(完整word)北师大七年级下册数学等腰三角形的练习题
北师大七级下第四章三角形单元测试题(一)含答案
北师大版七年级下册三角形单元测试题(一)一、选择题1.一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为( )A.10B.12C.14D.162.满足下列条件的△ABC中,不是直角三角形的是()A、∠B+∠A=∠CB、∠A:∠B:∠C=2:3:5C、∠A=2∠B=3∠CD、一个外角等于和它相邻的一个内角3.一个三角形的三个内角中,锐角的个数最少为 ( )A.0B.1C.2 D.34.三角形的一个外角是锐角,则此三角形的形状是()A、锐角三角形B、钝角三角形C、直角三角形D、无法确定5.能将一个三角形分成面积相等的两个三角形的一条线段是 ( )A.中线B.角平分线C.高线D.三角形的角平分线6.如图5—12,已知∠ACB=90°,CD⊥AB,垂足是D,则图中与∠A相等的角是 ( )A.∠1B.∠2C.∠B D.∠1、∠2和∠B7.下列命题中的真命题是()A、锐角大于它的余角B、锐角大于它的补角C、钝角大于它的补角D、锐角与钝角之和等于平角8.已知:a、b、c是△ABC三边长,且M=(a+b+c)(a+b-c)(a-b-c),那么( )A.M>0 B. M=0C.M<0 D.不能确定9.锐角三角形中,最大角α的取值范围是()A、00<α<900ºB、600<α<900ºC、600<α<1800D、600º≤α<900º10.各边长均为整数且三边各不相等的三角形的周长小于13,这样的三角形个数共有( )A.5个B.4个C.3个D.2个二、填空题1.直角三角形中两个锐角的差为20º,则两个锐角的度数分别为.2.在△ABC 中,AB =6,AC =10,那么BC 边的取值范围是________,周长的取值范围是___________.3.把下列命题“对顶角相等”改写成:如果 ,那么 .4.一个等腰三角形两边的长分别是15cm 和7cm 则它的周长是__________. 5.在△ABC 中,三边长分别为正整数a 、b 、c ,且c≥b≥a>0,如果b =4,则这样的三角形共有_________个.6.直角三角形中,两个锐角的差为40°,则这两个锐角的度数分别为_________. 7.如下图左,DH ∥GE ∥BC ,AC ∥EF ,那么与∠HDC 相等的角有 .8.如图5—13,在△ABC 中,AD⊥BC,GC⊥BC,CF⊥AB,BE⊥AC,垂足分别为D 、C 、F 、E ,则_______是△ABC 中BC 边上的高,_________是△ABC 中AB 边上的高,_________是△ABC 中AC 边上的高,CF 是△ABC 的高,也是△_______、△_______、△_______、△_________的高.9.如图5—14,△ABC 的两个外角的平分线相交于点D ,如果∠A=50°,那么∠D=_____.10.如图5—15,△ABC 中,∠A=60°,∠ABC、∠ACB 的平分线BD 、CD 交于点D ,则∠BDC=_____.MHGFED CBA11.如图5—16,该五角星中,∠A+∠B+∠C+∠D+∠E=________度.12.等腰三角形的周长为24cm,腰长为xcm,则x的取值范围是________.三、解答题1.如图5—17,点B、C、D、E共线,试问图中A、B、C、D、E五点可确定多少个三角形?说明理由.2.如图5—18,∠BAD=∠CAD,则AD是△ABC的角平分线,对吗?说明理由.3.一个飞机零件的形状如图5—19所示,按规定∠A应等于90°,∠B,∠D应分别是20°和30°,康师傅量得∠BCD=143°,就能断定这个零件不合格,你能说出其中的道理吗?4.如图:(1) 画△ABC 的外角∠BCD ,再画∠BCD 的平分线CE. (2) 若∠A=∠B ,请完成下面的证明:已知:△ABC 中,∠A=∠B ,CE 是外角∠BCD 的平分线 求证:CE ∥AB5.如图5—21,△ABC 中,∠B=34°,∠ACB=104°,AD 是BC 边上的高,AE 是∠BAC 的平分线,求∠DAE 的度数.6.如图5—22,在△ABC 中,∠ACB=90°,CD 是AB 边上的高,AB =13cm ,BC =12cm ,AC =5cm ,求:(1)△ABC 的面积;(2)CD 的长.7.看图填空:(1) 如下图左,∠A +∠D =180º(已知)∴∥( )CBA∴∠1= ( ) ∵∠1=65º(已知)∴∠C =65º( )(2) 如上图右,已知,∠ADC =∠ABC ,BE 、DF 分别平分∠ABC 、∠ADC ,且∠1=∠2,求证:∠A=∠C.证明:∵BE 、DF 分别平分∠ABC 、∠ADC (已知)∴ ∠1=21∠ABC ,∠3=21∠ADC ( ) ∵∠ABC =∠ADC (已知) ∴21∠ABC =21∠ADC ( ) ∴∠1=∠3( ) ∵∠1=∠2(已知)∴∠2=∠3( )∴( )∥( )( ) ∴∠A +∠=180º ,∠C +∠=180º( ) ∴∠A =∠C ( )8.已知:如图5—24,P 是△ABC 内任一点,求证:AB +AC >BP +PC .1DCB A答案:一、1.C 2.B 3.C 4.C 5.A 6.B 7.A 8.C 9.A 10.C二、1.3; 2.; 3.锐角(等腰锐角); 4.;5.10; 6.和; 7.; 8.;9.; 10.; 11.; 12.. 三、1.可以确定6个三角形.理由:经过两点可以确定一条线段,而不在同一条直线上的三条线段首尾顺次相接可组成一个三角形,所以图中可以确定6个三角形.2.错误.因为AD 虽然是线段,但不符合三角形角平分线定义,这里射线AD 是的平分线.3.假设此零件合格,连接BD ,则;可知.这与上面的结果不一致,从而知这个零件不合格.4.∵ AD 是BC 边上的中线, ∴ D 为BC 的中点,. ∵的周长-的周长=5cm . ∴. 又∵, ∴.5.由三角形内角和定理,得32周长20,164<<<<BC cm 37︒65︒25︒100GAC FAC FGC BFC BE CF AD ∆∆∆∆,,,,,,︒65︒120︒180126<<x BAC ∠︒=︒-︒=∠+∠37143180CBD CDB ()︒=︒+︒-︒=∠+∠40203090CBD CDB BD CD =ADC ∆ABD ∆cm AB AC 5=-cm AB AC 11=+cm AC 8=. ∴. 又∵ AE 平分∠BAC . ∴. ∴. 又∵,∴.6.(1)∵在△ABC 中,,,,(2)∵ CD 是AB 边上的高, ∴. 即. ∴. 7.如图,延长BP 交AC 于D , ∵, ∴. 8.∵, ∴, ∴. 又∵,∴. ∴,∵, ∴.︒=∠+∠+∠180BAC ACB B ︒=︒-︒-︒=∠4210434180BAC ︒=︒⨯=∠=∠21422121BAC BAE ︒=︒+︒=∠+∠=∠552134BAE B AED ︒=∠+∠90DAE AED ︒=︒-︒=∠-︒=∠35559090AED DAE ︒=∠90ACB cm AC 5=cm BC 12=().3012521212cm BC AC S ABC =⨯⨯=⋅=∴∆CD AB S ABC ⋅=∆21CD ⨯⨯=132130()cm CD 1360=A PDC PDC BPC ∠>∠∠>∠,A BPC ∠>∠A C ∠=∠74C A ∠=∠74C B C ∠<∠<∠74︒=∠+∠+∠180C B A ︒=∠+∠+∠18074C B C C B ∠-︒=∠711180C C C ∠<∠-︒<∠71118074︒<∠<︒8470C又∵为整数, ∴∠C 的度数为7的倍数. ∴,∴. 9.如图,延长BP 交AC 于点D .在△BAD 中,, 即:. 在△PDC 中,. ①+②得, 即.C A ∠=∠74︒=∠77C ︒=∠=∠4474C A BD AD AB >+PD BP AD AB +>+PC DC PD >+PC PD BP DC PD AD AB ++>+++PC BP AC AB +>+。
简单的轴对称图形——等腰(等边)三角形(7类热点题型讲练)(原卷版)--初中数学北师大版7年级下册
第02讲简单的轴对称图形—等腰(等边)三角形(7类热点题型讲练)1.理解并掌握等腰三角形的性质;(重点)2.经历等腰三角形的探究过程,能初步运用等腰三角形的性质解决有关问题.(难点)知识点01等腰三角形的性质(1)等腰三角形性质1:等腰三角形的轴对称图形,等腰三角形的两个底角相等(简称:等边对等角)(2)等腰三角形性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称:等腰三角的三线合一)图形:如下所示;符号:在ABC ∆中,AB =AC ,1212,,;,,;,12.BD CD AD BC AD B BD CD AD BC C BD CD ∠=∠⎧⎪=⊥∠=∠⊥∠=∠⎨⎪⊥⎩==若则若则若,则知识点02等边三角形的性质(1)等边三角形性质1:等边三角形的三条边都相等;(2)等边三角形性质2:等边三角形的每个内角等于60︒;(3)等边三角形性质3:等边三角形是轴对称图形,有三条对称轴.题型01等腰三角形两腰相等求解【例题】(23-24八年级上·浙江宁波·期中)若a ,b 为等腰ABC 的两边,且满足()240a -=,则ABC的周长为()A .16B .18C .20D .16或20【变式训练】1.(22-23八年级上·湖南岳阳·期中)等腰三角形的两边长分别是3cm 和7cm ,则该三角形周长为.2.(22-23七年级下·陕西西安·阶段练习)定义;等腰三角形的底边长与其腰长的比值k 称为这个等腰三角形的“优美比”.若等腰三角形的周长为13cm ,5cm AB =,则它的“优美比”k 为()A .54B .35C .54或35D .45或53题型02根据等边对等角求角度【例题】(23-24八年级上·浙江绍兴·期末)如图,在ABC 中,AB AC =,110ACD ∠=︒,则B ∠=.【变式训练】1.(2024·北京·一模)如图,已知等腰三角形ABC ,AB AC =,40A ∠=︒,若以点B 为圆心,BC 长为半径画弧,则ABE ∠=°.2.(23-24八年级下·云南文山·阶段练习)如图,已知AB AC =,CD CE =,EF EG =,60A ∠=︒,求G ∠的度数为°.题型03根据等边对等角证明【例题】(2023·吉林长春·模拟预测)如图,ABC 是等腰三角形,点D ,E 分别在腰AC ,AB 上,且BE CD =,连接BD ,CE .求证:BD CE =.【变式训练】1.(2024·江苏南京·一模)如图,在ADE V 和FDE V 中,ADE AED ∠=∠,DF EF =,AD ,EF 的延长线相交于点B 、AE ,DF 的延长线相交于点C .求证BD CE =.2.(23-24八年级上·江苏南京·阶段练习)如图,在ABC 中,AD 是三角形的中线,点F 在中线AD 上,且BF AC =,连接并延长BF 交AC 于点E ,求证:AFE CAF ∠=∠.题型04根据三线合一求解【例题】(23-24八年级下·贵州毕节·阶段练习)如图,在三角形框架ABC 中,AB AC =,AO 是连接点A 与BC 中点O 的支架.若80BAC ∠=︒,则BAO ∠的度数为.【变式训练】1.(23-24八年级下·全国·课后作业)如图,在ABC 中,AB AC =,AD 平分BAC ∠,点E 在边AB 上,且BD BE =.若100BAC ∠=︒,则ADE ∠的大小为.2.(23-24八年级上·吉林长春·阶段练习)如图,在等腰ABC 中,5AB AC ==,AD 是ABC 的高,6BC =,E F 、分别是AB AD 、上一动点,则BF EF +的最小值为.题型05根据三线合一证明【例题】(23-24八年级下·全国·课后作业)如图,在ABC 中,90BAC ∠=︒,E 为边BC 上的点,且AB AE =,D 为线段BE 的中点,过点E 作EF AE ⊥,过点A 作AF BC ∥,且AF 、EF 相交于F .(1)求证:C BAD ∠=∠;(2)求证:AC EF =.【变式训练】1.(23-24八年级上·云南红河·阶段练习)如图,在ABC 中,AB AC =,AD 是BC 边上的中线,BE AC ⊥于点E .(1)求证:AD BC ⊥;(2)求证:=CBE BAD ∠∠.2.(23-24八年级上·江苏扬州·期末)在ABC 中,90ACB ∠=︒,AC BC =.(1)如图1,BE CE ⊥于点E ,AD CE ⊥于点D ,求证:ACD CBE ≌;(2)如图2,BE CE ⊥于点E ,CE 交AB 于点F ,若AC AF =,2BE =,则CF 的长为_______.题型06根据等边三角形的性质求解【例题】(23-24八年级下·山东枣庄·阶段练习)如图,在等边ABC 中,D 、E 分别为边BC 、AC 上的点,AD 与BE 相交于点P ,若BD CE =,则APE ∠=.【变式训练】1.(23-24八年级下·江西吉安·阶段练习)如图,在ABC 中,90,30,6A B AC ∠=︒∠=︒=厘米,点D 从点A 开始以1厘米/秒的速度向点C 运动,点E 从点C 开始以2厘米秒的速度向点B 运动,两点同时运动,当运动时间为秒时,DEC 是等边三角形.2.(23-24九年级下·河南商丘·阶段练习)在等边三角形ABC 中,8AB =,点P 在BC 边上.若7AP =,则BP 的长为.题型07根据等边三角形的性质证明【例题】(23-24八年级下·广东佛山·阶段练习)如图,ABC 为等边三角形,点E 、F 分别在边AC BC 、上,AE CF =,10BE =,AF 与BE 相交于点D ,3AD =.(1)求证:ABF BCE ≌ .(2)求DF 的长度.【变式训练】1.(2024八年级下·全国·专题练习)如图1,等边三角形BCD 和等边三角形ACE ,连接AD ,BE ,其中AC BC >.(1)求证:AD BE =;(2)如图2,当点A C 、、B 在一条直线上时,AD 交CE 于点F ,BE 交CD 于点G ,求证:BG DF =;(3)利用备用图补全图形,直线AD ,BE 交于点H ,连接CH ,若3DH =,5CH =,直接写出BH 的长.2.(2024八年级下·全国·专题练习)已知ABC 是等边三角形,D 为射线BC 上一动点,连接AD ,以AD 为边在直线AD 右侧作等边三角形ADE .(1)如图1,当点D 在BC 边上时,连接CE ,此时AB ,CD ,CE 之间的数量关系为______,ACE ∠=______;(2)如图2,当点D 在BC 的延长线上时,连接CE ,(1)中AB ,CD ,CE 之间的数量关系是否仍然成立?若成立,请说明理由;若不成立,请写出新的结论及证明过程;(3)如图3,当点D 在射线BC 上运动时,取AC 的中点F ,连接EF ,当EF 的值最小时,请直接写出CFE ∠的度数.一、单选题1.(23-24八年级下·广东佛山·期中)等腰三角形的两边长分别为3和6,则这个三角形的周长是()A .15B .12C .12或15D .92.(2024·甘肃天水·一模)若等腰三角形中有一个角等于50︒,则这个等腰三角形的顶角的度数为()A .50︒B .80︒C .65︒或50︒D .50︒或80︒3.(2024年安徽省名校之约中考第一次联考数学试题)如图,AB CD ∥,点E 为直线AB 上方一点,连接BD ,DE ,BE .若DE CD ⊥,BE DE =,25BDC ∠=︒,则ABE ∠的度数是()A .125︒B .130︒C .135︒D .140︒4.(22-23八年级上·江苏无锡·期中)如图,在ABC 中,6BC =,ABC ∠与ACB ∠的平分线交于点O ,过点O 作BC 的平行线分别交AB 、AC 于点M 、N ,AMN 的周长是13,则ABC 的周长是()A .18B .19C .20D .215.(23-24八年级上·江苏徐州·期中)如图,在Rt ABC △中,90ACB ∠=︒,10cm AB =,6cm AC =,动点P 从点B 出发,沿射线BC 以1cm/s 的速度运动,设运动的时间为t 秒,若ABP 是等腰三角形时,则t 的值为()A .10B .16C .10或16D .10或16或254二、填空题6.(22-23八年级下·河南郑州·期中)已知等腰三角形的两边长为x y ,,且满足()2420x x y -+-=,则三角形的周长为.7.(23-24七年级下·吉林长春·阶段练习)一个等腰三角形的周长是17,已知它的一边长是5,则另外两边的长分别是.8.(23-24九年级下·福建福州·期中)如图,已知直线12l l ∥,点,A D 在直线1l 上,以点A 为圆心,适当长为半径画孤,分别交直线12,l l 于,C B 两点,连接,AB BC .若115BCD ∠=︒,则1∠的度数为.9.(23-24八年级下·江苏泰州·期中)如图,ABC 和ADE V 都是顶角为45︒的等腰三角形,AB AD >,BC 、DB 分别是两个等腰三角形的底边,点B 、D 、E 三点恰好落在一条直线上,若18BAD EBC ∠=︒∠=,度.10.(23-24八年级下·陕西西安·阶段练习)如图,已知60AOB ∠=︒,点P 在边OA 上,5OP =,点M 、N 在边OB 上,PM PN =,若2MN =,则OM =.三、解答题11.(23-24七年级上·山东青岛·期末)(1)如图1,已知CE 与AB 交于点E ,AC BC =,12∠=∠,则AE 与BE 的数量关系是______;(2)如图2,已知CD 的延长线与AB 交于点E ,AD BC =,34∠∠=,探究AE 与BE 的数量关系,并说明理由.12.(23-24八年级上·安徽阜阳·期末)如图,在ABC 中,AB AC =,AD 平分BAC ∠.以点A 圆心,AD 长为半径画弧,与AB ,AC 分别交于点E ,F ,连接DE ,DF .(1)求证:BDE CDF ≌;(2)若80BAC ∠=︒,求BDE ∠的度数.13.(22-23八年级上·湖北武汉·期末)如图,Rt ABC △中,90ACB ∠=︒,AC BC =,点D 在斜边AB 上,且AD AC =,过点B 作BE CD ⊥交直线CD 于点E ,过点A 作AF CD ⊥于点F .(1)求BCD ∠的度数;(2)求证:DF BE =.14.(23-24八年级上·陕西安康·期末)如图,在ABC 中,AC BC =,点D 是AB 上一点,DE BC ⊥于点E ,EF AC ⊥于点F .(1)若点D 是AB 的中点,求证:12BDE C ∠=∠;(2)若160ADE =∠︒,求DEF ∠的度数.15.(23-24八年级上·陕西商洛·期末)如图,ABC ,ADE V 均是等边三角形,点B ,D ,E 三点共线,连接CD ,CE ,CD BE ⊥.(1)求证:BD CE =;(2)若线段3DE =,求线段CE 的长.16.(22-23七年级下·四川成都·期末)已知,在等边ABC 中,点D 为射线BA 上一点(点D 与点B 不重合),连接CD ,以DC 为边在BC 上方作等边DCE △,连接AE .(1)如图1,当点D 是AB 边中点时,求ADE ∠的度数;(2)求证:AE BD =;(3)如图2,当动点D 在BA 的延长线上时,以DC 为边在其下方作等边DCF ,连接BF ,求线段AB ,AE ,BF 之间的等量关系式.。
北师大版七年级数学下册 第四章 三角形 单元测试训练卷(word版 含解析)
北师大版七年级数学下册第四章 三角形单元测试训练卷一、单选题(共10小题,每小题4分,共40分)1.下列各组数为边,能构成三角形的是( )A .1,2,3B .2,3,4C .4,4,8D .3,5,9 2.如图,65A ∠=︒,45B ∠=︒,则ACD ∠=( )A .65°B .60°C .45°D .110° 3.如图,12,AC AD ∠=∠=,要使ABC AED ≌△△,还需添加一个条件,那么在以下条件中不能选择的是( )A .AB AE = B .BC ED = C .C D ∠=∠ D .BE ∠=∠ 4.若△ABC 的一个外角等于其中一个内角,则( )A .必有一个内角等于30°B .必有一个内角等于45°C .必有一个内角等于60°D .必有一个内角等于90° 5.如果一个三角形的两边长分别为3和7,则第三边长可能是( ). A .3 B .4 C .7 D .10 6.如图,一名工作人员不慎将一块三角形模具打碎成三块,他要带其中一块或两块碎片到商店去配一块与原来一样的三角形模具,他带( )去最省事.A.△B.△C.△D.△△7.已知:如图,在长方形ABCD中,AB=4,AD=6,延长BC到点E,使CE=2,连接DE,点P 以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒()秒时.△ABP和△DCE全等.A.1B.1或3C.1或7D.3或78.如图,△CAB=△DBA,再添加一个条件,不一定能判定△ABC△△BAD的是()A.AC=BD B.△1=△2C.△C=△D D.AD=BC 9.如图,在△ABC中,△BAC=90°,AB=AC,AD是经过A点的一条直线,且B、C在AD的两侧,BD△AD于D,CE△AD于E,交AB于点F,CE=10,BD=4,则DE的长为()A.6B.5C.4D.810.如图,在ABC中,△ACB=45°,AD△BC,BE△AC,AD与BE相交下点F,连接并延长CF交AB于点G,△AEB的平分线交CG的延长线于点H,连接AH.则下列结论:△△EBD=45°;△AH=HF;△ABD△CFD;△CH=AB+AH;△BD=CD﹣AF.其中正确的有()个.A .5B .4C .3D .2二、填空题(共6小题,每小题4分,共24分)11.用木棒钉成一个三角架,两根小棒长分别是7cm 和10cm,第三根小棒长为x cm,则x 的取值范围是___.12.如图所示,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带________去玻璃店.13.如图,AB =AC ,D ,E 分别是AB ,AC 上的点,添加一个条件能判断△ABE △△ACD 的是____.14.如图,A E ∠=∠,AC BE ⊥,AB EF =,25BE =,8=CF ,则AC =_______.15.在△ABC 中,D 、E 分别是BC 、AD 的中点,S △ABC =4cm 2,则S △ABE =_____.16.如图,ABC 和ADE 均为等边三角形,D ,E 分别在边AB ,AC 上,连接BE ,CD ,若15ACD =︒∠,则CBE =∠__________.三、解答题(共6小题, 56分)17.如图,在ABC ∆中,AD BC ⊥,垂足为D ,BE AC ⊥,垂足为E ,AE BE =,AD 与BE 相交于点F .(1)请说明AEF BEC ∆∆≌的理由.(2)如果2AF BD =,试说明AD 平分BAC ∠的理由.18.如图,△ABC中,D为BC上一点,△C=△BAD,△ABC的角平分线BE交AD于点F.(1)求证:△AEF=△AFE;(2)G为BC上一点且FE平分△AFG.求证:AB=GB19.如图,已知AE△AB,AF△AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC△BF.20.探索归纳:(1)如图1,已知ABC 为直角三角形,90A ∠=︒,若沿图中虚线剪去A ∠,则12∠+∠=________︒.