),又因为h(1)=a﹣a﹣ln1=0,所以=1,解得a=1;(Ⅱ)证明:由(1)可知f(x)=x2﹣x﹣xlnx,f′(x)=2x﹣2﹣lnx,令f′(x)=0,可得2x﹣2﹣lnx=0,记t(x)=2x﹣2﹣lnx,则t′(x)=2﹣,令t′(x)=0,解得:x=,所以t(x)在区间(0,)上单调递减,在(,+∞)上单调递增,所以t(x)min=t()=ln2﹣1<0,从而t(x)=0有解,即f′(x)=0存在两根x0,x2,且不妨设f′(x)在(0,x0)上为正、在(x0,x2)上为负、在(x2,+∞)上为正,所以f(x)必存在唯一极大值点x0,且2x0﹣2﹣lnx0=0,所以f(x0)=﹣x0﹣x0lnx0=﹣x0+2x0﹣2=x0﹣,由x0<可知f(x0)<(x0﹣)max=﹣+=;由f′()<0可知x0<<,所以f(x)在(0,x0)上单调递增,在(x0,)上单调递减,所以f(x0)>f()=﹣+=>;综上所述,f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.【考点】导数的运算,利用导数研究函数的极值,利用导数求闭区间上函数的最值,导数在最大值、最小值问题中的应用,不等式的综合【解析】【分析】(Ⅰ)通过分析可知f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,进而利用h′(x)=a﹣可得h(x)min=h(),从而可得结论;(Ⅱ)通过(Ⅰ)可知f(x)=x2﹣x﹣xlnx,记t(x)=f′(x)=2x﹣2﹣lnx,解不等式可知t(x)min=t()=ln2﹣1<0,从而可知f′(x)=0存在两根x0,x2,利用f(x)必存在唯一极大值点x0及x0<可知f(x0)<,另一方面可知f(x0)>f()=﹣+=>.11、【答案】解:(Ⅰ)因为函数f(x)=x﹣1﹣alnx,x>0,所以f′(x)=1﹣=,且f(1)=0.所以当a≤0时f′(x)>0恒成立,此时y=f(x)在(0,+∞)上单调递增,所以在(0,1)上f(x)<0,这与f(x)≥0矛盾;当a>0时令f′(x)=0,解得x=a,所以y=f(x)在(0,a)上单调递减,在(a,+∞)上单调递增,即f(x)min=f(a),又因为f(x)min=f(a)≥0,所以a=1;(Ⅱ)由(Ⅰ)可知当a=1时f(x)=x﹣1﹣lnx≥0,即lnx≤x﹣1,所以ln(x+1)≤x当且仅当x=0时取等号,所以ln(1+)<,k∈N*,所以,k∈N*.一方面,因为++…+=1﹣<1,所以,(1+)(1+)…(1+)<e;另一方面,(1+)(1+)…(1+)>(1+)(1+)(1+)=>2,同时当n≥3时,(1+)(1+)…(1+)∈(2,e).因为m为整数,且对于任意正整数n(1+)(1+)…(1+)<m,所以m的最小值为3.【考点】函数的单调性与导数的关系,利用导数研究函数的单调性,等比数列的前n项和,反证法与放缩法【解析】【分析】(Ⅰ)通过对函数f(x)=x﹣1﹣alnx(x>0)求导,分a≤0、a>0两种情况考虑导函数f′(x)与0的大小关系可得结论;(Ⅱ)通过(Ⅰ)可知lnx≤x﹣1,进而取特殊值可知ln(1+)<,k∈N*.一方面利用等比数列的求和公式放缩可知(1+)(1+)…(1+)<e;另一方面可知(1+)(1+)…(1+)>2,且当n≥3时,(1+)(1+)…(1+)∈(2,e).。
2017年高考数学理试题分类汇编:导数及其应用
2017年高考数学理试题分类汇编:导数及其应用sin2 x(2017年新课标I 文)&函数y的部分图像大致为1 cosx【答案】A令f (x)0,解得x 2或x 1,所以f(x)在(,2),(1,)单调递增,在(2,1)单调递减所以f (x)极小值 f(1) (1 11)e 1 11,故选A 。
3.(2017年新课标I 文)9 •已知函数f (x) lnx ln(2 x),贝y (C)A • f(x)在(0,2)单调递增B • f (x)在(0,2)单调递减C • y= f(x)的图像关于直线x=1对称D • y= f (x)的图像关于点(1,0)对称4.(2017年浙江卷)函数y=f(x )的导函数y f (x)的图像如图所示,则函数y=f(x)的图像可能是【答案】D【解析】原函数先减再增,再减再增,因此选 D.2x 1x 15.(2017年新课标川卷理)11 •已知函数f(x) x 2x a(e e )有唯一零点,则 a=(C )1.2. (2017年新课标n 卷理A.)11.若x 2是函数f (x)(x 2ax x 1'1)e 的极值点,则f (x)的极小值为()B. 2e 3C. 5e 3D.1【解析】由题可得 f (x) (2x a)e x 1 (x 2x 12ax 1)e[x(a 2)x a 1]e x 1因为f ( 2)0,所以af(x) (x 2x 1)e x 1,故 f (x) (x 2x 1x 2)e111A.-B. -C . —D . 12 3 2【答案】C【解析】£ -2 “ -a {訂十严J ,谡g M =訐+童创,『(© =尸-产 J 戶-二r 二 j当現0 = 0咋r=l,函数里调递矶当11巧 /(x)>0, MM 调递增.