1.3简单的逻辑连接词
1.3简单的逻辑连接词,全称量词与存在量词
解析:命题 p:存在 x∈R,使 tan x=1 是真命题,命题 q:x -3x+2<0 的解集 是{x|1<x<2}也是真命题,∴ ①命题“p 且 q”是真命题;②命题“p 且(������ q)”是假 命题;③命题“(������ p)或 q”是真命题;④命题“(������ p)或(������ q)”是假命题,故应选 D.
1 2 2
5 2
2
解析:由 sin x= >1,可得命题 p 为假;由 x +x+1= ������ +
2
5
2
+ ≥ ,可得
4 4
3
3
命题 q 为真,则命题“p 且 q”是假命题;命题“p 且(������ q)”是假命题;命题“(������ p)且 q”是真命题;命题“(������ p)或(������ q)”是真命题.
1.命题 p:x2+y2<0;q:x2+y2≥0.下列命题为假命题的是( B ). A.p 或 q C.q B.p 且 q D.������ p
1.3简单的逻辑联结词1
真
(3)¬ p:空集不是集合A的子集. 假
命题p:若x是6的倍数,则x是2的倍数
非p:若x是6的倍数,则x不是2的倍数 否命题:若x是不6的倍数,则x不是2的倍数 命题的否定:只否定结论 否命题:同时否定条件和结论
例1 分别指出由下列各组命题构成的“p或q” “p且q” “非p”形式的复合命题的真假
例2、用逻辑联结词“且”改写下列命 题,并判断它们的真假: (1)1既是奇数,又是素数; (2)2和3都是素数.
(1)1是奇数且1是素数; 假命题
(2)2是素数且3是素数.
真命题
思 考
下列三个命题间有什么关系: (1)27是7的倍数; (2) 27是9的倍数; (3) 27是7的倍数或 27是9的倍数. 一般地,用连接词“或”把命题p和命题q连 接起来,就得到一个新命题,记作
C U A {x | x A 且 x U}
p
P
U
注: ( p ) p 命题“非p”的真假: 若p是真命题,则 p必是假命题; 若p是假命题,则 p 必是真命题.
p
p 真
假
假 真
p与¬ p必是 一真一假
逻辑联结词:或、且、非
简单命题:不含逻辑联结词的命题
(常用小写字母p,q,r,s,……表示)
判断复合命题真假的步骤: (1)写出构成复合命题的简单命题p与q (2)判断p 、q的真假
(3) 由p 、q的真假得出复合命题的真假
练习1:某足球队队员的全体构成集合A , 写出下列命题的否定:
(1)p: (2)p: (3)p: (4)p:
A中的队员至少有一个是重庆人; A中的队员都是重庆人; A中的队员都不是重庆人; A中的队员不都是重庆人.
简单的逻辑连接词
授课班级文117班授课时间45分钟课型新授课课题选修1-1 第一章 1.3 简单的逻辑连接词教学目标1.通过数学实例,了解简单的逻辑联结词“或”、“且”、“非”的含义;2.能正确地利用“或”、“且”、“非”表述相关的数学内容;3.知道命题的否定与否命题的区别.重点正确理解逻辑联结词“且”、“或”、“非”的含义,并能正确表述这“p∧q”、“p∨q”、“⌝p”这些新命题。
难点简洁、准确地表述新命题“p∧q”、“p∨q”“⌝p”并能判断其真假性教具教学方法1.3 简单的逻辑联接词命题:可以判断真假的陈述句叫命题。
且:或:非:几种常用词的否定:教学环节教学内容教师活动学生活动设计说明复习旧知一、复习回顾命题的概念:可以判断真假的语句叫命题正确的命题叫真命题,错误的命题叫假命题(1)12>5(2)3是15的约数(3)0.5是整数(4)3是15的约数吗?(5) x>8 都不是命题。
[师]:上课,同学们,前面我们学习了命题,现在请观察黑板,然后告诉我这五个语句是不是命题,如果是,请判断真假。
[生]回答教师提问(1)是真命题(2)是真命题(3)是假命题(4)不是命题(5)不是命题(6)复习之前学过的有关命题的知识,为学生学习新课打下基础引入新知歌德是18世纪德国的一位著名文艺大师,一天,他与一位文艺批评家“狭路相逢”。
这位批评家生性古怪,遇到歌德走来,不仅没有相让,反而卖弄聪明,一边高傲地往前走,一边大声说道:“我从来不给傻子让路!”面对如此尴尬局面,但见歌德笑容可掬,谦恭地闪在一旁,一边有礼貌地回答道:“呵呵,我可恰恰相反。
”结果故作聪明的批评家,反倒自讨个没趣。
[师]很好,看来同学们已经掌握了知识,那接下来我们来看一则小故事。
提问:批评家的话是什么意思:(1)我不给傻子让路(2)你歌德是傻子(3)我不给你让路。
歌德的反击:(1)我给傻子让路(2)你批评家是傻子(3)我给你让路[生]一起阅读小故事并回答下列小问题。
史上最全雅思写作逻辑连接词
史上最全雅思写作逻辑连接词雅思已写作7分。
送大家“史上最全逻辑连接词”!这是自己备考雅思过程中总结的,下面就和大家分享史上最全雅思写作逻辑连接词,希望能够帮助到大家,来欣赏一下吧。
史上最全雅思写作逻辑连接词因为雅思作文重在论述,论述重在逻辑,逻辑的表现就是逻辑连接词。
灵活而不重样地使用这些词汇,即代表着语法的游刃有余,也代表着逻辑的清晰明了。
ART 1逻辑连接词##1.1 让步###1. Despite+n/ving = in spite of 尽管. (不能加句子)Despite the fact that + 句子(太累赘)Despite myself, … 情不自禁地…Her words were so satirical(讽刺的)that I lost my temper in spite ofmyself。
2. Although(更书面)= though(更口语) =even if (即使,更偏假设性)=eventhough(虽然,更偏事实性)+句子注:不能与but连用。
Devoted though we are to prosperity and freedom, we cannot shakeoff the judgmental strand of justice.用倒装3. No matter how/what/who等= 疑问句+everNo matter who/Whoever you are, you must keep the law.注意:疑问句+ever 可以引导名词性从句Whoever(≠ no matter who)comes will be welcome.4. …, as long as…You can do what you want, as long as you like.5. 名词/表语/动词+ as(though)倒装,。
,表“纵使”Object as/though you may, I’ll go。
1.3简单的逻辑联结词(教学设计) (1)
1.3简单的逻辑联结词(1)(教学设计)1.3.1且 1.3.2或 1.3.3非教学目标1.知识与技能目标:(1)掌握逻辑联结词“且、或、非”的含义(2)正确应用逻辑联结词“且、或、非”解决问题(3)掌握真值表并会应用真值表解决问题2.过程与方法目标:在观察和思考中,在解题和证明题中,本节课要特别注重学生思维的严密性品质的培养.3.情感态度价值观目标:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.通过探究学习培养学生合作交流的良好习惯和品质,培养学生独立思考锲而不舍的钻研精神。
教学重点与难点重点:通过数学实例,了解逻辑联结词“且、或、非”的含义,使学生能正确地表述相关数学内容。
难点:1、正确理解命题“P∧q”,“P∨q”,“⌝p”真假的规定和判定.2、简洁、准确地表述命题“P∧q”“P∨q”“⌝p”. 教学过程:一、复习回顾:命题:若p,则q(1)若p⇒q,且q p.则P是q的充分不必要条件(2)若p q,且q⇒p.则p是q的必要不充分条件(3)若p⇒q,且q⇒p.则p是q的充要条件,q也是p的充要条件(4)若p q,且q p.则p是q的既不充分与不必要条件引调:只能“已知(条件)”是“结论”的什么条件。
二、创设情境、新课引入在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的数学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.在数学中,有时会使用一些联结词,如“且”“或”“非”。
在生活用语中,我们也使用这些联结词,但表达的含义和用法与数学中的含义和用法不尽相同。
下面介绍数学中使用联结词“且”“或”“非”联结命题时的含义和用法。
为叙述简便,今后常用小写字母p,q,r,s,…表示命题。
第一章1.3简单逻辑连接词
C )
【例2(P6)】 (2012·杭州学军中学模拟)已知 命题p:∃x∈R,使tan x=1,命题q:x2-3x +2<0的解集是{x|1<x<2},给出下列结论: ①命题“p∧q”是真命题; ②命题“p∧┐q”是假命题; ③命题“┐p∨q”是真命题; ④命题“┐p∨┐q”是假命题. 其中正确的是( D ) A.②③ B.①②④ C.①③④ D.①②③④
题型一
含有逻辑联结词的命题的真假
【例 1(P6) 】已知命题 p1:函数 y=2x-2-x 在 R 上为增函数,p2:函数 y=2x+2-x 在 R 上为减 函数,则在命题 q1:p1∨p2,q2:p1∧p2,q3: (¬ p1)∨p2 和 q4:p1∧(¬ p2)中,真命题是( A.q1,q3 C.q1,q4 B.q2,q3 D.q2,q4
m>1
(P6)变式训练 2(1)命题 p:a +b <0 (a,b∈R); 正确的是 ( ) B.“p∧q”为真 D.“┐ q”为真
2
2
命题 q:(a-2)2+|b-3|≥0 (a,b∈R),下列结论
A
A.“p∨q”为真 C.“┐ p”为假
变式训练 2(2)已知命题 p:抛物线 y=2x2 1 的准线方程为 y=- ;命题 q:若函数 f(x+ 2 1)为偶函数, 则 f(x)关于 x=1 对称. 则下列命 题是真命题的是 A.p∧q C.(┐p)∧(┐q) (
(P7)变式训练 3 (1) 已知 a>0,设命题 p:函 数 y=a 在 R 上单调递增;命题 q:不等式 ax “p∨q”为真,求 a 的取值范围.