(2)如图2,已知ABC 中,40A ∠=︒,剪去A ∠后成四边形,则12∠+∠=__________︒.(3)如图2,根据(1)与(2)的求解过程,请你归纳猜想12∠+∠与A ∠的关系是___________.(4)如图3,若没有剪掉,而是把它折成如图3形状,试探究12∠+∠与A ∠的关系并说明理由.21.在△BAC中,△BAC=90°,AB=AC,AE是过A的一条直线,BD△AE于点D,CE△AE于E.(1)如图(1)所示,若B,C在AE的异侧,易得BD与DE,CE的关系是DE=;(2)若直线AE绕点A旋转到图(2)位置时,(BD<CE),其余条件不变,问BD与DE,CE 的关系如何?请予以证明;(3)若直线AE绕点A旋转,(BD>CE),问BD与DE,CE的关系如何?请直接写出结果,不需证明.22.如图,AB=12cm,AC△AB,BD△AB,AC=BD=9cm,点P在线段AB上以3cm/s的速度,由A向B运动,同时点Q在线段BD上由B向D运动;设点P的运动时间为t秒.(1) PB=________ cm.(用含t的代数式表示)(2)如图1,若点Q的运动速度与点P的运动速度相等,当运动时间t=1秒时,△ACP与△BPQ是否全等?并说明理由.(3)如图2,将“AC△AB,BD△AB”改为“△CAB=△DBA”,其余条件不变;设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.参考答案:1.B【解析】【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,逐项分析判断即可.【详解】解:A. 1+2=3 ,不能构成三角形,故该选项不符合题意;B. 2+3>4,能构成三角形,故该选项符合题意;C. 4+4=8,不能构成三角形,故该选项不符合题意;D. 3+5<9,不能构成三角形,故该选项不符合题意;故选B【点睛】本题考查了构成三角形的条件,掌握三角形三边关系是解题的关键.2.D【解析】【分析】根据三角形外角的性质求解即可.【详解】解:△65A ∠=︒,45B ∠=︒,△110ACD A B ∠=∠+∠=︒,故选:D .【点睛】本题考查了三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.3.B【解析】【分析】由△1=△2,可得∠BAC=∠EAD ,又AC=AD ,可知在△ABC 和△AED 中,已知一角及其临边对应相等,要证两三角形全等,任意再找一对角对应相等,或者找已知角的另一边对应相等,由此可得答案.解:△△1=△2,△∠BAC=∠EAD ,当AB=AE 时,根据SAS 可得ABC AED ≌△△;当C D ∠=∠时,根据ASA 可得ABC AED ≌△△;当B E ∠=∠时,根据AAS 可得ABC AED ≌△△;当BC=ED 时,SSA 不能判定两个三角形全等,故答案为:B【点睛】本题考查三角形全等的判定,角的和差是常考的判定已知角相等的方法,熟知三角形全等的判定定理是解题的关键.4.D【解析】【分析】根据三角形的外角性质、邻补角的概念计算即可.【详解】解:△三角形的一个外角大于和它不相邻的任何一个内角,△△ABC 的一个外角等于其中一个内角时,这个外角等于它的邻补角,△这个三角形必有一个内角等于90°,故选:D .【点睛】本题考查的是三角形的外角性质,掌握三角形的一个外角大于和它不相邻的任何一个内角是解题的关键.5.C【解析】【分析】根据三角形三边之间的关系即可判定.【详解】解:设第三边长为x ,则4<x <10,所以选项中符合条件的整数只有7.故选:C .本题考查了三角形三边关系,三角形中,任意两边之差小于第三边,任意两边之和大于第三边.6.C【解析】【分析】根据全等三角形的判定方法“角边角”可以判定应当带△去.【详解】解:由图形可知,△有完整的两角与夹边,根据“角边角”可以作出与原三角形全等的三角形, 所以,最省事的做法是带△去.故选:C.【点睛】本题考查了全等三角形的判定方法,正确理解“角边角”的内容是解题的关键.7.C【解析】【分析】分P点在线段BC上和P点在线段AD上两种情况讨论,当P点在线段BC上时得到△ABP=△DCE=90°,BP=CE=2进而求解;当P点在线段AD上时得到△BAP=△DCE=90°,AP=CE=2进而求解.【详解】解:由题意可知:AB=CD,当P点在线段BC上时:△ABP=△DCE=90°,BP=CE=2,此时△ABP△△DCE(SAS),由题意得:BP=2t=2,△t=1;当P点在线段AD上时:△BAP=△DCE=90°,AP=CE=2,此时△BAP△△DCE(SAS),由题意得:AP=16-2t=2,△t=7.△当t的值为1或7秒时.△ABP和△DCE全等.故答案为:C.【点睛】本题考查了三角形全等的判定方法,注意要分类讨论,熟练掌握三角形全等判定方法是解题的关键.8.D【解析】【分析】根据全等三角形的判定定理(SAS,ASA,AAS,SSS)判断即可.【详解】解答:解:A.△AC=BD,△CAB=△DBA,AB=AB,△根据SAS能推出△ABC△△BAD,故本选项错误;B.△△CAB=△DBA,AB=AB,△1=△2,△根据ASA能推出△ABC△△BAD,故本选项错误;C.△△C=△D,△CAB=△DBA,AB=AB,△根据AAS能推出△ABC△△BAD,故本选项错误;D.根据AD=BC和已知不能推出△ABC△△BAD,故本选项正确;故选:D.【点睛】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.9.A【解析】【分析】根据△BAC=90°得到△BAD+△CAD=90°,由于CE△AD于E,于是得到△ACE+△CAE=90°,根据余角的性质得到△BAD=△ACE,推出△ABD△△CAE,根据全等三角形的性质即可得到结论.【详解】解:△△BAC=90°,△△BAD+△CAD=90°,△CE△AD于E,△△ACE+△CAE=90°,△△BAD=△ACE,在△ABD 与△CAE 中,90D AEC BAD ACE AB AC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, △△ABD △△CAE (AAS ),△AE =BD =4,AD =CE =10,△DE =AD ﹣AE =6.故选:A .【点睛】本题考查全等三角形的判定与性质,解题的关键是利用余角的性质得到△BAD =△ACE . 10.A【解析】【分析】△利用三角形内角和定理即可说明其正确;△利用垂直平分线的性质即可说明其正确;△利用SAS 判定全等即可;△利用△中的结论结合等量代换和等式的性质即可得出结论;△利用△中的结论结合等量代换和等式的性质即可得出结论.【详解】如图所示,设EH 与AD 交于点M ,△△ACB =45°,BE △AC ,△△EBD =90°﹣△ACD =45°,故△正确;△AD △BC ,△EBD =45°,△△BFD =45°,△△AFE =△BFD =45°,△BE △AC ,△△F AE =△AFE =45°,△△AEF 为等腰直角三角形,△EM 是△AEF 的平分线,△EM △AF ,AM =MF ,即EH 为AF 的垂直平分线,△AH =HF ,△△正确;△AD △BC ,△ACD =45°,△△ADC 是等腰直角三角形,△AD =CD ,同理,BD =DF ,在△ABD 和△CFD 中,90AD CD ADB CDF BD FD =⎧⎪∠=∠=︒⎨⎪=⎩, △△ABD △△CFD (SAS ),△△正确;△△ABD △△CFD ,△CF =AB ,△CH =CF +HF ,由△知:HF =AH ,△CH =AB +AH ,△△正确;△BD =DF ,CD =AD ,又△DF =AD ﹣AF ,△BD =CD ﹣AF ,△△正确,综上,正确结论的个数为5个.故选:A .【点睛】本题考查了直角三角形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,垂直平分线的判定与性质等相关知识,综合性较强,难度较大,做题时要分清角的关系与边的关系.11.3<x<17【解析】【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,确定出第三边的取值范围即可得出答案.【详解】解:设第三根小棒的长为x cm,根据三角形的三边关系可得:10-7<x<10+7,即3<x<17,故答案为3<x<17.【点睛】本题考查了三角形的三边关系.三角形的三边关系:第三边大于两边之差而小于两边之和.12.△【解析】【分析】观察每块玻璃形状特征,利用ASA判定三角形全等可得出答案.【详解】第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA 来配一块一样的玻璃.应带△去.故答案为:△.【点睛】本题属于利用ASA判定三角形全等的实际应用,难度不大,但形式较颖,要善于将所学知识与实际问题相结合.13.AD=AE(答案不唯一)【解析】【分析】根据全等三角形的判定定理添加条件可以,添加AD =AE ,根据SAS 证明△ABE △△ACD 即可.【详解】解:添加的条件是AD =AE ,理由是:在△ABE 和△ACD 中,AE AD A A AB AC =⎧⎪∠=∠⎨⎪=⎩,△△ABE △△ACD (SAS ),故答案为:AD =AE (答案不唯一).【点睛】本题考查了全等三角形的判定定理,熟练掌握全等三角形的判定定理是解题的关键. 14.17【解析】【分析】由“AAS ”可证ABC EFC ∆≅∆,可得AC CE =,9BC CF ==,即可求解.【详解】解:AC BE ⊥,90ACB ECF ∴∠=∠=︒,在ABC ∆和EFC ∆中,A E ACB ECF AB EF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABC EFC AAS ∴∆≅∆,AC CE ∴=,8BC CF ==,25817AC CE BE BC ∴==-=-=,故答案为:17.【点睛】本题考查了全等三角形的判定和性质,解题的关键是证明三角形全等.15.1cm 2【解析】【分析】根据三角形的中线把三角形分成两个面积相等的三角形的性质分析,即可得到答案.【详解】∵D 是BC 的中点,S △ABC =4cm 2∴S △ABD =12S △ABC =12×4=2cm 2∵E 是AD 的中点,∴S △ABE =12S △ABD =12×2=1cm 2故答案为:1cm 2.【点睛】本题考查了三角形中线的知识;解题的关键是熟练掌握三角形中线的性质,从而完成求解. 16.45︒##45度【解析】【分析】根据题意利用全等三角形的判定与性质得出()BD C S ED E SA ≅和15EBD ACD ︒∠=∠=,进而依据CBE =∠ABC EBD ∠-∠进行计算即可.【详解】解:△ABC 和ADE 均为等边三角形,△,,AB AC AE AD EC DB ===,△60,120,AED ADE ABC DEC EDB ︒︒∠=∠=∠=∠=∠=在CED 和BDE 中, EC DB DEC EDB ED ED =⎧⎪∠=∠⎨⎪=⎩, △()BD C S ED E SA ≅,△15EBD ACD ︒∠=∠=,△CBE =∠601545ABC EBD ︒︒︒∠-∠=-=.故答案为:45︒.【点睛】本题考查全等三角形的判定与性质以及等边三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.17.(1)见解析(2)见解析【解析】【分析】(1)由余角的性质可证DAC EBC ∠=∠,根据“ASA”可证结论成立;(2)由AEF BEC ∆∆≌可得AF BC =,结合2AF BD =可知BD CD =,然后根据“SAS”证明△ABD △△ACD 可证结论成立.(1)证明:AD BC ⊥,BE AC ⊥,90ADC ∴∠=,△AEB =△CEB =90°,90DAC C +∠=∴∠,△EBC +△C =90°,DAC EBC =∠∴∠,在AEF ∆与BEC ∆中,EAF EBC AEF BEC AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ΔΔASA AEF BEC ∴≌.(2)解:由(1)知,AF BC =,2AF BD =,2BC BD ∴=,D ∴是BC 的中点,BD CD ∴=,在△ABD 和△ACD 中AD AD ADB ADC BD CD =⎧⎪∠=∠⎨⎪=⎩, △△ABD △△ACD ,△BAD CAD ∠=∠,AD ∴平分BAC ∠.【点睛】本题考查了全等三角形的判定和性质,余角的性质,角平分线的定义,熟练掌握全等三角形的判定和性质是解题的关键.18.(1)证明见解析(2)证明见解析【解析】【分析】(1)先根据角平分线的定义得到△1=△2,再由三角形外角的性质得到△AEF=△2+△C,△AFE=△1+△BAD,由△C=△BAD,即可推出△AEF=△AFE;(2)根据角平分线的定义得到△AFE=△GFE,再由△AFB+△AFE=180°,△BFG+△GFE=180°,得到△AFB=△BFG,然后证明△ABF△△GBF即可得到AB=GB.(1)解:△BE是△ABC的角平分线,△△1=△2,△△AEF、△AFE分别是△BCE、△ABF的外角,△△AEF=△2+△C,△AFE=△1+△BAD,又△△C=△BAD,△△AEF=△AFE;(2)解:△FE平分△AFG,△△AFE=△GFE,△△AFB+△AFE=180°,△BFG+△GFE=180°,△△AFB=△BFG,在△ABF和△GBF中12AFB BFG BF BF∠=∠⎧⎪=⎨⎪∠=∠⎩, △△ABF △△GBF (ASA )△AB =GB .【点睛】本题主要考查了角平分线的定义,全等三角形的性质与判定,三角形外角的性质,熟知相关知识是解题的关键.19.(1)见解析(2)见解析【解析】【分析】(1)先求出△EAC =△BAF ,然后利用“边角边”证明△ABF 和△AEC 全等,根据全等三角形对应边相等即可证明;(2)根据全等三角形对应角相等可得△AEC =△ABF ,设AB 、CE 相交于点D ,根据△AEC +△ADE =90°可得△ABF +△ADM =90°,再根据三角形内角和定理推出△BMD =90°,从而得证.(1)△AE △AB ,AF △AC ,△△BAE =△CAF =90°,△△BAE +△BAC =△CAF +△BAC ,即△EAC =△BAF ,在△ABF 和△AEC 中,AE AB EAC BAF AF AC =⎧⎪∠=∠⎨⎪=⎩, △△ABF △△AEC (SAS ),△EC =BF ;(2)如图,设AB 交CE 于D根据(1),△ABF△△AEC,△△AEC=△ABF,△AE△AB,△△BAE=90°,△△AEC+△ADE=90°,△△ADE=△BDM(对顶角相等),△△ABF+△BDM=90°,在△BDM中,△BMD=180°-△ABF-△BDM=180°-90°=90°,所以EC△BF.【点睛】本题考查等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会利用“8字型”证明角相等.20.(1)270(2)220∠+∠=︒+∠(3)12180A(4)122A∠+∠=∠,理由见解析【解析】【分析】(1)利用三角形的外角定理及直角三角形的性质求解;(2)利用三角形的外角等于与它不相邻的两个内角和求解;(3)根据(1)、(2)中思路即可求解;∠=︒-∠, (4)根据折叠对应角相等,得到AFE PFE∠=∠,AEF PEF∠=∠,进而求出11802AFE∠+∠=︒-∠即可求解.AFE AEF A∠=︒-∠,最后利用18021802AEF(1)解:如下图所示:在△AEF中,由外角性质可知:△1=△A+△EF A=90°+△EF A,△2=△A+△AEF=90°+△AEF,△△1+△2=(90°+△EF A)+( 90°+△AEF)=180°+△EF A+△AEF,△△ABC为直角三角形,△△A=90°,△EF A+△AEF=180°-△A=90°,△△1+△2=180°+90°=270°.(2)解:如下图所示:在△AEF中,由外角性质可知:△1=△A+△EF A,△2=△A+△AEF,△△1+△2=(△A+△EF A)+( △A+△AEF)=(△A +△EF A+△AEF)+∠A=180°+40°=220°.(3)解:由(1)、(2)中思路,由三角形外角性质可知:△1=△A +△EF A ,△2=△A +△AEF ,△△1+△2=(△A +△EF A )+( △A +△AEF )=(△A +△EF A +△AEF)+∠A =180°+∠A ,△12∠+∠与A ∠的关系是:△1+△2=180°+∠A .(4)解:12∠+∠与A ∠的关系为:122A ∠+∠=∠,理由如下:如图,△EFP △是由EFA △折叠得到的,△AFE PFE ∠=∠,AEF PEF ∠=∠,△11802AFE ∠=︒-∠,21802AEF ∠=︒-∠,△()12(1802)(1802)3602AFE AEF AFE AEF ∠+∠=︒-∠+︒-∠=︒-∠+∠,又△180AFE AEF A ∠+∠=︒-∠,△()1236021802A A ∠+∠=︒-︒-∠=∠,△12∠+∠与A ∠的关系122A ∠+∠=∠.【点睛】主要考查了折叠的性质及三角形的内角和外角之间的关系:三角形的外角等于与它不相邻的两个内角和、三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.21.(1)BD ﹣EC(2)BD =DE ﹣CE .见解析(3)当B ,C 在AE 的同侧时,BD =DE ﹣CE ;当B ,C 在AE 的异侧时,BD =DE +CE .【解析】【分析】(1)通过互余关系可得△ABD =△CAE ,进而证明△ABD △△ACE (AAS ),即可求得BD =AE ,AD =EC ,进而即可求得关系式;(2)方法同(1)证明△ABD △△CAE (AAS ),进而得出结论;(3)综合(1)(2)结论,分当B ,C 在AE 的同侧或异侧时,写出结论即可.(1)结论:DE =BD ﹣EC .理由:如图1中,△BD △AE ,CE △AE ,△△ADB =△CEA =90°,△△ABD +△BAD =90°,又△△BAC =90°,△△EAC +△BAD =90°,△△ABD =△CAE ,在△ABD 与△ACE 中,ADB CEA ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, △△BAD △△ACE (AAS ),△BD =AE ,AD =EC ,△BD =DE +CE ,即DE =BD ﹣EC .故答案为:BD ﹣EC ;(2)结论:BD =DE ﹣CE .理由:如图2中,△BD △AE ,CE △AE ,△△ADB =△CEA =90°,△△ABD +△BAD =90°,又△△BAC =90°,△△EAC +△BAD =90°,△△ABD =△CAE ,在△ABD 与△CAE 中,ADB CEA ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, △△ABD △△CAE (AAS ),△BD =AE ,AD =EC ,△BD =DE ﹣CE ;(3)归纳:由(1)(2)可知:当B ,C 在AE 的同侧时,BD =DE ﹣CE ;当B ,C 在AE 的异侧时,BD =DE +CE .【点睛】本题考查了全等三角形的性质与判定,掌握全等三角形的性质与判定是解题的关键. 22.(1)(12-3t )(2)△CAP △△PBQ ,理由见解析(3)满足条件的点Q 的速度为3或92cm /s . 【解析】【分析】(1)求出AP ,再根据题意写出PB 的值即可;(2)求出AP ,PB ,BQ 的值,根据SAS 证明△CAP △△PBQ (SAS )即可;(3)分两种情形分别求解:△由(1)可知,Q 的速度为3cm /s 时,△ACP △△BPQ ,这种情形符合题意.△当P A =PB ,AC =BQ 时,△APC △△BPQ (SAS ),首先确定运动时间,再求出点Q 的运动速度即可.(1)解:由题意:P A =3t (cm ),△AB =12cm ,△PB =AB -AP =12-3t (cm ),故答案为:(12-3t );(2)解:△CAP△△PBQ,理由如下:由题意:t=1(s)时,P A=BQ=3(cm),△AB=12cm,△PB=AB-AP=12-3=9(cm),△AC=9cm,△AC=BP,△△CAP=△PBQ=90°,P A=BQ,△△CAP△△PBQ(SAS);(3)解:△由(2)可知,Q的速度为3cm/s时,△ACP△△BPQ,这种情形符合题意.△当P A=PB,AC=BQ时,△APC△△BPQ(SAS),△t=63=2(s),△点Q的运动速度为92cm/s.△满足条件的点Q的速度为3或92cm/s.【点睛】本题考查的是全等三角形的判定与性质,掌握全等三角形的判定定理和性质定理、注意分类讨论思想的灵活运用是解题的关键.。
最新北师大版七年级下册三角形全等的证明练习题以及答案
最新七年级下册三角形全等的证明1、已知:如图,四边形ABCD中,AC平分角BAD,CE垂直AB 于E,且角B+角D=180度,求证:AE=AD+BEA B DCE 122、已知,如图,AB=CD,DF⊥AC于F,BE⊥AC于E,DF=BE。
求证:AF=CE。
FE A CDB3、已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。
求证:BE =CD 。
AEDC B4、如图,DE⊥AB,DF⊥AC,垂足分别为E、F,请你从下面三个条件中任选出两个作为已知条件,另一个为结论,推出一个正确的命题。
①AB=AC ②BD=CD ③BE=CFBD C5、如图,△ABC中,AB=AC,过A作GE∥BC,角平分线BD、CF 交于点H,它们的延长线分别交GE于E、G,试在图中找出三对全等三角形,并对其中一对给出证明。
E G6、如图,在△ABC中,点D在AB上,点E在BC上,BD=BE。
(1)请你再添加一个条件,使得△BEA≌△BDC,并给出证明。
你添加的条件是:________ ___(2)根据你添加的条件,再写出图中的一对全等三角形:______________(不再添加其他线段,不再标注或使用其他字母,不必写出证明过程)7、已知:如图,AB⊥BC,AD⊥DC,AB=AD,若E是AC上一点。
求证:EB=ED。
DA E CB8、已知:如图,AB、CD交于O点,CE//DF,CE=DF,AE=BF。
求证:∠ACE=∠BDF。
AB CDEFO9、已知:如图,△ABC中,AD⊥BC于D,E是AD上一点,BE的延长线交AC于F,若BD=AD,DE=DC。
求证:BF⊥AC。
AE FDB C10、. 已知:如图,△ABC 和△A 'B 'C '中,∠BAC=∠B 'A 'C ',∠B=∠B ',AD 、A 'D '分别是∠BAC 、∠B 'A 'C '的平分线,且AD=A 'D '。
求证:△ABC ≌△A’B’C’。
七年级数学下册第五章第2课时三线合一在等腰三角形中应用的六种常见题型习题课件新版北师大版ppt
6.如图,在△ABC 中,AD⊥BC 于点 D,且∠ABC=2∠C.试说 明:CD=AB+BD.