当*1时,團数职得最小值胃⑴二2,设/i(x) = x 2-2x f 当*1时、函数取得最小1S-1J 若-GA O,函数矗(£ ,和口冒(兀)浚有交点,当一口 vO 时,一口雷(1)二方⑴日寸「止匕时函数工|和昭(尤)有一个交点,即 p K 2 二 一1 二 a =—、故选 C 1设g x = ax - a - l nx ,贝y f x = xg x , f x 0 等价于 g x 0 因为 g 1 =0, g x 1 0,故g' 1 =0,而g' x a, g' 1 =a 1,得a 1x若 a=1,则 g' x =11 •当0 v x v 1时,g' x <0, g x 单调递减;当 x > 1时,g' x > 0, g x 单调递增•所以x=1x是g x 的极小值点,故 g x g 1 =0 综上,a=1(2)由 11)知 f ( JT : = x 2 - jr * jr In jr T f ' (r) = 2x - 2 - In A当兀三卫;时.^T (x) <0 i 当才=二十力时,/rUD , 调递增1 1 1又he 2 >0,h $ v 0,h 1 0,所以h x 在0,2有唯一零点x 。
(word完整版)2017年高考全国1卷理科数学和答案详解(word版本)
绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。
考试用时120分钟。
注意事项:1 •答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2 •作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3•非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4 •考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
X1.已知集合A={x|x<1} , B={x|3 1},则A. AI B {x|x 0}B. AUB RC. AUB {x|x 1}D. AI B2 .如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是3.设有下面四个命题P1 :若复数z满足丄 R,则z R ;zP2:若复数z满足z2R,则z R ;P3:若复数N,Z2满足Z1Z2 R,则zi Z2 ;P 4:若复数z R ,则z R .其中的真命题为1 6 2—)(1 x)6展开式中X 2的系数为 X7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A . A>1 000 和 n=n+1A . P l , P 3B . P l , P 4C . P 2,P 3D . P 2, P 44 •记S 为等{a n }的前n 项和.若a 4a524,Ss 48,则{a n }的公差为C . 45.函数f (X )在()单调递减,且为奇函数.若 f(1)1,则满足 1 f(x 2) 1的X 的取值范围[2,2]B .[ 1,1]C •[0,4]D . [1,3]6 . (1A . 15B . 20C . 30D . 352,俯视图为等腰直角三角形A . 10B . 12 8 .右面程序框图是为了求出满足C . 14D . 163n -2n >1000的最小偶数n ,那么在號「詞和=两个空白框中,可以分别填入B . A>1 000 和n=n+2C . A 1 000 和n=n+1D . A 1 000 和n=n+29.已知曲线C1: y=cos x,C2:2 ny=s in (2x+ ),则下面结论正确的是到曲线C 2到曲线C 2到曲线C 2得到曲线C 2x y z11.设xyz 为正数,且23 5,则二、填空题:本题共 4小题,每小题5分,共20分。
2017-2021年浙江省高考数学真题分类汇编:导数(附答案解析)
数.
(Ⅰ)证明:函数 y=f(x)在(0,+∞)上有唯一零点;
(Ⅱ)记 x0 为函数 y=f(x)在(0,&(ⅱ)x0f(e )≥(e﹣1)(a﹣1)a.
第 2页(共 21页)
4.(2019•浙江)已知实数 a≠0,设函数 f(x)=alnx+ (Ⅰ)当 a=﹣ 时,求函数 f(x)的单调区间;
>
x1+ .
(注:e=2.71828⋯ 是自然对数的底数) 【考点】利用导数研究函数的单调性;利用导数研究函数的最值. 【专题】转化思想;综合法;导数的综合应用;数学运算. 【分析】(Ⅰ)对函数 f(x)求导,然后分 b≤0 及 b>0 两种情况讨论即可得出单调性情 况;
(Ⅱ)易知只需
即可,计算可知 对 任 意 b > 2e2 均 成 立 , 记
(Ⅰ)求函数 f(x)的单调区间; (Ⅱ)若对任意 b>2e2,函数 f(x)有两个不同的零点,求 a 的取值范围; (Ⅲ)当 a=e 时,证明:对任意 b>e4,函数 f(x)有两个不同的零点 x1,x2,满足 x2
>
x1+ .
(注:e=2.71828⋯ 是自然对数的底数)
第 1页(共 21页)
3.(2020•浙江)已知 1<a≤2,函数 f(x)=ex﹣x﹣a,其中 e=2.71828…为自然对数的底
2017-2021 年浙江省高考数学真题分类汇编:导数
一.选择题(共 1 小题) 1.(2020•浙江)已知 a,b∈R 且 ab≠0,对于任意 x≥0 均有(x﹣a)(x﹣b)(x﹣2a﹣b)
≥0,则( )
A.a<0
B.a>0
C.b<0
D.b>0
二.解答题(共 5 小题) 2.(2021•浙江)设 a,b 为实数,且 a>1,函数 f(x)=ax﹣bx+e2(x∈R).