x 2
-ax+1>0 对∀x∈R 恒成立. 若“p∧q”为假,
(0,1]∪[4,+∞)
1.3.2 简单的逻辑连接词:非(not)
1.3.2简单的逻辑连接词:非(not)学习目标 1.理解逻辑联结词“非”的含义,能写出简单命题的“¬p”命题.2.了解逻辑联结词“或”“且”“非”的初步应用.3.理解命题的否定与否命题的区别.知识点一命题的否定思考1观察下列两个命题:①p:5是25的算术平方根;q:5不是25的算术平方根;②p:y=cos x是偶函数;q:y=cos x不是偶函数,它们之间有什么关系?逻辑联结词中“非”的含义是什么?答案命题q是对命题p的否定,非表示“否定”“不是”“问题的反面”等.思考2你能判断思考1中问题所描述的两个命题的真假吗?p的真假与¬p的真假有关系吗?答案①p为真命题,q为假命题;②p为真命题,q为假命题.若p为真命题,则¬p为假命题.(1)对一个命题p全盘否定,就得到一个新命题,记作¬p,读作“非p”或“p的否定”.“¬p”形式命题:若p是真命题,则¬p必是假命题;若p是假命题,则¬p必是真命题. (2)逻辑联结词中“非”与生活中的“非”含义一致,表示“否定”“问题的反面”等,若把p看作集合A,则¬p就是集合A的补集.知识点二命题的否定与否命题的区别思考已知命题p:平行四边形的对角线相等,分别写出命题p的否命题和命题p的否定. 答案命题p的否命题:如果一个四边形不是平行四边形,那么它的对角线不相等;命题p 的否定:平行四边形的对角线不相等.(1)命题的否定只否定结论,否命题既否定结论也否定条件,这是区分两者的关键,解答此类问题,首先要找出命题的条件与结论,再作出准确的否定.(2)注意常见词语的否定形式:类型一命题的否定例1写出下列命题的否定,并判断其真假.(1)p:y=sin x是周期函数;(2)p:实数的绝对值都大于0;(3)p:菱形的对角线垂直平分;(4)p: 若xy=0,则x=0或y=0.解(1)¬p:y=sin x不是周期函数,假命题.(2)¬p:实数的绝对值不都大于零,真命题.(3)¬p:菱形的对角线不垂直或不平分,假命题.(4)¬p:若xy=0,则x≠0且y≠0. 假命题.反思与感悟¬p是对命题p的全盘否定,其命题的真假与原命题相反.对一些词语的正确否定是写¬p的关键,如“都”的否定是“不都”,“至多两个”的反面是“至少三个”、“p∧q”的否定是“(¬p)∨(¬q)”等.跟踪训练1写出下列命题的否定形式,并判断真假.(1)面积相等的三角形都是全等三角形;(2)若m2+n2=0,则实数m、n全为零;(3)实数a、b、c,满足abc=0,则a、b、c中至少有一个为0.解(1)面积相等的三角形不都是全等三角形.真命题.(2)若m2+n2=0,则实数m、n不全为零.假命题.(3)实数a、b、c,满足abc=0,则a、b、c中至多有两个为0.假命题.类型二命题的否定与否命题例2写出下列各命题的否定及其否命题,并判断它们的真假.(1)若x、y都是奇数,则x+y是偶数;(2)若x2-3x-10=0,则x=-2或x=5.解(1)命题的否定:若x、y都是奇数,则x+y不是偶数,为假命题;命题的否命题:若x,y不都是奇数,则x+y不是偶数,为假命题.(2)命题的否定:若x2-3x-10=0,则x≠-2且x≠5,为假命题;命题的否命题:若x 2-3x -10≠0,则x ≠-2且x ≠5,为真命题.反思与感悟 命题的否定是对命题的全盘否定,否定的是命题的结论,其真假性和原命题相反;而否命题对条件、结论均进行否定,其真假性和原命题的真假性没有关系. 跟踪训练2 写出下列各命题的非(否定). (1)p :“a ≥5,且b ≥3”; (2)q :三条直线两两相交; (3)r :一元二次方程至多有两个解; (4)s :2<x ≤3.解 (1)非p :a <5,或b <3. (2)非q :三条直线不都两两相交. (3)非r :一元二次方程至少有三个解. (4)非s :x ≤2或x >3.类型三 p ∧q ,p ∨q 与¬p 的应用例3 已知a >0,设命题p :函数y =a x 在R 上单调递增;命题q :不等式x 2-ax +1>0对x ∈R 恒成立,若p ∨q 为真命题,(¬p )∨(¬q )也为真命题,求实数a 的取值范围.解 ∵y =a x 在R 上为增函数, ∴命题p :a >1.∵不等式x 2-ax +1>0在R 上恒成立, ∴应满足Δ=a 2-4<0,即0<a <2, ∴命题q :0<a <2.由p ∨q 为真命题,则p 、q 中至少有一个为真. 由(¬p )∨(¬q )也为真,则¬p 、¬q 中至少有一个为真, 可得p 、q 至少有一个为假, ∴p 、q 中有一真、一假.①当p 真,q 假时,⎩⎪⎨⎪⎧a >1,a ≥2,∴a ≥2;②当p 假,q 真时,⎩⎪⎨⎪⎧0<a ≤1,0<a <2,∴0<a ≤1.综上知,a 的取值范围为{a |a ≥2或0<a ≤1}.反思与感悟 由真值表可判断p ∨q 、p ∧q 、¬p 命题的真假,反之,由p ∨q ,p ∧q ,¬p 命题的真假也可判断p 、q 的真假情况.一般求满足p 假成立的参数范围,应先求p 真成立的参数的范围,再求其补集.跟踪训练3 已知p :方程x 2+mx +1=0有两个不等的负实根;q :方程4x 2+4(m -2)x +1=0无实根.若p 或q 为真,p 且q 为假,求m 的取值范围.解 p :⎩⎪⎨⎪⎧Δ=m 2-4>0,m >0,解得m >2.q :Δ=16(m -2)2-16=16(m 2-4m +3)<0, 解得1<m <3.∵p 或q 为真,p 且q 为假,∴p 为真,q 为假,或p 为假,q 为真,即⎩⎪⎨⎪⎧ m >2,m ≤1或m ≥3或⎩⎪⎨⎪⎧m ≤2,1<m <3, ∴m 的取值范围为{m |m ≥3或1<m ≤2}.1.若p 是真命题,q 是假命题,则( ) A.p 且q 是真命题 B.p 或q 是假命题 C.非p 是真命题 D.非q 是真命题答案 D解析 “p 且q ”一假即假,A 错;“p 或q ”一真即真,B 错;“非p ”与“p ”,“非q ”与“q ”真假相反,故C 错,D 对.2.已知命题“p 或q ”为真,“非p ”为假,则必有( ) A.p 真q 假 B.q 真p 假 C.q 真p 真 D.p 真,q 可真可假 答案 D解析 ∵非p 为假,∴p 为真.∵p 或q 为真,∴q 可真可假.3.p :100既能被4整除,又能被5整除,¬p 为________________________. 答案 100不能被4整除,或不能被5整除4.已知命题p :若实数x ,y 满足x 2+y 2=0,则x ,y 全为零;命题q :若a >b ,则1a <1b .给出下列四个复合命题:①p 且q ;②p 或q ;③非p ;④非q . 其中真命题是________(只填序号). 答案 ②④解析 由于命题p 是真命题;命题q 是假命题,由真值表可知:p 且q 为假;p 或q 为真;非p 为假;非q 为真,所以真命题是②④.5.分别判断由下列命题构成的“p 且q ” “p 或q ”“非p ”形式的命题的真假.(1)p:函数y=x2和函数y=2x的图象有两个交点;q:函数y=2x是增函数.(2)p:∅{0},q:0∈∅.解(1)∵命题p是真命题,命题q是真命题,∴p且q为真命题,p或q为真命题,非p为假命题.(2)∵p是真命题,q是假命题,∴p且q为假命题,p或q为真命题,非p为假命题.1.若命题p为真,则“¬p”为假;若p为假,则“¬p”为真,类比集合知识,“¬p”就相当于集合P在全集U中的补集∁U P.因此(¬p)∧p为假,(¬p)∨p为真.2.命题的否定只否定结论,否命题既否定结论又否定条件,要注意区别.一、选择题1.如果命题“p或q”与命题“非p”都是真命题,那么()A.命题p不一定是假命题B.命题q一定是真命题C.命题q不一定是真命题D.命题p与命题q的真值相同答案 B解析“非p”为真命题,则命题p为假,又p或q为真,则q为真,故选B.2.命题“三角形的中位线平行于第三边且等于第三边的一半”是()A.“p∨q”形式的命题B.“p∧q”形式的命题C.“¬p”形式的命题D.以上都不对答案 B3.已知命题p:x∈A∪B,则p的否定是()A.x∉A且x∉BB.x∉A或x∉BC.x∉A∩BD.x∈A∩B答案 A解析x∈A∪B即x∈A或x∈B,∴¬p:x∉A且x∉B.4.