解:如图,以 A 为圆心,AB 长为半径画弧交 CD 于点 E, 连接 AE,过点 E 作 EF⊥AC 于点 F,则 AE=AB,∠EFA=∠EFC=90°, 所以∠AEB=∠ABC.
因为 AD⊥BC,所以 AD 是 BE 边上的中线,即 DE=BD. 又因为∠ABC=2∠C,所以∠AEB=2∠C. 因为∠AEB=180°-∠AEC=∠CAE+∠C,所以∠CAE=∠C. 又因为 EF=EF,∠EFA=∠EFC,所以△EFA≌△EFC, 所以 CE=AE=AB.所以 CD=CE+DE=AB+BD.
在△ABD 中,∠BAD=180°-∠B-∠ADB=45°, 所以∠B=∠BAD. 又因为 DH=DH,∠DHA=∠DHB, 所以△DHA≌△DHB,所以 BD=AD. 又因为 BD=CD,所以 AD=CD. 所以∠DAC=∠C=45°.所以∠B=∠DAC. 又因为 BE=AF,所以△BDE≌△ADF(SAS).所以 DE=DF.
3.如图,在△ABC 中,AB=AC,点 E 在△ABC 外,CE⊥AE 于点 E,∠CAE=12∠BAC.试说明:∠ACE=∠B.
解:如图,过点 A 作 AD⊥BC 于点 D,则∠ADB=90°.
因为 AB=AC,所以∠BAD=∠CAD=12∠BAC. 因为∠CAE=12∠BAC,所以∠BAD=∠CAE. 因为 CE⊥AE,所以∠E=90°.所以∠ADB=∠E.
2.如图,在△ABC 中,AB=AC,AD=DB,DE⊥AB 于点 E. 若 BC=12,且△BDC 的周长为 36,求 AE 的长.
解:因为△BDC 的周长=BD+BC+CD=36,BC=12, 所以 BD+DC=24. 因为 AD=BD,所以 AD+DC=24,即 AC=24. 因为 AB=AC,所以 AB=24. 又因为 DE⊥AB,所以 AE=EB=12AB=12.
北师大数学七年级下《5.3简单的轴对称图形》课时练习含答案解析初中数学教学反思设
北师大版数学七年级下册第五单元5.3简单的轴对称图形课时练习一、选择题(共15小题)1.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边上的高C.顶角平分线所在的直线D.腰上的高所在的直线答案:C解析:解答:对称轴是直线,故B错;须过底边中点,故A错,D错,综上,选C.分析:解决本题关键是首先确定对称轴是直线,其次确定过什么特殊点.2.下面四个图形中,不是轴对称图形的是()A.有一个内角为45度的直角三角形B.有一个内角为60度的等腰三角形C.有一个内角为30度的直角三角形D.两个内角分别为36度和72度的三角形答案:C解析:解答:对于选项A,有一个内角为45度的直角三角形,三个内角分别是45°、90°、45°,是等腰三角形,是轴对称图形;选项B,有一个内角为60°的等腰三角形,三个角度数分别为60°、60°、60°,是等边三角形,是轴对称图形;对于C,有一个内角为30度的直角三角形,三个角度数分别为30°、90°、60°,不是等腰三角形,不是轴对称图形;对于D,两个内角分别为36度和72度的三角形,三个角度数分别为36°、72°、72°,是等腰三角形,是轴对称图形;综上,选C.分析:解决本题关键是判断是不是等腰三角形,是的就是轴对称图形,否则就不是.3.下列4个图形中,不是轴对称图形的是()A.有2个内角相等的三角形B.有1个内角为30°的直角三角形C.有2个内角分别为30°和120°的三角形D.线段答案:B解析:解答:对于选项A,有2个内角相等的三角形,是等腰三角形,是轴对称图形;选项B,有1个内角为30°的直角三角形,三个角度数分别为30°、90°、60°,不是等腰三角形,故不是轴对称图形,故选B;对于C,有2个内角分别为30°和120°的三角形,三个角度数分别为30°、120°、30°,是等腰三角形,是轴对称图形;对于D,线段是以其垂直平分线为对称轴,另一条对称轴是其所在的直线.分析:解决本题关键是找出各图形的对称轴,找不出来的就是答案.4.下列图形中,不一定是轴对称图形的是()A.三角形B.射线C.角D.相交的两条直线答案:A解析:解答:题中给出的四个选项中,射线以其所在直线为对称轴,角以其角平分线所在直线为对称轴,相交的两条直线以其夹角的平分线所在直线为对称轴;故选A分析:解决本题关键是找出各图形的对称轴,找不出来的就是答案.5.下列图形中,不一定是轴对称图形的是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形答案:C解析:解答:题中给出的四个选项中,有三项是等腰三角形,而等腰三角形一定是轴对称图形,剩下的C就是答案,故选C.分析:判断三角形是否是轴对称图形,关键就是看这个三角形是不是等腰三角形.6.角、线段、三角形、圆、长方形和正方形中,一定是轴对称图形的有()A.4个B.5个C.6个D.3个答案:B解析:解答:通过分析可知,角、线段、圆、长方形和正方形都是轴对称图形,故选B.分析:本题关键是对于每一种图形,找到一条对称轴,找不到的就不是轴对称图形.7.等腰三角形、直角三角形、等边三角形、锐角三角形、钝角三角形和等腰直角三角形中,一定是轴对称图形的有()A.3个B.4个C.5个D.2个答案:A解析:解答:通过分析可以得到等腰三角形、等边三角形、等腰直角三角形都是轴对称图形,故选A.分析:本题关键看是不是等腰三角形,在所有三角形中,只要是等腰三角形,就一定是轴对称图形.8.下列字母中:H、F、A、O、M、W、Y、E,轴对称图形的个数是()A.5B.4C.6D.7答案:D解析:解答:从第一个字母研究,只要能够找到一条对称轴,令这个字母沿这条对称轴折叠后,两边的部分能够互相重合,就是轴对称图形,可以得出:字母H、A、O、M、W、Y、E这七个字母,属于轴对称图形,故选D.分析:本题关键是找到一条对称轴,解决方法是针对每一字母逐一研究,涉及到的知识点较为单一.9.下列图形中,不是轴对称图形的是()A.有两个内角相等的三角形B.有一个内角为45度的直角三角形C.有两个内角分别为50度和80度的三角形D.有两个内角分别为55度和65度的三角形答案:D解析:解答:从A 选项开始研究,有两个内角相等的三角形是等腰三角形,等腰三角形是轴对称图形;B 有一个内角为45度的直角三角形是等腰直角三角形,也是等腰三角形,是轴对称图形;C 有两个内角分别为50度和80度的三角形,第三个角是50度,故是等腰三角形,是轴对称图形;故选D .分析:本题关键是判断三角形是不是等腰三角形,解决方法逐一研究,涉及到的知识点较为单一.10.有两条或两条以上对称轴的轴对称图形是( )A .等腰三角形B .角C .等边三角形D .锐角三角形答案:C解析:解答:从A 选项开始研究,等腰三角形只有一条对称轴;角也只有一条对称轴,是角平分线所在的直线;等边三角形有三条对称轴;D 锐角三角形的对称轴数量不确定. ∴选C分析:本题关键是看能否找到该图形的对称轴,解决方法逐一研究,涉及到的知识点较为单一11.如图,Rt △ABC 中,∠C =90°,∠ABC 的平分线BD 交AC 于D ,若AD =5cm ,CD =3cm ,则点D 到AB 的距离DE 是( )A . 5cmB . 4cmC . 3cmD . 2cm答案:C解析:解答:∵点D 到AB 的距离是DE∴DE ⊥AB∵BD 平分∠ABC ,∠C =90°∴把Rt △BDC 沿BD 翻折后,点C 在线段AB 上的点E 处∴DE =CD∵CD =3cm∴DE =3cm选C .分析:本题关键是运用翻折,实现DE 与DC 重合,从而判断DE =DC =3cm .12. △ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,则∠A 等于( )DBA .30°B .45°C .36°D .72°答案:C解析:解答:∵有很多等腰三角形,∴得到很多对称的图形∴根据题意将上图构造出来后如下图所示∴∠A =36°故选C分析:本题关键根据题干把图构造出来,然后进行计算就可以了.13.一个等腰三角形的顶角为钝角,则底角a 的范围是( )A .0°<a <9B .30°<a <90°C .0°<a <45°D .45°<a <90°答案:C解析:解答:∵等腰三角形顶角为钝角∴顶角大于90°小于180°∴两个底角之和大于0°小于90°∴每个底角大于0°小于45°故选C分析:本题关键先将两个底角的和的范围算出来,然后再将每个底角范围出来,注意是大于小于,不包含等于号.14.如图,△ABC 中,AB =AC ,∠A =36°,∠ABC 和∠ACB 的平分线BE 、CD 交于点F ,则图中共有等腰三角形( )A .7个B .8个C .9个D .10个答案:B解析:解答:∵等腰三角形有两个角相等 D A B C AB C E DF∴只要能判断出有两个角相等就行了将原图各角标上后显示如左下:因此,所有三角形都是等腰三角形只要判断出有哪几个三角形就可以了.如右上图,三角形有如下几个:①,②,③;①+②,③+②,①+④,③+④;①+②+③+④;共计8个.故选B分析:本题关键先将每一个三角形的内角算出来,然后再将三角形的个数数出来,注意不重不漏.15.等腰三角形有一个是50°,它的一条腰上的高与底边的夹角是( )A .25°B .40°C .25°或40°D .50°答案:C解析:解答:∵等腰三角形有一个是50°∴有两种可能①是三个角为50°、50°、80°;②是三个角为50°、65°、65°分情况说明如下:①当三个角为50°、50°、80°时,根据图①,可得其一条腰上的高与底边的夹角∠DAB =40°; ②当三个角为50°、65°、65°,根据图②,可得其一条腰上的高与底边的夹角∠DAB =25°故选C① ②分析:本题关键根据题意确定有两种不同的情况.A B B二、填空题(共5小题)16.等腰三角形的对称轴是.答案:底边的垂直平分线解析:解答:∵对称轴是直线∴等腰三角形的对称轴也是直线∵等腰三角形有两条边相等∴这两条边是轴对称后能够重合的两条线段∴这两边的非公共点是轴对称点∴等腰三角形的对称轴是其底边的垂直平分线分析:本题关键是把求等腰三角形的对称轴转化成求线段的对称轴.17.等边三角形有条对称轴,矩形有条对称轴.答案:3|2解析:解答:∵等腰三角形有一条对称轴∴等边三角形可以看成以各个点为顶点的等腰三角形而每一种情况下都分别有一条对称轴∴等边三角形有三条对称轴分析:本题关键是把等边三角形向等腰三角形转化,由此得到有三条对称轴18.不重合的两点的对称轴是.答案:连结这两点所成线段的垂直平分线解析:解答:∵两点之间线段最短∴连结已知不重合两点,得一线段∴原题变成求一条线段的对称轴而线段的对称轴是它的垂直平分线∴不重合的两点的对称轴是连结这两点所成线段的垂直平分线.分析:本题关键是由点想到线段,把原题转化成求线段的对称轴.19.在△ABC中,AB =AC,∠A=80°,则∠B=.答案:50°解析:解答:∵AB=AC∴根据轴对称的性质,将线段BC对折重合后,点A在折痕上∴线段AB、AC关于折痕轴对称设折痕与BC交点为D则△ABD、△ACD关于直线AD轴对称∴∠B=∠C =(180°-∠A)÷2=(180°-80°)÷2=50°分析:本题关键是利用轴对称性质,得到∠B =∠C,再利用三角形内角各可以求得.20.已知M 、N 是线段AB 的垂直平分线上任意两点,则∠MAN 和∠MBN 之间关系是 . 答案:∠MAN=∠MBN解析:解答:∵原题当中没有说明点M 、N 在线段AB 的位置,∴可能有以下四种情况:①如图①,点M 、N 在线段AB 两侧时∵M 、N 是线段AB 的垂直平分线上任意两点∴点A 、B 两点关于直线MN 轴对称∴线段MA 、MB 两点关于直线MN 轴对称同理线段NA 、NB 两点关于直线MN 轴对称∴△MAN 与△MBN 关于直线MN 轴对称∴∠MAN =∠MBN②如图①,当点M 、N 在线段AB 同侧时,按照①中逻辑推理,同样可以得到∠MAN =∠MBN ;③如图③,当点N 在线段AB 上时,同理可得∠MAN =∠MBN ;④如图④,当点M 在线段AB 上时,同理可得∠MAN =∠MBN .综上,一定有∠MAN =∠MBN分析:本题关键是考虑到不论点M 、N 与线段AB 的位置如何,求得∠MAN =∠MBN 原理相同,这是关键点.三、解答题(共5小题)21.如图1,在一条河同一岸边有A 和B 两个村庄,要在河边修建码头M ,使M 到A 和B 的距离之和最短,试确定M 的位置;答案:所求点如下图所示 ①AB ②A ③A ④A B lAB解答:∵两点之间线段最短∴需要能将AM 、BM 两边转化到一条直线上∴用轴对称可以办到求点M 的位置的具体步骤如下:①作点A 关于直线BC 的轴对称点A ’②连结A ’B 交BC 于点M③连结AM则点M 就是所求作的点,能够使M 到A 和B 的距离之和最短.解析:分析:本题关键是要分析出如何求点M 的方法,这是关键点.22.如图所示,P 和Q 为△ABC 边AB 与AC 上两点,在BC 上求作一点M ,使△PQM 的周长最小.答案:所求点如下图所示解答:∵△PQM 的三条边中PQ 已经确定∴只需要另外两边之和最短∵两点之间线段最短BB∴需要能将其它两边转化到一条直线上∴用轴对称可以办到求点M的位置的具体步骤如下:①作点P关于直线BC的轴对称点P’②连结P’Q交BC于点M③连结PM则点M就是所求作的点,能够使PQM的周长最小.解析:分析:本题关键是要分析出如何求点M的方法,这是关键点.23.圆、长方形、正方形都是轴对称图形,说出他们分别有几条对称轴.答案:无数条|2条|4条解答:∵对于圆来说,过圆心的任意一条直线,都能够将这个圆分成能够互相重合的两部分∴过圆心的直线,都是圆的对称轴∴圆有无数条对称轴∵对于长方形来说,过其中心平行于边的直线,都能够把它分成能够互相重合的两部分∴长方形有2条对称轴∵对于正方形来说,属于长方形的对称轴,对其也成立;∴正方形首先有2条对称轴又∵正方形的每一条对角线所在的直线,也能够把这个正方形分成能够互相重合的两部分∴正方形另外还有2条对称轴综上,正方形有4条对称轴解析:分析:本题关键是要分析出每一种图形对称轴的由来,这是关键点.24.已知等腰三角形的一边长等于4,一边长等于9,求它的周长.答案:22解答:∵等腰三角形的一边长等于4,一边长等于9,∴等腰三角形的三边长为4,4,9或4,9,9;当三边长为4,4,9时,4+4<9不能构成三角形,舍去;当三边长为4,9,9时,能够构成三角形,此时,周长为4+9+9 =22答:它的周长是22.解析:分析:本题关键是要考虑到是否能够构成三角形,这是易错点.25.如图,长方形ABCD中,AB=2,点E在BC上并且AE=EC,若将矩形纸片沿AE折叠,使点B恰好落在AC上,则AC的长为多少?答案:4解答:如图,设点B 落在AC 上后,为点F .则有△AFE ≌△ABE∴∠AFE =∠B =90° AF =AB =2∴FE ⊥AC∵AE =EC∴CF =AF =2∴AC =CF +AF =4答:AC 的长为4.解析:分析:本题考察轴对称的性质,关键是把握住对称一定全等,全等三角形的对应线段相等.AB。
(典型题)北师大版七年级下册数学第四章 三角形含答案(黄金题型)
北师大版七年级下册数学第四章三角形含答案一、单选题(共15题,共计45分)1、如果等腰三角形的两边长是6cm和3cm,那么它的周长是()A.6cmB.12cmC.15cmD.12cm或15cm2、在△ABC中,AB=3,AC=4,延长BC至D,使CD=BC,连接AD,则AD的长的取值范围为()A.1<AD<7B.2<AD<14C.2.5<AD<5.5D.5<AD<113、若等腰三角形的一边长是2,另一边长是4,则它的周长为()A.8B.10C.8或10D.不能确定4、已知等腰三角形的底角的度数为75°,那么它的顶角的度数是()A.30°B.45°C.75°D.105°5、如图,下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC ,AB=ACB.∠ADB=∠ADC,∠BAD=∠CADC.∠B=∠C,BD=DC D.∠B=∠C ,∠BAD=∠CAD6、有木条4根,长度分别是12cm,10cm,8cm,4cm.选出其中三根组成首尾相接的三角形,能组成三角形的个数是()A.1B.2C.3D.47、如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为()A.35°B.45°C.55°D.60°8、如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()米.A.20B.10C.15D.59、自行车采用三角形架结构比较牢固,而能够自由拉开、关闭的活动门采用四边形结构,其原因说法正确的全面的是()A.三角形和四边形都具有稳定性B.三角形的稳定性C.四边形的不稳定性D.三角形的稳定性和四边形的不稳定性10、在数学课上,同学们在练习画边上的高时,出现下列四种图形,其中正确的是()A. B. C.D.11、下列长度的三条线段,能组成三角形的是()A.4,4,9B.3,7,4C.4,6,10D.8,8,1512、如图,在△ABC中,∠ABC,∠ACB的平分线的交点P恰好在BC边的高AD上,则△ABC一定是( )A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形13、三角形一边上的中线把原三角形分成两个()A.形状相同的三角形B.面积相等的三角形C.直角三角形D.周长相等的三角形14、如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.其中正确的结论的个数是()A.2个B.3个C.4个D.5个15、若△ABC≌△DEF,△ABC的周长为100cm,DE=30cm,DF=25cm,那么BC长()A.55cmB.45cmC.30cmD.25cm二、填空题(共10题,共计30分)16、如图△ABC中,将边BC沿虚线翻折,若∠1+∠2=102°,则∠A的度数是________.17、如图,已知AC=BD,∠A=∠D,请你添一个直接条件,________,使△AFC≌△DEB.18、如图,在Rt△ABC和Rt△DCB中,AB=DC ,∠A=∠D=90°,AC与BD交于点O ,则有△________≌△________,其判定依据是________,还有△________≌△________,其判定依据是________.19、自行车的三角形车架,这是利用了三角形的________ .20、如图,AD是△ABC的中线,AE是△ABD的中线,若DE=3cm,则EC=________ cm.21、如图中,,点、、分别是边、、边上的点,且,.若,则的度数为________.22、已知三角形的三边长都是整数,其中两边分别为5和1,则这个三角形的第三边长为________.23、已知:△ABC≌△A′B′C′,∠A=∠A′,∠B=∠B′,∠C=70°,AB=15cm,则∠C′=________ 度,A′B′=________ cm.24、如图,点B、E、C、F在一条直线上,AC∥DF,且AC=DF,请添加一个条件________,使△ABC≌△DEF.25、如图,把两根钢条AB′、BA′的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),若测得AB=5米,则槽宽为________米.三、解答题(共5题,共计25分)26、如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠B=24°,∠C=44°.求:∠DAE的度数.27、如图,在△ABC中,BE,CF分别是边AC,AB上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD,AG,则AG与AD有何关系?试给出你的结论的理由.28、如图,在正方形中,点E在边的延长线上,点F在边的延长线上,且,连接和相交于点M.求证:.29、设等腰三角形的三条边分别为3、m、n,已知m、n是关于x的方程x2﹣4x+k=0的两个根,求k的值.30、已知:如图AB∥DE,AB=DE,BE=CF,此时AC与DF有什么关系?试说明理由.参考答案一、单选题(共15题,共计45分)1、C2、D4、A5、C6、C7、C8、D9、D10、C11、D12、C13、B14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、29、30、。
新北师大七年级下册全等三角形与等腰三角形,线段垂直平分线,角平分线经典题(1)
全等三角形与等腰三角形,线段垂直平分线,角平分线经典题(1)(新北师大七年级下册)
班级:姓名:座位号:评分:
1.如图,D为△ABC边BC延长线上一点,且CD=CA,E是AD的中点,CF平分∠ACB交AB于点F,试判断CE与CF的位置关系.