浅谈2017年高考新课标Ⅱ卷文科数学21题导数题的解法
浅谈2017年高考新课标Ⅱ卷文科数学21题导数题的解法
作者:狄春燕
来源:《新课程·下旬》2017年第12期
摘要:众所周知,函数是高中数学的重点,也是难点。
运用导数的知识来解决函数问题是每年高考必考的内容,而且是作为压轴题出现的,因此,理解并掌握这类题的方法对每一位参加高考的学生来说是必须的,是刻不容缓的。
注重于总结近几年来新课标Ⅱ卷文科数学中导数题的做法,希望对每一位参加高考的学生有所帮助。
关键词:新课标Ⅱ卷;文科数学;导数题;解法
对于上述三种方法,第一问的解法都是一致的,这里只探讨第二问的解法。
方法一是高考试题给的标准答案,出题人的主要目的是想考查当x≥0时,对不等式ex≥x+1的应用,但是在实际操作过程中大部分学生很难想到,因此想把这个题做下去也就不可能了;方法二是通过移项构造新的不等式进而构造新的函数,然后利用函数的单调性及最值最终解决参数的取值范围问题;方法三是通过分离参数a直接构造关于参数的不等式,然后令不等式另一端与x有关的式子为新的函数,进而运用函数的单调性及最值来处理参数的取值范围问题,但是在方法三中还用到了洛必达法则,这个需要老师们自己给学生补充。
在这三种方法中,老师们经常讲的、学生也比较熟练的应该是方法二和方法三,这两种方法应该算是解决这类问题的通法,所以需要学生反复的训练和感悟,从而达到掌握的程度。
编辑高琼。
专题02+导数+2017年高考数学(理)试题分项版分析+Word版含分析
专題02导数1.【2017课标II,理11】若x=—2是函数f (x) =(x2• ax-1)e x」的极值点,贝U f(x)的极小值为( )3 3A. -1B.-2e_C.5e_D.1【答案】A【解析】试题分析:由题可得八X)= (2x+ + (j? = [7 +(4+2)*+d—10"S^/V2> = 0,所臥“1, /(x) = (Y l-x-l)A1,故八© = 令广(功>0,解得兀c-2或兀:>1,所以才(力在()单调递増,在(-2J)单调递减所以/(劝极小值为于⑴= (1T—= T ,故选A【考点】函数的极值;函数的单调性【名师点睛】(1)可导函数y= f(x)在点x o处取得极值的充要条件是f'x0) = 0,且在x o左侧与右侧f'刈的符号不同。
⑵若f(x)在(a, b)内有极值,那么f(x)在(a, b)内绝不是单调函数,即在某区间上单调增或减的函数没有极值。
2.【2017课标3,理11】已知函数f (x) = x2「2x • a(e x‘ • e戏1)有唯一零点,则a=1 1 1A. B. — C. —D. 12 3 2【答案】C【解析】试题分析:函数的零点满足x2 -2x - -a e x4 - e^1, 设g x=e x4e"1,则g x =e xJ -e"^e x4当g x =0时,x =1,当x 1时,g x : 0,函数g x单调递减, 当x 1时,g'x £,函数g x单调递增,当x =1时,函数取得最小值g 1 =2 ,设h x =x2-2x,当x =1时,函数取得最小值一1 , 2 x J1 _ e Tx-1 一x-4 e e若-a>0 ,函数丘(兀)与函数吆(x)没有交点,当-时,-觀⑴=人⑴时,止匕时函数加x)和觀(兀)有一个交点,即—Q2=-1,解得a = -•故选C.2【考点】函数的零点;导函数研究函数的单调性,分类讨论的数学思想【名师点睛】函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.3.【2017浙江,7】函数y=f(x)的导函数y = f (x)的图像如图所示,则函数y=f(x)的图像可能是【答案】D【解析】试题分析:原函数先减再增,再减再增,且由增变减时,极值点大于0,因此选D.【考点】导函数的图象【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与x轴的交点为x0,且图象在X。
2017年高考浙江卷理科21题的探究与拓展
2.解 法 探 究
(1)因为点 P(x,Y)在抛物线 z =Y上,所以 Y=z。.设 所以,(七)在区间(一1, )上单调递增,在区间( ,1)上单
直线AP的斜率为 ,则 : : 二享: ~ ,因 调递减,所以当 时,.厂( )有最大值为 ,故 IPAI’IPQI
+
+
的最大值为 .
,
fPAf·fPQf的最大值转化为求 iCPf的最小值,然后进一 步得 到以 C 为 圆心 ,CP为半 径 的圆与抛物线 =!,在点 P处有相 同的切线 时 ICP1最 小,从而使 问题得 以解决.解法
(蚪 ) 。一 )。 + 冉 +而5, 2
体现 了先几何 后代数 的特点,这是解决解 析几何问题的一种
故 IPAI·IPQI ̄1fi;kfiN 2一 5 = 27
.
因为A(一 1, ),B( , ),Pc , 。 (一 < < ),所 点 评 解 法 3先 挖掘 图形 特点,通 过构造 圆,把求
以 =( + 1 2一 ), _(2,2),所以
.
= 2x+ 1+ 2 2一 1 = 2 。+ 2 +
。
0
kx - y+
+ 1
=
o.
①
图 1
因为 AQ_I_BQ,所 以直线 BQ 的方程为
一
②
(2)求 1PAl·1PQl的最大值.