如果命题“¬(p∨q)”为假命题,则()A.p、q均为真命题B.p、q均为假命题C.p、q至少有一个为真命题D.p、q中至多有一个为假命题答案 C解析“¬(p∨q)”为假命题,则“p∨q”为真命题,即p、q中至少有一个为真命题.5.已知命题p:2是偶数,命题q:2是3的约数,则下列命题为真命题的是()A.p∧qB.p∨qC.¬pD.(¬p)∧(¬q)答案 B解析∵p为真,q为假,¬q为真.∴p∧q为假,p∨q为真,¬p为假,(¬p)∧(¬q)为假,故选B.6.已知条件p:a≤1,条件q:|a|≤1,则¬p是¬q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析由|a|≤1得-1≤a≤1,∴¬p:a>1,¬q:a<-1或a>1,∴¬p⇒¬q,但¬q⇒/ ¬p,故选A.7.已知命题p:若x2-3x+2=0,则x=1;命题q:互斥事件一定是对立事件,则下列命题为真命题的是()A.p∧qB.p∧(¬q)C.p∨qD.(¬p)∨q答案 D解析由x2-3x+2=0,得x=1或x=2,故p为假命题,又q为假命题,∴p∨q、p∧q都是假命题,又¬p为真命题,∴(¬p)∨q为真命题,故选D.二、填空题8.已知m 、n 是不同的直线,α、β是不重合的平面. 命题p :若α∥β,m ⊂α,n ⊂β,则m ∥n ; 命题q :若m ⊥α,n ⊥β,m ∥n ,则α∥β;下面的命题中:①p ∨q ;②p ∧q ;③p ∨(¬q );④(¬p )∧q .真命题的序号是________(写出所有真命题的序号). 答案 ①④解析 易知p 是假命题,q 是真命题. ∴¬p 为真,¬q 为假,∴p ∨q 为真,p ∧q 为假,p ∨(¬q )为假,(¬p )∧q 为真.9.已知p :x 2-x ≥6,q :x ∈Z .若“p ∧q ”,“¬q ”都是假命题,则x 的值组成的集合为________________. 答案 {-1,0,1,2}解析 因为“p ∧q ”为假,“¬q ”为假,所以q 为真,p 为假.故⎩⎪⎨⎪⎧ x 2-x <6,x ∈Z ,即⎩⎪⎨⎪⎧-2<x <3,x ∈Z ,因此x 的值可以是-1,0,1,2.10.已知命题p :x 2+2x -3>0,命题q :13-x>1,若“¬q 且p ”为真,则x 的取值范围是______________________.答案 (-∞,-3)∪(1,2]∪[3,+∞) 解析 由x 2+2x -3>0,得x <-3或x >1, ∴p :x <-3或x >1. 由13-x >1,得x -2x -3<0, ∴2<x <3.∴q :2<x <3,¬q :x ≤2或x ≥3.若“¬q 且p ”为真,则有⎩⎪⎨⎪⎧x <-3或x >1,x ≤2或x ≥3,∴x <-3或1<x ≤2或x ≥3. 三、解答题11.分别指出由下列各组命题构成的新命题“p ∨q ”“p ∧q ”“¬p ”的真假. (1)p :梯形有一组对边平行, q :梯形有一组对边相等;(2)p :不等式x 2-2x +1>0的解集为R , q :不等式x 2-3x -4<0的解集为∅.解 (1)p 真、q 假,所以“p ∨q ”为真,“p ∧q ”为假,“¬p ”为假.(2)不等式x 2-2x +1>0的解集为{x |x ≠1},∴p 假; 不等式x 2-3x -4<0的解集为{x |-1<x <4},∴q 假. 故“p ∨q ”为假,“p ∧q ”为假,“¬p ”为真.12.设命题p :实数x 满足(x -a )(x -3a )<0,其中a >0,命题q :实数x 满足x -3x -2≤0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围; (2)若¬p 是¬q 的充分不必要条件,求实数a 的取值范围. 解 (1)∵a =1,∴不等式化为(x -1)(x -3)<0, ∴1<x <3;由x -3x -2≤0得,2<x ≤3. ∵p ∧q 为真,∴2<x <3.(2)∵¬p 是¬q 的充分不必要条件, ∴q 是p 的充分不必要条件, 又q :2<x ≤3,p :a <x <3a ,∴⎩⎪⎨⎪⎧a ≤2,3a >3,∴1<a ≤2. 13.已知命题p :方程x 2+2ax +1=0有两个大于-1的实数根,命题q :关于x 的不等式ax 2-ax +1>0的解集为R ,若“p ∨q ”与“¬q ”同时为真命题,求实数a 的取值范围. 解 命题p :方程x 2+2ax +1=0有两个大于-1的实数根,等价于 ⎩⎪⎨⎪⎧Δ=4a 2-4≥0x 1+x 2>-2(x 1+1)(x 2+1)>0⇔⎩⎪⎨⎪⎧a 2-1≥0,-2a >-22-2a >0,,解得a ≤-1.命题q :关于x 的不等式ax 2-ax +1>0的解集为R ,等价于a =0或⎩⎪⎨⎪⎧a >0,Δ<0.由于⎩⎨⎧a >0Δ<0⇔⎩⎪⎨⎪⎧a >0,a 2-4a <0,解得0<a <4,∴0≤a <4.因为“p ∨q ”与“¬q ”同时为真命题,即p 真且q 假,所以⎩⎪⎨⎪⎧a ≤-1,a <0或a ≥4,解得a ≤-1.故实数a 的取值范围是(-∞,-1].。
1.3简单逻辑联结词一
1:命题p:函数
3 y x 命题q:函数 在定义域内是增函数;
yx
3
是奇函数;
3
真
真 真 假 真 假 假 假
命题p∧q:函数 y x 是奇函数且在定义 域内是增函数. 2:命题p: 三角形三条中线相等;
命题q:三角形三条中线交于一点; 命题p∧q:三角形三条中线相等且
交于一点. 3:命题p: 相似三角形的面积相等; 命题q: 相似三角形的周长相等; 命题p∧q:相似三角形的面积相等且周长相等.
假
真
命题q:三角对应相等的两个三角形相似;
命题p∨q:三边对应成比例或三角对应相等的两个三 角形相似
真 真
真值表 p q p或q
真 真 假 假
真 假 真 假
真 真 真 假
一 真 必 真
同假为假 其余为真
我们可以从并联电路理解联结词“或”的含 义.若开关p,q的闭合与断开分别对应命题p,q 的真与假,则整个电路的接通与断开分别对 应命题p∨q的真与假.
m 3或1 m 2
小结
例5
设p: m>2 , q:1<m<3. 若p或q为真,
p且q为假,求m的取值范围.
解: p或q为真,p且q为假,
m 2 m 2 或 或m 3 1 m 3 m 1,
p,q一真一假,p真q假或者p假q真
m的取值范围为 m m 3或1 m 2
(3)12能被3整除且能被4整除.
命题(3)是由简单命题(1)(2) 使用联结词“且”联结得到的新复合命
了解概念
简单命题:不含逻辑联结词的命题叫做 简单命题 复合命题:简单命题再加上一些逻辑 联结词构成,用逻辑联结词“且”把 命题p和命题q联结起来就得到一个新命 题. 记作:p∧q 读作:“p且q”
1.3.1逻辑联结词“且”或“‘非’
分析:
因为p 和 q都是假命题, 所以p ∨ q一定是假命题, 而 A 的表述明显是真命题, 因此正确答案是 B .
课堂小结
“或”的概念 : 逻辑联结词 “或” : p ∨ q 读作:p或 q
“或”的判断方法 :
当p,q 两个命题中有一个 命题是真命题时 p ∨ q 是真命题;
•当p,q 两个命题中都是 命题是假命题时, p ∨ q是假命题.
1.分别用“p或q”、“p且q”、“非p”填空: 命题“非空集A∪B中的元素是A中的 元素或B中的元素” 是__p_或__q___的形式.
2. p:菱形的对角线互相垂直, q:菱形的对角线互相平分 p或q形式的复合命题是
菱__形__的__对__角__线__互__相__垂__直__或__互__相__平__分__.
例1
判断下列命题的真假: (1) 2≤2; (2) 集合A是 A∩B的子集或A∪B
的子集; (3) 周长相等的两个三角形全等或
面积相等的两个三角形全等.
(1) 2≤2;
解:
(1)命题“2≤2”是由命题:
p:2=2;q:2 < 2
用“或”联结后构成的新命题,即 p∨q. 因为p是真命题,所以p ∨ q 是真
这句话中p为真,q为真, 就说明这句话是对的.
下列三个命题间有什么关系?
(1) 12能被3整除; (2) 12能被4整除; (3) 12能被3整除且能被4整除.
可以看出… 命题(3)是由 命题(1)和(2)用 联结词“且”连接起来的.