2.如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=9 0°,D为AB边上一点.试说明:BD=AE.
3.如图①,在Rt△ABC中,AB=AC,∠BAC=90°,过点A的直线l绕点A旋转,BD⊥l于D,CE⊥l于E.
(1)试说明:DE=BD+CE.
(2)当直线l绕点A旋转到如图②所示的位置时,(1)中结论是否
成立?若成立,请说明;若不成立,请探究DE,BD,CE又有怎样的数量关系,并写出探究过程.
4.已知等边三角形的三条边相等、三个角都等于60°.如图,△ABC与△CDE都是等边三角形,连接AD,BE.
(1)如果点B,C,D在同一条直线上,如图①所示,试说明:AD =BE;
(2)如果△ABC绕C点转过一个角度,如图②所示,(1)中的结论还能否成立?请说明理由.5.如图①,△ABC为等腰直角三角形,∠BAC=90°,点D为线段BC上一动点,连接AD,以AD为直角边,A为直角顶点,在AD左侧作等腰直角三角形ADE,连接CE.
(1)当点D在线段BC上时(不与点B重合),线段CE和BD的数量
关系与位置关系分别是什么?请给予说明.
(2)当点D在线段BC的延长线上时,(1)的结论是否仍然成立?请
在图②中画出相应的图形,并说明理由.。
北师大版数学七年级下册5.3《简单的轴对称图形》精选练习(含答案)
北师大版数学七年级下册5.3《简单的轴对称图形》精选练习一、选择题1.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边上的高C.顶角平分线所在的直线D.腰上的高所在的直线2.下列图形中,不一定是轴对称图形的是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形3.有两条或两条以上对称轴的轴对称图形是()A.等腰三角形B.直角三角形C.等边三角形D.锐角三角形4.等腰三角形的周长为80cm,若以它的底边为边的等边三角形周长为30cm,则该等腰三角形的腰长为()A.35cmB.25cmC.30cmD.40cm5.等腰三角形有一个是50°,它的一条腰上的高与底边的夹角是()A.25°B.40°C.25°或40°D.50°6.△ABC中,AB =AC,点D在AC上,且BD=BC=AD,则∠A等于()A.30°B.45°C.36°D.72°7.下列图形中,不是轴对称图形的是()A.有两个内角相等的三角形B.有一个内角为45度的直角三角形C.有两个内角分别为50度和80度的三角形D.有两个内角分别为55度和65度的三角形8.等腰三角形、直角三角形、等边三角形、锐角三角形、钝角三角形和等腰直角三角形中,一定是轴对称图形的有()A.3个B.4个C.5个D.2个9.下列图形中,不一定是轴对称图形的是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形10.下列4个图形中,不是轴对称图形的是()A.有2个内角相等的三角形B.有1个内角为30°的直角三角形C.有2个内角分别为30°和120°的三角形D.线段11.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边上的高C.顶角平分线所在的直线D.腰上的高所在的直线12.已知等腰三角形一腰上的高与另一腰的夹角为60°,则这个等腰三角形的顶角是()A.30°B.60°C.150°D.30°或150°二、填空题13.等腰三角形顶角的平分线、底边上的中线、底边上的高________(也称“_____________”),它们所在的直线都是等腰三角形的_______________;14.等腰三角形有一个是50°,它的一条腰上的高与底边的夹角是______________;15.在△ABC中,AB =AC,∠A=80°,则∠B= .16.等边三角形有条对称轴,矩形有条对称轴.17.如图,∠BAD=∠DAC=9°,AD⊥AE,且AB+AC=BE,则∠B= .18.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是(请将所有正确结论的序号都填上).三、解答题19.已知等腰三角形的一边长等于5cm,另一边长等于9cm,求它的周长;20.如图,在△ABC中,AB=AC,BD=CD,DE⊥AB于E,DF⊥AC于F.求证:DE=DF;21.已知等腰三角形的一边长等于4,一边长等于9,求它的周长.22.如图,在△ABC中,AB=AC,BF=CD,BD=CE,∠FDE=α,探索α与∠B的关系。
(完整word版)北师大版七年级数学下册三角形难题全解
来源:2011-2012学年广东省汕头市潮南区中考模拟考试数学卷(解析版)考点:三角形如图,已知,等腰Rt△OAB中,∠AOB=90o,等腰Rt△EOF中,∠EOF=90o,连结AE、BF.求证:(1)AE=BF;(2)AE⊥BF.【答案】见解析【解析】解:(1)证明:在△AEO与△BFO中,∵Rt△OAB与Rt△EOF等腰直角三角形,∴AO=OB,OE=OF,∠AOE=90o-∠BOE=∠BOF,∴△AEO≌△BFO,∴AE=BF;( 2)延长AE交BF于D,交OB于C,则∠BCD=∠ACO,由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90o,∴AE⊥BF.(1)可以把要证明相等的线段AE,CF放到△AEO,△BFO中考虑全等的条件,由两个等腰直角三角形得AO=BO,OE=OF,再找夹角相等,这两个夹角都是直角减去∠BOE的结果,所以相等,由此可以证明△AEO≌△BFO;(2)由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,由此可以证明AE⊥BF来源:2012-2013学年吉林省八年级上期中考试数学试卷(解析版)考点:四边形如图,在正方形ABCD中,E是AD的中点,F是BA延长线上的一点,AF=AB,已知△ABE≌△ADF.(1)在图中,可以通过平移、翻折、旋转中哪一种方法,使△ABE变到△ADF 的位置;(2)线段BE与DF有什么关系?证明你的结论.【答案】(1)绕点A旋转90°;(2)BE=DF,BE⊥DF.【解析】本题考查的是旋转的性质,全等三角形的判断和性质(1)根据旋转的概念得出;(2)根据旋转的性质得出△ABE≌△ADF,从而得出BE=DF,再根据正方形的性质得出BE⊥DF.(1)图中是通过绕点A旋转90°,使△ABE变到△ADF的位置.(2)BE=DF,BE⊥DF;延长BE交DF于G;由△ABE≌△ADF,得BE=DF,∠ABE=∠ADF;又∠AEB=∠DEG;∴∠DGB=∠DAB=90°;∴BE⊥DF.来源:2012年江苏省东台市七年级下学期期中考试数学试卷(解析版)如图,在△a bc中,已知∠abc=30°,点d在bc上,点e在ac上,∠bad=∠ebc,ad交be于f.1.求的度数;2.若eg∥ad交bc于g,eh⊥be交bc于h,求∠heg的度数.【答案】1.∠BFD=∠ABF+∠BAD (三角形外角等于两内角之和)∵∠BAD=∠EBC,∴∠BFD=∠ABF+∠EBC,∴∠BFD=∠ABC=30°;2.∵EG∥AD,∴∠BFD=∠BEG=30°(同位角相等)∵EH⊥BE,∴∠HEB=90°,∴∠HEG=∠HEB-∠BEG=90°-30°=60°.【解析】1.∠BFD的度数可以利用角的等效替换转化为∠ABC的大小,2.在直角三角形中,有平行线,利用同位角即可求解.三角形强化训练和深化☣1、如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c 中的∠CFE的度数是_________°.解析:由题意可知折叠前,由BC//AD得:∠BFE=∠DEF=25°将纸带沿EF折叠成图b后,∠GEF=∠DEF=25°所以图b中,∠DGF=∠GEF+∠BFE=25°+25°=50°又在四边形CDGF中,∠C=∠D=90°则由:∠DGF+∠GFC=180°所以:∠GFC=180°-50°=130°将纸带再沿BF第二次折叠成图C后∠GFC角度值保持不变且此时:∠GFC=∠EFG+∠CFE所以:∠CFE=∠GFC-∠EFG=130°-25°=1052、在Rt△ABC中,∠A=90°,CE是角平分线,和高AD相交于F,作FG∥BC交AB于G,求证:AE=BG.解法1:【解析】证明:∵∠BAC=900AD⊥BC∴∠1=∠B∵CE是角平分线∴∠2=∠3∵∠5=∠1+∠2∠4=∠3+∠B∴∠4=∠5∴AE=AF过F作FM⊥AC并延长MF交BC于N∴MN//AB∵FG//BD∴四边形GBDF为平行四边形∴GB=FN∵AD⊥BC,CE为角平分线∴FD=FM在Rt△AMF和RtNDF中∴△AMF≌△NDF∴AF=FN∴AE=BG解法2:解:作EH⊥BC于H,如图,∵E是角平分线上的点,EH⊥BC,EA⊥CA,∴EA=EH,∵AD为△ABC的高,EC平分∠ACD,∴∠ADC=90°,∠ACE=∠ECB,∴∠B=∠DAC,∵∠AEC=∠B+∠ECB,∴∠AEC=∠DAC+∠ECA=∠AFE,∴AE=AF,∴EG=AF,∵FG∥BC,∴∠AGF=∠B,∵在△AFG和△EHB中,∠GAF=∠BEH∠AGF=∠BAF=EH,∴△AFG≌△EHB(AAS)∴AG=EB,即AE+EG=BG+GE,∴AE=BG.3、如图,等腰直角三角形ABC中,∠ACB=90°,AD为腰CB上的中线,CE⊥AD交AB于E.求证∠CDA=∠EDB.解:作CF⊥AB于F,交AD于G ,如图,∵△ABC为等腰直角三角形,∴∠ACF=∠BCF=45°,即∠ACG=45°,∠B=45°,∵CE⊥AD,∴∠1+∠ACE=∠2+∠ACE=90°,∴∠1=∠2,在△AGC和△CEB中∠1=∠2AC=CB∠ACG=∠CBE,∴△AGC≌△CEB(ASA),∴CG=BE,∵AD为腰CB上的中线,∴CD=BD,在△CGD和△BED中CG=BE∠GCD=∠BCD=BD,∴△CGD≌△BED(SAS),∴∠CDA=∠EDB.4、如图,已知AD和BC相交于点O ,且均为等边三角形,以平行四边形ODEB,连结AC,AE和CE。
北师大版七年级数学下册 第四章 三角形 达标测试卷(word打印版+详细答案)
北师大版七年级数学下册第四章三角形达标测试卷一、选择题(每题3分,共30分)1.若三角形的两个内角的和是85°,那么这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定2.如图,AE⊥BC于点E,BF⊥AC于点F,CD⊥AB于点D,则△ABC中AC 边上的高是线段()A.AE B.CD C.BF D.AF3.如图,△ABC≌△EDF,AF=20,EC=8,则AE等于() A.6 B.8 C.10 D.124.下列各条件中,能作出唯一的△ABC的是()A.AB=4,BC=5,AC=10 B.AB=5,BC=4,∠A=30°C.∠A=90°,AB=10 D.∠A=60°,∠B=50°,AB=5 5.如图,AB∥ED,CD=BF,若要说明△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.AB=ED C.∠B=∠E D.不用补充6.如图,在△ABC中,∠ABC,∠ACB的平分线分别为BE,CD,BE与CD相交于点F,∠A=60°,则∠BFC等于()A.118°B.119°C.120°D.121°7.如果某三角形的两边长分别为5和7,第三边的长为偶数,那么这个三角形的周长可以是()A.14 B.17 C.22 D.268.如图,下列四个条件:①BC=B′C;②AC=A′C;③∠A′CA=∠B′CB;④AB =A′B′.从中任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1 B.2 C.3 D.49.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF -S△BEF等于()A.1 B.2 C.3 D.410.如图,△ABC的三个顶点和它内部的点P1,把△ABC分成3个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1,P2,把△ABC分成5个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1,P2,P3,把△ABC分成7个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1,P2,P3,…,P n,把△ABC分成()个互不重叠的小三角形.A.2n B.2n+1 C.2n-1 D.2(n+1)二、填空题(每题3分,共24分)11.一个三角形的其中两个内角为88°,32°,则这个三角形的第三个内角的度数为________.12.要测量河两岸相对的两点A,B间的距离(AB垂直于河岸BF),先在BF上取两点C,D,使CD=CB,再作出BF的垂线DE,且使A,C,E三点在同一条直线上,如图,可以得到△EDC≌△ABC,所以ED=AB.因此测得ED的长就是AB的长.判定△EDC≌△ABC的理由是____________.13.如图,E点为△ABC的边AC的中点,CN∥AB,若MB=6 cm,CN=4 cm,则AB=________.14.用直尺和圆规作一个角等于已知角,如图所示,则要说明∠A′O′B′=∠AOB,需要说明△C′O′D′≌△COD,则这两个三角形全等的依据是____________(写出全等的简写).15.已知△ABC的三边长分别为a,b,c,若a=3,b=4,则c的取值范围是____________;已知四边形EFMN的四边长分别为e,f,m,n,若e=3,f =4,n=10,则m的取值范围是____________.16.如图,在△ABC中,AD是BC边上的高,BE是AC边上的高,且AD,BE 交于点F,若BF=AC,CD=3,BD=8,则线段AF的长度为________.17.如图是由相同的小正方形组成的网格,点A,B,C均在格点上,连接AB,AC,则∠1+∠2=________.18.如图,已知四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且AE=12(AB+AD),若∠D=115°,则∠B=________.三、解答题(19题7分,20,21题每题8分,25题13分,其余每题10分,共66分)19.如图,在△ABC中,AD是角平分线,∠B=54°,∠C=76°.(1)求∠ADB和∠ADC的度数;(2)若DE⊥AC,求∠EDC的度数.20.如图,已知线段m,n,如果以线段m,n分别为等腰三角形的底或腰作三角形,能作出几个等腰三角形?请作出.不写作法,保留作图痕迹.21.如图,在△ABC中,AB=AC,D在AC的延长线上,试说明:BD-BC<AD -AB.22.如图,是一座大楼相邻的两面墙,现需测量外墙根部两点A,B之间的距离(人不能进入墙内测量).请你按以下要求设计一个方案测量A,B的距离.(1)画出测量图案;(2)写出简要的方案步骤;(3)说明理由.23.如图,已知△ABC≌△ADE,AB与ED交于点M,BC与ED,AD分别交于点F,N.请写出图中两对全等三角形(△ABC≌△ADE除外),并选择其中的一对加以说明.24.如图,在R t△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5 cm,求线段AE的长.25.已知点P是R t△ABC斜边AB上一动点(不与点A,B重合),分别过点A,B 向直线CP作垂线,垂足分别为点E,F,点Q为斜边AB的中点.(1)如图①,当点P与点Q重合时,AE与BF的位置关系是________,QE与QF的数量关系是________;(2)如图②,当点P在线段AB上且不与点Q重合时,试判断QE与QF的数量关系,并说明理由.(温馨提示:直角三角形斜边上的中线等于斜边的一半)答案一、1.A2.C点拨:因为BF⊥AC于点F,所以△ABC中AC边上的高是线段BF,故选C.3.A点拨:因为△ABC≌△EDF,所以AC=EF.所以AE=CF.因为AF=20,EC=8,所以AE=CF=6.故选A.4.D5.B点拨:由已知条件AB∥ED可得,∠B=∠D,由CD=BF可得,BC=DF,再补充条件AB=ED,可得△ABC≌△EDF,故选B.6.C7.C8.B9.B点拨:易得S△ABE=13×12=4,S△ABD=12×12=6,所以S△ADF-S△BEF=S△ABD-S△ABE=2.10.B点拨:△ABC的三个顶点和它内部的点P1,把△ABC分成的互不重叠的小三角形的个数=3+2×0;△ABC的三个顶点和它内部的点P1,P2,把△ABC 分成的互不重叠的小三角形的个数=3+2×1;△ABC的三个顶点和它内部的点P1,P2,P3,把△ABC分成的互不重叠的小三角形的个数=3+2×2,所以△ABC的三个顶点和它内部的点P1,P2,P3,…,P n,把△ABC分成的互不重叠的小三角形的个数=3+2(n-1)=2n+1.二、11.60°12.ASA点拨:由题意可知,∠ECD=∠ACB,∠EDC=∠ABC=90°,CD=CB,故可用ASA说明两个三角形全等.13.10 cm点拨:由CN∥AB,点E为AC的中点,可得∠EAM=∠ECN,AE =CE.又因为∠AEM=∠CEN,所以△AEM≌△CEN.所以AM=CN=4 cm.所以AB=AM+MB=4+6=10(cm).14.SSS15.1<c<7;3<m<17点拨:由三角形的三边关系得第三边的取值范围为4-3<c<4+3,即1<c<7.同理,得四边形EFMN对角线EM的取值范围为4-3<EM<4+3,即1<EM<7.所以10-7<m<10+7,即3<m<17.16.5点拨:由已知可得,∠ADC=∠BDF=∠BEC=90°,所以∠DAC=∠DBF.又因为AC =BF ,所以△ADC ≌△BDF .所以AD =BD =8,DF =DC =3.所以AF =AD -DF =8-3=5.17.90° 点拨:如图,由题意可知,∠ADC =∠E =90°,AD =BE ,CD =AE ,所以△ADC ≌△BEA .所以∠CAD =∠2.所以∠1+∠2=∠1+∠CAD =90°.18.65° 点拨:过点C 作CF ⊥AD ,交AD 的延长线于点F .因为AC 平分∠BAD ,所以∠CAF =∠CAE .又因为CF ⊥AF ,CE ⊥AB ,所以∠AFC =∠AEC =90°.在△CAF 和△CAE 中,⎩⎨⎧∠AFC =∠AEC ,∠CAF =∠CAE ,AC =AC ,所以△CAF ≌△CAE (AAS).所以FC =EC ,AF =AE .又因为AE =12(AB +AD ),所以AF =12(AE +EB +AD ),即AF =BE +AD .又因为AF =AD +DF ,所以DF=BE .在△FDC 和△EBC 中,⎩⎨⎧CF =CE ,∠CFD =∠CEB ,DF =BE ,所以△FDC ≌△EBC (SAS).所以∠FDC =∠EBC .又因为∠ADC =115°,所以∠FDC =180°-115°=65°.所以∠B =65°.三、19.解:(1)因为∠B =54°,∠C =76°,所以∠BAC =180°-54°-76°=50°.因为AD 平分∠BAC ,所以∠BAD =∠CAD =25°.所以∠ADB =180°-54°-25°=101°.所以∠ADC =180°-101°=79°.(2)因为DE ⊥AC ,所以∠DEC =90°.所以∠EDC =180°-90°-76°=14°.20.解:能作出两个等腰三角形,如图所示.21.解:因为AB =AC ,所以AD -AB =AD -AC =CD .因为BD -BC <CD ,所以BD -BC <AD -AB .22.解:(1)如图所示.(2)延长BO 至D ,使DO =BO ,连接AD ,则AD 的长即为A ,B 间的距离.(3)因为AO =AO ,∠AOB =∠AOD =90°,BO =DO ,所以△AOB ≌△AOD .所以AD =AB .23.解:△AEM ≌△ACN ,△BMF ≌△DNF ,△ABN ≌△ADM .(任写其中两对即可)选择△AEM ≌△ACN :因为△ABC ≌△ADE ,所以AC =AE ,∠C =∠E ,∠CAB =∠EAD .所以∠EAM =∠CAN .在△AEM 和△ACN 中,⎩⎨⎧∠E =∠C ,AE =AC ,∠EAM =∠CAN ,所以△AEM ≌△ACN (ASA). 选择△ABN ≌△ADM :因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D .又因为∠BAN =∠DAM ,所以△ABN ≌△ADM (ASA).选择△BMF ≌△DNF :因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D .又因为∠BAN =∠DAM ,所以△ABN ≌△ADM (ASA).所以AN =AM .所以BM =DN .又因为∠B =∠D ,∠BFM =∠DFN ,所以△BMF ≌△DNF (AAS).(任选一对进行说明即可)24.解:因为∠ACB =90°,所以∠ECF +∠BCD =90°.因为CD⊥AB,所以∠BCD+∠B=90°.所以∠ECF=∠B.在△ABC和△FCE中,∠B=∠ECF,BC=CE,∠ACB=∠FEC=90°,所以△ABC≌△FCE(ASA).所以AC=FE.因为EC=BC=2 cm,EF=5 cm,所以AE=AC-CE=FE-BC=5-2=3(cm).25.解:(1)AE∥BF;QE=QF(2)QE=QF.理由:如图,延长EQ交BF于点D,由题意易得AE∥BF,所以∠AEQ=∠BDQ.在△AEQ和△BDQ中,∠AQE=∠BQD,∠AEQ=∠BDQ,AQ=BQ,所以△AEQ≌△BDQ.所以EQ=DQ.因为∠DFE=90°,所以QE=QF.。