联立①② ,解得 zQ=
.因为
试 题 考 查 了 抛 物 线 的 方 程 、直 线 与 抛 物 线 的 位 置 关 系 、 斜率 范 围以及线段 最值 问题,考查 了方程 、转化 与化归等 数
2018年 第 2期 (上 )
中学数 学研 究
2017年高考全国1卷理科数学和答案详解(word版本)(可编辑修改word版)
绝密★启用前2017 年普通高等学校招生全国统一考试理科数学本试卷 5 页,23 小题,满分 150 分。
考试用时 120 分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用 2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2. 作答选择题时,选出每小题答案后,用 2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4. 考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 A ={x |x <1},B ={x | 3x < 1 },则 A . A B = {x | x < 0} C . A B = {x | x > 1}B . A B = R D . A B = ∅2. 如图,正方形 ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A . 14C. 123.设有下面四个命题B . π8D . π4p :若复数 z 满足 1∈ R ,则 z ∈ R ; 1zp 2 :若复数 z 满足 z 2 ∈ R ,则 z ∈ R ;p 3 :若复数 z 1 , z 2 满足 z 1 z 2 ∈ R ,则 z 1 = z 2 ;p4:若复数 z ∈R,则 z∈R .其中的真命题为A.p1 , p3B.p1 , p4C.p2 , p3D.p2 , p44.记S n 为等差数列{a n } 的前n 项和.若a4 +a5 = 24 ,S6 = 48 ,则{a n } 的公差为A.1 B.2 C.4 D.85.函数f (x) 在(-∞, +∞) 单调递减,且为奇函数.若f (1) =-1,则满足-1 ≤f (x - 2) ≤ 1的x 的取值范围是A.[-2, 2]B.[-1,1]C.[0, 4]D.[1, 3]6.(1+ 1)(1+x)6展开式中x2的系数为x2A.15 B.20 C.30 D.357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.168.右面程序框图是为了求出满足3n−2n>1000 的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000 和n=n+1B.A>1 000 和n=n+2C.A ≤1 000 和n=n+1D.A ≤1 000 和n=n+29.已知曲线C :y=cos x,C :y=sin (2x+ 2π),则下面结论正确的是1 23⎨ ⎩A. 把 C 1 π 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得6到曲线 C 2B. 把 C 1 π上各点的横坐标伸长到原来的2 倍,纵坐标不变,再把得到的曲线向左平移 个单位长度,得 12 到曲线 C 2C. 把 C 1 1 π 上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得26到曲线 C 2D. 把 C 1 1 上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向左平移2 π个单位长度,12得到曲线 C 210.已知 F 为抛物线 C :y 2=4x 的焦点,过 F 作两条互相垂直的直线 l 1,l 2,直线 l 1 与 C 交于 A 、B 两点, 直线 l 2 与 C 交于 D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设 xyz 为正数,且2x = 3y = 5z ,则 A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12. 几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列 1,1,2,1,2,4,1,2,4, 8,1,2,4,8,16,…,其中第一项是 20,接下来的两项是 20,21,再接下来的三项是 20,21,22, 依此类推.求满足如下条件的学科网&最小整数 N :N >100 且该数列的前 N 项和为 2 的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
2017年高考数学试题分项版—函数、导数应用(原卷版)
2017年高考数学试题分项版—函数、导数应用(原卷版)一、选择题1.(2017·全国Ⅰ文,8)函数y =sin 2x1-cos x的部分图象大致为( )2.(2017·全国Ⅰ文,9)已知函数f (x )=ln x +ln(2-x ),则( ) A .f (x )在(0,2)上单调递增 B .f (x )在(0,2)上单调递减C .y =f (x )的图象关于直线x =1对称D .y =f (x )的图象关于点(1,0)对称3.(2017·全国Ⅱ文,8)函数f (x )=ln(x 2-2x -8)的单调递增区间是( ) A .(-∞,-2) B .(-∞,1) C .(1,+∞)D .(4,+∞)4.(2017·全国Ⅲ文,7)函数y =1+x +sin x x2的部分图象大致为( )5.(2017·全国Ⅲ文,12)已知函数f (x )=x 2-2x +a (e x -1+e-x +1)有唯一零点,则a 等于( )A .-12B .13C .12D .16.(2017·北京文,5)已知函数f (x )=3x -⎝⎛⎭⎫13x,则f (x )( ) A .是偶函数,且在R 上是增函数B .是奇函数,且在R 上是增函数C .是偶函数,且在R 上是减函数D .是奇函数,且在R 上是减函数7.(2017·北京文,8)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN 最接近的是( )(参考数据:lg 3≈0.48)A .1033B .1053C .1073D .10938.(2017·天津文,6)已知奇函数f (x )在R 上是增函数.若a =-f ⎝⎛⎭⎫log 215,b =f ()log 24.1,c =f (20.8),则a ,b ,c 的大小关系为( ) A .a <b <c B .b <a <c C .c <b <aD .c <a <b9.(2017·天津文,8)已知函数f (x )=⎩⎪⎨⎪⎧|x |+2,x <1,x +2x ,x ≥1.设a ∈R ,若关于x 的不等式f (x )≥⎪⎪⎪⎪x2+a 在R 上恒成立,则a 的取值范围是( ) A .[-2,2] B .[-23,2] C .[-2,23]D .[-23,23]10.(2017·山东文,9)设f (x )=⎩⎨⎧x ,0<x <1,2 x -1 ,x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a 等于( ) A .2 B .4 C .6 D .811.(2017·山东文,10)若函数e x f (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质,下列函数中具有M 性质的是( ) A .f (x )=2-xB .f (x )=x 2C .f (x )=3-xD .f (x )=cos x12.(2017·浙江,5)若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关13.