一般地,用逻辑联结词 “且” 把命题 p 和命题 q 联结起来.就得到 一个新命题,记作:
命题,所以原命题为真命题.
(2) 集合A是 A∩B的子集或A∪B的子
逻辑连接词
1.3简单的逻辑联结词1. 了解“或”“且”“非”逻辑联结词的含义;2. 掌握,,∧∨⌝的真假性的判断;p q p q p3. 正确理解p⌝与p的否命题;⌝的意义,区别p4. 掌握,,p q p q p∧∨⌝的真假性的判断,关键在于p与q的真假的判断.1416复习1:什么是充要条件?复习2:已知{|=满足条件}qB x x=满足条件}p,{|A x x(1)如果A B⊆,那么p是q的什么条件;(2) 如果B A⊆,那么p是q的什么条件;(3) 如果A B=,那么p是q的什么条件.二、新课导学※学习探究探究任务一:“且“的意义问题:下列三个命题有什么关系?(1)12能被3整除;(2)12能被4整除;(3)12能被3整除且能被4整除.新知:1.一般地,用逻辑联结词“且”把命题p和命题q联结起来就得到一个新命题,记作“”,读作“”.试试:判断下列命题的真假:(1)12是48且是36的约数;(2)矩形的对角线互相垂直且平分.反思:p q∧的真假性的判断,关键在于p与q的真假的判断.探究任务二:“或“的意义问题:下列三个命题有什么关系?(1) 27是7的倍数;(2)27是9的倍数;(3)27是7的倍数或是9的倍数.新知:1.一般地,用逻辑联结词“或”把命题p和命题q联结起来就得到一个新命题,记作“”,读作“”.(1)47是7的倍数或49是7的倍数;(2)等腰梯形的对角线互相平分或互相垂直.反思:p q∨的真假性的判断,关键在于p与q的真假的判断.探究任务三:“非“的意义问题:下列两个命题有什么关系?(1) 35能被5整除;(2)35不能被5整除;新知:1.一般地,对一个命题的全盘否定就得到一个新命题,记作“”,读作“”或“”.试试:写出下列命题的否定并判断他们的真假:(1)2+2=5;(2)3是方程290x-=的根;(31-反思:p⌝的真假性的判断,关键在于p的真假的判断.※典型例题例1 将下列命题用“且”联结成新命题并判断他们的真假:(1)p:平行四边形的对角线互相平分,q:平行四边形的对角线相等;(2)p:菱形的对角线互相垂直,q:菱形的对角线互相平分;(3)p:35是15的倍数,q:35是7的倍数变式:用逻辑联结词“且”改写下列命题,并判断他们的真假:(1)1既是奇数,又是素数;(2)2和3都是素数.小结:p q ∧的真假性的判断,关键在于p 与q 的真假的判断.例2 判断下列命题的真假(1) 22≤;(2) 集合A 是A B 的子集或是A B 的子集;(3) 周长相等的两个三角形全等或面积相等的两个三角形全等.变式:如果p q ∧为真命题,那么p q ∨一定是真命题吗?反之,p q ∨为真命题,那么p q∧一定是真命题吗?小结:p q ∨的真假性的判断,关键在于p 与q 的真假的判断.例3 写出下列命题的否定,并判断他们的真假:(1)p :sin y x =是周期函数;(2)p :32<(3)空集是集合A 的子集.小结:p ⌝的真假性的判断,关键在于p 的真假的判断.三、总结提升※ 学习小结这节课你学到了一些什么?你想进一步探究的问题是什么?※ 知识拓展阅读教材第18页,理解逻辑联结词“且”“或”“非”与集合运算“交”“并”“补”的关※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. “p 或q 为真命题”是“p 且q 为真命题”的( ).A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.命题P :在A B C ∆中,C B ∠>∠是sin sin C B >的充要条件;命题q :a b >是22ac bc >的充分不必要条件,则( ).A.p 真q 假B.p 假q 假C.“p 或q ”为假D.“p 且q ”为真3.命题:(1)平行四边形对角线相等;(2)三角形两边的和大于或等于第三边;(3)三角形中最小角不大于60︒;(4)对角线相等的菱形为正方形.其中真命题有( ).A.1B.2C.3D.44.命题p:0不是自然数,命题q:π是无理数,在命题“p或q”“p且q”“非p”“非q”中假命题是,真命题是.5. 已知p:2-≥,q:,,||6x x∈∧⌝都是假命题,则x的值组成的集合为x Z p q q1. 写出下列命题,并判断他们的真假:(1)p q∨,这里p:4{2,3}∈;∈,q:2{2,3}(2)p q∧,这里p:4{2,3}∈;∈,q:2{2,3}(3) p q∨,这里p:2是偶数,q:3不是素数;(4) p q∧,这里p:2是偶数,q:3不是素数.2.判断下列命题的真假:(1)52>(2)78≥>且73(3)34<>或34。
简单的逻辑联结词
简单的逻辑联结词高二数学学案一、学习目标:1.3简单的逻辑联结词p真真假假q真假真假非p假假真真p或q真真真假p且q真假假假使用时间:2021年11月23日编印者:段会茹审定者:赵国宾1、了解逻辑联结词“或”、“且”、“非”的含义;2、正确应用“或”、“且”解决问题。
3、掌握真值表并会用真值表解决问题。
二、自主学习:基本梳理1。
和(1)定义:一般地,用联结词“”把命题p和命题q联结起来,就得到一个新命题,记作p∧q.读作“.(2)当命题P和Q都是真命题时,P∧Q是真命题;当两个命题P和Q中只有一个为假时,P∧Q为假2.或(or).(1)定义:一般来说,一个新命题是通过连接命题p和命题q与连词“”而获得的,并记录为p∨ 问:它被解读为“(2)当p,q两个命题中,只要有一个命题为真命题时,p∨q就为;当p,q两个命题都为假命题时,p∨q就为.3.不是(1)定义:一般地,对一个命题p,就得到一个新命题,记作p.读作“”或“”.(2)如果P是真命题,那么P必须是;如果P是一个假命题,那么P是。
4.复合命题真值表复合命题的真假可通过真值表加以判断:注:判断复合命题真实性的基本步骤是:(1)确定复合命题的构成形式(先找出逻辑连接词,再确定连接的简单命题);(2)判断每个简单命题的真实性;(3)结合真值表推断复合命题的真假5.复合命题的否定.(1)命题的否定:“?P”是命题“P”的否定,与命题“P”的真或假相反。
(2)命题否定(P∧ q):命题的否定(P∧ q)是吗∨ (3)命题的否定(P∨ q):命题的否定(P∨ q)是吗∧? 6.常用词及其否定原词等于大于(>)不大于(≤)小于(<)是不是都是不都是不等于不小于(≥)至多有一个至少有两个有个至少有一至多有n个一个也没至少有n+1个任意的任意两个所有的能不能某个某两个某些第3节简易逻辑连结词及全称存在量词1例1。
将下列命题与“and”连成一个新命题,判断其正确与否。
简单的逻辑连接词
课 堂
(3)p:函数 y=x2-2x+2 没有零点,q:不等式 x2
教 师
互
备
动 探
-2x+1>0 恒成立.
课 资
究
源
菜单
新课标·数学 选修 2-1
教 学
【思路探究】
易 错
教
易
法 分 析
教
分别写成“p∧q”,
“p∨q”、“綈p”的形式
―→
判断p、q 的真假
―→
误 辨 析
当
学
堂
方
双
案 设
得出“p∧q”、“p∨q”、
基 达
计
标
课
“綈p”的真假
前 自 主 导 学
课
时
【自主解答】 (1)p∨q:6 是自然数或是偶数,真
作 业
命题.
课
教
堂 互
p∧q:6 是自然数且是偶数,真命题.
师 备
动
课
探
究
綈 p:6 不是自然数,假命题.
课
前 自 主 导 学
真假的规定和判定. (2)简洁、准确地表述命题“p∧q”“p∨q”“綈
课 时 作 业
课
教
堂
互
p”.