北师大版2019-2020年七年级数学下册同步分层练 3 第1课时等腰三角形的性质(含答案)
3简单的轴对称图形第1课时等腰三角形的性质1.已知等腰三角形顶角的度数是30°,则底角的度数为(D)A.60°B.65°C.70°D.75°2.(2019·广东广州荔湾区一模)如图,在△ABC中,AC=AD=DB,∠C=70°,则∠CAB的度数为(A)A.75°B.70°C.40°D.35°3.(2019·贵州贵阳花溪区一模)小明在AB=AC的等腰三角形中,以点B为圆心,BC长为半径画弧交AC于点D,得到如图所示的图形,则下列结论中一定正确的是(D)A.AD=CD B.AD=BDC.∠ABD=∠CBD D.∠BAD=∠CBD4.在△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线,且BD=BE,求∠AED的度数.解:因为在△ABC中,AB=AC,∠BAC=120°,所以∠B=∠C=1×(180°-∠BAC)=1×(180°-120°)=30°.因为BD =BE ,所以∠BED =∠BDE =12×(180°-∠B )=12×(180°-30°)=75°,所以∠AED =180°-75°=105°.5.等腰三角形中一个角为100°,则它的底角的度数为( A ) A .40° B .80° C .40°或80° D .50°6.若一个等腰三角形有一个角为30°,求这个等腰三角形的顶角. 解:分两种情况: ①30°的角本身为顶角;②当30°的角为底角时,顶角为180°-30°×2=120°. 因此这个等腰三角形的顶角为30°或120°.7.(2019·江苏徐州泉山区二模)如果等腰三角形的两边长分别是3和6,求它的周长. 解:因为等腰三角形的两边长分别是3和6,所以①当腰长为6时,三角形的周长为6+6+3=15; ②当腰长为3时,3+3=6,三角形不成立. 所以此等腰三角形的周长是15.8.(2019·福建漳州期末)等腰三角形的周长为22,其中一边长是8,求其余两边的长. 解:因为等腰三角形的周长为22,所以当腰长为8时,它的底边长为22-8-8=6,8+6>8,能构成等腰三角形; 当底边长为8时,它的腰长为(22-8)÷2=7,7+7>8,能构成等腰三角形. 故它的另外两边长分别为8,6或者7,7.9.(2019·四川遂宁期末)已知等腰三角形一腰上的中线将它的周长分成6 cm 和12 cm 两部分,求等腰三角形的底边的长.解:设等腰三角形的底边的长为x cm ,如图所示.若C △ACD -C △BCD =6,则AC -BC =6,所以x +x +6+x +6=12+6,所以x =2.因为8+2>8,所以可构成三角形.此时底边的长为2 cm.若C △BCD -C △ACD =6,则BC -AC =6, 所以x +x -6+x -6=12+6,所以x =10. 因为4+4<10,不能构成三角形, 故等腰三角形的底边的长为2 cm.10.下列说法中错误的是( C ) A .等腰三角形是轴对称图形 B .等腰三角形的两个底角相等C .等腰三角形的角平分线、中线和高互相重合D .有两条边相等的三角形是等腰三角形11.下列各线中,不属于等腰三角形“三线合一”的线的是( C ) A .顶角的平分线 B .底边上的中线 C .腰上的中线D .底边上的高12.如图,在△ABC 中,AB =AC ,D 是BC 的中点,∠B =40°,则∠BAD =( C )A .100°B .80°C .50°D .40°13.如图,在△ABC 中,AB =AC ,AD 平分∠BAC ,请将等腰三角形“三线合一”定理的推理过程补充完整.解:因为AD 平分∠BAC , 所以 ∠BAD = ∠CAD . 在△ABD 和△ACD 中,⎩⎨⎧ AB =AC , ∠BAD =∠CAD ,AD =AD ,所以△ABD≌△ACD( SAS ),所以BD=DC( 全等三角形的对应边相等 ).所以∠ADB=∠ADC=12×180°=90°,即AD是BC边上的中线,也是BC边上的高.14.(2019·山东济南天桥区期末)如图,在3×3的网格中,点A,B在格点处,以AB为一边,点P在格点处,则使△ABP为等腰三角形的点P有(D)A.2个 B.3个 C.4个 D.5个15.(2019·山西中考)如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b 上,直线a交AB于点D,交AC于点E.若∠1=145°,则∠2的度数是(C)A.30° B.35° C.40° D.45°16.用尺规作图“已知底边a和底边上的高线h(如图),作等腰三角形”,有下列作法:①作线段BC=a;②作线段BC的中点D,过点D作BC的垂线m;③在直线m上截取DA=h,连接AB,AC.这样作图的根据是(A)A.等腰三角形三线合一B.等腰三角形两底角相等C.等腰三角形两腰相等D.等腰三角形的轴对称性17.(2019·湖南长沙雨花区三模)如图,在△ABC中,AB=AC,点D是BC边上的中点,点E在AD上,那么下列结论不一定正确的是(D)A.AD⊥BC B.∠EBC=∠ECBC.∠ABE=∠ACE D.AE=BE18.(2019·浙江衢州一模)如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1;在B1A1,B1B上分别截取B1A2=B1B2,连接A2B2;….按此规律作下去,若∠A1B1O=α,则∠A10B10O=(B)A.α210 B.α29C.α20 D.α1819.如图,AD,CE分别为△ABC的中线与角平分线,若AB=AC,∠CAD=20°,则∠ACE 的度数是 35° .20.(2019·山东济南市中区期末)等腰三角形中,有一个角是40°,求一条腰上的高与底边的夹角.解:当顶角为40°时,如图1,则∠B=∠ACB=70°.因为CD⊥AB,所以∠ACD=50°,所以∠BCD=20°.当底角为40°时,如图2,则∠B=∠ACB=40°.因为CD⊥AB,所以∠BCD=50°.综上,∠BCD=20°或50°.21.(2019·重庆中考A卷改编)如图,在△ABC中,AB=AC,D是BC边上的中点,连接AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)试说明∠FBE=∠FEB.解:(1)因为AB=AC,所以∠C=∠ABC=36°.因为D是BC边上的中点,所以BD=CD.因为AB=AC,所以AD⊥BC(等腰三角形三线合一),所以∠ADB=90°,所以∠BAD=90°-36°=54°.(2)因为BE平分∠ABC,所以∠ABE=∠CBE=12∠ABC.因为EF∥BC,所以∠FEB=∠CBE,所以∠FBE=∠FEB.22.如图1,在△ABC中,AB=AC,D为BC边上一点,DE⊥AB于E,DF⊥AC于F. 作图:请作出AC边上的高BG.探究:(1)请你通过观察、测量找到DE,DF,BG之间的数量关系:BG=DE+DF .(2)为了说明DE,DF,BG之间的数量关系,小嘉是这样做的:连接AD,则S△ADC =12AC·DF,S△ABD=12AB·DE .所以S△ABC =12AC·DF+12AB·DE .S△ABC还可以表示为12AC·BG .……请你帮小嘉完成上述填空.拓展:当D在如图2所示的位置时,上面DE,DF,BG之间的数量关系是否仍然成立?(3)如图3,若将题目改成点P是等边△ABC内部一点,作PD⊥AB,PE⊥BC,PF⊥AC,垂足分别为D,E,F,过A作AH⊥BC于H,则AH,PD,PE,PF之间有怎样的数量关系?并说明理由.解:(2)拓展结论仍然成立,即BG=DE+DF.(3)因为S△ABC=S△ABP+S△ACP+S△BCP,所以12AH·BC=12PD·AB+12PF·AC+12PE·BC.因为△ABC是等边三角形,所以AB=AC=BC,所以AH=PD+PE+PF.。
最新北师大版七年级下册数学期末复习三角形全等证明练习试题以及答案
七年级下册数学期末复习试题1、已知:如图,∠A=∠B,∠3=∠4,求证:AC=BD.2、如图,D在AB上,E在AC上,BD、CE交于O,若AB=AC,∠B=∠C.求证:AD=AE.3、已知:如图,D是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC∥AB。
求证:AE=CE。
5、已知:如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C .求证:AF=DE。
6、将两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,求证:(1)DC=BE;(2)(2)DC⊥BE。
7、已知:如图,AD=AE,点D、E在BC上,BD=CE,∠1=∠2。
求证:△ABD≌△ACE.8、已知:如图,△ABC中,∠BAC=90°,AB=AC,直线DE经过点A,BD⊥DE,CE⊥DE,垂足为D、E.求证:BD=AE。
9、如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E.AD⊥CE于点D.求证:BE+DE=AD.10、已知:如图3,AB∥CD,AD∥BC.求证:AB=CD,AD=BC.11、如图,已知AB=CD,AC=BD,求证:∠A=∠D.12、已知:如图,在△ABC和△DBC中,∠1=∠2,∠3=∠4,P是BC上任意一点.求证:PA=PD.13、14、15、16、如图所示,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.(1)试说明:△ACD≌△BCE;(2)若∠D=50°,求∠B的度数.17、把两个含有45°角的直角三角板如图放置,点D在AC上连接AE、BD,试判断AE与BD的关系,并说明理由。
18、如图:E在线段CD上,EA、EB分别平分∠DAB和∠CBA, 点F在线段AB上运动,AD=4㎝,BC=3㎝, 且AD∥BC(1)你认为AE和BE有什么位置关系?并验证你的结论;(2)当点F运动到离点A多少㎝时,△ADE才能和△AFE全等?为什么?(3)在(2)的情况下,此时BF=BC吗?为什么?并求出AB的长。
北师大版七年级数学下册第3章《三角形》单元测试试卷及答案(3)
, 北师大版七年级数学下册第 3 章《三角形》单元测试试卷及答案(3)一、填空题(共 10 小题)1.一个等腰三角形的两边长分别是 3cm 和 7cm ,则它的周长是_________ cm .△2.若∠A=∠B=2∠C ,则 ABC 是 _________ 三角形.(填“钝角”、“锐角”或“直 角”)△3.如图, ABC≌△DEF ,△ABC 的周长为 25cm AB=6cm ,CA=8cm ,则 DE= _________ , DF= _________ ,EF= _________ .4.如图,AB=AD ,BC=DC ,要证∠B=∠D ,则需要连接 _________ ,从而可证 _________和 _________ 全等.5.如图,AD ,AE 分别是△ABC 的角平分线和高线,且∠B=50°,∠C=70°,则∠EAD= _________ .△6.如图,CA⊥BE ,且 ABC≌△ADE ,则 BC 与 DE 的关系是 _________ .7.如图,有一块边长为 4 的正方形塑料模板 ABCD ,将一块足够大的直角三角板的直角顶 点落在 A 点,两条直角边分别与 CD 交于点 F ,与 CB 延长线交于点 E .则四边形 AECF 的 面积是 _________ .8.如图,BA∥CD,∠A=90°,AB=CE,BC=ED,则△CED≌_________,根据是_________.△9.如图,ABC中,AB=AC,BC=8,BD是AC边上的中线,△ABD与△BDC的周长的差是2,则AB=_________.10.如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB,BC,CA,得到A B C,至点A,B,C,使得A B=2AB,B C=2BC,C A=2CA,顺次连接A,B,C△1 11111111111记其面积为S;第二次操作,分别延长A B,B C,C A至点A,B,C,使得A B=2A B,11111112222111,得到A B C,记其面积为S;…;按B C=2B C,C A=2C A,顺次连接A,B,C△221112111222222B C,则其面积S=_________.此规律继续下去,可得到A△5555二、选择题(共8小题)11.在下列四组线段中,能组成三角形的是()A.2,2,5B.3,7,10C.3,5,9D.4,5,7△12.(2011•宿迁)如图,已知∠1=∠2,则不一定能使ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA 13.如图,∠ACB=90°,CD⊥AB,垂足为D,下列结论错误的是()A.图中有三个直角三角形B.∠1=∠2C.∠1和∠B都是∠A的余角D.∠2=∠A14.如图,AC⊥BC,CD⊥AB,DE⊥BC,分别交B C,AB,BC于点C,D,E,则下列说法中不正确的是()A.AC是△ABC和△ABE的高B.DE,DC都是△BCD的高C.DE是△DBE和△ABE的高D.AD,CD都是△ACD的高15.角α和β互补,α>β,则β的余角为()A.α﹣βB.180°﹣α﹣βC.D.△16.根据下列已知条件,能唯一画出ABC的是()A.AB=3,BC=4,AC=8B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4D.∠C=90°,AB=6△17.下列各组条件中,能判定ABC≌△DEF的是()A.AB=DE,BC=EF,∠A=∠DB.∠A=∠D,∠C=∠F,AC=EFC.AB=DE,BC=EF,△ABC的周长=△DEF的周长D.∠A=∠D,∠B=∠E,∠C=∠F△18.如图,DAC和△EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正确结论的个数是()A.3个B.2个C.1个D.0个三、解答题(共7小题)19.如图,在小河的同侧有A,B,C,D四个村庄,图中线段表示道路.邮递员从A村送信到B村,总是走经过C村的道路,不走经过D村的道路,这是为什么呢?请你用所学的数学知识说明其中的道理.20.如图,AB=AD,BC=DC,AC与BD相交于点E,由这些条件你能推出哪些结论?(不再添加辅助线,不再标注其它字母.不写推理过程,只要求写出四个你认为正确的结论即可)21.如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD 沿着角的两边放正,沿AC画一条射线AE,AE就是角平分线,请说明它的道理.22.如图,A、B两个建筑物分别位于河的两岸,为了测量它们之间的距离,可以沿河岸作射线BF,且使BF⊥AB,在BF上截取BC=CD,过D点作DE⊥BF,使E、C、A在一条直线上,则DE的长就是A、B之间的距离,请说明理由..23.如图,公园有一条“Z”字形道路 ABCD ,其中 AB∥CD ,在 E 、M 、F 处各有一个小 石凳,且 BE=CF ,M 为 BC 的中点,请问三个小石凳是否在一条直线上?说出你推断的理 由.△24.如图, ABC 中,AB=BC=CA ,∠A=∠ABC=∠ACB ,在△ABC 的顶点 A ,C 处各有 一只小蚂蚁,它们同时出发,分别以相同速度由 A 向 B 和由 C 向 A 爬行,经过 t (s )后, 它们分别爬行到了 D ,E 处,设 DC 与 BE 的交点为 F .(△1)证明 ACD≌△CBE ;(2)小蚂蚁在爬行过程中,DC 与 BE 所成的∠BFC 的大小有无变化?请说明理由.25.我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什 么情况下,它们会全等? (1)阅读与证明:对于这两个三角形均为直角三角形,显然它们全等.对于这两个三角形均为钝角三角形,可证它们全等(证明略) 对于这两个三角形均为锐角三角形,它们也全等,可证明如下:已知: ABC 、 A △1B C 均为锐角三角形,AB=A B ,BC=B C ,∠C=∠C .1 1 1 1 1 l l求证:ABC≌ A △1B C .1 1(请你将下列证明过程补充完整.)证明:分别过点 B ,B 作 BD⊥CA 于 D , 1B D ⊥C A 于D .1 11 11 则∠BDC=∠B D C =90°, 1 1 1∵BC=B C ,∠C=∠C , 1 11∴ BCD≌ B △1C D ,1 1∴BD=B D .1 1(2)归纳与叙述:由(1)可得到一个正确结论,请你写出这个结论.参考答案与试题解析一、填空题(共10小题)1.一个等腰三角形的两边长分别是3cm和7cm,则它的周长是17cm.考点:等腰三角形的性质;三角形三边关系.专题:分类讨论.分析:等腰三角形两边的长为3cm和7cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.解答:解:①当腰是3cm,底边是7cm时:不满足三角形的三边关系,因此舍去.②当底边是3cm,腰长是7cm时,能构成三角形,则其周长=3+7+7=17cm.故答案为:17.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.△2.若∠A=∠B=2∠C,则ABC是锐角三角形.(填“钝角”、“锐角”或“直角”)考点:三角形内角和定理.专题:计算题.分析:根据三角形的内角和为180°和已知条件设未知数,列方程求解,再判断形状.解答:解:设三角分别是∠A=a°,∵∠A=2∠B=3∠C,∴∠B=a°,∠B=a°,则a+a+a=180°,解a≈98°.所以三角形是钝角三角形.故答案为钝角.点评:此题主要考查了三角形的内角和定理:三角形的内角和为180°.正确的设出一个角并表示出其他角是解决此题的关键.△3.如图,ABC≌△DEF,△ABC的周长为25cm,AB=6cm,CA=8cm,则DE=6cm,DF=8cm,EF=11cm.考点:全等三角形的性质.分析:根据△ABC的周长求出BC,然后根据全等三角形对应边相等解答即可.解答:解:∵△ABC的周长为25cm,AB=6cm,CA=8cm,∴BC=25﹣6﹣8=11cm,∵△ABC≌△DEF,∴DE=AB=6cm,DF=AC=8cm,EF=BC=11cm.故答案为:6cm;8cm;11cm.点评:本题考查了全等三角形对应边相等的性质,熟记性质并准确找出对应边是解题的关键.4.如图,AB=AD,BC=DC,要证∠B=∠D,则需要连接AC,从而可证△ABC和△ADC全等.考点:全等三角形的判定与性质.分析:连接AC,根据AB=AD,BC=DC,AC=AC即可证明△ABC≌△ADC,于是得到∠B=∠D.解答:解:连接AC,在△ABC和△ADC中,∵,∴△ABC≌△ADC(SSS),∴∠B=∠D.故答案为△AC,ABC,△ADC.点评:本题主要考查全等三角形的判定与性质的知识点,解答本题的关键是熟练掌握其判定定理,此题基础题,比较简单.5.如图,AD,AE分别是△ABC的角平分线和高线,且∠B=50°,∠C=70°,则∠EAD= 10°.考点:三角形内角和定理.分析:根据三角形的内角和等于180°求出∠BAC,再根据角平分线的定义求出∠BAD,根据直角三角形两锐角互余求出∠B AE,然后根据∠EAD=∠BAE﹣∠BAD代入数据进行计算即可得解.解答:解:∵∠B=50°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣70°=60°,∵AD是△ABC的角平分线,∴∠BAD=∠BAC=×60°=30°,∵AE是△ABC的高线,∴∠BAE=90°﹣∠B=90°﹣50°=40°,∴∠EAD=∠BAE﹣∠BAD=40°﹣30°=10°.故答案为:10°.点评:本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,是基础题,准确识图找出各角度之间的关系是解题的关键.△6.如图,CA⊥BE,且ABC≌△ADE,则BC与DE的关系是相等且垂直.考点:全等三角形的性质.分析:根据全等三角形对应边相等可得BC=DE,全等三角形对应角相等可得∠C=∠E,根据垂直的定义求出∠BAC=90°,然后求出∠B+∠E=90°,从而得到∠BFE=90°,即BC⊥DE.解答:解:∵△ABC≌△ADE,∴BC=DE,∠C=∠E,∵CA⊥BE,∴∠BAC=90°,∵∠B+∠C=180°﹣∠BAC=180°﹣90°=90°,∴∠B+∠E=90°,∴∠BFE=180°﹣(∠B+∠E)=180°﹣90°=90°,∴BC⊥DE,故BC与DE的关系是相等且垂直.