(2017·浙江,7)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )14.(2017·全国Ⅰ理,5)已知函数f (x )在(-∞,+∞)上单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是( ) A .[-2,2] B .[-1,1] C .[0,4] D .[1,3]15.(2017·全国Ⅰ理,11)设x ,y ,z 为正数,且2x =3y =5z ,则( ) A .2x <3y <5z B .5z <2x <3y C .3y <5z <2xD .3y <2x <5z16.(2017·全国Ⅱ理,11)若x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,则f (x )的极小值为( ) A .-1 B .-2e -3C .5e -3D .117.(2017·全国Ⅲ理,11)已知函数f (x )=x 2-2x +a (e x -1+e-x +1)有唯一零点,则a 等于( )A .-12B .13C .12D .118.(2017·北京理,5)已知函数f (x )=3x -⎝⎛⎭⎫13x,则f (x )( ) A .是奇函数,且在R 上是增函数 B .是偶函数,且在R 上是增函数 C .是奇函数,且在R 上是减函数 D .是偶函数,且在R 上是减函数19.(2017·北京理,8)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN 最接近的是( )(参考数据:lg 3≈0.48) A .1033 B .1053 C .1073D .109320.(2017·天津理,6)已知奇函数f (x )在R 上是增函数,g (x )=xf (x ).若a =g (-log 25.1),b =g (20.8),c =g (3),则a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a21.(2017·天津理,8)已知函数f (x )=⎩⎪⎨⎪⎧x 2-x +3,x ≤1,x +2x ,x >1.设a ∈R ,若关于x 的不等式f (x )≥⎪⎪⎪⎪x2+a 在R 上恒成立,则a 的取值范围是( ) A.⎣⎡⎦⎤-4716,2 B.⎣⎡⎦⎤-4716,3916 C.[]-23,2D.⎣⎡⎦⎤-23,3916 22.(2017·山东理,10)已知当x ∈[0,1]时,函数y =(mx -1)2的图象与y =x +m 的图象有且只有一个交点,则正实数m 的取值范围是( ) A .(0,1]∪[23,+∞) B .(0,1]∪[3,+∞) C .(0,2]∪[23,+∞) D .(0,2]∪[3,+∞)二、填空题1.(2017·全国Ⅰ文,14)曲线y =x 2+1x在点(1,2)处的切线方程为________.2.(2017·全国Ⅱ文,14)已知函数f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,f (x )=2x 3+x 2,则f (2)=________.3.(2017·全国Ⅲ文,16)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.4.(2017·天津文,10)已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.5.(2017·山东文,14)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________.6.(2017·浙江,17)已知a ∈R ,函数f (x )=|x +4x -a |+a 在区间[1,4]上的最大值是5,则a 的取值范围是________.7.(2017·江苏,11)已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数,若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.8.(2017·江苏,14)设f (x )是定义在R 上且周期为1的函数,在区间[0,1)上,f (x )=⎩⎪⎨⎪⎧x 2,x ∈D ,x ,x ∉D ,其中集合D =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x =n -1n ,n ∈N *,则方程f (x )-lg x =0的解的个数是________.9.(2017·全国Ⅲ理,15)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.10.(2017·山东理,15)若函数e x f (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质,下列函数中所有具有M 性质的函数的序号为________. ①f (x )=2-x ;②f (x )=3-x ;③f (x )=x 3;④f (x )=x 2+2.三、解答题1.(2017·全国Ⅰ文,21)已知函数f (x )=e x (e x -a )-a 2x . (1)讨论f (x )的单调性;(2)若f (x )≥0,求a 的取值范围.2.(2017·全国Ⅱ文,21)设函数f (x )=(1-x 2)e x . (1)讨论f (x )的单调性;(2)当x ≥0时,f (x )≤ax +1,求a 的取值范围.3.(2017·全国Ⅲ文,21)已知函数f (x )=ln x +ax 2+(2a +1)x . (1)讨论f (x )的单调性;(2)当a <0时,证明f (x )≤-34a -2.4.(2017·北京文,20)已知函数f (x )=e x cos x -x . (1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间⎣⎡⎦⎤0,π2上的最大值和最小值.5.(2017·天津文,19)设a ,b ∈R ,|a |≤1.已知函数f (x )=x 3-6x 2-3a (a -4)x +b ,g (x )=e x f (x ). (1)求f (x )的单调区间;(2)已知函数y =g (x )和y =e x 的图象在公共点(x 0,y 0)处有相同的切线. ①求证:f (x )在x =x 0处的导数等于0;②若关于x 的不等式g (x )≤e x 在区间[x 0-1,x 0+1]上恒成立,求b 的取值范围.6.(2017·山东文,20)已知函数f (x )=13x 3-12ax 2,a ∈R .(1)当a =2时,求曲线y =f (x )在点(3,f (3))处的切线方程;(2)设函数g (x )=f (x )+(x -a )cos x -sin x ,讨论g (x )的单调性并判断有无极值,有极值时求出极值.7.(2017·浙江,20)已知函数f (x )=(x -2x -1)e -x ⎝⎛⎭⎫x ≥12. (1)求f (x )的导函数;(2)求f (x )在区间⎣⎡⎭⎫12,+∞上的取值范围.8.(2017·江苏,20)已知函数f (x )=x 3+ax 2+bx +1(a >0,b ∈R )有极值,且导函数f ′(x )的极值点是f (x )的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b 关于a 的函数关系式,并写出定义域; (2)证明:b 2>3a ;(3)若f (x ),f ′(x )这两个函数的所有极值之和不小于-72,求a 的取值范围.9.(2017·全国Ⅰ理,21)已知函数f (x )=a e 2x +(a -2)e x -x . (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.10.