师 备
动
课
探
资
究
源
菜单
新课标·数学 选修 2-1
教
易
学
错
教
易
法 分
为了突出重点,突破难点,在教学上宜采取了以下
误 辨
析
析
教
的措施:
当
学
堂
方 案
(1)从学生已有的知识出发,精心设置一组例子,
教
易
学
逻辑连接词 或、且
1.3简单的逻辑联结词1.3.1且1.3.2或(一)教学目标1.知识与技能目标:(1)掌握逻辑联结词“或、且”的含义(2)正确应用逻辑联结词“或、且”解决问题(3)掌握真值表并会应用真值表解决问题2.过程与方法目标:在观察和思考中,在解题和证明题中,本节课要特别注重学生思维的严密性品质的培养.3.情感态度价值观目标:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.(二)教学重点与难点重点:通过数学实例,了解逻辑联结词“或、且”的含义,使学生能正确地表述相关数学内容。
难点:1、正确理解命题“P∧q”“P∨q”真假的规定和判定.2、简洁、准确地表述命题“P∧q”“P∨q”.教具准备:与教材内容相关的资料。
教学设想:在观察和思考中,在解题和证明题中,本节课要特别注重学生思维的严密性品质的培养.(三)教学过程学生探究过程:1、引入在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的数学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.在数学中,有时会使用一些联结词,如“且”“或”“非”。
在生活用语中,我们也使用这些联结词,但表达的含义和用法与数学中的含义和用法不尽相同。
下面介绍数学中使用联结词“且”“或”“非”联结命题时的含义和用法。
为叙述简便,今后常用小写字母p,q,r,s,…表示命题。
(注意与上节学习命题的条件p 与结论q的区别)2、思考、分析问题1:下列各组命题中,三个命题间有什么关系?(1)①12能被3整除;②12能被4整除;③12能被3整除且能被4整除。
(2)①27是7的倍数;②27是9的倍数;③27是7的倍数或是9的倍数。
学生很容易看到,在第(1)组命题中,命题③是由命题①②使用联结词“且”联结得到的新命题,在第(2)组命题中,命题③是由命题①②使用联结词“或”联结得到的新命题,。
英语逻辑连接词归纳总结
英语逻辑连接词归纳总结英语中的逻辑连接词在写作中起着至关重要的作用,它们能够帮助我们将句子、段落和文章组织得更为连贯,并能够清晰地展示出各个句子之间的逻辑关系。
本文将对英语逻辑连接词进行归纳总结,以帮助读者更好地应用它们于自己的写作当中。
1. 因果关系连接词(Causal Connectors)因果关系连接词用于表达前因后果、原因和结果的关系。
常见的因果关系连接词有:1.1 Therefore(因此): 表示推理和结论的结果。
e.g. He missed the train, therefore he was late for work.1.2 Consequently(因此): 表示某个事件的结果或影响。
e.g. The team didn't prepare well, consequently, they lost the game.1.3 As a result(结果是): 表示某事件导致的后果。
e.g. The company faced financial difficulties, as a result, many employees were laid off.2. 转折关系连接词(Contrast Connectors)转折关系连接词用于表达对比或相反的观点。
常见的转折关系连接词有:2.1 However(然而): 表示对比或转折的观点。
e.g. She studied hard, however, she didn't pass the exam.2.2 On the other hand(另一方面): 表示与前面提到的观点相对立的观点。
e.g. He is a talented writer. On the other hand, he lacks discipline.2.3 In contrast(相反): 用于表达两种或多种观点的对比。
e.g. She prefers coffee, in contrast, I prefer tea.3. 顺承关系连接词(Continuation Connectors)顺承关系连接词用于表达并列、补充或进一步说明的观点。
新人教A版:1.3简单的逻辑连接词且或非
授课主题简单的逻辑连接词且、或、非教学目标1.理解“且”、“或”、“非”的含义.2.会用“且”、“或”联结两个命题并判断命题的真假.3.能够判断含有逻辑联结词的命题的真假.4.掌握逻辑连接词“且”、“或”、“非”的简单应用.教学内容1.“且”“或”的概念(1)且①定义:一般地,用逻辑联结词“且”把命题p和q联结起来,就得到一个新命题,记作p q∧,读作“p且q”.逻辑联结词“且”与日常语言中的“并且”、“及”、“和”相当.可以用“且”定义集合的交集:{|()()}A B x x A x B=∈∧∈.②判断命题p q∧的真假当p q、都为真命题,p q∧就为真命题;当p q、两个命题中只要有一个命题为假命题,p q∧就为假命题.(2)或:①定义:一般地,用逻辑联结词“或”把命题p或q联结起来,就得到一个新命题,记作p q∨,读作“p或q”.逻辑联结词“或”的意义和日常语言中的“或者”相当.可以用“或”定义集合的并集:{|()()}A B x x A x B=∈∨∈.②判断命题p q∨的真假当p q、两个命题中,只要有一个命题为真命题时,p q∨为真命题;当p q、两个命题都为假命题,p q∨为假命题2.非:①定义:一般地,对命题p加以否定,得到一个新的命题,记作p⌝,读作“非p”或“p的否定”.逻辑联结词“非”(也称为“否定”)的意义是由日常语言中的“不是”“全盘否定”“问题的反面”等抽象而来.有()p p⌝⌝=成立.可以用“非”来定义集合A在全集U中的补集:{|()}{|}UA x U x A x U x A=∈⌝∈=∈∉.②判断p⌝命题的真假,p⌝和p不能同真同假,其中一个为真,另一个必定为假.3.复合命题不含逻辑联结词的命题称为简单命题,含有逻辑联结词的命题称为复合命题.复合问题的真值表:复合命题的真假,主要利用真值表来判断,步骤为:(1)确定复合命题的构成形式;(2)判断其中各简单命题的真假;(3)利用真值表判断复合命题的真假.题型一用“且”、“或”联结成新命题例1将下列命题用“且”、“或”联结成新命题.(1)p:三角形的三条中线相等;q:三角形的三条中线交于一点.(2)p:35是5的倍数;q:35是7的倍数.(3)p:方程2x2-26x+3=0的两根都是实数;q:方程2x2-26x+3=0的两根不等.解析:(1)p∧q:三角形的三条中线相等且交于一点;p∨q:三角形的三条中线相等或交于一点.(2)p∧q:35是5的倍数且是7的倍数;p∨q:35是5的倍数或是7的倍数.(3)p∧q:方程2x2-26x+3=0的两根都是实数且不相等;p∨q:方程2x2-26x+3=0的两根都是实数或不相等.巩固分别写出由下列命题构成的“p∨q”、“p∧q”形式的命题.(1)p:π是无理数;q:e不是无理数.(2)p:方程x2+2x+1=0有两个相等的实数根;q:方程x2+2x+1=0两根的绝对值相等.(3)p:三角形的外角等于与它不相邻的两个内角的和;q:三角形的外角大于与它不相邻的任何一个内角解析:(1)“p∨q”:π是无理数或e不是无理数;“p∧q”:π是无理数且e不是无理数.(2)“p∨q”:方程x2+2x+1=0有两个相等的实数根或两根的绝对值相等;“p∧q”:方程x2+2x+1=0有两个相p q p q∧p q∨p⌝真真真真假真假假真假假真假真真假假假假真等的实数根且两根的绝对值相等.(3)“p∨q”:三角形的外角等于与它不相邻的两个内角的和或大于与它不相邻的任何一个内角;“p∧q”:三角形的外角等于与它不相邻的两个内角的和且大于与它不相邻的任何一个内角题型二用“且”、“或”改写命题例2用“且”、“或”改写下列命题.(1)1不是质数也不是合数;(2)2既是偶数又是质数;(3)5和7都是质数;(4)x=±3是方程|x|=3的解.解析:(1)p:1不是质数,q:1不是合数,p∧q:1不是质数且1不是合数.(2)p:2是偶数,q:2是质数,p∧q:2 是偶数且2是质数.(3)p:5是质数,q:7是质数,p∧q:5是质数且7是质数.(4)p:x=3是方程|x|=3的解,q:x=-3是方程|x|=3的解,p∨q:x=3或x=-3是方程|x|=3的解.点评:(1)当一个复合命题不是用“且”或“或”连接时,可以将其改为用“且”或“或”连接的复合命题,改写时要注意不能改变原命题的意思,这就要仔细考虑到底是用“且”还是用“或”.(2)在用“且”、“或”联结两个命题p、q时,在不引起歧义的情况下,可将p、q中的条件或结论合并,使叙述更通顺.巩固用“且”、“或”改写下列命题:(1)等腰三角形的顶角平分线平分底边,也垂直底边;(2)45既能被5整除又能被9整除;(3) x2-2=0的根是±2;(4)3≥3.解析:(1)等腰三角形的顶角平分线平分底边且垂直底边;(2)45能被5整除且能被9整除;(3)x2-2=0的根是2或-2;(4)3大于3或等于3.题型三p∨q、p∧q真假的判断例3指出下列各题中的“p或q”、“p且q”形式的复合命题的真假.