故答案为:相等且垂直.点评:本题考查了全等三角形的性质,主要利用了全等三角形对应边相等,全等三角形对应角相等,垂直的定义,熟记性质是解题的关键.7.如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是16.△S AEB =S△=S△ , 考点: 正方形的性质;全等三角形的判定与性质.分析: 由四边形 ABCD 为正方形可以得到∠D=∠B=90°,AD=AB ,又∠ABE=∠D=90°,而∠EAF=90°由此可以推出∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,进一步得到∠DAF=∠BAE ,所以可以证明△AEB≌△AFD ,所以 AFD ,那么它们 都加上四边形 ABCF 的面积,即可四边形 AECF 的面积=正方形的面积,从而求出 其面积.解答: 解:∵四边形 ABCD 为正方形,∴∠D=∠ABC=90°,AD=AB , ∴∠ABE=∠D=90°, ∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°, ∴∠DAF=∠BAE , ∴△AEB≌△AFD ,△∴S AEB AFD∴它们都加上四边形 ABCF 的面积,可得到四边形 AECF 的面积=正方形的面积=16.故答案为:16.点评: 本题需注意:在旋转过程中一定会出现全等三角形,应根据所给条件找到.8.如图,BA∥CD ,∠A=90°,AB=CE ,BC=ED ,则△CED≌ △ABC ,根据是HL .考点: 全等三角形的判定.分析: 根据两直线平行,同旁内角互补求出∠DCE=90°,然后利用“HL”证明△CED 和△ABC 全等.解答: 解:∵BA∥CD ,∠A=90°,∴∠DCE=180°﹣∠A=180°﹣90°=90°, ∵在 Rt△CED 和 Rt△ABC 中,,∴ CED≌ ABC (△HL ). 故答案为: ABC ,△HL .点评: 本题考查了全等三角形的判定,平行线的性质,求出∠DCE=90°是解题的关键.△9.如图, ABC 中,AB=AC ,BC=8,BD 是 AC 边上的中线,△ABD 与△BDC 的周长的 差是 2,则 AB= 10 .考点: 等腰三角形的性质.分析: 根据三角形中线的定义可得 AD=CD ,然后求出△ABD 与△BDC 的周长的差=AB﹣BC ,再代入数据进行计算即可得解.解答: 解:∵BD 是 AC 边上的中线,∴AD=CD ,∴△ABD 与△BDC 的周长的差=(AB+AD+BD )﹣(BC+CD+BD )=AB ﹣BC , ∵△ABD 与△BDC 的周长的差是 2,BC=8, ∴AB ﹣8=2, ∴AB=10.故答案为:10.点评: 本题考查了等腰三角形腰上的中线的定义,求出△ABD 与△BDC 的周长的差=AB﹣BC 是解题的关键,也是本题的难点.10.如图,对面积为 1 的△ABC 逐次进行以下操作:第一次操作,分别延长 AB ,BC ,CA 至点 A ,B ,C ,使得 A B=2AB ,B C=2BC ,C A=2CA ,顺次连接 A ,B ,C △1,得到 A B C ,111111111 1 1记其面积为 S ;第二次操作,分别延长 A B ,B C ,C A 至点 A ,B ,C ,使得 A B =2A B , 11 11 11 12222 1 1 1B C =2B C ,C A =2C A ,顺次连接 A ,B ,C △2,得到 A B C ,记其面积为 S ;…;按 2 11 12 11 1222 2 22此规律继续下去,可得到A △5BC ,则其面积 S = 195 .5 5 5考点: 三角形的面积. 专题: 压轴题;操作型.分析: 根据高的比等于面积比推理出A △1BC 的面积是 A △1BC 面积的 2 倍,则 A △1B B 的11面积是A △1BC 面积的 3 倍…,以此类推,得出 A △2BC 的面积.2 2解答: 解:连接 A C ,根据 A B=2AB ,得到:AB :A A=1:3,111因而若过点 B ,A 作△ABC 与 AA △1C 的 AC 边上的高,则高线的比是 1:3, 1因而面积的比是 1:△3,则 A BC 的面积是△ABC 的面积的 2 倍,1设△ABC 的面积是 △a ,则 A BC 的面积是 2a , 1同理可以得到A △1BC 的面积是 A △1BC 面积的 2 倍,是 4a ,1则 A △1B B 的面积是 6a ,1同理B △1C C 和 A △1C A 的面积都是 6a ,11△A B C 的面积是 19a ,1 1 1即 A △1B C 的面积是△ABC 的面积的 19 倍, 1 1同理A △2BC 的面积是 A △1B C 的面积的 19 倍,2 21 1即 A △1B C 的面积是 △19, A B C 的面积 192,1 12 2 2依此类推,AB C的面积是S=195=2476099.△5555点评:正确判断相邻的两个三角形面积之间的关系是解决本题的关键,本题的难度较大.二、选择题(共8小题)11.在下列四组线段中,能组成三角形的是()A.2,2,5B.3,7,10C.3,5,9D.4,5,7考点:三角形三边关系.分析:根据三角形的任意两边之和大于第三边对各选项分析判断后利用排除法求解.解答:解:A、∵2+2=4<5,∴2,2,5不能组成三角形,故本选项错误;B、∵3+7=10,∴3,7,10不能组成三角形,故本选项错误;C、∵3+5=8<9,∴3,5,9不能组成三角形,故本选项错误;D、4,5,7能组成三角形,故本选项正确.故选D.点评:本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解题的关键.△12.(2011•宿迁)如图,已知∠1=∠2,则不一定能使ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA 考点:全等三角形的判定.专题:压轴题.分析:利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.解答:解:A、∵∠1=∠2,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);故本选项正确,不合题意.B、∵∠1=∠2,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故本选项错误,符合题意.C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);故本选项正确,不合题意.D、∵∠1=∠2,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);故本选项正确,不合题意.故选B.点评:此题主要考查学生对全等三角形判定定理的理解和掌握,此题难度不大,属于基础题.13.如图,∠ACB=90°,CD⊥AB,垂足为D,下列结论错误的是()A.图中有三个直角三角形C.∠1和∠B都是∠A的余角B.∠1=∠2 D.∠2=∠A考点:直角三角形的性质.专题:证明题.分析:在△ABC中,∠ACB=90°,CD⊥AB,因而△ACD∽△CBD∽△ABC,根据相似三角形的对应角相等,就可以证明各个选项.解答:解:∵∠ACB=90°,CD⊥AB,垂足为D,∴△ACD∽△CBD∽△ABC.A、∴图中有三个直角三角形Rt△ACD、Rt△CBD、Rt△ABC;故本选项正确;B、应为∠1=∠B、∠2=∠A;故本选项错误;C、∴∠1=∠B、∠2=∠A,而∠B是∠A的余角,∴∠1和∠B都是∠A的余角;故本选项正确;D、∴∠2=∠A;故本选项正确.故选B.点评:本题主要考查了直角三角形的性质,直角三角形斜边上的高,把这个三角形分成的两个三角形与原三角形相似.14.如图,AC⊥BC,CD⊥AB,DE⊥BC,分别交B C,AB,BC于点C,D,E,则下列说法中不正确的是()A.AC是△ABC和△ABE的高C.DE是△DBE和△ABE的高B.DE,DC都是△BCD的高D.AD,CD都是△ACD的高考点:三角形的角平分线、中线和高.分析:三角形的高即从三角形的一个顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.解答:解:A、AC是△ABC和△ABE的高,正确;B、DE,DC都是△BCD的高,正确;C、DE不是△ABE的高,错误;D、AD,CD都是△ACD的高,正确.故选C.点评:考查了三角形的高的概念.15.角α和β互补,α>β,则β的余角为()A.α﹣βB.180°﹣α﹣βC.D.考点:余角和补角.分析:根据互为补角的两个角的和等于180°表示出α+β,再根据互为余角的两个角的和等于90°列式整理即可得解.解答:解:∵角α和β互补,∴α+β=180°,∴β的余角为:90°﹣β=(α+β)﹣β=(α﹣β).故选C.点评:本题考查了余角和补角,利用90°和180°的倍数关系消掉常数是解题的关键.△16.根据下列已知条件,能唯一画出ABC的是()A.AB=3,BC=4,AC=8C.∠A=60°,∠B=45°,AB=4B.AB=4,BC=3,∠A=30°D.∠C=90°,AB=6考点:全等三角形的判定.专题:作图题;压轴题.分析:要满足唯一画出△ABC,就要求选项给出的条件符合三角形全等的判定方法,不符合判定方法的画出的图形不一样,也就是三角形不唯一,而各选项中只有C选项符合ASA,是满足题目要求的,于是答案可得.解答:解:A、因为AB+BC<AC,所以这三边不能构成三角形;B、因为∠A不是已知两边的夹角,无法确定其他角的度数与边的长度;C、已知两角可得到第三个角的度数,已知一边,则可以根据ASA来画一个三角形;D、只有一个角和一个边无法根据此作出一个三角形.故选C.点评:此题主要考查了全等三角形的判定及三角形的作图方法等知识点;能画出唯一三角形的条件一定要满足三角形全等的判定方法,不符合判定方法的画出的三角形不确定,当然不唯一.△17.下列各组条件中,能判定ABC≌△DEF的是()A.AB=DE,BC=EF,∠A=∠DB.∠A=∠D,∠C=∠F,AC=EFC.AB=DE,BC=EF,△ABC的周长=△DEF的周长D.∠A=∠D,∠B=∠E,∠C=∠F考点:全等三角形的判定.分析:根据全等三角形的判定(三组对应边分别相等的两个三角形全等(简称SSS))可得当AB=DE,BC=EF,AC=DF可判定△ABC≌△DEF,做题时要对选项逐个验证.解答:解:A、满足SSA,不能判定全等;B、AC=EF不是对应边,不能判定全等;C、符合SSS,能判定全等;D、满足AAA,不能判定全等.故选C.点评:本题考查了全等三角形的判定方法,在应用判定方法做题时找准对应关系,对选项逐一验证,而AAA,SSA不能作为全等的判定方法.△18.如图,DAC和△EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正确结论的个数是()A.3个B.2个C.1个D.0个考点:全等三角形的判定与性质;等边三角形的性质.分析:根据等边三角形性质得出AC=CD,BC=CE,∠ACD=∠BCE=60°,求出∠ACE=∠BCD,根据SAS证△ACE≌△BCD,推出∠NDC=∠CAM,求出∠DCE=∠ACD,证△ACM≌△DCN,推出CM=CN,AM=DN,即可判断各个结论.解答:解:∵△DAC和△EBC均是等边三角形,∴AC=CD,BC=CE,∠ACD=∠BCE=60°,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠BCD,在△ACE和△BCD中∴△ACE≌△BCD(SAS);∴①正确;∵∠ACD=∠BCE=60°,∴∠DCE=180°﹣60°﹣60°=60°=∠ACD,∵△ACE≌△BCD,∴∠NDC=∠CAM,在△ACM和△DCN中∴△ACM≌△DCN(ASA),∴CM=CN,AM=DN,∴②正确;∵△ADC是等边三角形,∴AC=AD,∠ADC=∠ACD,∵∠AMC>∠ADC,∴∠AMC>∠ACD,∴AC>AM,即AC>DN,∴③错误;故选B.点评:本题考查了等边三角形的性质和全等三角形的性质和判定的应用,主要考查学生的推理能力和辨析能力.三、解答题(共7小题)19.如图,在小河的同侧有A,B,C,D四个村庄,图中线段表示道路.邮递员从A村送信到B村,总是走经过C村的道路,不走经过D村的道路,这是为什么呢?请你用所学的数学知识说明其中的道理.考点:三角形三边关系.分析:延长AC交BD于E,根据三角形的任意两边之和大于第三边可得AD+DE>AC+CE,CE+BE>BC,然后整理得到AD+BD>AC+BC,从而得解.解答:解:如图,延长AC交BD于E,在△ADE中,AD+DE>AC+CE,在△CBE中,CE+BE>BC,∴AD+DE+CE+BE>AC+CE+BC,∴AD+BD>AC+BC,因此,邮递员由A村到B村送信,经过C村路程近些,所以,他总是走经过C村的道路,不走经过D村的道路.点评:本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解题的关键.20.如图,AB=AD,BC=DC,AC与BD相交于点E,由这些条件你能推出哪些结论?(不再添加辅助线,不再标注其它字母.不写推理过程,只要求写出四个你认为正确的结论即可)考点:全等三角形的判定与性质.专题:开放型.分析:由AB=AD,BC=DC知,AC是BD的中垂线,∴DE⊥AC,可由SSS证得△ABC≌△ADC及AC平分∠BAD等.解答:解:由已知得,AC垂直平分BD,即直线AC为四边形ABCD的对称轴,由对称性可知:DE=BE,DE⊥AC于△E,ABC≌ADC,△AC平分∠BAD等.点评:本题考查了三角形全等的判定和性质.做题时要从已知开始思考,结合全等的判定方法进行取舍.21.如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD 沿着角的两边放正,沿AC画一条射线AE,AE就是角平分线,请说明它的道理.考点:全等三角形的应用.专题:证明题.分析:AC为公共边,其中AB=AD,BC=DC,利用SSS判断两个三角形全等,根据全等三角形的性质解题.解答:证明:△ABC与△ADC中,∵AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.即AE平分∠BAD.不论∠DAB是大还是小,始终有AE平分∠BAD.点评:本题考查了全等三角形的应用;这种设计,用SSS判断全等,再运用性质,是全等三角形判定及性质的综合运用,做题时要认真读题,充分理解题意.22.如图,A、B两个建筑物分别位于河的两岸,为了测量它们之间的距离,可以沿河岸作射线BF,且使BF⊥AB,在BF上截取BC=CD,过D点作DE⊥BF,使E、C、A在一条直线上,则DE的长就是A、B之间的距离,请说明理由.考点:全等三角形的应用.分析:可以沿河岸作射线BF,且使BF⊥AB,在BF上截取BC=CD,过D点作DE⊥BF,使E、C、A在一条直线上,证明出这两个三角形全等,从而可得到结论.解答:解:∵∠ACB=∠DCE,BC=CD,∠B=∠EDC=90°,∴△ACB≌△ECD,∴AB=DE.点评:本题考查全等三角形的应用,关键是证明三角形全等,从而得到线段相等,得到结论.23.如图,公园有一条“Z”字形道路ABCD,其中AB∥CD,在E、M、F处各有一个小石凳,且BE=CF,M为BC的中点,请问三个小石凳是否在一条直线上?说出你推断的理由.考点:全等三角形的应用.分析:首先连接EM、△MF,再证明BEM≌△CFM可得∠BME=∠FMC,再根据∠BME+∠EMC=180°,可得∠FMC+∠EMC=180,进而得到三个小石凳在一条直线上.解答:解:连接EM、MF,∵AB∥CD,∴∠B=∠C,又∵M为BC中点,∴BM=MC.,∴在△BEM和△CFM中∴△BEM≌△CFM(SAS),∴∠BME=∠FMC,∵∠BME+∠EMC=180°,∴∠FMC+∠EMC=180°,∴三个小石凳在一条直线上.点评:此题主要考查了全等三角形的应用,证明△BEM≌△CFM,证明出∠FMC+∠EMC=180°是解决问题的关键.△24.如图,ABC中,AB=BC=CA,∠A=∠ABC=∠ACB,在△ABC的顶点A,C处各有一只小蚂蚁,它们同时出发,分别以相同速度由A向B和由C向A爬行,经过t(s)后,它们分别爬行到了D,E处,设DC与BE的交点为F.(△1)证明ACD≌△CBE;(2)小蚂蚁在爬行过程中,DC与BE所成的∠BFC的大小有无变化?请说明理由.考点:全等三角形的应用.分析:(1)根据小蚂蚁的速度相同求出AD=CE,再利用“边角边”证明△ACD和△CBE 全等即可;(2)根据全等三角形对应角相等可得∠EBC=∠ACD,然后表示出∠BFC,再根据等边三角形的性质求出∠ACB,从而得到∠BFC.解答:(1)证明:∵小蚂蚁同时从A、C出发,速度相同,∴t(s)后两只小蚂蚁爬行的路程AD=CE,∵在△ACD和△CBE中,,∴△ACD≌△CBE(SAS);(△2)解:∵ACD≌△CBE,∴∠EBC=∠ACD,∵∠BFC=180°﹣∠EBC﹣∠BCD,∴∠BFC=180°﹣∠ACD﹣∠BCD,=180°﹣∠ACB,∵∠A=∠ABC=∠ACB,∴∠ACB=60°,∴∠BFC=180°﹣60°=120°,∴∠BFC无变化.点评:本题考查了全等三角形的应用,主要利用了全等三角形对应角相等的性质,等边三角形的性质,根据小蚂蚁的速度相同求出AD=CE是证明三角形全等的关键.25.(2006•绍兴)我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什么情况下,它们会全等?.△1B △1(1)阅读与证明:对于这两个三角形均为直角三角形,显然它们全等.对于这两个三角形均为钝角三角形,可证它们全等(证明略) 对于这两个三角形均为锐角三角形,它们也全等,可证明如下:已知: ABC 、 A △1B C 均为锐角三角形,AB=A B ,BC=B C ,∠C=∠C .1 1 1 1 1 l l 求证:ABC≌ A △1B C . 1 1 (请你将下列证明过程补充完整.) 证明:分别过点 B ,B 作 BD⊥CA 于 D ,1 B D ⊥C A 于 D . 1 1 1 1 1则∠BDC=∠B D C =90°,1 1 1 ∵BC=B C ,∠C=∠C ,1 1 1 ∴ BCD≌ B △1C D ,1 1 ∴BD=B D . 1 1 (2)归纳与叙述:由(1)可得到一个正确结论,请你写出这个结论.考点: 全等三角形的判定.专题: 压轴题;阅读型.分析: 本题考查的是全等三角形的判定,首先易证得 ADB≌ A △1B C 然后易证出 1 1 ABC≌ A C .1 1解答: 证明:(1)证明:分别过点 B ,B 作 BD⊥CA 于 D ,1 B D ⊥C A 于 D . 1 1 1 1 1 则∠BDC=∠B D C =90°,1 1 1∵BC=B C ,∠C=∠C ,1 1 1 ∴ BCD≌ B △1C D ,1 1 ∴BD=B D . 1 1 补充:∵AB=A B ,∠ADB=∠A D B =90°.1 1 1 1 1 ∴ ADB≌ A △1D B (HL ),1 1 ∴∠A=∠A , 1又∵∠C=∠C ,BC=B C ,1 1 1 在△ABC 与 A △1B C 中,1 1∵,∴ ABC≌ A △1B C (AAS );1 1(△2)解:若两三角形( ABC 、 AB C )均为锐角三角形或均为直角三角形或均 1 1为钝角三角形,则它们全等(AB=A B,BC=B C,∠C=∠C△1,则ABC≌A△1B C).111111点评:命题立意:考查三角形全等的判定,阅读理解能力及分析归纳能力.做题时要认真读题,明白题意,然后按要求答题.。
北师大版数学七年级下册第四章 三角形 单元测试题(附答案)