(2017·全国Ⅱ理,21)已知函数f (x )=ax 2-ax -x ln x ,且f (x )≥0. (1)求a ;(2)证明:f (x )存在唯一的极大值点x 0,且e -2<f (x 0)<2-2.11.(2017·全国Ⅲ理,21)已知函数f (x )=x -1-a ln x . (1)若f (x )≥0,求a 的值;(2)设m 为整数,且对于任意正整数n ,⎝⎛⎭⎫1+12⎝⎛⎭⎫1+122·…·⎝⎛⎭⎫1+12n <m ,求m 的最小值.12.(2017·北京理,19)已知函数f (x )=e x cos x -x . (1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间⎣⎡⎦⎤0,π2上的最大值和最小值.13.(2017·天津理,20)设a ∈Z ,已知定义在R 上的函数f (x )=2x 4+3x 3-3x 2-6x +a 在区间(1,2)内有一个零点x 0,g (x )为f (x )的导函数. (1)求g (x )的单调区间;(2)设m ∈[1,x 0)∪(x 0,2],函数h (x )=g (x )(m -x 0)-f (m ),求证:h (m )h (x 0)<0;(3)求证:存在大于0的常数A ,使得对于任意的正整数p ,q ,且p q ∈[1,x 0)∪(x 0,2],满足⎪⎪⎪⎪p q -x 0≥1Aq 4.14.(2017·山东理,20)已知函数f (x )=x 2+2cos x ,g (x )=e x (cos x -sin x +2x -2),其中e = 2.718 28…是自然对数的底数.(1)求曲线y =f (x )在点(π,f (π))处的切线方程;(2)令h (x )=g (x )-af (x )(a ∈R ),讨论h (x )的单调性并判断有无极值,有极值时求出极值.。
2017年全国二卷理科数学高考真题及详解(全word版)(精编文档).doc
【最新整理,下载后即可编辑】2017年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘 贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.=++i1i 3A .i 21+B .i 21-C .i 2+D .i 2-2. 设集合{}4 2 1,,=A ,{}042=+-=m x x B ,若{}1=B A ,则=B A .{}3 1-,B. .{}0 1, C .{}3 1, D .{}5 1,3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯A .1盏B .3盏C .5盏D .9盏4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A .π90 B .π63 C .π42 D .π365.设y x 、满足约束条件⎪⎩⎪⎨⎧≥+≥+-≤-+,,,0303320332y y x y x 则y x z +=2的最小值是 A .15- B .9- C .1 D .9 6.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有A .12种B .18种C . 24种D .36种理科数学试题 第1页(共4页)7.甲、乙、丙、丁四位同学一起去向老师询问成语竞猜的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则A .乙可以知道四人的成绩B .丁可以知道四人的成绩 C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩8.执行右面的程序框图,如果输入的1-=a ,则输出的=SA .2B .3C .4D .59.若双曲线)00(1:2222>>=-b a by a x C ,的一条渐近线被圆4)2(22=+-y x 所截得的弦长为2,则C 的离心率为A .2B .3C .2D .33210.已知直三棱柱111C B A ABC -中, 120=∠ABC , 2=AB , 11==CC BC , 则异面直线1AB 与1BC 所成角的余弦值为A .23B .515 C .510D .33 11.若2-=x 是函数12)1()(--+=x e ax x x f 的极值点,则)(x f 的极小值为A .1-B .32--eC .35-eD .112.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则)(+⋅的最小值是A .2-.34-D .1-二、填空题:本题共5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010-2017年全国高考数学真题--第21题导数2010年:设函数2()1xf x e x ax =---。
(1)若0a =,求()f x 的单调区间; (2)若当0x ≥时()0f x ≥,求a 的取值范围2011年:已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为 230x y +-=.(I )求,a b 的值; (II )如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围.2012年: 已知函数)(x f 满足2121)0()1(')(x x f e f x f x +-=-. (Ⅰ)求)(x f 的解析式及单调区间; (Ⅱ)若b ax x x f ++≥221)(,求b a )1(+的最大值.2013: 一卷:已知函数()f x =2x ax b ++,()g x =()xe cx d +,若曲线()yf x =和曲线()y g x =都过点P (0,2),且在点P 处有相同的切线42y x =+(Ⅰ)求a ,b ,c ,d 的值; (Ⅱ)若x ≥-2时,()f x ≤()kg x ,求k 的取值范围.2014一卷:设函数1()ln x xbe f x ae x x-=+,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+.(Ⅰ)求,a b ; (Ⅱ)证明:()1f x >.2015一卷:已知函数31()4f x x ax =++,()ln g x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x = 的切线;(Ⅱ)用min {},m n 表示m ,n 中的最小值,设函数{}()min (),()(0)=>h x f x g x x ,讨论()h x 零点的个数.2016一卷:已知函数2()(2)(1)x f x x e a x =-+-有两个零点. (I )求a 的取值范围; (II )设1x ,2x 是的两个零点,证明:122x x +<.2017一卷:已知函数2()(2)xx f x aea e x =+--.(1)讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.2013.二卷:已知函数()()ln xf x e x m =-+(Ι)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (Ⅱ)当2m ≤时,证明()0f x >2014二卷:已知函数()f x =2x x e e x --- (Ⅰ)讨论()f x 的单调性;(Ⅱ)设()()()24g x f x bf x =-,当0x >时,()0g x >,求b 的最大值;(Ⅲ)已知1.4142 1.4143<<,估计ln2的近似值(精确到0.001)2015二卷:设函数2()mxf x ex mx =+-.