(1)p:梯形有一组对边平行,q:梯形有一组对边相等;(2)p:5是17的约数,q:5是15的约数.解析:(1)p是真命题,q是假命题,∴p或q是真命题,p且q是假命题.(2)p是假命题,q是真命题,∴p或q是真命题,p且q是假命题.点评:有些命题表面上不含逻辑联结词,可以通过改写化为“p∨q”或“p∧q”形式的命题,然后通过p、q的真假判断命题的真假.或命题“p∨q”的真假特点是“一真即真,要假全假”,且命题“p∧q”的真假特点是“一假即假,要真全真”.巩固指出下列“p∨q”,“p∧q”命题的真假.(1)p: 当x∈R时,x2+1≥2x,q:当x∈R时,|x|≥0;(2)p: 相似三角形的面积相等,q:相似三角形的对应角相等;(3)p:函数y=cos x是周期函数,q:函数y=cos x是奇函数.解析:(1)因为p是真命题,q是真命题,所以“ p∨q”和“ p∧q”都是真命题.(2)因为p是假命题,q是真命题,所以“p∨q”是真命题,“ p∧q”是假命题.(3)因为p是真命题,q是假命题,所以“ p∨q”是真命题,“ p∧q”是假命题.题型四“﹁p”命题真假性的判断例4写出下列命题的否定,并判断其真假.(1)p:是有理数;(2)p:5不是75的约数;(3)p:7<8;(4)p:5+6≠11;(5)p:空集是任何非空集合的真子集.解析:(1) ﹁p:不是有理数.命题p是假命题,﹁p是真命题;(2) ﹁p:5是75的约数.命题p是假命题,﹁p是真命题;(3) ﹁p:7≥8.命题p是真命题,﹁p是假命题;(4) ﹁p:5+6=11,命题p是假命题,﹁p是真命题;(5) ﹁p:空集不是任何非空集合的真子集.命题p是真命题,﹁p是假命题.巩固写出下列命题的否定,并判断它们的真假.(1)p:函数y=tan x是奇函数;(2)q:4∈{1,2,4}.解析:(1) ﹁p:函数y=tan x不是奇函数,是假命题.(2) ﹁q:4 {1,2,4},是假命题.题型五命题的否定与否命题的辨析例5写出下列各命题的否定及其否命题,并判断它们的真假.(1)若x、y都是奇数,则x+y是偶数;(2)若xy=0,则x=0或y=0.解析:命题的否定是:(1)若x、y都是奇数,则x+y不是偶数,为假命题;(2)若xy=0,则x≠0且y≠0,为假命题;原命题的否命题是:(1)若x 、y 不都是奇数,则x +y 不是偶数,是假命题; (2)若xy ≠0,则x ≠0且y ≠0,是真命题.点评:1.要注意区别“否命题”与“命题的否定”:否命题要对命题的条件和结论都否定,而命题的否定仅对命题的结论否定.2.常用词语及其否定: 原词语 等于 大于(>) 小于(<) 是 都是 否定词语 不等于 不大于(≤)不小于(≥)不是 不都是原词语 至多有一个 至少有一个 至多有n 个 否定词语 至少有两个 一个也没有 至少有n +1个 原词语 任意的 任意两个 所有的 能 否定词语某个某两个某些不能 巩 固 写出下列命题的否定形式和否命题:(1)若abc =0,则a 、b 、c 中至少有一个为零; (2)若a =b 且b =c ,则a =c .解析:(1)否定形式:若abc =0,则a 、b 、c 全不为零. 否命题:若abc ≠0,则a 、b 、c 全不为零. (2)否定形式:若a =b 且b =c ,则a ≠c . 否命题:若a ≠b 或b ≠c ,则a ≠c . 题型六 逻辑联结词的简单运用例6 命题p :关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立;q :函数f (x )=-(5-2a )x 是减函数.若p 或q 为真,p 且q 为假,求实数a 的取值范围.解析:设g (x )=x 2+2ax +4.因为关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立,所以函数g (x )的图象开口向上且与x 轴没有交点,故Δ=4a 2-16<0,所以-2<a <2,所以命题p :-2<a <2.又函数f (x )=-(5-2a )x 是减函数,则有5-2a >1,即a <2.所以命题q :a <2. 由p 或q 为真,p 且q 为假,可知p 和q 一真一假.(1) 若p 真q 假,则⎩⎪⎨⎪⎧-2<a <2,a ≥2此不等式组无解.(2)若p 假q 真,则⎩⎪⎨⎪⎧a ≤-2,或a ≥2,a <2,所以a ≤-2.综上,实数a 的取值范围是 (-∞,-2].点评:(1)利用逻辑联结词“且”、“或”可以将简单命题变为复合命题,利用“非”可以否定一个命题. 在解决问题时,正确理解逻辑联结词“或”“且”“非”是关键,有些命题并不一定包含“或”“且”“非”这些逻辑联结词,要结合命题的具体含义正确进行命题构成的判定.(2)对于复合命题中的参数问题,可以根据复合命题的真假,列出方程或不等式,求出参数的值或范围.巩 固 已知a >0,a ≠1.设p :函数y =log a (x +1) 在(0,+∞)内单调递减;q :曲线y =x 2+(2a -3)x +1与x 轴交于不同的两点.若p 或q 为真,p 且q 为假,求a 的取值范围.解析:当0<a <1时,函数y =log a (x +1)在(0,+∞)内单调递减.当a >1时,y =log a (x +1)在(0,+∞)内不是单调递减函数,故p 真时0<a <1.q 真等价于(2a -3)2-4>0,即a <12或a >52.又a >0,所以0<a <12或a >52.因为p 或q 为真,p 且q 为假, 所以p ,q 中必定是一个为真一个为假.(1)若p 真,q 假,则⎩⎪⎨⎪⎧ 0<a <1,12≤a <1或1<a ≤52⇒12≤a <1,即a ∈⎣⎡⎭⎫12,1.(2)若p 假,且q 真,则⎩⎪⎨⎪⎧a >1,0<a <12或a >52⇒a >52,即a ∈⎝⎛⎭⎫52,+∞. 综上可知,a 的取值范围为⎣⎡⎭⎫12,1∪⎝⎛⎭⎫52,+∞.(且、或)一、选择题1.下列命题中,是“ p ∨q ”形式的命题的是( )A .∅{0}B .-3<0C .平行四边形的对角线相等且互相平分D .能被5整除的整数的末位数不是0就是5 解析:“∅{0}”和“-3<0”是简单命题;“平行四边形的对角线相等且互相平分”是“p ∧q ”形式的命题.“能被5整除的整数的末位数不是0就是5” 是“ p ∨q ”形式的命题.故选D. 答案:D2.已知命题p :5≤5,q :5>6.则下列说法正确的是( )A .“p ∧q ”为真,“p ∨q ”为真B.“p∧q”为假,“p∨q”为假C.“p∧q”为假,“p∨q”为真D.“p∧q”为真,“p∨q”为假答案:C3.下列语句中,符合命题“p∧q”的个数是()①方程x2+5=0没有实数根;②y=sin x是周期函数也是R 上的减函数;③9是144和81的公约数;④(A∩B)⊆AA.0个B.1个C.2个D.3个解析:②、③符合命题“p∧q”的形式.故选C.答案:C4.“x不大于y”是指()A.x≠y B.x< y或x=y C.x< y D.x< y且x=y解析:“不大于”是指“小于或等于”.故选B.答案:B5.已知命题p:1∈{x|(x+2)(x-3)<0},命题q:∅={0}则下列判断正确的是()A.p假q假B.“p或q”为真C.“p且q”为真D.p假q真解析:因为{x|(x+2)(x-3)<0}={x|-2<x<3},所以1∈{x|(x+2)(x-3)<0},所以p真.因为∅≠{0},所以q 假.故“p或q”为真,“p且q”为假,故选B.答案:B6.已知命题p:点P在直线y=2x-1上;命题q:点P在直线y=-x+3上,则使命题“p或q”为真命题的一个点P(x,y)是()A.(0,-3) B.(3,2) C.(1,-1) D.(5,-2)解析:命题“p或q”为真命题的含义是这两个命题至少有一个是真命题,即点P在直线y=2x-3上,或在直线y =-3x+2上,即点P至少在其中一条直线上.检验知选项D满足条件.故选D.答案:D7.已知命题p,q,则命题“p∨q为真”是命题“p∧q为真”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:p∧q为真⇒p真且q真⇒p∨q为真;p∨q为真⇒p真或q真p∧q为真.故选B.答案:B8.若xy =0,则x =0________y =0;若xy ≠0,则x ≠0________y ≠0(填“且”或“或”).答案:或,且9.给出命题p :ax +b >0的解为x >-ba,命题q :(x -a )(x -b )<0的解为a <x <b .则p ∧q 是________命题(填“真”或“假”).解析:命题p 与q 都是假命题,所以p ∧q 是假命题. 答案:假10.若命题“p 或q ”与命题“p 且q ”都是真命题,则下列结论中正确的个数是______________.①命题q 一定是真命题;②命题q 不一定是真命题;③命题p 不一定是真命题;④命题p 与q 的真值相同. 解析:因为命题“p 或q ”与命题“p 且q ”都是真命题,所以p 、q 同真.所以①④正确. 答案:211.设命题p :y =sin ⎝⎛⎭⎫2x +π3 的最小正周期是π,q :32∉[23,+∞),则复合命题“ p ∨q ”、“p ∧q ”中真命题的是________.解析:由三角函数的性质知p 是真命题,而32∈[23,+∞),所以q 是假命题,故“p ∨q ”为真命题,“p ∧q ”为假命题.答案: p ∨q 三、解答题12.指出下列各题中的“p 或q ”、“p 且q ”形式命题的真假.