北师大版数学七年级下册第四章三角形单元测试题(含答案)一、选择题(每题3分,共30分)1.下列长度的三条线段,能组成三角形的是()A.3,4,8 B.5,6,10C.5,5,11 D.5,6,112.如图,点D在BC的延长线上,DE⊥AB于点E,交AC于点F.若∠A=35°,∠D=15°,则∠ACB的度数为()A.65°B.70°C.75°D.85°3.如图,已知∠1=∠2,∠B=∠D,△ABC和△EAD全等,则下列表示正确的是()A.△ABC≌△AEDB.△ABC≌△EADC.△ABC≌△DEAD.△ABC≌△ADE4.如图,△AOC≌△BOD,点A和点B、点C和点D是对应顶点,下列结论中错误的是()A.∠A与∠B是对应角B.∠AOC与∠BOD是对应角C.OC与OB是对应边D.OC与OD是对应边5.如图,AD是△ABC的角平分线,过点D向AB,AC两边作垂线,垂足分别为E,F,那么下列结论中不一定...正确的是()A.BD=CD B.DE=DFC.AE=AF D.∠ADE=∠ADF6.如图,AD∥BC,AB∥CD,AC,BD交于O点,过O点的直线EF交AD于E点,交BC于F点,且BF=DE,则图中的全等三角形共有()A.6对B.5对C.3对D.2对7.将一副三角尺按下列方式进行摆放,∠1,∠2不一定...互补的是()8.如图,这是工人师傅用同一种材料制成的金属框架,已知∠B=∠E,AB=DE,BF=EC,其中△ABC的周长为24 cm,CF=3 cm,则制成整个金属框架所需这种材料的总长度为()A.45 cm B.48 cm C.51 cm D.54 cm9.根据下列已知条件,能画出唯一一个....△ABC的是()A.AB=3,BC=4,AC=8 B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4 D.∠C=90°,AB=610.如图,在△ABC中,AC⊥CB,CD平分∠ACB,点E在AC上,且CE=CB,则下列结论:①DC平分∠BDE;②BD=DE;③∠B=∠CED;④∠A+∠CED=90°.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共30分)11.如图,照相机的底部用三脚架支撑着,请你说说这样做的依据是____________________.12.如图,点B,C,E,F在同一直线上,AB∥DC,DE∥GF,∠B=∠F=72°,则∠D=________.13.已知三角形的两边长分别为2 和7,第三边长为偶数,则三角形的周长为__________.14.如图,点C,F在线段BE上,BF=EC,∠1=∠2.请你添加一个条件,使△ABC≌△DEF,这个条件可以是____________(不再添加辅助线和字母).15.如图,在△ABC中,BC=8 cm,AB>BC,BD是AC边上的中线,△ABD 与△BDC的周长的差是2 cm,则AB=__________.16.设a,b,c是△ABC的三边长,化简|a+b-c|+|b-c-a|+|c-a-b|=__________.17.如图,D,E,F分别为AB,AC,BC上的点,且DE∥BC,△ABC沿线段DE折叠,使点A落在点F处.若∠B=50°,则∠BDF=________.18.如图,已知边长为1的正方形ABCD,AC,BD交于点O,过点O任作一条直线分别交AD,BC于点E,F,则阴影部分的面积是________.19.如图,AD,AE分别是△ABC的角平分线、高线,且∠B=50°,∠C=70°,则∠EAD=________.20.如图,已知四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且AE=12(AB+AD),若∠D=115°,则∠B=________.三、解答题(21~24题每题9分,其余每题12分,共60分)21.如图,点B,F,C,E在一条直线上,FB=CE,AB∥ED,AC∥FD.试说明:AC=DF.22.如图,在△ABC中,AD是角平分线,∠B=54°,∠C=76°.(1)求∠ADB和∠ADC的度数;(2)若DE⊥AC于E,求∠EDC的度数.23.如图,在正方形ABCD中,点E,F分别在边AB,BC上,AE=BF,AF和DE相交于点G.(1)观察图形,写出图中所有与∠AED相等的角;(2)选择图中与∠AED相等的任意一个角,并加以说明.24.如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB边上一点.试说明:BD=AE.25.如图,小明和小月两家位于A,B两处,要测得两家之间的距离,小明设计方案如下:①从点A出发沿河岸画一条射线AM;②在射线AM上截取AF=FE;③过点E作EC∥AB,使B,F,C在一条直线上;④CE的长就是A,B间的距离.(1)请你说明小明设计的原理.(2)如果不借助测量仪,小明的设计中哪一步难以实现?(3)你能设计出其他的方案吗?26.如图①,在Rt△ABC中,AB=AC,∠BAC=90°,过点A的直线l绕点A 旋转,BD⊥l于D,CE⊥l于E.(1)试说明:DE=BD+CE.(2)当直线l绕点A旋转到如图②所示的位置时,(1)中结论是否成立?若成立,请说明;若不成立,请探究DE,BD,CE又有怎样的数量关系,并写出探究过程.答案一、1.B 2.B 3.D 4.C 5.A 6.A 7.D8.A9.C10.D二、11.三角形具有稳定性12.36°13.15或1714.CA=FD(答案不唯一)15.10 cm16.3a+b-c17.80°18.1 419.10°20.65°三、21.解:因为AB∥ED,AC∥FD,所以∠B=∠E,∠ACB=∠DFE.因为FB=CE,所以BF+FC=CE+FC,即BC=EF.所以△ABC≌△DEF(ASA).所以AC=DF.22.解:(1)因为∠B=54°,∠C=76°,所以∠BAC=180°-54°-76°=50°.因为AD平分∠BAC,所以∠BAD=∠CAD=25°.所以∠ADB=180°-54°-25°=101°,∠ADC=180°-101°=79°.(2)因为DE⊥AC,所以∠DEC=90°.所以∠EDC=180°-90°-76°=14°.23.解:(1)由题可知∠DAG,∠AFB,∠CDE与∠AED相等.(2)(答案不唯一)选择∠DAG=∠AED.说明如下:因为四边形ABCD是正方形,所以∠DAB=∠B=90°,AD=AB.在△DAE 和△ABF 中,⎩⎨⎧AD =BA ,∠DAE =∠B =90°,AE =BF ,所以△DAE ≌△ABF (SAS). 所以∠ADE =∠BAF .因为∠DAG +∠BAF =90°,∠GDA +∠AED =90°, 所以∠DAG =∠AED .24.解:因为△ABC 和△ECD 都是等腰直角三角形,且∠ACB =∠DCE =90°,所以AC =BC ,CD =CE , ∠ACE +∠ACD =∠BCD +∠ACD . 所以∠ACE =∠BCD .在△ACE 和△BCD 中,⎩⎨⎧AC =BC ,∠ACE =∠BCD ,CE =CD ,所以△ACE ≌△BCD (SAS). 所以BD =AE .25.解:(1)全等三角形的对应边相等. (2)③难以实现.(3)略(答案不唯一,只要设计合理即可). 26.解:(1)因为BD ⊥l ,CE ⊥l ,所以∠ADB =∠AEC =90°.所以∠DBA +∠BAD =90°. 又因为∠BAC =90°,所以∠BAD +∠CAE =90°.所以∠DBA =∠CAE . 因为AB =AC ,∠ADB =∠CEA =90°,所以△ABD ≌△CAE (AAS).所以AD =CE ,BD =AE . 则AD +AE =BD +CE ,即DE =BD +CE . (2)(1)中结论不成立.DE =BD -CE .同(1)说明△ABD ≌△CAE , 所以BD =AE ,AD =CE .又因为AE-AD=DE,所以DE=BD-CE.。
北师大版七年级下册数学第四章三角形 测试题附答案
北师大版七年级数学下册第四章三角形测试题一、单选题1.一个三角形的两边长分别为3 cm和7 cm,则此三角形的第三边的长可能是()A.3 cm B.4 cm C.7 cm D.11 cm2.已知三条线段的比是:①1:3:4;②1:2:3;③1:4:6;④3:3:6;⑤6:6:10;⑥3:4:5.其中可构成三角形的有( )个A.1个B.2个C.3个D.4个3.已知三角形的三边长为连续整数,且周长为12cm,则它的最短边长为()A.2cm B.3cm C.4cm D.5cm4.如果一个三角形的三个外角之比为2:3:4,则与之对应的三个内角度数之比为( ) A.4:3:2 B.3:2:4 C.5:3:1 D.3:1:55.如图所示,在△ABC中,∠B=40°,∠A=50°,将其折叠,使点A落在CB边上A′处,折痕为CD,则∠A′DB的度数为( )A.40°B.30°C.20°D.10°6.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°7.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画了一个与书上完全一样的三角形,那么亮亮画图的依据是()A.SSS B.SAS C.ASA D.AAS8.如图,小明把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是:( )A.带①去B.带②去C.带③去D.①②③都带去9.如图(1),已知两个全等三角形的直角顶点及一条直角边重合.将△ACB绕点C按顺时∆''的位置,其中A C'交直线AD于点E,A B''分别交直线AD、AC于针方向旋转到A CB点F、G,则在图(2)中,全等三角形共有()A.5对B.4对C.3对D.2对10.如图,△ABE、△ADC和△ABC分别是关于AB,AC边所在直线的轴对称图形,若∠1:∠2:∠3=7:2:1,则∠α的度数为().A.126°B.110°C.108°D.90°二、填空题11.若三角形的两边长分别是2和7,则第三边长c的取值范围是_______;当周长为奇数时,第三边长为________;当周长是5的倍数时,第三边长为________.12.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有________对13.三角形的三边长分别为5,1+2x,8,则x的取值范围是.14.如图,△ABC≌△DEF,请根据图中提供的信息,写出x=.15.在△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E,在BC上,BE=BF,连结AE,EF和CF,此时,若∠CAE=30°,那么∠EFC=_______.16.如图,已知AC=DB,要使△ABC≌△DCB,则需要补充的条件为_____.17.如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=38°,则∠AEB=________.18.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.三、解答题19.在△ABC中,AB=2BC,AD、CE分别是BC、AB 边上的高,试判断AD和CE的大小关系,并说明理由.20.如图,已知∠A=20°,∠B=27°,AC⊥DE,求∠1,∠D的度数.21.已知在△ABC中,∠A:∠B:∠C=2:3:4,CD是∠ACB平分线,求∠A和∠CDB的度数.22.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.23.(1)如图,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于D,且AE平分∠BAC,求∠EAD的度数.(2)上题中若∠B=40°,∠C=80°改为∠C>∠B,其他条件不变,请你求出∠EAD与∠B、∠C之间的数列关系?并说明理由.24.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.25.如图1,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形,并将添加的全等条件标注在图上.请你参考这个作全等三角形的方法,解答下列问题:(1)如图2,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC和∠BCA的平分线,AD、CE相交于点F,求∠EFA的度数;(2)在(1)的条件下,请判断FE与FD之间的数量关系,并说明理由;(3)如图3,在△ABC中,如果∠ACB不是直角,而(1 )中的其他条件不变,试问在(2)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.参考答案1.C【解析】试题解析:设第三边长为xcm,根据三角形的三边关系可得:7-3<x<7+3,解得:4<x<10,故答案为C.考点:三角形三边关系.2.B【解析】【分析】根据三角形中任意两条边之和大于第三边,任意两条边之差小于第三边即可求解.【详解】解:①设三条线段分别为x,3x,4x,则有x+3x=4x,不符合三角形任意两边大于第三边,故不可构成三角形;②设三条线段分别为x,2x,3x,则有x+2x=3x,不符合三角形任意两边大于第三边,故不可构成三角形;③设三条线段分别为x ,4x ,6x ,则有x +4x <6x ,不符合三角形任意两边大于第三边,故不可构成三角形;④设三条线段分别为3x ,3x ,6x ,则有3x +3x =6x ,不符合三角形任意两边大于第三边,故不可构成三角形;能构成三角形的是⑤⑥.故本题答案选B.【点睛】本题利用了三角形三边的关系求解,掌握该知识点是解答本题的关键.3.B【解析】【分析】设大小处于中间的边长是xcm ,则最大的边是(x+1)cm ,最小的边长是(x-1)cm ,根据三角形的周长即可求得x ,进而求解.【详解】设大小处于中间的边长是xcm ,则最大的边是(x +1)cm ,最小的边长是(x −1)cm .则(x +1)+x +(x −1)=12,解得:x =4,则最短的边长是:4−1=3cm .故选B.【点睛】本题考查了三角形的周长,适当的设三边长是关键.4.C【解析】【分析】根据三角形外角和为0360,三角形内角和为0180,即可求解.【详解】解:设三个外角分别为2x ,3x ,4x ,三角形外角和为360°,所以2x +3x +4x =360°,所以x=40°,所以三个外角是80°,120°,160°,所以对应内角比为5:3:1,故选C.【点睛】本题考查了三角形外角和和内角和的相关知识,掌握该知识点是解答本题的关键.5.D【解析】∵Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=90°-50°=40°,∵将其折叠,使点A落在边CB上A′处,折痕为CD,则∠CA'D=∠A,∵∠CA'D是△A'BD的外角,∴∠A′DB=∠CA'D-∠B=50°-40°=10°.故选D.6.B【解析】【分析】先根据全等三角形的性质得∠ACB=∠A′CB′,两边减去∠A′CB即可得到∠ACA′=∠BCB′=30°.【详解】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,∴∠ACB-∠A′CB=∠A′CB′-∠A′CB,即∠ACA′=∠B′CB,又∵∠B′CB=30°∴∠ACA′=30°.故选:B.【点睛】本题主要考查了全等三角形的性质.7.C【解析】【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【详解】根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.【点睛】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.8.C【解析】【分析】本题就是已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【详解】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故选:C.【点睛】此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.9.B【解析】试题分析:根据旋转的性质和全等三角形的判定,有∆'≌△ACE,A EF∆'≌△FDC,A CA∆''≌△ACD,GB CA CB∆'≌△AGF.共4对.故选B.10.C【解析】【分析】根据题意可设∠1=7x,∠2=2x,∠3=x,即可得到∠1,∠2,∠3,再利用三角形外角的性质得到∠EAC=108°,最后根据三角形的内角和定理计算即可.【详解】∵∠1:∠2:∠3=7:2:1,∴设∠1=7x,∠2=2x,∠3=x,由∠1+∠2+∠3=180°得:7x+2x+x=180°,解得x=18,故∠1=7×18=126°,∠2=2×18=36°,∠3=1×18=18°,∵△ABE和△ADC是△ABC分别是关于AB,AC边所在直线的轴对称图形,∴∠DCA=∠E=∠3=18°,∠2=∠EBA=∠D=36°,∠4=∠EBA+∠E=36°+18°=54°,∠5=∠2+∠3=18°+36°=54°,故∠EAC=∠4+∠5=54°+54°=108°在△EGF与△CAF中,∠E=∠DCA,∠DFE=∠CFA,∴∠α=∠EAC=108°.故选C.【点睛】此题考查轴对称的性质,三角形内角和定理和三角形外角的性质,解题关键在于掌握内角和定理.11.5<c<9 6或8 6【解析】【分析】(1).根据三角形的三边关系即可求出c的取值范围. (2).根据“偶数和偶数之和为偶数,偶数与奇数之和为奇数,奇数和奇数之和为偶数”即可解答. (3).用含有c的式子表示出周长为5的倍数,结合第三边c的取值范围,进而求出c的值.【详解】解:根据三角形的三边关系,可得7-2<c<7+2,即5<c<9,由于2+7=9是奇数,故当c为偶数时周长为奇数,即c的取值为6,8,当周长是5的倍数是,则有2+7+c=5n,且第三边取值范围为5<c<9,故周长的取值范围为14~18,故n=3,解得c=6.【点睛】本题主要考查了三角形的三边关系,偶数和偶数之和为偶数,偶数与奇数之和为奇数,奇数和奇数之和为偶数,掌握这两个知识点是解答本题的关键.12.3【解析】图中以BC为公共边的”共边三角形”有△ABC,△DBC,△EBC,共3对.故选B.13.1<x<6【解析】试题分析:根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.解:由题意,有8﹣5<1+2x<8+5,解得:1<x<6.考点:三角形三边关系.14.20【解析】试题分析:如图,∠A=180°﹣50°﹣60°=70°,∵△ABC≌△DEF,∴EF=BC=20,即x=20。
5.3简单的轴对称图形-等腰三角形之三线合一 练习-北师大版七年级数学下册(无答案)
初一下数学 5.3简单的轴对称图形-等腰三角形之三线合一(编号:504)班别__________学号_________姓名_________(出题者: )一、课前训练1.如图,AD=AE,∠B=∠C,你能证明AB=AC吗?2.如图,已知O为AC与BD的中点,你能说明AD//BC吗?AB CDO3.如图,已知AB=AD,∠ADE=∠B,∠1=∠2,求证AC=AE.21ED CA二、新课学习1. 动手操作:请拿出准备的等腰三角形纸片,把纸片对折,让两腰AB、AC重叠在一起,折痕为AD,你能发现什么?回答下面的问题,并写明理由。
①等腰三角形是轴对称图形吗?②折痕AD是△ABC的顶角平分线吗?③折痕AD是△ABC底边上的中线吗?④折痕AD是△ABC底边上的高吗?☞猜想:①等腰三角形是图形,有条对称轴。
②等腰三角形顶角的、底边上的、底边上的互相重合,简称“”,它们所在的都是等腰三角形的对称轴。
思考:你能用几何证明的方法说明上面的猜想②③吗?例题1:在△ABC中,AB=AC, AD为△ABC的高,求证; AD为△ABC的角平分线和中线,B CA亲,求边角相等用方法例题2:在△ABC 中,AB=AC, AD 为△ABC 的角平分线,求证; AD 为△ABC 的高和中线,BCA例题3:在△ABC 中,AB=AC, AD 为△ABC 的中线,求证; AD 为△ABC 的角平分线和高,BCA☞几何语言:如图,在△ABC 中,AB=AC ,点D 在BC 上 ①∵AB=AC ,AD ⊥BC (已知)∴∠BAD =∠____, BD = ( ) ②∵AB=AC ,∠BAD =∠CAD ,(已知)∴ AD ⊥_ __,BD =_ __( ) ③∵AB=AC ,BD =CD ,∴∠BAD =∠_______,AD ⊥_____( )☞例题4:如图,在△ABC 中,AB=AC ,D 是BC 边上的中点,∠B=30° 求∠1和∠ADC 的度数。
精品解析2022年北师大版七年级数学下册第四章三角形综合练习试题(含答案解析)