(Ⅰ)证明:()f x 在(,0)-∞单调递减,在(0,)+∞单调递增;(Ⅱ)若对于任意1x ,2x [1,1]∈-,都有12|()()|f x f x -1e -≤,求m 的取值范围.2016二卷:(I)讨论函数2(x)e 2xx f x -=+的单调性,并证明当0x >时,(2)e 20x x x -++>; (II)证明:当[0,1)a ∈ 时,函数()2e =(0)x ax ag x x x --> 有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域.2016三卷:设函数()cos 2(1)(cos 1)f x x x αα=+-+,其中0α>,记|()|f x 的最大值为A . (Ⅰ)求()f x '; (Ⅱ)求A ; (Ⅲ)证明|()|2f x A '≤.2017二卷:已知函数2()ln f x ax ax x x =--,且()0f x ≥. (1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220()2e f x --<<.2017三卷:已知函数()1ln f x x a x =--. (1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1)(1)222n m ++⋅⋅⋅+<,求m 的最小值.精编答案2010年:解:(1)0a =时,()1xf x e x =--,'()1xf x e =-.当(,0)x ∈-∞时,'()0f x <;当(0,)x ∈+∞时,'()0f x >.故()f x 在(,0)-∞单调减少,在(0,)+∞单调增加(II )'()12xf x e ax =-- 由(I )知1xe x ≥+,当且仅当0x =时等号成立.故'()2(12)f x x ax a x ≥-=-,从而当120a -≥,即12a ≤时,'()0 (0)f x x ≥≥,而(0)0f =,于是当0x ≥时,()0f x ≥. 由1(0)x e x x >+≠可得1(0)x e x x ->-≠.从而当12a >时,'()12(1)(1)(2)x x x x xf x e a e e e e a --<-+-=--, 故当(0,ln 2)x a ∈时,'()0f x <,而(0)0f =,于是当(0,ln 2)x a ∈时,()0f x <. 综合得a 的取值范围为1(,]2-∞.2011年:解析:(Ⅰ)221(ln )'()(1)x x b x f x x x α+-=-+ 由于直线230x y +-=的斜率为12-,且过点(1,1),故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩即1,1,22b a b =⎧⎪⎨-=-⎪⎩解得1a =,1b =。
(Ⅱ)由(Ⅰ)知ln 1f ()1x x x x=++,所以 22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x---+=+--。
考虑函数()2ln h x x =+2(1)(1)k x x --(0)x >,则22(1)(1)2'()k x x h x x -++=。
(i)设0k ≤,由222(1)(1)'()k x x h x x +--=知,当1x ≠时,'()0h x <,h(x)递减。
而(1)0h =故当(0,1)x ∈时, ()0h x >,可得21()01h x x>-; 当()+∞∈,1k 时,()0<x h ,可得0)(112>⋅-x h x 从而当0>x ,且1≠x 时,-)(x f (1ln -x x +x k )0>,即>)(x f 1ln -x x +xk. (ii )设10<<k .由于2(1)(1)2k x x -++=2(1)21k x x k -++-的图像开口向下,且244(1)0k ∆=-->,对称轴111>-=k x ,当⎪⎭⎫ ⎝⎛-∈k x 11,1时,()()02112>++-x x k ,故()0>'x h ,而0)1(=h ,故当⎪⎭⎫⎝⎛-∈k x 11,1时,()0h x >,可得0)(112<⋅-x h x ,与题设矛盾。
(iii )设k ≥1.此时212x x +≥,2(1)(1)20k x x -++>⇒()0>'x h ,而0)1(=h ,故当()+∞∈,1x 时,()0h x >,可得0)(112<⋅-x h x,与题设矛盾。
综合得,k 的取值范围为(]0,∞-点评;求参数的范围一般用离参法,然后用导数求出最值进行求解。
若求导后不易得到极值点,可二次求导,还不行时,就要使用参数讨论法了。
即以参数为分类标准,看是否符合题意。
求的答案。
此题用的便是后者。
2012一卷:(1)1211()(1)(0)()(1)(0)2x x f x f e f x x f x f e f x --'''=-+⇒=-+ 令1x =得:(0)1f = 1211()(1)(0)(1)1(1)2x f x f e x x f f e f e--'''=-+⇒==⇔=得:21()()()12x x f x e x x g x f x e x '=-+⇒==-+()10()x g x e y g x '=+>⇒=在x R ∈上单调递增 ()0(0)0,()0(0)0f x f x f x f x ''''>=⇔><=⇔<得:()f x 的解析式为21()2x f x e x x =-+且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞ (2)21()()(1)02x f x x ax b h x e a x b ≥++⇔=-+-≥得()(1)x h x e a '=-+ ①当10a +≤时,()0()h x y h x '>⇒=在x R ∈上单调递增x →-∞时,()h x →-∞与()0h x ≥矛盾②当10a +>时,()0ln(1),()0ln(1)h x x a h x x a ''>⇔>+<⇔<+ 得:当ln(1)x a =+时,min ()(1)(1)ln(1)0h x a a a b =+-++-≥22(1)(1)(1)ln(1)(10)a b a a a a +≤+-+++>令22()ln (0)F x x x x x =->;则()(12ln )F x x x '=-()00()0F x x F x x ''>⇔<<<⇔>当x =max ()2e F x =当1,a b ==(1)a b +的最大值为2e2013年:解:(1)由已知得f (0)=2,g (0)=2,f ′(0)=4,g ′(0)=4.而f ′(x )=2x +a ,g ′(x )=e x(cx +d +c ), 故b =2,d =2,a =4,d +c =4. 从而a =4,b =2,c =2,d =2.(2)由(1)知,f (x )=x 2+4x +2,g (x )=2e x(x +1).设函数F (x )=kg (x )-f (x )=2k e x (x +1)-x 2-4x -2,则F ′(x )=2k e x (x +2)-2x -4=2(x +2)(k e x-1). 由题设可得F (0)≥0,即k ≥1.令F ′(x )=0得x 1=-ln k ,x 2=-2.①若1≤k <e 2,则-2<x 1≤0.从而当x ∈(-2,x 1)时,F ′(x )<0;当x ∈(x 1,+∞)时,F ′(x )>0.即F (x )在(-2,x 1)单调递减,在(x 1,+∞)单调递增.故F (x )在[-2,+∞)的最小值为F (x 1).而F (x 1)=2x 1+2-21x -4x 1-2=-x 1(x 1+2)≥0.故当x ≥-2时,F (x )≥0,即f (x )≤kg (x )恒成立.②若k =e 2,则F ′(x )=2e 2(x +2)(e x -e -2).从而当x >-2时,F ′(x )>0,即F (x )在(-2,+∞)单调递增.