(1)p :a ∈{a ,b ,c };q :{a }⊆{a ,b ,c };(2)p :x ≠y ,则sin x ≠sin y .q :如果α⊥β,l ⊂α,则l ⊥β.解析:(1)p 或q 是真命题,p 且q 是真命题;(2)p 或q 是假命题,p 且q 是假命题.13.已知p :不等式mx 2+1>0的解集是 R ;q :f (x )=log m x 是减函数.若p ∨q 为真,p ∧q 为假,求m 的取值范围.解析:因为不等式mx 2+1>0的解集是R ,所以⎩⎪⎨⎪⎧m >0,Δ<0或m =0,解得m ≥0,即p :m ≥0.又f (x )=log m x 是减函数, 所以0<m <1,即q :0<m <1,又 p ∨q 为真, p ∧q 为假,所以p 和q 一真一假.即p 为真,q 为假;或p 为假,q 为真.所以⎩⎪⎨⎪⎧ m ≥0,m ≥1或⎩⎪⎨⎪⎧m <0,0<m <1,得m ≥1. 所以m 的取值范围是m ≥1.(非)1.如果命题p或q为假命题,则()A.p、q均为真命题B.p、q中至少有一个为真命题C.p、q中至多有一个为真命题D.p、q均为假命题答案:D2.已知命题p:2+2=5,命题q:3>2,则下列判断正确的是()A.“p或q”为假,“非q”为假B.“p或q”为真,“非q”为假C.“p且q”为假,“非p”为假D.“p且q”为真,“p或q”为假解析:显然p假q真,故“p或q”为真,“p且q”为假,“非p”为真,“非q”为假,故选B.答案:B3.若命题p:x=2且y=3,则命题﹁p是()A.x≠2或y=3B.x≠2且y≠3C.x=2或y≠3 D.x≠2或y≠3答案:D4.如果命题“p∨q”与命题“﹁p”都是真命题,那么()A.命题p不一定是假命题B.命题q一定为真命题C.命题q不一定是真命题D.命题p与命题q的真假相同答案:B5.若命题p:x∈(A∩B),则﹁p为()A.x∈A且x∉BB.x∉A或x∉BC.x∉A且x∉BD.x∈(A∪B)解析:“x∈(A∩B)”是指“x∈A,且x∈B”,故﹁p:x∉A或x∉B.故选B.答案:B6.对于下述两个命题:p:对角线互相垂直的四边形是菱形,q:对角线互相平分的四边形是菱形.则命题“p∨q”、“p∧q”、“﹁p”中真命题的个数为()A.0个B.1个C .2个D .3个解析:命题 p 是假命题,命题 q 是假命题,所以“﹁p ”是真命题,命题p ∨q 和命题p ∧q 都是假命题.故选B. 答案:B7.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A .(﹁p )∨(﹁q )B .p ∨(﹁q )C .(﹁p )∧(﹁q )D .p ∨q解析:“至少有一位学生没有落在指定范围”=“甲没有落在指定范围”或“乙没有落在指定范围”=(﹁p )∨(﹁q ).故选A.答案:A8.“p 或q 是假命题”是“非p 为真命题”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案:A 二、填空题9.命题“若a <b ,则2a < 2b ”的否命题为__________,命题的否定为____________.解析:命题“若a <b ,则 2a <2b ”的否命题为“若a ≥b ,则2a ≥2b ”,命题的否定为“若a <b ,则2a ≥2b ”. 答案:若 a ≥b ,则2a ≥2b 若a <b ,则2a ≥2b10.命题“对任意实数x ,ax 2-2ax -3≤0”是真命题,则实数a 的取值范围是__________.解析:当a =0时,-3≤0成立,当a ≠0时⎩⎪⎨⎪⎧a <0,Δ≤0.答案:[-3,0]11.分别用“p 或q ”“p 且q ”“非p ”填空.(1)命题“15能被3和5整除”是________形式;(2)命题“16的平方根是4或16的平方根是-4”是________形式; (3)命题“π不是有理数”是________形式. 答案:p 且q p 或q 非p 三、解答题12. 已知命题p: 1∈{x |x 2<a },命题q :2∈{x |x 2<a }.(1)若“p 或q ”为真命题,求实数a 的取值范围; (2)若“p 且q ”为真命题,求实数a 的取值范围.解析:若p 为真,则由1∈{x |x 2<a },得12<a ,即a >1; 若q 为真,则由 2∈{x |x 2<a },得a >4.11 (1)若“p 或q ”为真,则a >1或 a >4,即a >1.故实数a 的取值范围是(1,+∞).(2)若“p 且q ”为真,则 a >1且 a >4,即 a >4.故实数a 的取值范围是(4,+∞).13.已知命题p :|4-x |≤6,q :x 2-2x +1-a 2≥0(a >0),若非p 是q 的充分不必要条件,求a 的取值范围.解析:﹁p :|4-x |>6,x >10,或x <-2,x ∈A ={x |x >10,或x <-2},q :x 2-2x +1-a 2≥0,x ≥1+a ,或x ≤1-a ,记B ={x |x ≥1+a ,或x ≤1-a }.而﹁p ⇒q ,q ﹁p ,∴A B ,即⎩⎪⎨⎪⎧ 1-a ≥-2,1+a ≤10,a >0,∴0<a ≤3.∴a 的取值范围是(0,3].。
1.3.1简单的逻辑联结词——或、且、非
q:x=-3是方程|x|=3的解,
p∨q:x=3或x=-3是方程|x|=3的解. 金品质•高追求 我们让你更放心!
返回
◆数学•选修2-1•(配人教A版)◆
跟踪训练 3.分别指出下列命题的形式以及构成它的简单命
题.
(1)李明是老师,赵山也是老师; (2)1是合数或质数; (3)他是运动员兼教练员;
(4)这些文学作品不仅艺术上有缺点,而且政治上也
返回
◆数学•选修2-1•(配人教A版)◆
跟踪训练 4.判断下列复合命题的真假.
(1)等腰三角形顶角的平分线平分底边并且垂直于底边;
(2)5≥4; (3)A A∪B.
分析:先确定复合命题的构成形式以及构成它的简单
命题,然后研究各简单命题的真假,最后再根据相应的真
值表判定复合命题的真假.
金品质•高追求
返回
◆数学•选修2-1•(配人教A版)◆
1.“或”、“且”、“非”贯穿于集合与简易逻辑 之中.正确理解“或”、“且”、“非”的含义是十分重 要的. 2.在写出一个含有“或”、“且”命题的否命题时, 要注意“非或即且,非且即或”. 3.“或命题”的真假特点是“一真即真,要假全 假”. 4.“且命题”的真假特点是“一假即假,要真全 真”. 金品质•高追求 我们让你更放心!
◆数学•选修2-1•(配人教A版)◆
自测自评 ( 1.命题“平行四边形的对角线相等且互相平分”是 C ) A.简单命题 B.p或q形式命题
C . p且q形式命题 D.非p形式命题 2 . 已知命题 p: 5≤5, q: 5>6.则下列说法正确的是 (C )
A.“p∧q”为真,“p∨q”为真,“綈 p”为真
金品质•高追求
我们让你更放心!
返回
经典简单的逻辑联结词
并集
且
两者同时兼有
交集
非
否定
补集
非p形式复合命题
p
非p
真
假
假
真
P或q形式复合命题
p
q
P或q
真真 真
真
假
真
假
真
真
假
假
假
p且q形式复合命题 p q p且q 真真 真 真假 假 假真 假 假假 假
真值表
附:
1、P∨q的否定形式为: ┒P且┒q
2、P∧q的否定形式为: ┒P或┒q
3、P∨ q的否定形式为真命题,则p,q的真假是:
p∧q时假命题. (3)当p、q都是假命题时,p∧q是假命题;
p
q
p∧q
真
真
真
真
假
假
假
真
假
假
假
假
注:
全真为真,有假即假.
“且”的理解:相似于集合中“交集”的概念,两个 件必须同时满足;
开关p,q的闭合对应命题的真假,则整个电路的
接通与断开分别对应命题 p ∧ q 的真与假.
p
q
例1 将下列命题用“且”联结成新命题,并判断真假
(1)p:平行四边形的对角线互相平分 q:平行四边形的对角线相等
(2)p:菱形对角线互相垂直 q:菱形对角线互相平分
(3)p:35是15的倍数 q:35是7的倍数
(4)p: N Z
q: {0}N
例2 用逻辑联结词“且”改写下列命题,并判 断真假:
(1)1既是奇数,又是素数; (2)2和3都是素数
下列三个命题之间有什么关系?
(1)27是7的倍数; (2)27是9的倍数; (3)27是7的倍数或是9的倍数.
2014-2015学年高中数学(人教版选修2-1)配套课件第一章 1.3.2 简单的逻辑联结词——非及复合命题
(5)p:空集是任何非空集合的真子集.
解析:(1) ﹁p:不是有理数.命题p是假命题,
﹁ p是真命题;
(2) ﹁p:5是75的约数.命题p是假命题,﹁p是真命 题; (3) ﹁p:7≥8.命题p是真命题,﹁p是假命题; (4) ﹁p:5+6=11,命题p是假命题,﹁p是真命题;
栏 目 链 接
3.若命题p:x=2且y=3,则命题﹁p是( D ) A.x≠2或y=3 C.x=2或y≠3 B.x≠2且y≠3 D.x≠2或y≠3
栏 目 链 接
题型一 例1
“﹁p”命题真假性的判断
写出下列命题的否定,并判断其真假.
(1)p:是有理数; (2)p:5不是75的约数; (3)p:7<8; (4)p:5+6≠11;
第一章
常用逻辑用语
1.3 简单的逻辑联结词
1.3.2 简单的逻辑联结词——非及复合命题
栏 目 链 接
1.理解逻辑联结词“非”的含义. 2.能够判断含有逻辑联结词的命题的真假. 3.掌握逻辑连接词“且”、“或”、“非”的简单 应用.
栏 目 链 接
栏 目 链 接
否命题:若a≠b或b≠c,则a≠c.