北师大版七年级数学下册第四章三角形综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在△ABC中,若AB=3,BC=4,且周长为奇数,则第三边AC的长可以是()A.1 B.3 C.4 D.52、以下列各组线段为边,能组成三角形的是()A.3cm,3cm,6cm B.2cm,5cm,8cmC.25cm,24cm,7cm D.1cm,2cm,3cm3、已知:如图,∠BAD=∠CAE,AB=AD,∠B=∠D,则下列结论正确的是()A.AC=DE B.∠ABC=∠DAE C.∠BAC=∠ADE D.BC=DE4、下列各组图形中,是全等形的是()A.两个含30°角的直角三角形B .一个钝角相等的两个等腰三角形C .边长为5和6的两个等腰三角形D .腰对应相等的两个等腰直角三角形5、如图,已知AB AC =,要使AEB ADC △≌△,添加的条件不正确...的是( )A .BD CE =B .AEB ADC ∠=∠ C .B C ∠=∠D .BE CD =6、如图,AC =DC ,∠BCE =∠DCA ,要使△ABC ≌△DEC ,不能添加下列选项中的( )A .∠A =∠DB .BC =EC C .AB =DED .∠B =∠E7、以下列各组长度的线段为边,能构成三角形的是( )A .1cm ,1cm ,8cmB .3cm ,3cm ,6cmC .3cm ,4cm ,5cmD .3cm ,2cm ,1cm8、如图,D 为∠BAC 的外角平分线上一点,过D 作DE ⊥AC 于E ,DF ⊥AB 交BA 的延长线于F ,且满足∠FDE =∠BDC ,则下列结论:①△CDE ≌△BDF ;②CE =AB +AE ;③∠BDC =∠BAC ;④∠DAF =∠CBD .其中正确的结论有( )A.1个B.2个C.3个D.4个9、如图,△ABC中,D,E分别为BC,AD的中点,若△CDE的面积使2,则△ABC的面积是()A.4 B.5 C.6 D.810、下列叙述正确的是()A.三角形的外角大于它的内角B.三角形的外角都比锐角大C.三角形的内角没有小于60°的D.三角形中可以有三个内角都是锐角第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,△ABC中,∠B=20°,D是BC延长线上一点,且∠ACD=60°,则∠A的度数是____________ 度.2、如图,点F,A,D,C在同一条直线上,ABC DEF△≌△,3AD=,CF10=,则AC等于_____.3、已知a ,b ,c 是ABC 的三条边长,化简a b c a b c +-+--的结果为_______.4、如图,在△ABC 中,D 是AC 延长线上一点,∠A =50°,∠B =70°,则∠BCD =__________°.5、如图,直线ED 把ABC 分成一个AED 和四边形BDEC ,ABC 的周长一定大于四边形BDEC 的周长,依据的原理是____________________________________.三、解答题(5小题,每小题10分,共计50分)1、已知:如图,AC BD =,AD BC =,求证:ABC BAD ≌2、在ABC 中,AC BC =,90ACB ∠=︒,点D 是直线AC 上一动点,连接BD 并延长至点E ,使ED BD =.过点E 作EF AC ⊥于点F .(1)如图1,当点D在线段AC上(点D不与点A和点C重合)时,此时DF与DC的数量关系是______.(2)如图2,当点D在线段AC的延长线上时,依题意补全图形,并证明:2AD AF EF=+.(3)当点D在线段CA的延长线上时,直接用等式表示线段AD,AF,EF之间的数量关系是______.3、如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.4、如图,点B,F,C,E在一条直线上,AB=DE,∠B=∠E,BF=CE.求证:AC=DF.5、李华同学用11块高度都是1cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个正方形ABCD(∠ABC=90°,AB=BC),点B在EF上,点A和C分别与木墙的顶端重合,求两堵木墙之间的距离EF.-参考答案-一、单选题1、C【分析】先求解AC的取值范围,再利用周长为奇数,可得AC为偶数,从而可得答案.【详解】解:AB=3,BC=4,ACAC即17,4343,△ABC周长为奇数,而3+4=7,为偶数,AC1AC ∴=或3AC =或5AC =不符合题意,4AC =符合题意;故选C【点睛】本题考查的是三角形三边的关系,掌握“三角形的任意两边之和大于第三边,任意两边之差小于第三边”是解本题的关键.2、C【分析】根据三角形三边关系求解即可.【详解】解:A 、∵336+=,∴3cm,3cm ,6cm 不能组成三角形,故选项错误,不符合题意;B 、∵257<8+=,∴2cm,5cm ,8cm 不能组成三角形,故选项错误,不符合题意;C 、∵24-7<25<24+7,∴25cm,24cm ,7cm 能组成三角形,故选项正确,符合题意;D 、∵123+=,∴1cm,2cm ,3cm 不能组成三角形,故选项错误,不符合题意.故选:C .【点睛】此题考查了三角形三边关系,解题的关键是熟练掌握三角形三边关系.三角形两边之和大于第三边,两边之差小于第三边.3、D【分析】根据已知条件利用ASA 证明ABC ADE △≌△可得AC =AE ,BC =DE ,进而逐一进行判断.【详解】解:∵∠BAD =∠CAE ,∴∠BAD -∠CAD =∠CAE -∠CAD ,即∠BAC =∠DAE ,所以B 、C 选项错误;在ABC 和ADE 中,BAC DAE AB ADB D ∠∠⎧⎪⎨⎪∠∠⎩===, ∴ABC ADE △≌△(ASA ),∴AC =AE ,BC =DE .所以A 选项错误;D 选项正确.故选:D .【点睛】本题考查了全等三角形的判定与性质,解决本题的关键是掌握全等三角形的判定与性质.4、D【分析】根据两个三角形全等的条件依据三角形全等判定方法SSS,SAS,AAS,SAS,HL逐个判断得结论.【详解】解:A、两个含30°角的直角三角形,缺少对应边相等,故选项A不全等;B、一个钝角相等的两个等腰三角形.缺少对应边相等,故选项B不全等;C、腰为5底为6的三角形和腰为6底为5的三角形不全等,故选项C不全等;D、腰对应相等,顶角是直角的两个三角形满足“边角边”,故选项D是全等形.故选:D.【点睛】本题主要考查了三角形全等的判定方法;需注意:判定两个三角形全等时,必须有边的参与,还要找准对应关系.5、D【分析】已知条件AB=AC,还有公共角∠A,然后再结合选项所给条件和全等三角形的判定定理进行分析即可.【详解】解:A、添加BD=CE可得AD=AE,可利用利用SAS定理判定△ABE≌△ACD,故此选项不合题意;B、添加∠ADC=∠AEB可利用AAS定理判定△ABE≌△ACD,故此选项不合题意;C、添加∠B=∠C可利用ASA定理判定△ABE≌△ACD,故此选项不合题意;D、添加BE=CD不能判定△ABE≌△ACD,故此选项符合题意;故选:D.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL(直角三角形),掌握三角形全等的判定方法是解题关键.6、C【分析】根据全等三角形的判定定理进行分析即可;【详解】根据已知条件可得∠+∠=∠+∠BCA ECA DCA ECA,即BCA ECD∠=∠,∵AC=DC,∴已知三角形一角和角的一边,根据全等条件可得:A. ∠A=∠D,可根据ASA证明,A正确;B. BC=EC,可根据SAS证明,B正确;C. AB=DE,不能证明,C故错误;D. ∠B=∠E,根据AAS证明,D正确;故选:C.【点睛】本题主要考查了全等三角形的判定定理,掌握全等三角形的判定方法是解题的关键.7、C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:A、1+1=2<8,不能组成三角形,故此选项不合题意;B、3+3=6,不能组成三角形,故此选项不符合题意;C、3+4=7>5,能组成三角形,故此选项符合题意;D、1+2=3,不能组成三角形,故此选项不合题意;【点睛】本题考查了构成三角形的条件,掌握“任意两边之和大于第三边,任意两边之差小于第三边”是解题的关键.8、D【分析】利用AAS 证明△CDE ≌△BDF ,可判断①④正确;再利用HL 证明Rt△ADE ≌Rt△ADF ,可判断②正确;由∠BAC =∠EDF ,∠FDE =∠BDC ,可判断③正确.【详解】解:∵AD 平分∠CAF ,DE ⊥AC ,DF ⊥AB ,∴DE =DF ,∠DFB =∠DEC =90°,∵∠FDE =∠BDC ,∴∠FDB =∠EDC ,在△CDE 与△BDF 中,FDB CDEDFB DECDF DE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CDE ≌△BDF (AAS ),故①正确;∴CE =BF ,在Rt△ADE 与Rt△ADF 中,AD ADDE BF =⎧⎨=⎩,∴Rt△ADE ≌Rt△ADF (HL ),∴CE=AB+AF=AB+AE,故②正确;∵∠DFA=∠DEA=90°,∴∠EDF+∠FAE=180°,∵∠BAC+∠FAE=180°,∴∠FDE=∠BAC,∵∠FDE=∠BDC,∴∠BDC=∠BAC,故③正确;∵∠FAE是△ABC的外角,∴2∠DAF=∠ABC+∠ACB=∠ABD+∠DBC+∠ACB,∵Rt△CDE≌Rt△BDF,∴∠ABD=∠DCE,BD=DC,∴∠DBC=∠DCB,∴2∠DAF=∠DCE+∠DBC+∠ACB=∠DBC+∠DCB=2∠DBC,∴∠DAF=∠CBD,故④正确故选:D.【点睛】本题主要考查了全等三角形的判定及性质,外角的性质等,熟悉掌握全等三角形的判定方法,灵活寻找条件是解题的关键.9、D【分析】根据三角形的中线把三角形分成面积相等的两部分,求出面积比,即可求出ABC的面积.【详解】∵AD是BC上的中线,∴12ABD ACD ABCS S S==△△△,∵CE是ACD△中AD边上的中线,∴12ACE CDE ACDS S S==,∴14CDE ABCS S=,即4ABC CDES S=,∵CDE△的面积是2,∴428ABCS=⨯=.故选:D.【点睛】本题考查的是三角形的中线的性质,三角形一边上的中线把原三角形分成的两个三角形的面积相等.10、D【分析】结合直角三角形,钝角三角形,锐角三角形的内角与外角的含义与大小逐一分析即可.【详解】解:三角形的外角不一定大于它的内角,锐角三角形的任何一个外角都大于内角,故A不符合题意;三角形的外角可以是锐角,不一定比锐角大,故B不符合题意;三角形的内角可以小于60°,一个三角形的三个角可以为:20,70,90,故C不符合题意;三角形中可以有三个内角都是锐角,这是个锐角三角形,故D符合题意;故选D【点睛】本题考查的是三角形的的内角与外角的含义与大小,掌握“直角三角形,钝角三角形,锐角三角形的内角与外角”是解本题的关键.二、填空题1、40【分析】直接根据三角形外角的性质可得结果.【详解】解:∵∠B=20°,∠ACD=60°,∠ACD是△ABC的外角,∴∠ACD=∠B+∠A,∴602040∠=∠-∠=︒-︒=︒,A ACD B故答案为:40.【点睛】本题考查了三角形外角的性质,熟知三角形的一个外角等于与它不相邻的两个内角的和是解本题的关键2、6.5【分析】由全等三角形的性质可得到AC=DF,从而推出AF=CD,再由10AD=,求出=++=,3CF AF AD CDAC AD CD=+=.==,则 6.5AF CD3.5【详解】解:∵△ABC≌△DEF,∴AC=DF,即AF+AD=CD+AD,∴AF=CD,∵10AD=,=++=,3CF AF AD CD∴7+=,AF CD∴ 3.5AF CD==,∴ 6.5=+=,AC AD CD故答案为:6.5.【点睛】本题主要考查了全等三角形的性质,线段的和差,解题的关键在于能够熟练掌握全等三角形的性质.3、2b【分析】由题意根据三角形三边关系得到a+b-c>0,b-a-c<0,再去绝对值,合并同类项即可求解.【详解】解:∵a,b,c是ABC的三条边长,∴a+b-c>0,a-b-c<0,∴|a+b-c|+|a-b-c|=a+b-c-a+b+c=2b.故答案为:2b.【点睛】本题考查的是三角形的三边关系以及去绝对值和整式加减运算,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.4、120【分析】根据三角形的外角性质,可得BCD A B∠=∠+∠,即可求解.【详解】解:∵BCD∠是ABC的外角,∴BCD A B∠=∠+∠,∵∠A=50°,∠B=70°,∴120∠=︒.BCD故答案为:120【点睛】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.5、三角形两边之和大于第三边【分析】表示出ABC和四边形BDEC的周长,再结合ADE中的三边关系比较即可.【详解】解:ABC的周长=AC AB BC AE AD CE CB BD++=++++四边形BDEC的周长=DE CE CB BD+++∵在ADE中AE AD DE+>∴AE AD CE CB BD+++++++>DE CE CB BD即ABC 的周长一定大于四边形BDEC 的周长,∴依据是:三角形两边之和大于第三边;故答案为三角形两边之和大于第三边【点睛】本题考查了三角形三边关系定理,关键是熟悉三角形两边之和大于第三边的知识点.三、解答题1、证明见解析【分析】由AC BD =,AD BC =,结合公共边,AB BA 从而可得结论.【详解】证明:在ABC 与BAD 中,ACBD ADBC AB BAABC BAD ≌∴【点睛】本题考查的是全等三角形的判定,掌握“利用边边边公理证明三角形全等”是解本题的关键.2、(1)DF DC =(2)见解析(3)2AF EF AD -=【分析】(1)利用边相等和角相等,直接证明EDF BDC ∆∆≌,即可得到结论.(2)利用边相等和角相等,直接证明EDF BDC ∆∆≌,得到DF DC =和EF BC AC ==,最后通过边与边之间的关系,即可证明结论成立.(3)要证明2AF EF AD -=,先利用边相等和角相等,直接证明EDF BDC ∆∆≌,得到DF DC =和EF BC AC ==,最后通过边与边之间的关系,即可证明结论成立.【详解】(1)解:DF DC =90ACD ∠=︒,EF AC ⊥,90ACB EFD ∴∠=∠=︒,在EDF ∆和BDC ∆中,ACB EFD FDE BDC ED BD ∠=∠⎧⎪∠=∠⎨⎪=⎩()EDF BDC AAS ∴∆∆≌,DF DC ∴=.(2)解:当点D 在线段AC 的延长线上时,如下图所示:90ACD ∠=︒,EF AC ⊥,90ACB EFD ∴∠=∠=︒,在EDF ∆和BDC ∆中,ACB EFD FDE BDC ED BD ∠=∠⎧⎪∠=∠⎨⎪=⎩()EDF BDC AAS ∴∆∆≌,DF DC ∴=,EF BC AC ==,=2AF EF AD DF AC AD CD AD ∴+=++=+.(3)解:2AF EF AD -=,如下图所示:90ACD ∠=︒,EF AC ⊥,90ACB EFD ∴∠=∠=︒,在EDF ∆和BDC ∆中,ACB EFD FDE BDC ED BD ∠=∠⎧⎪∠=∠⎨⎪=⎩()EDF BDC AAS ∴∆∆≌,DF DC ∴=,EF BC AC ==,()2AF EF AF AC AF DF AD AF DF AD AD ∴-=-=--=-+=.【点睛】本题主要是考查了三角形全等的判定和性质,熟练利用条件证明三角形全等,然后利用边相等以及边与边之间关系,即可证明结论成立,这是解决该题的关键.3、证明见解析【分析】由CE DF ∥证明,ACE BDF 再结合已知条件证明,AEC FBD ≌从而可得答案.【详解】证明:CE DF ∥,,ACE BDFEC =BD ,AC =FD ,,AEC FBD ≌AE FB ∴=【点睛】本题考查的是全等三角形的判定与性质,掌握“利用SAS 证明三角形全等 ”是解本题的关键.4、见解析【分析】先由BF =CE 说明BC= EF .然后运用SAS 证明△ABC ≌△DEF ,最后运用全等三角形的性质即可证明.【详解】证明:∵BF= CE ,∴BC= EF .在△ABC 和△DEF 中,,,,AB DE B E BC EF =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF (SAS ).∴AC =DF .【点睛】本题主要考查了全等三角形的判定与性质,正确证明△ABC ≌△DEF 是解答本题的关键. 5、11cm【分析】根据∠ABE 的余角相等求出∠EAB =∠CBF ,然后利用“角角边”证明△ABE 和△BCF 全等,根据全等三角形对应边相等可得AE =BF ,BE =CF ,于是得到结论.【详解】解:∵AE ⊥EF ,CF ⊥EF ,∴∠AEB =∠BFC =90°,∴∠EAB +∠ABE =90°,∵∠ABC =90°,∴∠ABE +∠CBF =90°,∴∠EAB =∠CBF ,在△ABE 和△BCF 中,90EAB CBF AEB BFC AB BC ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩, ∴△ABE ≌△BCF (AAS ),∴AE =BF =5cm ,BE =CF =6cm ,∴EF =5+6=11(cm ).【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第8题图
2
1
C
B
A
等腰三角形的练习题
一、填空题。
1、在△ABC 中,AB=AC ,若∠B=56º,则∠C=__________. 2、若等腰三角形的一个角是50°,则这个等腰三角形的底角为_____________. 3、等腰三角形的一个内角为100º,则它三个内角的度数为____ __ _ _ 4、等腰三角形一腰上的高与另一腰的夹角度数是30º,它的底角的度数是 。
5、等腰三角形中,如果底边长为6,一腰长为8,那么周长是 ;如果等腰三角形有一边长是6,另一边长是8,那么它的周长是 ;如果等腰三角形的两边长分别是4、8,那么它的周长是 . 6、如图,BO 平分∠CBA, CO 平分∠ABC, 且MN//BC,设AB=12,AC=18,则△AMN 的周长为 。
7、如图,在△ABC 中,BP 、CP 分别是∠ABC 和∠ACB 的平分线,且PD//AB ,PE//AC ,则△PED 的周长为 8、纸片△ABC 中,∠A =650,∠B =750,将纸片的一角折叠,使点C 落在△ABC 内(如图),若∠1=200,则∠2的度数为 。
9、如图,△ABC 中,A B=A C,FD ⊥BC,DE ⊥AB, ∠A=40°,则∠EDF 等于________度.
10、等腰△ABC 中,AB=AC ,∠A=20°.线段AB 的垂
直平分线交AB 于D ,交AC 于E ,连接BE ,则∠CBE 等于_______
二、选择题。
1、如图,已知OC 平分∠AOB ,CD ∥OB ,若 OD=3cm ,则CD 等于( )
A、3cm B 、4cm C 、1.5cm D 、2cm
2.下列图形中,不是轴对称图形的是( ). A 等边三角形 B 等腰直角三角形
C 线段
D 三角形的内角平分线 3、等腰三角形中,有一个角是50°,它的一条
腰上的高与底边的夹角是( ). A 、25° B 、40° C 、25°或40° D 、以上都不 4、下列图案中,有且只有三条对称轴的是( )
5.在平面镜里看到背后墙上,电子钟示数如图示,这时的时间应是( ) A.21:05 B.21:15 C.20:15 D.20:05.
6、△ABC 中,AB=AC ,中线BD 将这个三角形的
周长分为15和12两个部分,则这个等腰三角形的底边长为( )
A .7
B .11
C .7或11
D .7或10
7、如图,在下列三角形中,若AB =AC ,则能被一条直线分成两个小等腰三角形的是( )
(1) (2) (3) (4)
A.(1)(2)(3)
B. (1)(2)(4)
C.(2)(3)(4)
D. (1)(3)(4) 8、如图,在Rt △ABC 中,∠C=90°,∠B=30°.AB 的
垂直平分线DE 交AB 于点D ,交BC 于点E ,则下列结
论不正确的是( ) A 、AE=BE B 、AC=BE C 、CE=DE D 、∠CAE=∠B
1 2
3
A
B C M
N O D C
A
F
E D
C B A 9、是一块三角形的草坪,现要在草坪上建一凉亭供大家
休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )
A 、△ABC 的三条中线的交点
B 、△AB
C 三边的中垂线的交点 C 、△ABC 三条角平分线的交点
D 、△ABC 三条高所在直线的交点
10、如图,在△ABC 中,分别以点A 和点B 为圆心,大于的 AB 的长为半径画孤,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD .若△ADC 的周长为10,AB=7,则△ABC 的周长为( ) A 、7 B 、14 C 、17 D 、20
三、解答题。
1、如图,△ABC 中,AB=AC ,点D 在AC 边上,且BD=BC=AD ,求∠A 的度数。
2、如图,AB =AC ,BD =DC ,DE ⊥AB ,DF ⊥
AC ,垂足分别是E ,F .求证:DE =DF .
3、已知:如图∠EAC 是△ABC 的外角,AD 平分∠EAC ,且AD ∥BC.
求证:AB =AC
4、如图所示,已知在△ABC 中,AB=AC,BD ⊥AC 于D,CE ⊥AB 于E,BD 与CE 相交于M 点.求证:BM=CM
5、如图,点D 、E 在ABC ∆的边BC 上,AB AC =,AD AE =. 求证:BD CE =
A B C D E A B C D 12E M
6、已知如图,在△ABC 中,BC=8,AB 的中垂线交BC 于D ,AC 的中垂线交BC 与E , (1)求△ADE 的周长
(2)若∠BAC=100°,求∠DAE
7、如图,CE ⊥AB 于点E ,BD ⊥AC 于点D ,BD 、CE 交于点O ,且AO 平分∠BAC ,求证:OB=OC . 8、如图,△ABC 中,AB=AC ,∠BAC=120°,D 、F 分别为AB 、AC 的中点,DE ⊥AB ,GF ⊥AC ,E 、G 在BC 上,BC=15cm ,求EG 的长度.
9、如图,在直角△ABC 中,∠C=90°,∠CAB 的平分线AD 交BC 于D ,若DE 垂直平分AB ,求∠B 的度数.
10、AB=AC,CD 平分∠ACB 交AB 与D,DE 平行BC 交AC 于E ,∠ADE=80°,求∠EDC
11、已知AB=AC,AD=AE,求证△BC E ≌△CBD E D C B A
O
G
F E D C B A。