而F (-2)=0,故当x ≥-2时,F (x )≥0,即f (x )≤kg (x )恒成立.③若k >e 2,则F (-2)=-2k e -2+2=-2e -2(k -e 2)<0. 从而当x ≥-2时,f (x )≤kg (x )不可能恒成立.综上,k 的取值范围是[1,e 2].2014年:(Ⅰ) 函数()f x 的定义域为()0,+∞,112()ln x x x x a b b f x ae x e e e x x x--'=+-+ 由题意可得(1)2,(1)f f e '==,故1,2a b == ……………6分(Ⅱ)由(Ⅰ)知,12()ln x xe f x e x x -=+,从而()1f x >等价于2ln x x x xe e->-设函数()ln g x x x =,则()1ln g x x '=+,所以当10,x e ⎛⎫∈ ⎪⎝⎭时,()0g x '<,当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()0g x '>,故()g x 在10,e ⎛⎫ ⎪⎝⎭单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭单调递增, 从而()g x 在()0,+∞的最小值为11()g e e=-. ……………8分 设函数2()x h x xe e-=-,则()()1xh x e x -'=-,所以当()0,1x ∈时,()0h x '>,当()1,x ∈+∞时,()0h x '<,故()h x 在()0,1单调递增,在()1,+∞单调递减,从而()h x ()g x 在()0,+∞的最小值为1(1)h e=-.综上:当0x >时,()()g x h x >,即()1f x >. ……12分2015年:(Ⅰ)根据已知,2'()3f x x a =+,若x 轴为曲线的切线,设切点横坐标为t ,则可得'()0()0f t f t =⎧⎨=⎩即2330104t a t at ⎧+=⎪⎨++=⎪⎩,解得3412a t ⎧=-⎪⎪⎨⎪=⎪⎩ 所以当34a =-时,x 轴为曲线()y f x =的切线. (Ⅱ)当0a ≥时,2'()30f x x a =+>,于是()f x 单调递增,而1(0)4f =,于是()y f x =与()y g x =有唯一交点,且交点的横坐标(0,1)p ∈,此时函数()h x 的零点个数为1.当304a -<<时,()f x在上递减,在)+∞上递增,在x =小值为33112()048f a =+=-> 此时()y f x =与()y g x =在(0,1)内忧唯一交点,函数()h x 的零点个数为1.当34a =-时,此时极小值为0,函数()h x 的零点个数为2 当5344a -<<-时,此时的极小值小于0,因此函数()h x 的零点个数为3当54a =-时,此时()y f x =与()y g x =相交于(1,0),函数()h x 的零点个数为2当54a <-时,此时()y f x =与()y g x =的交点的横坐标大于1,此时函数()h x 的零点个数为1综上可得,数()h x 的零点个数为:531,44532,44533,44a a a a a ⎧<->-⎪⎪⎪=-=-⎨⎪⎪-<<-⎪⎩或或2016年:(Ⅰ)'()(1)2(1)(1)(2)xxf x x e a x x e a =-+-=-+. (i )设0a =,则()(2)x f x x e =-,()f x 只有一个零点.(ii )设0a >,则当(,1)x ∈-∞时,'()0f x <;当(1,)x ∈+∞时,'()0f x >.所以()f x 在(,1)-∞上单调递减,在(1,)+∞上单调递增.又(1)f e =-,(2)f a =,取b 满足0b <且ln2a b <,则223()(2)(1)()022a fb b a b a b b >-+-=->,故()f x 存在两个零点. (iii )设0a <,由'()0f x =得1x =或ln(2)x a =-. 若2ea ≥-,则ln(2)1a -≤,故当(1,)x ∈+∞时,'()0f x >,因此()f x 在(1,)+∞上单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点. 若2e a <-,则ln(2)1a ->,故当(1,ln(2))x a ∈-时,'()0f x <;当(ln(2),)x a ∈-+∞时,'()0f x >.因此()f x 在(1,ln(2))a -单调递减,在(ln(2),)a -+∞单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点.综上,a 的取值范围为(0,)+∞.(Ⅱ)不妨设12x x <,由(Ⅰ)知12(,1),(1,)x x ∈-∞∈+∞,22(,1)x -∈-∞,()f x 在(,1)-∞上单调递减,所以122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<.由于222222(2)(1)x f x x ea x --=-+-,而22222()(2)(1)0x f x x e a x =-+-=,所以222222(2)(2)x x f x x e x e --=---.设2()(2)xx g x xex e -=---,则2'()(1)()x x g x x e e -=--.所以当1x >时,'()0g x <,而(1)0g =,故当1x >时,()0g x <. 从而22()(2)0g x f x =-<,故122x x +<.2017年:(1)()f x 定义域为(,)-∞+∞,2()2(2)1(1)(21)xx x x f x aea e ae e '=+--=-+,(ⅰ)若0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减.(ⅱ)若0a >,则由()0f x '=得ln x a =-.当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>,所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增.(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点.(ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+. ①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e(2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n nf n a a n n n =+-->->->. 由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点. 综上,a 的取值范围为(0,1).2014二卷:解:(Ⅰ)()20x xf x e e -'=+-≥,等号仅当0x =时成立所以()f x 在(,)-∞+∞单调递增 (Ⅱ)22()(2)4()4()(84)xx x x g x f x bf x ee b e e b x --=-=---+-,22()2[2()(42)]x x x x g x e e b e e b --'=+-++-2(2)(22)x x x x e e e e b --=+-+-+(ⅰ)当2b ≤时,()0g x '≥,等号仅当0x =时成立,所以()g x 在(,)-∞+∞单调递增,而(0)0g =,所以对任意0,()0x g x >>;(ⅱ)当2b >时,若x 满足222xxe eb -<+<-,即0ln(1x b <<-时()0g x '<,而(0)0g =,因此当0ln(1x b <≤-时,()0g x <。