题型三 例3
逻辑联结词的简单运用 命题p:关于x的不等式x2+2ax+4>0对一切
x∈R恒成立;q:函数f(x)=-(5-2a)x是减函数.若p或q 为真,p且q为假,求实数a的取值范围. 解析:设g(x)=x2+2ax+4.因为关于x的不等式x2+ 2ax+4>0对一切x∈R恒成立,所以函数g(x)的图象开口向 上且与x轴没有交点,故Δ =4a2-16<0,所以-2<a<2, 所以命题p:-2<a<2. 又函数f(x)=-(5-2a)x是减函数,则有5-2a>1,即 a<2.所以命题q:a<2.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我们可以从并联电路理解联结词“或”的 含义。若开关p,q的闭合与断开分别对应命 题p,q的真与假,则整个电路的接通与断开 分别对应命题p∨q的真与假。
p
q
同假为假,一真必真.
s
总结思考
如果p∧q为真命题,那么p∨q一定是真 命题吗?反之,如果p∨q为真命题,那么 p∧q一定是真命题吗?
假
(2)p:3 < 2
解: p : 3≥2.
真
(3) p:空集是集合A的子集
解: p : 空集不是集合A的子集。 假
课堂小结
1、逻辑联结词 “或”、“且”、“非”的含义 2、判断含有逻辑连接词的命题真假的步骤
(1)把命题写成两个简单命题,并确定命题的构成 形式;
(2)判断简单命题的真假; (3)根据真值表判断命题的真假.
2.在下列命题中
(1)命题“不等式 | x 2 | 0 没有实数解”;
(2)命题“-1是偶数或奇数”;
(3)命题“ 2 既属于集合Q ,也属于集合R”;
(4)命题“A A U B ”
其中,真命题为_(__2__)__(__4_)___.
3.
命题p:“不等式
x
x 1
0
的解集为
{x | x 0或x 1}”;命题q:“不等式 x2 4
1.3简单的逻辑联结词
★★ 1.3.1 且 (and)
思考 下面三个命题间有什么关系? (1)12能被3整除; (2)12能被4整除;
命题(3)是由命 题(1)(2)使用联 结词“且”联 结得到的新命 题.
(3)12能被3整除且能被4整除。
一般的,用逻辑联结词“ ”把命题p和q连接起来, 就得到一个新命题, 记作p∧q,读作“p且q”.
(3)p:周长相等的两个三角形全等; q:面积相等的两个三角形全等.
∵命题p、q都是假命题, ∴ p∨q是假命题.
★★ 1.3.3 非 (not)
思考: 下面两个命题间有什么关系? (1)、35能被5整除; (2) 、 35不 能被5整除。
一般地,对一个命题p 全盘否定 ,就能得到一个新命题,
记作 p,读作“非p”或“p的否定” 若p是真命题,则 p必是假命题;若p是假命题,则 p必
是真命题。真假相反
写出下表中各给定语的否定语
给定语为
否定语为
等于 大于 是 都是 至多有一个 至少有一个 至多有n个
不等于 小于或者等于
不是 不都是 至少有两个 一个都没有 至少有n+1个
例5 写出下列命题的否定,并判断它们的真假:
(1)p:y=sinx 是周期函数;
解: p : y=sinx不是周期函数。
p
q
同真为真
s
一假必假
例2 用逻辑联结词“且”改写下列命题,并判断它们的真 假:
(1) 1 既是奇数,又是素数;
解: 1 是奇数且 1 是素数 (2)2 和 3 都是素数。
解: 2 是素数且 3 是素数
是假命题 是真命题
★★1.3.2 或 (or)
思考 下列三个命题间有什么关系? (1)27是7的倍数; (2)27是9的倍数;
(2) p :菱形的对角线互相垂直, q :菱形的对角线互相平分;
解: p∧q : 菱形的对角线互相垂直且平分。
(3) p :35是15的倍数, q :35是7的倍数。
解: p∧q : 35是15的倍数且是7的倍数。
1:命题p:函数 y x3 是奇函数;
真
命题q:函数 y x3 在定义域内是增函数; 真
一句话概括: 同假为假,一真必真.
p
q p∨q
真真真
真假真
假真真
假假假
活动探究
探究:逻辑联结词“或”的含义与集 合中学过的哪个概念的意义相同呢?
对“或”的理解,可联想到集合中“并集”的概 念.A∪B={x︱x∈A或x∈B}中的“或”,它是指 “x∈A”、“x∈B”中至少一个是成立的,即x∈A且
x B;也可以xA且x∈B;也可以x∈A且x∈B.
5.设命题p:实数x满足
命题q:实数x满足
若p且q为真,则实数 x的取值范围
为
.
6.已知命题p:能被5整除的整数的个位数 一定为5;命题q:能被5整除的整数的个位 数一定为0,则p∨q:_______________
能被5整除的整数的个位数一定为5或一定 为0
作业布置 《全品学练考》
4:命题p:函数 y x3 是奇函数;
真
命题q:函数 y x3 在定义域内是减函数;
假
命题p∨q:函数 y x3 是奇函数或在定义域内
真
是减函数。
5:命题p: 相似三角形的面积相等;
假
你命能题q归:纳相似p 三∨角q形形的式周的长命相题等的;真假吗?
假
命题p∨q:相似三角形的面积相等或周长相等。
对“且”的理解,可联想到集合中 “交集”的概念.
A∩B={x︱x∈A且x∈B}中的“且”, 是指“x∈A”、“x∈B”这两个条件都 要满足的意思
符号“∧”与“∩”开口都是向下
我们可以从串联电路理解联结词“且”的 含义。若开关p,q的闭合与断开分别对应命 题p,q的真与假,则整个电路的接通与断开 分别对应命题p∧q的真与假。
命题p∧q:函数 y x3 是奇函数且在定义域
真
内是增函数。
2:命题p: 三角形三条中线相等;
假
你命能题归q:纳三角p形∧q三形条式中的线交命于题一的点真;假吗? 命题p∧q:三角形三条中线相等且交于一点。
真 假
3:命题p: 相似三角形的面积相等;
假
命题q: 相似三角形的周长相等;
假
命题p∧q:相似三角形的面积相等且周长相等。 假
注:逻辑联结词“且”与日常用语中的“并且”、 “及”、“和”相当;在日常用语中常用“且”连接 两个语句。表明前后两者同时兼有,同时满足 .
例1 将下列命题用“且”联结成新命题 (1) p :平行四边形的对角线互相平分,
q :平行四边形的对角线相等; 解: p ∧q : 平行四边形的对角线互相平分且相等。
的解集为{x | x 2} ”,则 ( D )
A.p真q假
B.p假q真
C.命题“p且q”为真
D.命题“p或q”为假
4.在一次模拟射击游戏中,小李连续 射击了两次,设命题p:“第一次射击中 靶”,命题q:“第二次射击中靶”,试 用,p、q及逻辑联结词 “或”“且”“非”表示下列命题: (1)两次射击均中靶; p∧q (2)两次射击至少有一次中靶. p∨q
真值表:
p
q
真真
真假
假真
假假
非p p且q p或q
非p p且q p或q 假真真 假假真 真假真 真假假
真假相反 一假必假 一真必真
练习
1.命题“方程 x 1 的解是 x 1”中,
使用逻辑词的情况是( B) A.没有使用逻辑联结词 B.使用了逻辑联结词“或” C. 使用了逻辑联结词“且” D. 使用了逻辑联结词“或”与“且”
p∧q为真命题
p∨q是真命题
p∨q是真命题
p∧q为真命题
例题分析
例3:判断下列命题的真假: (1)2≤2; (2)集合A是A∩B的子集或是A∪B的子集; (3)周长相等的两个三角形全等或面积相等的两个三 角形全等.
解:(1)p:2=2 ;q:2<2 ∵ p是真命题,∴p∨q是真命题.
(2)p:集合A是A∩B的子集;q:集合A是A∪B的子集 ∵q是真命题, ∴p∨q是真命题.
命题p∧q的真假判断方法:
填空:一般地,我们规定:当p,q都是真命 题时,p∧q是 真命题 ;当p,q 两个命题 中有一个命题是假命题时,p∧q是 假命题 .
一句话概括:
p
q p∧q
同真为真,一假必假. 真 真 真 真假 假
假真 假
假假 假
活动探究
探究:逻辑联结词“且”的含义与集合 中学过的哪个概念的意义相同呢?
命题(3)是由命 题(1)(2)使用联 结词“或”联 结得到的新命 题.
(3)27是7的倍数 或 是9的倍数。
一般地,用逻辑联结词“ ”把命题p和命题q联结起来,
就得到一个新命题,记作p∨q, 读作“p或q”
注:日常生活中的“或”有两类用法:其一是“不可兼有”的 “或”;其二是“可兼有”的“或”。逻辑连接词中的“或”为日 常生活中 “可兼有”的“或”。
假
6:命题p:三边对应成比例的两个三角形相似;
真
命题q:三角对应相等的两个三角形相似;
真
命题p∨q:三边对应成比例或三角对应相等的两个三 真
角形相似
命题p∨q的真假判断方法:
一般地,我们规定:当p,q两个命题中 有一 个命题是真命题时,p∨q是 真 命题;
当p,q两个命题都是假命题时,p∨q 是假 命题.